1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //===----------------------------------------------------------------------===//
13 #include "MipsSEISelDAGToDAG.h"
14 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MipsAnalyzeImmediate.h"
17 #include "MipsMachineFunction.h"
18 #include "MipsRegisterInfo.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAGNodes.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
37 #define DEBUG_TYPE "mips-isel"
39 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction
&MF
) {
40 Subtarget
= &static_cast<const MipsSubtarget
&>(MF
.getSubtarget());
41 if (Subtarget
->inMips16Mode())
43 return MipsDAGToDAGISel::runOnMachineFunction(MF
);
46 void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage
&AU
) const {
47 AU
.addRequired
<DominatorTreeWrapperPass
>();
48 SelectionDAGISel::getAnalysisUsage(AU
);
51 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef
, MachineInstr
&MI
,
52 MachineFunction
&MF
) {
53 MachineInstrBuilder
MIB(MF
, &MI
);
54 unsigned Mask
= MI
.getOperand(1).getImm();
56 IsDef
? RegState::ImplicitDefine
: RegState::Implicit
| RegState::Undef
;
59 MIB
.addReg(Mips::DSPPos
, Flag
);
62 MIB
.addReg(Mips::DSPSCount
, Flag
);
65 MIB
.addReg(Mips::DSPCarry
, Flag
);
68 MIB
.addReg(Mips::DSPOutFlag
, Flag
);
71 MIB
.addReg(Mips::DSPCCond
, Flag
);
74 MIB
.addReg(Mips::DSPEFI
, Flag
);
77 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx
) const {
78 switch (cast
<ConstantSDNode
>(RegIdx
)->getZExtValue()) {
80 llvm_unreachable("Could not map int to register");
81 case 0: return Mips::MSAIR
;
82 case 1: return Mips::MSACSR
;
83 case 2: return Mips::MSAAccess
;
84 case 3: return Mips::MSASave
;
85 case 4: return Mips::MSAModify
;
86 case 5: return Mips::MSARequest
;
87 case 6: return Mips::MSAMap
;
88 case 7: return Mips::MSAUnmap
;
92 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo
*MRI
,
93 const MachineInstr
& MI
) {
94 unsigned DstReg
= 0, ZeroReg
= 0;
96 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
97 if ((MI
.getOpcode() == Mips::ADDiu
) &&
98 (MI
.getOperand(1).getReg() == Mips::ZERO
) &&
99 (MI
.getOperand(2).isImm()) &&
100 (MI
.getOperand(2).getImm() == 0)) {
101 DstReg
= MI
.getOperand(0).getReg();
102 ZeroReg
= Mips::ZERO
;
103 } else if ((MI
.getOpcode() == Mips::DADDiu
) &&
104 (MI
.getOperand(1).getReg() == Mips::ZERO_64
) &&
105 (MI
.getOperand(2).isImm()) &&
106 (MI
.getOperand(2).getImm() == 0)) {
107 DstReg
= MI
.getOperand(0).getReg();
108 ZeroReg
= Mips::ZERO_64
;
114 // Replace uses with ZeroReg.
115 for (MachineRegisterInfo::use_iterator U
= MRI
->use_begin(DstReg
),
116 E
= MRI
->use_end(); U
!= E
;) {
117 MachineOperand
&MO
= *U
;
118 unsigned OpNo
= U
.getOperandNo();
119 MachineInstr
*MI
= MO
.getParent();
122 // Do not replace if it is a phi's operand or is tied to def operand.
123 if (MI
->isPHI() || MI
->isRegTiedToDefOperand(OpNo
) || MI
->isPseudo())
126 // Also, we have to check that the register class of the operand
127 // contains the zero register.
128 if (!MRI
->getRegClass(MO
.getReg())->contains(ZeroReg
))
137 void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction
&MF
) {
138 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
140 if (!MipsFI
->globalBaseRegSet())
143 MachineBasicBlock
&MBB
= MF
.front();
144 MachineBasicBlock::iterator I
= MBB
.begin();
145 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
146 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
148 unsigned V0
, V1
, GlobalBaseReg
= MipsFI
->getGlobalBaseReg();
149 const TargetRegisterClass
*RC
;
150 const MipsABIInfo
&ABI
= static_cast<const MipsTargetMachine
&>(TM
).getABI();
151 RC
= (ABI
.IsN64()) ? &Mips::GPR64RegClass
: &Mips::GPR32RegClass
;
153 V0
= RegInfo
.createVirtualRegister(RC
);
154 V1
= RegInfo
.createVirtualRegister(RC
);
157 MF
.getRegInfo().addLiveIn(Mips::T9_64
);
158 MBB
.addLiveIn(Mips::T9_64
);
160 // lui $v0, %hi(%neg(%gp_rel(fname)))
161 // daddu $v1, $v0, $t9
162 // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
163 const GlobalValue
*FName
= &MF
.getFunction();
164 BuildMI(MBB
, I
, DL
, TII
.get(Mips::LUi64
), V0
)
165 .addGlobalAddress(FName
, 0, MipsII::MO_GPOFF_HI
);
166 BuildMI(MBB
, I
, DL
, TII
.get(Mips::DADDu
), V1
).addReg(V0
)
167 .addReg(Mips::T9_64
);
168 BuildMI(MBB
, I
, DL
, TII
.get(Mips::DADDiu
), GlobalBaseReg
).addReg(V1
)
169 .addGlobalAddress(FName
, 0, MipsII::MO_GPOFF_LO
);
173 if (!MF
.getTarget().isPositionIndependent()) {
174 // Set global register to __gnu_local_gp.
176 // lui $v0, %hi(__gnu_local_gp)
177 // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
178 BuildMI(MBB
, I
, DL
, TII
.get(Mips::LUi
), V0
)
179 .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI
);
180 BuildMI(MBB
, I
, DL
, TII
.get(Mips::ADDiu
), GlobalBaseReg
).addReg(V0
)
181 .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO
);
185 MF
.getRegInfo().addLiveIn(Mips::T9
);
186 MBB
.addLiveIn(Mips::T9
);
189 // lui $v0, %hi(%neg(%gp_rel(fname)))
190 // addu $v1, $v0, $t9
191 // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
192 const GlobalValue
*FName
= &MF
.getFunction();
193 BuildMI(MBB
, I
, DL
, TII
.get(Mips::LUi
), V0
)
194 .addGlobalAddress(FName
, 0, MipsII::MO_GPOFF_HI
);
195 BuildMI(MBB
, I
, DL
, TII
.get(Mips::ADDu
), V1
).addReg(V0
).addReg(Mips::T9
);
196 BuildMI(MBB
, I
, DL
, TII
.get(Mips::ADDiu
), GlobalBaseReg
).addReg(V1
)
197 .addGlobalAddress(FName
, 0, MipsII::MO_GPOFF_LO
);
203 // For O32 ABI, the following instruction sequence is emitted to initialize
204 // the global base register:
206 // 0. lui $2, %hi(_gp_disp)
207 // 1. addiu $2, $2, %lo(_gp_disp)
208 // 2. addu $globalbasereg, $2, $t9
210 // We emit only the last instruction here.
