Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / PowerPC / PPCFastISel.cpp
blob14a72bd9980ead4cbcaeb4c2f90a886a86703323
1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PowerPC-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // PPCGenFastISel.inc, which is #included here.
13 //===----------------------------------------------------------------------===//
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Target/TargetMachine.h"
41 //===----------------------------------------------------------------------===//
43 // TBD:
44 // fastLowerArguments: Handle simple cases.
45 // PPCMaterializeGV: Handle TLS.
46 // SelectCall: Handle function pointers.
47 // SelectCall: Handle multi-register return values.
48 // SelectCall: Optimize away nops for local calls.
49 // processCallArgs: Handle bit-converted arguments.
50 // finishCall: Handle multi-register return values.
51 // PPCComputeAddress: Handle parameter references as FrameIndex's.
52 // PPCEmitCmp: Handle immediate as operand 1.
53 // SelectCall: Handle small byval arguments.
54 // SelectIntrinsicCall: Implement.
55 // SelectSelect: Implement.
56 // Consider factoring isTypeLegal into the base class.
57 // Implement switches and jump tables.
59 //===----------------------------------------------------------------------===//
60 using namespace llvm;
62 #define DEBUG_TYPE "ppcfastisel"
64 namespace {
66 typedef struct Address {
67 enum {
68 RegBase,
69 FrameIndexBase
70 } BaseType;
72 union {
73 unsigned Reg;
74 int FI;
75 } Base;
77 long Offset;
79 // Innocuous defaults for our address.
80 Address()
81 : BaseType(RegBase), Offset(0) {
82 Base.Reg = 0;
84 } Address;
86 class PPCFastISel final : public FastISel {
88 const TargetMachine &TM;
89 const PPCSubtarget *PPCSubTarget;
90 PPCFunctionInfo *PPCFuncInfo;
91 const TargetInstrInfo &TII;
92 const TargetLowering &TLI;
93 LLVMContext *Context;
95 public:
96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
97 const TargetLibraryInfo *LibInfo)
98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
99 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
101 TII(*PPCSubTarget->getInstrInfo()),
102 TLI(*PPCSubTarget->getTargetLowering()),
103 Context(&FuncInfo.Fn->getContext()) {}
105 // Backend specific FastISel code.
106 private:
107 bool fastSelectInstruction(const Instruction *I) override;
108 unsigned fastMaterializeConstant(const Constant *C) override;
109 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
110 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
111 const LoadInst *LI) override;
112 bool fastLowerArguments() override;
113 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
114 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
115 const TargetRegisterClass *RC,
116 unsigned Op0, bool Op0IsKill,
117 uint64_t Imm);
118 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
119 const TargetRegisterClass *RC,
120 unsigned Op0, bool Op0IsKill);
121 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
122 const TargetRegisterClass *RC,
123 unsigned Op0, bool Op0IsKill,
124 unsigned Op1, bool Op1IsKill);
126 bool fastLowerCall(CallLoweringInfo &CLI) override;
128 // Instruction selection routines.
129 private:
130 bool SelectLoad(const Instruction *I);
131 bool SelectStore(const Instruction *I);
132 bool SelectBranch(const Instruction *I);
133 bool SelectIndirectBr(const Instruction *I);
134 bool SelectFPExt(const Instruction *I);
135 bool SelectFPTrunc(const Instruction *I);
136 bool SelectIToFP(const Instruction *I, bool IsSigned);
137 bool SelectFPToI(const Instruction *I, bool IsSigned);
138 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
139 bool SelectRet(const Instruction *I);
140 bool SelectTrunc(const Instruction *I);
141 bool SelectIntExt(const Instruction *I);
143 // Utility routines.
144 private:
145 bool isTypeLegal(Type *Ty, MVT &VT);
146 bool isLoadTypeLegal(Type *Ty, MVT &VT);
147 bool isValueAvailable(const Value *V) const;
148 bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
149 return RC->getID() == PPC::VSFRCRegClassID;
151 bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
152 return RC->getID() == PPC::VSSRCRegClassID;
154 unsigned copyRegToRegClass(const TargetRegisterClass *ToRC,
155 unsigned SrcReg, unsigned Flag = 0,
156 unsigned SubReg = 0) {
157 unsigned TmpReg = createResultReg(ToRC);
158 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
159 TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg);
160 return TmpReg;
162 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
163 bool isZExt, unsigned DestReg,
164 const PPC::Predicate Pred);
165 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
166 const TargetRegisterClass *RC, bool IsZExt = true,
167 unsigned FP64LoadOpc = PPC::LFD);
168 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
169 bool PPCComputeAddress(const Value *Obj, Address &Addr);
170 void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
171 unsigned &IndexReg);
172 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
173 unsigned DestReg, bool IsZExt);
174 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
175 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
176 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
177 bool UseSExt = true);
178 unsigned PPCMaterialize32BitInt(int64_t Imm,
179 const TargetRegisterClass *RC);
180 unsigned PPCMaterialize64BitInt(int64_t Imm,
181 const TargetRegisterClass *RC);
182 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
183 unsigned SrcReg, bool IsSigned);
184 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
186 // Call handling routines.
187 private:
188 bool processCallArgs(SmallVectorImpl<Value*> &Args,
189 SmallVectorImpl<unsigned> &ArgRegs,
190 SmallVectorImpl<MVT> &ArgVTs,
191 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
192 SmallVectorImpl<unsigned> &RegArgs,
193 CallingConv::ID CC,
194 unsigned &NumBytes,
195 bool IsVarArg);
196 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
198 private:
199 #include "PPCGenFastISel.inc"
203 } // end anonymous namespace
205 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
206 switch (Pred) {
207 // These are not representable with any single compare.
208 case CmpInst::FCMP_FALSE:
209 case CmpInst::FCMP_TRUE:
210 // Major concern about the following 6 cases is NaN result. The comparison
211 // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
212 // only one of which will be set. The result is generated by fcmpu
213 // instruction. However, bc instruction only inspects one of the first 3
214 // bits, so when un is set, bc instruction may jump to an undesired
215 // place.
217 // More specifically, if we expect an unordered comparison and un is set, we
218 // expect to always go to true branch; in such case UEQ, UGT and ULT still
219 // give false, which are undesired; but UNE, UGE, ULE happen to give true,
220 // since they are tested by inspecting !eq, !lt, !gt, respectively.
222 // Similarly, for ordered comparison, when un is set, we always expect the
223 // result to be false. In such case OGT, OLT and OEQ is good, since they are
224 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
225 // and ONE are tested through !lt, !gt and !eq, and these are true.
226 case CmpInst::FCMP_UEQ:
227 case CmpInst::FCMP_UGT:
228 case CmpInst::FCMP_ULT:
229 case CmpInst::FCMP_OGE:
230 case CmpInst::FCMP_OLE:
231 case CmpInst::FCMP_ONE:
232 default:
233 return Optional<PPC::Predicate>();
235 case CmpInst::FCMP_OEQ:
236 case CmpInst::ICMP_EQ:
237 return PPC::PRED_EQ;
239 case CmpInst::FCMP_OGT:
240 case CmpInst::ICMP_UGT:
241 case CmpInst::ICMP_SGT:
242 return PPC::PRED_GT;
244 case CmpInst::FCMP_UGE:
245 case CmpInst::ICMP_UGE:
246 case CmpInst::ICMP_SGE:
247 return PPC::PRED_GE;
249 case CmpInst::FCMP_OLT:
250 case CmpInst::ICMP_ULT:
251 case CmpInst::ICMP_SLT:
252 return PPC::PRED_LT;
254 case CmpInst::FCMP_ULE:
255 case CmpInst::ICMP_ULE:
256 case CmpInst::ICMP_SLE:
257 return PPC::PRED_LE;
259 case CmpInst::FCMP_UNE:
260 case CmpInst::ICMP_NE:
261 return PPC::PRED_NE;
263 case CmpInst::FCMP_ORD:
264 return PPC::PRED_NU;
266 case CmpInst::FCMP_UNO:
267 return PPC::PRED_UN;
271 // Determine whether the type Ty is simple enough to be handled by
272 // fast-isel, and return its equivalent machine type in VT.
273 // FIXME: Copied directly from ARM -- factor into base class?
274 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
275 EVT Evt = TLI.getValueType(DL, Ty, true);
277 // Only handle simple types.
278 if (Evt == MVT::Other || !Evt.isSimple()) return false;
279 VT = Evt.getSimpleVT();
281 // Handle all legal types, i.e. a register that will directly hold this
282 // value.
283 return TLI.isTypeLegal(VT);
286 // Determine whether the type Ty is simple enough to be handled by
287 // fast-isel as a load target, and return its equivalent machine type in VT.
288 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
289 if (isTypeLegal(Ty, VT)) return true;
291 // If this is a type than can be sign or zero-extended to a basic operation
292 // go ahead and accept it now.
293 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
294 return true;
297 return false;
300 bool PPCFastISel::isValueAvailable(const Value *V) const {
301 if (!isa<Instruction>(V))
302 return true;
304 const auto *I = cast<Instruction>(V);
305 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
308 // Given a value Obj, create an Address object Addr that represents its
309 // address. Return false if we can't handle it.
