Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / PowerPC / PPCISelLowering.cpp
blobc271ed95dd6a9d6f51de26981523e5e21410207e
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineOperand.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/CodeGen/RuntimeLibcalls.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGNodes.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetLowering.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/CallingConv.h"
58 #include "llvm/IR/Constant.h"
59 #include "llvm/IR/Constants.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/DebugLoc.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/GlobalValue.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/Intrinsics.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/MC/MCExpr.h"
73 #include "llvm/MC/MCRegisterInfo.h"
74 #include "llvm/Support/AtomicOrdering.h"
75 #include "llvm/Support/BranchProbability.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CodeGen.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/Format.h"
83 #include "llvm/Support/KnownBits.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <cstdint>
92 #include <iterator>
93 #include <list>
94 #include <utility>
95 #include <vector>
97 using namespace llvm;
99 #define DEBUG_TYPE "ppc-lowering"
101 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
102 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
104 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
105 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
107 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
108 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
110 static cl::opt<bool> DisableSCO("disable-ppc-sco",
111 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
113 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
114 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
116 STATISTIC(NumTailCalls, "Number of tail calls");
117 STATISTIC(NumSiblingCalls, "Number of sibling calls");
119 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
121 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
123 // FIXME: Remove this once the bug has been fixed!
124 extern cl::opt<bool> ANDIGlueBug;
126 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
127 const PPCSubtarget &STI)
128 : TargetLowering(TM), Subtarget(STI) {
129 // Use _setjmp/_longjmp instead of setjmp/longjmp.
130 setUseUnderscoreSetJmp(true);
131 setUseUnderscoreLongJmp(true);
133 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
134 // arguments are at least 4/8 bytes aligned.
135 bool isPPC64 = Subtarget.isPPC64();
136 setMinStackArgumentAlignment(isPPC64 ? 8:4);
138 // Set up the register classes.
139 addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
140 if (!useSoftFloat()) {
141 if (hasSPE()) {
142 addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
143 addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
144 } else {
145 addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
146 addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
150 // Match BITREVERSE to customized fast code sequence in the td file.
151 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
152 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
154 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
155 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
157 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
158 for (MVT VT : MVT::integer_valuetypes()) {
159 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
160 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
163 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
165 // PowerPC has pre-inc load and store's.
166 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
167 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
168 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
169 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
170 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
171 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
172 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
173 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
174 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
175 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
176 if (!Subtarget.hasSPE()) {
177 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
178 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
179 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
180 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
183 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
184 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
185 for (MVT VT : ScalarIntVTs) {
186 setOperationAction(ISD::ADDC, VT, Legal);
187 setOperationAction(ISD::ADDE, VT, Legal);
188 setOperationAction(ISD::SUBC, VT, Legal);
189 setOperationAction(ISD::SUBE, VT, Legal);
192 if (Subtarget.useCRBits()) {
193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
195 if (isPPC64 || Subtarget.hasFPCVT()) {
196 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
197 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
198 isPPC64 ? MVT::i64 : MVT::i32);
199 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
200 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
201 isPPC64 ? MVT::i64 : MVT::i32);
202 } else {
203 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
204 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
207 // PowerPC does not support direct load/store of condition registers.
208 setOperationAction(ISD::LOAD, MVT::i1, Custom);
209 setOperationAction(ISD::STORE, MVT::i1, Custom);
211 // FIXME: Remove this once the ANDI glue bug is fixed:
212 if (ANDIGlueBug)
213 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
215 for (MVT VT : MVT::integer_valuetypes()) {
216 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
217 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
218 setTruncStoreAction(VT, MVT::i1, Expand);
221 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
224 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
225 // PPC (the libcall is not available).
226 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
227 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
229 // We do not currently implement these libm ops for PowerPC.
230 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
231 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand);
232 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
233 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand);
234 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
235 setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
237 // PowerPC has no SREM/UREM instructions unless we are on P9
238 // On P9 we may use a hardware instruction to compute the remainder.
239 // The instructions are not legalized directly because in the cases where the
240 // result of both the remainder and the division is required it is more
241 // efficient to compute the remainder from the result of the division rather
242 // than use the remainder instruction.
243 if (Subtarget.isISA3_0()) {
244 setOperationAction(ISD::SREM, MVT::i32, Custom);
245 setOperationAction(ISD::UREM, MVT::i32, Custom);
246 setOperationAction(ISD::SREM, MVT::i64, Custom);
247 setOperationAction(ISD::UREM, MVT::i64, Custom);
248 } else {
249 setOperationAction(ISD::SREM, MVT::i32, Expand);
250 setOperationAction(ISD::UREM, MVT::i32, Expand);
251 setOperationAction(ISD::SREM, MVT::i64, Expand);
252 setOperationAction(ISD::UREM, MVT::i64, Expand);
255 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
256 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
257 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
258 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
259 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
260 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
261 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
262 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
263 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
265 // We don't support sin/cos/sqrt/fmod/pow
266 setOperationAction(ISD::FSIN , MVT::f64, Expand);
267 setOperationAction(ISD::FCOS , MVT::f64, Expand);
268 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
269 setOperationAction(ISD::FREM , MVT::f64, Expand);
270 setOperationAction(ISD::FPOW , MVT::f64, Expand);
271 setOperationAction(ISD::FSIN , MVT::f32, Expand);
272 setOperationAction(ISD::FCOS , MVT::f32, Expand);
273 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
274 setOperationAction(ISD::FREM , MVT::f32, Expand);
275 setOperationAction(ISD::FPOW , MVT::f32, Expand);
276 if (Subtarget.hasSPE()) {
277 setOperationAction(ISD::FMA , MVT::f64, Expand);
278 setOperationAction(ISD::FMA , MVT::f32, Expand);
279 } else {
280 setOperationAction(ISD::FMA , MVT::f64, Legal);
281 setOperationAction(ISD::FMA , MVT::f32, Legal);
284 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
286 // If we're enabling GP optimizations, use hardware square root
287 if (!Subtarget.hasFSQRT() &&
288 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
289 Subtarget.hasFRE()))
290 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
292 if (!Subtarget.hasFSQRT() &&
293 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
294 Subtarget.hasFRES()))
295 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
297 if (Subtarget.hasFCPSGN()) {
298 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
299 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
300 } else {
301 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
302 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
305 if (Subtarget.hasFPRND()) {
306 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
307 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
308 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
309 setOperationAction(ISD::FROUND, MVT::f64, Legal);
311 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
312 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
313 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
314 setOperationAction(ISD::FROUND, MVT::f32, Legal);
317 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
318 // to speed up scalar BSWAP64.
319 // CTPOP or CTTZ were introduced in P8/P9 respectively
320 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
321 if (Subtarget.hasP9Vector())
322 setOperationAction(ISD::BSWAP, MVT::i64 , Custom);
323 else
324 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
325 if (Subtarget.isISA3_0()) {
326 setOperationAction(ISD::CTTZ , MVT::i32 , Legal);
327 setOperationAction(ISD::CTTZ , MVT::i64 , Legal);
328 } else {
329 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
330 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
333 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
334 setOperationAction(ISD::CTPOP, MVT::i32 , Legal);
335 setOperationAction(ISD::CTPOP, MVT::i64 , Legal);
336 } else {
337 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
338 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
341 // PowerPC does not have ROTR
342 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
343 setOperationAction(ISD::ROTR, MVT::i64 , Expand);
345 if (!Subtarget.useCRBits()) {
346 // PowerPC does not have Select
347 setOperationAction(ISD::SELECT, MVT::i32, Expand);
348 setOperationAction(ISD::SELECT, MVT::i64, Expand);
349 setOperationAction(ISD::SELECT, MVT::f32, Expand);
350 setOperationAction(ISD::SELECT, MVT::f64, Expand);
353 // PowerPC wants to turn select_cc of FP into fsel when possible.
354 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
355 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
357 // PowerPC wants to optimize integer setcc a bit
358 if (!Subtarget.useCRBits())
359 setOperationAction(ISD::SETCC, MVT::i32, Custom);
361 // PowerPC does not have BRCOND which requires SetCC
362 if (!Subtarget.useCRBits())
363 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
365 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
367 if (Subtarget.hasSPE()) {
368 // SPE has built-in conversions
369 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
370 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
371 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
372 } else {
373 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
374 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
376 // PowerPC does not have [U|S]INT_TO_FP
377 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
378 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
381 if (Subtarget.hasDirectMove() && isPPC64) {
382 setOperationAction(ISD::BITCAST, MVT::f32, Legal);
383 setOperationAction(ISD::BITCAST, MVT::i32, Legal);
384 setOperationAction(ISD::BITCAST, MVT::i64, Legal);
385 setOperationAction(ISD::BITCAST, MVT::f64, Legal);
386 } else {
387 setOperationAction(ISD::BITCAST, MVT::f32, Expand);
388 setOperationAction(ISD::BITCAST, MVT::i32, Expand);
389 setOperationAction(ISD::BITCAST, MVT::i64, Expand);
390 setOperationAction(ISD::BITCAST, MVT::f64, Expand);
393 // We cannot sextinreg(i1). Expand to shifts.
394 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
396 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
397 // SjLj exception handling but a light-weight setjmp/longjmp replacement to
398 // support continuation, user-level threading, and etc.. As a result, no
399 // other SjLj exception interfaces are implemented and please don't build
400 // your own exception handling based on them.
401 // LLVM/Clang supports zero-cost DWARF exception handling.
402 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
403 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
405 // We want to legalize GlobalAddress and ConstantPool nodes into the
406 // appropriate instructions to materialize the address.
407 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
408 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
409 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
410 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
411 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
412 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
413 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
414 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
415 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
416 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
418 // TRAP is legal.
419 setOperationAction(ISD::TRAP, MVT::Other, Legal);
421 // TRAMPOLINE is custom lowered.
422 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
423 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
425 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
426 setOperationAction(ISD::VASTART , MVT::Other, Custom);
428 if (Subtarget.isSVR4ABI()) {
429 if (isPPC64) {
430 // VAARG always uses double-word chunks, so promote anything smaller.
431 setOperationAction(ISD::VAARG, MVT::i1, Promote);
432 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
433 setOperationAction(ISD::VAARG, MVT::i8, Promote);
434 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
435 setOperationAction(ISD::VAARG, MVT::i16, Promote);
436 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
437 setOperationAction(ISD::VAARG, MVT::i32, Promote);
438 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
439 setOperationAction(ISD::VAARG, MVT::Other, Expand);
440 } else {
441 // VAARG is custom lowered with the 32-bit SVR4 ABI.
442 setOperationAction(ISD::VAARG, MVT::Other, Custom);
443 setOperationAction(ISD::VAARG, MVT::i64, Custom);
445 } else
446 setOperationAction(ISD::VAARG, MVT::Other, Expand);
448 if (Subtarget.isSVR4ABI() && !isPPC64)
449 // VACOPY is custom lowered with the 32-bit SVR4 ABI.
450 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
451 else
452 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
454 // Use the default implementation.
455 setOperationAction(ISD::VAEND , MVT::Other, Expand);
456 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
457 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
458 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
459 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
460 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
461 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
462 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
463 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
465 // We want to custom lower some of our intrinsics.
466 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
468 // To handle counter-based loop conditions.
469 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
471 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
472 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
473 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
474 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
476 // Comparisons that require checking two conditions.
477 if (Subtarget.hasSPE()) {
478 setCondCodeAction(ISD::SETO, MVT::f32, Expand);
479 setCondCodeAction(ISD::SETO, MVT::f64, Expand);
480 setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
481 setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
483 setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
484 setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
485 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
486 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
487 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
488 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
489 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
490 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
491 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
492 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
493 setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
494 setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
496 if (Subtarget.has64BitSupport()) {
497 // They also have instructions for converting between i64 and fp.
498 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
499 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
500 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
501 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
502 // This is just the low 32 bits of a (signed) fp->i64 conversion.
503 // We cannot do this with Promote because i64 is not a legal type.
504 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
506 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
507 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
508 } else {
509 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
510 if (Subtarget.hasSPE())
511 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
512 else
513 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
516 // With the instructions enabled under FPCVT, we can do everything.
517 if (Subtarget.hasFPCVT()) {
518 if (Subtarget.has64BitSupport()) {
519 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
520 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
521 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
522 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
525 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
526 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
527 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
528 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
531 if (Subtarget.use64BitRegs()) {
532 // 64-bit PowerPC implementations can support i64 types directly
533 addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
534 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
535 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
536 // 64-bit PowerPC wants to expand i128 shifts itself.
537 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
538 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
539 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
540 } else {
541 // 32-bit PowerPC wants to expand i64 shifts itself.
542 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
543 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
544 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
547 if (Subtarget.hasAltivec()) {
548 // First set operation action for all vector types to expand. Then we
549 // will selectively turn on ones that can be effectively codegen'd.
550 for (MVT VT : MVT::vector_valuetypes()) {
551 // add/sub are legal for all supported vector VT's.
552 setOperationAction(ISD::ADD, VT, Legal);
553 setOperationAction(ISD::SUB, VT, Legal);
554 setOperationAction(ISD::ABS, VT, Custom);
556 // Vector instructions introduced in P8
557 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
558 setOperationAction(ISD::CTPOP, VT, Legal);
559 setOperationAction(ISD::CTLZ, VT, Legal);
561 else {
562 setOperationAction(ISD::CTPOP, VT, Expand);
563 setOperationAction(ISD::CTLZ, VT, Expand);
566 // Vector instructions introduced in P9
567 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
568 setOperationAction(ISD::CTTZ, VT, Legal);
569 else
570 setOperationAction(ISD::CTTZ, VT, Expand);
572 // We promote all shuffles to v16i8.
573 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
574 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
576 // We promote all non-typed operations to v4i32.
577 setOperationAction(ISD::AND , VT, Promote);
578 AddPromotedToType (ISD::AND , VT, MVT::v4i32);
579 setOperationAction(ISD::OR , VT, Promote);
580 AddPromotedToType (ISD::OR , VT, MVT::v4i32);
581 setOperationAction(ISD::XOR , VT, Promote);
582 AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
583 setOperationAction(ISD::LOAD , VT, Promote);
584 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
585 setOperationAction(ISD::SELECT, VT, Promote);
586 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
587 setOperationAction(ISD::VSELECT, VT, Legal);
588 setOperationAction(ISD::SELECT_CC, VT, Promote);
589 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
590 setOperationAction(ISD::STORE, VT, Promote);
591 AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
593 // No other operations are legal.
594 setOperationAction(ISD::MUL , VT, Expand);
595 setOperationAction(ISD::SDIV, VT, Expand);
596 setOperationAction(ISD::SREM, VT, Expand);
597 setOperationAction(ISD::UDIV, VT, Expand);
598 setOperationAction(ISD::UREM, VT, Expand);
599 setOperationAction(ISD::FDIV, VT, Expand);
600 setOperationAction(ISD::FREM, VT, Expand);
601 setOperationAction(ISD::FNEG, VT, Expand);
602 setOperationAction(ISD::FSQRT, VT, Expand);
603 setOperationAction(ISD::FLOG, VT, Expand);
604 setOperationAction(ISD::FLOG10, VT, Expand);
605 setOperationAction(ISD::FLOG2, VT, Expand);
606 setOperationAction(ISD::FEXP, VT, Expand);
607 setOperationAction(ISD::FEXP2, VT, Expand);
608 setOperationAction(ISD::FSIN, VT, Expand);
609 setOperationAction(ISD::FCOS, VT, Expand);
610 setOperationAction(ISD::FABS, VT, Expand);
611 setOperationAction(ISD::FFLOOR, VT, Expand);
612 setOperationAction(ISD::FCEIL, VT, Expand);
613 setOperationAction(ISD::FTRUNC, VT, Expand);
614 setOperationAction(ISD::FRINT, VT, Expand);
615 setOperationAction(ISD::FNEARBYINT, VT, Expand);
616 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
617 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
618 setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
619 setOperationAction(ISD::MULHU, VT, Expand);
620 setOperationAction(ISD::MULHS, VT, Expand);
621 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
622 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
623 setOperationAction(ISD::UDIVREM, VT, Expand);
624 setOperationAction(ISD::SDIVREM, VT, Expand);
625 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
626 setOperationAction(ISD::FPOW, VT, Expand);
627 setOperationAction(ISD::BSWAP, VT, Expand);
628 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
629 setOperationAction(ISD::ROTL, VT, Expand);
630 setOperationAction(ISD::ROTR, VT, Expand);
632 for (MVT InnerVT : MVT::vector_valuetypes()) {
633 setTruncStoreAction(VT, InnerVT, Expand);
634 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
635 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
636 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
640 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
641 // with merges, splats, etc.
642 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
644 // Vector truncates to sub-word integer that fit in an Altivec/VSX register
645 // are cheap, so handle them before they get expanded to scalar.
646 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
647 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
648 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
649 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
650 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
652 setOperationAction(ISD::AND , MVT::v4i32, Legal);
653 setOperationAction(ISD::OR , MVT::v4i32, Legal);
654 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
655 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
656 setOperationAction(ISD::SELECT, MVT::v4i32,
657 Subtarget.useCRBits() ? Legal : Expand);
658 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
659 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
660 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
661 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
662 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
663 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
664 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
665 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
666 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
668 // Without hasP8Altivec set, v2i64 SMAX isn't available.
669 // But ABS custom lowering requires SMAX support.
670 if (!Subtarget.hasP8Altivec())
671 setOperationAction(ISD::ABS, MVT::v2i64, Expand);
673 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
674 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
675 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
676 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
678 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
679 setOperationAction(ISD::FMA, MVT::v4f32, Legal);
681 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
682 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
683 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
686 if (Subtarget.hasP8Altivec())
687 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
688 else
689 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
691 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
692 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
694 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
695 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
697 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
698 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
699 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
700 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
702 // Altivec does not contain unordered floating-point compare instructions
703 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
704 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
705 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand);
706 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
708 if (Subtarget.hasVSX()) {
709 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
710 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
711 if (Subtarget.hasP8Vector()) {
712 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
713 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
715 if (Subtarget.hasDirectMove() && isPPC64) {
716 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
717 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
718 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
719 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
720 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
721 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
722 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
723 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
725 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
727 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
728 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
729 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
730 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
731 setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
733 setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
735 setOperationAction(ISD::MUL, MVT::v2f64, Legal);
736 setOperationAction(ISD::FMA, MVT::v2f64, Legal);
738 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
739 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
741 // Share the Altivec comparison restrictions.
742 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
743 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
744 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand);
745 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
747 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
748 setOperationAction(ISD::STORE, MVT::v2f64, Legal);
750 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
752 if (Subtarget.hasP8Vector())
753 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
755 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
757 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
758 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
759 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
761 if (Subtarget.hasP8Altivec()) {
762 setOperationAction(ISD::SHL, MVT::v2i64, Legal);
763 setOperationAction(ISD::SRA, MVT::v2i64, Legal);
764 setOperationAction(ISD::SRL, MVT::v2i64, Legal);
766 // 128 bit shifts can be accomplished via 3 instructions for SHL and
767 // SRL, but not for SRA because of the instructions available:
768 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
769 // doing
770 setOperationAction(ISD::SHL, MVT::v1i128, Expand);
771 setOperationAction(ISD::SRL, MVT::v1i128, Expand);
772 setOperationAction(ISD::SRA, MVT::v1i128, Expand);
774 setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
776 else {
777 setOperationAction(ISD::SHL, MVT::v2i64, Expand);
778 setOperationAction(ISD::SRA, MVT::v2i64, Expand);
779 setOperationAction(ISD::SRL, MVT::v2i64, Expand);
781 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
783 // VSX v2i64 only supports non-arithmetic operations.
784 setOperationAction(ISD::ADD, MVT::v2i64, Expand);
785 setOperationAction(ISD::SUB, MVT::v2i64, Expand);
788 setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
789 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
790 setOperationAction(ISD::STORE, MVT::v2i64, Promote);
791 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
793 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
795 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
796 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
797 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
798 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
800 // Custom handling for partial vectors of integers converted to
801 // floating point. We already have optimal handling for v2i32 through
802 // the DAG combine, so those aren't necessary.
803 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
804 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
805 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
806 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
807 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
808 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
809 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
810 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
812 setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
813 setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
814 setOperationAction(ISD::FABS, MVT::v4f32, Legal);
815 setOperationAction(ISD::FABS, MVT::v2f64, Legal);
817 if (Subtarget.hasDirectMove())
818 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
819 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
821 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
824 if (Subtarget.hasP8Altivec()) {
825 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
826 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
829 if (Subtarget.hasP9Vector()) {
830 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
831 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
833 // 128 bit shifts can be accomplished via 3 instructions for SHL and
834 // SRL, but not for SRA because of the instructions available:
835 // VS{RL} and VS{RL}O.
836 setOperationAction(ISD::SHL, MVT::v1i128, Legal);
837 setOperationAction(ISD::SRL, MVT::v1i128, Legal);
838 setOperationAction(ISD::SRA, MVT::v1i128, Expand);
840 if (EnableQuadPrecision) {
841 addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
842 setOperationAction(ISD::FADD, MVT::f128, Legal);
843 setOperationAction(ISD::FSUB, MVT::f128, Legal);
844 setOperationAction(ISD::FDIV, MVT::f128, Legal);
845 setOperationAction(ISD::FMUL, MVT::f128, Legal);
846 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
847 // No extending loads to f128 on PPC.
848 for (MVT FPT : MVT::fp_valuetypes())
849 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
850 setOperationAction(ISD::FMA, MVT::f128, Legal);
851 setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
852 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
853 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
854 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
855 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
856 setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
858 setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
859 setOperationAction(ISD::FRINT, MVT::f128, Legal);
860 setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
861 setOperationAction(ISD::FCEIL, MVT::f128, Legal);
862 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
863 setOperationAction(ISD::FROUND, MVT::f128, Legal);
865 setOperationAction(ISD::SELECT, MVT::f128, Expand);
866 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
867 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
868 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
869 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
870 setOperationAction(ISD::BITCAST, MVT::i128, Custom);
871 // No implementation for these ops for PowerPC.
872 setOperationAction(ISD::FSIN , MVT::f128, Expand);
873 setOperationAction(ISD::FCOS , MVT::f128, Expand);
874 setOperationAction(ISD::FPOW, MVT::f128, Expand);
875 setOperationAction(ISD::FPOWI, MVT::f128, Expand);
876 setOperationAction(ISD::FREM, MVT::f128, Expand);
881 if (Subtarget.hasP9Altivec()) {
882 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
883 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
887 if (Subtarget.hasQPX()) {
888 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
889 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
890 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
891 setOperationAction(ISD::FREM, MVT::v4f64, Expand);
893 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
894 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
896 setOperationAction(ISD::LOAD , MVT::v4f64, Custom);
897 setOperationAction(ISD::STORE , MVT::v4f64, Custom);
899 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
900 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
902 if (!Subtarget.useCRBits())
903 setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
904 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
906 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
907 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
908 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
909 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
910 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
911 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
912 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
914 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
915 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
917 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
918 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
919 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
921 setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
922 setOperationAction(ISD::FABS , MVT::v4f64, Legal);
923 setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
924 setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
925 setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
926 setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
927 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
928 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
929 setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
930 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
932 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
933 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
935 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
936 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
938 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
940 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
941 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
942 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
943 setOperationAction(ISD::FREM, MVT::v4f32, Expand);
945 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
946 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
948 setOperationAction(ISD::LOAD , MVT::v4f32, Custom);
949 setOperationAction(ISD::STORE , MVT::v4f32, Custom);
951 if (!Subtarget.useCRBits())
952 setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
953 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
955 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
956 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
957 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
958 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
959 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
960 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
961 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
963 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
964 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
966 setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
967 setOperationAction(ISD::FABS , MVT::v4f32, Legal);
968 setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
969 setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
970 setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
971 setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
972 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
973 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
974 setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
975 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
977 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
978 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
980 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
981 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
983 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
985 setOperationAction(ISD::AND , MVT::v4i1, Legal);
986 setOperationAction(ISD::OR , MVT::v4i1, Legal);
987 setOperationAction(ISD::XOR , MVT::v4i1, Legal);
989 if (!Subtarget.useCRBits())
990 setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
991 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
993 setOperationAction(ISD::LOAD , MVT::v4i1, Custom);
994 setOperationAction(ISD::STORE , MVT::v4i1, Custom);
996 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
997 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
998 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
999 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1000 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1001 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1002 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1004 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1005 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1007 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1009 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1010 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal);
1011 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1012 setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1014 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1015 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
1016 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1017 setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1019 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1020 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1022 // These need to set FE_INEXACT, and so cannot be vectorized here.
1023 setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1024 setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1026 if (TM.Options.UnsafeFPMath) {
1027 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1028 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1030 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1031 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1032 } else {
1033 setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1034 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1036 setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1037 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1041 if (Subtarget.has64BitSupport())
1042 setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1044 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1046 if (!isPPC64) {
1047 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
1048 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1051 setBooleanContents(ZeroOrOneBooleanContent);
1053 if (Subtarget.hasAltivec()) {
1054 // Altivec instructions set fields to all zeros or all ones.
1055 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1058 if (!isPPC64) {
1059 // These libcalls are not available in 32-bit.
1060 setLibcallName(RTLIB::SHL_I128, nullptr);
1061 setLibcallName(RTLIB::SRL_I128, nullptr);
1062 setLibcallName(RTLIB::SRA_I128, nullptr);
1065 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1067 // We have target-specific dag combine patterns for the following nodes:
1068 setTargetDAGCombine(ISD::ADD);
1069 setTargetDAGCombine(ISD::SHL);
1070 setTargetDAGCombine(ISD::SRA);
1071 setTargetDAGCombine(ISD::SRL);
1072 setTargetDAGCombine(ISD::SINT_TO_FP);
1073 setTargetDAGCombine(ISD::BUILD_VECTOR);
1074 if (Subtarget.hasFPCVT())
1075 setTargetDAGCombine(ISD::UINT_TO_FP);
1076 setTargetDAGCombine(ISD::LOAD);
1077 setTargetDAGCombine(ISD::STORE);
1078 setTargetDAGCombine(ISD::BR_CC);
1079 if (Subtarget.useCRBits())
1080 setTargetDAGCombine(ISD::BRCOND);
1081 setTargetDAGCombine(ISD::BSWAP);
1082 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1083 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1084 setTargetDAGCombine(ISD::INTRINSIC_VOID);
1086 setTargetDAGCombine(ISD::SIGN_EXTEND);
1087 setTargetDAGCombine(ISD::ZERO_EXTEND);
1088 setTargetDAGCombine(ISD::ANY_EXTEND);
1090 setTargetDAGCombine(ISD::TRUNCATE);
1092 if (Subtarget.useCRBits()) {
1093 setTargetDAGCombine(ISD::TRUNCATE);
1094 setTargetDAGCombine(ISD::SETCC);
1095 setTargetDAGCombine(ISD::SELECT_CC);
1098 // Use reciprocal estimates.
1099 if (TM.Options.UnsafeFPMath) {
1100 setTargetDAGCombine(ISD::FDIV);
1101 setTargetDAGCombine(ISD::FSQRT);
1104 if (Subtarget.hasP9Altivec()) {
1105 setTargetDAGCombine(ISD::ABS);
1106 setTargetDAGCombine(ISD::VSELECT);
1109 // Darwin long double math library functions have $LDBL128 appended.
1110 if (Subtarget.isDarwin()) {
1111 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1112 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1113 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1114 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1115 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1116 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1117 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1118 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1119 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1120 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1123 if (EnableQuadPrecision) {
1124 setLibcallName(RTLIB::LOG_F128, "logf128");
1125 setLibcallName(RTLIB::LOG2_F128, "log2f128");
1126 setLibcallName(RTLIB::LOG10_F128, "log10f128");
1127 setLibcallName(RTLIB::EXP_F128, "expf128");
1128 setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1129 setLibcallName(RTLIB::SIN_F128, "sinf128");
1130 setLibcallName(RTLIB::COS_F128, "cosf128");
1131 setLibcallName(RTLIB::POW_F128, "powf128");
1132 setLibcallName(RTLIB::FMIN_F128, "fminf128");
1133 setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1134 setLibcallName(RTLIB::POWI_F128, "__powikf2");
1135 setLibcallName(RTLIB::REM_F128, "fmodf128");
1138 // With 32 condition bits, we don't need to sink (and duplicate) compares
1139 // aggressively in CodeGenPrep.
1140 if (Subtarget.useCRBits()) {
1141 setHasMultipleConditionRegisters();
1142 setJumpIsExpensive();
1145 setMinFunctionAlignment(2);
1146 if (Subtarget.isDarwin())
1147 setPrefFunctionAlignment(4);
1149 switch (Subtarget.getDarwinDirective()) {
1150 default: break;
1151 case PPC::DIR_970:
1152 case PPC::DIR_A2:
1153 case PPC::DIR_E500:
1154 case PPC::DIR_E500mc:
1155 case PPC::DIR_E5500:
1156 case PPC::DIR_PWR4:
1157 case PPC::DIR_PWR5:
1158 case PPC::DIR_PWR5X:
1159 case PPC::DIR_PWR6:
1160 case PPC::DIR_PWR6X:
1161 case PPC::DIR_PWR7:
1162 case PPC::DIR_PWR8:
1163 case PPC::DIR_PWR9:
1164 setPrefFunctionAlignment(4);
1165 setPrefLoopAlignment(4);
1166 break;
1169 if (Subtarget.enableMachineScheduler())
1170 setSchedulingPreference(Sched::Source);
1171 else
1172 setSchedulingPreference(Sched::Hybrid);
1174 computeRegisterProperties(STI.getRegisterInfo());
1176 // The Freescale cores do better with aggressive inlining of memcpy and
1177 // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1178 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1179 Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1180 MaxStoresPerMemset = 32;
1181 MaxStoresPerMemsetOptSize = 16;
1182 MaxStoresPerMemcpy = 32;
1183 MaxStoresPerMemcpyOptSize = 8;
1184 MaxStoresPerMemmove = 32;
1185 MaxStoresPerMemmoveOptSize = 8;
1186 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1187 // The A2 also benefits from (very) aggressive inlining of memcpy and
1188 // friends. The overhead of a the function call, even when warm, can be
1189 // over one hundred cycles.
1190 MaxStoresPerMemset = 128;
1191 MaxStoresPerMemcpy = 128;
1192 MaxStoresPerMemmove = 128;
1193 MaxLoadsPerMemcmp = 128;
1194 } else {
1195 MaxLoadsPerMemcmp = 8;
1196 MaxLoadsPerMemcmpOptSize = 4;
1200 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1201 /// the desired ByVal argument alignment.