212 // GNU linker requires that the first two instructions appear at the beginning
213 // of a function and no instructions be inserted before or between them.
214 // The two instructions are emitted during lowering to MC layer in order to
215 // avoid any reordering.
217 // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
218 // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
220 MF
.getRegInfo().addLiveIn(Mips::V0
);
221 MBB
.addLiveIn(Mips::V0
);
222 BuildMI(MBB
, I
, DL
, TII
.get(Mips::ADDu
), GlobalBaseReg
)
223 .addReg(Mips::V0
).addReg(Mips::T9
);
226 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction
&MF
) {
227 initGlobalBaseReg(MF
);
229 MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
231 for (auto &MBB
: MF
) {
232 for (auto &MI
: MBB
) {
233 switch (MI
.getOpcode()) {
235 addDSPCtrlRegOperands(false, MI
, MF
);
238 addDSPCtrlRegOperands(true, MI
, MF
);
240 case Mips::BuildPairF64_64
:
241 case Mips::ExtractElementF64_64
:
242 if (!Subtarget
->useOddSPReg()) {
243 MI
.addOperand(MachineOperand::CreateReg(Mips::SP
, false, true));
247 case Mips::BuildPairF64
:
248 case Mips::ExtractElementF64
:
249 if (Subtarget
->isABI_FPXX() && !Subtarget
->hasMTHC1())
250 MI
.addOperand(MachineOperand::CreateReg(Mips::SP
, false, true));
253 replaceUsesWithZeroReg(MRI
, MI
);
259 void MipsSEDAGToDAGISel::selectAddE(SDNode
*Node
, const SDLoc
&DL
) const {
260 SDValue InFlag
= Node
->getOperand(2);
261 unsigned Opc
= InFlag
.getOpcode();
262 SDValue LHS
= Node
->getOperand(0), RHS
= Node
->getOperand(1);
263 EVT VT
= LHS
.getValueType();
265 // In the base case, we can rely on the carry bit from the addsc
267 if (Opc
== ISD::ADDC
) {
268 SDValue Ops
[3] = {LHS
, RHS
, InFlag
};
269 CurDAG
->SelectNodeTo(Node
, Mips::ADDWC
, VT
, MVT::Glue
, Ops
);
273 assert(Opc
== ISD::ADDE
&& "ISD::ADDE not in a chain of ADDE nodes!");
275 // The more complex case is when there is a chain of ISD::ADDE nodes like:
276 // (adde (adde (adde (addc a b) c) d) e).
278 // The addwc instruction does not write to the carry bit, instead it writes
279 // to bit 20 of the dsp control register. To match this series of nodes, each
280 // intermediate adde node must be expanded to write the carry bit before the
283 // Start by reading the overflow field for addsc and moving the value to the
284 // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP
285 // corresponds to reading/writing the entire control register to/from a GPR.
287 SDValue CstOne
= CurDAG
->getTargetConstant(1, DL
, MVT::i32
);
289 SDValue OuFlag
= CurDAG
->getTargetConstant(20, DL
, MVT::i32
);
291 SDNode
*DSPCtrlField
=
292 CurDAG
->getMachineNode(Mips::RDDSP
, DL
, MVT::i32
, MVT::Glue
, CstOne
, InFlag
);
294 SDNode
*Carry
= CurDAG
->getMachineNode(
295 Mips::EXT
, DL
, MVT::i32
, SDValue(DSPCtrlField
, 0), OuFlag
, CstOne
);
297 SDValue Ops
[4] = {SDValue(DSPCtrlField
, 0),
298 CurDAG
->getTargetConstant(6, DL
, MVT::i32
), CstOne
,
300 SDNode
*DSPCFWithCarry
= CurDAG
->getMachineNode(Mips::INS
, DL
, MVT::i32
, Ops
);
302 // My reading of the MIPS DSP 3.01 specification isn't as clear as I
303 // would like about whether bit 20 always gets overwritten by addwc.
304 // Hence take an extremely conservative view and presume it's sticky. We
305 // therefore need to clear it.
307 SDValue Zero
= CurDAG
->getRegister(Mips::ZERO
, MVT::i32
);
309 SDValue InsOps
[4] = {Zero
, OuFlag
, CstOne
, SDValue(DSPCFWithCarry
, 0)};
310 SDNode
*DSPCtrlFinal
= CurDAG
->getMachineNode(Mips::INS
, DL
, MVT::i32
, InsOps
);
312 SDNode
*WrDSP
= CurDAG
->getMachineNode(Mips::WRDSP
, DL
, MVT::Glue
,
313 SDValue(DSPCtrlFinal
, 0), CstOne
);
315 SDValue Operands
[3] = {LHS
, RHS
, SDValue(WrDSP
, 0)};
316 CurDAG
->SelectNodeTo(Node
, Mips::ADDWC
, VT
, MVT::Glue
, Operands
);
320 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr
, SDValue
&Base
,
321 SDValue
&Offset
) const {
322 if (FrameIndexSDNode
*FIN
= dyn_cast
<FrameIndexSDNode
>(Addr
)) {
323 EVT ValTy
= Addr
.getValueType();
325 Base
= CurDAG
->getTargetFrameIndex(FIN
->getIndex(), ValTy
);
326 Offset
= CurDAG
->getTargetConstant(0, SDLoc(Addr
), ValTy
);
332 /// Match frameindex+offset and frameindex|offset
333 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
334 SDValue Addr
, SDValue
&Base
, SDValue
&Offset
, unsigned OffsetBits
,
335 unsigned ShiftAmount
= 0) const {
336 if (CurDAG
->isBaseWithConstantOffset(Addr
)) {
337 ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(1));
338 if (isIntN(OffsetBits
+ ShiftAmount
, CN
->getSExtValue())) {
339 EVT ValTy
= Addr
.getValueType();
341 // If the first operand is a FI, get the TargetFI Node
342 if (FrameIndexSDNode
*FIN
=
343 dyn_cast
<FrameIndexSDNode
>(Addr
.getOperand(0)))
344 Base
= CurDAG
->getTargetFrameIndex(FIN
->getIndex(), ValTy
);
346 Base
= Addr
.getOperand(0);
347 // If base is a FI, additional offset calculation is done in
348 // eliminateFrameIndex, otherwise we need to check the alignment
349 if (OffsetToAlignment(CN
->getZExtValue(), 1ull << ShiftAmount
) != 0)
353 Offset
= CurDAG
->getTargetConstant(CN
->getZExtValue(), SDLoc(Addr
),
361 /// ComplexPattern used on MipsInstrInfo
362 /// Used on Mips Load/Store instructions
363 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr
, SDValue
&Base
,
364 SDValue
&Offset
) const {
365 // if Address is FI, get the TargetFrameIndex.
