1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the PowerPC-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // PPCGenFastISel.inc, which is #included here.
13 //===----------------------------------------------------------------------===//
15 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Target/TargetMachine.h"
41 //===----------------------------------------------------------------------===//
44 // fastLowerArguments: Handle simple cases.
45 // PPCMaterializeGV: Handle TLS.
46 // SelectCall: Handle function pointers.
47 // SelectCall: Handle multi-register return values.
48 // SelectCall: Optimize away nops for local calls.
49 // processCallArgs: Handle bit-converted arguments.
50 // finishCall: Handle multi-register return values.
51 // PPCComputeAddress: Handle parameter references as FrameIndex's.
52 // PPCEmitCmp: Handle immediate as operand 1.
53 // SelectCall: Handle small byval arguments.
54 // SelectIntrinsicCall: Implement.
55 // SelectSelect: Implement.
56 // Consider factoring isTypeLegal into the base class.
57 // Implement switches and jump tables.
59 //===----------------------------------------------------------------------===//
62 #define DEBUG_TYPE "ppcfastisel"
66 typedef struct Address
{
79 // Innocuous defaults for our address.
81 : BaseType(RegBase
), Offset(0) {
86 class PPCFastISel final
: public FastISel
{
88 const TargetMachine
&TM
;
89 const PPCSubtarget
*PPCSubTarget
;
90 PPCFunctionInfo
*PPCFuncInfo
;
91 const TargetInstrInfo
&TII
;
92 const TargetLowering
&TLI
;
96 explicit PPCFastISel(FunctionLoweringInfo
&FuncInfo
,
97 const TargetLibraryInfo
*LibInfo
)
98 : FastISel(FuncInfo
, LibInfo
), TM(FuncInfo
.MF
->getTarget()),
99 PPCSubTarget(&FuncInfo
.MF
->getSubtarget
<PPCSubtarget
>()),
100 PPCFuncInfo(FuncInfo
.MF
->getInfo
<PPCFunctionInfo
>()),
101 TII(*PPCSubTarget
->getInstrInfo()),
102 TLI(*PPCSubTarget
->getTargetLowering()),
103 Context(&FuncInfo
.Fn
->getContext()) {}
105 // Backend specific FastISel code.
107 bool fastSelectInstruction(const Instruction
*I
) override
;
108 unsigned fastMaterializeConstant(const Constant
*C
) override
;
109 unsigned fastMaterializeAlloca(const AllocaInst
*AI
) override
;
110 bool tryToFoldLoadIntoMI(MachineInstr
*MI
, unsigned OpNo
,
111 const LoadInst
*LI
) override
;
112 bool fastLowerArguments() override
;
113 unsigned fastEmit_i(MVT Ty
, MVT RetTy
, unsigned Opc
, uint64_t Imm
) override
;
114 unsigned fastEmitInst_ri(unsigned MachineInstOpcode
,
115 const TargetRegisterClass
*RC
,
116 unsigned Op0
, bool Op0IsKill
,
118 unsigned fastEmitInst_r(unsigned MachineInstOpcode
,
119 const TargetRegisterClass
*RC
,
120 unsigned Op0
, bool Op0IsKill
);
121 unsigned fastEmitInst_rr(unsigned MachineInstOpcode
,
122 const TargetRegisterClass
*RC
,
123 unsigned Op0
, bool Op0IsKill
,
124 unsigned Op1
, bool Op1IsKill
);
126 bool fastLowerCall(CallLoweringInfo
&CLI
) override
;
128 // Instruction selection routines.
130 bool SelectLoad(const Instruction
*I
);
131 bool SelectStore(const Instruction
*I
);
132 bool SelectBranch(const Instruction
*I
);
133 bool SelectIndirectBr(const Instruction
*I
);
134 bool SelectFPExt(const Instruction
*I
);
135 bool SelectFPTrunc(const Instruction
*I
);
136 bool SelectIToFP(const Instruction
*I
, bool IsSigned
);
137 bool SelectFPToI(const Instruction
*I
, bool IsSigned
);
138 bool SelectBinaryIntOp(const Instruction
*I
, unsigned ISDOpcode
);
139 bool SelectRet(const Instruction
*I
);
140 bool SelectTrunc(const Instruction
*I
);
141 bool SelectIntExt(const Instruction
*I
);
145 bool isTypeLegal(Type
*Ty
, MVT
&VT
);
146 bool isLoadTypeLegal(Type
*Ty
, MVT
&VT
);
147 bool isValueAvailable(const Value
*V
) const;
148 bool isVSFRCRegClass(const TargetRegisterClass
*RC
) const {
149 return RC
->getID() == PPC::VSFRCRegClassID
;
151 bool isVSSRCRegClass(const TargetRegisterClass
*RC
) const {
152 return RC
->getID() == PPC::VSSRCRegClassID
;
154 unsigned copyRegToRegClass(const TargetRegisterClass
*ToRC
,
155 unsigned SrcReg
, unsigned Flag
= 0,
156 unsigned SubReg
= 0) {
157 unsigned TmpReg
= createResultReg(ToRC
);
158 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
159 TII
.get(TargetOpcode::COPY
), TmpReg
).addReg(SrcReg
, Flag
, SubReg
);
162 bool PPCEmitCmp(const Value
*Src1Value
, const Value
*Src2Value
,
163 bool isZExt
, unsigned DestReg
,
164 const PPC::Predicate Pred
);
165 bool PPCEmitLoad(MVT VT
, unsigned &ResultReg
, Address
&Addr
,
166 const TargetRegisterClass
*RC
, bool IsZExt
= true,
167 unsigned FP64LoadOpc
= PPC::LFD
);
168 bool PPCEmitStore(MVT VT
, unsigned SrcReg
, Address
&Addr
);
169 bool PPCComputeAddress(const Value
*Obj
, Address
&Addr
);
170 void PPCSimplifyAddress(Address
&Addr
, bool &UseOffset
,
172 bool PPCEmitIntExt(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
,
173 unsigned DestReg
, bool IsZExt
);
174 unsigned PPCMaterializeFP(const ConstantFP
*CFP
, MVT VT
);
175 unsigned PPCMaterializeGV(const GlobalValue
*GV
, MVT VT
);
176 unsigned PPCMaterializeInt(const ConstantInt
*CI
, MVT VT
,
177 bool UseSExt
= true);
178 unsigned PPCMaterialize32BitInt(int64_t Imm
,
179 const TargetRegisterClass
*RC
);
180 unsigned PPCMaterialize64BitInt(int64_t Imm
,
181 const TargetRegisterClass
*RC
);
182 unsigned PPCMoveToIntReg(const Instruction
*I
, MVT VT
,
183 unsigned SrcReg
, bool IsSigned
);
184 unsigned PPCMoveToFPReg(MVT VT
, unsigned SrcReg
, bool IsSigned
);
186 // Call handling routines.
188 bool processCallArgs(SmallVectorImpl
<Value
*> &Args
,
189 SmallVectorImpl
<unsigned> &ArgRegs
,
190 SmallVectorImpl
<MVT
> &ArgVTs
,
191 SmallVectorImpl
<ISD::ArgFlagsTy
> &ArgFlags
,
192 SmallVectorImpl
<unsigned> &RegArgs
,
196 bool finishCall(MVT RetVT
, CallLoweringInfo
&CLI
, unsigned &NumBytes
);
199 #include "PPCGenFastISel.inc"
203 } // end anonymous namespace
205 static Optional
<PPC::Predicate
> getComparePred(CmpInst::Predicate Pred
) {
207 // These are not representable with any single compare.
208 case CmpInst::FCMP_FALSE
:
209 case CmpInst::FCMP_TRUE
:
210 // Major concern about the following 6 cases is NaN result. The comparison
211 // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
212 // only one of which will be set. The result is generated by fcmpu
213 // instruction. However, bc instruction only inspects one of the first 3
214 // bits, so when un is set, bc instruction may jump to an undesired
217 // More specifically, if we expect an unordered comparison and un is set, we
218 // expect to always go to true branch; in such case UEQ, UGT and ULT still
219 // give false, which are undesired; but UNE, UGE, ULE happen to give true,
220 // since they are tested by inspecting !eq, !lt, !gt, respectively.
222 // Similarly, for ordered comparison, when un is set, we always expect the
223 // result to be false. In such case OGT, OLT and OEQ is good, since they are
224 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
225 // and ONE are tested through !lt, !gt and !eq, and these are true.
226 case CmpInst::FCMP_UEQ
:
227 case CmpInst::FCMP_UGT
:
228 case CmpInst::FCMP_ULT
:
229 case CmpInst::FCMP_OGE
:
230 case CmpInst::FCMP_OLE
:
231 case CmpInst::FCMP_ONE
:
233 return Optional
<PPC::Predicate
>();
235 case CmpInst::FCMP_OEQ
:
236 case CmpInst::ICMP_EQ
:
239 case CmpInst::FCMP_OGT
:
240 case CmpInst::ICMP_UGT
:
241 case CmpInst::ICMP_SGT
:
244 case CmpInst::FCMP_UGE
:
245 case CmpInst::ICMP_UGE
:
246 case CmpInst::ICMP_SGE
:
249 case CmpInst::FCMP_OLT
:
250 case CmpInst::ICMP_ULT
:
251 case CmpInst::ICMP_SLT
:
254 case CmpInst::FCMP_ULE
:
255 case CmpInst::ICMP_ULE
:
256 case CmpInst::ICMP_SLE
:
259 case CmpInst::FCMP_UNE
:
260 case CmpInst::ICMP_NE
:
263 case CmpInst::FCMP_ORD
:
266 case CmpInst::FCMP_UNO
:
271 // Determine whether the type Ty is simple enough to be handled by
272 // fast-isel, and return its equivalent machine type in VT.
273 // FIXME: Copied directly from ARM -- factor into base class?
274 bool PPCFastISel::isTypeLegal(Type
*Ty
, MVT
&VT
) {
275 EVT Evt
= TLI
.getValueType(DL
, Ty
, true);
277 // Only handle simple types.
278 if (Evt
== MVT::Other
|| !Evt
.isSimple()) return false;
279 VT
= Evt
.getSimpleVT();
281 // Handle all legal types, i.e. a register that will directly hold this
283 return TLI
.isTypeLegal(VT
);
286 // Determine whether the type Ty is simple enough to be handled by
287 // fast-isel as a load target, and return its equivalent machine type in VT.
288 bool PPCFastISel::isLoadTypeLegal(Type
*Ty
, MVT
&VT
) {
289 if (isTypeLegal(Ty
, VT
)) return true;
291 // If this is a type than can be sign or zero-extended to a basic operation
292 // go ahead and accept it now.
293 if (VT
== MVT::i8
|| VT
== MVT::i16
|| VT
== MVT::i32
) {
300 bool PPCFastISel::isValueAvailable(const Value
*V
) const {
301 if (!isa
<Instruction
>(V
))
304 const auto *I
= cast
<Instruction
>(V
);
305 return FuncInfo
.MBBMap
[I
->getParent()] == FuncInfo
.MBB
;
308 // Given a value Obj, create an Address object Addr that represents its
309 // address. Return false if we can't handle it.
310 bool PPCFastISel::PPCComputeAddress(const Value
*Obj
, Address
&Addr
) {
311 const User
*U
= nullptr;
312 unsigned Opcode
= Instruction::UserOp1
;
313 if (const Instruction
*I
= dyn_cast
<Instruction
>(Obj
)) {
314 // Don't walk into other basic blocks unless the object is an alloca from
315 // another block, otherwise it may not have a virtual register assigned.