1202 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1203 unsigned MaxMaxAlign) {
1204 if (MaxAlign == MaxMaxAlign)
1205 return;
1206 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1207 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1208 MaxAlign = 32;
1209 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1210 MaxAlign = 16;
1211 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1212 unsigned EltAlign = 0;
1213 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1214 if (EltAlign > MaxAlign)
1215 MaxAlign = EltAlign;
1216 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1217 for (auto *EltTy : STy->elements()) {
1218 unsigned EltAlign = 0;
1219 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1220 if (EltAlign > MaxAlign)
1221 MaxAlign = EltAlign;
1222 if (MaxAlign == MaxMaxAlign)
1223 break;
1228 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1229 /// function arguments in the caller parameter area.
1230 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1231 const DataLayout &DL) const {
1232 // Darwin passes everything on 4 byte boundary.
1233 if (Subtarget.isDarwin())
1234 return 4;
1236 // 16byte and wider vectors are passed on 16byte boundary.
1237 // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1238 unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1239 if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1240 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1241 return Align;
1244 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1245 CallingConv:: ID CC,
1246 EVT VT) const {
1247 if (Subtarget.hasSPE() && VT == MVT::f64)
1248 return 2;
1249 return PPCTargetLowering::getNumRegisters(Context, VT);
1252 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1253 CallingConv:: ID CC,
1254 EVT VT) const {
1255 if (Subtarget.hasSPE() && VT == MVT::f64)
1256 return MVT::i32;
1257 return PPCTargetLowering::getRegisterType(Context, VT);
1260 bool PPCTargetLowering::useSoftFloat() const {
1261 return Subtarget.useSoftFloat();
1264 bool PPCTargetLowering::hasSPE() const {
1265 return Subtarget.hasSPE();
1268 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1269 switch ((PPCISD::NodeType)Opcode) {
1270 case PPCISD::FIRST_NUMBER: break;
1271 case PPCISD::FSEL: return "PPCISD::FSEL";
1272 case PPCISD::FCFID: return "PPCISD::FCFID";
1273 case PPCISD::FCFIDU: return "PPCISD::FCFIDU";
1274 case PPCISD::FCFIDS: return "PPCISD::FCFIDS";
1275 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS";
1276 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
1277 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
1278 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ";
1279 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ";
1280 case PPCISD::FP_TO_UINT_IN_VSR:
1281 return "PPCISD::FP_TO_UINT_IN_VSR,";
1282 case PPCISD::FP_TO_SINT_IN_VSR:
1283 return "PPCISD::FP_TO_SINT_IN_VSR";
1284 case PPCISD::FRE: return "PPCISD::FRE";
1285 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE";
1286 case PPCISD::STFIWX: return "PPCISD::STFIWX";
1287 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
1288 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
1289 case PPCISD::VPERM: return "PPCISD::VPERM";
1290 case PPCISD::XXSPLT: return "PPCISD::XXSPLT";
1291 case PPCISD::VECINSERT: return "PPCISD::VECINSERT";
1292 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE";
1293 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI";
1294 case PPCISD::VECSHL: return "PPCISD::VECSHL";
1295 case PPCISD::CMPB: return "PPCISD::CMPB";
1296 case PPCISD::Hi: return "PPCISD::Hi";
1297 case PPCISD::Lo: return "PPCISD::Lo";
1298 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
1299 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1300 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1301 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
1302 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET";
1303 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
1304 case PPCISD::SRL: return "PPCISD::SRL";
1305 case PPCISD::SRA: return "PPCISD::SRA";
1306 case PPCISD::SHL: return "PPCISD::SHL";
1307 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE";
1308 case PPCISD::CALL: return "PPCISD::CALL";
1309 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP";
1310 case PPCISD::MTCTR: return "PPCISD::MTCTR";
1311 case PPCISD::BCTRL: return "PPCISD::BCTRL";
1312 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC";
1313 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
1314 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE";
1315 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP";
1316 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1317 case PPCISD::MFOCRF: return "PPCISD::MFOCRF";
1318 case PPCISD::MFVSR: return "PPCISD::MFVSR";
1319 case PPCISD::MTVSRA: return "PPCISD::MTVSRA";
1320 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ";
1321 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP";
1322 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP";
1323 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT";
1324 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT";
1325 case PPCISD::VCMP: return "PPCISD::VCMP";
1326 case PPCISD::VCMPo: return "PPCISD::VCMPo";
1327 case PPCISD::LBRX: return "PPCISD::LBRX";
1328 case PPCISD::STBRX: return "PPCISD::STBRX";
1329 case PPCISD::LFIWAX: return "PPCISD::LFIWAX";
1330 case PPCISD::LFIWZX: return "PPCISD::LFIWZX";
1331 case PPCISD::LXSIZX: return "PPCISD::LXSIZX";
1332 case PPCISD::STXSIX: return "PPCISD::STXSIX";
1333 case PPCISD::VEXTS: return "PPCISD::VEXTS";
1334 case PPCISD::SExtVElems: return "PPCISD::SExtVElems";
1335 case PPCISD::LXVD2X: return "PPCISD::LXVD2X";
1336 case PPCISD::STXVD2X: return "PPCISD::STXVD2X";
1337 case PPCISD::ST_VSR_SCAL_INT:
1338 return "PPCISD::ST_VSR_SCAL_INT";
1339 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
1340 case PPCISD::BDNZ: return "PPCISD::BDNZ";
1341 case PPCISD::BDZ: return "PPCISD::BDZ";
1342 case PPCISD::MFFS: return "PPCISD::MFFS";
1343 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
1344 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
1345 case PPCISD::CR6SET: return "PPCISD::CR6SET";
1346 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET";
1347 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT";
1348 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT";
1349 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1350 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L";
1351 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS";
1352 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA";
1353 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L";
1354 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR";
1355 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1356 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA";
1357 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L";
1358 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR";
1359 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1360 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1361 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L";
1362 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT";
1363 case PPCISD::SC: return "PPCISD::SC";
1364 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB";
1365 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE";
1366 case PPCISD::RFEBB: return "PPCISD::RFEBB";
1367 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD";
1368 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN";
1369 case PPCISD::VABSD: return "PPCISD::VABSD";
1370 case PPCISD::QVFPERM: return "PPCISD::QVFPERM";
1371 case PPCISD::QVGPCI: return "PPCISD::QVGPCI";
1372 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI";
1373 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI";
1374 case PPCISD::QBFLT: return "PPCISD::QBFLT";
1375 case PPCISD::QVLFSb: return "PPCISD::QVLFSb";
1376 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128";
1377 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI";
1379 return nullptr;
1382 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1383 EVT VT) const {
1384 if (!VT.isVector())
1385 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1387 if (Subtarget.hasQPX())
1388 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1390 return VT.changeVectorElementTypeToInteger();
1393 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1394 assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1395 return true;
1398 //===----------------------------------------------------------------------===//
1399 // Node matching predicates, for use by the tblgen matching code.
1400 //===----------------------------------------------------------------------===//
1402 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1403 static bool isFloatingPointZero(SDValue Op) {
1404 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1405 return CFP->getValueAPF().isZero();
1406 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1407 // Maybe this has already been legalized into the constant pool?
1408 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1409 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1410 return CFP->getValueAPF().isZero();
1412 return false;
1415 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
1416 /// true if Op is undef or if it matches the specified value.
1417 static bool isConstantOrUndef(int Op, int Val) {
1418 return Op < 0 || Op == Val;
1421 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1422 /// VPKUHUM instruction.
1423 /// The ShuffleKind distinguishes between big-endian operations with
1424 /// two different inputs (0), either-endian operations with two identical
1425 /// inputs (1), and little-endian operations with two different inputs (2).
1426 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1427 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1428 SelectionDAG &DAG) {
1429 bool IsLE = DAG.getDataLayout().isLittleEndian();
1430 if (ShuffleKind == 0) {
1431 if (IsLE)
1432 return false;
1433 for (unsigned i = 0; i != 16; ++i)
1434 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1435 return false;
1436 } else if (ShuffleKind == 2) {
1437 if (!IsLE)
1438 return false;
1439 for (unsigned i = 0; i != 16; ++i)
1440 if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1441 return false;
1442 } else if (ShuffleKind == 1) {
1443 unsigned j = IsLE ? 0 : 1;
1444 for (unsigned i = 0; i != 8; ++i)
1445 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) ||
1446 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j))
1447 return false;
1449 return true;
1452 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1453 /// VPKUWUM instruction.
1454 /// The ShuffleKind distinguishes between big-endian operations with
1455 /// two different inputs (0), either-endian operations with two identical
1456 /// inputs (1), and little-endian operations with two different inputs (2).
1457 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1458 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1459 SelectionDAG &DAG) {
1460 bool IsLE = DAG.getDataLayout().isLittleEndian();
1461 if (ShuffleKind == 0) {
1462 if (IsLE)
1463 return false;
1464 for (unsigned i = 0; i != 16; i += 2)
1465 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
1466 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
1467 return false;
1468 } else if (ShuffleKind == 2) {
1469 if (!IsLE)
1470 return false;
1471 for (unsigned i = 0; i != 16; i += 2)
1472 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
1473 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1))
1474 return false;
1475 } else if (ShuffleKind == 1) {
1476 unsigned j = IsLE ? 0 : 2;
1477 for (unsigned i = 0; i != 8; i += 2)
1478 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
1479 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
1480 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
1481 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1))
1482 return false;
1484 return true;
1487 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1488 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1489 /// current subtarget.
1491 /// The ShuffleKind distinguishes between big-endian operations with
1492 /// two different inputs (0), either-endian operations with two identical
1493 /// inputs (1), and little-endian operations with two different inputs (2).
1494 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1495 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1496 SelectionDAG &DAG) {
1497 const PPCSubtarget& Subtarget =
1498 static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1499 if (!Subtarget.hasP8Vector())
1500 return false;
1502 bool IsLE = DAG.getDataLayout().isLittleEndian();
1503 if (ShuffleKind == 0) {
1504 if (IsLE)
1505 return false;
1506 for (unsigned i = 0; i != 16; i += 4)
1507 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) ||
1508 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) ||
1509 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) ||
1510 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7))
1511 return false;
1512 } else if (ShuffleKind == 2) {
1513 if (!IsLE)
1514 return false;
1515 for (unsigned i = 0; i != 16; i += 4)
1516 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
1517 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) ||
1518 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) ||
1519 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3))
1520 return false;
1521 } else if (ShuffleKind == 1) {
1522 unsigned j = IsLE ? 0 : 4;
1523 for (unsigned i = 0; i != 8; i += 4)
1524 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
1525 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
1526 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) ||
1527 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) ||
1528 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
1529 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) ||
1530 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1531 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1532 return false;
1534 return true;
1537 /// isVMerge - Common function, used to match vmrg* shuffles.
1539 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1540 unsigned LHSStart, unsigned RHSStart) {
1541 if (N->getValueType(0) != MVT::v16i8)
1542 return false;
1543 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1544 "Unsupported merge size!");
1546 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
1547 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
1548 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1549 LHSStart+j+i*UnitSize) ||
1550 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1551 RHSStart+j+i*UnitSize))
1552 return false;
1554 return true;
1557 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1558 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1559 /// The ShuffleKind distinguishes between big-endian merges with two
1560 /// different inputs (0), either-endian merges with two identical inputs (1),
1561 /// and little-endian merges with two different inputs (2). For the latter,
1562 /// the input operands are swapped (see PPCInstrAltivec.td).
1563 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1564 unsigned ShuffleKind, SelectionDAG &DAG) {
1565 if (DAG.getDataLayout().isLittleEndian()) {
1566 if (ShuffleKind == 1) // unary
1567 return isVMerge(N, UnitSize, 0, 0);
1568 else if (ShuffleKind == 2) // swapped
1569 return isVMerge(N, UnitSize, 0, 16);
1570 else
1571 return false;
1572 } else {
1573 if (ShuffleKind == 1) // unary
1574 return isVMerge(N, UnitSize, 8, 8);
1575 else if (ShuffleKind == 0) // normal
1576 return isVMerge(N, UnitSize, 8, 24);
1577 else
1578 return false;
1582 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1583 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1584 /// The ShuffleKind distinguishes between big-endian merges with two
1585 /// different inputs (0), either-endian merges with two identical inputs (1),
1586 /// and little-endian merges with two different inputs (2). For the latter,
1587 /// the input operands are swapped (see PPCInstrAltivec.td).
1588 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1589 unsigned ShuffleKind, SelectionDAG &DAG) {
1590 if (DAG.getDataLayout().isLittleEndian()) {
1591 if (ShuffleKind == 1) // unary
1592 return isVMerge(N, UnitSize, 8, 8);
1593 else if (ShuffleKind == 2) // swapped
1594 return isVMerge(N, UnitSize, 8, 24);
1595 else
1596 return false;
1597 } else {
1598 if (ShuffleKind == 1) // unary
1599 return isVMerge(N, UnitSize, 0, 0);
1600 else if (ShuffleKind == 0) // normal
1601 return isVMerge(N, UnitSize, 0, 16);
1602 else
1603 return false;
1608 * Common function used to match vmrgew and vmrgow shuffles
1610 * The indexOffset determines whether to look for even or odd words in
1611 * the shuffle mask. This is based on the of the endianness of the target
1612 * machine.
1613 * - Little Endian:
1614 * - Use offset of 0 to check for odd elements
1615 * - Use offset of 4 to check for even elements
1616 * - Big Endian:
1617 * - Use offset of 0 to check for even elements
1618 * - Use offset of 4 to check for odd elements
1619 * A detailed description of the vector element ordering for little endian and
1620 * big endian can be found at
1621 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1622 * Targeting your applications - what little endian and big endian IBM XL C/C++
1623 * compiler differences mean to you
1625 * The mask to the shuffle vector instruction specifies the indices of the
1626 * elements from the two input vectors to place in the result. The elements are
1627 * numbered in array-access order, starting with the first vector. These vectors
1628 * are always of type v16i8, thus each vector will contain 16 elements of size
1629 * 8. More info on the shuffle vector can be found in the
1630 * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1631 * Language Reference.
1633 * The RHSStartValue indicates whether the same input vectors are used (unary)
1634 * or two different input vectors are used, based on the following:
1635 * - If the instruction uses the same vector for both inputs, the range of the
1636 * indices will be 0 to 15. In this case, the RHSStart value passed should
1637 * be 0.
1638 * - If the instruction has two different vectors then the range of the
1639 * indices will be 0 to 31. In this case, the RHSStart value passed should
1640 * be 16 (indices 0-15 specify elements in the first vector while indices 16
1641 * to 31 specify elements in the second vector).
1643 * \param[in] N The shuffle vector SD Node to analyze
1644 * \param[in] IndexOffset Specifies whether to look for even or odd elements
1645 * \param[in] RHSStartValue Specifies the starting index for the righthand input
1646 * vector to the shuffle_vector instruction
1647 * \return true iff this shuffle vector represents an even or odd word merge
1649 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1650 unsigned RHSStartValue) {
1651 if (N->getValueType(0) != MVT::v16i8)
1652 return false;
1654 for (unsigned i = 0; i < 2; ++i)
1655 for (unsigned j = 0; j < 4; ++j)
1656 if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1657 i*RHSStartValue+j+IndexOffset) ||
1658 !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1659 i*RHSStartValue+j+IndexOffset+8))
1660 return false;
1661 return true;
1665 * Determine if the specified shuffle mask is suitable for the vmrgew or
1666 * vmrgow instructions.
1668 * \param[in] N The shuffle vector SD Node to analyze
1669 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1670 * \param[in] ShuffleKind Identify the type of merge:
1671 * - 0 = big-endian merge with two different inputs;
1672 * - 1 = either-endian merge with two identical inputs;
1673 * - 2 = little-endian merge with two different inputs (inputs are swapped for
1674 * little-endian merges).
1675 * \param[in] DAG The current SelectionDAG
1676 * \return true iff this shuffle mask
1678 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1679 unsigned ShuffleKind, SelectionDAG &DAG) {
1680 if (DAG.getDataLayout().isLittleEndian()) {
1681 unsigned indexOffset = CheckEven ? 4 : 0;
1682 if (ShuffleKind == 1) // Unary
1683 return isVMerge(N, indexOffset, 0);
1684 else if (ShuffleKind == 2) // swapped
1685 return isVMerge(N, indexOffset, 16);
1686 else
1687 return false;
1689 else {
1690 unsigned indexOffset = CheckEven ? 0 : 4;
1691 if (ShuffleKind == 1) // Unary
1692 return isVMerge(N, indexOffset, 0);
1693 else if (ShuffleKind == 0) // Normal
1694 return isVMerge(N, indexOffset, 16);
1695 else
1696 return false;
1698 return false;
1701 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1702 /// amount, otherwise return -1.
1703 /// The ShuffleKind distinguishes between big-endian operations with two
1704 /// different inputs (0), either-endian operations with two identical inputs
1705 /// (1), and little-endian operations with two different inputs (2). For the
1706 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1707 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1708 SelectionDAG &DAG) {
1709 if (N->getValueType(0) != MVT::v16i8)
1710 return -1;
1712 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1714 // Find the first non-undef value in the shuffle mask.
1715 unsigned i;
1716 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1717 /*search*/;
1719 if (i == 16) return -1; // all undef.
1721 // Otherwise, check to see if the rest of the elements are consecutively
1722 // numbered from this value.
1723 unsigned ShiftAmt = SVOp->getMaskElt(i);
1724 if (ShiftAmt < i) return -1;
1726 ShiftAmt -= i;
1727 bool isLE = DAG.getDataLayout().isLittleEndian();
1729 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1730 // Check the rest of the elements to see if they are consecutive.
1731 for (++i; i != 16; ++i)
1732 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1733 return -1;
1734 } else if (ShuffleKind == 1) {
1735 // Check the rest of the elements to see if they are consecutive.
1736 for (++i; i != 16; ++i)
1737 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1738 return -1;
1739 } else
1740 return -1;
1742 if (isLE)
1743 ShiftAmt = 16 - ShiftAmt;
1745 return ShiftAmt;
1748 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1749 /// specifies a splat of a single element that is suitable for input to
1750 /// VSPLTB/VSPLTH/VSPLTW.
1751 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1752 assert(N->getValueType(0) == MVT::v16i8 &&
1753 (EltSize == 1 || EltSize == 2 || EltSize == 4));
1755 // The consecutive indices need to specify an element, not part of two
1756 // different elements. So abandon ship early if this isn't the case.
1757 if (N->getMaskElt(0) % EltSize != 0)
1758 return false;
1760 // This is a splat operation if each element of the permute is the same, and
1761 // if the value doesn't reference the second vector.
1762 unsigned ElementBase = N->getMaskElt(0);
1764 // FIXME: Handle UNDEF elements too!
1765 if (ElementBase >= 16)
1766 return false;
1768 // Check that the indices are consecutive, in the case of a multi-byte element
1769 // splatted with a v16i8 mask.
1770 for (unsigned i = 1; i != EltSize; ++i)
1771 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1772 return false;
1774 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1775 if (N->getMaskElt(i) < 0) continue;
1776 for (unsigned j = 0; j != EltSize; ++j)
1777 if (N->getMaskElt(i+j) != N->getMaskElt(j))
1778 return false;
1780 return true;
1783 /// Check that the mask is shuffling N byte elements. Within each N byte
1784 /// element of the mask, the indices could be either in increasing or
1785 /// decreasing order as long as they are consecutive.
1786 /// \param[in] N the shuffle vector SD Node to analyze
1787 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1788 /// Word/DoubleWord/QuadWord).
1789 /// \param[in] StepLen the delta indices number among the N byte element, if
1790 /// the mask is in increasing/decreasing order then it is 1/-1.
1791 /// \return true iff the mask is shuffling N byte elements.
1792 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1793 int StepLen) {
1794 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1795 "Unexpected element width.");
1796 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1798 unsigned NumOfElem = 16 / Width;
1799 unsigned MaskVal[16]; // Width is never greater than 16
1800 for (unsigned i = 0; i < NumOfElem; ++i) {
1801 MaskVal[0] = N->getMaskElt(i * Width);
1802 if ((StepLen == 1) && (MaskVal[0] % Width)) {
1803 return false;
1804 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1805 return false;
1808 for (unsigned int j = 1; j < Width; ++j) {
1809 MaskVal[j] = N->getMaskElt(i * Width + j);
1810 if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1811 return false;
1816 return true;
1819 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1820 unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1821 if (!isNByteElemShuffleMask(N, 4, 1))
1822 return false;
1824 // Now we look at mask elements 0,4,8,12
1825 unsigned M0 = N->getMaskElt(0) / 4;
1826 unsigned M1 = N->getMaskElt(4) / 4;
1827 unsigned M2 = N->getMaskElt(8) / 4;
1828 unsigned M3 = N->getMaskElt(12) / 4;
1829 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1830 unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1832 // Below, let H and L be arbitrary elements of the shuffle mask
1833 // where H is in the range [4,7] and L is in the range [0,3].
1834 // H, 1, 2, 3 or L, 5, 6, 7
1835 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1836 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1837 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1838 InsertAtByte = IsLE ? 12 : 0;
1839 Swap = M0 < 4;
1840 return true;
1842 // 0, H, 2, 3 or 4, L, 6, 7
1843 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1844 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1845 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1846 InsertAtByte = IsLE ? 8 : 4;
1847 Swap = M1 < 4;
1848 return true;
1850 // 0, 1, H, 3 or 4, 5, L, 7
1851 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1852 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1853 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1854 InsertAtByte = IsLE ? 4 : 8;
1855 Swap = M2 < 4;
1856 return true;
1858 // 0, 1, 2, H or 4, 5, 6, L
1859 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1860 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1861 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1862 InsertAtByte = IsLE ? 0 : 12;
1863 Swap = M3 < 4;
1864 return true;
1867 // If both vector operands for the shuffle are the same vector, the mask will
1868 // contain only elements from the first one and the second one will be undef.
1869 if (N->getOperand(1).isUndef()) {
1870 ShiftElts = 0;
1871 Swap = true;
1872 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1873 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1874 InsertAtByte = IsLE ? 12 : 0;
1875 return true;
1877 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1878 InsertAtByte = IsLE ? 8 : 4;
1879 return true;
1881 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1882 InsertAtByte = IsLE ? 4 : 8;
1883 return true;
1885 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1886 InsertAtByte = IsLE ? 0 : 12;
1887 return true;
1891 return false;
1894 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1895 bool &Swap, bool IsLE) {
1896 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1897 // Ensure each byte index of the word is consecutive.
1898 if (!isNByteElemShuffleMask(N, 4, 1))
1899 return false;
1901 // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1902 unsigned M0 = N->getMaskElt(0) / 4;
1903 unsigned M1 = N->getMaskElt(4) / 4;
1904 unsigned M2 = N->getMaskElt(8) / 4;
1905 unsigned M3 = N->getMaskElt(12) / 4;
1907 // If both vector operands for the shuffle are the same vector, the mask will
1908 // contain only elements from the first one and the second one will be undef.
1909 if (N->getOperand(1).isUndef()) {
1910 assert(M0 < 4 && "Indexing into an undef vector?");
1911 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1912 return false;
1914 ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1915 Swap = false;
1916 return true;
1919 // Ensure each word index of the ShuffleVector Mask is consecutive.
1920 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1921 return false;
1923 if (IsLE) {
1924 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1925 // Input vectors don't need to be swapped if the leading element
1926 // of the result is one of the 3 left elements of the second vector
1927 // (or if there is no shift to be done at all).
1928 Swap = false;
1929 ShiftElts = (8 - M0) % 8;
1930 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1931 // Input vectors need to be swapped if the leading element
1932 // of the result is one of the 3 left elements of the first vector
1933 // (or if we're shifting by 4 - thereby simply swapping the vectors).
1934 Swap = true;
1935 ShiftElts = (4 - M0) % 4;
1938 return true;
1939 } else { // BE
1940 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1941 // Input vectors don't need to be swapped if the leading element
1942 // of the result is one of the 4 elements of the first vector.
1943 Swap = false;
1944 ShiftElts = M0;
1945 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1946 // Input vectors need to be swapped if the leading element
1947 // of the result is one of the 4 elements of the right vector.
1948 Swap = true;
1949 ShiftElts = M0 - 4;
1952 return true;
1956 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1957 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1959 if (!isNByteElemShuffleMask(N, Width, -1))
1960 return false;
1962 for (int i = 0; i < 16; i += Width)
1963 if (N->getMaskElt(i) != i + Width - 1)
1964 return false;
1966 return true;
1969 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1970 return isXXBRShuffleMaskHelper(N, 2);
1973 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1974 return isXXBRShuffleMaskHelper(N, 4);
1977 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1978 return isXXBRShuffleMaskHelper(N, 8);
1981 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1982 return isXXBRShuffleMaskHelper(N, 16);
1985 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
1986 /// if the inputs to the instruction should be swapped and set \p DM to the
1987 /// value for the immediate.
1988 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
1989 /// AND element 0 of the result comes from the first input (LE) or second input
1990 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
1991 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
1992 /// mask.
1993 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
1994 bool &Swap, bool IsLE) {
1995 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1997 // Ensure each byte index of the double word is consecutive.
1998 if (!isNByteElemShuffleMask(N, 8, 1))
1999 return false;
2001 unsigned M0 = N->getMaskElt(0) / 8;
2002 unsigned M1 = N->getMaskElt(8) / 8;
2003 assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2005 // If both vector operands for the shuffle are the same vector, the mask will
2006 // contain only elements from the first one and the second one will be undef.
2007 if (N->getOperand(1).isUndef()) {
2008 if ((M0 | M1) < 2) {
2009 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2010 Swap = false;
2011 return true;
2012 } else
2013 return false;
2016 if (IsLE) {
2017 if (M0 > 1 && M1 < 2) {
2018 Swap = false;
2019 } else if (M0 < 2 && M1 > 1) {
2020 M0 = (M0 + 2) % 4;
2021 M1 = (M1 + 2) % 4;
2022 Swap = true;
2023 } else
2024 return false;
2026 // Note: if control flow comes here that means Swap is already set above
2027 DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2028 return true;
2029 } else { // BE
2030 if (M0 < 2 && M1 > 1) {
2031 Swap = false;
2032 } else if (M0 > 1 && M1 < 2) {
2033 M0 = (M0 + 2) % 4;
2034 M1 = (M1 + 2) % 4;
2035 Swap = true;
2036 } else
2037 return false;
2039 // Note: if control flow comes here that means Swap is already set above
2040 DM = (M0 << 1) + (M1 & 1);
2041 return true;
2046 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
2047 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
2048 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
2049 SelectionDAG &DAG) {
2050 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2051 assert(isSplatShuffleMask(SVOp, EltSize));
2052 if (DAG.getDataLayout().isLittleEndian())
2053 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2054 else
2055 return SVOp->getMaskElt(0) / EltSize;
2058 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2059 /// by using a vspltis[bhw] instruction of the specified element size, return
2060 /// the constant being splatted. The ByteSize field indicates the number of
2061 /// bytes of each element [124] -> [bhw].
2062 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2063 SDValue OpVal(nullptr, 0);
2065 // If ByteSize of the splat is bigger than the element size of the
2066 // build_vector, then we have a case where we are checking for a splat where
2067 // multiple elements of the buildvector are folded together into a single
2068 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2069 unsigned EltSize = 16/N->getNumOperands();
2070 if (EltSize < ByteSize) {
2071 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
2072 SDValue UniquedVals[4];
2073 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2075 // See if all of the elements in the buildvector agree across.
2076 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2077 if (N->getOperand(i).isUndef()) continue;
2078 // If the element isn't a constant, bail fully out.
2079 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2081 if (!UniquedVals[i&(Multiple-1)].getNode())
2082 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2083 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2084 return SDValue(); // no match.
2087 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2088 // either constant or undef values that are identical for each chunk. See
2089 // if these chunks can form into a larger vspltis*.
2091 // Check to see if all of the leading entries are either 0 or -1. If
2092 // neither, then this won't fit into the immediate field.
2093 bool LeadingZero = true;
2094 bool LeadingOnes = true;
2095 for (unsigned i = 0; i != Multiple-1; ++i) {
2096 if (!UniquedVals[i].getNode()) continue; // Must have been undefs.
2098 LeadingZero &= isNullConstant(UniquedVals[i]);
2099 LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2101 // Finally, check the least significant entry.
2102 if (LeadingZero) {
2103 if (!UniquedVals[Multiple-1].getNode())
2104 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef
2105 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2106 if (Val < 16) // 0,0,0,4 -> vspltisw(4)
2107 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2109 if (LeadingOnes) {
2110 if (!UniquedVals[Multiple-1].getNode())
2111 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2112 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2113 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
2114 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2117 return SDValue();
2120 // Check to see if this buildvec has a single non-undef value in its elements.
2121 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2122 if (N->getOperand(i).isUndef()) continue;
2123 if (!OpVal.getNode())
2124 OpVal = N->getOperand(i);
2125 else if (OpVal != N->getOperand(i))
2126 return SDValue();
2129 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def.
2131 unsigned ValSizeInBytes = EltSize;
2132 uint64_t Value = 0;
2133 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2134 Value = CN->getZExtValue();
2135 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2136 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2137 Value = FloatToBits(CN->getValueAPF().convertToFloat());
2140 // If the splat value is larger than the element value, then we can never do
2141 // this splat. The only case that we could fit the replicated bits into our
2142 // immediate field for would be zero, and we prefer to use vxor for it.
2143 if (ValSizeInBytes < ByteSize) return SDValue();
2145 // If the element value is larger than the splat value, check if it consists
2146 // of a repeated bit pattern of size ByteSize.
2147 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2148 return SDValue();
2150 // Properly sign extend the value.
2151 int MaskVal = SignExtend32(Value, ByteSize * 8);
2153 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2154 if (MaskVal == 0) return SDValue();
2156 // Finally, if this value fits in a 5 bit sext field, return it
2157 if (SignExtend32<5>(MaskVal) == MaskVal)
2158 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2159 return SDValue();
2162 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2163 /// amount, otherwise return -1.
2164 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2165 EVT VT = N->getValueType(0);
2166 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2167 return -1;
2169 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2171 // Find the first non-undef value in the shuffle mask.
2172 unsigned i;
2173 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2174 /*search*/;
2176 if (i == 4) return -1; // all undef.
2178 // Otherwise, check to see if the rest of the elements are consecutively
2179 // numbered from this value.
2180 unsigned ShiftAmt = SVOp->getMaskElt(i);
2181 if (ShiftAmt < i) return -1;
2182 ShiftAmt -= i;
2184 // Check the rest of the elements to see if they are consecutive.
2185 for (++i; i != 4; ++i)
2186 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2187 return -1;
2189 return ShiftAmt;
2192 //===----------------------------------------------------------------------===//
2193 // Addressing Mode Selection
2194 //===----------------------------------------------------------------------===//
2196 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2197 /// or 64-bit immediate, and if the value can be accurately represented as a
2198 /// sign extension from a 16-bit value. If so, this returns true and the
2199 /// immediate.