366 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
369 // on PIC code Load GA
370 if (Addr
.getOpcode() == MipsISD::Wrapper
) {
371 Base
= Addr
.getOperand(0);
372 Offset
= Addr
.getOperand(1);
376 if (!TM
.isPositionIndependent()) {
377 if ((Addr
.getOpcode() == ISD::TargetExternalSymbol
||
378 Addr
.getOpcode() == ISD::TargetGlobalAddress
))
382 // Addresses of the form FI+const or FI|const
383 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 16))
386 // Operand is a result from an ADD.
387 if (Addr
.getOpcode() == ISD::ADD
) {
388 // When loading from constant pools, load the lower address part in
389 // the instruction itself. Example, instead of:
390 // lui $2, %hi($CPI1_0)
391 // addiu $2, $2, %lo($CPI1_0)
394 // lui $2, %hi($CPI1_0)
395 // lwc1 $f0, %lo($CPI1_0)($2)
396 if (Addr
.getOperand(1).getOpcode() == MipsISD::Lo
||
397 Addr
.getOperand(1).getOpcode() == MipsISD::GPRel
) {
398 SDValue Opnd0
= Addr
.getOperand(1).getOperand(0);
399 if (isa
<ConstantPoolSDNode
>(Opnd0
) || isa
<GlobalAddressSDNode
>(Opnd0
) ||
400 isa
<JumpTableSDNode
>(Opnd0
)) {
401 Base
= Addr
.getOperand(0);
411 /// ComplexPattern used on MipsInstrInfo
412 /// Used on Mips Load/Store instructions
413 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr
, SDValue
&Base
,
414 SDValue
&Offset
) const {
416 Offset
= CurDAG
->getTargetConstant(0, SDLoc(Addr
), Addr
.getValueType());
420 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr
, SDValue
&Base
,
421 SDValue
&Offset
) const {
422 return selectAddrRegImm(Addr
, Base
, Offset
) ||
423 selectAddrDefault(Addr
, Base
, Offset
);
426 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr
, SDValue
&Base
,
427 SDValue
&Offset
) const {
428 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
431 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 9))
437 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
438 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr
, SDValue
&Base
,
439 SDValue
&Offset
) const {
440 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
443 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 11))
449 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
450 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr
, SDValue
&Base
,
451 SDValue
&Offset
) const {
452 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
455 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 12))
461 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr
, SDValue
&Base
,
462 SDValue
&Offset
) const {
463 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
466 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 16))
472 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr
, SDValue
&Base
,
473 SDValue
&Offset
) const {
474 return selectAddrRegImm11(Addr
, Base
, Offset
) ||
475 selectAddrDefault(Addr
, Base
, Offset
);
478 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr
, SDValue
&Base
,
479 SDValue
&Offset
) const {
480 return selectAddrRegImm12(Addr
, Base
, Offset
) ||
481 selectAddrDefault(Addr
, Base
, Offset
);
484 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr
, SDValue
&Base
,
485 SDValue
&Offset
) const {
486 return selectAddrRegImm16(Addr
, Base
, Offset
) ||
487 selectAddrDefault(Addr
, Base
, Offset
);
490 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr
, SDValue
&Base
,
491 SDValue
&Offset
) const {
492 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 7)) {
493 if (isa
<FrameIndexSDNode
>(Base
))
496 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(Offset
)) {
497 unsigned CnstOff
= CN
->getZExtValue();
498 return (CnstOff
== (CnstOff
& 0x3c));
504 // For all other cases where "lw" would be selected, don't select "lw16"
505 // because it would result in additional instructions to prepare operands.
506 if (selectAddrRegImm(Addr
, Base
, Offset
))
509 return selectAddrDefault(Addr
, Base
, Offset
);
512 bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr
, SDValue
&Base
,
513 SDValue
&Offset
) const {
515 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
518 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 10))
521 return selectAddrDefault(Addr
, Base
, Offset
);
524 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr
, SDValue
&Base
,
525 SDValue
&Offset
) const {
526 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
529 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 10, 1))
532 return selectAddrDefault(Addr
, Base
, Offset
);
535 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr
, SDValue
&Base
,
536 SDValue
&Offset
) const {
537 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
540 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 10, 2))
543 return selectAddrDefault(Addr
, Base
, Offset
);
546 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr
, SDValue
&Base
,
547 SDValue
&Offset
) const {
548 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
551 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 10, 3))
554 return selectAddrDefault(Addr
, Base
, Offset
);
557 // Select constant vector splats.
559 // Returns true and sets Imm if:
561 // * N is a ISD::BUILD_VECTOR representing a constant splat
562 bool MipsSEDAGToDAGISel::selectVSplat(SDNode
*N
, APInt
&Imm
,
563 unsigned MinSizeInBits
) const {
564 if (!Subtarget
->hasMSA())
567 BuildVectorSDNode
*Node
= dyn_cast
<BuildVectorSDNode
>(N
);
572 APInt SplatValue
, SplatUndef
;
573 unsigned SplatBitSize
;
576 if (!Node
->isConstantSplat(SplatValue
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
577 MinSizeInBits
, !Subtarget
->isLittle()))
585 // Select constant vector splats.