310 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
311 const User *U = nullptr;
312 unsigned Opcode = Instruction::UserOp1;
313 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
314 // Don't walk into other basic blocks unless the object is an alloca from
315 // another block, otherwise it may not have a virtual register assigned.
316 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
317 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
318 Opcode = I->getOpcode();
319 U = I;
321 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
322 Opcode = C->getOpcode();
323 U = C;
326 switch (Opcode) {
327 default:
328 break;
329 case Instruction::BitCast:
330 // Look through bitcasts.
331 return PPCComputeAddress(U->getOperand(0), Addr);
332 case Instruction::IntToPtr:
333 // Look past no-op inttoptrs.
334 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
335 TLI.getPointerTy(DL))
336 return PPCComputeAddress(U->getOperand(0), Addr);
337 break;
338 case Instruction::PtrToInt:
339 // Look past no-op ptrtoints.
340 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
341 return PPCComputeAddress(U->getOperand(0), Addr);
342 break;
343 case Instruction::GetElementPtr: {
344 Address SavedAddr = Addr;
345 long TmpOffset = Addr.Offset;
347 // Iterate through the GEP folding the constants into offsets where
348 // we can.
349 gep_type_iterator GTI = gep_type_begin(U);
350 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
351 II != IE; ++II, ++GTI) {
352 const Value *Op = *II;
353 if (StructType *STy = GTI.getStructTypeOrNull()) {
354 const StructLayout *SL = DL.getStructLayout(STy);
355 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
356 TmpOffset += SL->getElementOffset(Idx);
357 } else {
358 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
359 for (;;) {
360 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
361 // Constant-offset addressing.
362 TmpOffset += CI->getSExtValue() * S;
363 break;
365 if (canFoldAddIntoGEP(U, Op)) {
366 // A compatible add with a constant operand. Fold the constant.
367 ConstantInt *CI =
368 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
369 TmpOffset += CI->getSExtValue() * S;
370 // Iterate on the other operand.
371 Op = cast<AddOperator>(Op)->getOperand(0);
372 continue;
374 // Unsupported
375 goto unsupported_gep;
380 // Try to grab the base operand now.
381 Addr.Offset = TmpOffset;
382 if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
384 // We failed, restore everything and try the other options.
385 Addr = SavedAddr;
387 unsupported_gep:
388 break;
390 case Instruction::Alloca: {
391 const AllocaInst *AI = cast<AllocaInst>(Obj);
392 DenseMap<const AllocaInst*, int>::iterator SI =
393 FuncInfo.StaticAllocaMap.find(AI);
394 if (SI != FuncInfo.StaticAllocaMap.end()) {
395 Addr.BaseType = Address::FrameIndexBase;
396 Addr.Base.FI = SI->second;
397 return true;
399 break;
403 // FIXME: References to parameters fall through to the behavior
404 // below. They should be able to reference a frame index since
405 // they are stored to the stack, so we can get "ld rx, offset(r1)"
406 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
407 // just contain the parameter. Try to handle this with a FI.
409 // Try to get this in a register if nothing else has worked.
410 if (Addr.Base.Reg == 0)
411 Addr.Base.Reg = getRegForValue(Obj);
413 // Prevent assignment of base register to X0, which is inappropriate
414 // for loads and stores alike.
415 if (Addr.Base.Reg != 0)
416 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
418 return Addr.Base.Reg != 0;
421 // Fix up some addresses that can't be used directly. For example, if
422 // an offset won't fit in an instruction field, we may need to move it
423 // into an index register.
424 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
425 unsigned &IndexReg) {
427 // Check whether the offset fits in the instruction field.
428 if (!isInt<16>(Addr.Offset))
429 UseOffset = false;
431 // If this is a stack pointer and the offset needs to be simplified then
432 // put the alloca address into a register, set the base type back to
433 // register and continue. This should almost never happen.
434 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
435 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
436 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
437 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
438 Addr.Base.Reg = ResultReg;
439 Addr.BaseType = Address::RegBase;
442 if (!UseOffset) {
443 IntegerType *OffsetTy = Type::getInt64Ty(*Context);
444 const ConstantInt *Offset =
445 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
446 IndexReg = PPCMaterializeInt(Offset, MVT::i64);
447 assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
451 // Emit a load instruction if possible, returning true if we succeeded,
452 // otherwise false. See commentary below for how the register class of
453 // the load is determined.
454 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
455 const TargetRegisterClass *RC,
456 bool IsZExt, unsigned FP64LoadOpc) {
457 unsigned Opc;
458 bool UseOffset = true;
459 bool HasSPE = PPCSubTarget->hasSPE();
461 // If ResultReg is given, it determines the register class of the load.
462 // Otherwise, RC is the register class to use. If the result of the
463 // load isn't anticipated in this block, both may be zero, in which
464 // case we must make a conservative guess. In particular, don't assign
465 // R0 or X0 to the result register, as the result may be used in a load,
466 // store, add-immediate, or isel that won't permit this. (Though
467 // perhaps the spill and reload of live-exit values would handle this?)
468 const TargetRegisterClass *UseRC =
469 (ResultReg ? MRI.getRegClass(ResultReg) :
470 (RC ? RC :
471 (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
472 (VT == MVT::f32 ? (HasSPE ? &PPC::SPE4RCRegClass : &PPC::F4RCRegClass) :
473 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
474 &PPC::GPRC_and_GPRC_NOR0RegClass)))));
476 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
478 switch (VT.SimpleTy) {
479 default: // e.g., vector types not handled
480 return false;
481 case MVT::i8:
482 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
483 break;
484 case MVT::i16:
485 Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
486 : (Is32BitInt ? PPC::LHA : PPC::LHA8));
487 break;
488 case MVT::i32:
489 Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
490 : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
491 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
492 UseOffset = false;
493 break;
494 case MVT::i64:
495 Opc = PPC::LD;
496 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
497 "64-bit load with 32-bit target??");
498 UseOffset = ((Addr.Offset & 3) == 0);
499 break;
500 case MVT::f32:
501 Opc = PPCSubTarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
502 break;
503 case MVT::f64:
504 Opc = FP64LoadOpc;
505 break;
508 // If necessary, materialize the offset into a register and use
509 // the indexed form. Also handle stack pointers with special needs.
510 unsigned IndexReg = 0;
511 PPCSimplifyAddress(Addr, UseOffset, IndexReg);
513 // If this is a potential VSX load with an offset of 0, a VSX indexed load can
514 // be used.
515 bool IsVSSRC = isVSSRCRegClass(UseRC);
516 bool IsVSFRC = isVSFRCRegClass(UseRC);
517 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
518 bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
519 if ((Is32VSXLoad || Is64VSXLoad) &&
520 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
521 (Addr.Offset == 0)) {
522 UseOffset = false;
525 if (ResultReg == 0)
526 ResultReg = createResultReg(UseRC);
528 // Note: If we still have a frame index here, we know the offset is
529 // in range, as otherwise PPCSimplifyAddress would have converted it
530 // into a RegBase.
531 if (Addr.BaseType == Address::FrameIndexBase) {
532 // VSX only provides an indexed load.
533 if (Is32VSXLoad || Is64VSXLoad) return false;
535 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
536 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
537 Addr.Offset),
538 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
539 MFI.getObjectAlignment(Addr.Base.FI));
541 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
542 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
544 // Base reg with offset in range.
545 } else if (UseOffset) {
546 // VSX only provides an indexed load.
547 if (Is32VSXLoad || Is64VSXLoad) return false;
549 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
550 .addImm(Addr.Offset).addReg(Addr.Base.Reg);
552 // Indexed form.
553 } else {
554 // Get the RR opcode corresponding to the RI one. FIXME: It would be
555 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
556 // is hard to get at.
557 switch (Opc) {
558 default: llvm_unreachable("Unexpected opcode!");
559 case PPC::LBZ: Opc = PPC::LBZX; break;
560 case PPC::LBZ8: Opc = PPC::LBZX8; break;
561 case PPC::LHZ: Opc = PPC::LHZX; break;
562 case PPC::LHZ8: Opc = PPC::LHZX8; break;
563 case PPC::LHA: Opc = PPC::LHAX; break;
564 case PPC::LHA8: Opc = PPC::LHAX8; break;
565 case PPC::LWZ: Opc = PPC::LWZX; break;
566 case PPC::LWZ8: Opc = PPC::LWZX8; break;
567 case PPC::LWA: Opc = PPC::LWAX; break;
568 case PPC::LWA_32: Opc = PPC::LWAX_32; break;
569 case PPC::LD: Opc = PPC::LDX; break;
570 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
571 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
572 case PPC::EVLDD: Opc = PPC::EVLDDX; break;
573 case PPC::SPELWZ: Opc = PPC::SPELWZX; break;
576 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
577 ResultReg);
579 // If we have an index register defined we use it in the store inst,
580 // otherwise we use X0 as base as it makes the vector instructions to
581 // use zero in the computation of the effective address regardless the
582 // content of the register.
583 if (IndexReg)
584 MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
585 else
586 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
589 return true;
592 // Attempt to fast-select a load instruction.