2200 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2201 if (!isa<ConstantSDNode>(N))
2202 return false;
2204 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2205 if (N->getValueType(0) == MVT::i32)
2206 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2207 else
2208 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2210 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2211 return isIntS16Immediate(Op.getNode(), Imm);
2214 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2215 /// can be represented as an indexed [r+r] operation. Returns false if it
2216 /// can be more efficiently represented with [r+imm].
2217 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2218 SDValue &Index,
2219 SelectionDAG &DAG) const {
2220 int16_t imm = 0;
2221 if (N.getOpcode() == ISD::ADD) {
2222 if (isIntS16Immediate(N.getOperand(1), imm))
2223 return false; // r+i
2224 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2225 return false; // r+i
2227 Base = N.getOperand(0);
2228 Index = N.getOperand(1);
2229 return true;
2230 } else if (N.getOpcode() == ISD::OR) {
2231 if (isIntS16Immediate(N.getOperand(1), imm))
2232 return false; // r+i can fold it if we can.
2234 // If this is an or of disjoint bitfields, we can codegen this as an add
2235 // (for better address arithmetic) if the LHS and RHS of the OR are provably
2236 // disjoint.
2237 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2239 if (LHSKnown.Zero.getBoolValue()) {
2240 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2241 // If all of the bits are known zero on the LHS or RHS, the add won't
2242 // carry.
2243 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2244 Base = N.getOperand(0);
2245 Index = N.getOperand(1);
2246 return true;
2251 return false;
2254 // If we happen to be doing an i64 load or store into a stack slot that has
2255 // less than a 4-byte alignment, then the frame-index elimination may need to
2256 // use an indexed load or store instruction (because the offset may not be a
2257 // multiple of 4). The extra register needed to hold the offset comes from the
2258 // register scavenger, and it is possible that the scavenger will need to use
2259 // an emergency spill slot. As a result, we need to make sure that a spill slot
2260 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2261 // stack slot.
2262 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2263 // FIXME: This does not handle the LWA case.
2264 if (VT != MVT::i64)
2265 return;
2267 // NOTE: We'll exclude negative FIs here, which come from argument
2268 // lowering, because there are no known test cases triggering this problem
2269 // using packed structures (or similar). We can remove this exclusion if
2270 // we find such a test case. The reason why this is so test-case driven is
2271 // because this entire 'fixup' is only to prevent crashes (from the
2272 // register scavenger) on not-really-valid inputs. For example, if we have:
2273 // %a = alloca i1
2274 // %b = bitcast i1* %a to i64*
2275 // store i64* a, i64 b
2276 // then the store should really be marked as 'align 1', but is not. If it
2277 // were marked as 'align 1' then the indexed form would have been
2278 // instruction-selected initially, and the problem this 'fixup' is preventing
2279 // won't happen regardless.
2280 if (FrameIdx < 0)
2281 return;
2283 MachineFunction &MF = DAG.getMachineFunction();
2284 MachineFrameInfo &MFI = MF.getFrameInfo();
2286 unsigned Align = MFI.getObjectAlignment(FrameIdx);
2287 if (Align >= 4)
2288 return;
2290 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2291 FuncInfo->setHasNonRISpills();
2294 /// Returns true if the address N can be represented by a base register plus
2295 /// a signed 16-bit displacement [r+imm], and if it is not better
2296 /// represented as reg+reg. If \p Alignment is non-zero, only accept
2297 /// displacements that are multiples of that value.
2298 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2299 SDValue &Base,
2300 SelectionDAG &DAG,
2301 unsigned Alignment) const {
2302 // FIXME dl should come from parent load or store, not from address
2303 SDLoc dl(N);
2304 // If this can be more profitably realized as r+r, fail.
2305 if (SelectAddressRegReg(N, Disp, Base, DAG))
2306 return false;
2308 if (N.getOpcode() == ISD::ADD) {
2309 int16_t imm = 0;
2310 if (isIntS16Immediate(N.getOperand(1), imm) &&
2311 (!Alignment || (imm % Alignment) == 0)) {
2312 Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2313 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2314 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2315 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2316 } else {
2317 Base = N.getOperand(0);
2319 return true; // [r+i]
2320 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2321 // Match LOAD (ADD (X, Lo(G))).
2322 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2323 && "Cannot handle constant offsets yet!");
2324 Disp = N.getOperand(1).getOperand(0); // The global address.
2325 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2326 Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2327 Disp.getOpcode() == ISD::TargetConstantPool ||
2328 Disp.getOpcode() == ISD::TargetJumpTable);
2329 Base = N.getOperand(0);
2330 return true; // [&g+r]
2332 } else if (N.getOpcode() == ISD::OR) {
2333 int16_t imm = 0;
2334 if (isIntS16Immediate(N.getOperand(1), imm) &&
2335 (!Alignment || (imm % Alignment) == 0)) {
2336 // If this is an or of disjoint bitfields, we can codegen this as an add
2337 // (for better address arithmetic) if the LHS and RHS of the OR are
2338 // provably disjoint.
2339 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2341 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2342 // If all of the bits are known zero on the LHS or RHS, the add won't
2343 // carry.
2344 if (FrameIndexSDNode *FI =
2345 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2346 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2347 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2348 } else {
2349 Base = N.getOperand(0);
2351 Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2352 return true;
2355 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2356 // Loading from a constant address.
2358 // If this address fits entirely in a 16-bit sext immediate field, codegen
2359 // this as "d, 0"
2360 int16_t Imm;
2361 if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
2362 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2363 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2364 CN->getValueType(0));
2365 return true;
2368 // Handle 32-bit sext immediates with LIS + addr mode.
2369 if ((CN->getValueType(0) == MVT::i32 ||
2370 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2371 (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
2372 int Addr = (int)CN->getZExtValue();
2374 // Otherwise, break this down into an LIS + disp.
2375 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2377 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2378 MVT::i32);
2379 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2380 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2381 return true;
2385 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2386 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2387 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2388 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2389 } else
2390 Base = N;
2391 return true; // [r+0]
2394 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2395 /// represented as an indexed [r+r] operation.
2396 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2397 SDValue &Index,
2398 SelectionDAG &DAG) const {
2399 // Check to see if we can easily represent this as an [r+r] address. This
2400 // will fail if it thinks that the address is more profitably represented as
2401 // reg+imm, e.g. where imm = 0.
2402 if (SelectAddressRegReg(N, Base, Index, DAG))
2403 return true;
2405 // If the address is the result of an add, we will utilize the fact that the
2406 // address calculation includes an implicit add. However, we can reduce
2407 // register pressure if we do not materialize a constant just for use as the
2408 // index register. We only get rid of the add if it is not an add of a
2409 // value and a 16-bit signed constant and both have a single use.
2410 int16_t imm = 0;
2411 if (N.getOpcode() == ISD::ADD &&
2412 (!isIntS16Immediate(N.getOperand(1), imm) ||
2413 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2414 Base = N.getOperand(0);
2415 Index = N.getOperand(1);
2416 return true;
2419 // Otherwise, do it the hard way, using R0 as the base register.
2420 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2421 N.getValueType());
2422 Index = N;
2423 return true;
2426 /// Returns true if we should use a direct load into vector instruction
2427 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2428 static bool usePartialVectorLoads(SDNode *N) {
2429 if (!N->hasOneUse())
2430 return false;
2432 // If there are any other uses other than scalar to vector, then we should
2433 // keep it as a scalar load -> direct move pattern to prevent multiple
2434 // loads. Currently, only check for i64 since we have lxsd/lfd to do this
2435 // efficiently, but no update equivalent.
2436 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2437 EVT MemVT = LD->getMemoryVT();
2438 if (MemVT.isSimple() && MemVT.getSimpleVT().SimpleTy == MVT::i64) {
2439 SDNode *User = *(LD->use_begin());
2440 if (User->getOpcode() == ISD::SCALAR_TO_VECTOR)
2441 return true;
2445 return false;
2448 /// getPreIndexedAddressParts - returns true by value, base pointer and
2449 /// offset pointer and addressing mode by reference if the node's address
2450 /// can be legally represented as pre-indexed load / store address.
2451 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2452 SDValue &Offset,
2453 ISD::MemIndexedMode &AM,
2454 SelectionDAG &DAG) const {
2455 if (DisablePPCPreinc) return false;
2457 bool isLoad = true;
2458 SDValue Ptr;
2459 EVT VT;
2460 unsigned Alignment;
2461 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2462 Ptr = LD->getBasePtr();
2463 VT = LD->getMemoryVT();
2464 Alignment = LD->getAlignment();
2465 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2466 Ptr = ST->getBasePtr();
2467 VT = ST->getMemoryVT();
2468 Alignment = ST->getAlignment();
2469 isLoad = false;
2470 } else
2471 return false;
2473 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2474 // instructions because we can fold these into a more efficient instruction
2475 // instead, (such as LXSD).
2476 if (isLoad && usePartialVectorLoads(N)) {
2477 return false;
2480 // PowerPC doesn't have preinc load/store instructions for vectors (except
2481 // for QPX, which does have preinc r+r forms).
2482 if (VT.isVector()) {
2483 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2484 return false;
2485 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2486 AM = ISD::PRE_INC;
2487 return true;
2491 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2492 // Common code will reject creating a pre-inc form if the base pointer
2493 // is a frame index, or if N is a store and the base pointer is either
2494 // the same as or a predecessor of the value being stored. Check for
2495 // those situations here, and try with swapped Base/Offset instead.
2496 bool Swap = false;
2498 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2499 Swap = true;
2500 else if (!isLoad) {
2501 SDValue Val = cast<StoreSDNode>(N)->getValue();
2502 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2503 Swap = true;
2506 if (Swap)
2507 std::swap(Base, Offset);
2509 AM = ISD::PRE_INC;
2510 return true;
2513 // LDU/STU can only handle immediates that are a multiple of 4.
2514 if (VT != MVT::i64) {
2515 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2516 return false;
2517 } else {
2518 // LDU/STU need an address with at least 4-byte alignment.
2519 if (Alignment < 4)
2520 return false;
2522 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2523 return false;
2526 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2527 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
2528 // sext i32 to i64 when addr mode is r+i.
2529 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2530 LD->getExtensionType() == ISD::SEXTLOAD &&
2531 isa<ConstantSDNode>(Offset))
2532 return false;
2535 AM = ISD::PRE_INC;
2536 return true;
2539 //===----------------------------------------------------------------------===//
2540 // LowerOperation implementation
2541 //===----------------------------------------------------------------------===//
2543 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2544 /// and LoOpFlags to the target MO flags.
2545 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2546 unsigned &HiOpFlags, unsigned &LoOpFlags,
2547 const GlobalValue *GV = nullptr) {
2548 HiOpFlags = PPCII::MO_HA;
2549 LoOpFlags = PPCII::MO_LO;
2551 // Don't use the pic base if not in PIC relocation model.
2552 if (IsPIC) {
2553 HiOpFlags |= PPCII::MO_PIC_FLAG;
2554 LoOpFlags |= PPCII::MO_PIC_FLAG;
2557 // If this is a reference to a global value that requires a non-lazy-ptr, make
2558 // sure that instruction lowering adds it.
2559 if (GV && Subtarget.hasLazyResolverStub(GV)) {
2560 HiOpFlags |= PPCII::MO_NLP_FLAG;
2561 LoOpFlags |= PPCII::MO_NLP_FLAG;
2563 if (GV->hasHiddenVisibility()) {
2564 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2565 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2570 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2571 SelectionDAG &DAG) {
2572 SDLoc DL(HiPart);
2573 EVT PtrVT = HiPart.getValueType();
2574 SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2576 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2577 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2579 // With PIC, the first instruction is actually "GR+hi(&G)".
2580 if (isPIC)
2581 Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2582 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2584 // Generate non-pic code that has direct accesses to the constant pool.
2585 // The address of the global is just (hi(&g)+lo(&g)).
2586 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2589 static void setUsesTOCBasePtr(MachineFunction &MF) {
2590 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2591 FuncInfo->setUsesTOCBasePtr();
2594 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2595 setUsesTOCBasePtr(DAG.getMachineFunction());
2598 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2599 SDValue GA) {
2600 EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2601 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2602 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2604 SDValue Ops[] = { GA, Reg };
2605 return DAG.getMemIntrinsicNode(
2606 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2607 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2608 MachineMemOperand::MOLoad);
2611 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2612 SelectionDAG &DAG) const {
2613 EVT PtrVT = Op.getValueType();
2614 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2615 const Constant *C = CP->getConstVal();
2617 // 64-bit SVR4 ABI code is always position-independent.
2618 // The actual address of the GlobalValue is stored in the TOC.
2619 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2620 setUsesTOCBasePtr(DAG);
2621 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2622 return getTOCEntry(DAG, SDLoc(CP), true, GA);
2625 unsigned MOHiFlag, MOLoFlag;
2626 bool IsPIC = isPositionIndependent();
2627 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2629 if (IsPIC && Subtarget.isSVR4ABI()) {
2630 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2631 PPCII::MO_PIC_FLAG);
2632 return getTOCEntry(DAG, SDLoc(CP), false, GA);
2635 SDValue CPIHi =
2636 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2637 SDValue CPILo =
2638 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2639 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2642 // For 64-bit PowerPC, prefer the more compact relative encodings.
2643 // This trades 32 bits per jump table entry for one or two instructions
2644 // on the jump site.
2645 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2646 if (isJumpTableRelative())
2647 return MachineJumpTableInfo::EK_LabelDifference32;
2649 return TargetLowering::getJumpTableEncoding();
2652 bool PPCTargetLowering::isJumpTableRelative() const {
2653 if (Subtarget.isPPC64())
2654 return true;
2655 return TargetLowering::isJumpTableRelative();
2658 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2659 SelectionDAG &DAG) const {
2660 if (!Subtarget.isPPC64())
2661 return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2663 switch (getTargetMachine().getCodeModel()) {
2664 case CodeModel::Small:
2665 case CodeModel::Medium:
2666 return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2667 default:
2668 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2669 getPointerTy(DAG.getDataLayout()));
2673 const MCExpr *
2674 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2675 unsigned JTI,
2676 MCContext &Ctx) const {
2677 if (!Subtarget.isPPC64())
2678 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2680 switch (getTargetMachine().getCodeModel()) {
2681 case CodeModel::Small:
2682 case CodeModel::Medium:
2683 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2684 default:
2685 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2689 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2690 EVT PtrVT = Op.getValueType();
2691 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2693 // 64-bit SVR4 ABI code is always position-independent.
2694 // The actual address of the GlobalValue is stored in the TOC.
2695 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2696 setUsesTOCBasePtr(DAG);
2697 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2698 return getTOCEntry(DAG, SDLoc(JT), true, GA);
2701 unsigned MOHiFlag, MOLoFlag;
2702 bool IsPIC = isPositionIndependent();
2703 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2705 if (IsPIC && Subtarget.isSVR4ABI()) {
2706 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2707 PPCII::MO_PIC_FLAG);
2708 return getTOCEntry(DAG, SDLoc(GA), false, GA);
2711 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2712 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2713 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2716 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2717 SelectionDAG &DAG) const {
2718 EVT PtrVT = Op.getValueType();
2719 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2720 const BlockAddress *BA = BASDN->getBlockAddress();
2722 // 64-bit SVR4 ABI code is always position-independent.
2723 // The actual BlockAddress is stored in the TOC.
2724 if (Subtarget.isSVR4ABI() &&
2725 (Subtarget.isPPC64() || isPositionIndependent())) {
2726 if (Subtarget.isPPC64())
2727 setUsesTOCBasePtr(DAG);
2728 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2729 return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
2732 unsigned MOHiFlag, MOLoFlag;
2733 bool IsPIC = isPositionIndependent();
2734 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2735 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2736 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2737 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2740 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2741 SelectionDAG &DAG) const {
2742 // FIXME: TLS addresses currently use medium model code sequences,
2743 // which is the most useful form. Eventually support for small and
2744 // large models could be added if users need it, at the cost of
2745 // additional complexity.
2746 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2747 if (DAG.getTarget().useEmulatedTLS())
2748 return LowerToTLSEmulatedModel(GA, DAG);
2750 SDLoc dl(GA);
2751 const GlobalValue *GV = GA->getGlobal();
2752 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2753 bool is64bit = Subtarget.isPPC64();
2754 const Module *M = DAG.getMachineFunction().getFunction().getParent();
2755 PICLevel::Level picLevel = M->getPICLevel();
2757 TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2759 if (Model == TLSModel::LocalExec) {
2760 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2761 PPCII::MO_TPREL_HA);
2762 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2763 PPCII::MO_TPREL_LO);
2764 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2765 : DAG.getRegister(PPC::R2, MVT::i32);
2767 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2768 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2771 if (Model == TLSModel::InitialExec) {
2772 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2773 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2774 PPCII::MO_TLS);
2775 SDValue GOTPtr;
2776 if (is64bit) {
2777 setUsesTOCBasePtr(DAG);
2778 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2779 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2780 PtrVT, GOTReg, TGA);
2781 } else
2782 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2783 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2784 PtrVT, TGA, GOTPtr);
2785 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2788 if (Model == TLSModel::GeneralDynamic) {
2789 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2790 SDValue GOTPtr;
2791 if (is64bit) {
2792 setUsesTOCBasePtr(DAG);
2793 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2794 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2795 GOTReg, TGA);
2796 } else {
2797 if (picLevel == PICLevel::SmallPIC)
2798 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2799 else
2800 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2802 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2803 GOTPtr, TGA, TGA);
2806 if (Model == TLSModel::LocalDynamic) {
2807 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2808 SDValue GOTPtr;
2809 if (is64bit) {
2810 setUsesTOCBasePtr(DAG);
2811 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2812 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2813 GOTReg, TGA);
2814 } else {
2815 if (picLevel == PICLevel::SmallPIC)
2816 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2817 else
2818 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2820 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2821 PtrVT, GOTPtr, TGA, TGA);
2822 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2823 PtrVT, TLSAddr, TGA);
2824 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2827 llvm_unreachable("Unknown TLS model!");
2830 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2831 SelectionDAG &DAG) const {
2832 EVT PtrVT = Op.getValueType();
2833 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2834 SDLoc DL(GSDN);
2835 const GlobalValue *GV = GSDN->getGlobal();
2837 // 64-bit SVR4 ABI code is always position-independent.
2838 // The actual address of the GlobalValue is stored in the TOC.
2839 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2840 setUsesTOCBasePtr(DAG);
2841 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2842 return getTOCEntry(DAG, DL, true, GA);
2845 unsigned MOHiFlag, MOLoFlag;
2846 bool IsPIC = isPositionIndependent();
2847 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2849 if (IsPIC && Subtarget.isSVR4ABI()) {
2850 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2851 GSDN->getOffset(),
2852 PPCII::MO_PIC_FLAG);
2853 return getTOCEntry(DAG, DL, false, GA);
2856 SDValue GAHi =
2857 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2858 SDValue GALo =
2859 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2861 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2863 // If the global reference is actually to a non-lazy-pointer, we have to do an
2864 // extra load to get the address of the global.
2865 if (MOHiFlag & PPCII::MO_NLP_FLAG)
2866 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2867 return Ptr;
2870 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2871 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2872 SDLoc dl(Op);
2874 if (Op.getValueType() == MVT::v2i64) {
2875 // When the operands themselves are v2i64 values, we need to do something
2876 // special because VSX has no underlying comparison operations for these.
2877 if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2878 // Equality can be handled by casting to the legal type for Altivec
2879 // comparisons, everything else needs to be expanded.
2880 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2881 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2882 DAG.getSetCC(dl, MVT::v4i32,
2883 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2884 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2885 CC));
2888 return SDValue();
2891 // We handle most of these in the usual way.
2892 return Op;
2895 // If we're comparing for equality to zero, expose the fact that this is
2896 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2897 // fold the new nodes.
2898 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2899 return V;
2901 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2902 // Leave comparisons against 0 and -1 alone for now, since they're usually
2903 // optimized. FIXME: revisit this when we can custom lower all setcc
2904 // optimizations.
2905 if (C->isAllOnesValue() || C->isNullValue())
2906 return SDValue();
2909 // If we have an integer seteq/setne, turn it into a compare against zero
2910 // by xor'ing the rhs with the lhs, which is faster than setting a
2911 // condition register, reading it back out, and masking the correct bit. The
2912 // normal approach here uses sub to do this instead of xor. Using xor exposes
2913 // the result to other bit-twiddling opportunities.
2914 EVT LHSVT = Op.getOperand(0).getValueType();
2915 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2916 EVT VT = Op.getValueType();
2917 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2918 Op.getOperand(1));
2919 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2921 return SDValue();
2924 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2925 SDNode *Node = Op.getNode();
2926 EVT VT = Node->getValueType(0);
2927 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2928 SDValue InChain = Node->getOperand(0);
2929 SDValue VAListPtr = Node->getOperand(1);
2930 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2931 SDLoc dl(Node);
2933 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2935 // gpr_index
2936 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2937 VAListPtr, MachinePointerInfo(SV), MVT::i8);
2938 InChain = GprIndex.getValue(1);
2940 if (VT == MVT::i64) {
2941 // Check if GprIndex is even
2942 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2943 DAG.getConstant(1, dl, MVT::i32));
2944 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2945 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2946 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2947 DAG.getConstant(1, dl, MVT::i32));
2948 // Align GprIndex to be even if it isn't
2949 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2950 GprIndex);
2953 // fpr index is 1 byte after gpr
2954 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2955 DAG.getConstant(1, dl, MVT::i32));
2957 // fpr
2958 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2959 FprPtr, MachinePointerInfo(SV), MVT::i8);
2960 InChain = FprIndex.getValue(1);
2962 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2963 DAG.getConstant(8, dl, MVT::i32));
2965 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2966 DAG.getConstant(4, dl, MVT::i32));
2968 // areas
2969 SDValue OverflowArea =
2970 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2971 InChain = OverflowArea.getValue(1);
2973 SDValue RegSaveArea =
2974 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2975 InChain = RegSaveArea.getValue(1);
2977 // select overflow_area if index > 8
2978 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2979 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2981 // adjustment constant gpr_index * 4/8
2982 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2983 VT.isInteger() ? GprIndex : FprIndex,
2984 DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2985 MVT::i32));
2987 // OurReg = RegSaveArea + RegConstant
2988 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2989 RegConstant);
2991 // Floating types are 32 bytes into RegSaveArea
2992 if (VT.isFloatingPoint())
2993 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2994 DAG.getConstant(32, dl, MVT::i32));
2996 // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2997 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2998 VT.isInteger() ? GprIndex : FprIndex,
2999 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3000 MVT::i32));
3002 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3003 VT.isInteger() ? VAListPtr : FprPtr,
3004 MachinePointerInfo(SV), MVT::i8);
3006 // determine if we should load from reg_save_area or overflow_area
3007 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3009 // increase overflow_area by 4/8 if gpr/fpr > 8
3010 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3011 DAG.getConstant(VT.isInteger() ? 4 : 8,
3012 dl, MVT::i32));
3014 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3015 OverflowAreaPlusN);
3017 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3018 MachinePointerInfo(), MVT::i32);
3020 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3023 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3024 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3026 // We have to copy the entire va_list struct:
3027 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3028 return DAG.getMemcpy(Op.getOperand(0), Op,
3029 Op.getOperand(1), Op.getOperand(2),
3030 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3031 false, MachinePointerInfo(), MachinePointerInfo());
3034 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3035 SelectionDAG &DAG) const {
3036 return Op.getOperand(0);
3039 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3040 SelectionDAG &DAG) const {
3041 SDValue Chain = Op.getOperand(0);
3042 SDValue Trmp = Op.getOperand(1); // trampoline
3043 SDValue FPtr = Op.getOperand(2); // nested function
3044 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3045 SDLoc dl(Op);
3047 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3048 bool isPPC64 = (PtrVT == MVT::i64);
3049 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3051 TargetLowering::ArgListTy Args;
3052 TargetLowering::ArgListEntry Entry;
3054 Entry.Ty = IntPtrTy;
3055 Entry.Node = Trmp; Args.push_back(Entry);
3057 // TrampSize == (isPPC64 ? 48 : 40);
3058 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3059 isPPC64 ? MVT::i64 : MVT::i32);
3060 Args.push_back(Entry);
3062 Entry.Node = FPtr; Args.push_back(Entry);
3063 Entry.Node = Nest; Args.push_back(Entry);
3065 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3066 TargetLowering::CallLoweringInfo CLI(DAG);
3067 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3068 CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3069 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3071 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3072 return CallResult.second;
3075 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3076 MachineFunction &MF = DAG.getMachineFunction();
3077 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3078 EVT PtrVT = getPointerTy(MF.getDataLayout());
3080 SDLoc dl(Op);
3082 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3083 // vastart just stores the address of the VarArgsFrameIndex slot into the
3084 // memory location argument.
3085 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3086 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3087 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3088 MachinePointerInfo(SV));
3091 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3092 // We suppose the given va_list is already allocated.
3094 // typedef struct {
3095 // char gpr; /* index into the array of 8 GPRs
3096 // * stored in the register save area
3097 // * gpr=0 corresponds to r3,
3098 // * gpr=1 to r4, etc.
3099 // */
3100 // char fpr; /* index into the array of 8 FPRs
3101 // * stored in the register save area
3102 // * fpr=0 corresponds to f1,
3103 // * fpr=1 to f2, etc.
3104 // */
3105 // char *overflow_arg_area;
3106 // /* location on stack that holds
3107 // * the next overflow argument
3108 // */
3109 // char *reg_save_area;
3110 // /* where r3:r10 and f1:f8 (if saved)
3111 // * are stored
3112 // */
3113 // } va_list[1];
3115 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3116 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3117 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3118 PtrVT);
3119 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3120 PtrVT);
3122 uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3123 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3125 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3126 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3128 uint64_t FPROffset = 1;
3129 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3131 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3133 // Store first byte : number of int regs
3134 SDValue firstStore =
3135 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3136 MachinePointerInfo(SV), MVT::i8);
3137 uint64_t nextOffset = FPROffset;
3138 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3139 ConstFPROffset);
3141 // Store second byte : number of float regs
3142 SDValue secondStore =
3143 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3144 MachinePointerInfo(SV, nextOffset), MVT::i8);
3145 nextOffset += StackOffset;
3146 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3148 // Store second word : arguments given on stack
3149 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3150 MachinePointerInfo(SV, nextOffset));
3151 nextOffset += FrameOffset;
3152 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3154 // Store third word : arguments given in registers
3155 return DAG.getStore(thirdStore, dl, FR, nextPtr,
3156 MachinePointerInfo(SV, nextOffset));
3159 /// FPR - The set of FP registers that should be allocated for arguments,
3160 /// on Darwin.
3161 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5,
3162 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10,
3163 PPC::F11, PPC::F12, PPC::F13};
3165 /// QFPR - The set of QPX registers that should be allocated for arguments.
3166 static const MCPhysReg QFPR[] = {
3167 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7,
3168 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3170 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3171 /// the stack.
3172 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3173 unsigned PtrByteSize) {
3174 unsigned ArgSize = ArgVT.getStoreSize();
3175 if (Flags.isByVal())
3176 ArgSize = Flags.getByValSize();
3178 // Round up to multiples of the pointer size, except for array members,
3179 // which are always packed.
3180 if (!Flags.isInConsecutiveRegs())
3181 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3183 return ArgSize;
3186 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3187 /// on the stack.
3188 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3189 ISD::ArgFlagsTy Flags,
3190 unsigned PtrByteSize) {
3191 unsigned Align = PtrByteSize;
3193 // Altivec parameters are padded to a 16 byte boundary.
3194 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3195 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3196 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3197 ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3198 Align = 16;
3199 // QPX vector types stored in double-precision are padded to a 32 byte
3200 // boundary.
3201 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3202 Align = 32;
3204 // ByVal parameters are aligned as requested.
3205 if (Flags.isByVal()) {
3206 unsigned BVAlign = Flags.getByValAlign();
3207 if (BVAlign > PtrByteSize) {
3208 if (BVAlign % PtrByteSize != 0)
3209 llvm_unreachable(
3210 "ByVal alignment is not a multiple of the pointer size");
3212 Align = BVAlign;
3216 // Array members are always packed to their original alignment.
3217 if (Flags.isInConsecutiveRegs()) {
3218 // If the array member was split into multiple registers, the first
3219 // needs to be aligned to the size of the full type. (Except for
3220 // ppcf128, which is only aligned as its f64 components.)
3221 if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3222 Align = OrigVT.getStoreSize();
3223 else
3224 Align = ArgVT.getStoreSize();
3227 return Align;
3230 /// CalculateStackSlotUsed - Return whether this argument will use its
3231 /// stack slot (instead of being passed in registers). ArgOffset,
3232 /// AvailableFPRs, and AvailableVRs must hold the current argument
3233 /// position, and will be updated to account for this argument.
3234 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3235 ISD::ArgFlagsTy Flags,
3236 unsigned PtrByteSize,
3237 unsigned LinkageSize,
3238 unsigned ParamAreaSize,
3239 unsigned &ArgOffset,
3240 unsigned &AvailableFPRs,
3241 unsigned &AvailableVRs, bool HasQPX) {
3242 bool UseMemory = false;
3244 // Respect alignment of argument on the stack.
3245 unsigned Align =
3246 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3247 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3248 // If there's no space left in the argument save area, we must
3249 // use memory (this check also catches zero-sized arguments).
3250 if (ArgOffset >= LinkageSize + ParamAreaSize)
3251 UseMemory = true;
3253 // Allocate argument on the stack.
3254 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3255 if (Flags.isInConsecutiveRegsLast())
3256 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3257 // If we overran the argument save area, we must use memory
3258 // (this check catches arguments passed partially in memory)
3259 if (ArgOffset > LinkageSize + ParamAreaSize)
3260 UseMemory = true;
3262 // However, if the argument is actually passed in an FPR or a VR,
3263 // we don't use memory after all.
3264 if (!Flags.isByVal()) {
3265 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3266 // QPX registers overlap with the scalar FP registers.
3267 (HasQPX && (ArgVT == MVT::v4f32 ||
3268 ArgVT == MVT::v4f64 ||
3269 ArgVT == MVT::v4i1)))
3270 if (AvailableFPRs > 0) {
3271 --AvailableFPRs;
3272 return false;
3274 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3275 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3276 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3277 ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3278 if (AvailableVRs > 0) {
3279 --AvailableVRs;
3280 return false;
3284 return UseMemory;
3287 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3288 /// ensure minimum alignment required for target.