316 if (FuncInfo
.StaticAllocaMap
.count(static_cast<const AllocaInst
*>(Obj
)) ||
317 FuncInfo
.MBBMap
[I
->getParent()] == FuncInfo
.MBB
) {
318 Opcode
= I
->getOpcode();
321 } else if (const ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(Obj
)) {
322 Opcode
= C
->getOpcode();
329 case Instruction::BitCast
:
330 // Look through bitcasts.
331 return PPCComputeAddress(U
->getOperand(0), Addr
);
332 case Instruction::IntToPtr
:
333 // Look past no-op inttoptrs.
334 if (TLI
.getValueType(DL
, U
->getOperand(0)->getType()) ==
335 TLI
.getPointerTy(DL
))
336 return PPCComputeAddress(U
->getOperand(0), Addr
);
338 case Instruction::PtrToInt
:
339 // Look past no-op ptrtoints.
340 if (TLI
.getValueType(DL
, U
->getType()) == TLI
.getPointerTy(DL
))
341 return PPCComputeAddress(U
->getOperand(0), Addr
);
343 case Instruction::GetElementPtr
: {
344 Address SavedAddr
= Addr
;
345 long TmpOffset
= Addr
.Offset
;
347 // Iterate through the GEP folding the constants into offsets where
349 gep_type_iterator GTI
= gep_type_begin(U
);
350 for (User::const_op_iterator II
= U
->op_begin() + 1, IE
= U
->op_end();
351 II
!= IE
; ++II
, ++GTI
) {
352 const Value
*Op
= *II
;
353 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
354 const StructLayout
*SL
= DL
.getStructLayout(STy
);
355 unsigned Idx
= cast
<ConstantInt
>(Op
)->getZExtValue();
356 TmpOffset
+= SL
->getElementOffset(Idx
);
358 uint64_t S
= DL
.getTypeAllocSize(GTI
.getIndexedType());
360 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op
)) {
361 // Constant-offset addressing.
362 TmpOffset
+= CI
->getSExtValue() * S
;
365 if (canFoldAddIntoGEP(U
, Op
)) {
366 // A compatible add with a constant operand. Fold the constant.
368 cast
<ConstantInt
>(cast
<AddOperator
>(Op
)->getOperand(1));
369 TmpOffset
+= CI
->getSExtValue() * S
;
370 // Iterate on the other operand.
371 Op
= cast
<AddOperator
>(Op
)->getOperand(0);
375 goto unsupported_gep
;
380 // Try to grab the base operand now.
381 Addr
.Offset
= TmpOffset
;
382 if (PPCComputeAddress(U
->getOperand(0), Addr
)) return true;
384 // We failed, restore everything and try the other options.
390 case Instruction::Alloca
: {
391 const AllocaInst
*AI
= cast
<AllocaInst
>(Obj
);
392 DenseMap
<const AllocaInst
*, int>::iterator SI
=
393 FuncInfo
.StaticAllocaMap
.find(AI
);
394 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
395 Addr
.BaseType
= Address::FrameIndexBase
;
396 Addr
.Base
.FI
= SI
->second
;
403 // FIXME: References to parameters fall through to the behavior
404 // below. They should be able to reference a frame index since
405 // they are stored to the stack, so we can get "ld rx, offset(r1)"
406 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
407 // just contain the parameter. Try to handle this with a FI.
409 // Try to get this in a register if nothing else has worked.
410 if (Addr
.Base
.Reg
== 0)
411 Addr
.Base
.Reg
= getRegForValue(Obj
);
413 // Prevent assignment of base register to X0, which is inappropriate
414 // for loads and stores alike.
415 if (Addr
.Base
.Reg
!= 0)
416 MRI
.setRegClass(Addr
.Base
.Reg
, &PPC::G8RC_and_G8RC_NOX0RegClass
);
418 return Addr
.Base
.Reg
!= 0;
421 // Fix up some addresses that can't be used directly. For example, if
422 // an offset won't fit in an instruction field, we may need to move it
423 // into an index register.
424 void PPCFastISel::PPCSimplifyAddress(Address
&Addr
, bool &UseOffset
,
425 unsigned &IndexReg
) {
427 // Check whether the offset fits in the instruction field.
428 if (!isInt
<16>(Addr
.Offset
))
431 // If this is a stack pointer and the offset needs to be simplified then
432 // put the alloca address into a register, set the base type back to
433 // register and continue. This should almost never happen.
434 if (!UseOffset
&& Addr
.BaseType
== Address::FrameIndexBase
) {
435 unsigned ResultReg
= createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass
);
436 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::ADDI8
),
437 ResultReg
).addFrameIndex(Addr
.Base
.FI
).addImm(0);
438 Addr
.Base
.Reg
= ResultReg
;
439 Addr
.BaseType
= Address::RegBase
;
443 IntegerType
*OffsetTy
= Type::getInt64Ty(*Context
);
444 const ConstantInt
*Offset
=
445 ConstantInt::getSigned(OffsetTy
, (int64_t)(Addr
.Offset
));
446 IndexReg
= PPCMaterializeInt(Offset
, MVT::i64
);
447 assert(IndexReg
&& "Unexpected error in PPCMaterializeInt!");
451 // Emit a load instruction if possible, returning true if we succeeded,
452 // otherwise false. See commentary below for how the register class of
453 // the load is determined.
454 bool PPCFastISel::PPCEmitLoad(MVT VT
, unsigned &ResultReg
, Address
&Addr
,
455 const TargetRegisterClass
*RC
,
456 bool IsZExt
, unsigned FP64LoadOpc
) {
458 bool UseOffset
= true;
459 bool HasSPE
= PPCSubTarget
->hasSPE();
461 // If ResultReg is given, it determines the register class of the load.
462 // Otherwise, RC is the register class to use. If the result of the
463 // load isn't anticipated in this block, both may be zero, in which
464 // case we must make a conservative guess. In particular, don't assign
465 // R0 or X0 to the result register, as the result may be used in a load,
466 // store, add-immediate, or isel that won't permit this. (Though
467 // perhaps the spill and reload of live-exit values would handle this?)
468 const TargetRegisterClass
*UseRC
=
469 (ResultReg
? MRI
.getRegClass(ResultReg
) :
471 (VT
== MVT::f64
? (HasSPE
? &PPC::SPERCRegClass
: &PPC::F8RCRegClass
) :
472 (VT
== MVT::f32
? (HasSPE
? &PPC::SPE4RCRegClass
: &PPC::F4RCRegClass
) :
473 (VT
== MVT::i64
? &PPC::G8RC_and_G8RC_NOX0RegClass
:
474 &PPC::GPRC_and_GPRC_NOR0RegClass
)))));
476 bool Is32BitInt
= UseRC
->hasSuperClassEq(&PPC::GPRCRegClass
);
478 switch (VT
.SimpleTy
) {
479 default: // e.g., vector types not handled
482 Opc
= Is32BitInt
? PPC::LBZ
: PPC::LBZ8
;
485 Opc
= (IsZExt
? (Is32BitInt
? PPC::LHZ
: PPC::LHZ8
)
486 : (Is32BitInt
? PPC::LHA
: PPC::LHA8
));
489 Opc
= (IsZExt
? (Is32BitInt
? PPC::LWZ
: PPC::LWZ8
)
490 : (Is32BitInt
? PPC::LWA_32
: PPC::LWA
));
491 if ((Opc
== PPC::LWA
|| Opc
== PPC::LWA_32
) && ((Addr
.Offset
& 3) != 0))
496 assert(UseRC
->hasSuperClassEq(&PPC::G8RCRegClass
) &&
497 "64-bit load with 32-bit target??");
498 UseOffset
= ((Addr
.Offset
& 3) == 0);
501 Opc
= PPCSubTarget
->hasSPE() ? PPC::SPELWZ
: PPC::LFS
;
508 // If necessary, materialize the offset into a register and use
509 // the indexed form. Also handle stack pointers with special needs.
510 unsigned IndexReg
= 0;
511 PPCSimplifyAddress(Addr
, UseOffset
, IndexReg
);
513 // If this is a potential VSX load with an offset of 0, a VSX indexed load can
515 bool IsVSSRC
= isVSSRCRegClass(UseRC
);
516 bool IsVSFRC
= isVSFRCRegClass(UseRC
);
517 bool Is32VSXLoad
= IsVSSRC
&& Opc
== PPC::LFS
;
518 bool Is64VSXLoad
= IsVSFRC
&& Opc
== PPC::LFD
;
519 if ((Is32VSXLoad
|| Is64VSXLoad
) &&
520 (Addr
.BaseType
!= Address::FrameIndexBase
) && UseOffset
&&
521 (Addr
.Offset
== 0)) {
526 ResultReg
= createResultReg(UseRC
);
528 // Note: If we still have a frame index here, we know the offset is
529 // in range, as otherwise PPCSimplifyAddress would have converted it
531 if (Addr
.BaseType
== Address::FrameIndexBase
) {
532 // VSX only provides an indexed load.
533 if (Is32VSXLoad
|| Is64VSXLoad
) return false;
535 MachineMemOperand
*MMO
= FuncInfo
.MF
->getMachineMemOperand(
536 MachinePointerInfo::getFixedStack(*FuncInfo
.MF
, Addr
.Base
.FI
,
538 MachineMemOperand::MOLoad
, MFI
.getObjectSize(Addr
.Base
.FI
),
539 MFI
.getObjectAlignment(Addr
.Base
.FI
));
541 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), ResultReg
)
542 .addImm(Addr
.Offset
).addFrameIndex(Addr
.Base
.FI
).addMemOperand(MMO
);
544 // Base reg with offset in range.
545 } else if (UseOffset
) {
546 // VSX only provides an indexed load.
547 if (Is32VSXLoad
|| Is64VSXLoad
) return false;
549 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), ResultReg
)
550 .addImm(Addr
.Offset
).addReg(Addr
.Base
.Reg
);
554 // Get the RR opcode corresponding to the RI one. FIXME: It would be
555 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
556 // is hard to get at.
558 default: llvm_unreachable("Unexpected opcode!");
559 case PPC::LBZ
: Opc
= PPC::LBZX
; break;
560 case PPC::LBZ8
: Opc
= PPC::LBZX8
; break;
561 case PPC::LHZ
: Opc
= PPC::LHZX
; break;
562 case PPC::LHZ8
: Opc
= PPC::LHZX8
; break;
563 case PPC::LHA
: Opc
= PPC::LHAX
; break;
564 case PPC::LHA8
: Opc
= PPC::LHAX8
; break;
565 case PPC::LWZ
: Opc
= PPC::LWZX
; break;
566 case PPC::LWZ8
: Opc
= PPC::LWZX8
; break;
567 case PPC::LWA
: Opc
= PPC::LWAX
; break;
568 case PPC::LWA_32
: Opc
= PPC::LWAX_32
; break;
569 case PPC::LD
: Opc
= PPC::LDX
; break;
570 case PPC::LFS
: Opc
= IsVSSRC
? PPC::LXSSPX
: PPC::LFSX
; break;
571 case PPC::LFD
: Opc
= IsVSFRC
? PPC::LXSDX
: PPC::LFDX
; break;
572 case PPC::EVLDD
: Opc
= PPC::EVLDDX
; break;
573 case PPC::SPELWZ
: Opc
= PPC::SPELWZX
; break;
576 auto MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
),
579 // If we have an index register defined we use it in the store inst,
580 // otherwise we use X0 as base as it makes the vector instructions to
581 // use zero in the computation of the effective address regardless the
582 // content of the register.
584 MIB
.addReg(Addr
.Base
.Reg
).addReg(IndexReg
);
586 MIB
.addReg(PPC::ZERO8
).addReg(Addr
.Base
.Reg
);
592 // Attempt to fast-select a load instruction.