593 bool PPCFastISel::SelectLoad(const Instruction *I) {
594 // FIXME: No atomic loads are supported.
595 if (cast<LoadInst>(I)->isAtomic())
596 return false;
598 // Verify we have a legal type before going any further.
599 MVT VT;
600 if (!isLoadTypeLegal(I->getType(), VT))
601 return false;
603 // See if we can handle this address.
604 Address Addr;
605 if (!PPCComputeAddress(I->getOperand(0), Addr))
606 return false;
608 // Look at the currently assigned register for this instruction
609 // to determine the required register class. This is necessary
610 // to constrain RA from using R0/X0 when this is not legal.
611 unsigned AssignedReg = FuncInfo.ValueMap[I];
612 const TargetRegisterClass *RC =
613 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
615 unsigned ResultReg = 0;
616 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
617 PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
618 return false;
619 updateValueMap(I, ResultReg);
620 return true;
623 // Emit a store instruction to store SrcReg at Addr.
624 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
625 assert(SrcReg && "Nothing to store!");
626 unsigned Opc;
627 bool UseOffset = true;
629 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
630 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
632 switch (VT.SimpleTy) {
633 default: // e.g., vector types not handled
634 return false;
635 case MVT::i8:
636 Opc = Is32BitInt ? PPC::STB : PPC::STB8;
637 break;
638 case MVT::i16:
639 Opc = Is32BitInt ? PPC::STH : PPC::STH8;
640 break;
641 case MVT::i32:
642 assert(Is32BitInt && "Not GPRC for i32??");
643 Opc = PPC::STW;
644 break;
645 case MVT::i64:
646 Opc = PPC::STD;
647 UseOffset = ((Addr.Offset & 3) == 0);
648 break;
649 case MVT::f32:
650 Opc = PPCSubTarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
651 break;
652 case MVT::f64:
653 Opc = PPCSubTarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
654 break;
657 // If necessary, materialize the offset into a register and use
658 // the indexed form. Also handle stack pointers with special needs.
659 unsigned IndexReg = 0;
660 PPCSimplifyAddress(Addr, UseOffset, IndexReg);
662 // If this is a potential VSX store with an offset of 0, a VSX indexed store
663 // can be used.
664 bool IsVSSRC = isVSSRCRegClass(RC);
665 bool IsVSFRC = isVSFRCRegClass(RC);
666 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
667 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
668 if ((Is32VSXStore || Is64VSXStore) &&
669 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
670 (Addr.Offset == 0)) {
671 UseOffset = false;
674 // Note: If we still have a frame index here, we know the offset is
675 // in range, as otherwise PPCSimplifyAddress would have converted it
676 // into a RegBase.
677 if (Addr.BaseType == Address::FrameIndexBase) {
678 // VSX only provides an indexed store.
679 if (Is32VSXStore || Is64VSXStore) return false;
681 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
682 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
683 Addr.Offset),
684 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
685 MFI.getObjectAlignment(Addr.Base.FI));
687 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
688 .addReg(SrcReg)
689 .addImm(Addr.Offset)
690 .addFrameIndex(Addr.Base.FI)
691 .addMemOperand(MMO);
693 // Base reg with offset in range.
694 } else if (UseOffset) {
695 // VSX only provides an indexed store.
696 if (Is32VSXStore || Is64VSXStore)
697 return false;
699 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
700 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
702 // Indexed form.
703 } else {
704 // Get the RR opcode corresponding to the RI one. FIXME: It would be
705 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
706 // is hard to get at.
707 switch (Opc) {
708 default: llvm_unreachable("Unexpected opcode!");
709 case PPC::STB: Opc = PPC::STBX; break;
710 case PPC::STH : Opc = PPC::STHX; break;
711 case PPC::STW : Opc = PPC::STWX; break;
712 case PPC::STB8: Opc = PPC::STBX8; break;
713 case PPC::STH8: Opc = PPC::STHX8; break;
714 case PPC::STW8: Opc = PPC::STWX8; break;
715 case PPC::STD: Opc = PPC::STDX; break;
716 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
717 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
718 case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
719 case PPC::SPESTW: Opc = PPC::SPESTWX; break;
722 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
723 .addReg(SrcReg);
725 // If we have an index register defined we use it in the store inst,
726 // otherwise we use X0 as base as it makes the vector instructions to
727 // use zero in the computation of the effective address regardless the
728 // content of the register.
729 if (IndexReg)
730 MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
731 else
732 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
735 return true;
738 // Attempt to fast-select a store instruction.
739 bool PPCFastISel::SelectStore(const Instruction *I) {
740 Value *Op0 = I->getOperand(0);
741 unsigned SrcReg = 0;
743 // FIXME: No atomics loads are supported.
744 if (cast<StoreInst>(I)->isAtomic())
745 return false;
747 // Verify we have a legal type before going any further.
748 MVT VT;
749 if (!isLoadTypeLegal(Op0->getType(), VT))
750 return false;
752 // Get the value to be stored into a register.
753 SrcReg = getRegForValue(Op0);
754 if (SrcReg == 0)
755 return false;
757 // See if we can handle this address.
758 Address Addr;
759 if (!PPCComputeAddress(I->getOperand(1), Addr))
760 return false;
762 if (!PPCEmitStore(VT, SrcReg, Addr))
763 return false;
765 return true;
768 // Attempt to fast-select a branch instruction.
769 bool PPCFastISel::SelectBranch(const Instruction *I) {
770 const BranchInst *BI = cast<BranchInst>(I);
771 MachineBasicBlock *BrBB = FuncInfo.MBB;
772 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
773 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
775 // For now, just try the simplest case where it's fed by a compare.
776 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
777 if (isValueAvailable(CI)) {
778 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
779 if (!OptPPCPred)
780 return false;
782 PPC::Predicate PPCPred = OptPPCPred.getValue();
784 // Take advantage of fall-through opportunities.
785 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
786 std::swap(TBB, FBB);
787 PPCPred = PPC::InvertPredicate(PPCPred);
790 unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
792 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
793 CondReg, PPCPred))
794 return false;
796 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
797 .addImm(PPCSubTarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
798 .addReg(CondReg).addMBB(TBB);
799 finishCondBranch(BI->getParent(), TBB, FBB);
800 return true;
802 } else if (const ConstantInt *CI =
803 dyn_cast<ConstantInt>(BI->getCondition())) {
804 uint64_t Imm = CI->getZExtValue();
805 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
806 fastEmitBranch(Target, DbgLoc);
807 return true;
810 // FIXME: ARM looks for a case where the block containing the compare
811 // has been split from the block containing the branch. If this happens,
812 // there is a vreg available containing the result of the compare. I'm
813 // not sure we can do much, as we've lost the predicate information with
814 // the compare instruction -- we have a 4-bit CR but don't know which bit
815 // to test here.
816 return false;
819 // Attempt to emit a compare of the two source values. Signed and unsigned
820 // comparisons are supported. Return false if we can't handle it.
821 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
822 bool IsZExt, unsigned DestReg,
823 const PPC::Predicate Pred) {
824 Type *Ty = SrcValue1->getType();
825 EVT SrcEVT = TLI.getValueType(DL, Ty, true);
826 if (!SrcEVT.isSimple())
827 return false;
828 MVT SrcVT = SrcEVT.getSimpleVT();
830 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
831 return false;
833 // See if operand 2 is an immediate encodeable in the compare.
834 // FIXME: Operands are not in canonical order at -O0, so an immediate
835 // operand in position 1 is a lost opportunity for now. We are
836 // similar to ARM in this regard.
837 long Imm = 0;
838 bool UseImm = false;
839 const bool HasSPE = PPCSubTarget->hasSPE();
841 // Only 16-bit integer constants can be represented in compares for
842 // PowerPC. Others will be materialized into a register.