3289 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3290 unsigned NumBytes) {
3291 unsigned TargetAlign = Lowering->getStackAlignment();
3292 unsigned AlignMask = TargetAlign - 1;
3293 NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3294 return NumBytes;
3297 SDValue PPCTargetLowering::LowerFormalArguments(
3298 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3299 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3300 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3301 if (Subtarget.isSVR4ABI()) {
3302 if (Subtarget.isPPC64())
3303 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3304 dl, DAG, InVals);
3305 else
3306 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3307 dl, DAG, InVals);
3308 } else {
3309 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3310 dl, DAG, InVals);
3314 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3315 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3316 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3317 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3319 // 32-bit SVR4 ABI Stack Frame Layout:
3320 // +-----------------------------------+
3321 // +--> | Back chain |
3322 // | +-----------------------------------+
3323 // | | Floating-point register save area |
3324 // | +-----------------------------------+
3325 // | | General register save area |
3326 // | +-----------------------------------+
3327 // | | CR save word |
3328 // | +-----------------------------------+
3329 // | | VRSAVE save word |
3330 // | +-----------------------------------+
3331 // | | Alignment padding |
3332 // | +-----------------------------------+
3333 // | | Vector register save area |
3334 // | +-----------------------------------+
3335 // | | Local variable space |
3336 // | +-----------------------------------+
3337 // | | Parameter list area |
3338 // | +-----------------------------------+
3339 // | | LR save word |
3340 // | +-----------------------------------+
3341 // SP--> +--- | Back chain |
3342 // +-----------------------------------+
3344 // Specifications:
3345 // System V Application Binary Interface PowerPC Processor Supplement
3346 // AltiVec Technology Programming Interface Manual
3348 MachineFunction &MF = DAG.getMachineFunction();
3349 MachineFrameInfo &MFI = MF.getFrameInfo();
3350 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3352 EVT PtrVT = getPointerTy(MF.getDataLayout());
3353 // Potential tail calls could cause overwriting of argument stack slots.
3354 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3355 (CallConv == CallingConv::Fast));
3356 unsigned PtrByteSize = 4;
3358 // Assign locations to all of the incoming arguments.
3359 SmallVector<CCValAssign, 16> ArgLocs;
3360 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3361 *DAG.getContext());
3363 // Reserve space for the linkage area on the stack.
3364 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3365 CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3366 if (useSoftFloat() || hasSPE())
3367 CCInfo.PreAnalyzeFormalArguments(Ins);
3369 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3370 CCInfo.clearWasPPCF128();
3372 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3373 CCValAssign &VA = ArgLocs[i];
3375 // Arguments stored in registers.
3376 if (VA.isRegLoc()) {
3377 const TargetRegisterClass *RC;
3378 EVT ValVT = VA.getValVT();
3380 switch (ValVT.getSimpleVT().SimpleTy) {
3381 default:
3382 llvm_unreachable("ValVT not supported by formal arguments Lowering");
3383 case MVT::i1:
3384 case MVT::i32:
3385 RC = &PPC::GPRCRegClass;
3386 break;
3387 case MVT::f32:
3388 if (Subtarget.hasP8Vector())
3389 RC = &PPC::VSSRCRegClass;
3390 else if (Subtarget.hasSPE())
3391 RC = &PPC::SPE4RCRegClass;
3392 else
3393 RC = &PPC::F4RCRegClass;
3394 break;
3395 case MVT::f64:
3396 if (Subtarget.hasVSX())
3397 RC = &PPC::VSFRCRegClass;
3398 else if (Subtarget.hasSPE())
3399 RC = &PPC::SPERCRegClass;
3400 else
3401 RC = &PPC::F8RCRegClass;
3402 break;
3403 case MVT::v16i8:
3404 case MVT::v8i16:
3405 case MVT::v4i32:
3406 RC = &PPC::VRRCRegClass;
3407 break;
3408 case MVT::v4f32:
3409 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3410 break;
3411 case MVT::v2f64:
3412 case MVT::v2i64:
3413 RC = &PPC::VRRCRegClass;
3414 break;
3415 case MVT::v4f64:
3416 RC = &PPC::QFRCRegClass;
3417 break;
3418 case MVT::v4i1:
3419 RC = &PPC::QBRCRegClass;
3420 break;
3423 // Transform the arguments stored in physical registers into virtual ones.
3424 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3425 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3426 ValVT == MVT::i1 ? MVT::i32 : ValVT);
3428 if (ValVT == MVT::i1)
3429 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3431 InVals.push_back(ArgValue);
3432 } else {
3433 // Argument stored in memory.
3434 assert(VA.isMemLoc());
3436 // Get the extended size of the argument type in stack
3437 unsigned ArgSize = VA.getLocVT().getStoreSize();
3438 // Get the actual size of the argument type
3439 unsigned ObjSize = VA.getValVT().getStoreSize();
3440 unsigned ArgOffset = VA.getLocMemOffset();
3441 // Stack objects in PPC32 are right justified.
3442 ArgOffset += ArgSize - ObjSize;
3443 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3445 // Create load nodes to retrieve arguments from the stack.
3446 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3447 InVals.push_back(
3448 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3452 // Assign locations to all of the incoming aggregate by value arguments.
3453 // Aggregates passed by value are stored in the local variable space of the
3454 // caller's stack frame, right above the parameter list area.
3455 SmallVector<CCValAssign, 16> ByValArgLocs;
3456 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3457 ByValArgLocs, *DAG.getContext());
3459 // Reserve stack space for the allocations in CCInfo.
3460 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3462 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3464 // Area that is at least reserved in the caller of this function.
3465 unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3466 MinReservedArea = std::max(MinReservedArea, LinkageSize);
3468 // Set the size that is at least reserved in caller of this function. Tail
3469 // call optimized function's reserved stack space needs to be aligned so that
3470 // taking the difference between two stack areas will result in an aligned
3471 // stack.
3472 MinReservedArea =
3473 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3474 FuncInfo->setMinReservedArea(MinReservedArea);
3476 SmallVector<SDValue, 8> MemOps;
3478 // If the function takes variable number of arguments, make a frame index for
3479 // the start of the first vararg value... for expansion of llvm.va_start.
3480 if (isVarArg) {
3481 static const MCPhysReg GPArgRegs[] = {
3482 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3483 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3485 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3487 static const MCPhysReg FPArgRegs[] = {
3488 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3489 PPC::F8
3491 unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3493 if (useSoftFloat() || hasSPE())
3494 NumFPArgRegs = 0;
3496 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3497 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3499 // Make room for NumGPArgRegs and NumFPArgRegs.
3500 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3501 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3503 FuncInfo->setVarArgsStackOffset(
3504 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3505 CCInfo.getNextStackOffset(), true));
3507 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3508 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3510 // The fixed integer arguments of a variadic function are stored to the
3511 // VarArgsFrameIndex on the stack so that they may be loaded by
3512 // dereferencing the result of va_next.
3513 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3514 // Get an existing live-in vreg, or add a new one.
3515 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3516 if (!VReg)
3517 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3519 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3520 SDValue Store =
3521 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3522 MemOps.push_back(Store);
3523 // Increment the address by four for the next argument to store
3524 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3525 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3528 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3529 // is set.
3530 // The double arguments are stored to the VarArgsFrameIndex
3531 // on the stack.
3532 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3533 // Get an existing live-in vreg, or add a new one.
3534 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3535 if (!VReg)
3536 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3538 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3539 SDValue Store =
3540 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3541 MemOps.push_back(Store);
3542 // Increment the address by eight for the next argument to store
3543 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3544 PtrVT);
3545 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3549 if (!MemOps.empty())
3550 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3552 return Chain;
3555 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3556 // value to MVT::i64 and then truncate to the correct register size.
3557 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3558 EVT ObjectVT, SelectionDAG &DAG,
3559 SDValue ArgVal,
3560 const SDLoc &dl) const {
3561 if (Flags.isSExt())
3562 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3563 DAG.getValueType(ObjectVT));
3564 else if (Flags.isZExt())
3565 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3566 DAG.getValueType(ObjectVT));
3568 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3571 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3572 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3573 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3574 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3575 // TODO: add description of PPC stack frame format, or at least some docs.
3577 bool isELFv2ABI = Subtarget.isELFv2ABI();
3578 bool isLittleEndian = Subtarget.isLittleEndian();
3579 MachineFunction &MF = DAG.getMachineFunction();
3580 MachineFrameInfo &MFI = MF.getFrameInfo();
3581 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3583 assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3584 "fastcc not supported on varargs functions");
3586 EVT PtrVT = getPointerTy(MF.getDataLayout());
3587 // Potential tail calls could cause overwriting of argument stack slots.
3588 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3589 (CallConv == CallingConv::Fast));
3590 unsigned PtrByteSize = 8;
3591 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3593 static const MCPhysReg GPR[] = {
3594 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3595 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3597 static const MCPhysReg VR[] = {
3598 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3599 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3602 const unsigned Num_GPR_Regs = array_lengthof(GPR);
3603 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3604 const unsigned Num_VR_Regs = array_lengthof(VR);
3605 const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3607 // Do a first pass over the arguments to determine whether the ABI
3608 // guarantees that our caller has allocated the parameter save area
3609 // on its stack frame. In the ELFv1 ABI, this is always the case;
3610 // in the ELFv2 ABI, it is true if this is a vararg function or if
3611 // any parameter is located in a stack slot.
3613 bool HasParameterArea = !isELFv2ABI || isVarArg;
3614 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3615 unsigned NumBytes = LinkageSize;
3616 unsigned AvailableFPRs = Num_FPR_Regs;
3617 unsigned AvailableVRs = Num_VR_Regs;
3618 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3619 if (Ins[i].Flags.isNest())
3620 continue;
3622 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3623 PtrByteSize, LinkageSize, ParamAreaSize,
3624 NumBytes, AvailableFPRs, AvailableVRs,
3625 Subtarget.hasQPX()))
3626 HasParameterArea = true;
3629 // Add DAG nodes to load the arguments or copy them out of registers. On
3630 // entry to a function on PPC, the arguments start after the linkage area,
3631 // although the first ones are often in registers.
3633 unsigned ArgOffset = LinkageSize;
3634 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3635 unsigned &QFPR_idx = FPR_idx;
3636 SmallVector<SDValue, 8> MemOps;
3637 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3638 unsigned CurArgIdx = 0;
3639 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3640 SDValue ArgVal;
3641 bool needsLoad = false;
3642 EVT ObjectVT = Ins[ArgNo].VT;
3643 EVT OrigVT = Ins[ArgNo].ArgVT;
3644 unsigned ObjSize = ObjectVT.getStoreSize();
3645 unsigned ArgSize = ObjSize;
3646 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3647 if (Ins[ArgNo].isOrigArg()) {
3648 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3649 CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3651 // We re-align the argument offset for each argument, except when using the
3652 // fast calling convention, when we need to make sure we do that only when
3653 // we'll actually use a stack slot.
3654 unsigned CurArgOffset, Align;
3655 auto ComputeArgOffset = [&]() {
3656 /* Respect alignment of argument on the stack. */
3657 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3658 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3659 CurArgOffset = ArgOffset;
3662 if (CallConv != CallingConv::Fast) {
3663 ComputeArgOffset();
3665 /* Compute GPR index associated with argument offset. */
3666 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3667 GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3670 // FIXME the codegen can be much improved in some cases.
3671 // We do not have to keep everything in memory.
3672 if (Flags.isByVal()) {
3673 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3675 if (CallConv == CallingConv::Fast)
3676 ComputeArgOffset();
3678 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3679 ObjSize = Flags.getByValSize();
3680 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3681 // Empty aggregate parameters do not take up registers. Examples:
3682 // struct { } a;
3683 // union { } b;
3684 // int c[0];
3685 // etc. However, we have to provide a place-holder in InVals, so
3686 // pretend we have an 8-byte item at the current address for that
3687 // purpose.
3688 if (!ObjSize) {
3689 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3690 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3691 InVals.push_back(FIN);
3692 continue;
3695 // Create a stack object covering all stack doublewords occupied
3696 // by the argument. If the argument is (fully or partially) on
3697 // the stack, or if the argument is fully in registers but the
3698 // caller has allocated the parameter save anyway, we can refer
3699 // directly to the caller's stack frame. Otherwise, create a
3700 // local copy in our own frame.
3701 int FI;
3702 if (HasParameterArea ||
3703 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3704 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3705 else
3706 FI = MFI.CreateStackObject(ArgSize, Align, false);
3707 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3709 // Handle aggregates smaller than 8 bytes.
3710 if (ObjSize < PtrByteSize) {
3711 // The value of the object is its address, which differs from the
3712 // address of the enclosing doubleword on big-endian systems.
3713 SDValue Arg = FIN;
3714 if (!isLittleEndian) {
3715 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3716 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3718 InVals.push_back(Arg);
3720 if (GPR_idx != Num_GPR_Regs) {
3721 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3722 FuncInfo->addLiveInAttr(VReg, Flags);
3723 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3724 SDValue Store;
3726 if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3727 EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3728 (ObjSize == 2 ? MVT::i16 : MVT::i32));
3729 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3730 MachinePointerInfo(&*FuncArg), ObjType);
3731 } else {
3732 // For sizes that don't fit a truncating store (3, 5, 6, 7),
3733 // store the whole register as-is to the parameter save area
3734 // slot.
3735 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3736 MachinePointerInfo(&*FuncArg));
3739 MemOps.push_back(Store);
3741 // Whether we copied from a register or not, advance the offset
3742 // into the parameter save area by a full doubleword.
3743 ArgOffset += PtrByteSize;
3744 continue;
3747 // The value of the object is its address, which is the address of
3748 // its first stack doubleword.
3749 InVals.push_back(FIN);
3751 // Store whatever pieces of the object are in registers to memory.
3752 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3753 if (GPR_idx == Num_GPR_Regs)
3754 break;
3756 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3757 FuncInfo->addLiveInAttr(VReg, Flags);
3758 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3759 SDValue Addr = FIN;
3760 if (j) {
3761 SDValue Off = DAG.getConstant(j, dl, PtrVT);
3762 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3764 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3765 MachinePointerInfo(&*FuncArg, j));
3766 MemOps.push_back(Store);
3767 ++GPR_idx;
3769 ArgOffset += ArgSize;
3770 continue;
3773 switch (ObjectVT.getSimpleVT().SimpleTy) {
3774 default: llvm_unreachable("Unhandled argument type!");
3775 case MVT::i1:
3776 case MVT::i32:
3777 case MVT::i64:
3778 if (Flags.isNest()) {
3779 // The 'nest' parameter, if any, is passed in R11.
3780 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3781 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3783 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3784 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3786 break;
3789 // These can be scalar arguments or elements of an integer array type
3790 // passed directly. Clang may use those instead of "byval" aggregate
3791 // types to avoid forcing arguments to memory unnecessarily.
3792 if (GPR_idx != Num_GPR_Regs) {
3793 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3794 FuncInfo->addLiveInAttr(VReg, Flags);
3795 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3797 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3798 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3799 // value to MVT::i64 and then truncate to the correct register size.
3800 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3801 } else {
3802 if (CallConv == CallingConv::Fast)
3803 ComputeArgOffset();
3805 needsLoad = true;
3806 ArgSize = PtrByteSize;
3808 if (CallConv != CallingConv::Fast || needsLoad)
3809 ArgOffset += 8;
3810 break;
3812 case MVT::f32:
3813 case MVT::f64:
3814 // These can be scalar arguments or elements of a float array type
3815 // passed directly. The latter are used to implement ELFv2 homogenous
3816 // float aggregates.
3817 if (FPR_idx != Num_FPR_Regs) {
3818 unsigned VReg;
3820 if (ObjectVT == MVT::f32)
3821 VReg = MF.addLiveIn(FPR[FPR_idx],
3822 Subtarget.hasP8Vector()
3823 ? &PPC::VSSRCRegClass
3824 : &PPC::F4RCRegClass);
3825 else
3826 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3827 ? &PPC::VSFRCRegClass
3828 : &PPC::F8RCRegClass);
3830 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3831 ++FPR_idx;
3832 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3833 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3834 // once we support fp <-> gpr moves.
3836 // This can only ever happen in the presence of f32 array types,
3837 // since otherwise we never run out of FPRs before running out
3838 // of GPRs.
3839 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3840 FuncInfo->addLiveInAttr(VReg, Flags);
3841 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3843 if (ObjectVT == MVT::f32) {
3844 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3845 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3846 DAG.getConstant(32, dl, MVT::i32));
3847 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3850 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3851 } else {
3852 if (CallConv == CallingConv::Fast)
3853 ComputeArgOffset();
3855 needsLoad = true;
3858 // When passing an array of floats, the array occupies consecutive
3859 // space in the argument area; only round up to the next doubleword
3860 // at the end of the array. Otherwise, each float takes 8 bytes.
3861 if (CallConv != CallingConv::Fast || needsLoad) {
3862 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3863 ArgOffset += ArgSize;
3864 if (Flags.isInConsecutiveRegsLast())
3865 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3867 break;
3868 case MVT::v4f32:
3869 case MVT::v4i32:
3870 case MVT::v8i16:
3871 case MVT::v16i8:
3872 case MVT::v2f64:
3873 case MVT::v2i64:
3874 case MVT::v1i128:
3875 case MVT::f128:
3876 if (!Subtarget.hasQPX()) {
3877 // These can be scalar arguments or elements of a vector array type
3878 // passed directly. The latter are used to implement ELFv2 homogenous
3879 // vector aggregates.
3880 if (VR_idx != Num_VR_Regs) {
3881 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3882 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3883 ++VR_idx;
3884 } else {
3885 if (CallConv == CallingConv::Fast)
3886 ComputeArgOffset();
3887 needsLoad = true;
3889 if (CallConv != CallingConv::Fast || needsLoad)
3890 ArgOffset += 16;
3891 break;
3892 } // not QPX
3894 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3895 "Invalid QPX parameter type");
3896 LLVM_FALLTHROUGH;
3898 case MVT::v4f64:
3899 case MVT::v4i1:
3900 // QPX vectors are treated like their scalar floating-point subregisters
3901 // (except that they're larger).
3902 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3903 if (QFPR_idx != Num_QFPR_Regs) {
3904 const TargetRegisterClass *RC;
3905 switch (ObjectVT.getSimpleVT().SimpleTy) {
3906 case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3907 case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3908 default: RC = &PPC::QBRCRegClass; break;
3911 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3912 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3913 ++QFPR_idx;
3914 } else {
3915 if (CallConv == CallingConv::Fast)
3916 ComputeArgOffset();
3917 needsLoad = true;
3919 if (CallConv != CallingConv::Fast || needsLoad)
3920 ArgOffset += Sz;
3921 break;
3924 // We need to load the argument to a virtual register if we determined
3925 // above that we ran out of physical registers of the appropriate type.
3926 if (needsLoad) {
3927 if (ObjSize < ArgSize && !isLittleEndian)
3928 CurArgOffset += ArgSize - ObjSize;
3929 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3930 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3931 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3934 InVals.push_back(ArgVal);
3937 // Area that is at least reserved in the caller of this function.
3938 unsigned MinReservedArea;
3939 if (HasParameterArea)
3940 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3941 else
3942 MinReservedArea = LinkageSize;
3944 // Set the size that is at least reserved in caller of this function. Tail
3945 // call optimized functions' reserved stack space needs to be aligned so that
3946 // taking the difference between two stack areas will result in an aligned
3947 // stack.
3948 MinReservedArea =
3949 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3950 FuncInfo->setMinReservedArea(MinReservedArea);
3952 // If the function takes variable number of arguments, make a frame index for
3953 // the start of the first vararg value... for expansion of llvm.va_start.
3954 if (isVarArg) {
3955 int Depth = ArgOffset;
3957 FuncInfo->setVarArgsFrameIndex(
3958 MFI.CreateFixedObject(PtrByteSize, Depth, true));
3959 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3961 // If this function is vararg, store any remaining integer argument regs
3962 // to their spots on the stack so that they may be loaded by dereferencing
3963 // the result of va_next.
3964 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3965 GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3966 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3967 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3968 SDValue Store =
3969 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3970 MemOps.push_back(Store);
3971 // Increment the address by four for the next argument to store
3972 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3973 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3977 if (!MemOps.empty())
3978 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3980 return Chain;
3983 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
3984 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3985 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3986 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3987 // TODO: add description of PPC stack frame format, or at least some docs.
3989 MachineFunction &MF = DAG.getMachineFunction();
3990 MachineFrameInfo &MFI = MF.getFrameInfo();
3991 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3993 EVT PtrVT = getPointerTy(MF.getDataLayout());
3994 bool isPPC64 = PtrVT == MVT::i64;
3995 // Potential tail calls could cause overwriting of argument stack slots.
3996 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3997 (CallConv == CallingConv::Fast));
3998 unsigned PtrByteSize = isPPC64 ? 8 : 4;
3999 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4000 unsigned ArgOffset = LinkageSize;
4001 // Area that is at least reserved in caller of this function.
4002 unsigned MinReservedArea = ArgOffset;
4004 static const MCPhysReg GPR_32[] = { // 32-bit registers.
4005 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4006 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4008 static const MCPhysReg GPR_64[] = { // 64-bit registers.
4009 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4010 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4012 static const MCPhysReg VR[] = {
4013 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4014 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4017 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4018 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4019 const unsigned Num_VR_Regs = array_lengthof( VR);
4021 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4023 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4025 // In 32-bit non-varargs functions, the stack space for vectors is after the
4026 // stack space for non-vectors. We do not use this space unless we have
4027 // too many vectors to fit in registers, something that only occurs in
4028 // constructed examples:), but we have to walk the arglist to figure
4029 // that out...for the pathological case, compute VecArgOffset as the
4030 // start of the vector parameter area. Computing VecArgOffset is the
4031 // entire point of the following loop.
4032 unsigned VecArgOffset = ArgOffset;
4033 if (!isVarArg && !isPPC64) {
4034 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4035 ++ArgNo) {
4036 EVT ObjectVT = Ins[ArgNo].VT;
4037 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4039 if (Flags.isByVal()) {
4040 // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4041 unsigned ObjSize = Flags.getByValSize();
4042 unsigned ArgSize =
4043 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4044 VecArgOffset += ArgSize;
4045 continue;
4048 switch(ObjectVT.getSimpleVT().SimpleTy) {
4049 default: llvm_unreachable("Unhandled argument type!");
4050 case MVT::i1:
4051 case MVT::i32:
4052 case MVT::f32:
4053 VecArgOffset += 4;
4054 break;
4055 case MVT::i64: // PPC64
4056 case MVT::f64:
4057 // FIXME: We are guaranteed to be !isPPC64 at this point.
4058 // Does MVT::i64 apply?
4059 VecArgOffset += 8;
4060 break;
4061 case MVT::v4f32:
4062 case MVT::v4i32:
4063 case MVT::v8i16:
4064 case MVT::v16i8:
4065 // Nothing to do, we're only looking at Nonvector args here.
4066 break;
4070 // We've found where the vector parameter area in memory is. Skip the
4071 // first 12 parameters; these don't use that memory.
4072 VecArgOffset = ((VecArgOffset+15)/16)*16;
4073 VecArgOffset += 12*16;
4075 // Add DAG nodes to load the arguments or copy them out of registers. On
4076 // entry to a function on PPC, the arguments start after the linkage area,
4077 // although the first ones are often in registers.
4079 SmallVector<SDValue, 8> MemOps;
4080 unsigned nAltivecParamsAtEnd = 0;
4081 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4082 unsigned CurArgIdx = 0;
4083 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4084 SDValue ArgVal;
4085 bool needsLoad = false;
4086 EVT ObjectVT = Ins[ArgNo].VT;
4087 unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4088 unsigned ArgSize = ObjSize;
4089 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4090 if (Ins[ArgNo].isOrigArg()) {
4091 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4092 CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4094 unsigned CurArgOffset = ArgOffset;
4096 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4097 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4098 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4099 if (isVarArg || isPPC64) {
4100 MinReservedArea = ((MinReservedArea+15)/16)*16;
4101 MinReservedArea += CalculateStackSlotSize(ObjectVT,
4102 Flags,
4103 PtrByteSize);
4104 } else nAltivecParamsAtEnd++;
4105 } else
4106 // Calculate min reserved area.
4107 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4108 Flags,
4109 PtrByteSize);
4111 // FIXME the codegen can be much improved in some cases.
4112 // We do not have to keep everything in memory.
4113 if (Flags.isByVal()) {
4114 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4116 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4117 ObjSize = Flags.getByValSize();
4118 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4119 // Objects of size 1 and 2 are right justified, everything else is
4120 // left justified. This means the memory address is adjusted forwards.
4121 if (ObjSize==1 || ObjSize==2) {
4122 CurArgOffset = CurArgOffset + (4 - ObjSize);
4124 // The value of the object is its address.
4125 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4126 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4127 InVals.push_back(FIN);
4128 if (ObjSize==1 || ObjSize==2) {
4129 if (GPR_idx != Num_GPR_Regs) {
4130 unsigned VReg;
4131 if (isPPC64)
4132 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4133 else
4134 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4135 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4136 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4137 SDValue Store =
4138 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4139 MachinePointerInfo(&*FuncArg), ObjType);
4140 MemOps.push_back(Store);
4141 ++GPR_idx;
4144 ArgOffset += PtrByteSize;
4146 continue;
4148 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4149 // Store whatever pieces of the object are in registers
4150 // to memory. ArgOffset will be the address of the beginning
4151 // of the object.
4152 if (GPR_idx != Num_GPR_Regs) {
4153 unsigned VReg;
4154 if (isPPC64)
4155 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4156 else
4157 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4158 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4159 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4160 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4161 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4162 MachinePointerInfo(&*FuncArg, j));
4163 MemOps.push_back(Store);
4164 ++GPR_idx;
4165 ArgOffset += PtrByteSize;
4166 } else {
4167 ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4168 break;
4171 continue;
4174 switch (ObjectVT.getSimpleVT().SimpleTy) {
4175 default: llvm_unreachable("Unhandled argument type!");
4176 case MVT::i1:
4177 case MVT::i32:
4178 if (!isPPC64) {
4179 if (GPR_idx != Num_GPR_Regs) {
4180 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4181 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4183 if (ObjectVT == MVT::i1)
4184 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4186 ++GPR_idx;
4187 } else {
4188 needsLoad = true;
4189 ArgSize = PtrByteSize;
4191 // All int arguments reserve stack space in the Darwin ABI.
4192 ArgOffset += PtrByteSize;
4193 break;
4195 LLVM_FALLTHROUGH;
4196 case MVT::i64: // PPC64
4197 if (GPR_idx != Num_GPR_Regs) {
4198 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4199 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4201 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4202 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4203 // value to MVT::i64 and then truncate to the correct register size.
4204 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4206 ++GPR_idx;
4207 } else {
4208 needsLoad = true;
4209 ArgSize = PtrByteSize;
4211 // All int arguments reserve stack space in the Darwin ABI.
4212 ArgOffset += 8;
4213 break;
4215 case MVT::f32:
4216 case MVT::f64:
4217 // Every 4 bytes of argument space consumes one of the GPRs available for
4218 // argument passing.
4219 if (GPR_idx != Num_GPR_Regs) {
4220 ++GPR_idx;
4221 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4222 ++GPR_idx;
4224 if (FPR_idx != Num_FPR_Regs) {
4225 unsigned VReg;
4227 if (ObjectVT == MVT::f32)
4228 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4229 else
4230 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4232 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4233 ++FPR_idx;
4234 } else {
4235 needsLoad = true;
4238 // All FP arguments reserve stack space in the Darwin ABI.
4239 ArgOffset += isPPC64 ? 8 : ObjSize;
4240 break;
4241 case MVT::v4f32:
4242 case MVT::v4i32:
4243 case MVT::v8i16:
4244 case MVT::v16i8:
4245 // Note that vector arguments in registers don't reserve stack space,
4246 // except in varargs functions.
4247 if (VR_idx != Num_VR_Regs) {
4248 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4249 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4250 if (isVarArg) {
4251 while ((ArgOffset % 16) != 0) {
4252 ArgOffset += PtrByteSize;
4253 if (GPR_idx != Num_GPR_Regs)
4254 GPR_idx++;
4256 ArgOffset += 16;
4257 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4259 ++VR_idx;
4260 } else {
4261 if (!isVarArg && !isPPC64) {
4262 // Vectors go after all the nonvectors.
4263 CurArgOffset = VecArgOffset;
4264 VecArgOffset += 16;
4265 } else {
4266 // Vectors are aligned.
4267 ArgOffset = ((ArgOffset+15)/16)*16;
4268 CurArgOffset = ArgOffset;
4269 ArgOffset += 16;
4271 needsLoad = true;
4273 break;
4276 // We need to load the argument to a virtual register if we determined above
4277 // that we ran out of physical registers of the appropriate type.
4278 if (needsLoad) {
4279 int FI = MFI.CreateFixedObject(ObjSize,
4280 CurArgOffset + (ArgSize - ObjSize),
4281 isImmutable);
4282 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4283 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4286 InVals.push_back(ArgVal);
4289 // Allow for Altivec parameters at the end, if needed.
4290 if (nAltivecParamsAtEnd) {
4291 MinReservedArea = ((MinReservedArea+15)/16)*16;
4292 MinReservedArea += 16*nAltivecParamsAtEnd;
4295 // Area that is at least reserved in the caller of this function.
4296 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4298 // Set the size that is at least reserved in caller of this function. Tail
4299 // call optimized functions' reserved stack space needs to be aligned so that
4300 // taking the difference between two stack areas will result in an aligned
4301 // stack.
4302 MinReservedArea =
4303 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4304 FuncInfo->setMinReservedArea(MinReservedArea);
4306 // If the function takes variable number of arguments, make a frame index for
4307 // the start of the first vararg value... for expansion of llvm.va_start.
4308 if (isVarArg) {
4309 int Depth = ArgOffset;
4311 FuncInfo->setVarArgsFrameIndex(
4312 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4313 Depth, true));
4314 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4316 // If this function is vararg, store any remaining integer argument regs
4317 // to their spots on the stack so that they may be loaded by dereferencing
4318 // the result of va_next.
4319 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4320 unsigned VReg;
4322 if (isPPC64)
4323 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4324 else
4325 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4327 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4328 SDValue Store =
4329 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4330 MemOps.push_back(Store);
4331 // Increment the address by four for the next argument to store
4332 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4333 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4337 if (!MemOps.empty())
4338 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4340 return Chain;
4343 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4344 /// adjusted to accommodate the arguments for the tailcall.
4345 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4346 unsigned ParamSize) {
4348 if (!isTailCall) return 0;
4350 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4351 unsigned CallerMinReservedArea = FI->getMinReservedArea();
4352 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4353 // Remember only if the new adjustment is bigger.
4354 if (SPDiff < FI->getTailCallSPDelta())
4355 FI->setTailCallSPDelta(SPDiff);
4357 return SPDiff;
4360 static bool isFunctionGlobalAddress(SDValue Callee);
4362 static bool
4363 callsShareTOCBase(const Function *Caller, SDValue Callee,
4364 const TargetMachine &TM) {
4365 // If !G, Callee can be an external symbol.
4366 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4367 if (!G)
4368 return false;
4370 // The medium and large code models are expected to provide a sufficiently
4371 // large TOC to provide all data addressing needs of a module with a
4372 // single TOC. Since each module will be addressed with a single TOC then we
4373 // only need to check that caller and callee don't cross dso boundaries.