593 bool PPCFastISel::SelectLoad(const Instruction
*I
) {
594 // FIXME: No atomic loads are supported.
595 if (cast
<LoadInst
>(I
)->isAtomic())
598 // Verify we have a legal type before going any further.
600 if (!isLoadTypeLegal(I
->getType(), VT
))
603 // See if we can handle this address.
605 if (!PPCComputeAddress(I
->getOperand(0), Addr
))
608 // Look at the currently assigned register for this instruction
609 // to determine the required register class. This is necessary
610 // to constrain RA from using R0/X0 when this is not legal.
611 unsigned AssignedReg
= FuncInfo
.ValueMap
[I
];
612 const TargetRegisterClass
*RC
=
613 AssignedReg
? MRI
.getRegClass(AssignedReg
) : nullptr;
615 unsigned ResultReg
= 0;
616 if (!PPCEmitLoad(VT
, ResultReg
, Addr
, RC
, true,
617 PPCSubTarget
->hasSPE() ? PPC::EVLDD
: PPC::LFD
))
619 updateValueMap(I
, ResultReg
);
623 // Emit a store instruction to store SrcReg at Addr.
624 bool PPCFastISel::PPCEmitStore(MVT VT
, unsigned SrcReg
, Address
&Addr
) {
625 assert(SrcReg
&& "Nothing to store!");
627 bool UseOffset
= true;
629 const TargetRegisterClass
*RC
= MRI
.getRegClass(SrcReg
);
630 bool Is32BitInt
= RC
->hasSuperClassEq(&PPC::GPRCRegClass
);
632 switch (VT
.SimpleTy
) {
633 default: // e.g., vector types not handled
636 Opc
= Is32BitInt
? PPC::STB
: PPC::STB8
;
639 Opc
= Is32BitInt
? PPC::STH
: PPC::STH8
;
642 assert(Is32BitInt
&& "Not GPRC for i32??");
647 UseOffset
= ((Addr
.Offset
& 3) == 0);
650 Opc
= PPCSubTarget
->hasSPE() ? PPC::SPESTW
: PPC::STFS
;
653 Opc
= PPCSubTarget
->hasSPE() ? PPC::EVSTDD
: PPC::STFD
;
657 // If necessary, materialize the offset into a register and use
658 // the indexed form. Also handle stack pointers with special needs.
659 unsigned IndexReg
= 0;
660 PPCSimplifyAddress(Addr
, UseOffset
, IndexReg
);
662 // If this is a potential VSX store with an offset of 0, a VSX indexed store
664 bool IsVSSRC
= isVSSRCRegClass(RC
);
665 bool IsVSFRC
= isVSFRCRegClass(RC
);
666 bool Is32VSXStore
= IsVSSRC
&& Opc
== PPC::STFS
;
667 bool Is64VSXStore
= IsVSFRC
&& Opc
== PPC::STFD
;
668 if ((Is32VSXStore
|| Is64VSXStore
) &&
669 (Addr
.BaseType
!= Address::FrameIndexBase
) && UseOffset
&&
670 (Addr
.Offset
== 0)) {
674 // Note: If we still have a frame index here, we know the offset is
675 // in range, as otherwise PPCSimplifyAddress would have converted it
677 if (Addr
.BaseType
== Address::FrameIndexBase
) {
678 // VSX only provides an indexed store.
679 if (Is32VSXStore
|| Is64VSXStore
) return false;
681 MachineMemOperand
*MMO
= FuncInfo
.MF
->getMachineMemOperand(
682 MachinePointerInfo::getFixedStack(*FuncInfo
.MF
, Addr
.Base
.FI
,
684 MachineMemOperand::MOStore
, MFI
.getObjectSize(Addr
.Base
.FI
),
685 MFI
.getObjectAlignment(Addr
.Base
.FI
));
687 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
))
690 .addFrameIndex(Addr
.Base
.FI
)
693 // Base reg with offset in range.
694 } else if (UseOffset
) {
695 // VSX only provides an indexed store.
696 if (Is32VSXStore
|| Is64VSXStore
)
699 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
))
700 .addReg(SrcReg
).addImm(Addr
.Offset
).addReg(Addr
.Base
.Reg
);
704 // Get the RR opcode corresponding to the RI one. FIXME: It would be
705 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
706 // is hard to get at.
708 default: llvm_unreachable("Unexpected opcode!");
709 case PPC::STB
: Opc
= PPC::STBX
; break;
710 case PPC::STH
: Opc
= PPC::STHX
; break;
711 case PPC::STW
: Opc
= PPC::STWX
; break;
712 case PPC::STB8
: Opc
= PPC::STBX8
; break;
713 case PPC::STH8
: Opc
= PPC::STHX8
; break;
714 case PPC::STW8
: Opc
= PPC::STWX8
; break;
715 case PPC::STD
: Opc
= PPC::STDX
; break;
716 case PPC::STFS
: Opc
= IsVSSRC
? PPC::STXSSPX
: PPC::STFSX
; break;
717 case PPC::STFD
: Opc
= IsVSFRC
? PPC::STXSDX
: PPC::STFDX
; break;
718 case PPC::EVSTDD
: Opc
= PPC::EVSTDDX
; break;
719 case PPC::SPESTW
: Opc
= PPC::SPESTWX
; break;
722 auto MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
))
725 // If we have an index register defined we use it in the store inst,
726 // otherwise we use X0 as base as it makes the vector instructions to
727 // use zero in the computation of the effective address regardless the
728 // content of the register.
730 MIB
.addReg(Addr
.Base
.Reg
).addReg(IndexReg
);
732 MIB
.addReg(PPC::ZERO8
).addReg(Addr
.Base
.Reg
);
738 // Attempt to fast-select a store instruction.
739 bool PPCFastISel::SelectStore(const Instruction
*I
) {
740 Value
*Op0
= I
->getOperand(0);
743 // FIXME: No atomics loads are supported.
744 if (cast
<StoreInst
>(I
)->isAtomic())
747 // Verify we have a legal type before going any further.
749 if (!isLoadTypeLegal(Op0
->getType(), VT
))
752 // Get the value to be stored into a register.
753 SrcReg
= getRegForValue(Op0
);
757 // See if we can handle this address.
759 if (!PPCComputeAddress(I
->getOperand(1), Addr
))
762 if (!PPCEmitStore(VT
, SrcReg
, Addr
))
768 // Attempt to fast-select a branch instruction.
769 bool PPCFastISel::SelectBranch(const Instruction
*I
) {
770 const BranchInst
*BI
= cast
<BranchInst
>(I
);
771 MachineBasicBlock
*BrBB
= FuncInfo
.MBB
;
772 MachineBasicBlock
*TBB
= FuncInfo
.MBBMap
[BI
->getSuccessor(0)];
773 MachineBasicBlock
*FBB
= FuncInfo
.MBBMap
[BI
->getSuccessor(1)];
775 // For now, just try the simplest case where it's fed by a compare.
776 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(BI
->getCondition())) {
777 if (isValueAvailable(CI
)) {
778 Optional
<PPC::Predicate
> OptPPCPred
= getComparePred(CI
->getPredicate());
782 PPC::Predicate PPCPred
= OptPPCPred
.getValue();
784 // Take advantage of fall-through opportunities.
785 if (FuncInfo
.MBB
->isLayoutSuccessor(TBB
)) {
787 PPCPred
= PPC::InvertPredicate(PPCPred
);
790 unsigned CondReg
= createResultReg(&PPC::CRRCRegClass
);
792 if (!PPCEmitCmp(CI
->getOperand(0), CI
->getOperand(1), CI
->isUnsigned(),
796 BuildMI(*BrBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::BCC
))
797 .addImm(PPCSubTarget
->hasSPE() ? PPC::PRED_SPE
: PPCPred
)
798 .addReg(CondReg
).addMBB(TBB
);
799 finishCondBranch(BI
->getParent(), TBB
, FBB
);
802 } else if (const ConstantInt
*CI
=
803 dyn_cast
<ConstantInt
>(BI
->getCondition())) {
804 uint64_t Imm
= CI
->getZExtValue();
805 MachineBasicBlock
*Target
= (Imm
== 0) ? FBB
: TBB
;
806 fastEmitBranch(Target
, DbgLoc
);
810 // FIXME: ARM looks for a case where the block containing the compare
811 // has been split from the block containing the branch. If this happens,
812 // there is a vreg available containing the result of the compare. I'm
813 // not sure we can do much, as we've lost the predicate information with
814 // the compare instruction -- we have a 4-bit CR but don't know which bit
819 // Attempt to emit a compare of the two source values. Signed and unsigned
820 // comparisons are supported. Return false if we can't handle it.
821 bool PPCFastISel::PPCEmitCmp(const Value
*SrcValue1
, const Value
*SrcValue2
,
822 bool IsZExt
, unsigned DestReg
,
823 const PPC::Predicate Pred
) {
824 Type
*Ty
= SrcValue1
->getType();
825 EVT SrcEVT
= TLI
.getValueType(DL
, Ty
, true);
826 if (!SrcEVT
.isSimple())
828 MVT SrcVT
= SrcEVT
.getSimpleVT();
830 if (SrcVT
== MVT::i1
&& PPCSubTarget
->useCRBits())
833 // See if operand 2 is an immediate encodeable in the compare.
834 // FIXME: Operands are not in canonical order at -O0, so an immediate
835 // operand in position 1 is a lost opportunity for now. We are
836 // similar to ARM in this regard.
839 const bool HasSPE
= PPCSubTarget
->hasSPE();
841 // Only 16-bit integer constants can be represented in compares for
842 // PowerPC. Others will be materialized into a register.
843 if (const ConstantInt
*ConstInt
= dyn_cast
<ConstantInt
>(SrcValue2
)) {
844 if (SrcVT
== MVT::i64
|| SrcVT
== MVT::i32
|| SrcVT
== MVT::i16
||
845 SrcVT
== MVT::i8
|| SrcVT
== MVT::i1
) {
846 const APInt
&CIVal
= ConstInt
->getValue();
847 Imm
= (IsZExt
) ? (long)CIVal
.getZExtValue() : (long)CIVal
.getSExtValue();
848 if ((IsZExt
&& isUInt
<16>(Imm
)) || (!IsZExt
&& isInt
<16>(Imm
)))
853 unsigned SrcReg1
= getRegForValue(SrcValue1
);
857 unsigned SrcReg2
= 0;
859 SrcReg2
= getRegForValue(SrcValue2
);
865 bool NeedsExt
= false;
867 auto RC1
= MRI
.getRegClass(SrcReg1
);
868 auto RC2
= SrcReg2
!= 0 ? MRI
.getRegClass(SrcReg2
) : nullptr;
870 switch (SrcVT
.SimpleTy
) {
871 default: return false;
875 default: return false;
877 CmpOpc
= PPC::EFSCMPEQ
;
880 CmpOpc
= PPC::EFSCMPLT
;
883 CmpOpc
= PPC::EFSCMPGT
;
887 CmpOpc
= PPC::FCMPUS
;
888 if (isVSSRCRegClass(RC1
))
889 SrcReg1
= copyRegToRegClass(&PPC::F4RCRegClass
, SrcReg1
);
890 if (RC2
&& isVSSRCRegClass(RC2
))
891 SrcReg2
= copyRegToRegClass(&PPC::F4RCRegClass
, SrcReg2
);
897 default: return false;
899 CmpOpc
= PPC::EFDCMPEQ
;
902 CmpOpc
= PPC::EFDCMPLT
;
905 CmpOpc
= PPC::EFDCMPGT
;
908 } else if (isVSFRCRegClass(RC1
) || (RC2
&& isVSFRCRegClass(RC2
))) {
909 CmpOpc
= PPC::XSCMPUDP
;
911 CmpOpc
= PPC::FCMPUD
;
921 CmpOpc
= IsZExt
? PPC::CMPLW
: PPC::CMPW
;
923 CmpOpc
= IsZExt
? PPC::CMPLWI
: PPC::CMPWI
;
927 CmpOpc
= IsZExt
? PPC::CMPLD
: PPC::CMPD
;
929 CmpOpc
= IsZExt
? PPC::CMPLDI
: PPC::CMPDI
;
934 unsigned ExtReg
= createResultReg(&PPC::GPRCRegClass
);
935 if (!PPCEmitIntExt(SrcVT
, SrcReg1
, MVT::i32
, ExtReg
, IsZExt
))
940 unsigned ExtReg
= createResultReg(&PPC::GPRCRegClass
);
941 if (!PPCEmitIntExt(SrcVT
, SrcReg2
, MVT::i32
, ExtReg
, IsZExt
))
948 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(CmpOpc
), DestReg
)
949 .addReg(SrcReg1
).addReg(SrcReg2
);
951 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(CmpOpc
), DestReg
)
952 .addReg(SrcReg1
).addImm(Imm
);
957 // Attempt to fast-select a floating-point extend instruction.