843 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
844 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
845 SrcVT == MVT::i8 || SrcVT == MVT::i1) {
846 const APInt &CIVal = ConstInt->getValue();
847 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
848 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
849 UseImm = true;
853 unsigned SrcReg1 = getRegForValue(SrcValue1);
854 if (SrcReg1 == 0)
855 return false;
857 unsigned SrcReg2 = 0;
858 if (!UseImm) {
859 SrcReg2 = getRegForValue(SrcValue2);
860 if (SrcReg2 == 0)
861 return false;
864 unsigned CmpOpc;
865 bool NeedsExt = false;
867 auto RC1 = MRI.getRegClass(SrcReg1);
868 auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr;
870 switch (SrcVT.SimpleTy) {
871 default: return false;
872 case MVT::f32:
873 if (HasSPE) {
874 switch (Pred) {
875 default: return false;
876 case PPC::PRED_EQ:
877 CmpOpc = PPC::EFSCMPEQ;
878 break;
879 case PPC::PRED_LT:
880 CmpOpc = PPC::EFSCMPLT;
881 break;
882 case PPC::PRED_GT:
883 CmpOpc = PPC::EFSCMPGT;
884 break;
886 } else {
887 CmpOpc = PPC::FCMPUS;
888 if (isVSSRCRegClass(RC1))
889 SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1);
890 if (RC2 && isVSSRCRegClass(RC2))
891 SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2);
893 break;
894 case MVT::f64:
895 if (HasSPE) {
896 switch (Pred) {
897 default: return false;
898 case PPC::PRED_EQ:
899 CmpOpc = PPC::EFDCMPEQ;
900 break;
901 case PPC::PRED_LT:
902 CmpOpc = PPC::EFDCMPLT;
903 break;
904 case PPC::PRED_GT:
905 CmpOpc = PPC::EFDCMPGT;
906 break;
908 } else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) {
909 CmpOpc = PPC::XSCMPUDP;
910 } else {
911 CmpOpc = PPC::FCMPUD;
913 break;
914 case MVT::i1:
915 case MVT::i8:
916 case MVT::i16:
917 NeedsExt = true;
918 LLVM_FALLTHROUGH;
919 case MVT::i32:
920 if (!UseImm)
921 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
922 else
923 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
924 break;
925 case MVT::i64:
926 if (!UseImm)
927 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
928 else
929 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
930 break;
933 if (NeedsExt) {
934 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
935 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
936 return false;
937 SrcReg1 = ExtReg;
939 if (!UseImm) {
940 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
941 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
942 return false;
943 SrcReg2 = ExtReg;
947 if (!UseImm)
948 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
949 .addReg(SrcReg1).addReg(SrcReg2);
950 else
951 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
952 .addReg(SrcReg1).addImm(Imm);
954 return true;
957 // Attempt to fast-select a floating-point extend instruction.
958 bool PPCFastISel::SelectFPExt(const Instruction *I) {
959 Value *Src = I->getOperand(0);
960 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
961 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
963 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
964 return false;
966 unsigned SrcReg = getRegForValue(Src);
967 if (!SrcReg)
968 return false;
970 // No code is generated for a FP extend.
971 updateValueMap(I, SrcReg);
972 return true;
975 // Attempt to fast-select a floating-point truncate instruction.
976 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
977 Value *Src = I->getOperand(0);
978 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
979 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
981 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
982 return false;
984 unsigned SrcReg = getRegForValue(Src);
985 if (!SrcReg)
986 return false;
988 // Round the result to single precision.
989 unsigned DestReg;
991 if (PPCSubTarget->hasSPE()) {
992 DestReg = createResultReg(&PPC::SPE4RCRegClass);
993 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
994 TII.get(PPC::EFSCFD), DestReg)
995 .addReg(SrcReg);
996 } else {
997 DestReg = createResultReg(&PPC::F4RCRegClass);
998 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
999 TII.get(PPC::FRSP), DestReg)
1000 .addReg(SrcReg);
1003 updateValueMap(I, DestReg);
1004 return true;
1007 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1008 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1009 // those should be used instead of moving via a stack slot when the
1010 // subtarget permits.
1011 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte
1012 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte
1013 // case to 8 bytes which produces tighter code but wastes stack space.
1014 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
1015 bool IsSigned) {
1017 // If necessary, extend 32-bit int to 64-bit.
1018 if (SrcVT == MVT::i32) {
1019 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1020 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
1021 return 0;
1022 SrcReg = TmpReg;
1025 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1026 Address Addr;
1027 Addr.BaseType = Address::FrameIndexBase;
1028 Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1030 // Store the value from the GPR.
1031 if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
1032 return 0;
1034 // Load the integer value into an FPR. The kind of load used depends
1035 // on a number of conditions.
1036 unsigned LoadOpc = PPC::LFD;
1038 if (SrcVT == MVT::i32) {
1039 if (!IsSigned) {
1040 LoadOpc = PPC::LFIWZX;
1041 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1042 } else if (PPCSubTarget->hasLFIWAX()) {
1043 LoadOpc = PPC::LFIWAX;
1044 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1048 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1049 unsigned ResultReg = 0;
1050 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1051 return 0;
1053 return ResultReg;
1056 // Attempt to fast-select an integer-to-floating-point conversion.
1057 // FIXME: Once fast-isel has better support for VSX, conversions using
1058 // direct moves should be implemented.
1059 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1060 MVT DstVT;
1061 Type *DstTy = I->getType();
1062 if (!isTypeLegal(DstTy, DstVT))
1063 return false;
1065 if (DstVT != MVT::f32 && DstVT != MVT::f64)
1066 return false;
1068 Value *Src = I->getOperand(0);
1069 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1070 if (!SrcEVT.isSimple())
1071 return false;
1073 MVT SrcVT = SrcEVT.getSimpleVT();
1075 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 &&
1076 SrcVT != MVT::i32 && SrcVT != MVT::i64)
1077 return false;
1079 unsigned SrcReg = getRegForValue(Src);
1080 if (SrcReg == 0)
1081 return false;
1083 // Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs
1084 if (PPCSubTarget->hasSPE()) {
1085 unsigned Opc;
1086 if (DstVT == MVT::f32)
1087 Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
1088 else
1089 Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;
1091 unsigned DestReg = createResultReg(&PPC::SPERCRegClass);
1092 // Generate the convert.
1093 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1094 .addReg(SrcReg);
1095 updateValueMap(I, DestReg);
1096 return true;
1099 // We can only lower an unsigned convert if we have the newer
1100 // floating-point conversion operations.
1101 if (!IsSigned && !PPCSubTarget->hasFPCVT())
1102 return false;
1104 // FIXME: For now we require the newer floating-point conversion operations
1105 // (which are present only on P7 and A2 server models) when converting
1106 // to single-precision float. Otherwise we have to generate a lot of
1107 // fiddly code to avoid double rounding. If necessary, the fiddly code
1108 // can be found in PPCTargetLowering::LowerINT_TO_FP().
1109 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
1110 return false;
1112 // Extend the input if necessary.
1113 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1114 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1115 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1116 return false;
1117 SrcVT = MVT::i64;
1118 SrcReg = TmpReg;
1121 // Move the integer value to an FPR.
1122 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1123 if (FPReg == 0)
1124 return false;
1126 // Determine the opcode for the conversion.
1127 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1128 unsigned DestReg = createResultReg(RC);
1129 unsigned Opc;
1131 if (DstVT == MVT::f32)
1132 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1133 else
1134 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1136 // Generate the convert.
1137 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1138 .addReg(FPReg);
1140 updateValueMap(I, DestReg);
1141 return true;
1144 // Move the floating-point value in SrcReg into an integer destination
1145 // register, and return the register (or zero if we can't handle it).
1146 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1147 // those should be used instead of moving via a stack slot when the
1148 // subtarget permits.
1149 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1150 unsigned SrcReg, bool IsSigned) {
1151 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1152 // Note that if have STFIWX available, we could use a 4-byte stack
1153 // slot for i32, but this being fast-isel we'll just go with the
1154 // easiest code gen possible.
1155 Address Addr;
1156 Addr.BaseType = Address::FrameIndexBase;
1157 Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1159 // Store the value from the FPR.
1160 if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1161 return 0;
1163 // Reload it into a GPR. If we want an i32 on big endian, modify the
1164 // address to have a 4-byte offset so we load from the right place.
1165 if (VT == MVT::i32)
1166 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1168 // Look at the currently assigned register for this instruction
1169 // to determine the required register class.
1170 unsigned AssignedReg = FuncInfo.ValueMap[I];
1171 const TargetRegisterClass *RC =
1172 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1174 unsigned ResultReg = 0;
1175 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1176 return 0;
1178 return ResultReg;
1181 // Attempt to fast-select a floating-point-to-integer conversion.
1182 // FIXME: Once fast-isel has better support for VSX, conversions using
1183 // direct moves should be implemented.
1184 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1185 MVT DstVT, SrcVT;
1186 Type *DstTy = I->getType();
1187 if (!isTypeLegal(DstTy, DstVT))
1188 return false;
1190 if (DstVT != MVT::i32 && DstVT != MVT::i64)
1191 return false;
1193 // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1194 if (DstVT == MVT::i64 && !IsSigned &&
1195 !PPCSubTarget->hasFPCVT() && !PPCSubTarget->hasSPE())
1196 return false;
1198 Value *Src = I->getOperand(0);
1199 Type *SrcTy = Src->getType();
1200 if (!isTypeLegal(SrcTy, SrcVT))
1201 return false;
1203 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1204 return false;
1206 unsigned SrcReg = getRegForValue(Src);
1207 if (SrcReg == 0)
1208 return false;
1210 // Convert f32 to f64 if necessary. This is just a meaningless copy
1211 // to get the register class right.
1212 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1213 if (InRC == &PPC::F4RCRegClass)
1214 SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
1216 // Determine the opcode for the conversion, which takes place
1217 // entirely within FPRs.
1218 unsigned DestReg;
1219 unsigned Opc;
1221 if (PPCSubTarget->hasSPE()) {
1222 DestReg = createResultReg(&PPC::GPRCRegClass);
1223 if (IsSigned)
1224 Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
1225 else
1226 Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
1227 } else {
1228 DestReg = createResultReg(&PPC::F8RCRegClass);
1229 if (DstVT == MVT::i32)
1230 if (IsSigned)
1231 Opc = PPC::FCTIWZ;
1232 else
1233 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1234 else
1235 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1238 // Generate the convert.