4374 if (CodeModel::Medium == TM.getCodeModel() ||
4375 CodeModel::Large == TM.getCodeModel())
4376 return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
4378 // Otherwise we need to ensure callee and caller are in the same section,
4379 // since the linker may allocate multiple TOCs, and we don't know which
4380 // sections will belong to the same TOC base.
4382 const GlobalValue *GV = G->getGlobal();
4383 if (!GV->isStrongDefinitionForLinker())
4384 return false;
4386 // Any explicitly-specified sections and section prefixes must also match.
4387 // Also, if we're using -ffunction-sections, then each function is always in
4388 // a different section (the same is true for COMDAT functions).
4389 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4390 GV->getSection() != Caller->getSection())
4391 return false;
4392 if (const auto *F = dyn_cast<Function>(GV)) {
4393 if (F->getSectionPrefix() != Caller->getSectionPrefix())
4394 return false;
4397 // If the callee might be interposed, then we can't assume the ultimate call
4398 // target will be in the same section. Even in cases where we can assume that
4399 // interposition won't happen, in any case where the linker might insert a
4400 // stub to allow for interposition, we must generate code as though
4401 // interposition might occur. To understand why this matters, consider a
4402 // situation where: a -> b -> c where the arrows indicate calls. b and c are
4403 // in the same section, but a is in a different module (i.e. has a different
4404 // TOC base pointer). If the linker allows for interposition between b and c,
4405 // then it will generate a stub for the call edge between b and c which will
4406 // save the TOC pointer into the designated stack slot allocated by b. If we
4407 // return true here, and therefore allow a tail call between b and c, that
4408 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4409 // pointer into the stack slot allocated by a (where the a -> b stub saved
4410 // a's TOC base pointer). If we're not considering a tail call, but rather,
4411 // whether a nop is needed after the call instruction in b, because the linker
4412 // will insert a stub, it might complain about a missing nop if we omit it
4413 // (although many don't complain in this case).
4414 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4415 return false;
4417 return true;
4420 static bool
4421 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4422 const SmallVectorImpl<ISD::OutputArg> &Outs) {
4423 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4425 const unsigned PtrByteSize = 8;
4426 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4428 static const MCPhysReg GPR[] = {
4429 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4430 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4432 static const MCPhysReg VR[] = {
4433 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4434 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4437 const unsigned NumGPRs = array_lengthof(GPR);
4438 const unsigned NumFPRs = 13;
4439 const unsigned NumVRs = array_lengthof(VR);
4440 const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4442 unsigned NumBytes = LinkageSize;
4443 unsigned AvailableFPRs = NumFPRs;
4444 unsigned AvailableVRs = NumVRs;
4446 for (const ISD::OutputArg& Param : Outs) {
4447 if (Param.Flags.isNest()) continue;
4449 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4450 PtrByteSize, LinkageSize, ParamAreaSize,
4451 NumBytes, AvailableFPRs, AvailableVRs,
4452 Subtarget.hasQPX()))
4453 return true;
4455 return false;
4458 static bool
4459 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4460 if (CS.arg_size() != CallerFn->arg_size())
4461 return false;
4463 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4464 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4465 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4467 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4468 const Value* CalleeArg = *CalleeArgIter;
4469 const Value* CallerArg = &(*CallerArgIter);
4470 if (CalleeArg == CallerArg)
4471 continue;
4473 // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4474 // tail call @callee([4 x i64] undef, [4 x i64] %b)
4475 // }
4476 // 1st argument of callee is undef and has the same type as caller.
4477 if (CalleeArg->getType() == CallerArg->getType() &&
4478 isa<UndefValue>(CalleeArg))
4479 continue;
4481 return false;
4484 return true;
4487 // Returns true if TCO is possible between the callers and callees
4488 // calling conventions.
4489 static bool
4490 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4491 CallingConv::ID CalleeCC) {
4492 // Tail calls are possible with fastcc and ccc.
4493 auto isTailCallableCC = [] (CallingConv::ID CC){
4494 return CC == CallingConv::C || CC == CallingConv::Fast;
4496 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4497 return false;
4499 // We can safely tail call both fastcc and ccc callees from a c calling
4500 // convention caller. If the caller is fastcc, we may have less stack space
4501 // than a non-fastcc caller with the same signature so disable tail-calls in
4502 // that case.
4503 return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4506 bool
4507 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4508 SDValue Callee,
4509 CallingConv::ID CalleeCC,
4510 ImmutableCallSite CS,
4511 bool isVarArg,
4512 const SmallVectorImpl<ISD::OutputArg> &Outs,
4513 const SmallVectorImpl<ISD::InputArg> &Ins,
4514 SelectionDAG& DAG) const {
4515 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4517 if (DisableSCO && !TailCallOpt) return false;
4519 // Variadic argument functions are not supported.
4520 if (isVarArg) return false;
4522 auto &Caller = DAG.getMachineFunction().getFunction();
4523 // Check that the calling conventions are compatible for tco.
4524 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4525 return false;
4527 // Caller contains any byval parameter is not supported.
4528 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4529 return false;
4531 // Callee contains any byval parameter is not supported, too.
4532 // Note: This is a quick work around, because in some cases, e.g.
4533 // caller's stack size > callee's stack size, we are still able to apply
4534 // sibling call optimization. For example, gcc is able to do SCO for caller1
4535 // in the following example, but not for caller2.
4536 // struct test {
4537 // long int a;
4538 // char ary[56];
4539 // } gTest;
4540 // __attribute__((noinline)) int callee(struct test v, struct test *b) {
4541 // b->a = v.a;
4542 // return 0;
4543 // }
4544 // void caller1(struct test a, struct test c, struct test *b) {
4545 // callee(gTest, b); }
4546 // void caller2(struct test *b) { callee(gTest, b); }
4547 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4548 return false;
4550 // If callee and caller use different calling conventions, we cannot pass
4551 // parameters on stack since offsets for the parameter area may be different.
4552 if (Caller.getCallingConv() != CalleeCC &&
4553 needStackSlotPassParameters(Subtarget, Outs))
4554 return false;
4556 // No TCO/SCO on indirect call because Caller have to restore its TOC
4557 if (!isFunctionGlobalAddress(Callee) &&
4558 !isa<ExternalSymbolSDNode>(Callee))
4559 return false;
4561 // If the caller and callee potentially have different TOC bases then we
4562 // cannot tail call since we need to restore the TOC pointer after the call.
4563 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4564 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4565 return false;
4567 // TCO allows altering callee ABI, so we don't have to check further.
4568 if (CalleeCC == CallingConv::Fast && TailCallOpt)
4569 return true;
4571 if (DisableSCO) return false;
4573 // If callee use the same argument list that caller is using, then we can
4574 // apply SCO on this case. If it is not, then we need to check if callee needs
4575 // stack for passing arguments.
4576 if (!hasSameArgumentList(&Caller, CS) &&
4577 needStackSlotPassParameters(Subtarget, Outs)) {
4578 return false;
4581 return true;
4584 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4585 /// for tail call optimization. Targets which want to do tail call
4586 /// optimization should implement this function.
4587 bool
4588 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4589 CallingConv::ID CalleeCC,
4590 bool isVarArg,
4591 const SmallVectorImpl<ISD::InputArg> &Ins,
4592 SelectionDAG& DAG) const {
4593 if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4594 return false;
4596 // Variable argument functions are not supported.
4597 if (isVarArg)
4598 return false;
4600 MachineFunction &MF = DAG.getMachineFunction();
4601 CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4602 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4603 // Functions containing by val parameters are not supported.
4604 for (unsigned i = 0; i != Ins.size(); i++) {
4605 ISD::ArgFlagsTy Flags = Ins[i].Flags;
4606 if (Flags.isByVal()) return false;
4609 // Non-PIC/GOT tail calls are supported.
4610 if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4611 return true;
4613 // At the moment we can only do local tail calls (in same module, hidden
4614 // or protected) if we are generating PIC.
4615 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4616 return G->getGlobal()->hasHiddenVisibility()
4617 || G->getGlobal()->hasProtectedVisibility();
4620 return false;
4623 /// isCallCompatibleAddress - Return the immediate to use if the specified
4624 /// 32-bit value is representable in the immediate field of a BxA instruction.
4625 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4626 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4627 if (!C) return nullptr;
4629 int Addr = C->getZExtValue();
4630 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
4631 SignExtend32<26>(Addr) != Addr)
4632 return nullptr; // Top 6 bits have to be sext of immediate.
4634 return DAG
4635 .getConstant(
4636 (int)C->getZExtValue() >> 2, SDLoc(Op),
4637 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4638 .getNode();
4641 namespace {
4643 struct TailCallArgumentInfo {
4644 SDValue Arg;
4645 SDValue FrameIdxOp;
4646 int FrameIdx = 0;
4648 TailCallArgumentInfo() = default;
4651 } // end anonymous namespace
4653 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4654 static void StoreTailCallArgumentsToStackSlot(
4655 SelectionDAG &DAG, SDValue Chain,
4656 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4657 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4658 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4659 SDValue Arg = TailCallArgs[i].Arg;
4660 SDValue FIN = TailCallArgs[i].FrameIdxOp;
4661 int FI = TailCallArgs[i].FrameIdx;
4662 // Store relative to framepointer.
4663 MemOpChains.push_back(DAG.getStore(
4664 Chain, dl, Arg, FIN,
4665 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4669 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4670 /// the appropriate stack slot for the tail call optimized function call.
4671 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4672 SDValue OldRetAddr, SDValue OldFP,
4673 int SPDiff, const SDLoc &dl) {
4674 if (SPDiff) {
4675 // Calculate the new stack slot for the return address.
4676 MachineFunction &MF = DAG.getMachineFunction();
4677 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4678 const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4679 bool isPPC64 = Subtarget.isPPC64();
4680 int SlotSize = isPPC64 ? 8 : 4;
4681 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4682 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4683 NewRetAddrLoc, true);
4684 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4685 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4686 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4687 MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4689 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4690 // slot as the FP is never overwritten.
4691 if (Subtarget.isDarwinABI()) {
4692 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4693 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4694 true);
4695 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4696 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4697 MachinePointerInfo::getFixedStack(
4698 DAG.getMachineFunction(), NewFPIdx));
4701 return Chain;
4704 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4705 /// the position of the argument.
4706 static void
4707 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4708 SDValue Arg, int SPDiff, unsigned ArgOffset,
4709 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4710 int Offset = ArgOffset + SPDiff;
4711 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4712 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4713 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4714 SDValue FIN = DAG.getFrameIndex(FI, VT);
4715 TailCallArgumentInfo Info;
4716 Info.Arg = Arg;
4717 Info.FrameIdxOp = FIN;
4718 Info.FrameIdx = FI;
4719 TailCallArguments.push_back(Info);
4722 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4723 /// stack slot. Returns the chain as result and the loaded frame pointers in
4724 /// LROpOut/FPOpout. Used when tail calling.
4725 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4726 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4727 SDValue &FPOpOut, const SDLoc &dl) const {
4728 if (SPDiff) {
4729 // Load the LR and FP stack slot for later adjusting.
4730 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4731 LROpOut = getReturnAddrFrameIndex(DAG);
4732 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4733 Chain = SDValue(LROpOut.getNode(), 1);
4735 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4736 // slot as the FP is never overwritten.
4737 if (Subtarget.isDarwinABI()) {
4738 FPOpOut = getFramePointerFrameIndex(DAG);
4739 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4740 Chain = SDValue(FPOpOut.getNode(), 1);
4743 return Chain;
4746 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4747 /// by "Src" to address "Dst" of size "Size". Alignment information is
4748 /// specified by the specific parameter attribute. The copy will be passed as
4749 /// a byval function parameter.
4750 /// Sometimes what we are copying is the end of a larger object, the part that
4751 /// does not fit in registers.
4752 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4753 SDValue Chain, ISD::ArgFlagsTy Flags,
4754 SelectionDAG &DAG, const SDLoc &dl) {
4755 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4756 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4757 false, false, false, MachinePointerInfo(),
4758 MachinePointerInfo());
4761 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4762 /// tail calls.
4763 static void LowerMemOpCallTo(
4764 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4765 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4766 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4767 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4768 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4769 if (!isTailCall) {
4770 if (isVector) {
4771 SDValue StackPtr;
4772 if (isPPC64)
4773 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4774 else
4775 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4776 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4777 DAG.getConstant(ArgOffset, dl, PtrVT));
4779 MemOpChains.push_back(
4780 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4781 // Calculate and remember argument location.
4782 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4783 TailCallArguments);
4786 static void
4787 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4788 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4789 SDValue FPOp,
4790 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4791 // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4792 // might overwrite each other in case of tail call optimization.
4793 SmallVector<SDValue, 8> MemOpChains2;
4794 // Do not flag preceding copytoreg stuff together with the following stuff.
4795 InFlag = SDValue();
4796 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4797 MemOpChains2, dl);
4798 if (!MemOpChains2.empty())
4799 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4801 // Store the return address to the appropriate stack slot.
4802 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4804 // Emit callseq_end just before tailcall node.
4805 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4806 DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4807 InFlag = Chain.getValue(1);
4810 // Is this global address that of a function that can be called by name? (as
4811 // opposed to something that must hold a descriptor for an indirect call).
4812 static bool isFunctionGlobalAddress(SDValue Callee) {
4813 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4814 if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4815 Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4816 return false;
4818 return G->getGlobal()->getValueType()->isFunctionTy();
4821 return false;
4824 static unsigned
4825 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4826 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4827 bool isPatchPoint, bool hasNest,
4828 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4829 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4830 ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4831 bool isPPC64 = Subtarget.isPPC64();
4832 bool isSVR4ABI = Subtarget.isSVR4ABI();
4833 bool isELFv2ABI = Subtarget.isELFv2ABI();
4835 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4836 NodeTys.push_back(MVT::Other); // Returns a chain
4837 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use.
4839 unsigned CallOpc = PPCISD::CALL;
4841 bool needIndirectCall = true;
4842 if (!isSVR4ABI || !isPPC64)
4843 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4844 // If this is an absolute destination address, use the munged value.
4845 Callee = SDValue(Dest, 0);
4846 needIndirectCall = false;
4849 // PC-relative references to external symbols should go through $stub, unless
4850 // we're building with the leopard linker or later, which automatically
4851 // synthesizes these stubs.
4852 const TargetMachine &TM = DAG.getTarget();
4853 const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
4854 const GlobalValue *GV = nullptr;
4855 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4856 GV = G->getGlobal();
4857 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4858 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4860 if (isFunctionGlobalAddress(Callee)) {
4861 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4862 // A call to a TLS address is actually an indirect call to a
4863 // thread-specific pointer.
4864 unsigned OpFlags = 0;
4865 if (UsePlt)
4866 OpFlags = PPCII::MO_PLT;
4868 // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4869 // every direct call is) turn it into a TargetGlobalAddress /
4870 // TargetExternalSymbol node so that legalize doesn't hack it.
4871 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4872 Callee.getValueType(), 0, OpFlags);
4873 needIndirectCall = false;
4876 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4877 unsigned char OpFlags = 0;
4879 if (UsePlt)
4880 OpFlags = PPCII::MO_PLT;
4882 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4883 OpFlags);
4884 needIndirectCall = false;
4887 if (isPatchPoint) {
4888 // We'll form an invalid direct call when lowering a patchpoint; the full
4889 // sequence for an indirect call is complicated, and many of the
4890 // instructions introduced might have side effects (and, thus, can't be
4891 // removed later). The call itself will be removed as soon as the
4892 // argument/return lowering is complete, so the fact that it has the wrong
4893 // kind of operands should not really matter.
4894 needIndirectCall = false;
4897 if (needIndirectCall) {
4898 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
4899 // to do the call, we can't use PPCISD::CALL.
4900 SDValue MTCTROps[] = {Chain, Callee, InFlag};
4902 if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4903 // Function pointers in the 64-bit SVR4 ABI do not point to the function
4904 // entry point, but to the function descriptor (the function entry point
4905 // address is part of the function descriptor though).
4906 // The function descriptor is a three doubleword structure with the
4907 // following fields: function entry point, TOC base address and
4908 // environment pointer.
4909 // Thus for a call through a function pointer, the following actions need
4910 // to be performed:
4911 // 1. Save the TOC of the caller in the TOC save area of its stack
4912 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4913 // 2. Load the address of the function entry point from the function
4914 // descriptor.
4915 // 3. Load the TOC of the callee from the function descriptor into r2.
4916 // 4. Load the environment pointer from the function descriptor into
4917 // r11.
4918 // 5. Branch to the function entry point address.
4919 // 6. On return of the callee, the TOC of the caller needs to be
4920 // restored (this is done in FinishCall()).
4922 // The loads are scheduled at the beginning of the call sequence, and the
4923 // register copies are flagged together to ensure that no other
4924 // operations can be scheduled in between. E.g. without flagging the
4925 // copies together, a TOC access in the caller could be scheduled between
4926 // the assignment of the callee TOC and the branch to the callee, which
4927 // results in the TOC access going through the TOC of the callee instead
4928 // of going through the TOC of the caller, which leads to incorrect code.
4930 // Load the address of the function entry point from the function
4931 // descriptor.
4932 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4933 if (LDChain.getValueType() == MVT::Glue)
4934 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4936 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4937 ? (MachineMemOperand::MODereferenceable |
4938 MachineMemOperand::MOInvariant)
4939 : MachineMemOperand::MONone;
4941 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
4942 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4943 /* Alignment = */ 8, MMOFlags);
4945 // Load environment pointer into r11.
4946 SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4947 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4948 SDValue LoadEnvPtr =
4949 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
4950 /* Alignment = */ 8, MMOFlags);
4952 SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4953 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4954 SDValue TOCPtr =
4955 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
4956 /* Alignment = */ 8, MMOFlags);
4958 setUsesTOCBasePtr(DAG);
4959 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4960 InFlag);
4961 Chain = TOCVal.getValue(0);
4962 InFlag = TOCVal.getValue(1);
4964 // If the function call has an explicit 'nest' parameter, it takes the
4965 // place of the environment pointer.
4966 if (!hasNest) {
4967 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4968 InFlag);
4970 Chain = EnvVal.getValue(0);
4971 InFlag = EnvVal.getValue(1);
4974 MTCTROps[0] = Chain;
4975 MTCTROps[1] = LoadFuncPtr;
4976 MTCTROps[2] = InFlag;
4979 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4980 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4981 InFlag = Chain.getValue(1);
4983 NodeTys.clear();
4984 NodeTys.push_back(MVT::Other);
4985 NodeTys.push_back(MVT::Glue);
4986 Ops.push_back(Chain);
4987 CallOpc = PPCISD::BCTRL;
4988 Callee.setNode(nullptr);
4989 // Add use of X11 (holding environment pointer)
4990 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4991 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4992 // Add CTR register as callee so a bctr can be emitted later.
4993 if (isTailCall)
4994 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4997 // If this is a direct call, pass the chain and the callee.
4998 if (Callee.getNode()) {
4999 Ops.push_back(Chain);
5000 Ops.push_back(Callee);
5002 // If this is a tail call add stack pointer delta.
5003 if (isTailCall)
5004 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5006 // Add argument registers to the end of the list so that they are known live
5007 // into the call.
5008 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5009 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5010 RegsToPass[i].second.getValueType()));
5012 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
5013 // into the call.
5014 // We do need to reserve X2 to appease the verifier for the PATCHPOINT.
5015 if (isSVR4ABI && isPPC64) {
5016 setUsesTOCBasePtr(DAG);
5018 // We cannot add X2 as an operand here for PATCHPOINT, because there is no
5019 // way to mark dependencies as implicit here. We will add the X2 dependency
5020 // in EmitInstrWithCustomInserter.
5021 if (!isPatchPoint)
5022 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
5025 return CallOpc;
5028 SDValue PPCTargetLowering::LowerCallResult(
5029 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5030 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5031 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5032 SmallVector<CCValAssign, 16> RVLocs;
5033 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5034 *DAG.getContext());
5036 CCRetInfo.AnalyzeCallResult(
5037 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5038 ? RetCC_PPC_Cold
5039 : RetCC_PPC);
5041 // Copy all of the result registers out of their specified physreg.
5042 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5043 CCValAssign &VA = RVLocs[i];
5044 assert(VA.isRegLoc() && "Can only return in registers!");
5046 SDValue Val = DAG.getCopyFromReg(Chain, dl,
5047 VA.getLocReg(), VA.getLocVT(), InFlag);
5048 Chain = Val.getValue(1);
5049 InFlag = Val.getValue(2);
5051 switch (VA.getLocInfo()) {
5052 default: llvm_unreachable("Unknown loc info!");
5053 case CCValAssign::Full: break;
5054 case CCValAssign::AExt:
5055 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5056 break;
5057 case CCValAssign::ZExt:
5058 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5059 DAG.getValueType(VA.getValVT()));
5060 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5061 break;
5062 case CCValAssign::SExt:
5063 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5064 DAG.getValueType(VA.getValVT()));
5065 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5066 break;
5069 InVals.push_back(Val);
5072 return Chain;
5075 SDValue PPCTargetLowering::FinishCall(
5076 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5077 bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5078 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
5079 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5080 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5081 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5082 std::vector<EVT> NodeTys;
5083 SmallVector<SDValue, 8> Ops;
5084 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
5085 SPDiff, isTailCall, isPatchPoint, hasNest,
5086 RegsToPass, Ops, NodeTys, CS, Subtarget);
5088 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5089 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
5090 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5092 // When performing tail call optimization the callee pops its arguments off
5093 // the stack. Account for this here so these bytes can be pushed back on in
5094 // PPCFrameLowering::eliminateCallFramePseudoInstr.
5095 int BytesCalleePops =
5096 (CallConv == CallingConv::Fast &&
5097 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5099 // Add a register mask operand representing the call-preserved registers.
5100 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5101 const uint32_t *Mask =
5102 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5103 assert(Mask && "Missing call preserved mask for calling convention");
5104 Ops.push_back(DAG.getRegisterMask(Mask));
5106 if (InFlag.getNode())
5107 Ops.push_back(InFlag);
5109 // Emit tail call.
5110 if (isTailCall) {
5111 assert(((Callee.getOpcode() == ISD::Register &&
5112 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5113 Callee.getOpcode() == ISD::TargetExternalSymbol ||
5114 Callee.getOpcode() == ISD::TargetGlobalAddress ||
5115 isa<ConstantSDNode>(Callee)) &&
5116 "Expecting an global address, external symbol, absolute value or register");
5118 DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5119 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5122 // Add a NOP immediately after the branch instruction when using the 64-bit
5123 // SVR4 ABI. At link time, if caller and callee are in a different module and
5124 // thus have a different TOC, the call will be replaced with a call to a stub
5125 // function which saves the current TOC, loads the TOC of the callee and
5126 // branches to the callee. The NOP will be replaced with a load instruction
5127 // which restores the TOC of the caller from the TOC save slot of the current
5128 // stack frame. If caller and callee belong to the same module (and have the
5129 // same TOC), the NOP will remain unchanged.
5131 MachineFunction &MF = DAG.getMachineFunction();
5132 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
5133 !isPatchPoint) {
5134 if (CallOpc == PPCISD::BCTRL) {
5135 // This is a call through a function pointer.
5136 // Restore the caller TOC from the save area into R2.
5137 // See PrepareCall() for more information about calls through function
5138 // pointers in the 64-bit SVR4 ABI.
5139 // We are using a target-specific load with r2 hard coded, because the
5140 // result of a target-independent load would never go directly into r2,
5141 // since r2 is a reserved register (which prevents the register allocator
5142 // from allocating it), resulting in an additional register being
5143 // allocated and an unnecessary move instruction being generated.
5144 CallOpc = PPCISD::BCTRL_LOAD_TOC;
5146 EVT PtrVT = getPointerTy(DAG.getDataLayout());
5147 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5148 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5149 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5150 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5152 // The address needs to go after the chain input but before the flag (or
5153 // any other variadic arguments).
5154 Ops.insert(std::next(Ops.begin()), AddTOC);
5155 } else if (CallOpc == PPCISD::CALL &&
5156 !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5157 // Otherwise insert NOP for non-local calls.
5158 CallOpc = PPCISD::CALL_NOP;
5162 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5163 InFlag = Chain.getValue(1);
5165 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5166 DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5167 InFlag, dl);
5168 if (!Ins.empty())
5169 InFlag = Chain.getValue(1);
5171 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5172 Ins, dl, DAG, InVals);
5175 SDValue
5176 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5177 SmallVectorImpl<SDValue> &InVals) const {
5178 SelectionDAG &DAG = CLI.DAG;
5179 SDLoc &dl = CLI.DL;
5180 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5181 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
5182 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
5183 SDValue Chain = CLI.Chain;
5184 SDValue Callee = CLI.Callee;
5185 bool &isTailCall = CLI.IsTailCall;
5186 CallingConv::ID CallConv = CLI.CallConv;
5187 bool isVarArg = CLI.IsVarArg;
5188 bool isPatchPoint = CLI.IsPatchPoint;
5189 ImmutableCallSite CS = CLI.CS;
5191 if (isTailCall) {
5192 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5193 isTailCall = false;
5194 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5195 isTailCall =
5196 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5197 isVarArg, Outs, Ins, DAG);
5198 else
5199 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5200 Ins, DAG);
5201 if (isTailCall) {
5202 ++NumTailCalls;
5203 if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5204 ++NumSiblingCalls;
5206 assert(isa<GlobalAddressSDNode>(Callee) &&
5207 "Callee should be an llvm::Function object.");
5208 LLVM_DEBUG(
5209 const GlobalValue *GV =
5210 cast<GlobalAddressSDNode>(Callee)->getGlobal();
5211 const unsigned Width =
5212 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5213 dbgs() << "TCO caller: "
5214 << left_justify(DAG.getMachineFunction().getName(), Width)
5215 << ", callee linkage: " << GV->getVisibility() << ", "
5216 << GV->getLinkage() << "\n");
5220 if (!isTailCall && CS && CS.isMustTailCall())
5221 report_fatal_error("failed to perform tail call elimination on a call "
5222 "site marked musttail");
5224 // When long calls (i.e. indirect calls) are always used, calls are always
5225 // made via function pointer. If we have a function name, first translate it
5226 // into a pointer.
5227 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5228 !isTailCall)
5229 Callee = LowerGlobalAddress(Callee, DAG);
5231 if (Subtarget.isSVR4ABI()) {
5232 if (Subtarget.isPPC64())
5233 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5234 isTailCall, isPatchPoint, Outs, OutVals, Ins,
5235 dl, DAG, InVals, CS);
5236 else
5237 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5238 isTailCall, isPatchPoint, Outs, OutVals, Ins,
5239 dl, DAG, InVals, CS);
5242 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5243 isTailCall, isPatchPoint, Outs, OutVals, Ins,
5244 dl, DAG, InVals, CS);
5247 SDValue PPCTargetLowering::LowerCall_32SVR4(
5248 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5249 bool isTailCall, bool isPatchPoint,
5250 const SmallVectorImpl<ISD::OutputArg> &Outs,
5251 const SmallVectorImpl<SDValue> &OutVals,
5252 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5253 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5254 ImmutableCallSite CS) const {
5255 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5256 // of the 32-bit SVR4 ABI stack frame layout.
5258 assert((CallConv == CallingConv::C ||
5259 CallConv == CallingConv::Cold ||
5260 CallConv == CallingConv::Fast) && "Unknown calling convention!");
5262 unsigned PtrByteSize = 4;
5264 MachineFunction &MF = DAG.getMachineFunction();
5266 // Mark this function as potentially containing a function that contains a
5267 // tail call. As a consequence the frame pointer will be used for dynamicalloc
5268 // and restoring the callers stack pointer in this functions epilog. This is
5269 // done because by tail calling the called function might overwrite the value
5270 // in this function's (MF) stack pointer stack slot 0(SP).
5271 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5272 CallConv == CallingConv::Fast)
5273 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5275 // Count how many bytes are to be pushed on the stack, including the linkage
5276 // area, parameter list area and the part of the local variable space which
5277 // contains copies of aggregates which are passed by value.
5279 // Assign locations to all of the outgoing arguments.
5280 SmallVector<CCValAssign, 16> ArgLocs;
5281 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5283 // Reserve space for the linkage area on the stack.
5284 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5285 PtrByteSize);
5286 if (useSoftFloat())
5287 CCInfo.PreAnalyzeCallOperands(Outs);
5289 if (isVarArg) {
5290 // Handle fixed and variable vector arguments differently.
5291 // Fixed vector arguments go into registers as long as registers are
5292 // available. Variable vector arguments always go into memory.
5293 unsigned NumArgs = Outs.size();
5295 for (unsigned i = 0; i != NumArgs; ++i) {
5296 MVT ArgVT = Outs[i].VT;
5297 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5298 bool Result;
5300 if (Outs[i].IsFixed) {
5301 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5302 CCInfo);
5303 } else {
5304 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5305 ArgFlags, CCInfo);
5308 if (Result) {
5309 #ifndef NDEBUG
5310 errs() << "Call operand #" << i << " has unhandled type "
5311 << EVT(ArgVT).getEVTString() << "\n";
5312 #endif
5313 llvm_unreachable(nullptr);
5316 } else {
5317 // All arguments are treated the same.
5318 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5320 CCInfo.clearWasPPCF128();
5322 // Assign locations to all of the outgoing aggregate by value arguments.
5323 SmallVector<CCValAssign, 16> ByValArgLocs;
5324 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5326 // Reserve stack space for the allocations in CCInfo.
5327 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5329 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5331 // Size of the linkage area, parameter list area and the part of the local
5332 // space variable where copies of aggregates which are passed by value are
5333 // stored.
5334 unsigned NumBytes = CCByValInfo.getNextStackOffset();
5336 // Calculate by how many bytes the stack has to be adjusted in case of tail
5337 // call optimization.
5338 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5340 // Adjust the stack pointer for the new arguments...
5341 // These operations are automatically eliminated by the prolog/epilog pass
5342 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5343 SDValue CallSeqStart = Chain;
5345 // Load the return address and frame pointer so it can be moved somewhere else
5346 // later.
5347 SDValue LROp, FPOp;
5348 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5350 // Set up a copy of the stack pointer for use loading and storing any
5351 // arguments that may not fit in the registers available for argument
5352 // passing.
5353 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5355 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5356 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5357 SmallVector<SDValue, 8> MemOpChains;
5359 bool seenFloatArg = false;
5360 // Walk the register/memloc assignments, inserting copies/loads.
5361 for (unsigned i = 0, j = 0, e = ArgLocs.size();
5362 i != e;
5363 ++i) {
5364 CCValAssign &VA = ArgLocs[i];
5365 SDValue Arg = OutVals[i];
5366 ISD::ArgFlagsTy Flags = Outs[i].Flags;
5368 if (Flags.isByVal()) {
5369 // Argument is an aggregate which is passed by value, thus we need to
5370 // create a copy of it in the local variable space of the current stack
5371 // frame (which is the stack frame of the caller) and pass the address of
5372 // this copy to the callee.