587 // In addition to the requirements of selectVSplat(), this function returns
588 // true and sets Imm if:
589 // * The splat value is the same width as the elements of the vector
590 // * The splat value fits in an integer with the specified signed-ness and
593 // This function looks through ISD::BITCAST nodes.
594 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
595 // sometimes a shuffle in big-endian mode.
597 // It's worth noting that this function is not used as part of the selection
598 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
599 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
600 // MipsSEDAGToDAGISel::selectNode.
601 bool MipsSEDAGToDAGISel::
602 selectVSplatCommon(SDValue N
, SDValue
&Imm
, bool Signed
,
603 unsigned ImmBitSize
) const {
605 EVT EltTy
= N
->getValueType(0).getVectorElementType();
607 if (N
->getOpcode() == ISD::BITCAST
)
608 N
= N
->getOperand(0);
610 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
611 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
613 if (( Signed
&& ImmValue
.isSignedIntN(ImmBitSize
)) ||
614 (!Signed
&& ImmValue
.isIntN(ImmBitSize
))) {
615 Imm
= CurDAG
->getTargetConstant(ImmValue
, SDLoc(N
), EltTy
);
623 // Select constant vector splats.
624 bool MipsSEDAGToDAGISel::
625 selectVSplatUimm1(SDValue N
, SDValue
&Imm
) const {
626 return selectVSplatCommon(N
, Imm
, false, 1);
629 bool MipsSEDAGToDAGISel::
630 selectVSplatUimm2(SDValue N
, SDValue
&Imm
) const {
631 return selectVSplatCommon(N
, Imm
, false, 2);
634 bool MipsSEDAGToDAGISel::
635 selectVSplatUimm3(SDValue N
, SDValue
&Imm
) const {
636 return selectVSplatCommon(N
, Imm
, false, 3);
639 // Select constant vector splats.
640 bool MipsSEDAGToDAGISel::
641 selectVSplatUimm4(SDValue N
, SDValue
&Imm
) const {
642 return selectVSplatCommon(N
, Imm
, false, 4);
645 // Select constant vector splats.
646 bool MipsSEDAGToDAGISel::
647 selectVSplatUimm5(SDValue N
, SDValue
&Imm
) const {
648 return selectVSplatCommon(N
, Imm
, false, 5);
651 // Select constant vector splats.
652 bool MipsSEDAGToDAGISel::
653 selectVSplatUimm6(SDValue N
, SDValue
&Imm
) const {
654 return selectVSplatCommon(N
, Imm
, false, 6);
657 // Select constant vector splats.
658 bool MipsSEDAGToDAGISel::
659 selectVSplatUimm8(SDValue N
, SDValue
&Imm
) const {
660 return selectVSplatCommon(N
, Imm
, false, 8);
663 // Select constant vector splats.
664 bool MipsSEDAGToDAGISel::
665 selectVSplatSimm5(SDValue N
, SDValue
&Imm
) const {
666 return selectVSplatCommon(N
, Imm
, true, 5);
669 // Select constant vector splats whose value is a power of 2.
671 // In addition to the requirements of selectVSplat(), this function returns
672 // true and sets Imm if:
673 // * The splat value is the same width as the elements of the vector
674 // * The splat value is a power of two.
676 // This function looks through ISD::BITCAST nodes.
677 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
678 // sometimes a shuffle in big-endian mode.
679 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N
, SDValue
&Imm
) const {
681 EVT EltTy
= N
->getValueType(0).getVectorElementType();
683 if (N
->getOpcode() == ISD::BITCAST
)
684 N
= N
->getOperand(0);
686 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
687 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
688 int32_t Log2
= ImmValue
.exactLogBase2();
691 Imm
= CurDAG
->getTargetConstant(Log2
, SDLoc(N
), EltTy
);
699 // Select constant vector splats whose value only has a consecutive sequence
700 // of left-most bits set (e.g. 0b11...1100...00).
702 // In addition to the requirements of selectVSplat(), this function returns
703 // true and sets Imm if:
704 // * The splat value is the same width as the elements of the vector
705 // * The splat value is a consecutive sequence of left-most bits.
707 // This function looks through ISD::BITCAST nodes.
708 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
709 // sometimes a shuffle in big-endian mode.
710 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N
, SDValue
&Imm
) const {
712 EVT EltTy
= N
->getValueType(0).getVectorElementType();
714 if (N
->getOpcode() == ISD::BITCAST
)
715 N
= N
->getOperand(0);
717 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
718 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
719 // Extract the run of set bits starting with bit zero from the bitwise
720 // inverse of ImmValue, and test that the inverse of this is the same
721 // as the original value.
722 if (ImmValue
== ~(~ImmValue
& ~(~ImmValue
+ 1))) {
724 Imm
= CurDAG
->getTargetConstant(ImmValue
.countPopulation() - 1, SDLoc(N
),
733 // Select constant vector splats whose value only has a consecutive sequence
734 // of right-most bits set (e.g. 0b00...0011...11).
736 // In addition to the requirements of selectVSplat(), this function returns
737 // true and sets Imm if:
738 // * The splat value is the same width as the elements of the vector
739 // * The splat value is a consecutive sequence of right-most bits.
741 // This function looks through ISD::BITCAST nodes.
742 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
743 // sometimes a shuffle in big-endian mode.
744 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N
, SDValue
&Imm
) const {
746 EVT EltTy
= N
->getValueType(0).getVectorElementType();
748 if (N
->getOpcode() == ISD::BITCAST
)
749 N
= N
->getOperand(0);
751 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
752 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
753 // Extract the run of set bits starting with bit zero, and test that the
754 // result is the same as the original value
755 if (ImmValue
== (ImmValue
& ~(ImmValue
+ 1))) {
756 Imm
= CurDAG
->getTargetConstant(ImmValue
.countPopulation() - 1, SDLoc(N
),
765 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N
,
766 SDValue
&Imm
) const {
768 EVT EltTy
= N
->getValueType(0).getVectorElementType();
770 if (N
->getOpcode() == ISD::BITCAST
)
771 N
= N
->getOperand(0);
773 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
774 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
775 int32_t Log2
= (~ImmValue
).exactLogBase2();
778 Imm
= CurDAG
->getTargetConstant(Log2
, SDLoc(N
), EltTy
);
786 bool MipsSEDAGToDAGISel::trySelect(SDNode
*Node
) {
787 unsigned Opcode
= Node
->getOpcode();
791 // Instruction Selection not handled by the auto-generated
792 // tablegen selection should be handled here.