1239 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1240 .addReg(SrcReg);
1242 // Now move the integer value from a float register to an integer register.
1243 unsigned IntReg = PPCSubTarget->hasSPE() ? DestReg :
1244 PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1246 if (IntReg == 0)
1247 return false;
1249 updateValueMap(I, IntReg);
1250 return true;
1253 // Attempt to fast-select a binary integer operation that isn't already
1254 // handled automatically.
1255 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1256 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1258 // We can get here in the case when we have a binary operation on a non-legal
1259 // type and the target independent selector doesn't know how to handle it.
1260 if (DestVT != MVT::i16 && DestVT != MVT::i8)
1261 return false;
1263 // Look at the currently assigned register for this instruction
1264 // to determine the required register class. If there is no register,
1265 // make a conservative choice (don't assign R0).
1266 unsigned AssignedReg = FuncInfo.ValueMap[I];
1267 const TargetRegisterClass *RC =
1268 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1269 &PPC::GPRC_and_GPRC_NOR0RegClass);
1270 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1272 unsigned Opc;
1273 switch (ISDOpcode) {
1274 default: return false;
1275 case ISD::ADD:
1276 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1277 break;
1278 case ISD::OR:
1279 Opc = IsGPRC ? PPC::OR : PPC::OR8;
1280 break;
1281 case ISD::SUB:
1282 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1283 break;
1286 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1287 unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1288 if (SrcReg1 == 0) return false;
1290 // Handle case of small immediate operand.
1291 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1292 const APInt &CIVal = ConstInt->getValue();
1293 int Imm = (int)CIVal.getSExtValue();
1294 bool UseImm = true;
1295 if (isInt<16>(Imm)) {
1296 switch (Opc) {
1297 default:
1298 llvm_unreachable("Missing case!");
1299 case PPC::ADD4:
1300 Opc = PPC::ADDI;
1301 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1302 break;
1303 case PPC::ADD8:
1304 Opc = PPC::ADDI8;
1305 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1306 break;
1307 case PPC::OR:
1308 Opc = PPC::ORI;
1309 break;
1310 case PPC::OR8:
1311 Opc = PPC::ORI8;
1312 break;
1313 case PPC::SUBF:
1314 if (Imm == -32768)
1315 UseImm = false;
1316 else {
1317 Opc = PPC::ADDI;
1318 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1319 Imm = -Imm;
1321 break;
1322 case PPC::SUBF8:
1323 if (Imm == -32768)
1324 UseImm = false;
1325 else {
1326 Opc = PPC::ADDI8;
1327 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1328 Imm = -Imm;
1330 break;
1333 if (UseImm) {
1334 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1335 ResultReg)
1336 .addReg(SrcReg1)
1337 .addImm(Imm);
1338 updateValueMap(I, ResultReg);
1339 return true;
1344 // Reg-reg case.
1345 unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1346 if (SrcReg2 == 0) return false;
1348 // Reverse operands for subtract-from.
1349 if (ISDOpcode == ISD::SUB)
1350 std::swap(SrcReg1, SrcReg2);
1352 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1353 .addReg(SrcReg1).addReg(SrcReg2);
1354 updateValueMap(I, ResultReg);
1355 return true;
1358 // Handle arguments to a call that we're attempting to fast-select.
1359 // Return false if the arguments are too complex for us at the moment.
1360 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1361 SmallVectorImpl<unsigned> &ArgRegs,
1362 SmallVectorImpl<MVT> &ArgVTs,
1363 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1364 SmallVectorImpl<unsigned> &RegArgs,
1365 CallingConv::ID CC,
1366 unsigned &NumBytes,
1367 bool IsVarArg) {
1368 SmallVector<CCValAssign, 16> ArgLocs;
1369 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1371 // Reserve space for the linkage area on the stack.
1372 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize();
1373 CCInfo.AllocateStack(LinkageSize, 8);
1375 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1377 // Bail out if we can't handle any of the arguments.
1378 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1379 CCValAssign &VA = ArgLocs[I];
1380 MVT ArgVT = ArgVTs[VA.getValNo()];
1382 // Skip vector arguments for now, as well as long double and
1383 // uint128_t, and anything that isn't passed in a register.
1384 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1385 !VA.isRegLoc() || VA.needsCustom())
1386 return false;
1388 // Skip bit-converted arguments for now.
1389 if (VA.getLocInfo() == CCValAssign::BCvt)
1390 return false;
1393 // Get a count of how many bytes are to be pushed onto the stack.
1394 NumBytes = CCInfo.getNextStackOffset();
1396 // The prolog code of the callee may store up to 8 GPR argument registers to
1397 // the stack, allowing va_start to index over them in memory if its varargs.
1398 // Because we cannot tell if this is needed on the caller side, we have to
1399 // conservatively assume that it is needed. As such, make sure we have at
1400 // least enough stack space for the caller to store the 8 GPRs.
1401 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1402 NumBytes = std::max(NumBytes, LinkageSize + 64);
1404 // Issue CALLSEQ_START.
1405 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1406 TII.get(TII.getCallFrameSetupOpcode()))
1407 .addImm(NumBytes).addImm(0);
1409 // Prepare to assign register arguments. Every argument uses up a
1410 // GPR protocol register even if it's passed in a floating-point
1411 // register (unless we're using the fast calling convention).
1412 unsigned NextGPR = PPC::X3;
1413 unsigned NextFPR = PPC::F1;
1415 // Process arguments.
1416 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1417 CCValAssign &VA = ArgLocs[I];
1418 unsigned Arg = ArgRegs[VA.getValNo()];
1419 MVT ArgVT = ArgVTs[VA.getValNo()];
1421 // Handle argument promotion and bitcasts.
1422 switch (VA.getLocInfo()) {
1423 default:
1424 llvm_unreachable("Unknown loc info!");
1425 case CCValAssign::Full:
1426 break;
1427 case CCValAssign::SExt: {
1428 MVT DestVT = VA.getLocVT();
1429 const TargetRegisterClass *RC =
1430 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1431 unsigned TmpReg = createResultReg(RC);
1432 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1433 llvm_unreachable("Failed to emit a sext!");
1434 ArgVT = DestVT;
1435 Arg = TmpReg;
1436 break;
1438 case CCValAssign::AExt:
1439 case CCValAssign::ZExt: {
1440 MVT DestVT = VA.getLocVT();
1441 const TargetRegisterClass *RC =
1442 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1443 unsigned TmpReg = createResultReg(RC);
1444 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1445 llvm_unreachable("Failed to emit a zext!");
1446 ArgVT = DestVT;
1447 Arg = TmpReg;
1448 break;
1450 case CCValAssign::BCvt: {
1451 // FIXME: Not yet handled.
1452 llvm_unreachable("Should have bailed before getting here!");
1453 break;
1457 // Copy this argument to the appropriate register.
1458 unsigned ArgReg;
1459 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1460 ArgReg = NextFPR++;
1461 if (CC != CallingConv::Fast)
1462 ++NextGPR;
1463 } else
1464 ArgReg = NextGPR++;
1466 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1467 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1468 RegArgs.push_back(ArgReg);
1471 return true;
1474 // For a call that we've determined we can fast-select, finish the
1475 // call sequence and generate a copy to obtain the return value (if any).
1476 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1477 CallingConv::ID CC = CLI.CallConv;
1479 // Issue CallSEQ_END.
1480 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1481 TII.get(TII.getCallFrameDestroyOpcode()))
1482 .addImm(NumBytes).addImm(0);
1484 // Next, generate a copy to obtain the return value.
1485 // FIXME: No multi-register return values yet, though I don't foresee
1486 // any real difficulties there.
1487 if (RetVT != MVT::isVoid) {
1488 SmallVector<CCValAssign, 16> RVLocs;
1489 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1490 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1491 CCValAssign &VA = RVLocs[0];
1492 assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1493 assert(VA.isRegLoc() && "Can only return in registers!");
1495 MVT DestVT = VA.getValVT();
1496 MVT CopyVT = DestVT;
1498 // Ints smaller than a register still arrive in a full 64-bit
1499 // register, so make sure we recognize this.
1500 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1501 CopyVT = MVT::i64;
1503 unsigned SourcePhysReg = VA.getLocReg();
1504 unsigned ResultReg = 0;
1506 if (RetVT == CopyVT) {
1507 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1508 ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg);
1510 // If necessary, round the floating result to single precision.
1511 } else if (CopyVT == MVT::f64) {
1512 ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1513 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1514 ResultReg).addReg(SourcePhysReg);
1516 // If only the low half of a general register is needed, generate
1517 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be
1518 // used along the fast-isel path (not lowered), and downstream logic
1519 // also doesn't like a direct subreg copy on a physical reg.)
1520 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1521 // Convert physical register from G8RC to GPRC.