5373 assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5374 CCValAssign &ByValVA = ByValArgLocs[j++];
5375 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5377 // Memory reserved in the local variable space of the callers stack frame.
5378 unsigned LocMemOffset = ByValVA.getLocMemOffset();
5380 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5381 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5382 StackPtr, PtrOff);
5384 // Create a copy of the argument in the local area of the current
5385 // stack frame.
5386 SDValue MemcpyCall =
5387 CreateCopyOfByValArgument(Arg, PtrOff,
5388 CallSeqStart.getNode()->getOperand(0),
5389 Flags, DAG, dl);
5391 // This must go outside the CALLSEQ_START..END.
5392 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5393 SDLoc(MemcpyCall));
5394 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5395 NewCallSeqStart.getNode());
5396 Chain = CallSeqStart = NewCallSeqStart;
5398 // Pass the address of the aggregate copy on the stack either in a
5399 // physical register or in the parameter list area of the current stack
5400 // frame to the callee.
5401 Arg = PtrOff;
5404 // When useCRBits() is true, there can be i1 arguments.
5405 // It is because getRegisterType(MVT::i1) => MVT::i1,
5406 // and for other integer types getRegisterType() => MVT::i32.
5407 // Extend i1 and ensure callee will get i32.
5408 if (Arg.getValueType() == MVT::i1)
5409 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5410 dl, MVT::i32, Arg);
5412 if (VA.isRegLoc()) {
5413 seenFloatArg |= VA.getLocVT().isFloatingPoint();
5414 // Put argument in a physical register.
5415 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5416 } else {
5417 // Put argument in the parameter list area of the current stack frame.
5418 assert(VA.isMemLoc());
5419 unsigned LocMemOffset = VA.getLocMemOffset();
5421 if (!isTailCall) {
5422 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5423 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5424 StackPtr, PtrOff);
5426 MemOpChains.push_back(
5427 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5428 } else {
5429 // Calculate and remember argument location.
5430 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5431 TailCallArguments);
5436 if (!MemOpChains.empty())
5437 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5439 // Build a sequence of copy-to-reg nodes chained together with token chain
5440 // and flag operands which copy the outgoing args into the appropriate regs.
5441 SDValue InFlag;
5442 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5443 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5444 RegsToPass[i].second, InFlag);
5445 InFlag = Chain.getValue(1);
5448 // Set CR bit 6 to true if this is a vararg call with floating args passed in
5449 // registers.
5450 if (isVarArg) {
5451 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5452 SDValue Ops[] = { Chain, InFlag };
5454 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5455 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5457 InFlag = Chain.getValue(1);
5460 if (isTailCall)
5461 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5462 TailCallArguments);
5464 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5465 /* unused except on PPC64 ELFv1 */ false, DAG,
5466 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5467 NumBytes, Ins, InVals, CS);
5470 // Copy an argument into memory, being careful to do this outside the
5471 // call sequence for the call to which the argument belongs.
5472 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5473 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5474 SelectionDAG &DAG, const SDLoc &dl) const {
5475 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5476 CallSeqStart.getNode()->getOperand(0),
5477 Flags, DAG, dl);
5478 // The MEMCPY must go outside the CALLSEQ_START..END.
5479 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5480 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5481 SDLoc(MemcpyCall));
5482 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5483 NewCallSeqStart.getNode());
5484 return NewCallSeqStart;
5487 SDValue PPCTargetLowering::LowerCall_64SVR4(
5488 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5489 bool isTailCall, bool isPatchPoint,
5490 const SmallVectorImpl<ISD::OutputArg> &Outs,
5491 const SmallVectorImpl<SDValue> &OutVals,
5492 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5493 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5494 ImmutableCallSite CS) const {
5495 bool isELFv2ABI = Subtarget.isELFv2ABI();
5496 bool isLittleEndian = Subtarget.isLittleEndian();
5497 unsigned NumOps = Outs.size();
5498 bool hasNest = false;
5499 bool IsSibCall = false;
5501 EVT PtrVT = getPointerTy(DAG.getDataLayout());
5502 unsigned PtrByteSize = 8;
5504 MachineFunction &MF = DAG.getMachineFunction();
5506 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5507 IsSibCall = true;
5509 // Mark this function as potentially containing a function that contains a
5510 // tail call. As a consequence the frame pointer will be used for dynamicalloc
5511 // and restoring the callers stack pointer in this functions epilog. This is
5512 // done because by tail calling the called function might overwrite the value
5513 // in this function's (MF) stack pointer stack slot 0(SP).
5514 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5515 CallConv == CallingConv::Fast)
5516 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5518 assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5519 "fastcc not supported on varargs functions");
5521 // Count how many bytes are to be pushed on the stack, including the linkage
5522 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes
5523 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5524 // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5525 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5526 unsigned NumBytes = LinkageSize;
5527 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5528 unsigned &QFPR_idx = FPR_idx;
5530 static const MCPhysReg GPR[] = {
5531 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5532 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5534 static const MCPhysReg VR[] = {
5535 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5536 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5539 const unsigned NumGPRs = array_lengthof(GPR);
5540 const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5541 const unsigned NumVRs = array_lengthof(VR);
5542 const unsigned NumQFPRs = NumFPRs;
5544 // On ELFv2, we can avoid allocating the parameter area if all the arguments
5545 // can be passed to the callee in registers.
5546 // For the fast calling convention, there is another check below.
5547 // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5548 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5549 if (!HasParameterArea) {
5550 unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5551 unsigned AvailableFPRs = NumFPRs;
5552 unsigned AvailableVRs = NumVRs;
5553 unsigned NumBytesTmp = NumBytes;
5554 for (unsigned i = 0; i != NumOps; ++i) {
5555 if (Outs[i].Flags.isNest()) continue;
5556 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5557 PtrByteSize, LinkageSize, ParamAreaSize,
5558 NumBytesTmp, AvailableFPRs, AvailableVRs,
5559 Subtarget.hasQPX()))
5560 HasParameterArea = true;
5564 // When using the fast calling convention, we don't provide backing for
5565 // arguments that will be in registers.
5566 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5568 // Avoid allocating parameter area for fastcc functions if all the arguments
5569 // can be passed in the registers.
5570 if (CallConv == CallingConv::Fast)
5571 HasParameterArea = false;
5573 // Add up all the space actually used.
5574 for (unsigned i = 0; i != NumOps; ++i) {
5575 ISD::ArgFlagsTy Flags = Outs[i].Flags;
5576 EVT ArgVT = Outs[i].VT;
5577 EVT OrigVT = Outs[i].ArgVT;
5579 if (Flags.isNest())
5580 continue;
5582 if (CallConv == CallingConv::Fast) {
5583 if (Flags.isByVal()) {
5584 NumGPRsUsed += (Flags.getByValSize()+7)/8;
5585 if (NumGPRsUsed > NumGPRs)
5586 HasParameterArea = true;
5587 } else {
5588 switch (ArgVT.getSimpleVT().SimpleTy) {
5589 default: llvm_unreachable("Unexpected ValueType for argument!");
5590 case MVT::i1:
5591 case MVT::i32:
5592 case MVT::i64:
5593 if (++NumGPRsUsed <= NumGPRs)
5594 continue;
5595 break;
5596 case MVT::v4i32:
5597 case MVT::v8i16:
5598 case MVT::v16i8:
5599 case MVT::v2f64:
5600 case MVT::v2i64:
5601 case MVT::v1i128:
5602 case MVT::f128:
5603 if (++NumVRsUsed <= NumVRs)
5604 continue;
5605 break;
5606 case MVT::v4f32:
5607 // When using QPX, this is handled like a FP register, otherwise, it
5608 // is an Altivec register.
5609 if (Subtarget.hasQPX()) {
5610 if (++NumFPRsUsed <= NumFPRs)
5611 continue;
5612 } else {
5613 if (++NumVRsUsed <= NumVRs)
5614 continue;
5616 break;
5617 case MVT::f32:
5618 case MVT::f64:
5619 case MVT::v4f64: // QPX
5620 case MVT::v4i1: // QPX
5621 if (++NumFPRsUsed <= NumFPRs)
5622 continue;
5623 break;
5625 HasParameterArea = true;
5629 /* Respect alignment of argument on the stack. */
5630 unsigned Align =
5631 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5632 NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5634 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5635 if (Flags.isInConsecutiveRegsLast())
5636 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5639 unsigned NumBytesActuallyUsed = NumBytes;
5641 // In the old ELFv1 ABI,
5642 // the prolog code of the callee may store up to 8 GPR argument registers to
5643 // the stack, allowing va_start to index over them in memory if its varargs.
5644 // Because we cannot tell if this is needed on the caller side, we have to
5645 // conservatively assume that it is needed. As such, make sure we have at
5646 // least enough stack space for the caller to store the 8 GPRs.
5647 // In the ELFv2 ABI, we allocate the parameter area iff a callee
5648 // really requires memory operands, e.g. a vararg function.
5649 if (HasParameterArea)
5650 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5651 else
5652 NumBytes = LinkageSize;
5654 // Tail call needs the stack to be aligned.
5655 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5656 CallConv == CallingConv::Fast)
5657 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5659 int SPDiff = 0;
5661 // Calculate by how many bytes the stack has to be adjusted in case of tail
5662 // call optimization.
5663 if (!IsSibCall)
5664 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5666 // To protect arguments on the stack from being clobbered in a tail call,
5667 // force all the loads to happen before doing any other lowering.
5668 if (isTailCall)
5669 Chain = DAG.getStackArgumentTokenFactor(Chain);
5671 // Adjust the stack pointer for the new arguments...
5672 // These operations are automatically eliminated by the prolog/epilog pass
5673 if (!IsSibCall)
5674 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5675 SDValue CallSeqStart = Chain;
5677 // Load the return address and frame pointer so it can be move somewhere else
5678 // later.
5679 SDValue LROp, FPOp;
5680 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5682 // Set up a copy of the stack pointer for use loading and storing any
5683 // arguments that may not fit in the registers available for argument
5684 // passing.
5685 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5687 // Figure out which arguments are going to go in registers, and which in
5688 // memory. Also, if this is a vararg function, floating point operations
5689 // must be stored to our stack, and loaded into integer regs as well, if
5690 // any integer regs are available for argument passing.
5691 unsigned ArgOffset = LinkageSize;
5693 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5694 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5696 SmallVector<SDValue, 8> MemOpChains;
5697 for (unsigned i = 0; i != NumOps; ++i) {
5698 SDValue Arg = OutVals[i];
5699 ISD::ArgFlagsTy Flags = Outs[i].Flags;
5700 EVT ArgVT = Outs[i].VT;
5701 EVT OrigVT = Outs[i].ArgVT;
5703 // PtrOff will be used to store the current argument to the stack if a
5704 // register cannot be found for it.
5705 SDValue PtrOff;
5707 // We re-align the argument offset for each argument, except when using the
5708 // fast calling convention, when we need to make sure we do that only when
5709 // we'll actually use a stack slot.
5710 auto ComputePtrOff = [&]() {
5711 /* Respect alignment of argument on the stack. */
5712 unsigned Align =
5713 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5714 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5716 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5718 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5721 if (CallConv != CallingConv::Fast) {
5722 ComputePtrOff();
5724 /* Compute GPR index associated with argument offset. */
5725 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5726 GPR_idx = std::min(GPR_idx, NumGPRs);
5729 // Promote integers to 64-bit values.
5730 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5731 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5732 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5733 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5736 // FIXME memcpy is used way more than necessary. Correctness first.
5737 // Note: "by value" is code for passing a structure by value, not
5738 // basic types.
5739 if (Flags.isByVal()) {
5740 // Note: Size includes alignment padding, so
5741 // struct x { short a; char b; }
5742 // will have Size = 4. With #pragma pack(1), it will have Size = 3.
5743 // These are the proper values we need for right-justifying the
5744 // aggregate in a parameter register.
5745 unsigned Size = Flags.getByValSize();
5747 // An empty aggregate parameter takes up no storage and no
5748 // registers.
5749 if (Size == 0)
5750 continue;
5752 if (CallConv == CallingConv::Fast)
5753 ComputePtrOff();
5755 // All aggregates smaller than 8 bytes must be passed right-justified.
5756 if (Size==1 || Size==2 || Size==4) {
5757 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5758 if (GPR_idx != NumGPRs) {
5759 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5760 MachinePointerInfo(), VT);
5761 MemOpChains.push_back(Load.getValue(1));
5762 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5764 ArgOffset += PtrByteSize;
5765 continue;
5769 if (GPR_idx == NumGPRs && Size < 8) {
5770 SDValue AddPtr = PtrOff;
5771 if (!isLittleEndian) {
5772 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5773 PtrOff.getValueType());
5774 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5776 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5777 CallSeqStart,
5778 Flags, DAG, dl);
5779 ArgOffset += PtrByteSize;
5780 continue;
5782 // Copy entire object into memory. There are cases where gcc-generated
5783 // code assumes it is there, even if it could be put entirely into
5784 // registers. (This is not what the doc says.)
5786 // FIXME: The above statement is likely due to a misunderstanding of the
5787 // documents. All arguments must be copied into the parameter area BY
5788 // THE CALLEE in the event that the callee takes the address of any
5789 // formal argument. That has not yet been implemented. However, it is
5790 // reasonable to use the stack area as a staging area for the register
5791 // load.
5793 // Skip this for small aggregates, as we will use the same slot for a
5794 // right-justified copy, below.
5795 if (Size >= 8)
5796 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5797 CallSeqStart,
5798 Flags, DAG, dl);
5800 // When a register is available, pass a small aggregate right-justified.
5801 if (Size < 8 && GPR_idx != NumGPRs) {
5802 // The easiest way to get this right-justified in a register
5803 // is to copy the structure into the rightmost portion of a
5804 // local variable slot, then load the whole slot into the
5805 // register.
5806 // FIXME: The memcpy seems to produce pretty awful code for
5807 // small aggregates, particularly for packed ones.
5808 // FIXME: It would be preferable to use the slot in the
5809 // parameter save area instead of a new local variable.
5810 SDValue AddPtr = PtrOff;
5811 if (!isLittleEndian) {
5812 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5813 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5815 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5816 CallSeqStart,
5817 Flags, DAG, dl);
5819 // Load the slot into the register.
5820 SDValue Load =
5821 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5822 MemOpChains.push_back(Load.getValue(1));
5823 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5825 // Done with this argument.
5826 ArgOffset += PtrByteSize;
5827 continue;
5830 // For aggregates larger than PtrByteSize, copy the pieces of the
5831 // object that fit into registers from the parameter save area.
5832 for (unsigned j=0; j<Size; j+=PtrByteSize) {
5833 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5834 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5835 if (GPR_idx != NumGPRs) {
5836 SDValue Load =
5837 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5838 MemOpChains.push_back(Load.getValue(1));
5839 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5840 ArgOffset += PtrByteSize;
5841 } else {
5842 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5843 break;
5846 continue;
5849 switch (Arg.getSimpleValueType().SimpleTy) {
5850 default: llvm_unreachable("Unexpected ValueType for argument!");
5851 case MVT::i1:
5852 case MVT::i32:
5853 case MVT::i64:
5854 if (Flags.isNest()) {
5855 // The 'nest' parameter, if any, is passed in R11.
5856 RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5857 hasNest = true;
5858 break;
5861 // These can be scalar arguments or elements of an integer array type
5862 // passed directly. Clang may use those instead of "byval" aggregate
5863 // types to avoid forcing arguments to memory unnecessarily.
5864 if (GPR_idx != NumGPRs) {
5865 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5866 } else {
5867 if (CallConv == CallingConv::Fast)
5868 ComputePtrOff();
5870 assert(HasParameterArea &&
5871 "Parameter area must exist to pass an argument in memory.");
5872 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5873 true, isTailCall, false, MemOpChains,
5874 TailCallArguments, dl);
5875 if (CallConv == CallingConv::Fast)
5876 ArgOffset += PtrByteSize;
5878 if (CallConv != CallingConv::Fast)
5879 ArgOffset += PtrByteSize;
5880 break;
5881 case MVT::f32:
5882 case MVT::f64: {
5883 // These can be scalar arguments or elements of a float array type
5884 // passed directly. The latter are used to implement ELFv2 homogenous
5885 // float aggregates.
5887 // Named arguments go into FPRs first, and once they overflow, the
5888 // remaining arguments go into GPRs and then the parameter save area.
5889 // Unnamed arguments for vararg functions always go to GPRs and
5890 // then the parameter save area. For now, put all arguments to vararg
5891 // routines always in both locations (FPR *and* GPR or stack slot).
5892 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5893 bool NeededLoad = false;
5895 // First load the argument into the next available FPR.
5896 if (FPR_idx != NumFPRs)
5897 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5899 // Next, load the argument into GPR or stack slot if needed.
5900 if (!NeedGPROrStack)
5902 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5903 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5904 // once we support fp <-> gpr moves.
5906 // In the non-vararg case, this can only ever happen in the
5907 // presence of f32 array types, since otherwise we never run
5908 // out of FPRs before running out of GPRs.
5909 SDValue ArgVal;
5911 // Double values are always passed in a single GPR.
5912 if (Arg.getValueType() != MVT::f32) {
5913 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5915 // Non-array float values are extended and passed in a GPR.
5916 } else if (!Flags.isInConsecutiveRegs()) {
5917 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5918 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5920 // If we have an array of floats, we collect every odd element
5921 // together with its predecessor into one GPR.
5922 } else if (ArgOffset % PtrByteSize != 0) {
5923 SDValue Lo, Hi;
5924 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5925 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5926 if (!isLittleEndian)
5927 std::swap(Lo, Hi);
5928 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5930 // The final element, if even, goes into the first half of a GPR.
5931 } else if (Flags.isInConsecutiveRegsLast()) {
5932 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5933 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5934 if (!isLittleEndian)
5935 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5936 DAG.getConstant(32, dl, MVT::i32));
5938 // Non-final even elements are skipped; they will be handled
5939 // together the with subsequent argument on the next go-around.
5940 } else
5941 ArgVal = SDValue();
5943 if (ArgVal.getNode())
5944 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5945 } else {
5946 if (CallConv == CallingConv::Fast)
5947 ComputePtrOff();
5949 // Single-precision floating-point values are mapped to the
5950 // second (rightmost) word of the stack doubleword.
5951 if (Arg.getValueType() == MVT::f32 &&
5952 !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5953 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5954 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5957 assert(HasParameterArea &&
5958 "Parameter area must exist to pass an argument in memory.");
5959 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5960 true, isTailCall, false, MemOpChains,
5961 TailCallArguments, dl);
5963 NeededLoad = true;
5965 // When passing an array of floats, the array occupies consecutive
5966 // space in the argument area; only round up to the next doubleword
5967 // at the end of the array. Otherwise, each float takes 8 bytes.
5968 if (CallConv != CallingConv::Fast || NeededLoad) {
5969 ArgOffset += (Arg.getValueType() == MVT::f32 &&
5970 Flags.isInConsecutiveRegs()) ? 4 : 8;
5971 if (Flags.isInConsecutiveRegsLast())
5972 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5974 break;
5976 case MVT::v4f32:
5977 case MVT::v4i32:
5978 case MVT::v8i16:
5979 case MVT::v16i8:
5980 case MVT::v2f64:
5981 case MVT::v2i64:
5982 case MVT::v1i128:
5983 case MVT::f128:
5984 if (!Subtarget.hasQPX()) {
5985 // These can be scalar arguments or elements of a vector array type
5986 // passed directly. The latter are used to implement ELFv2 homogenous
5987 // vector aggregates.
5989 // For a varargs call, named arguments go into VRs or on the stack as
5990 // usual; unnamed arguments always go to the stack or the corresponding
5991 // GPRs when within range. For now, we always put the value in both
5992 // locations (or even all three).
5993 if (isVarArg) {
5994 assert(HasParameterArea &&
5995 "Parameter area must exist if we have a varargs call.");
5996 // We could elide this store in the case where the object fits
5997 // entirely in R registers. Maybe later.
5998 SDValue Store =
5999 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6000 MemOpChains.push_back(Store);
6001 if (VR_idx != NumVRs) {
6002 SDValue Load =
6003 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6004 MemOpChains.push_back(Load.getValue(1));
6005 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6007 ArgOffset += 16;
6008 for (unsigned i=0; i<16; i+=PtrByteSize) {
6009 if (GPR_idx == NumGPRs)
6010 break;
6011 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6012 DAG.getConstant(i, dl, PtrVT));
6013 SDValue Load =
6014 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6015 MemOpChains.push_back(Load.getValue(1));
6016 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6018 break;
6021 // Non-varargs Altivec params go into VRs or on the stack.
6022 if (VR_idx != NumVRs) {
6023 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6024 } else {
6025 if (CallConv == CallingConv::Fast)
6026 ComputePtrOff();
6028 assert(HasParameterArea &&
6029 "Parameter area must exist to pass an argument in memory.");
6030 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6031 true, isTailCall, true, MemOpChains,
6032 TailCallArguments, dl);
6033 if (CallConv == CallingConv::Fast)
6034 ArgOffset += 16;
6037 if (CallConv != CallingConv::Fast)
6038 ArgOffset += 16;
6039 break;
6040 } // not QPX
6042 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6043 "Invalid QPX parameter type");
6045 LLVM_FALLTHROUGH;
6046 case MVT::v4f64:
6047 case MVT::v4i1: {
6048 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6049 if (isVarArg) {
6050 assert(HasParameterArea &&
6051 "Parameter area must exist if we have a varargs call.");
6052 // We could elide this store in the case where the object fits
6053 // entirely in R registers. Maybe later.
6054 SDValue Store =
6055 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6056 MemOpChains.push_back(Store);
6057 if (QFPR_idx != NumQFPRs) {
6058 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6059 PtrOff, MachinePointerInfo());
6060 MemOpChains.push_back(Load.getValue(1));
6061 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6063 ArgOffset += (IsF32 ? 16 : 32);
6064 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6065 if (GPR_idx == NumGPRs)
6066 break;
6067 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6068 DAG.getConstant(i, dl, PtrVT));
6069 SDValue Load =
6070 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6071 MemOpChains.push_back(Load.getValue(1));
6072 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6074 break;
6077 // Non-varargs QPX params go into registers or on the stack.
6078 if (QFPR_idx != NumQFPRs) {
6079 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6080 } else {
6081 if (CallConv == CallingConv::Fast)
6082 ComputePtrOff();
6084 assert(HasParameterArea &&
6085 "Parameter area must exist to pass an argument in memory.");
6086 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6087 true, isTailCall, true, MemOpChains,
6088 TailCallArguments, dl);
6089 if (CallConv == CallingConv::Fast)
6090 ArgOffset += (IsF32 ? 16 : 32);
6093 if (CallConv != CallingConv::Fast)
6094 ArgOffset += (IsF32 ? 16 : 32);
6095 break;
6100 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6101 "mismatch in size of parameter area");
6102 (void)NumBytesActuallyUsed;
6104 if (!MemOpChains.empty())
6105 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6107 // Check if this is an indirect call (MTCTR/BCTRL).
6108 // See PrepareCall() for more information about calls through function
6109 // pointers in the 64-bit SVR4 ABI.
6110 if (!isTailCall && !isPatchPoint &&
6111 !isFunctionGlobalAddress(Callee) &&
6112 !isa<ExternalSymbolSDNode>(Callee)) {
6113 // Load r2 into a virtual register and store it to the TOC save area.
6114 setUsesTOCBasePtr(DAG);
6115 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6116 // TOC save area offset.
6117 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6118 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6119 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6120 Chain = DAG.getStore(
6121 Val.getValue(1), dl, Val, AddPtr,
6122 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6123 // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6124 // This does not mean the MTCTR instruction must use R12; it's easier
6125 // to model this as an extra parameter, so do that.
6126 if (isELFv2ABI && !isPatchPoint)
6127 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6130 // Build a sequence of copy-to-reg nodes chained together with token chain
6131 // and flag operands which copy the outgoing args into the appropriate regs.
6132 SDValue InFlag;
6133 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6134 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6135 RegsToPass[i].second, InFlag);
6136 InFlag = Chain.getValue(1);
6139 if (isTailCall && !IsSibCall)
6140 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6141 TailCallArguments);
6143 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6144 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6145 SPDiff, NumBytes, Ins, InVals, CS);
6148 SDValue PPCTargetLowering::LowerCall_Darwin(
6149 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6150 bool isTailCall, bool isPatchPoint,
6151 const SmallVectorImpl<ISD::OutputArg> &Outs,
6152 const SmallVectorImpl<SDValue> &OutVals,
6153 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6154 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6155 ImmutableCallSite CS) const {
6156 unsigned NumOps = Outs.size();
6158 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6159 bool isPPC64 = PtrVT == MVT::i64;
6160 unsigned PtrByteSize = isPPC64 ? 8 : 4;
6162 MachineFunction &MF = DAG.getMachineFunction();
6164 // Mark this function as potentially containing a function that contains a
6165 // tail call. As a consequence the frame pointer will be used for dynamicalloc
6166 // and restoring the callers stack pointer in this functions epilog. This is
6167 // done because by tail calling the called function might overwrite the value
6168 // in this function's (MF) stack pointer stack slot 0(SP).
6169 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6170 CallConv == CallingConv::Fast)
6171 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6173 // Count how many bytes are to be pushed on the stack, including the linkage
6174 // area, and parameter passing area. We start with 24/48 bytes, which is
6175 // prereserved space for [SP][CR][LR][3 x unused].
6176 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6177 unsigned NumBytes = LinkageSize;
6179 // Add up all the space actually used.
6180 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6181 // they all go in registers, but we must reserve stack space for them for
6182 // possible use by the caller. In varargs or 64-bit calls, parameters are
6183 // assigned stack space in order, with padding so Altivec parameters are
6184 // 16-byte aligned.
6185 unsigned nAltivecParamsAtEnd = 0;
6186 for (unsigned i = 0; i != NumOps; ++i) {
6187 ISD::ArgFlagsTy Flags = Outs[i].Flags;
6188 EVT ArgVT = Outs[i].VT;
6189 // Varargs Altivec parameters are padded to a 16 byte boundary.
6190 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6191 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6192 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6193 if (!isVarArg && !isPPC64) {
6194 // Non-varargs Altivec parameters go after all the non-Altivec
6195 // parameters; handle those later so we know how much padding we need.
6196 nAltivecParamsAtEnd++;
6197 continue;
6199 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6200 NumBytes = ((NumBytes+15)/16)*16;
6202 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6205 // Allow for Altivec parameters at the end, if needed.
6206 if (nAltivecParamsAtEnd) {
6207 NumBytes = ((NumBytes+15)/16)*16;
6208 NumBytes += 16*nAltivecParamsAtEnd;
6211 // The prolog code of the callee may store up to 8 GPR argument registers to
6212 // the stack, allowing va_start to index over them in memory if its varargs.
6213 // Because we cannot tell if this is needed on the caller side, we have to
6214 // conservatively assume that it is needed. As such, make sure we have at
6215 // least enough stack space for the caller to store the 8 GPRs.
6216 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6218 // Tail call needs the stack to be aligned.
6219 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6220 CallConv == CallingConv::Fast)
6221 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6223 // Calculate by how many bytes the stack has to be adjusted in case of tail
6224 // call optimization.
6225 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6227 // To protect arguments on the stack from being clobbered in a tail call,
6228 // force all the loads to happen before doing any other lowering.
6229 if (isTailCall)
6230 Chain = DAG.getStackArgumentTokenFactor(Chain);
6232 // Adjust the stack pointer for the new arguments...
6233 // These operations are automatically eliminated by the prolog/epilog pass
6234 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6235 SDValue CallSeqStart = Chain;
6237 // Load the return address and frame pointer so it can be move somewhere else
6238 // later.
6239 SDValue LROp, FPOp;
6240 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6242 // Set up a copy of the stack pointer for use loading and storing any
6243 // arguments that may not fit in the registers available for argument
6244 // passing.
6245 SDValue StackPtr;
6246 if (isPPC64)
6247 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6248 else
6249 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6251 // Figure out which arguments are going to go in registers, and which in
6252 // memory. Also, if this is a vararg function, floating point operations
6253 // must be stored to our stack, and loaded into integer regs as well, if
6254 // any integer regs are available for argument passing.
6255 unsigned ArgOffset = LinkageSize;
6256 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6258 static const MCPhysReg GPR_32[] = { // 32-bit registers.
6259 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6260 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6262 static const MCPhysReg GPR_64[] = { // 64-bit registers.
6263 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6264 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6266 static const MCPhysReg VR[] = {
6267 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6268 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6270 const unsigned NumGPRs = array_lengthof(GPR_32);
6271 const unsigned NumFPRs = 13;
6272 const unsigned NumVRs = array_lengthof(VR);
6274 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6276 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6277 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6279 SmallVector<SDValue, 8> MemOpChains;
6280 for (unsigned i = 0; i != NumOps; ++i) {
6281 SDValue Arg = OutVals[i];
6282 ISD::ArgFlagsTy Flags = Outs[i].Flags;
6284 // PtrOff will be used to store the current argument to the stack if a
6285 // register cannot be found for it.
6286 SDValue PtrOff;
6288 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6290 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6292 // On PPC64, promote integers to 64-bit values.
6293 if (isPPC64 && Arg.getValueType() == MVT::i32) {
6294 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6295 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6296 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6299 // FIXME memcpy is used way more than necessary. Correctness first.
6300 // Note: "by value" is code for passing a structure by value, not
6301 // basic types.
6302 if (Flags.isByVal()) {
6303 unsigned Size = Flags.getByValSize();
6304 // Very small objects are passed right-justified. Everything else is
6305 // passed left-justified.
6306 if (Size==1 || Size==2) {
6307 EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6308 if (GPR_idx != NumGPRs) {
6309 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6310 MachinePointerInfo(), VT);
6311 MemOpChains.push_back(Load.getValue(1));
6312 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6314 ArgOffset += PtrByteSize;
6315 } else {
6316 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6317 PtrOff.getValueType());
6318 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6319 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6320 CallSeqStart,
6321 Flags, DAG, dl);
6322 ArgOffset += PtrByteSize;
6324 continue;
6326 // Copy entire object into memory. There are cases where gcc-generated
6327 // code assumes it is there, even if it could be put entirely into
6328 // registers. (This is not what the doc says.)
6329 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6330 CallSeqStart,
6331 Flags, DAG, dl);
6333 // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6334 // copy the pieces of the object that fit into registers from the
6335 // parameter save area.