958 bool PPCFastISel::SelectFPExt(const Instruction
*I
) {
959 Value
*Src
= I
->getOperand(0);
960 EVT SrcVT
= TLI
.getValueType(DL
, Src
->getType(), true);
961 EVT DestVT
= TLI
.getValueType(DL
, I
->getType(), true);
963 if (SrcVT
!= MVT::f32
|| DestVT
!= MVT::f64
)
966 unsigned SrcReg
= getRegForValue(Src
);
970 // No code is generated for a FP extend.
971 updateValueMap(I
, SrcReg
);
975 // Attempt to fast-select a floating-point truncate instruction.
976 bool PPCFastISel::SelectFPTrunc(const Instruction
*I
) {
977 Value
*Src
= I
->getOperand(0);
978 EVT SrcVT
= TLI
.getValueType(DL
, Src
->getType(), true);
979 EVT DestVT
= TLI
.getValueType(DL
, I
->getType(), true);
981 if (SrcVT
!= MVT::f64
|| DestVT
!= MVT::f32
)
984 unsigned SrcReg
= getRegForValue(Src
);
988 // Round the result to single precision.
991 if (PPCSubTarget
->hasSPE()) {
992 DestReg
= createResultReg(&PPC::SPE4RCRegClass
);
993 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
994 TII
.get(PPC::EFSCFD
), DestReg
)
997 DestReg
= createResultReg(&PPC::F4RCRegClass
);
998 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
999 TII
.get(PPC::FRSP
), DestReg
)
1003 updateValueMap(I
, DestReg
);
1007 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1008 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1009 // those should be used instead of moving via a stack slot when the
1010 // subtarget permits.
1011 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte
1012 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte
1013 // case to 8 bytes which produces tighter code but wastes stack space.
1014 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT
, unsigned SrcReg
,
1017 // If necessary, extend 32-bit int to 64-bit.
1018 if (SrcVT
== MVT::i32
) {
1019 unsigned TmpReg
= createResultReg(&PPC::G8RCRegClass
);
1020 if (!PPCEmitIntExt(MVT::i32
, SrcReg
, MVT::i64
, TmpReg
, !IsSigned
))
1025 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1027 Addr
.BaseType
= Address::FrameIndexBase
;
1028 Addr
.Base
.FI
= MFI
.CreateStackObject(8, 8, false);
1030 // Store the value from the GPR.
1031 if (!PPCEmitStore(MVT::i64
, SrcReg
, Addr
))
1034 // Load the integer value into an FPR. The kind of load used depends
1035 // on a number of conditions.
1036 unsigned LoadOpc
= PPC::LFD
;
1038 if (SrcVT
== MVT::i32
) {
1040 LoadOpc
= PPC::LFIWZX
;
1041 Addr
.Offset
= (PPCSubTarget
->isLittleEndian()) ? 0 : 4;
1042 } else if (PPCSubTarget
->hasLFIWAX()) {
1043 LoadOpc
= PPC::LFIWAX
;
1044 Addr
.Offset
= (PPCSubTarget
->isLittleEndian()) ? 0 : 4;
1048 const TargetRegisterClass
*RC
= &PPC::F8RCRegClass
;
1049 unsigned ResultReg
= 0;
1050 if (!PPCEmitLoad(MVT::f64
, ResultReg
, Addr
, RC
, !IsSigned
, LoadOpc
))
1056 // Attempt to fast-select an integer-to-floating-point conversion.
1057 // FIXME: Once fast-isel has better support for VSX, conversions using
1058 // direct moves should be implemented.
1059 bool PPCFastISel::SelectIToFP(const Instruction
*I
, bool IsSigned
) {
1061 Type
*DstTy
= I
->getType();
1062 if (!isTypeLegal(DstTy
, DstVT
))
1065 if (DstVT
!= MVT::f32
&& DstVT
!= MVT::f64
)
1068 Value
*Src
= I
->getOperand(0);
1069 EVT SrcEVT
= TLI
.getValueType(DL
, Src
->getType(), true);
1070 if (!SrcEVT
.isSimple())
1073 MVT SrcVT
= SrcEVT
.getSimpleVT();
1075 if (SrcVT
!= MVT::i8
&& SrcVT
!= MVT::i16
&&
1076 SrcVT
!= MVT::i32
&& SrcVT
!= MVT::i64
)
1079 unsigned SrcReg
= getRegForValue(Src
);
1083 // Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs
1084 if (PPCSubTarget
->hasSPE()) {
1086 if (DstVT
== MVT::f32
)
1087 Opc
= IsSigned
? PPC::EFSCFSI
: PPC::EFSCFUI
;
1089 Opc
= IsSigned
? PPC::EFDCFSI
: PPC::EFDCFUI
;
1091 unsigned DestReg
= createResultReg(&PPC::SPERCRegClass
);
1092 // Generate the convert.
1093 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), DestReg
)
1095 updateValueMap(I
, DestReg
);
1099 // We can only lower an unsigned convert if we have the newer
1100 // floating-point conversion operations.
1101 if (!IsSigned
&& !PPCSubTarget
->hasFPCVT())
1104 // FIXME: For now we require the newer floating-point conversion operations
1105 // (which are present only on P7 and A2 server models) when converting
1106 // to single-precision float. Otherwise we have to generate a lot of
1107 // fiddly code to avoid double rounding. If necessary, the fiddly code
1108 // can be found in PPCTargetLowering::LowerINT_TO_FP().
1109 if (DstVT
== MVT::f32
&& !PPCSubTarget
->hasFPCVT())
1112 // Extend the input if necessary.
1113 if (SrcVT
== MVT::i8
|| SrcVT
== MVT::i16
) {
1114 unsigned TmpReg
= createResultReg(&PPC::G8RCRegClass
);
1115 if (!PPCEmitIntExt(SrcVT
, SrcReg
, MVT::i64
, TmpReg
, !IsSigned
))
1121 // Move the integer value to an FPR.
1122 unsigned FPReg
= PPCMoveToFPReg(SrcVT
, SrcReg
, IsSigned
);
1126 // Determine the opcode for the conversion.
1127 const TargetRegisterClass
*RC
= &PPC::F8RCRegClass
;
1128 unsigned DestReg
= createResultReg(RC
);
1131 if (DstVT
== MVT::f32
)
1132 Opc
= IsSigned
? PPC::FCFIDS
: PPC::FCFIDUS
;
1134 Opc
= IsSigned
? PPC::FCFID
: PPC::FCFIDU
;
1136 // Generate the convert.
1137 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), DestReg
)
1140 updateValueMap(I
, DestReg
);
1144 // Move the floating-point value in SrcReg into an integer destination
1145 // register, and return the register (or zero if we can't handle it).
1146 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1147 // those should be used instead of moving via a stack slot when the
1148 // subtarget permits.
1149 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction
*I
, MVT VT
,
1150 unsigned SrcReg
, bool IsSigned
) {
1151 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1152 // Note that if have STFIWX available, we could use a 4-byte stack
1153 // slot for i32, but this being fast-isel we'll just go with the
1154 // easiest code gen possible.
1156 Addr
.BaseType
= Address::FrameIndexBase
;
1157 Addr
.Base
.FI
= MFI
.CreateStackObject(8, 8, false);
1159 // Store the value from the FPR.
1160 if (!PPCEmitStore(MVT::f64
, SrcReg
, Addr
))
1163 // Reload it into a GPR. If we want an i32 on big endian, modify the
1164 // address to have a 4-byte offset so we load from the right place.
1166 Addr
.Offset
= (PPCSubTarget
->isLittleEndian()) ? 0 : 4;
1168 // Look at the currently assigned register for this instruction
1169 // to determine the required register class.
1170 unsigned AssignedReg
= FuncInfo
.ValueMap
[I
];
1171 const TargetRegisterClass
*RC
=
1172 AssignedReg
? MRI
.getRegClass(AssignedReg
) : nullptr;
1174 unsigned ResultReg
= 0;
1175 if (!PPCEmitLoad(VT
, ResultReg
, Addr
, RC
, !IsSigned
))
1181 // Attempt to fast-select a floating-point-to-integer conversion.
1182 // FIXME: Once fast-isel has better support for VSX, conversions using
1183 // direct moves should be implemented.
1184 bool PPCFastISel::SelectFPToI(const Instruction
*I
, bool IsSigned
) {
1186 Type
*DstTy
= I
->getType();
1187 if (!isTypeLegal(DstTy
, DstVT
))
1190 if (DstVT
!= MVT::i32
&& DstVT
!= MVT::i64
)
1193 // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1194 if (DstVT
== MVT::i64
&& !IsSigned
&&
1195 !PPCSubTarget
->hasFPCVT() && !PPCSubTarget
->hasSPE())
1198 Value
*Src
= I
->getOperand(0);
1199 Type
*SrcTy
= Src
->getType();
1200 if (!isTypeLegal(SrcTy
, SrcVT
))
1203 if (SrcVT
!= MVT::f32
&& SrcVT
!= MVT::f64
)
1206 unsigned SrcReg
= getRegForValue(Src
);
1210 // Convert f32 to f64 if necessary. This is just a meaningless copy
1211 // to get the register class right.
1212 const TargetRegisterClass
*InRC
= MRI
.getRegClass(SrcReg
);
1213 if (InRC
== &PPC::F4RCRegClass
)
1214 SrcReg
= copyRegToRegClass(&PPC::F8RCRegClass
, SrcReg
);
1216 // Determine the opcode for the conversion, which takes place
1217 // entirely within FPRs.
1221 if (PPCSubTarget
->hasSPE()) {
1222 DestReg
= createResultReg(&PPC::GPRCRegClass
);
1224 Opc
= InRC
== &PPC::SPE4RCRegClass
? PPC::EFSCTSIZ
: PPC::EFDCTSIZ
;
1226 Opc
= InRC
== &PPC::SPE4RCRegClass
? PPC::EFSCTUIZ
: PPC::EFDCTUIZ
;
1228 DestReg
= createResultReg(&PPC::F8RCRegClass
);
1229 if (DstVT
== MVT::i32
)
1233 Opc
= PPCSubTarget
->hasFPCVT() ? PPC::FCTIWUZ
: PPC::FCTIDZ
;
1235 Opc
= IsSigned
? PPC::FCTIDZ
: PPC::FCTIDUZ
;
1238 // Generate the convert.