1522 SourcePhysReg -= PPC::X0 - PPC::R0;
1523 ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg);
1526 assert(ResultReg && "ResultReg unset!");
1527 CLI.InRegs.push_back(SourcePhysReg);
1528 CLI.ResultReg = ResultReg;
1529 CLI.NumResultRegs = 1;
1532 return true;
1535 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1536 CallingConv::ID CC = CLI.CallConv;
1537 bool IsTailCall = CLI.IsTailCall;
1538 bool IsVarArg = CLI.IsVarArg;
1539 const Value *Callee = CLI.Callee;
1540 const MCSymbol *Symbol = CLI.Symbol;
1542 if (!Callee && !Symbol)
1543 return false;
1545 // Allow SelectionDAG isel to handle tail calls.
1546 if (IsTailCall)
1547 return false;
1549 // Let SDISel handle vararg functions.
1550 if (IsVarArg)
1551 return false;
1553 // Handle simple calls for now, with legal return types and
1554 // those that can be extended.
1555 Type *RetTy = CLI.RetTy;
1556 MVT RetVT;
1557 if (RetTy->isVoidTy())
1558 RetVT = MVT::isVoid;
1559 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1560 RetVT != MVT::i8)
1561 return false;
1562 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits())
1563 // We can't handle boolean returns when CR bits are in use.
1564 return false;
1566 // FIXME: No multi-register return values yet.
1567 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1568 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1569 RetVT != MVT::f64) {
1570 SmallVector<CCValAssign, 16> RVLocs;
1571 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1572 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1573 if (RVLocs.size() > 1)
1574 return false;
1577 // Bail early if more than 8 arguments, as we only currently
1578 // handle arguments passed in registers.
1579 unsigned NumArgs = CLI.OutVals.size();
1580 if (NumArgs > 8)
1581 return false;
1583 // Set up the argument vectors.
1584 SmallVector<Value*, 8> Args;
1585 SmallVector<unsigned, 8> ArgRegs;
1586 SmallVector<MVT, 8> ArgVTs;
1587 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1589 Args.reserve(NumArgs);
1590 ArgRegs.reserve(NumArgs);
1591 ArgVTs.reserve(NumArgs);
1592 ArgFlags.reserve(NumArgs);
1594 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1595 // Only handle easy calls for now. It would be reasonably easy
1596 // to handle <= 8-byte structures passed ByVal in registers, but we
1597 // have to ensure they are right-justified in the register.
1598 ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1599 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1600 return false;
1602 Value *ArgValue = CLI.OutVals[i];
1603 Type *ArgTy = ArgValue->getType();
1604 MVT ArgVT;
1605 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1606 return false;
1608 if (ArgVT.isVector())
1609 return false;
1611 unsigned Arg = getRegForValue(ArgValue);
1612 if (Arg == 0)
1613 return false;
1615 Args.push_back(ArgValue);
1616 ArgRegs.push_back(Arg);
1617 ArgVTs.push_back(ArgVT);
1618 ArgFlags.push_back(Flags);
1621 // Process the arguments.
1622 SmallVector<unsigned, 8> RegArgs;
1623 unsigned NumBytes;
1625 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1626 RegArgs, CC, NumBytes, IsVarArg))
1627 return false;
1629 MachineInstrBuilder MIB;
1630 // FIXME: No handling for function pointers yet. This requires
1631 // implementing the function descriptor (OPD) setup.
1632 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1633 if (!GV) {
1634 // patchpoints are a special case; they always dispatch to a pointer value.
1635 // However, we don't actually want to generate the indirect call sequence
1636 // here (that will be generated, as necessary, during asm printing), and
1637 // the call we generate here will be erased by FastISel::selectPatchpoint,
1638 // so don't try very hard...
1639 if (CLI.IsPatchPoint)
1640 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1641 else
1642 return false;
1643 } else {
1644 // Build direct call with NOP for TOC restore.
1645 // FIXME: We can and should optimize away the NOP for local calls.
1646 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1647 TII.get(PPC::BL8_NOP));
1648 // Add callee.
1649 MIB.addGlobalAddress(GV);
1652 // Add implicit physical register uses to the call.
1653 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1654 MIB.addReg(RegArgs[II], RegState::Implicit);
1656 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1657 // into the call.
1658 PPCFuncInfo->setUsesTOCBasePtr();
1659 MIB.addReg(PPC::X2, RegState::Implicit);
1661 // Add a register mask with the call-preserved registers. Proper
1662 // defs for return values will be added by setPhysRegsDeadExcept().
1663 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1665 CLI.Call = MIB;
1667 // Finish off the call including any return values.
1668 return finishCall(RetVT, CLI, NumBytes);
1671 // Attempt to fast-select a return instruction.
1672 bool PPCFastISel::SelectRet(const Instruction *I) {
1674 if (!FuncInfo.CanLowerReturn)
1675 return false;
1677 if (TLI.supportSplitCSR(FuncInfo.MF))
1678 return false;
1680 const ReturnInst *Ret = cast<ReturnInst>(I);
1681 const Function &F = *I->getParent()->getParent();
1683 // Build a list of return value registers.
1684 SmallVector<unsigned, 4> RetRegs;
1685 CallingConv::ID CC = F.getCallingConv();
1687 if (Ret->getNumOperands() > 0) {
1688 SmallVector<ISD::OutputArg, 4> Outs;
1689 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1691 // Analyze operands of the call, assigning locations to each operand.
1692 SmallVector<CCValAssign, 16> ValLocs;
1693 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1694 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1695 const Value *RV = Ret->getOperand(0);
1697 // FIXME: Only one output register for now.
1698 if (ValLocs.size() > 1)
1699 return false;
1701 // Special case for returning a constant integer of any size - materialize
1702 // the constant as an i64 and copy it to the return register.
1703 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1704 CCValAssign &VA = ValLocs[0];
1706 unsigned RetReg = VA.getLocReg();
1707 // We still need to worry about properly extending the sign. For example,
1708 // we could have only a single bit or a constant that needs zero
1709 // extension rather than sign extension. Make sure we pass the return
1710 // value extension property to integer materialization.
1711 unsigned SrcReg =
1712 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1714 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1715 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1717 RetRegs.push_back(RetReg);
1719 } else {
1720 unsigned Reg = getRegForValue(RV);
1722 if (Reg == 0)
1723 return false;
1725 // Copy the result values into the output registers.
1726 for (unsigned i = 0; i < ValLocs.size(); ++i) {
1728 CCValAssign &VA = ValLocs[i];
1729 assert(VA.isRegLoc() && "Can only return in registers!");
1730 RetRegs.push_back(VA.getLocReg());
1731 unsigned SrcReg = Reg + VA.getValNo();
1733 EVT RVEVT = TLI.getValueType(DL, RV->getType());
1734 if (!RVEVT.isSimple())
1735 return false;
1736 MVT RVVT = RVEVT.getSimpleVT();
1737 MVT DestVT = VA.getLocVT();
1739 if (RVVT != DestVT && RVVT != MVT::i8 &&
1740 RVVT != MVT::i16 && RVVT != MVT::i32)
1741 return false;
1743 if (RVVT != DestVT) {
1744 switch (VA.getLocInfo()) {
1745 default:
1746 llvm_unreachable("Unknown loc info!");
1747 case CCValAssign::Full:
1748 llvm_unreachable("Full value assign but types don't match?");
1749 case CCValAssign::AExt:
1750 case CCValAssign::ZExt: {
1751 const TargetRegisterClass *RC =
1752 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1753 unsigned TmpReg = createResultReg(RC);
1754 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1755 return false;
1756 SrcReg = TmpReg;
1757 break;
1759 case CCValAssign::SExt: {
1760 const TargetRegisterClass *RC =
1761 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1762 unsigned TmpReg = createResultReg(RC);
1763 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1764 return false;
1765 SrcReg = TmpReg;
1766 break;
1771 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1772 TII.get(TargetOpcode::COPY), RetRegs[i])
1773 .addReg(SrcReg);
1778 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1779 TII.get(PPC::BLR8));
1781 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1782 MIB.addReg(RetRegs[i], RegState::Implicit);
1784 return true;
1787 // Attempt to emit an integer extend of SrcReg into DestReg. Both
1788 // signed and zero extensions are supported. Return false if we
1789 // can't handle it.
1790 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1791 unsigned DestReg, bool IsZExt) {
1792 if (DestVT != MVT::i32 && DestVT != MVT::i64)
1793 return false;
1794 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1795 return false;
1797 // Signed extensions use EXTSB, EXTSH, EXTSW.
1798 if (!IsZExt) {
1799 unsigned Opc;
1800 if (SrcVT == MVT::i8)
1801 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1802 else if (SrcVT == MVT::i16)
1803 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1804 else {
1805 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1806 Opc = PPC::EXTSW_32_64;
1808 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1809 .addReg(SrcReg);
1811 // Unsigned 32-bit extensions use RLWINM.
1812 } else if (DestVT == MVT::i32) {
1813 unsigned MB;
1814 if (SrcVT == MVT::i8)
1815 MB = 24;
1816 else {
1817 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1818 MB = 16;
1820 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1821 DestReg)
1822 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1824 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1825 } else {
1826 unsigned MB;
1827 if (SrcVT == MVT::i8)
1828 MB = 56;
1829 else if (SrcVT == MVT::i16)
1830 MB = 48;
1831 else
1832 MB = 32;
1833 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1834 TII.get(PPC::RLDICL_32_64), DestReg)
1835 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1838 return true;
1841 // Attempt to fast-select an indirect branch instruction.