797 case Mips::PseudoD_SELECT_I
:
798 case Mips::PseudoD_SELECT_I64
: {
799 MVT VT
= Subtarget
->isGP64bit() ? MVT::i64
: MVT::i32
;
800 SDValue cond
= Node
->getOperand(0);
801 SDValue Hi1
= Node
->getOperand(1);
802 SDValue Lo1
= Node
->getOperand(2);
803 SDValue Hi2
= Node
->getOperand(3);
804 SDValue Lo2
= Node
->getOperand(4);
806 SDValue ops
[] = {cond
, Hi1
, Lo1
, Hi2
, Lo2
};
807 EVT NodeTys
[] = {VT
, VT
};
808 ReplaceNode(Node
, CurDAG
->getMachineNode(Subtarget
->isGP64bit()
809 ? Mips::PseudoD_SELECT_I64
810 : Mips::PseudoD_SELECT_I
,
816 selectAddE(Node
, DL
);
820 case ISD::ConstantFP
: {
821 ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(Node
);
822 if (Node
->getValueType(0) == MVT::f64
&& CN
->isExactlyValue(+0.0)) {
823 if (Subtarget
->isGP64bit()) {
824 SDValue Zero
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), DL
,
825 Mips::ZERO_64
, MVT::i64
);
827 CurDAG
->getMachineNode(Mips::DMTC1
, DL
, MVT::f64
, Zero
));
828 } else if (Subtarget
->isFP64bit()) {
829 SDValue Zero
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), DL
,
830 Mips::ZERO
, MVT::i32
);
831 ReplaceNode(Node
, CurDAG
->getMachineNode(Mips::BuildPairF64_64
, DL
,
832 MVT::f64
, Zero
, Zero
));
834 SDValue Zero
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), DL
,
835 Mips::ZERO
, MVT::i32
);
836 ReplaceNode(Node
, CurDAG
->getMachineNode(Mips::BuildPairF64
, DL
,
837 MVT::f64
, Zero
, Zero
));
844 case ISD::Constant
: {
845 const ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(Node
);
846 int64_t Imm
= CN
->getSExtValue();
847 unsigned Size
= CN
->getValueSizeInBits(0);
852 MipsAnalyzeImmediate AnalyzeImm
;
854 const MipsAnalyzeImmediate::InstSeq
&Seq
=
855 AnalyzeImm
.Analyze(Imm
, Size
, false);
857 MipsAnalyzeImmediate::InstSeq::const_iterator Inst
= Seq
.begin();
860 SDValue ImmOpnd
= CurDAG
->getTargetConstant(SignExtend64
<16>(Inst
->ImmOpnd
),
863 // The first instruction can be a LUi which is different from other
864 // instructions (ADDiu, ORI and SLL) in that it does not have a register
866 if (Inst
->Opc
== Mips::LUi64
)
867 RegOpnd
= CurDAG
->getMachineNode(Inst
->Opc
, DL
, MVT::i64
, ImmOpnd
);
870 CurDAG
->getMachineNode(Inst
->Opc
, DL
, MVT::i64
,
871 CurDAG
->getRegister(Mips::ZERO_64
, MVT::i64
),
874 // The remaining instructions in the sequence are handled here.
875 for (++Inst
; Inst
!= Seq
.end(); ++Inst
) {
876 ImmOpnd
= CurDAG
->getTargetConstant(SignExtend64
<16>(Inst
->ImmOpnd
), DL
,
878 RegOpnd
= CurDAG
->getMachineNode(Inst
->Opc
, DL
, MVT::i64
,
879 SDValue(RegOpnd
, 0), ImmOpnd
);
882 ReplaceNode(Node
, RegOpnd
);
886 case ISD::INTRINSIC_W_CHAIN
: {
887 switch (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue()) {
891 case Intrinsic::mips_cfcmsa
: {
892 SDValue ChainIn
= Node
->getOperand(0);
893 SDValue RegIdx
= Node
->getOperand(2);
894 SDValue Reg
= CurDAG
->getCopyFromReg(ChainIn
, DL
,
895 getMSACtrlReg(RegIdx
), MVT::i32
);
896 ReplaceNode(Node
, Reg
.getNode());
903 case ISD::INTRINSIC_WO_CHAIN
: {
904 switch (cast
<ConstantSDNode
>(Node
->getOperand(0))->getZExtValue()) {
908 case Intrinsic::mips_move_v
:
909 // Like an assignment but will always produce a move.v even if
911 ReplaceNode(Node
, CurDAG
->getMachineNode(Mips::MOVE_V
, DL
,
912 Node
->getValueType(0),
913 Node
->getOperand(1)));
919 case ISD::INTRINSIC_VOID
: {
920 switch (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue()) {
924 case Intrinsic::mips_ctcmsa
: {
925 SDValue ChainIn
= Node
->getOperand(0);
926 SDValue RegIdx
= Node
->getOperand(2);
927 SDValue Value
= Node
->getOperand(3);
928 SDValue ChainOut
= CurDAG
->getCopyToReg(ChainIn
, DL
,
929 getMSACtrlReg(RegIdx
), Value
);
930 ReplaceNode(Node
, ChainOut
.getNode());
937 // Manually match MipsISD::Ins nodes to get the correct instruction. It has
938 // to be done in this fashion so that we respect the differences between
939 // dins and dinsm, as the difference is that the size operand has the range
940 // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which
941 // means SelectionDAGISel would have to test all the operands at once to
942 // match the instruction.
945 // Sanity checking for the node operands.
946 if (Node
->getValueType(0) != MVT::i32
&& Node
->getValueType(0) != MVT::i64
)
949 if (Node
->getNumOperands() != 4)
952 if (Node
->getOperand(1)->getOpcode() != ISD::Constant
||
953 Node
->getOperand(2)->getOpcode() != ISD::Constant
)
956 MVT ResTy
= Node
->getSimpleValueType(0);
957 uint64_t Pos
= Node
->getConstantOperandVal(1);
958 uint64_t Size
= Node
->getConstantOperandVal(2);
960 // Size has to be >0 for 'ins', 'dins' and 'dinsu'.