1239 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), DestReg
)
1242 // Now move the integer value from a float register to an integer register.
1243 unsigned IntReg
= PPCSubTarget
->hasSPE() ? DestReg
:
1244 PPCMoveToIntReg(I
, DstVT
, DestReg
, IsSigned
);
1249 updateValueMap(I
, IntReg
);
1253 // Attempt to fast-select a binary integer operation that isn't already
1254 // handled automatically.
1255 bool PPCFastISel::SelectBinaryIntOp(const Instruction
*I
, unsigned ISDOpcode
) {
1256 EVT DestVT
= TLI
.getValueType(DL
, I
->getType(), true);
1258 // We can get here in the case when we have a binary operation on a non-legal
1259 // type and the target independent selector doesn't know how to handle it.
1260 if (DestVT
!= MVT::i16
&& DestVT
!= MVT::i8
)
1263 // Look at the currently assigned register for this instruction
1264 // to determine the required register class. If there is no register,
1265 // make a conservative choice (don't assign R0).
1266 unsigned AssignedReg
= FuncInfo
.ValueMap
[I
];
1267 const TargetRegisterClass
*RC
=
1268 (AssignedReg
? MRI
.getRegClass(AssignedReg
) :
1269 &PPC::GPRC_and_GPRC_NOR0RegClass
);
1270 bool IsGPRC
= RC
->hasSuperClassEq(&PPC::GPRCRegClass
);
1273 switch (ISDOpcode
) {
1274 default: return false;
1276 Opc
= IsGPRC
? PPC::ADD4
: PPC::ADD8
;
1279 Opc
= IsGPRC
? PPC::OR
: PPC::OR8
;
1282 Opc
= IsGPRC
? PPC::SUBF
: PPC::SUBF8
;
1286 unsigned ResultReg
= createResultReg(RC
? RC
: &PPC::G8RCRegClass
);
1287 unsigned SrcReg1
= getRegForValue(I
->getOperand(0));
1288 if (SrcReg1
== 0) return false;
1290 // Handle case of small immediate operand.
1291 if (const ConstantInt
*ConstInt
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
1292 const APInt
&CIVal
= ConstInt
->getValue();
1293 int Imm
= (int)CIVal
.getSExtValue();
1295 if (isInt
<16>(Imm
)) {
1298 llvm_unreachable("Missing case!");
1301 MRI
.setRegClass(SrcReg1
, &PPC::GPRC_and_GPRC_NOR0RegClass
);
1305 MRI
.setRegClass(SrcReg1
, &PPC::G8RC_and_G8RC_NOX0RegClass
);
1318 MRI
.setRegClass(SrcReg1
, &PPC::GPRC_and_GPRC_NOR0RegClass
);
1327 MRI
.setRegClass(SrcReg1
, &PPC::G8RC_and_G8RC_NOX0RegClass
);
1334 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
),
1338 updateValueMap(I
, ResultReg
);
1345 unsigned SrcReg2
= getRegForValue(I
->getOperand(1));
1346 if (SrcReg2
== 0) return false;
1348 // Reverse operands for subtract-from.
1349 if (ISDOpcode
== ISD::SUB
)
1350 std::swap(SrcReg1
, SrcReg2
);
1352 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), ResultReg
)
1353 .addReg(SrcReg1
).addReg(SrcReg2
);
1354 updateValueMap(I
, ResultReg
);
1358 // Handle arguments to a call that we're attempting to fast-select.
1359 // Return false if the arguments are too complex for us at the moment.
1360 bool PPCFastISel::processCallArgs(SmallVectorImpl
<Value
*> &Args
,
1361 SmallVectorImpl
<unsigned> &ArgRegs
,
1362 SmallVectorImpl
<MVT
> &ArgVTs
,
1363 SmallVectorImpl
<ISD::ArgFlagsTy
> &ArgFlags
,
1364 SmallVectorImpl
<unsigned> &RegArgs
,
1368 SmallVector
<CCValAssign
, 16> ArgLocs
;
1369 CCState
CCInfo(CC
, IsVarArg
, *FuncInfo
.MF
, ArgLocs
, *Context
);
1371 // Reserve space for the linkage area on the stack.
1372 unsigned LinkageSize
= PPCSubTarget
->getFrameLowering()->getLinkageSize();
1373 CCInfo
.AllocateStack(LinkageSize
, 8);
1375 CCInfo
.AnalyzeCallOperands(ArgVTs
, ArgFlags
, CC_PPC64_ELF_FIS
);
1377 // Bail out if we can't handle any of the arguments.
1378 for (unsigned I
= 0, E
= ArgLocs
.size(); I
!= E
; ++I
) {
1379 CCValAssign
&VA
= ArgLocs
[I
];
1380 MVT ArgVT
= ArgVTs
[VA
.getValNo()];
1382 // Skip vector arguments for now, as well as long double and
1383 // uint128_t, and anything that isn't passed in a register.
1384 if (ArgVT
.isVector() || ArgVT
.getSizeInBits() > 64 || ArgVT
== MVT::i1
||
1385 !VA
.isRegLoc() || VA
.needsCustom())
1388 // Skip bit-converted arguments for now.
1389 if (VA
.getLocInfo() == CCValAssign::BCvt
)
1393 // Get a count of how many bytes are to be pushed onto the stack.
1394 NumBytes
= CCInfo
.getNextStackOffset();
1396 // The prolog code of the callee may store up to 8 GPR argument registers to
1397 // the stack, allowing va_start to index over them in memory if its varargs.
1398 // Because we cannot tell if this is needed on the caller side, we have to
1399 // conservatively assume that it is needed. As such, make sure we have at
1400 // least enough stack space for the caller to store the 8 GPRs.
1401 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1402 NumBytes
= std::max(NumBytes
, LinkageSize
+ 64);
1404 // Issue CALLSEQ_START.
1405 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1406 TII
.get(TII
.getCallFrameSetupOpcode()))
1407 .addImm(NumBytes
).addImm(0);
1409 // Prepare to assign register arguments. Every argument uses up a
1410 // GPR protocol register even if it's passed in a floating-point
1411 // register (unless we're using the fast calling convention).
1412 unsigned NextGPR
= PPC::X3
;
1413 unsigned NextFPR
= PPC::F1
;
1415 // Process arguments.
1416 for (unsigned I
= 0, E
= ArgLocs
.size(); I
!= E
; ++I
) {
1417 CCValAssign
&VA
= ArgLocs
[I
];
1418 unsigned Arg
= ArgRegs
[VA
.getValNo()];
1419 MVT ArgVT
= ArgVTs
[VA
.getValNo()];
1421 // Handle argument promotion and bitcasts.
1422 switch (VA
.getLocInfo()) {
1424 llvm_unreachable("Unknown loc info!");
1425 case CCValAssign::Full
:
1427 case CCValAssign::SExt
: {
1428 MVT DestVT
= VA
.getLocVT();
1429 const TargetRegisterClass
*RC
=
1430 (DestVT
== MVT::i64
) ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
1431 unsigned TmpReg
= createResultReg(RC
);
1432 if (!PPCEmitIntExt(ArgVT
, Arg
, DestVT
, TmpReg
, /*IsZExt*/false))
1433 llvm_unreachable("Failed to emit a sext!");
1438 case CCValAssign::AExt
:
1439 case CCValAssign::ZExt
: {
1440 MVT DestVT
= VA
.getLocVT();
1441 const TargetRegisterClass
*RC
=
1442 (DestVT
== MVT::i64
) ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
1443 unsigned TmpReg
= createResultReg(RC
);
1444 if (!PPCEmitIntExt(ArgVT
, Arg
, DestVT
, TmpReg
, /*IsZExt*/true))
1445 llvm_unreachable("Failed to emit a zext!");
1450 case CCValAssign::BCvt
: {
1451 // FIXME: Not yet handled.
1452 llvm_unreachable("Should have bailed before getting here!");
1457 // Copy this argument to the appropriate register.
1459 if (ArgVT
== MVT::f32
|| ArgVT
== MVT::f64
) {
1461 if (CC
!= CallingConv::Fast
)
1466 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1467 TII
.get(TargetOpcode::COPY
), ArgReg
).addReg(Arg
);
1468 RegArgs
.push_back(ArgReg
);
1474 // For a call that we've determined we can fast-select, finish the
1475 // call sequence and generate a copy to obtain the return value (if any).
1476 bool PPCFastISel::finishCall(MVT RetVT
, CallLoweringInfo
&CLI
, unsigned &NumBytes
) {
1477 CallingConv::ID CC
= CLI
.CallConv
;
1479 // Issue CallSEQ_END.
1480 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1481 TII
.get(TII
.getCallFrameDestroyOpcode()))
1482 .addImm(NumBytes
).addImm(0);
1484 // Next, generate a copy to obtain the return value.
1485 // FIXME: No multi-register return values yet, though I don't foresee
1486 // any real difficulties there.
1487 if (RetVT
!= MVT::isVoid
) {
1488 SmallVector
<CCValAssign
, 16> RVLocs
;
1489 CCState
CCInfo(CC
, false, *FuncInfo
.MF
, RVLocs
, *Context
);
1490 CCInfo
.AnalyzeCallResult(RetVT
, RetCC_PPC64_ELF_FIS
);
1491 CCValAssign
&VA
= RVLocs
[0];
1492 assert(RVLocs
.size() == 1 && "No support for multi-reg return values!");
1493 assert(VA
.isRegLoc() && "Can only return in registers!");
1495 MVT DestVT
= VA
.getValVT();
1496 MVT CopyVT
= DestVT
;
1498 // Ints smaller than a register still arrive in a full 64-bit
1499 // register, so make sure we recognize this.
1500 if (RetVT
== MVT::i8
|| RetVT
== MVT::i16
|| RetVT
== MVT::i32
)
1503 unsigned SourcePhysReg
= VA
.getLocReg();
1504 unsigned ResultReg
= 0;
1506 if (RetVT
== CopyVT
) {
1507 const TargetRegisterClass
*CpyRC
= TLI
.getRegClassFor(CopyVT
);
1508 ResultReg
= copyRegToRegClass(CpyRC
, SourcePhysReg
);
1510 // If necessary, round the floating result to single precision.
1511 } else if (CopyVT
== MVT::f64
) {
1512 ResultReg
= createResultReg(TLI
.getRegClassFor(RetVT
));
1513 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::FRSP
),
1514 ResultReg
).addReg(SourcePhysReg
);
1516 // If only the low half of a general register is needed, generate
1517 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be
1518 // used along the fast-isel path (not lowered), and downstream logic
1519 // also doesn't like a direct subreg copy on a physical reg.)
1520 } else if (RetVT
== MVT::i8
|| RetVT
== MVT::i16
|| RetVT
== MVT::i32
) {
1521 // Convert physical register from G8RC to GPRC.
1522 SourcePhysReg
-= PPC::X0
- PPC::R0
;
1523 ResultReg
= copyRegToRegClass(&PPC::GPRCRegClass
, SourcePhysReg
);
1526 assert(ResultReg
&& "ResultReg unset!");
1527 CLI
.InRegs
.push_back(SourcePhysReg
);
1528 CLI
.ResultReg
= ResultReg
;
1529 CLI
.NumResultRegs
= 1;
1535 bool PPCFastISel::fastLowerCall(CallLoweringInfo
&CLI
) {
1536 CallingConv::ID CC
= CLI
.CallConv
;
1537 bool IsTailCall
= CLI
.IsTailCall
;
1538 bool IsVarArg
= CLI
.IsVarArg
;
1539 const Value
*Callee
= CLI
.Callee
;
1540 const MCSymbol
*Symbol
= CLI
.Symbol
;
1542 if (!Callee
&& !Symbol
)
1545 // Allow SelectionDAG isel to handle tail calls.