1842 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1843 unsigned AddrReg = getRegForValue(I->getOperand(0));
1844 if (AddrReg == 0)
1845 return false;
1847 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1848 .addReg(AddrReg);
1849 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1851 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1852 for (const BasicBlock *SuccBB : IB->successors())
1853 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1855 return true;
1858 // Attempt to fast-select an integer truncate instruction.
1859 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1860 Value *Src = I->getOperand(0);
1861 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1862 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1864 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1865 return false;
1867 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1868 return false;
1870 unsigned SrcReg = getRegForValue(Src);
1871 if (!SrcReg)
1872 return false;
1874 // The only interesting case is when we need to switch register classes.
1875 if (SrcVT == MVT::i64)
1876 SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32);
1878 updateValueMap(I, SrcReg);
1879 return true;
1882 // Attempt to fast-select an integer extend instruction.
1883 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1884 Type *DestTy = I->getType();
1885 Value *Src = I->getOperand(0);
1886 Type *SrcTy = Src->getType();
1888 bool IsZExt = isa<ZExtInst>(I);
1889 unsigned SrcReg = getRegForValue(Src);
1890 if (!SrcReg) return false;
1892 EVT SrcEVT, DestEVT;
1893 SrcEVT = TLI.getValueType(DL, SrcTy, true);
1894 DestEVT = TLI.getValueType(DL, DestTy, true);
1895 if (!SrcEVT.isSimple())
1896 return false;
1897 if (!DestEVT.isSimple())
1898 return false;
1900 MVT SrcVT = SrcEVT.getSimpleVT();
1901 MVT DestVT = DestEVT.getSimpleVT();
1903 // If we know the register class needed for the result of this
1904 // instruction, use it. Otherwise pick the register class of the
1905 // correct size that does not contain X0/R0, since we don't know
1906 // whether downstream uses permit that assignment.
1907 unsigned AssignedReg = FuncInfo.ValueMap[I];
1908 const TargetRegisterClass *RC =
1909 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1910 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1911 &PPC::GPRC_and_GPRC_NOR0RegClass));
1912 unsigned ResultReg = createResultReg(RC);
1914 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1915 return false;
1917 updateValueMap(I, ResultReg);
1918 return true;
1921 // Attempt to fast-select an instruction that wasn't handled by
1922 // the table-generated machinery.
1923 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1925 switch (I->getOpcode()) {
1926 case Instruction::Load:
1927 return SelectLoad(I);
1928 case Instruction::Store:
1929 return SelectStore(I);
1930 case Instruction::Br:
1931 return SelectBranch(I);
1932 case Instruction::IndirectBr:
1933 return SelectIndirectBr(I);
1934 case Instruction::FPExt:
1935 return SelectFPExt(I);
1936 case Instruction::FPTrunc:
1937 return SelectFPTrunc(I);
1938 case Instruction::SIToFP:
1939 return SelectIToFP(I, /*IsSigned*/ true);
1940 case Instruction::UIToFP:
1941 return SelectIToFP(I, /*IsSigned*/ false);
1942 case Instruction::FPToSI:
1943 return SelectFPToI(I, /*IsSigned*/ true);
1944 case Instruction::FPToUI:
1945 return SelectFPToI(I, /*IsSigned*/ false);
1946 case Instruction::Add:
1947 return SelectBinaryIntOp(I, ISD::ADD);
1948 case Instruction::Or:
1949 return SelectBinaryIntOp(I, ISD::OR);
1950 case Instruction::Sub:
1951 return SelectBinaryIntOp(I, ISD::SUB);
1952 case Instruction::Call:
1953 return selectCall(I);
1954 case Instruction::Ret:
1955 return SelectRet(I);
1956 case Instruction::Trunc:
1957 return SelectTrunc(I);
1958 case Instruction::ZExt:
1959 case Instruction::SExt:
1960 return SelectIntExt(I);
1961 // Here add other flavors of Instruction::XXX that automated
1962 // cases don't catch. For example, switches are terminators
1963 // that aren't yet handled.
1964 default:
1965 break;
1967 return false;
1970 // Materialize a floating-point constant into a register, and return
1971 // the register number (or zero if we failed to handle it).
1972 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1973 // No plans to handle long double here.
1974 if (VT != MVT::f32 && VT != MVT::f64)
1975 return 0;
1977 // All FP constants are loaded from the constant pool.
1978 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
1979 assert(Align > 0 && "Unexpectedly missing alignment information!");
1980 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1981 const bool HasSPE = PPCSubTarget->hasSPE();
1982 const TargetRegisterClass *RC;
1983 if (HasSPE)
1984 RC = ((VT == MVT::f32) ? &PPC::SPE4RCRegClass : &PPC::SPERCRegClass);
1985 else
1986 RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);
1988 unsigned DestReg = createResultReg(RC);
1989 CodeModel::Model CModel = TM.getCodeModel();
1991 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1992 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
1993 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align);
1995 unsigned Opc;
1997 if (HasSPE)
1998 Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
1999 else
2000 Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);
2002 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2004 PPCFuncInfo->setUsesTOCBasePtr();
2005 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2006 if (CModel == CodeModel::Small) {
2007 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
2008 TmpReg)
2009 .addConstantPoolIndex(Idx).addReg(PPC::X2);
2010 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2011 .addImm(0).addReg(TmpReg).addMemOperand(MMO);
2012 } else {
2013 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
2014 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
2015 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
2016 // But for large code model, we must generate a LDtocL followed
2017 // by the LF[SD].
2018 if (CModel == CodeModel::Large) {
2019 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2020 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2021 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
2022 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2023 .addImm(0)
2024 .addReg(TmpReg2);
2025 } else
2026 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2027 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
2028 .addReg(TmpReg)
2029 .addMemOperand(MMO);
2032 return DestReg;
2035 // Materialize the address of a global value into a register, and return
2036 // the register number (or zero if we failed to handle it).
2037 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
2038 assert(VT == MVT::i64 && "Non-address!");
2039 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
2040 unsigned DestReg = createResultReg(RC);
2042 // Global values may be plain old object addresses, TLS object
2043 // addresses, constant pool entries, or jump tables. How we generate
2044 // code for these may depend on small, medium, or large code model.
2045 CodeModel::Model CModel = TM.getCodeModel();
2047 // FIXME: Jump tables are not yet required because fast-isel doesn't
2048 // handle switches; if that changes, we need them as well. For now,
2049 // what follows assumes everything's a generic (or TLS) global address.
2051 // FIXME: We don't yet handle the complexity of TLS.
2052 if (GV->isThreadLocal())
2053 return 0;
2055 PPCFuncInfo->setUsesTOCBasePtr();
2056 // For small code model, generate a simple TOC load.
2057 if (CModel == CodeModel::Small)
2058 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
2059 DestReg)
2060 .addGlobalAddress(GV)
2061 .addReg(PPC::X2);
2062 else {
2063 // If the address is an externally defined symbol, a symbol with common
2064 // or externally available linkage, a non-local function address, or a
2065 // jump table address (not yet needed), or if we are generating code
2066 // for large code model, we generate:
2067 // LDtocL(GV, ADDIStocHA(%x2, GV))
2068 // Otherwise we generate:
2069 // ADDItocL(ADDIStocHA(%x2, GV), GV)
2070 // Either way, start with the ADDIStocHA:
2071 unsigned HighPartReg = createResultReg(RC);
2072 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
2073 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2075 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
2076 if (GVFlags & PPCII::MO_NLP_FLAG) {
2077 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2078 DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2079 } else {
2080 // Otherwise generate the ADDItocL.
2081 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
2082 DestReg).addReg(HighPartReg).addGlobalAddress(GV);
2086 return DestReg;
2089 // Materialize a 32-bit integer constant into a register, and return
2090 // the register number (or zero if we failed to handle it).
2091 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2092 const TargetRegisterClass *RC) {
2093 unsigned Lo = Imm & 0xFFFF;
2094 unsigned Hi = (Imm >> 16) & 0xFFFF;
2096 unsigned ResultReg = createResultReg(RC);
2097 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2099 if (isInt<16>(Imm))
2100 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2101 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2102 .addImm(Imm);
2103 else if (Lo) {
2104 // Both Lo and Hi have nonzero bits.
2105 unsigned TmpReg = createResultReg(RC);
2106 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2107 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2108 .addImm(Hi);
2109 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2110 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2111 .addReg(TmpReg).addImm(Lo);
2112 } else
2113 // Just Hi bits.
2114 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2115 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2116 .addImm(Hi);
2118 return ResultReg;
2121 // Materialize a 64-bit integer constant into a register, and return
2122 // the register number (or zero if we failed to handle it).
2123 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2124 const TargetRegisterClass *RC) {
2125 unsigned Remainder = 0;
2126 unsigned Shift = 0;
2128 // If the value doesn't fit in 32 bits, see if we can shift it
2129 // so that it fits in 32 bits.