6336 for (unsigned j=0; j<Size; j+=PtrByteSize) {
6337 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6338 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6339 if (GPR_idx != NumGPRs) {
6340 SDValue Load =
6341 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6342 MemOpChains.push_back(Load.getValue(1));
6343 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6344 ArgOffset += PtrByteSize;
6345 } else {
6346 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6347 break;
6350 continue;
6353 switch (Arg.getSimpleValueType().SimpleTy) {
6354 default: llvm_unreachable("Unexpected ValueType for argument!");
6355 case MVT::i1:
6356 case MVT::i32:
6357 case MVT::i64:
6358 if (GPR_idx != NumGPRs) {
6359 if (Arg.getValueType() == MVT::i1)
6360 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6362 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6363 } else {
6364 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6365 isPPC64, isTailCall, false, MemOpChains,
6366 TailCallArguments, dl);
6368 ArgOffset += PtrByteSize;
6369 break;
6370 case MVT::f32:
6371 case MVT::f64:
6372 if (FPR_idx != NumFPRs) {
6373 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6375 if (isVarArg) {
6376 SDValue Store =
6377 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6378 MemOpChains.push_back(Store);
6380 // Float varargs are always shadowed in available integer registers
6381 if (GPR_idx != NumGPRs) {
6382 SDValue Load =
6383 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6384 MemOpChains.push_back(Load.getValue(1));
6385 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6387 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6388 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6389 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6390 SDValue Load =
6391 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6392 MemOpChains.push_back(Load.getValue(1));
6393 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6395 } else {
6396 // If we have any FPRs remaining, we may also have GPRs remaining.
6397 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6398 // GPRs.
6399 if (GPR_idx != NumGPRs)
6400 ++GPR_idx;
6401 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6402 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
6403 ++GPR_idx;
6405 } else
6406 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6407 isPPC64, isTailCall, false, MemOpChains,
6408 TailCallArguments, dl);
6409 if (isPPC64)
6410 ArgOffset += 8;
6411 else
6412 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6413 break;
6414 case MVT::v4f32:
6415 case MVT::v4i32:
6416 case MVT::v8i16:
6417 case MVT::v16i8:
6418 if (isVarArg) {
6419 // These go aligned on the stack, or in the corresponding R registers
6420 // when within range. The Darwin PPC ABI doc claims they also go in
6421 // V registers; in fact gcc does this only for arguments that are
6422 // prototyped, not for those that match the ... We do it for all
6423 // arguments, seems to work.
6424 while (ArgOffset % 16 !=0) {
6425 ArgOffset += PtrByteSize;
6426 if (GPR_idx != NumGPRs)
6427 GPR_idx++;
6429 // We could elide this store in the case where the object fits
6430 // entirely in R registers. Maybe later.
6431 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6432 DAG.getConstant(ArgOffset, dl, PtrVT));
6433 SDValue Store =
6434 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6435 MemOpChains.push_back(Store);
6436 if (VR_idx != NumVRs) {
6437 SDValue Load =
6438 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6439 MemOpChains.push_back(Load.getValue(1));
6440 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6442 ArgOffset += 16;
6443 for (unsigned i=0; i<16; i+=PtrByteSize) {
6444 if (GPR_idx == NumGPRs)
6445 break;
6446 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6447 DAG.getConstant(i, dl, PtrVT));
6448 SDValue Load =
6449 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6450 MemOpChains.push_back(Load.getValue(1));
6451 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6453 break;
6456 // Non-varargs Altivec params generally go in registers, but have
6457 // stack space allocated at the end.
6458 if (VR_idx != NumVRs) {
6459 // Doesn't have GPR space allocated.
6460 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6461 } else if (nAltivecParamsAtEnd==0) {
6462 // We are emitting Altivec params in order.
6463 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6464 isPPC64, isTailCall, true, MemOpChains,
6465 TailCallArguments, dl);
6466 ArgOffset += 16;
6468 break;
6471 // If all Altivec parameters fit in registers, as they usually do,
6472 // they get stack space following the non-Altivec parameters. We
6473 // don't track this here because nobody below needs it.
6474 // If there are more Altivec parameters than fit in registers emit
6475 // the stores here.
6476 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6477 unsigned j = 0;
6478 // Offset is aligned; skip 1st 12 params which go in V registers.
6479 ArgOffset = ((ArgOffset+15)/16)*16;
6480 ArgOffset += 12*16;
6481 for (unsigned i = 0; i != NumOps; ++i) {
6482 SDValue Arg = OutVals[i];
6483 EVT ArgType = Outs[i].VT;
6484 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6485 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6486 if (++j > NumVRs) {
6487 SDValue PtrOff;
6488 // We are emitting Altivec params in order.
6489 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6490 isPPC64, isTailCall, true, MemOpChains,
6491 TailCallArguments, dl);
6492 ArgOffset += 16;
6498 if (!MemOpChains.empty())
6499 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6501 // On Darwin, R12 must contain the address of an indirect callee. This does
6502 // not mean the MTCTR instruction must use R12; it's easier to model this as
6503 // an extra parameter, so do that.
6504 if (!isTailCall &&
6505 !isFunctionGlobalAddress(Callee) &&
6506 !isa<ExternalSymbolSDNode>(Callee) &&
6507 !isBLACompatibleAddress(Callee, DAG))
6508 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6509 PPC::R12), Callee));
6511 // Build a sequence of copy-to-reg nodes chained together with token chain
6512 // and flag operands which copy the outgoing args into the appropriate regs.
6513 SDValue InFlag;
6514 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6515 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6516 RegsToPass[i].second, InFlag);
6517 InFlag = Chain.getValue(1);
6520 if (isTailCall)
6521 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6522 TailCallArguments);
6524 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6525 /* unused except on PPC64 ELFv1 */ false, DAG,
6526 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6527 NumBytes, Ins, InVals, CS);
6530 bool
6531 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6532 MachineFunction &MF, bool isVarArg,
6533 const SmallVectorImpl<ISD::OutputArg> &Outs,
6534 LLVMContext &Context) const {
6535 SmallVector<CCValAssign, 16> RVLocs;
6536 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6537 return CCInfo.CheckReturn(
6538 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6539 ? RetCC_PPC_Cold
6540 : RetCC_PPC);
6543 SDValue
6544 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6545 bool isVarArg,
6546 const SmallVectorImpl<ISD::OutputArg> &Outs,
6547 const SmallVectorImpl<SDValue> &OutVals,
6548 const SDLoc &dl, SelectionDAG &DAG) const {
6549 SmallVector<CCValAssign, 16> RVLocs;
6550 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6551 *DAG.getContext());
6552 CCInfo.AnalyzeReturn(Outs,
6553 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6554 ? RetCC_PPC_Cold
6555 : RetCC_PPC);
6557 SDValue Flag;
6558 SmallVector<SDValue, 4> RetOps(1, Chain);
6560 // Copy the result values into the output registers.
6561 for (unsigned i = 0; i != RVLocs.size(); ++i) {
6562 CCValAssign &VA = RVLocs[i];
6563 assert(VA.isRegLoc() && "Can only return in registers!");
6565 SDValue Arg = OutVals[i];
6567 switch (VA.getLocInfo()) {
6568 default: llvm_unreachable("Unknown loc info!");
6569 case CCValAssign::Full: break;
6570 case CCValAssign::AExt:
6571 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6572 break;
6573 case CCValAssign::ZExt:
6574 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6575 break;
6576 case CCValAssign::SExt:
6577 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6578 break;
6581 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6582 Flag = Chain.getValue(1);
6583 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6586 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6587 const MCPhysReg *I =
6588 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6589 if (I) {
6590 for (; *I; ++I) {
6592 if (PPC::G8RCRegClass.contains(*I))
6593 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6594 else if (PPC::F8RCRegClass.contains(*I))
6595 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6596 else if (PPC::CRRCRegClass.contains(*I))
6597 RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6598 else if (PPC::VRRCRegClass.contains(*I))
6599 RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6600 else
6601 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6605 RetOps[0] = Chain; // Update chain.
6607 // Add the flag if we have it.
6608 if (Flag.getNode())
6609 RetOps.push_back(Flag);
6611 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6614 SDValue
6615 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6616 SelectionDAG &DAG) const {
6617 SDLoc dl(Op);
6619 // Get the correct type for integers.
6620 EVT IntVT = Op.getValueType();
6622 // Get the inputs.
6623 SDValue Chain = Op.getOperand(0);
6624 SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6625 // Build a DYNAREAOFFSET node.
6626 SDValue Ops[2] = {Chain, FPSIdx};
6627 SDVTList VTs = DAG.getVTList(IntVT);
6628 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6631 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6632 SelectionDAG &DAG) const {
6633 // When we pop the dynamic allocation we need to restore the SP link.
6634 SDLoc dl(Op);
6636 // Get the correct type for pointers.
6637 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6639 // Construct the stack pointer operand.
6640 bool isPPC64 = Subtarget.isPPC64();
6641 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6642 SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6644 // Get the operands for the STACKRESTORE.
6645 SDValue Chain = Op.getOperand(0);
6646 SDValue SaveSP = Op.getOperand(1);
6648 // Load the old link SP.
6649 SDValue LoadLinkSP =
6650 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6652 // Restore the stack pointer.
6653 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6655 // Store the old link SP.
6656 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6659 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6660 MachineFunction &MF = DAG.getMachineFunction();
6661 bool isPPC64 = Subtarget.isPPC64();
6662 EVT PtrVT = getPointerTy(MF.getDataLayout());
6664 // Get current frame pointer save index. The users of this index will be
6665 // primarily DYNALLOC instructions.
6666 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6667 int RASI = FI->getReturnAddrSaveIndex();
6669 // If the frame pointer save index hasn't been defined yet.
6670 if (!RASI) {
6671 // Find out what the fix offset of the frame pointer save area.
6672 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6673 // Allocate the frame index for frame pointer save area.
6674 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6675 // Save the result.
6676 FI->setReturnAddrSaveIndex(RASI);
6678 return DAG.getFrameIndex(RASI, PtrVT);
6681 SDValue
6682 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6683 MachineFunction &MF = DAG.getMachineFunction();
6684 bool isPPC64 = Subtarget.isPPC64();
6685 EVT PtrVT = getPointerTy(MF.getDataLayout());
6687 // Get current frame pointer save index. The users of this index will be
6688 // primarily DYNALLOC instructions.
6689 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6690 int FPSI = FI->getFramePointerSaveIndex();
6692 // If the frame pointer save index hasn't been defined yet.
6693 if (!FPSI) {
6694 // Find out what the fix offset of the frame pointer save area.
6695 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6696 // Allocate the frame index for frame pointer save area.
6697 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6698 // Save the result.
6699 FI->setFramePointerSaveIndex(FPSI);
6701 return DAG.getFrameIndex(FPSI, PtrVT);
6704 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6705 SelectionDAG &DAG) const {
6706 // Get the inputs.
6707 SDValue Chain = Op.getOperand(0);
6708 SDValue Size = Op.getOperand(1);
6709 SDLoc dl(Op);
6711 // Get the correct type for pointers.
6712 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6713 // Negate the size.
6714 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6715 DAG.getConstant(0, dl, PtrVT), Size);
6716 // Construct a node for the frame pointer save index.
6717 SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6718 // Build a DYNALLOC node.
6719 SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6720 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6721 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6724 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6725 SelectionDAG &DAG) const {
6726 MachineFunction &MF = DAG.getMachineFunction();
6728 bool isPPC64 = Subtarget.isPPC64();
6729 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6731 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6732 return DAG.getFrameIndex(FI, PtrVT);
6735 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6736 SelectionDAG &DAG) const {
6737 SDLoc DL(Op);
6738 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6739 DAG.getVTList(MVT::i32, MVT::Other),
6740 Op.getOperand(0), Op.getOperand(1));
6743 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6744 SelectionDAG &DAG) const {
6745 SDLoc DL(Op);
6746 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6747 Op.getOperand(0), Op.getOperand(1));
6750 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6751 if (Op.getValueType().isVector())
6752 return LowerVectorLoad(Op, DAG);
6754 assert(Op.getValueType() == MVT::i1 &&
6755 "Custom lowering only for i1 loads");
6757 // First, load 8 bits into 32 bits, then truncate to 1 bit.
6759 SDLoc dl(Op);
6760 LoadSDNode *LD = cast<LoadSDNode>(Op);
6762 SDValue Chain = LD->getChain();
6763 SDValue BasePtr = LD->getBasePtr();
6764 MachineMemOperand *MMO = LD->getMemOperand();
6766 SDValue NewLD =
6767 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6768 BasePtr, MVT::i8, MMO);
6769 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6771 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6772 return DAG.getMergeValues(Ops, dl);
6775 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6776 if (Op.getOperand(1).getValueType().isVector())
6777 return LowerVectorStore(Op, DAG);
6779 assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6780 "Custom lowering only for i1 stores");
6782 // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6784 SDLoc dl(Op);
6785 StoreSDNode *ST = cast<StoreSDNode>(Op);
6787 SDValue Chain = ST->getChain();
6788 SDValue BasePtr = ST->getBasePtr();
6789 SDValue Value = ST->getValue();
6790 MachineMemOperand *MMO = ST->getMemOperand();
6792 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6793 Value);
6794 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6797 // FIXME: Remove this once the ANDI glue bug is fixed:
6798 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6799 assert(Op.getValueType() == MVT::i1 &&
6800 "Custom lowering only for i1 results");
6802 SDLoc DL(Op);
6803 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6804 Op.getOperand(0));
6807 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
6808 SelectionDAG &DAG) const {
6810 // Implements a vector truncate that fits in a vector register as a shuffle.
6811 // We want to legalize vector truncates down to where the source fits in
6812 // a vector register (and target is therefore smaller than vector register
6813 // size). At that point legalization will try to custom lower the sub-legal
6814 // result and get here - where we can contain the truncate as a single target
6815 // operation.
6817 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
6818 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
6820 // We will implement it for big-endian ordering as this (where x denotes
6821 // undefined):
6822 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
6823 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
6825 // The same operation in little-endian ordering will be:
6826 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
6827 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
6829 assert(Op.getValueType().isVector() && "Vector type expected.");
6831 SDLoc DL(Op);
6832 SDValue N1 = Op.getOperand(0);
6833 unsigned SrcSize = N1.getValueType().getSizeInBits();
6834 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
6835 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
6837 EVT TrgVT = Op.getValueType();
6838 unsigned TrgNumElts = TrgVT.getVectorNumElements();
6839 EVT EltVT = TrgVT.getVectorElementType();
6840 unsigned WideNumElts = 128 / EltVT.getSizeInBits();
6841 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
6843 // First list the elements we want to keep.
6844 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
6845 SmallVector<int, 16> ShuffV;
6846 if (Subtarget.isLittleEndian())
6847 for (unsigned i = 0; i < TrgNumElts; ++i)
6848 ShuffV.push_back(i * SizeMult);
6849 else
6850 for (unsigned i = 1; i <= TrgNumElts; ++i)
6851 ShuffV.push_back(i * SizeMult - 1);
6853 // Populate the remaining elements with undefs.
6854 for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
6855 // ShuffV.push_back(i + WideNumElts);
6856 ShuffV.push_back(WideNumElts + 1);
6858 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
6859 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
6862 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6863 /// possible.
6864 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6865 // Not FP? Not a fsel.
6866 if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6867 !Op.getOperand(2).getValueType().isFloatingPoint())
6868 return Op;
6870 // We might be able to do better than this under some circumstances, but in
6871 // general, fsel-based lowering of select is a finite-math-only optimization.
6872 // For more information, see section F.3 of the 2.06 ISA specification.
6873 if (!DAG.getTarget().Options.NoInfsFPMath ||
6874 !DAG.getTarget().Options.NoNaNsFPMath)
6875 return Op;
6876 // TODO: Propagate flags from the select rather than global settings.
6877 SDNodeFlags Flags;
6878 Flags.setNoInfs(true);
6879 Flags.setNoNaNs(true);
6881 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6883 EVT ResVT = Op.getValueType();
6884 EVT CmpVT = Op.getOperand(0).getValueType();
6885 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6886 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
6887 SDLoc dl(Op);
6889 // If the RHS of the comparison is a 0.0, we don't need to do the
6890 // subtraction at all.
6891 SDValue Sel1;
6892 if (isFloatingPointZero(RHS))
6893 switch (CC) {
6894 default: break; // SETUO etc aren't handled by fsel.
6895 case ISD::SETNE:
6896 std::swap(TV, FV);
6897 LLVM_FALLTHROUGH;
6898 case ISD::SETEQ:
6899 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
6900 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6901 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6902 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
6903 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6904 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6905 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6906 case ISD::SETULT:
6907 case ISD::SETLT:
6908 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
6909 LLVM_FALLTHROUGH;
6910 case ISD::SETOGE:
6911 case ISD::SETGE:
6912 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
6913 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6914 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6915 case ISD::SETUGT:
6916 case ISD::SETGT:
6917 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
6918 LLVM_FALLTHROUGH;
6919 case ISD::SETOLE:
6920 case ISD::SETLE:
6921 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
6922 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6923 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6924 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6927 SDValue Cmp;
6928 switch (CC) {
6929 default: break; // SETUO etc aren't handled by fsel.
6930 case ISD::SETNE:
6931 std::swap(TV, FV);
6932 LLVM_FALLTHROUGH;
6933 case ISD::SETEQ:
6934 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6935 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6936 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6937 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6938 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
6939 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6940 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6941 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6942 case ISD::SETULT:
6943 case ISD::SETLT:
6944 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6945 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6946 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6947 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6948 case ISD::SETOGE:
6949 case ISD::SETGE:
6950 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6951 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6952 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6953 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6954 case ISD::SETUGT:
6955 case ISD::SETGT:
6956 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6957 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6958 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6959 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6960 case ISD::SETOLE:
6961 case ISD::SETLE:
6962 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6963 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6964 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6965 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6967 return Op;
6970 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6971 SelectionDAG &DAG,
6972 const SDLoc &dl) const {
6973 assert(Op.getOperand(0).getValueType().isFloatingPoint());
6974 SDValue Src = Op.getOperand(0);
6975 if (Src.getValueType() == MVT::f32)
6976 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6978 SDValue Tmp;
6979 switch (Op.getSimpleValueType().SimpleTy) {
6980 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6981 case MVT::i32:
6982 Tmp = DAG.getNode(
6983 Op.getOpcode() == ISD::FP_TO_SINT
6984 ? PPCISD::FCTIWZ
6985 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6986 dl, MVT::f64, Src);
6987 break;
6988 case MVT::i64:
6989 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6990 "i64 FP_TO_UINT is supported only with FPCVT");
6991 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6992 PPCISD::FCTIDUZ,
6993 dl, MVT::f64, Src);
6994 break;
6997 // Convert the FP value to an int value through memory.
6998 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6999 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7000 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7001 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7002 MachinePointerInfo MPI =
7003 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7005 // Emit a store to the stack slot.
7006 SDValue Chain;
7007 if (i32Stack) {
7008 MachineFunction &MF = DAG.getMachineFunction();
7009 MachineMemOperand *MMO =
7010 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7011 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7012 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7013 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7014 } else
7015 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7017 // Result is a load from the stack slot. If loading 4 bytes, make sure to
7018 // add in a bias on big endian.
7019 if (Op.getValueType() == MVT::i32 && !i32Stack) {
7020 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7021 DAG.getConstant(4, dl, FIPtr.getValueType()));
7022 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7025 RLI.Chain = Chain;
7026 RLI.Ptr = FIPtr;
7027 RLI.MPI = MPI;
7030 /// Custom lowers floating point to integer conversions to use
7031 /// the direct move instructions available in ISA 2.07 to avoid the
7032 /// need for load/store combinations.
7033 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7034 SelectionDAG &DAG,
7035 const SDLoc &dl) const {
7036 assert(Op.getOperand(0).getValueType().isFloatingPoint());
7037 SDValue Src = Op.getOperand(0);
7039 if (Src.getValueType() == MVT::f32)
7040 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7042 SDValue Tmp;
7043 switch (Op.getSimpleValueType().SimpleTy) {
7044 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7045 case MVT::i32:
7046 Tmp = DAG.getNode(
7047 Op.getOpcode() == ISD::FP_TO_SINT
7048 ? PPCISD::FCTIWZ
7049 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7050 dl, MVT::f64, Src);
7051 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7052 break;
7053 case MVT::i64:
7054 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7055 "i64 FP_TO_UINT is supported only with FPCVT");
7056 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7057 PPCISD::FCTIDUZ,
7058 dl, MVT::f64, Src);
7059 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7060 break;
7062 return Tmp;
7065 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7066 const SDLoc &dl) const {
7068 // FP to INT conversions are legal for f128.
7069 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7070 return Op;
7072 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7073 // PPC (the libcall is not available).
7074 if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7075 if (Op.getValueType() == MVT::i32) {
7076 if (Op.getOpcode() == ISD::FP_TO_SINT) {
7077 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7078 MVT::f64, Op.getOperand(0),
7079 DAG.getIntPtrConstant(0, dl));
7080 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7081 MVT::f64, Op.getOperand(0),
7082 DAG.getIntPtrConstant(1, dl));
7084 // Add the two halves of the long double in round-to-zero mode.
7085 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7087 // Now use a smaller FP_TO_SINT.
7088 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7090 if (Op.getOpcode() == ISD::FP_TO_UINT) {
7091 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7092 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7093 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7094 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7095 // FIXME: generated code sucks.
7096 // TODO: Are there fast-math-flags to propagate to this FSUB?
7097 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7098 Op.getOperand(0), Tmp);
7099 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7100 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7101 DAG.getConstant(0x80000000, dl, MVT::i32));
7102 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7103 Op.getOperand(0));
7104 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7105 ISD::SETGE);
7109 return SDValue();
7112 if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7113 return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7115 ReuseLoadInfo RLI;
7116 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7118 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7119 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7122 // We're trying to insert a regular store, S, and then a load, L. If the
7123 // incoming value, O, is a load, we might just be able to have our load use the
7124 // address used by O. However, we don't know if anything else will store to
7125 // that address before we can load from it. To prevent this situation, we need
7126 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7127 // the same chain operand as O, we create a token factor from the chain results
7128 // of O and L, and we replace all uses of O's chain result with that token
7129 // factor (see spliceIntoChain below for this last part).
7130 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7131 ReuseLoadInfo &RLI,
7132 SelectionDAG &DAG,
7133 ISD::LoadExtType ET) const {
7134 SDLoc dl(Op);
7135 if (ET == ISD::NON_EXTLOAD &&
7136 (Op.getOpcode() == ISD::FP_TO_UINT ||
7137 Op.getOpcode() == ISD::FP_TO_SINT) &&
7138 isOperationLegalOrCustom(Op.getOpcode(),
7139 Op.getOperand(0).getValueType())) {
7141 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7142 return true;
7145 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7146 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7147 LD->isNonTemporal())
7148 return false;
7149 if (LD->getMemoryVT() != MemVT)
7150 return false;
7152 RLI.Ptr = LD->getBasePtr();
7153 if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7154 assert(LD->getAddressingMode() == ISD::PRE_INC &&
7155 "Non-pre-inc AM on PPC?");
7156 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7157 LD->getOffset());
7160 RLI.Chain = LD->getChain();
7161 RLI.MPI = LD->getPointerInfo();
7162 RLI.IsDereferenceable = LD->isDereferenceable();
7163 RLI.IsInvariant = LD->isInvariant();
7164 RLI.Alignment = LD->getAlignment();
7165 RLI.AAInfo = LD->getAAInfo();
7166 RLI.Ranges = LD->getRanges();
7168 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7169 return true;
7172 // Given the head of the old chain, ResChain, insert a token factor containing
7173 // it and NewResChain, and make users of ResChain now be users of that token
7174 // factor.
7175 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7176 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7177 SDValue NewResChain,
7178 SelectionDAG &DAG) const {
7179 if (!ResChain)
7180 return;
7182 SDLoc dl(NewResChain);
7184 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7185 NewResChain, DAG.getUNDEF(MVT::Other));
7186 assert(TF.getNode() != NewResChain.getNode() &&
7187 "A new TF really is required here");
7189 DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7190 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7193 /// Analyze profitability of direct move
7194 /// prefer float load to int load plus direct move
7195 /// when there is no integer use of int load
7196 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7197 SDNode *Origin = Op.getOperand(0).getNode();
7198 if (Origin->getOpcode() != ISD::LOAD)
7199 return true;
7201 // If there is no LXSIBZX/LXSIHZX, like Power8,
7202 // prefer direct move if the memory size is 1 or 2 bytes.
7203 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7204 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7205 return true;
7207 for (SDNode::use_iterator UI = Origin->use_begin(),
7208 UE = Origin->use_end();
7209 UI != UE; ++UI) {
7211 // Only look at the users of the loaded value.
7212 if (UI.getUse().get().getResNo() != 0)
7213 continue;
7215 if (UI->getOpcode() != ISD::SINT_TO_FP &&
7216 UI->getOpcode() != ISD::UINT_TO_FP)
7217 return true;
7220 return false;
7223 /// Custom lowers integer to floating point conversions to use
7224 /// the direct move instructions available in ISA 2.07 to avoid the
7225 /// need for load/store combinations.
7226 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7227 SelectionDAG &DAG,
7228 const SDLoc &dl) const {
7229 assert((Op.getValueType() == MVT::f32 ||
7230 Op.getValueType() == MVT::f64) &&
7231 "Invalid floating point type as target of conversion");
7232 assert(Subtarget.hasFPCVT() &&
7233 "Int to FP conversions with direct moves require FPCVT");
7234 SDValue FP;
7235 SDValue Src = Op.getOperand(0);
7236 bool SinglePrec = Op.getValueType() == MVT::f32;
7237 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7238 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7239 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7240 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7242 if (WordInt) {
7243 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7244 dl, MVT::f64, Src);
7245 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7247 else {
7248 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7249 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7252 return FP;
7255 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7257 EVT VecVT = Vec.getValueType();
7258 assert(VecVT.isVector() && "Expected a vector type.");
7259 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7261 EVT EltVT = VecVT.getVectorElementType();
7262 unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7263 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7265 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7266 SmallVector<SDValue, 16> Ops(NumConcat);
7267 Ops[0] = Vec;
7268 SDValue UndefVec = DAG.getUNDEF(VecVT);
7269 for (unsigned i = 1; i < NumConcat; ++i)
7270 Ops[i] = UndefVec;
7272 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7275 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7276 const SDLoc &dl) const {
7278 unsigned Opc = Op.getOpcode();
7279 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7280 "Unexpected conversion type");
7281 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7282 "Supports conversions to v2f64/v4f32 only.");
7284 bool SignedConv = Opc == ISD::SINT_TO_FP;
7285 bool FourEltRes = Op.getValueType() == MVT::v4f32;
7287 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
7288 EVT WideVT = Wide.getValueType();
7289 unsigned WideNumElts = WideVT.getVectorNumElements();
7290 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
7292 SmallVector<int, 16> ShuffV;
7293 for (unsigned i = 0; i < WideNumElts; ++i)
7294 ShuffV.push_back(i + WideNumElts);
7296 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
7297 int SaveElts = FourEltRes ? 4 : 2;
7298 if (Subtarget.isLittleEndian())
7299 for (int i = 0; i < SaveElts; i++)
7300 ShuffV[i * Stride] = i;
7301 else
7302 for (int i = 1; i <= SaveElts; i++)
7303 ShuffV[i * Stride - 1] = i - 1;
7305 SDValue ShuffleSrc2 =
7306 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
7307 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7308 unsigned ExtendOp =
7309 SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
7311 SDValue Extend;
7312 if (!Subtarget.hasP9Altivec() && SignedConv) {
7313 Arrange = DAG.getBitcast(IntermediateVT, Arrange);
7314 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
7315 DAG.getValueType(Op.getOperand(0).getValueType()));
7316 } else
7317 Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
7319 return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
7322 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7323 SelectionDAG &DAG) const {
7324 SDLoc dl(Op);
7326 EVT InVT = Op.getOperand(0).getValueType();
7327 EVT OutVT = Op.getValueType();
7328 if (OutVT.isVector() && OutVT.isFloatingPoint() &&
7329 isOperationCustom(Op.getOpcode(), InVT))
7330 return LowerINT_TO_FPVector(Op, DAG, dl);
7332 // Conversions to f128 are legal.
7333 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7334 return Op;
7336 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7337 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7338 return SDValue();
7340 SDValue Value = Op.getOperand(0);
7341 // The values are now known to be -1 (false) or 1 (true). To convert this
7342 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7343 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7344 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7346 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7348 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7350 if (Op.getValueType() != MVT::v4f64)
7351 Value = DAG.getNode(ISD::FP_ROUND, dl,
7352 Op.getValueType(), Value,
7353 DAG.getIntPtrConstant(1, dl));
7354 return Value;
7357 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7358 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7359 return SDValue();
7361 if (Op.getOperand(0).getValueType() == MVT::i1)
7362 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7363 DAG.getConstantFP(1.0, dl, Op.getValueType()),
7364 DAG.getConstantFP(0.0, dl, Op.getValueType()));
7366 // If we have direct moves, we can do all the conversion, skip the store/load
7367 // however, without FPCVT we can't do most conversions.
7368 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7369 Subtarget.isPPC64() && Subtarget.hasFPCVT())
7370 return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7372 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7373 "UINT_TO_FP is supported only with FPCVT");
7375 // If we have FCFIDS, then use it when converting to single-precision.
7376 // Otherwise, convert to double-precision and then round.
7377 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7378 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7379 : PPCISD::FCFIDS)
7380 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7381 : PPCISD::FCFID);
7382 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7383 ? MVT::f32
7384 : MVT::f64;
7386 if (Op.getOperand(0).getValueType() == MVT::i64) {
7387 SDValue SINT = Op.getOperand(0);
7388 // When converting to single-precision, we actually need to convert
7389 // to double-precision first and then round to single-precision.
7390 // To avoid double-rounding effects during that operation, we have
7391 // to prepare the input operand. Bits that might be truncated when
7392 // converting to double-precision are replaced by a bit that won't
7393 // be lost at this stage, but is below the single-precision rounding
7394 // position.
7396 // However, if -enable-unsafe-fp-math is in effect, accept double
7397 // rounding to avoid the extra overhead.
7398 if (Op.getValueType() == MVT::f32 &&
7399 !Subtarget.hasFPCVT() &&
7400 !DAG.getTarget().Options.UnsafeFPMath) {
7402 // Twiddle input to make sure the low 11 bits are zero. (If this
7403 // is the case, we are guaranteed the value will fit into the 53 bit
7404 // mantissa of an IEEE double-precision value without rounding.)
7405 // If any of those low 11 bits were not zero originally, make sure
7406 // bit 12 (value 2048) is set instead, so that the final rounding
7407 // to single-precision gets the correct result.