967 if (ResTy
!= MVT::i32
&& ResTy
!= MVT::i64
)
971 if (ResTy
== MVT::i32
) {
972 if (Pos
+ Size
<= 32)
975 if (Pos
+ Size
<= 32)
977 else if (Pos
< 32 && 1 < Size
)
978 Opcode
= Mips::DINSM
;
980 Opcode
= Mips::DINSU
;
985 Node
->getOperand(0), CurDAG
->getTargetConstant(Pos
, DL
, MVT::i32
),
986 CurDAG
->getTargetConstant(Size
, DL
, MVT::i32
), Node
->getOperand(3)};
988 ReplaceNode(Node
, CurDAG
->getMachineNode(Opcode
, DL
, ResTy
, Ops
));
995 case MipsISD::ThreadPointer
: {
996 EVT PtrVT
= getTargetLowering()->getPointerTy(CurDAG
->getDataLayout());
997 unsigned RdhwrOpc
, DestReg
;
999 if (PtrVT
== MVT::i32
) {
1000 RdhwrOpc
= Mips::RDHWR
;
1003 RdhwrOpc
= Mips::RDHWR64
;
1004 DestReg
= Mips::V1_64
;
1008 CurDAG
->getMachineNode(RdhwrOpc
, DL
, Node
->getValueType(0),
1009 CurDAG
->getRegister(Mips::HWR29
, MVT::i32
),
1010 CurDAG
->getTargetConstant(0, DL
, MVT::i32
));
1011 SDValue Chain
= CurDAG
->getCopyToReg(CurDAG
->getEntryNode(), DL
, DestReg
,
1013 SDValue ResNode
= CurDAG
->getCopyFromReg(Chain
, DL
, DestReg
, PtrVT
);
1014 ReplaceNode(Node
, ResNode
.getNode());
1018 case ISD::BUILD_VECTOR
: {
1019 // Select appropriate ldi.[bhwd] instructions for constant splats of
1020 // 128-bit when MSA is enabled. Fixup any register class mismatches that
1021 // occur as a result.
1023 // This allows the compiler to use a wider range of immediates than would
1024 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
1025 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
1026 // 0x01010101 } without using a constant pool. This would be sub-optimal
1027 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
1028 // same set/ of registers. Similarly, ldi.h isn't capable of producing {
1029 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
1031 const MipsABIInfo
&ABI
=
1032 static_cast<const MipsTargetMachine
&>(TM
).getABI();
1034 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Node
);
1035 APInt SplatValue
, SplatUndef
;
1036 unsigned SplatBitSize
;
1039 EVT ResVecTy
= BVN
->getValueType(0);
1042 if (!Subtarget
->hasMSA() || !BVN
->getValueType(0).is128BitVector())
1045 if (!BVN
->isConstantSplat(SplatValue
, SplatUndef
, SplatBitSize
,
1047 !Subtarget
->isLittle()))
1050 switch (SplatBitSize
) {
1054 LdiOp
= Mips::LDI_B
;
1055 ViaVecTy
= MVT::v16i8
;
1058 LdiOp
= Mips::LDI_H
;
1059 ViaVecTy
= MVT::v8i16
;
1062 LdiOp
= Mips::LDI_W
;
1063 ViaVecTy
= MVT::v4i32
;
1066 LdiOp
= Mips::LDI_D
;
1067 ViaVecTy
= MVT::v2i64
;
1073 // If we have a signed 10 bit integer, we can splat it directly.
1075 // If we have something bigger we can synthesize the value into a GPR and
1076 // splat from there.
1077 if (SplatValue
.isSignedIntN(10)) {
1078 SDValue Imm
= CurDAG
->getTargetConstant(SplatValue
, DL
,
1079 ViaVecTy
.getVectorElementType());
1081 Res
= CurDAG
->getMachineNode(LdiOp
, DL
, ViaVecTy
, Imm
);
1082 } else if (SplatValue
.isSignedIntN(16) &&
1083 ((ABI
.IsO32() && SplatBitSize
< 64) ||
1084 (ABI
.IsN32() || ABI
.IsN64()))) {
1085 // Only handle signed 16 bit values when the element size is GPR width.
1086 // MIPS64 can handle all the cases but MIPS32 would need to handle
1087 // negative cases specifically here. Instead, handle those cases as
1090 bool Is32BitSplat
= ABI
.IsO32() || SplatBitSize
< 64;
1091 const unsigned ADDiuOp
= Is32BitSplat
? Mips::ADDiu
: Mips::DADDiu
;
1092 const MVT SplatMVT
= Is32BitSplat
? MVT::i32
: MVT::i64
;
1093 SDValue ZeroVal
= CurDAG
->getRegister(
1094 Is32BitSplat
? Mips::ZERO
: Mips::ZERO_64
, SplatMVT
);
1096 const unsigned FILLOp
=
1099 : (SplatBitSize
== 32 ? Mips::FILL_W
1100 : (SplatBitSize
== 64 ? Mips::FILL_D
: 0));
1102 assert(FILLOp
!= 0 && "Unknown FILL Op for splat synthesis!");
1103 assert((!ABI
.IsO32() || (FILLOp
!= Mips::FILL_D
)) &&
1104 "Attempting to use fill.d on MIPS32!");
1106 const unsigned Lo
= SplatValue
.getLoBits(16).getZExtValue();
1107 SDValue LoVal
= CurDAG
->getTargetConstant(Lo
, DL
, SplatMVT
);
1109 Res
= CurDAG
->getMachineNode(ADDiuOp
, DL
, SplatMVT
, ZeroVal
, LoVal
);
1110 Res
= CurDAG
->getMachineNode(FILLOp
, DL
, ViaVecTy
, SDValue(Res
, 0));
1112 } else if (SplatValue
.isSignedIntN(32) && SplatBitSize
== 32) {
1113 // Only handle the cases where the splat size agrees with the size
1114 // of the SplatValue here.