1549 // Let SDISel handle vararg functions.
1553 // Handle simple calls for now, with legal return types and
1554 // those that can be extended.
1555 Type
*RetTy
= CLI
.RetTy
;
1557 if (RetTy
->isVoidTy())
1558 RetVT
= MVT::isVoid
;
1559 else if (!isTypeLegal(RetTy
, RetVT
) && RetVT
!= MVT::i16
&&
1562 else if (RetVT
== MVT::i1
&& PPCSubTarget
->useCRBits())
1563 // We can't handle boolean returns when CR bits are in use.
1566 // FIXME: No multi-register return values yet.
1567 if (RetVT
!= MVT::isVoid
&& RetVT
!= MVT::i8
&& RetVT
!= MVT::i16
&&
1568 RetVT
!= MVT::i32
&& RetVT
!= MVT::i64
&& RetVT
!= MVT::f32
&&
1569 RetVT
!= MVT::f64
) {
1570 SmallVector
<CCValAssign
, 16> RVLocs
;
1571 CCState
CCInfo(CC
, IsVarArg
, *FuncInfo
.MF
, RVLocs
, *Context
);
1572 CCInfo
.AnalyzeCallResult(RetVT
, RetCC_PPC64_ELF_FIS
);
1573 if (RVLocs
.size() > 1)
1577 // Bail early if more than 8 arguments, as we only currently
1578 // handle arguments passed in registers.
1579 unsigned NumArgs
= CLI
.OutVals
.size();
1583 // Set up the argument vectors.
1584 SmallVector
<Value
*, 8> Args
;
1585 SmallVector
<unsigned, 8> ArgRegs
;
1586 SmallVector
<MVT
, 8> ArgVTs
;
1587 SmallVector
<ISD::ArgFlagsTy
, 8> ArgFlags
;
1589 Args
.reserve(NumArgs
);
1590 ArgRegs
.reserve(NumArgs
);
1591 ArgVTs
.reserve(NumArgs
);
1592 ArgFlags
.reserve(NumArgs
);
1594 for (unsigned i
= 0, ie
= NumArgs
; i
!= ie
; ++i
) {
1595 // Only handle easy calls for now. It would be reasonably easy
1596 // to handle <= 8-byte structures passed ByVal in registers, but we
1597 // have to ensure they are right-justified in the register.
1598 ISD::ArgFlagsTy Flags
= CLI
.OutFlags
[i
];
1599 if (Flags
.isInReg() || Flags
.isSRet() || Flags
.isNest() || Flags
.isByVal())
1602 Value
*ArgValue
= CLI
.OutVals
[i
];
1603 Type
*ArgTy
= ArgValue
->getType();
1605 if (!isTypeLegal(ArgTy
, ArgVT
) && ArgVT
!= MVT::i16
&& ArgVT
!= MVT::i8
)
1608 if (ArgVT
.isVector())
1611 unsigned Arg
= getRegForValue(ArgValue
);
1615 Args
.push_back(ArgValue
);
1616 ArgRegs
.push_back(Arg
);
1617 ArgVTs
.push_back(ArgVT
);
1618 ArgFlags
.push_back(Flags
);
1621 // Process the arguments.
1622 SmallVector
<unsigned, 8> RegArgs
;
1625 if (!processCallArgs(Args
, ArgRegs
, ArgVTs
, ArgFlags
,
1626 RegArgs
, CC
, NumBytes
, IsVarArg
))
1629 MachineInstrBuilder MIB
;
1630 // FIXME: No handling for function pointers yet. This requires
1631 // implementing the function descriptor (OPD) setup.
1632 const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(Callee
);
1634 // patchpoints are a special case; they always dispatch to a pointer value.
1635 // However, we don't actually want to generate the indirect call sequence
1636 // here (that will be generated, as necessary, during asm printing), and
1637 // the call we generate here will be erased by FastISel::selectPatchpoint,
1638 // so don't try very hard...
1639 if (CLI
.IsPatchPoint
)
1640 MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::NOP
));
1644 // Build direct call with NOP for TOC restore.
1645 // FIXME: We can and should optimize away the NOP for local calls.
1646 MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1647 TII
.get(PPC::BL8_NOP
));
1649 MIB
.addGlobalAddress(GV
);
1652 // Add implicit physical register uses to the call.
1653 for (unsigned II
= 0, IE
= RegArgs
.size(); II
!= IE
; ++II
)
1654 MIB
.addReg(RegArgs
[II
], RegState::Implicit
);
1656 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1658 PPCFuncInfo
->setUsesTOCBasePtr();
1659 MIB
.addReg(PPC::X2
, RegState::Implicit
);
1661 // Add a register mask with the call-preserved registers. Proper
1662 // defs for return values will be added by setPhysRegsDeadExcept().
1663 MIB
.addRegMask(TRI
.getCallPreservedMask(*FuncInfo
.MF
, CC
));
1667 // Finish off the call including any return values.
1668 return finishCall(RetVT
, CLI
, NumBytes
);
1671 // Attempt to fast-select a return instruction.
1672 bool PPCFastISel::SelectRet(const Instruction
*I
) {
1674 if (!FuncInfo
.CanLowerReturn
)
1677 if (TLI
.supportSplitCSR(FuncInfo
.MF
))
1680 const ReturnInst
*Ret
= cast
<ReturnInst
>(I
);
1681 const Function
&F
= *I
->getParent()->getParent();
1683 // Build a list of return value registers.
1684 SmallVector
<unsigned, 4> RetRegs
;
1685 CallingConv::ID CC
= F
.getCallingConv();
1687 if (Ret
->getNumOperands() > 0) {
1688 SmallVector
<ISD::OutputArg
, 4> Outs
;
1689 GetReturnInfo(CC
, F
.getReturnType(), F
.getAttributes(), Outs
, TLI
, DL
);
1691 // Analyze operands of the call, assigning locations to each operand.
1692 SmallVector
<CCValAssign
, 16> ValLocs
;
1693 CCState
CCInfo(CC
, F
.isVarArg(), *FuncInfo
.MF
, ValLocs
, *Context
);
1694 CCInfo
.AnalyzeReturn(Outs
, RetCC_PPC64_ELF_FIS
);
1695 const Value
*RV
= Ret
->getOperand(0);
1697 // FIXME: Only one output register for now.
1698 if (ValLocs
.size() > 1)
1701 // Special case for returning a constant integer of any size - materialize
1702 // the constant as an i64 and copy it to the return register.
1703 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RV
)) {
1704 CCValAssign
&VA
= ValLocs
[0];
1706 unsigned RetReg
= VA
.getLocReg();
1707 // We still need to worry about properly extending the sign. For example,
1708 // we could have only a single bit or a constant that needs zero
1709 // extension rather than sign extension. Make sure we pass the return
1710 // value extension property to integer materialization.
1712 PPCMaterializeInt(CI
, MVT::i64
, VA
.getLocInfo() != CCValAssign::ZExt
);
1714 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1715 TII
.get(TargetOpcode::COPY
), RetReg
).addReg(SrcReg
);
1717 RetRegs
.push_back(RetReg
);
1720 unsigned Reg
= getRegForValue(RV
);
1725 // Copy the result values into the output registers.
1726 for (unsigned i
= 0; i
< ValLocs
.size(); ++i
) {
1728 CCValAssign
&VA
= ValLocs
[i
];
1729 assert(VA
.isRegLoc() && "Can only return in registers!");
1730 RetRegs
.push_back(VA
.getLocReg());
1731 unsigned SrcReg
= Reg
+ VA
.getValNo();
1733 EVT RVEVT
= TLI
.getValueType(DL
, RV
->getType());
1734 if (!RVEVT
.isSimple())
1736 MVT RVVT
= RVEVT
.getSimpleVT();
1737 MVT DestVT
= VA
.getLocVT();
1739 if (RVVT
!= DestVT
&& RVVT
!= MVT::i8
&&
1740 RVVT
!= MVT::i16
&& RVVT
!= MVT::i32
)
1743 if (RVVT
!= DestVT
) {
1744 switch (VA
.getLocInfo()) {
1746 llvm_unreachable("Unknown loc info!");
1747 case CCValAssign::Full
:
1748 llvm_unreachable("Full value assign but types don't match?");
1749 case CCValAssign::AExt
:
1750 case CCValAssign::ZExt
: {
1751 const TargetRegisterClass
*RC
=
1752 (DestVT
== MVT::i64
) ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
1753 unsigned TmpReg
= createResultReg(RC
);
1754 if (!PPCEmitIntExt(RVVT
, SrcReg
, DestVT
, TmpReg
, true))
1759 case CCValAssign::SExt
: {
1760 const TargetRegisterClass
*RC
=
1761 (DestVT
== MVT::i64
) ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
1762 unsigned TmpReg
= createResultReg(RC
);
1763 if (!PPCEmitIntExt(RVVT
, SrcReg
, DestVT
, TmpReg
, false))
1771 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1772 TII
.get(TargetOpcode::COPY
), RetRegs
[i
])
1778 MachineInstrBuilder MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1779 TII
.get(PPC::BLR8
));
1781 for (unsigned i
= 0, e
= RetRegs
.size(); i
!= e
; ++i
)
1782 MIB
.addReg(RetRegs
[i
], RegState::Implicit
);
1787 // Attempt to emit an integer extend of SrcReg into DestReg. Both
1788 // signed and zero extensions are supported. Return false if we
1790 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT
, unsigned SrcReg
, MVT DestVT
,
1791 unsigned DestReg
, bool IsZExt
) {
1792 if (DestVT
!= MVT::i32
&& DestVT
!= MVT::i64
)
1794 if (SrcVT
!= MVT::i8
&& SrcVT
!= MVT::i16
&& SrcVT
!= MVT::i32
)
1797 // Signed extensions use EXTSB, EXTSH, EXTSW.
1800 if (SrcVT
== MVT::i8
)
1801 Opc
= (DestVT
== MVT::i32
) ? PPC::EXTSB
: PPC::EXTSB8_32_64
;
1802 else if (SrcVT
== MVT::i16
)
1803 Opc
= (DestVT
== MVT::i32
) ? PPC::EXTSH
: PPC::EXTSH8_32_64
;
1805 assert(DestVT
== MVT::i64
&& "Signed extend from i32 to i32??");
1806 Opc
= PPC::EXTSW_32_64
;
1808 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), DestReg
)
1811 // Unsigned 32-bit extensions use RLWINM.
1812 } else if (DestVT
== MVT::i32
) {
1814 if (SrcVT
== MVT::i8
)
1817 assert(SrcVT
== MVT::i16
&& "Unsigned extend from i32 to i32??");
1820 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::RLWINM
),
1822 .addReg(SrcReg
).addImm(/*SH=*/0).addImm(MB
).addImm(/*ME=*/31);
1824 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1827 if (SrcVT
== MVT::i8
)
1829 else if (SrcVT
== MVT::i16
)
1833 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
1834 TII
.get(PPC::RLDICL_32_64
), DestReg
)
1835 .addReg(SrcReg
).addImm(/*SH=*/0).addImm(MB
);
1841 // Attempt to fast-select an indirect branch instruction.
1842 bool PPCFastISel::SelectIndirectBr(const Instruction
*I
) {
1843 unsigned AddrReg
= getRegForValue(I
->getOperand(0));
1847 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::MTCTR8
))
1849 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::BCTR8
));
1851 const IndirectBrInst
*IB
= cast
<IndirectBrInst
>(I
);
1852 for (const BasicBlock
*SuccBB
: IB
->successors())
1853 FuncInfo
.MBB
->addSuccessor(FuncInfo
.MBBMap
[SuccBB
]);
1858 // Attempt to fast-select an integer truncate instruction.