2130 if (!isInt<32>(Imm)) {
2131 Shift = countTrailingZeros<uint64_t>(Imm);
2132 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2134 if (isInt<32>(ImmSh))
2135 Imm = ImmSh;
2136 else {
2137 Remainder = Imm;
2138 Shift = 32;
2139 Imm >>= 32;
2143 // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2144 // (if not shifted).
2145 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2146 if (!Shift)
2147 return TmpReg1;
2149 // If upper 32 bits were not zero, we've built them and need to shift
2150 // them into place.
2151 unsigned TmpReg2;
2152 if (Imm) {
2153 TmpReg2 = createResultReg(RC);
2154 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2155 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2156 } else
2157 TmpReg2 = TmpReg1;
2159 unsigned TmpReg3, Hi, Lo;
2160 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2161 TmpReg3 = createResultReg(RC);
2162 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2163 TmpReg3).addReg(TmpReg2).addImm(Hi);
2164 } else
2165 TmpReg3 = TmpReg2;
2167 if ((Lo = Remainder & 0xFFFF)) {
2168 unsigned ResultReg = createResultReg(RC);
2169 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2170 ResultReg).addReg(TmpReg3).addImm(Lo);
2171 return ResultReg;
2174 return TmpReg3;
2177 // Materialize an integer constant into a register, and return
2178 // the register number (or zero if we failed to handle it).
2179 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2180 bool UseSExt) {
2181 // If we're using CR bit registers for i1 values, handle that as a special
2182 // case first.
2183 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2184 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2185 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2186 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2187 return ImmReg;
2190 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2191 VT != MVT::i1)
2192 return 0;
2194 const TargetRegisterClass *RC =
2195 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2196 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2198 // If the constant is in range, use a load-immediate.
2199 // Since LI will sign extend the constant we need to make sure that for
2200 // our zeroext constants that the sign extended constant fits into 16-bits -
2201 // a range of 0..0x7fff.
2202 if (isInt<16>(Imm)) {
2203 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2204 unsigned ImmReg = createResultReg(RC);
2205 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2206 .addImm(Imm);
2207 return ImmReg;
2210 // Construct the constant piecewise.
2211 if (VT == MVT::i64)
2212 return PPCMaterialize64BitInt(Imm, RC);
2213 else if (VT == MVT::i32)
2214 return PPCMaterialize32BitInt(Imm, RC);
2216 return 0;
2219 // Materialize a constant into a register, and return the register
2220 // number (or zero if we failed to handle it).
2221 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2222 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2224 // Only handle simple types.
2225 if (!CEVT.isSimple()) return 0;
2226 MVT VT = CEVT.getSimpleVT();
2228 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2229 return PPCMaterializeFP(CFP, VT);
2230 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2231 return PPCMaterializeGV(GV, VT);
2232 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2233 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2234 // assumes that constant PHI operands will be zero extended, and failure to
2235 // match that assumption will cause problems if we sign extend here but
2236 // some user of a PHI is in a block for which we fall back to full SDAG
2237 // instruction selection.
2238 return PPCMaterializeInt(CI, VT, false);
2240 return 0;
2243 // Materialize the address created by an alloca into a register, and
2244 // return the register number (or zero if we failed to handle it).
2245 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2246 // Don't handle dynamic allocas.
2247 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2249 MVT VT;
2250 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2252 DenseMap<const AllocaInst*, int>::iterator SI =
2253 FuncInfo.StaticAllocaMap.find(AI);
2255 if (SI != FuncInfo.StaticAllocaMap.end()) {
2256 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2257 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2258 ResultReg).addFrameIndex(SI->second).addImm(0);
2259 return ResultReg;
2262 return 0;
2265 // Fold loads into extends when possible.
2266 // FIXME: We can have multiple redundant extend/trunc instructions
2267 // following a load. The folding only picks up one. Extend this
2268 // to check subsequent instructions for the same pattern and remove
2269 // them. Thus ResultReg should be the def reg for the last redundant
2270 // instruction in a chain, and all intervening instructions can be
2271 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
2272 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2273 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2274 const LoadInst *LI) {
2275 // Verify we have a legal type before going any further.
2276 MVT VT;
2277 if (!isLoadTypeLegal(LI->getType(), VT))
2278 return false;
2280 // Combine load followed by zero- or sign-extend.
2281 bool IsZExt = false;
2282 switch(MI->getOpcode()) {
2283 default:
2284 return false;
2286 case PPC::RLDICL:
2287 case PPC::RLDICL_32_64: {
2288 IsZExt = true;
2289 unsigned MB = MI->getOperand(3).getImm();
2290 if ((VT == MVT::i8 && MB <= 56) ||
2291 (VT == MVT::i16 && MB <= 48) ||
2292 (VT == MVT::i32 && MB <= 32))
2293 break;
2294 return false;
2297 case PPC::RLWINM:
2298 case PPC::RLWINM8: {
2299 IsZExt = true;
2300 unsigned MB = MI->getOperand(3).getImm();
2301 if ((VT == MVT::i8 && MB <= 24) ||
2302 (VT == MVT::i16 && MB <= 16))
2303 break;
2304 return false;
2307 case PPC::EXTSB:
2308 case PPC::EXTSB8:
2309 case PPC::EXTSB8_32_64:
2310 /* There is no sign-extending load-byte instruction. */
2311 return false;
2313 case PPC::EXTSH:
2314 case PPC::EXTSH8:
2315 case PPC::EXTSH8_32_64: {
2316 if (VT != MVT::i16 && VT != MVT::i8)
2317 return false;
2318 break;
2321 case PPC::EXTSW:
2322 case PPC::EXTSW_32:
2323 case PPC::EXTSW_32_64: {
2324 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2325 return false;
2326 break;
2330 // See if we can handle this address.
2331 Address Addr;
2332 if (!PPCComputeAddress(LI->getOperand(0), Addr))
2333 return false;
2335 unsigned ResultReg = MI->getOperand(0).getReg();
2337 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
2338 PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
2339 return false;
2341 MachineBasicBlock::iterator I(MI);
2342 removeDeadCode(I, std::next(I));
2343 return true;
2346 // Attempt to lower call arguments in a faster way than done by
2347 // the selection DAG code.
2348 bool PPCFastISel::fastLowerArguments() {
2349 // Defer to normal argument lowering for now. It's reasonably
2350 // efficient. Consider doing something like ARM to handle the
2351 // case where all args fit in registers, no varargs, no float
2352 // or vector args.
2353 return false;
2356 // Handle materializing integer constants into a register. This is not
2357 // automatically generated for PowerPC, so must be explicitly created here.
2358 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2360 if (Opc != ISD::Constant)
2361 return 0;
2363 // If we're using CR bit registers for i1 values, handle that as a special
2364 // case first.
2365 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2366 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2367 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2368 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2369 return ImmReg;
2372 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2373 VT != MVT::i1)
2374 return 0;
2376 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2377 &PPC::GPRCRegClass);
2378 if (VT == MVT::i64)
2379 return PPCMaterialize64BitInt(Imm, RC);
2380 else
2381 return PPCMaterialize32BitInt(Imm, RC);
2384 // Override for ADDI and ADDI8 to set the correct register class
2385 // on RHS operand 0. The automatic infrastructure naively assumes
2386 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2387 // for these cases. At the moment, none of the other automatically
2388 // generated RI instructions require special treatment. However, once
2389 // SelectSelect is implemented, "isel" requires similar handling.
2391 // Also be conservative about the output register class. Avoid
2392 // assigning R0 or X0 to the output register for GPRC and G8RC
2393 // register classes, as any such result could be used in ADDI, etc.,
2394 // where those regs have another meaning.
2395 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2396 const TargetRegisterClass *RC,
2397 unsigned Op0, bool Op0IsKill,
2398 uint64_t Imm) {
2399 if (MachineInstOpcode == PPC::ADDI)
2400 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2401 else if (MachineInstOpcode == PPC::ADDI8)
2402 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2404 const TargetRegisterClass *UseRC =
2405 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2406 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2408 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
2409 Op0, Op0IsKill, Imm);
2412 // Override for instructions with one register operand to avoid use of
2413 // R0/X0. The automatic infrastructure isn't aware of the context so
2414 // we must be conservative.
2415 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2416 const TargetRegisterClass* RC,
2417 unsigned Op0, bool Op0IsKill) {
2418 const TargetRegisterClass *UseRC =
2419 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2420 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2422 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2425 // Override for instructions with two register operands to avoid use
2426 // of R0/X0. The automatic infrastructure isn't aware of the context
2427 // so we must be conservative.
2428 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2429 const TargetRegisterClass* RC,
2430 unsigned Op0, bool Op0IsKill,
2431 unsigned Op1, bool Op1IsKill) {
2432 const TargetRegisterClass *UseRC =
2433 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2434 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2436 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2437 Op1, Op1IsKill);
2440 namespace llvm {
2441 // Create the fast instruction selector for PowerPC64 ELF.
2442 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2443 const TargetLibraryInfo *LibInfo) {
2444 // Only available on 64-bit ELF for now.
2445 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2446 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI())
2447 return new PPCFastISel(FuncInfo, LibInfo);
2448 return nullptr;