1115 const unsigned Lo
= SplatValue
.getLoBits(16).getZExtValue();
1116 const unsigned Hi
= SplatValue
.lshr(16).getLoBits(16).getZExtValue();
1117 SDValue ZeroVal
= CurDAG
->getRegister(Mips::ZERO
, MVT::i32
);
1119 SDValue LoVal
= CurDAG
->getTargetConstant(Lo
, DL
, MVT::i32
);
1120 SDValue HiVal
= CurDAG
->getTargetConstant(Hi
, DL
, MVT::i32
);
1123 Res
= CurDAG
->getMachineNode(Mips::LUi
, DL
, MVT::i32
, HiVal
);
1126 Res
= CurDAG
->getMachineNode(Mips::ORi
, DL
, MVT::i32
,
1127 Hi
? SDValue(Res
, 0) : ZeroVal
, LoVal
);
1129 assert((Hi
|| Lo
) && "Zero case reached 32 bit case splat synthesis!");
1130 Res
= CurDAG
->getMachineNode(Mips::FILL_W
, DL
, MVT::v4i32
, SDValue(Res
, 0));
1132 } else if (SplatValue
.isSignedIntN(32) && SplatBitSize
== 64 &&
1133 (ABI
.IsN32() || ABI
.IsN64())) {
1134 // N32 and N64 can perform some tricks that O32 can't for signed 32 bit
1135 // integers due to having 64bit registers. lui will cause the necessary
1136 // zero/sign extension.
1137 const unsigned Lo
= SplatValue
.getLoBits(16).getZExtValue();
1138 const unsigned Hi
= SplatValue
.lshr(16).getLoBits(16).getZExtValue();
1139 SDValue ZeroVal
= CurDAG
->getRegister(Mips::ZERO
, MVT::i32
);
1141 SDValue LoVal
= CurDAG
->getTargetConstant(Lo
, DL
, MVT::i32
);
1142 SDValue HiVal
= CurDAG
->getTargetConstant(Hi
, DL
, MVT::i32
);
1145 Res
= CurDAG
->getMachineNode(Mips::LUi
, DL
, MVT::i32
, HiVal
);
1148 Res
= CurDAG
->getMachineNode(Mips::ORi
, DL
, MVT::i32
,
1149 Hi
? SDValue(Res
, 0) : ZeroVal
, LoVal
);
1151 Res
= CurDAG
->getMachineNode(
1152 Mips::SUBREG_TO_REG
, DL
, MVT::i64
,
1153 CurDAG
->getTargetConstant(((Hi
>> 15) & 0x1), DL
, MVT::i64
),
1155 CurDAG
->getTargetConstant(Mips::sub_32
, DL
, MVT::i64
));
1158 CurDAG
->getMachineNode(Mips::FILL_D
, DL
, MVT::v2i64
, SDValue(Res
, 0));
1160 } else if (SplatValue
.isSignedIntN(64)) {
1161 // If we have a 64 bit Splat value, we perform a similar sequence to the
1165 // lui $res, %highest(val) lui $res, %highest(val)
1166 // ori $res, $res, %higher(val) ori $res, $res, %higher(val)
1167 // lui $res2, %hi(val) lui $res2, %hi(val)
1168 // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val)
1169 // $res3 = fill $res2 dinsu $res, $res2, 0, 32
1170 // $res4 = insert.w $res3[1], $res fill.d $res
1173 // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves
1174 // having to materialize the value by shifts and ors.
1176 // FIXME: Implement the preferred sequence for MIPS64R6:
1179 // ori $res, $zero, %lo(val)
1180 // daui $res, $res, %hi(val)
1181 // dahi $res, $res, %higher(val)
1182 // dati $res, $res, %highest(cal)
1186 const unsigned Lo
= SplatValue
.getLoBits(16).getZExtValue();
1187 const unsigned Hi
= SplatValue
.lshr(16).getLoBits(16).getZExtValue();
1188 const unsigned Higher
= SplatValue
.lshr(32).getLoBits(16).getZExtValue();
1189 const unsigned Highest
= SplatValue
.lshr(48).getLoBits(16).getZExtValue();
1191 SDValue LoVal
= CurDAG
->getTargetConstant(Lo
, DL
, MVT::i32
);
1192 SDValue HiVal
= CurDAG
->getTargetConstant(Hi
, DL
, MVT::i32
);
1193 SDValue HigherVal
= CurDAG
->getTargetConstant(Higher
, DL
, MVT::i32
);
1194 SDValue HighestVal
= CurDAG
->getTargetConstant(Highest
, DL
, MVT::i32
);
1195 SDValue ZeroVal
= CurDAG
->getRegister(Mips::ZERO
, MVT::i32
);
1197 // Independent of whether we're targeting MIPS64 or not, the basic
1198 // operations are the same. Also, directly use the $zero register if
1199 // the 16 bit chunk is zero.
1201 // For optimization purposes we always synthesize the splat value as
1202 // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
1203 // just before combining the values with dinsu to produce an i64. This
1204 // enables SelectionDAG to aggressively share components of splat values
1207 // FIXME: This is the general constant synthesis problem. This code
1208 // should be factored out into a class shared between all the
1209 // classes that need it. Specifically, for a splat size of 64
1210 // bits that's a negative number we can do better than LUi/ORi
1211 // for the upper 32bits.
1214 Res
= CurDAG
->getMachineNode(Mips::LUi
, DL
, MVT::i32
, HiVal
);
1217 Res
= CurDAG
->getMachineNode(Mips::ORi
, DL
, MVT::i32
,
1218 Hi
? SDValue(Res
, 0) : ZeroVal
, LoVal
);
1222 HiRes
= CurDAG
->getMachineNode(Mips::LUi
, DL
, MVT::i32
, HighestVal
);
1225 HiRes
= CurDAG
->getMachineNode(Mips::ORi
, DL
, MVT::i32
,
1226 Highest
? SDValue(HiRes
, 0) : ZeroVal
,
1231 Res
= CurDAG
->getMachineNode(Mips::FILL_W
, DL
, MVT::v4i32
,
1232 (Hi
|| Lo
) ? SDValue(Res
, 0) : ZeroVal
);
1234 Res
= CurDAG
->getMachineNode(
1235 Mips::INSERT_W
, DL
, MVT::v4i32
, SDValue(Res
, 0),
1236 (Highest
|| Higher
) ? SDValue(HiRes
, 0) : ZeroVal
,
1237 CurDAG
->getTargetConstant(1, DL
, MVT::i32
));
1239 const TargetLowering
*TLI
= getTargetLowering();
1240 const TargetRegisterClass
*RC
=
1241 TLI
->getRegClassFor(ViaVecTy
.getSimpleVT());
1243 Res
= CurDAG
->getMachineNode(
1244 Mips::COPY_TO_REGCLASS
, DL
, ViaVecTy
, SDValue(Res
, 0),
1245 CurDAG
->getTargetConstant(RC
->getID(), DL
, MVT::i32
));
1247 Res
= CurDAG
->getMachineNode(
1248 Mips::SPLATI_D
, DL
, MVT::v2i64
, SDValue(Res
, 0),
1249 CurDAG
->getTargetConstant(0, DL
, MVT::i32
));
1250 } else if (ABI
.IsN64() || ABI
.IsN32()) {
1252 SDValue Zero64Val
= CurDAG
->getRegister(Mips::ZERO_64
, MVT::i64
);
1253 const bool HiResNonZero
= Highest
|| Higher
;
1254 const bool ResNonZero
= Hi
|| Lo
;
1257 HiRes
= CurDAG
->getMachineNode(
1258 Mips::SUBREG_TO_REG
, DL
, MVT::i64
,
1259 CurDAG
->getTargetConstant(((Highest
>> 15) & 0x1), DL
, MVT::i64
),
1261 CurDAG
->getTargetConstant(Mips::sub_32
, DL
, MVT::i64
));
1264 Res
= CurDAG
->getMachineNode(
1265 Mips::SUBREG_TO_REG
, DL
, MVT::i64
,
1266 CurDAG
->getTargetConstant(((Hi
>> 15) & 0x1), DL
, MVT::i64
),
1268 CurDAG
->getTargetConstant(Mips::sub_32
, DL
, MVT::i64
));
1271 // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0
1272 // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32
1273 // Both are non zero => dinsu Res, HiRes, 32, 32
1275 // The obvious "missing" case is when both are zero, but that case is
1276 // handled by the ldi case.