1859 bool PPCFastISel::SelectTrunc(const Instruction
*I
) {
1860 Value
*Src
= I
->getOperand(0);
1861 EVT SrcVT
= TLI
.getValueType(DL
, Src
->getType(), true);
1862 EVT DestVT
= TLI
.getValueType(DL
, I
->getType(), true);
1864 if (SrcVT
!= MVT::i64
&& SrcVT
!= MVT::i32
&& SrcVT
!= MVT::i16
)
1867 if (DestVT
!= MVT::i32
&& DestVT
!= MVT::i16
&& DestVT
!= MVT::i8
)
1870 unsigned SrcReg
= getRegForValue(Src
);
1874 // The only interesting case is when we need to switch register classes.
1875 if (SrcVT
== MVT::i64
)
1876 SrcReg
= copyRegToRegClass(&PPC::GPRCRegClass
, SrcReg
, 0, PPC::sub_32
);
1878 updateValueMap(I
, SrcReg
);
1882 // Attempt to fast-select an integer extend instruction.
1883 bool PPCFastISel::SelectIntExt(const Instruction
*I
) {
1884 Type
*DestTy
= I
->getType();
1885 Value
*Src
= I
->getOperand(0);
1886 Type
*SrcTy
= Src
->getType();
1888 bool IsZExt
= isa
<ZExtInst
>(I
);
1889 unsigned SrcReg
= getRegForValue(Src
);
1890 if (!SrcReg
) return false;
1892 EVT SrcEVT
, DestEVT
;
1893 SrcEVT
= TLI
.getValueType(DL
, SrcTy
, true);
1894 DestEVT
= TLI
.getValueType(DL
, DestTy
, true);
1895 if (!SrcEVT
.isSimple())
1897 if (!DestEVT
.isSimple())
1900 MVT SrcVT
= SrcEVT
.getSimpleVT();
1901 MVT DestVT
= DestEVT
.getSimpleVT();
1903 // If we know the register class needed for the result of this
1904 // instruction, use it. Otherwise pick the register class of the
1905 // correct size that does not contain X0/R0, since we don't know
1906 // whether downstream uses permit that assignment.
1907 unsigned AssignedReg
= FuncInfo
.ValueMap
[I
];
1908 const TargetRegisterClass
*RC
=
1909 (AssignedReg
? MRI
.getRegClass(AssignedReg
) :
1910 (DestVT
== MVT::i64
? &PPC::G8RC_and_G8RC_NOX0RegClass
:
1911 &PPC::GPRC_and_GPRC_NOR0RegClass
));
1912 unsigned ResultReg
= createResultReg(RC
);
1914 if (!PPCEmitIntExt(SrcVT
, SrcReg
, DestVT
, ResultReg
, IsZExt
))
1917 updateValueMap(I
, ResultReg
);
1921 // Attempt to fast-select an instruction that wasn't handled by
1922 // the table-generated machinery.
1923 bool PPCFastISel::fastSelectInstruction(const Instruction
*I
) {
1925 switch (I
->getOpcode()) {
1926 case Instruction::Load
:
1927 return SelectLoad(I
);
1928 case Instruction::Store
:
1929 return SelectStore(I
);
1930 case Instruction::Br
:
1931 return SelectBranch(I
);
1932 case Instruction::IndirectBr
:
1933 return SelectIndirectBr(I
);
1934 case Instruction::FPExt
:
1935 return SelectFPExt(I
);
1936 case Instruction::FPTrunc
:
1937 return SelectFPTrunc(I
);
1938 case Instruction::SIToFP
:
1939 return SelectIToFP(I
, /*IsSigned*/ true);
1940 case Instruction::UIToFP
:
1941 return SelectIToFP(I
, /*IsSigned*/ false);
1942 case Instruction::FPToSI
:
1943 return SelectFPToI(I
, /*IsSigned*/ true);
1944 case Instruction::FPToUI
:
1945 return SelectFPToI(I
, /*IsSigned*/ false);
1946 case Instruction::Add
:
1947 return SelectBinaryIntOp(I
, ISD::ADD
);
1948 case Instruction::Or
:
1949 return SelectBinaryIntOp(I
, ISD::OR
);
1950 case Instruction::Sub
:
1951 return SelectBinaryIntOp(I
, ISD::SUB
);
1952 case Instruction::Call
:
1953 return selectCall(I
);
1954 case Instruction::Ret
:
1955 return SelectRet(I
);
1956 case Instruction::Trunc
:
1957 return SelectTrunc(I
);
1958 case Instruction::ZExt
:
1959 case Instruction::SExt
:
1960 return SelectIntExt(I
);
1961 // Here add other flavors of Instruction::XXX that automated
1962 // cases don't catch. For example, switches are terminators
1963 // that aren't yet handled.
1970 // Materialize a floating-point constant into a register, and return
1971 // the register number (or zero if we failed to handle it).
1972 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP
*CFP
, MVT VT
) {
1973 // No plans to handle long double here.
1974 if (VT
!= MVT::f32
&& VT
!= MVT::f64
)
1977 // All FP constants are loaded from the constant pool.
1978 unsigned Align
= DL
.getPrefTypeAlignment(CFP
->getType());
1979 assert(Align
> 0 && "Unexpectedly missing alignment information!");
1980 unsigned Idx
= MCP
.getConstantPoolIndex(cast
<Constant
>(CFP
), Align
);
1981 const bool HasSPE
= PPCSubTarget
->hasSPE();
1982 const TargetRegisterClass
*RC
;
1984 RC
= ((VT
== MVT::f32
) ? &PPC::SPE4RCRegClass
: &PPC::SPERCRegClass
);
1986 RC
= ((VT
== MVT::f32
) ? &PPC::F4RCRegClass
: &PPC::F8RCRegClass
);
1988 unsigned DestReg
= createResultReg(RC
);
1989 CodeModel::Model CModel
= TM
.getCodeModel();
1991 MachineMemOperand
*MMO
= FuncInfo
.MF
->getMachineMemOperand(
1992 MachinePointerInfo::getConstantPool(*FuncInfo
.MF
),
1993 MachineMemOperand::MOLoad
, (VT
== MVT::f32
) ? 4 : 8, Align
);
1998 Opc
= ((VT
== MVT::f32
) ? PPC::SPELWZ
: PPC::EVLDD
);
2000 Opc
= ((VT
== MVT::f32
) ? PPC::LFS
: PPC::LFD
);
2002 unsigned TmpReg
= createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass
);
2004 PPCFuncInfo
->setUsesTOCBasePtr();
2005 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2006 if (CModel
== CodeModel::Small
) {
2007 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::LDtocCPT
),
2009 .addConstantPoolIndex(Idx
).addReg(PPC::X2
);
2010 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), DestReg
)
2011 .addImm(0).addReg(TmpReg
).addMemOperand(MMO
);
2013 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
2014 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::ADDIStocHA
),
2015 TmpReg
).addReg(PPC::X2
).addConstantPoolIndex(Idx
);
2016 // But for large code model, we must generate a LDtocL followed
2018 if (CModel
== CodeModel::Large
) {
2019 unsigned TmpReg2
= createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass
);
2020 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::LDtocL
),
2021 TmpReg2
).addConstantPoolIndex(Idx
).addReg(TmpReg
);
2022 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), DestReg
)
2026 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), DestReg
)
2027 .addConstantPoolIndex(Idx
, 0, PPCII::MO_TOC_LO
)
2029 .addMemOperand(MMO
);
2035 // Materialize the address of a global value into a register, and return
2036 // the register number (or zero if we failed to handle it).
2037 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue
*GV
, MVT VT
) {
2038 assert(VT
== MVT::i64
&& "Non-address!");
2039 const TargetRegisterClass
*RC
= &PPC::G8RC_and_G8RC_NOX0RegClass
;
2040 unsigned DestReg
= createResultReg(RC
);
2042 // Global values may be plain old object addresses, TLS object
2043 // addresses, constant pool entries, or jump tables. How we generate
2044 // code for these may depend on small, medium, or large code model.
2045 CodeModel::Model CModel
= TM
.getCodeModel();
2047 // FIXME: Jump tables are not yet required because fast-isel doesn't
2048 // handle switches; if that changes, we need them as well. For now,
2049 // what follows assumes everything's a generic (or TLS) global address.
2051 // FIXME: We don't yet handle the complexity of TLS.
2052 if (GV
->isThreadLocal())
2055 PPCFuncInfo
->setUsesTOCBasePtr();
2056 // For small code model, generate a simple TOC load.
2057 if (CModel
== CodeModel::Small
)
2058 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::LDtoc
),
2060 .addGlobalAddress(GV
)
2063 // If the address is an externally defined symbol, a symbol with common
2064 // or externally available linkage, a non-local function address, or a
2065 // jump table address (not yet needed), or if we are generating code
2066 // for large code model, we generate:
2067 // LDtocL(GV, ADDIStocHA(%x2, GV))
2068 // Otherwise we generate:
2069 // ADDItocL(ADDIStocHA(%x2, GV), GV)
2070 // Either way, start with the ADDIStocHA:
2071 unsigned HighPartReg
= createResultReg(RC
);
2072 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::ADDIStocHA
),
2073 HighPartReg
).addReg(PPC::X2
).addGlobalAddress(GV
);
2075 unsigned char GVFlags
= PPCSubTarget
->classifyGlobalReference(GV
);
2076 if (GVFlags
& PPCII::MO_NLP_FLAG
) {
2077 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::LDtocL
),
2078 DestReg
).addGlobalAddress(GV
).addReg(HighPartReg
);
2080 // Otherwise generate the ADDItocL.
2081 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::ADDItocL
),
2082 DestReg
).addReg(HighPartReg
).addGlobalAddress(GV
);
2089 // Materialize a 32-bit integer constant into a register, and return
2090 // the register number (or zero if we failed to handle it).
2091 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm
,
2092 const TargetRegisterClass
*RC
) {
2093 unsigned Lo
= Imm
& 0xFFFF;
2094 unsigned Hi
= (Imm
>> 16) & 0xFFFF;
2096 unsigned ResultReg
= createResultReg(RC
);
2097 bool IsGPRC
= RC
->hasSuperClassEq(&PPC::GPRCRegClass
);
2100 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
2101 TII
.get(IsGPRC
? PPC::LI
: PPC::LI8
), ResultReg
)
2104 // Both Lo and Hi have nonzero bits.
2105 unsigned TmpReg
= createResultReg(RC
);
2106 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
2107 TII
.get(IsGPRC
? PPC::LIS
: PPC::LIS8
), TmpReg
)
2109 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
2110 TII
.get(IsGPRC
? PPC::ORI
: PPC::ORI8
), ResultReg
)
2111 .addReg(TmpReg
).addImm(Lo
);
2114 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
2115 TII
.get(IsGPRC
? PPC::LIS
: PPC::LIS8
), ResultReg
)
2121 // Materialize a 64-bit integer constant into a register, and return
2122 // the register number (or zero if we failed to handle it).
2123 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm
,
2124 const TargetRegisterClass
*RC
) {
2125 unsigned Remainder
= 0;
2128 // If the value doesn't fit in 32 bits, see if we can shift it
2129 // so that it fits in 32 bits.
2130 if (!isInt
<32>(Imm
)) {
2131 Shift
= countTrailingZeros
<uint64_t>(Imm
);
2132 int64_t ImmSh
= static_cast<uint64_t>(Imm
) >> Shift
;
2134 if (isInt
<32>(ImmSh
))
2143 // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2144 // (if not shifted).