1278 IntegerType
*Int32Ty
=
1279 IntegerType::get(MF
->getFunction().getContext(), 32);
1280 const ConstantInt
*Const32
= ConstantInt::get(Int32Ty
, 32);
1281 SDValue Ops
[4] = {HiResNonZero
? SDValue(HiRes
, 0) : Zero64Val
,
1282 CurDAG
->getConstant(*Const32
, DL
, MVT::i32
),
1283 CurDAG
->getConstant(*Const32
, DL
, MVT::i32
),
1286 Res
= CurDAG
->getMachineNode(Mips::DINSU
, DL
, MVT::i64
, Ops
);
1287 } else if (HiResNonZero
) {
1288 Res
= CurDAG
->getMachineNode(
1289 Mips::DSLL32
, DL
, MVT::i64
, SDValue(HiRes
, 0),
1290 CurDAG
->getTargetConstant(0, DL
, MVT::i32
));
1293 "Zero splat value handled by non-zero 64bit splat synthesis!");
1295 Res
= CurDAG
->getMachineNode(Mips::FILL_D
, DL
, MVT::v2i64
, SDValue(Res
, 0));
1297 llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!");
1302 if (ResVecTy
!= ViaVecTy
) {
1303 // If LdiOp is writing to a different register class to ResVecTy, then
1304 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
1305 // since the source and destination register sets contain the same
1307 const TargetLowering
*TLI
= getTargetLowering();
1308 MVT ResVecTySimple
= ResVecTy
.getSimpleVT();
1309 const TargetRegisterClass
*RC
= TLI
->getRegClassFor(ResVecTySimple
);
1310 Res
= CurDAG
->getMachineNode(Mips::COPY_TO_REGCLASS
, DL
,
1311 ResVecTy
, SDValue(Res
, 0),
1312 CurDAG
->getTargetConstant(RC
->getID(), DL
,
1316 ReplaceNode(Node
, Res
);
1325 bool MipsSEDAGToDAGISel::
1326 SelectInlineAsmMemoryOperand(const SDValue
&Op
, unsigned ConstraintID
,
1327 std::vector
<SDValue
> &OutOps
) {
1328 SDValue Base
, Offset
;
1330 switch(ConstraintID
) {
1332 llvm_unreachable("Unexpected asm memory constraint");
1333 // All memory constraints can at least accept raw pointers.
1334 case InlineAsm::Constraint_i
:
1335 OutOps
.push_back(Op
);
1336 OutOps
.push_back(CurDAG
->getTargetConstant(0, SDLoc(Op
), MVT::i32
));
1338 case InlineAsm::Constraint_m
:
1339 if (selectAddrRegImm16(Op
, Base
, Offset
)) {
1340 OutOps
.push_back(Base
);
1341 OutOps
.push_back(Offset
);
1344 OutOps
.push_back(Op
);
1345 OutOps
.push_back(CurDAG
->getTargetConstant(0, SDLoc(Op
), MVT::i32
));
1347 case InlineAsm::Constraint_R
:
1348 // The 'R' constraint is supposed to be much more complicated than this.
1349 // However, it's becoming less useful due to architectural changes and
1350 // ought to be replaced by other constraints such as 'ZC'.
1351 // For now, support 9-bit signed offsets which is supportable by all
1352 // subtargets for all instructions.
1353 if (selectAddrRegImm9(Op
, Base
, Offset
)) {
1354 OutOps
.push_back(Base
);
1355 OutOps
.push_back(Offset
);
1358 OutOps
.push_back(Op
);
1359 OutOps
.push_back(CurDAG
->getTargetConstant(0, SDLoc(Op
), MVT::i32
));
1361 case InlineAsm::Constraint_ZC
:
1362 // ZC matches whatever the pref, ll, and sc instructions can handle for the
1364 if (Subtarget
->inMicroMipsMode()) {
1365 // On microMIPS, they can handle 12-bit offsets.
1366 if (selectAddrRegImm12(Op
, Base
, Offset
)) {
1367 OutOps
.push_back(Base
);
1368 OutOps
.push_back(Offset
);
1371 } else if (Subtarget
->hasMips32r6()) {
1372 // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
1373 if (selectAddrRegImm9(Op
, Base
, Offset
)) {
1374 OutOps
.push_back(Base
);
1375 OutOps
.push_back(Offset
);
1378 } else if (selectAddrRegImm16(Op
, Base
, Offset
)) {
1379 // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1380 OutOps
.push_back(Base
);
1381 OutOps
.push_back(Offset
);
1384 // In all cases, 0-bit offsets are acceptable.
1385 OutOps
.push_back(Op
);
1386 OutOps
.push_back(CurDAG
->getTargetConstant(0, SDLoc(Op
), MVT::i32
));
1392 FunctionPass
*llvm::createMipsSEISelDag(MipsTargetMachine
&TM
,
1393 CodeGenOpt::Level OptLevel
) {
1394 return new MipsSEDAGToDAGISel(TM
, OptLevel
);