2145 unsigned TmpReg1
= PPCMaterialize32BitInt(Imm
, RC
);
2149 // If upper 32 bits were not zero, we've built them and need to shift
2153 TmpReg2
= createResultReg(RC
);
2154 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::RLDICR
),
2155 TmpReg2
).addReg(TmpReg1
).addImm(Shift
).addImm(63 - Shift
);
2159 unsigned TmpReg3
, Hi
, Lo
;
2160 if ((Hi
= (Remainder
>> 16) & 0xFFFF)) {
2161 TmpReg3
= createResultReg(RC
);
2162 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::ORIS8
),
2163 TmpReg3
).addReg(TmpReg2
).addImm(Hi
);
2167 if ((Lo
= Remainder
& 0xFFFF)) {
2168 unsigned ResultReg
= createResultReg(RC
);
2169 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::ORI8
),
2170 ResultReg
).addReg(TmpReg3
).addImm(Lo
);
2177 // Materialize an integer constant into a register, and return
2178 // the register number (or zero if we failed to handle it).
2179 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt
*CI
, MVT VT
,
2181 // If we're using CR bit registers for i1 values, handle that as a special
2183 if (VT
== MVT::i1
&& PPCSubTarget
->useCRBits()) {
2184 unsigned ImmReg
= createResultReg(&PPC::CRBITRCRegClass
);
2185 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
2186 TII
.get(CI
->isZero() ? PPC::CRUNSET
: PPC::CRSET
), ImmReg
);
2190 if (VT
!= MVT::i64
&& VT
!= MVT::i32
&& VT
!= MVT::i16
&& VT
!= MVT::i8
&&
2194 const TargetRegisterClass
*RC
=
2195 ((VT
== MVT::i64
) ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
);
2196 int64_t Imm
= UseSExt
? CI
->getSExtValue() : CI
->getZExtValue();
2198 // If the constant is in range, use a load-immediate.
2199 // Since LI will sign extend the constant we need to make sure that for
2200 // our zeroext constants that the sign extended constant fits into 16-bits -
2201 // a range of 0..0x7fff.
2202 if (isInt
<16>(Imm
)) {
2203 unsigned Opc
= (VT
== MVT::i64
) ? PPC::LI8
: PPC::LI
;
2204 unsigned ImmReg
= createResultReg(RC
);
2205 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(Opc
), ImmReg
)
2210 // Construct the constant piecewise.
2212 return PPCMaterialize64BitInt(Imm
, RC
);
2213 else if (VT
== MVT::i32
)
2214 return PPCMaterialize32BitInt(Imm
, RC
);
2219 // Materialize a constant into a register, and return the register
2220 // number (or zero if we failed to handle it).
2221 unsigned PPCFastISel::fastMaterializeConstant(const Constant
*C
) {
2222 EVT CEVT
= TLI
.getValueType(DL
, C
->getType(), true);
2224 // Only handle simple types.
2225 if (!CEVT
.isSimple()) return 0;
2226 MVT VT
= CEVT
.getSimpleVT();
2228 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
2229 return PPCMaterializeFP(CFP
, VT
);
2230 else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
2231 return PPCMaterializeGV(GV
, VT
);
2232 else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
2233 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2234 // assumes that constant PHI operands will be zero extended, and failure to
2235 // match that assumption will cause problems if we sign extend here but
2236 // some user of a PHI is in a block for which we fall back to full SDAG
2237 // instruction selection.
2238 return PPCMaterializeInt(CI
, VT
, false);
2243 // Materialize the address created by an alloca into a register, and
2244 // return the register number (or zero if we failed to handle it).
2245 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst
*AI
) {
2246 // Don't handle dynamic allocas.
2247 if (!FuncInfo
.StaticAllocaMap
.count(AI
)) return 0;
2250 if (!isLoadTypeLegal(AI
->getType(), VT
)) return 0;
2252 DenseMap
<const AllocaInst
*, int>::iterator SI
=
2253 FuncInfo
.StaticAllocaMap
.find(AI
);
2255 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
2256 unsigned ResultReg
= createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass
);
2257 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
, TII
.get(PPC::ADDI8
),
2258 ResultReg
).addFrameIndex(SI
->second
).addImm(0);
2265 // Fold loads into extends when possible.
2266 // FIXME: We can have multiple redundant extend/trunc instructions
2267 // following a load. The folding only picks up one. Extend this
2268 // to check subsequent instructions for the same pattern and remove
2269 // them. Thus ResultReg should be the def reg for the last redundant
2270 // instruction in a chain, and all intervening instructions can be
2271 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
2272 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2273 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr
*MI
, unsigned OpNo
,
2274 const LoadInst
*LI
) {
2275 // Verify we have a legal type before going any further.
2277 if (!isLoadTypeLegal(LI
->getType(), VT
))
2280 // Combine load followed by zero- or sign-extend.
2281 bool IsZExt
= false;
2282 switch(MI
->getOpcode()) {
2287 case PPC::RLDICL_32_64
: {
2289 unsigned MB
= MI
->getOperand(3).getImm();
2290 if ((VT
== MVT::i8
&& MB
<= 56) ||
2291 (VT
== MVT::i16
&& MB
<= 48) ||
2292 (VT
== MVT::i32
&& MB
<= 32))
2298 case PPC::RLWINM8
: {
2300 unsigned MB
= MI
->getOperand(3).getImm();
2301 if ((VT
== MVT::i8
&& MB
<= 24) ||
2302 (VT
== MVT::i16
&& MB
<= 16))
2309 case PPC::EXTSB8_32_64
:
2310 /* There is no sign-extending load-byte instruction. */
2315 case PPC::EXTSH8_32_64
: {
2316 if (VT
!= MVT::i16
&& VT
!= MVT::i8
)
2323 case PPC::EXTSW_32_64
: {
2324 if (VT
!= MVT::i32
&& VT
!= MVT::i16
&& VT
!= MVT::i8
)
2330 // See if we can handle this address.
2332 if (!PPCComputeAddress(LI
->getOperand(0), Addr
))
2335 unsigned ResultReg
= MI
->getOperand(0).getReg();
2337 if (!PPCEmitLoad(VT
, ResultReg
, Addr
, nullptr, IsZExt
,
2338 PPCSubTarget
->hasSPE() ? PPC::EVLDD
: PPC::LFD
))
2341 MachineBasicBlock::iterator
I(MI
);
2342 removeDeadCode(I
, std::next(I
));
2346 // Attempt to lower call arguments in a faster way than done by
2347 // the selection DAG code.
2348 bool PPCFastISel::fastLowerArguments() {
2349 // Defer to normal argument lowering for now. It's reasonably
2350 // efficient. Consider doing something like ARM to handle the
2351 // case where all args fit in registers, no varargs, no float
2356 // Handle materializing integer constants into a register. This is not
2357 // automatically generated for PowerPC, so must be explicitly created here.
2358 unsigned PPCFastISel::fastEmit_i(MVT Ty
, MVT VT
, unsigned Opc
, uint64_t Imm
) {
2360 if (Opc
!= ISD::Constant
)
2363 // If we're using CR bit registers for i1 values, handle that as a special
2365 if (VT
== MVT::i1
&& PPCSubTarget
->useCRBits()) {
2366 unsigned ImmReg
= createResultReg(&PPC::CRBITRCRegClass
);
2367 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DbgLoc
,
2368 TII
.get(Imm
== 0 ? PPC::CRUNSET
: PPC::CRSET
), ImmReg
);
2372 if (VT
!= MVT::i64
&& VT
!= MVT::i32
&& VT
!= MVT::i16
&& VT
!= MVT::i8
&&
2376 const TargetRegisterClass
*RC
= ((VT
== MVT::i64
) ? &PPC::G8RCRegClass
:
2377 &PPC::GPRCRegClass
);
2379 return PPCMaterialize64BitInt(Imm
, RC
);
2381 return PPCMaterialize32BitInt(Imm
, RC
);
2384 // Override for ADDI and ADDI8 to set the correct register class
2385 // on RHS operand 0. The automatic infrastructure naively assumes
2386 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2387 // for these cases. At the moment, none of the other automatically
2388 // generated RI instructions require special treatment. However, once
2389 // SelectSelect is implemented, "isel" requires similar handling.
2391 // Also be conservative about the output register class. Avoid
2392 // assigning R0 or X0 to the output register for GPRC and G8RC
2393 // register classes, as any such result could be used in ADDI, etc.,
2394 // where those regs have another meaning.
2395 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode
,
2396 const TargetRegisterClass
*RC
,
2397 unsigned Op0
, bool Op0IsKill
,
2399 if (MachineInstOpcode
== PPC::ADDI
)
2400 MRI
.setRegClass(Op0
, &PPC::GPRC_and_GPRC_NOR0RegClass
);
2401 else if (MachineInstOpcode
== PPC::ADDI8
)
2402 MRI
.setRegClass(Op0
, &PPC::G8RC_and_G8RC_NOX0RegClass
);
2404 const TargetRegisterClass
*UseRC
=
2405 (RC
== &PPC::GPRCRegClass
? &PPC::GPRC_and_GPRC_NOR0RegClass
:
2406 (RC
== &PPC::G8RCRegClass
? &PPC::G8RC_and_G8RC_NOX0RegClass
: RC
));
2408 return FastISel::fastEmitInst_ri(MachineInstOpcode
, UseRC
,
2409 Op0
, Op0IsKill
, Imm
);
2412 // Override for instructions with one register operand to avoid use of
2413 // R0/X0. The automatic infrastructure isn't aware of the context so
2414 // we must be conservative.
2415 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode
,
2416 const TargetRegisterClass
* RC
,
2417 unsigned Op0
, bool Op0IsKill
) {
2418 const TargetRegisterClass
*UseRC
=
2419 (RC
== &PPC::GPRCRegClass
? &PPC::GPRC_and_GPRC_NOR0RegClass
:
2420 (RC
== &PPC::G8RCRegClass
? &PPC::G8RC_and_G8RC_NOX0RegClass
: RC
));
2422 return FastISel::fastEmitInst_r(MachineInstOpcode
, UseRC
, Op0
, Op0IsKill
);
2425 // Override for instructions with two register operands to avoid use
2426 // of R0/X0. The automatic infrastructure isn't aware of the context
2427 // so we must be conservative.
2428 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode
,
2429 const TargetRegisterClass
* RC
,
2430 unsigned Op0
, bool Op0IsKill
,
2431 unsigned Op1
, bool Op1IsKill
) {
2432 const TargetRegisterClass
*UseRC
=
2433 (RC
== &PPC::GPRCRegClass
? &PPC::GPRC_and_GPRC_NOR0RegClass
:
2434 (RC
== &PPC::G8RCRegClass
? &PPC::G8RC_and_G8RC_NOX0RegClass
: RC
));
2436 return FastISel::fastEmitInst_rr(MachineInstOpcode
, UseRC
, Op0
, Op0IsKill
,
2441 // Create the fast instruction selector for PowerPC64 ELF.
2442 FastISel
*PPC::createFastISel(FunctionLoweringInfo
&FuncInfo
,
2443 const TargetLibraryInfo
*LibInfo
) {
2444 // Only available on 64-bit ELF for now.
2445 const PPCSubtarget
&Subtarget
= FuncInfo
.MF
->getSubtarget
<PPCSubtarget
>();
2446 if (Subtarget
.isPPC64() && Subtarget
.isSVR4ABI())
2447 return new PPCFastISel(FuncInfo
, LibInfo
);