7408 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7409 SINT, DAG.getConstant(2047, dl, MVT::i64));
7410 Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7411 Round, DAG.getConstant(2047, dl, MVT::i64));
7412 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7413 Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7414 Round, DAG.getConstant(-2048, dl, MVT::i64));
7416 // However, we cannot use that value unconditionally: if the magnitude
7417 // of the input value is small, the bit-twiddling we did above might
7418 // end up visibly changing the output. Fortunately, in that case, we
7419 // don't need to twiddle bits since the original input will convert
7420 // exactly to double-precision floating-point already. Therefore,
7421 // construct a conditional to use the original value if the top 11
7422 // bits are all sign-bit copies, and use the rounded value computed
7423 // above otherwise.
7424 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7425 SINT, DAG.getConstant(53, dl, MVT::i32));
7426 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7427 Cond, DAG.getConstant(1, dl, MVT::i64));
7428 Cond = DAG.getSetCC(dl, MVT::i32,
7429 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7431 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7434 ReuseLoadInfo RLI;
7435 SDValue Bits;
7437 MachineFunction &MF = DAG.getMachineFunction();
7438 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7439 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7440 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7441 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7442 } else if (Subtarget.hasLFIWAX() &&
7443 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7444 MachineMemOperand *MMO =
7445 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7446 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7447 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7448 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7449 DAG.getVTList(MVT::f64, MVT::Other),
7450 Ops, MVT::i32, MMO);
7451 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7452 } else if (Subtarget.hasFPCVT() &&
7453 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7454 MachineMemOperand *MMO =
7455 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7456 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7457 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7458 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7459 DAG.getVTList(MVT::f64, MVT::Other),
7460 Ops, MVT::i32, MMO);
7461 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7462 } else if (((Subtarget.hasLFIWAX() &&
7463 SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7464 (Subtarget.hasFPCVT() &&
7465 SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7466 SINT.getOperand(0).getValueType() == MVT::i32) {
7467 MachineFrameInfo &MFI = MF.getFrameInfo();
7468 EVT PtrVT = getPointerTy(DAG.getDataLayout());
7470 int FrameIdx = MFI.CreateStackObject(4, 4, false);
7471 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7473 SDValue Store =
7474 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7475 MachinePointerInfo::getFixedStack(
7476 DAG.getMachineFunction(), FrameIdx));
7478 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7479 "Expected an i32 store");
7481 RLI.Ptr = FIdx;
7482 RLI.Chain = Store;
7483 RLI.MPI =
7484 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7485 RLI.Alignment = 4;
7487 MachineMemOperand *MMO =
7488 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7489 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7490 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7491 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7492 PPCISD::LFIWZX : PPCISD::LFIWAX,
7493 dl, DAG.getVTList(MVT::f64, MVT::Other),
7494 Ops, MVT::i32, MMO);
7495 } else
7496 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7498 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7500 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7501 FP = DAG.getNode(ISD::FP_ROUND, dl,
7502 MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7503 return FP;
7506 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7507 "Unhandled INT_TO_FP type in custom expander!");
7508 // Since we only generate this in 64-bit mode, we can take advantage of
7509 // 64-bit registers. In particular, sign extend the input value into the
7510 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7511 // then lfd it and fcfid it.
7512 MachineFunction &MF = DAG.getMachineFunction();
7513 MachineFrameInfo &MFI = MF.getFrameInfo();
7514 EVT PtrVT = getPointerTy(MF.getDataLayout());
7516 SDValue Ld;
7517 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7518 ReuseLoadInfo RLI;
7519 bool ReusingLoad;
7520 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7521 DAG))) {
7522 int FrameIdx = MFI.CreateStackObject(4, 4, false);
7523 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7525 SDValue Store =
7526 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7527 MachinePointerInfo::getFixedStack(
7528 DAG.getMachineFunction(), FrameIdx));
7530 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7531 "Expected an i32 store");
7533 RLI.Ptr = FIdx;
7534 RLI.Chain = Store;
7535 RLI.MPI =
7536 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7537 RLI.Alignment = 4;
7540 MachineMemOperand *MMO =
7541 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7542 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7543 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7544 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7545 PPCISD::LFIWZX : PPCISD::LFIWAX,
7546 dl, DAG.getVTList(MVT::f64, MVT::Other),
7547 Ops, MVT::i32, MMO);
7548 if (ReusingLoad)
7549 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7550 } else {
7551 assert(Subtarget.isPPC64() &&
7552 "i32->FP without LFIWAX supported only on PPC64");
7554 int FrameIdx = MFI.CreateStackObject(8, 8, false);
7555 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7557 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7558 Op.getOperand(0));
7560 // STD the extended value into the stack slot.
7561 SDValue Store = DAG.getStore(
7562 DAG.getEntryNode(), dl, Ext64, FIdx,
7563 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7565 // Load the value as a double.
7566 Ld = DAG.getLoad(
7567 MVT::f64, dl, Store, FIdx,
7568 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7571 // FCFID it and return it.
7572 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7573 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7574 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7575 DAG.getIntPtrConstant(0, dl));
7576 return FP;
7579 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7580 SelectionDAG &DAG) const {
7581 SDLoc dl(Op);
7583 The rounding mode is in bits 30:31 of FPSR, and has the following
7584 settings:
7585 00 Round to nearest
7586 01 Round to 0
7587 10 Round to +inf
7588 11 Round to -inf
7590 FLT_ROUNDS, on the other hand, expects the following:
7591 -1 Undefined
7592 0 Round to 0
7593 1 Round to nearest
7594 2 Round to +inf
7595 3 Round to -inf
7597 To perform the conversion, we do:
7598 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7601 MachineFunction &MF = DAG.getMachineFunction();
7602 EVT VT = Op.getValueType();
7603 EVT PtrVT = getPointerTy(MF.getDataLayout());
7605 // Save FP Control Word to register
7606 EVT NodeTys[] = {
7607 MVT::f64, // return register
7608 MVT::Glue // unused in this context
7610 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7612 // Save FP register to stack slot
7613 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7614 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7615 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7616 MachinePointerInfo());
7618 // Load FP Control Word from low 32 bits of stack slot.
7619 SDValue Four = DAG.getConstant(4, dl, PtrVT);
7620 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7621 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7623 // Transform as necessary
7624 SDValue CWD1 =
7625 DAG.getNode(ISD::AND, dl, MVT::i32,
7626 CWD, DAG.getConstant(3, dl, MVT::i32));
7627 SDValue CWD2 =
7628 DAG.getNode(ISD::SRL, dl, MVT::i32,
7629 DAG.getNode(ISD::AND, dl, MVT::i32,
7630 DAG.getNode(ISD::XOR, dl, MVT::i32,
7631 CWD, DAG.getConstant(3, dl, MVT::i32)),
7632 DAG.getConstant(3, dl, MVT::i32)),
7633 DAG.getConstant(1, dl, MVT::i32));
7635 SDValue RetVal =
7636 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7638 return DAG.getNode((VT.getSizeInBits() < 16 ?
7639 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7642 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7643 EVT VT = Op.getValueType();
7644 unsigned BitWidth = VT.getSizeInBits();
7645 SDLoc dl(Op);
7646 assert(Op.getNumOperands() == 3 &&
7647 VT == Op.getOperand(1).getValueType() &&
7648 "Unexpected SHL!");
7650 // Expand into a bunch of logical ops. Note that these ops
7651 // depend on the PPC behavior for oversized shift amounts.
7652 SDValue Lo = Op.getOperand(0);
7653 SDValue Hi = Op.getOperand(1);
7654 SDValue Amt = Op.getOperand(2);
7655 EVT AmtVT = Amt.getValueType();
7657 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7658 DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7659 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7660 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7661 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7662 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7663 DAG.getConstant(-BitWidth, dl, AmtVT));
7664 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7665 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7666 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7667 SDValue OutOps[] = { OutLo, OutHi };
7668 return DAG.getMergeValues(OutOps, dl);
7671 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7672 EVT VT = Op.getValueType();
7673 SDLoc dl(Op);
7674 unsigned BitWidth = VT.getSizeInBits();
7675 assert(Op.getNumOperands() == 3 &&
7676 VT == Op.getOperand(1).getValueType() &&
7677 "Unexpected SRL!");
7679 // Expand into a bunch of logical ops. Note that these ops
7680 // depend on the PPC behavior for oversized shift amounts.
7681 SDValue Lo = Op.getOperand(0);
7682 SDValue Hi = Op.getOperand(1);
7683 SDValue Amt = Op.getOperand(2);
7684 EVT AmtVT = Amt.getValueType();
7686 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7687 DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7688 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7689 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7690 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7691 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7692 DAG.getConstant(-BitWidth, dl, AmtVT));
7693 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7694 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7695 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7696 SDValue OutOps[] = { OutLo, OutHi };
7697 return DAG.getMergeValues(OutOps, dl);
7700 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7701 SDLoc dl(Op);
7702 EVT VT = Op.getValueType();
7703 unsigned BitWidth = VT.getSizeInBits();
7704 assert(Op.getNumOperands() == 3 &&
7705 VT == Op.getOperand(1).getValueType() &&
7706 "Unexpected SRA!");
7708 // Expand into a bunch of logical ops, followed by a select_cc.
7709 SDValue Lo = Op.getOperand(0);
7710 SDValue Hi = Op.getOperand(1);
7711 SDValue Amt = Op.getOperand(2);
7712 EVT AmtVT = Amt.getValueType();
7714 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7715 DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7716 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7717 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7718 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7719 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7720 DAG.getConstant(-BitWidth, dl, AmtVT));
7721 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7722 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7723 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7724 Tmp4, Tmp6, ISD::SETLE);
7725 SDValue OutOps[] = { OutLo, OutHi };
7726 return DAG.getMergeValues(OutOps, dl);
7729 //===----------------------------------------------------------------------===//
7730 // Vector related lowering.
7733 /// BuildSplatI - Build a canonical splati of Val with an element size of
7734 /// SplatSize. Cast the result to VT.
7735 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7736 SelectionDAG &DAG, const SDLoc &dl) {
7737 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7739 static const MVT VTys[] = { // canonical VT to use for each size.
7740 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7743 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7745 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7746 if (Val == -1)
7747 SplatSize = 1;
7749 EVT CanonicalVT = VTys[SplatSize-1];
7751 // Build a canonical splat for this value.
7752 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7755 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7756 /// specified intrinsic ID.
7757 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7758 const SDLoc &dl, EVT DestVT = MVT::Other) {
7759 if (DestVT == MVT::Other) DestVT = Op.getValueType();
7760 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7761 DAG.getConstant(IID, dl, MVT::i32), Op);
7764 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7765 /// specified intrinsic ID.
7766 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7767 SelectionDAG &DAG, const SDLoc &dl,
7768 EVT DestVT = MVT::Other) {
7769 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7770 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7771 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7774 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7775 /// specified intrinsic ID.
7776 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7777 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7778 EVT DestVT = MVT::Other) {
7779 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7780 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7781 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7784 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7785 /// amount. The result has the specified value type.
7786 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7787 SelectionDAG &DAG, const SDLoc &dl) {
7788 // Force LHS/RHS to be the right type.
7789 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7790 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7792 int Ops[16];
7793 for (unsigned i = 0; i != 16; ++i)
7794 Ops[i] = i + Amt;
7795 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7796 return DAG.getNode(ISD::BITCAST, dl, VT, T);
7799 /// Do we have an efficient pattern in a .td file for this node?
7801 /// \param V - pointer to the BuildVectorSDNode being matched
7802 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7804 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7805 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7806 /// the opposite is true (expansion is beneficial) are:
7807 /// - The node builds a vector out of integers that are not 32 or 64-bits
7808 /// - The node builds a vector out of constants
7809 /// - The node is a "load-and-splat"
7810 /// In all other cases, we will choose to keep the BUILD_VECTOR.
7811 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7812 bool HasDirectMove,
7813 bool HasP8Vector) {
7814 EVT VecVT = V->getValueType(0);
7815 bool RightType = VecVT == MVT::v2f64 ||
7816 (HasP8Vector && VecVT == MVT::v4f32) ||
7817 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7818 if (!RightType)
7819 return false;
7821 bool IsSplat = true;
7822 bool IsLoad = false;
7823 SDValue Op0 = V->getOperand(0);
7825 // This function is called in a block that confirms the node is not a constant
7826 // splat. So a constant BUILD_VECTOR here means the vector is built out of
7827 // different constants.
7828 if (V->isConstant())
7829 return false;
7830 for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7831 if (V->getOperand(i).isUndef())
7832 return false;
7833 // We want to expand nodes that represent load-and-splat even if the
7834 // loaded value is a floating point truncation or conversion to int.
7835 if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7836 (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7837 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7838 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7839 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7840 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7841 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7842 IsLoad = true;
7843 // If the operands are different or the input is not a load and has more
7844 // uses than just this BV node, then it isn't a splat.
7845 if (V->getOperand(i) != Op0 ||
7846 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7847 IsSplat = false;
7849 return !(IsSplat && IsLoad);
7852 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
7853 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
7855 SDLoc dl(Op);
7856 SDValue Op0 = Op->getOperand(0);
7858 if (!EnableQuadPrecision ||
7859 (Op.getValueType() != MVT::f128 ) ||
7860 (Op0.getOpcode() != ISD::BUILD_PAIR) ||
7861 (Op0.getOperand(0).getValueType() != MVT::i64) ||
7862 (Op0.getOperand(1).getValueType() != MVT::i64))
7863 return SDValue();
7865 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
7866 Op0.getOperand(1));
7869 // If this is a case we can't handle, return null and let the default
7870 // expansion code take care of it. If we CAN select this case, and if it
7871 // selects to a single instruction, return Op. Otherwise, if we can codegen
7872 // this case more efficiently than a constant pool load, lower it to the
7873 // sequence of ops that should be used.
7874 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7875 SelectionDAG &DAG) const {
7876 SDLoc dl(Op);
7877 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7878 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7880 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7881 // We first build an i32 vector, load it into a QPX register,
7882 // then convert it to a floating-point vector and compare it
7883 // to a zero vector to get the boolean result.
7884 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7885 int FrameIdx = MFI.CreateStackObject(16, 16, false);
7886 MachinePointerInfo PtrInfo =
7887 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7888 EVT PtrVT = getPointerTy(DAG.getDataLayout());
7889 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7891 assert(BVN->getNumOperands() == 4 &&
7892 "BUILD_VECTOR for v4i1 does not have 4 operands");
7894 bool IsConst = true;
7895 for (unsigned i = 0; i < 4; ++i) {
7896 if (BVN->getOperand(i).isUndef()) continue;
7897 if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7898 IsConst = false;
7899 break;
7903 if (IsConst) {
7904 Constant *One =
7905 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7906 Constant *NegOne =
7907 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7909 Constant *CV[4];
7910 for (unsigned i = 0; i < 4; ++i) {
7911 if (BVN->getOperand(i).isUndef())
7912 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7913 else if (isNullConstant(BVN->getOperand(i)))
7914 CV[i] = NegOne;
7915 else
7916 CV[i] = One;
7919 Constant *CP = ConstantVector::get(CV);
7920 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7921 16 /* alignment */);
7923 SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7924 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7925 return DAG.getMemIntrinsicNode(
7926 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7927 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7930 SmallVector<SDValue, 4> Stores;
7931 for (unsigned i = 0; i < 4; ++i) {
7932 if (BVN->getOperand(i).isUndef()) continue;
7934 unsigned Offset = 4*i;
7935 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7936 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7938 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7939 if (StoreSize > 4) {
7940 Stores.push_back(
7941 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7942 PtrInfo.getWithOffset(Offset), MVT::i32));
7943 } else {
7944 SDValue StoreValue = BVN->getOperand(i);
7945 if (StoreSize < 4)
7946 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7948 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7949 PtrInfo.getWithOffset(Offset)));
7953 SDValue StoreChain;
7954 if (!Stores.empty())
7955 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7956 else
7957 StoreChain = DAG.getEntryNode();
7959 // Now load from v4i32 into the QPX register; this will extend it to
7960 // v4i64 but not yet convert it to a floating point. Nevertheless, this
7961 // is typed as v4f64 because the QPX register integer states are not
7962 // explicitly represented.
7964 SDValue Ops[] = {StoreChain,
7965 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7966 FIdx};
7967 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7969 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7970 dl, VTs, Ops, MVT::v4i32, PtrInfo);
7971 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7972 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7973 LoadedVect);
7975 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7977 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7980 // All other QPX vectors are handled by generic code.
7981 if (Subtarget.hasQPX())
7982 return SDValue();
7984 // Check if this is a splat of a constant value.
7985 APInt APSplatBits, APSplatUndef;
7986 unsigned SplatBitSize;
7987 bool HasAnyUndefs;
7988 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7989 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7990 SplatBitSize > 32) {
7991 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
7992 // lowered to VSX instructions under certain conditions.
7993 // Without VSX, there is no pattern more efficient than expanding the node.
7994 if (Subtarget.hasVSX() &&
7995 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
7996 Subtarget.hasP8Vector()))
7997 return Op;
7998 return SDValue();
8001 unsigned SplatBits = APSplatBits.getZExtValue();
8002 unsigned SplatUndef = APSplatUndef.getZExtValue();
8003 unsigned SplatSize = SplatBitSize / 8;
8005 // First, handle single instruction cases.
8007 // All zeros?
8008 if (SplatBits == 0) {
8009 // Canonicalize all zero vectors to be v4i32.
8010 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8011 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8012 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8014 return Op;
8017 // We have XXSPLTIB for constant splats one byte wide
8018 if (Subtarget.hasP9Vector() && SplatSize == 1) {
8019 // This is a splat of 1-byte elements with some elements potentially undef.
8020 // Rather than trying to match undef in the SDAG patterns, ensure that all
8021 // elements are the same constant.
8022 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
8023 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
8024 dl, MVT::i32));
8025 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
8026 if (Op.getValueType() != MVT::v16i8)
8027 return DAG.getBitcast(Op.getValueType(), NewBV);
8028 return NewBV;
8031 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
8032 // detect that constant splats like v8i16: 0xABAB are really just splats
8033 // of a 1-byte constant. In this case, we need to convert the node to a
8034 // splat of v16i8 and a bitcast.
8035 if (Op.getValueType() != MVT::v16i8)
8036 return DAG.getBitcast(Op.getValueType(),
8037 DAG.getConstant(SplatBits, dl, MVT::v16i8));
8039 return Op;
8042 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8043 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8044 (32-SplatBitSize));
8045 if (SextVal >= -16 && SextVal <= 15)
8046 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8048 // Two instruction sequences.
8050 // If this value is in the range [-32,30] and is even, use:
8051 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8052 // If this value is in the range [17,31] and is odd, use:
8053 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8054 // If this value is in the range [-31,-17] and is odd, use:
8055 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8056 // Note the last two are three-instruction sequences.
8057 if (SextVal >= -32 && SextVal <= 31) {
8058 // To avoid having these optimizations undone by constant folding,
8059 // we convert to a pseudo that will be expanded later into one of
8060 // the above forms.
8061 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8062 EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8063 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8064 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8065 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8066 if (VT == Op.getValueType())
8067 return RetVal;
8068 else
8069 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8072 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
8073 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
8074 // for fneg/fabs.
8075 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8076 // Make -1 and vspltisw -1:
8077 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8079 // Make the VSLW intrinsic, computing 0x8000_0000.
8080 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8081 OnesV, DAG, dl);
8083 // xor by OnesV to invert it.
8084 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8085 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8088 // Check to see if this is a wide variety of vsplti*, binop self cases.
8089 static const signed char SplatCsts[] = {
8090 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8091 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8094 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8095 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8096 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
8097 int i = SplatCsts[idx];
8099 // Figure out what shift amount will be used by altivec if shifted by i in
8100 // this splat size.
8101 unsigned TypeShiftAmt = i & (SplatBitSize-1);
8103 // vsplti + shl self.
8104 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8105 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8106 static const unsigned IIDs[] = { // Intrinsic to use for each size.
8107 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8108 Intrinsic::ppc_altivec_vslw
8110 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8111 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8114 // vsplti + srl self.
8115 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8116 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8117 static const unsigned IIDs[] = { // Intrinsic to use for each size.
8118 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8119 Intrinsic::ppc_altivec_vsrw
8121 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8122 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8125 // vsplti + sra self.
8126 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8127 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8128 static const unsigned IIDs[] = { // Intrinsic to use for each size.
8129 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8130 Intrinsic::ppc_altivec_vsraw
8132 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8133 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8136 // vsplti + rol self.
8137 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8138 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8139 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8140 static const unsigned IIDs[] = { // Intrinsic to use for each size.
8141 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8142 Intrinsic::ppc_altivec_vrlw
8144 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8145 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8148 // t = vsplti c, result = vsldoi t, t, 1
8149 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8150 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8151 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8152 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8154 // t = vsplti c, result = vsldoi t, t, 2
8155 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8156 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8157 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8158 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8160 // t = vsplti c, result = vsldoi t, t, 3
8161 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8162 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8163 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8164 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8168 return SDValue();
8171 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8172 /// the specified operations to build the shuffle.
8173 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8174 SDValue RHS, SelectionDAG &DAG,
8175 const SDLoc &dl) {
8176 unsigned OpNum = (PFEntry >> 26) & 0x0F;
8177 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8178 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
8180 enum {
8181 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8182 OP_VMRGHW,
8183 OP_VMRGLW,
8184 OP_VSPLTISW0,
8185 OP_VSPLTISW1,
8186 OP_VSPLTISW2,
8187 OP_VSPLTISW3,
8188 OP_VSLDOI4,
8189 OP_VSLDOI8,
8190 OP_VSLDOI12
8193 if (OpNum == OP_COPY) {
8194 if (LHSID == (1*9+2)*9+3) return LHS;
8195 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8196 return RHS;
8199 SDValue OpLHS, OpRHS;
8200 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8201 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8203 int ShufIdxs[16];
8204 switch (OpNum) {
8205 default: llvm_unreachable("Unknown i32 permute!");
8206 case OP_VMRGHW:
8207 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
8208 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8209 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
8210 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8211 break;
8212 case OP_VMRGLW:
8213 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8214 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8215 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8216 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8217 break;
8218 case OP_VSPLTISW0:
8219 for (unsigned i = 0; i != 16; ++i)
8220 ShufIdxs[i] = (i&3)+0;
8221 break;
8222 case OP_VSPLTISW1:
8223 for (unsigned i = 0; i != 16; ++i)
8224 ShufIdxs[i] = (i&3)+4;
8225 break;
8226 case OP_VSPLTISW2:
8227 for (unsigned i = 0; i != 16; ++i)
8228 ShufIdxs[i] = (i&3)+8;
8229 break;
8230 case OP_VSPLTISW3:
8231 for (unsigned i = 0; i != 16; ++i)
8232 ShufIdxs[i] = (i&3)+12;
8233 break;
8234 case OP_VSLDOI4:
8235 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8236 case OP_VSLDOI8:
8237 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8238 case OP_VSLDOI12:
8239 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8241 EVT VT = OpLHS.getValueType();
8242 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8243 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8244 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8245 return DAG.getNode(ISD::BITCAST, dl, VT, T);
8248 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8249 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8250 /// SDValue.
8251 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8252 SelectionDAG &DAG) const {
8253 const unsigned BytesInVector = 16;
8254 bool IsLE = Subtarget.isLittleEndian();
8255 SDLoc dl(N);
8256 SDValue V1 = N->getOperand(0);
8257 SDValue V2 = N->getOperand(1);
8258 unsigned ShiftElts = 0, InsertAtByte = 0;
8259 bool Swap = false;
8261 // Shifts required to get the byte we want at element 7.
8262 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1,
8263 0, 15, 14, 13, 12, 11, 10, 9};
8264 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8265 1, 2, 3, 4, 5, 6, 7, 8};
8267 ArrayRef<int> Mask = N->getMask();
8268 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8270 // For each mask element, find out if we're just inserting something
8271 // from V2 into V1 or vice versa.
8272 // Possible permutations inserting an element from V2 into V1:
8273 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8274 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8275 // ...
8276 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8277 // Inserting from V1 into V2 will be similar, except mask range will be
8278 // [16,31].
8280 bool FoundCandidate = false;
8281 // If both vector operands for the shuffle are the same vector, the mask
8282 // will contain only elements from the first one and the second one will be
8283 // undef.
8284 unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8285 // Go through the mask of half-words to find an element that's being moved
8286 // from one vector to the other.
8287 for (unsigned i = 0; i < BytesInVector; ++i) {
8288 unsigned CurrentElement = Mask[i];
8289 // If 2nd operand is undefined, we should only look for element 7 in the
8290 // Mask.
8291 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8292 continue;
8294 bool OtherElementsInOrder = true;
8295 // Examine the other elements in the Mask to see if they're in original
8296 // order.
8297 for (unsigned j = 0; j < BytesInVector; ++j) {
8298 if (j == i)
8299 continue;
8300 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8301 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined,
8302 // in which we always assume we're always picking from the 1st operand.
8303 int MaskOffset =
8304 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8305 if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8306 OtherElementsInOrder = false;
8307 break;
8310 // If other elements are in original order, we record the number of shifts
8311 // we need to get the element we want into element 7. Also record which byte
8312 // in the vector we should insert into.
8313 if (OtherElementsInOrder) {
8314 // If 2nd operand is undefined, we assume no shifts and no swapping.
8315 if (V2.isUndef()) {
8316 ShiftElts = 0;
8317 Swap = false;
8318 } else {
8319 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8320 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8321 : BigEndianShifts[CurrentElement & 0xF];
8322 Swap = CurrentElement < BytesInVector;
8324 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8325 FoundCandidate = true;
8326 break;
8330 if (!FoundCandidate)
8331 return SDValue();
8333 // Candidate found, construct the proper SDAG sequence with VINSERTB,
8334 // optionally with VECSHL if shift is required.
8335 if (Swap)
8336 std::swap(V1, V2);
8337 if (V2.isUndef())
8338 V2 = V1;
8339 if (ShiftElts) {
8340 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8341 DAG.getConstant(ShiftElts, dl, MVT::i32));
8342 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8343 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8345 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8346 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8349 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8350 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8351 /// SDValue.
8352 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8353 SelectionDAG &DAG) const {
8354 const unsigned NumHalfWords = 8;
8355 const unsigned BytesInVector = NumHalfWords * 2;
8356 // Check that the shuffle is on half-words.
8357 if (!isNByteElemShuffleMask(N, 2, 1))
8358 return SDValue();
8360 bool IsLE = Subtarget.isLittleEndian();
8361 SDLoc dl(N);
8362 SDValue V1 = N->getOperand(0);
8363 SDValue V2 = N->getOperand(1);
8364 unsigned ShiftElts = 0, InsertAtByte = 0;
8365 bool Swap = false;
8367 // Shifts required to get the half-word we want at element 3.
8368 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8369 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8371 uint32_t Mask = 0;
8372 uint32_t OriginalOrderLow = 0x1234567;
8373 uint32_t OriginalOrderHigh = 0x89ABCDEF;
8374 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a
8375 // 32-bit space, only need 4-bit nibbles per element.
8376 for (unsigned i = 0; i < NumHalfWords; ++i) {
8377 unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8378 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8381 // For each mask element, find out if we're just inserting something
8382 // from V2 into V1 or vice versa. Possible permutations inserting an element
8383 // from V2 into V1:
8384 // X, 1, 2, 3, 4, 5, 6, 7
8385 // 0, X, 2, 3, 4, 5, 6, 7
8386 // 0, 1, X, 3, 4, 5, 6, 7
8387 // 0, 1, 2, X, 4, 5, 6, 7
8388 // 0, 1, 2, 3, X, 5, 6, 7
8389 // 0, 1, 2, 3, 4, X, 6, 7
8390 // 0, 1, 2, 3, 4, 5, X, 7
8391 // 0, 1, 2, 3, 4, 5, 6, X
8392 // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8394 bool FoundCandidate = false;
8395 // Go through the mask of half-words to find an element that's being moved
8396 // from one vector to the other.
8397 for (unsigned i = 0; i < NumHalfWords; ++i) {
8398 unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8399 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8400 uint32_t MaskOtherElts = ~(0xF << MaskShift);
8401 uint32_t TargetOrder = 0x0;
8403 // If both vector operands for the shuffle are the same vector, the mask
8404 // will contain only elements from the first one and the second one will be
8405 // undef.
8406 if (V2.isUndef()) {
8407 ShiftElts = 0;
8408 unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8409 TargetOrder = OriginalOrderLow;
8410 Swap = false;
8411 // Skip if not the correct element or mask of other elements don't equal
8412 // to our expected order.
8413 if (MaskOneElt == VINSERTHSrcElem &&
8414 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8415 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8416 FoundCandidate = true;
8417 break;
8419 } else { // If both operands are defined.
8420 // Target order is [8,15] if the current mask is between [0,7].
8421 TargetOrder =
8422 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8423 // Skip if mask of other elements don't equal our expected order.
8424 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8425 // We only need the last 3 bits for the number of shifts.
8426 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8427 : BigEndianShifts[MaskOneElt & 0x7];
8428 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8429 Swap = MaskOneElt < NumHalfWords;
8430 FoundCandidate = true;
8431 break;
8436 if (!FoundCandidate)
8437 return SDValue();
8439 // Candidate found, construct the proper SDAG sequence with VINSERTH,
8440 // optionally with VECSHL if shift is required.
8441 if (Swap)
8442 std::swap(V1, V2);
8443 if (V2.isUndef())
8444 V2 = V1;
8445 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8446 if (ShiftElts) {
8447 // Double ShiftElts because we're left shifting on v16i8 type.
8448 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8449 DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8450 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8451 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8452 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8453 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8455 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8456 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8457 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8458 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8461 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
8462 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
8463 /// return the code it can be lowered into. Worst case, it can always be
8464 /// lowered into a vperm.
8465 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8466 SelectionDAG &DAG) const {
8467 SDLoc dl(Op);
8468 SDValue V1 = Op.getOperand(0);
8469 SDValue V2 = Op.getOperand(1);
8470 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8471 EVT VT = Op.getValueType();
8472 bool isLittleEndian = Subtarget.isLittleEndian();
8474 unsigned ShiftElts, InsertAtByte;
8475 bool Swap = false;
8476 if (Subtarget.hasP9Vector() &&
8477 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8478 isLittleEndian)) {
8479 if (Swap)
8480 std::swap(V1, V2);
8481 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8482 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8483 if (ShiftElts) {
8484 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8485 DAG.getConstant(ShiftElts, dl, MVT::i32));
8486 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8487 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8488 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8490 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8491 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8492 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8495 if (Subtarget.hasP9Altivec()) {
8496 SDValue NewISDNode;
8497 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8498 return NewISDNode;
8500 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8501 return NewISDNode;
8504 if (Subtarget.hasVSX() &&
8505 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8506 if (Swap)
8507 std::swap(V1, V2);
8508 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8509 SDValue Conv2 =
8510 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8512 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8513 DAG.getConstant(ShiftElts, dl, MVT::i32));
8514 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8517 if (Subtarget.hasVSX() &&
8518 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8519 if (Swap)
8520 std::swap(V1, V2);
8521 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8522 SDValue Conv2 =
8523 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8525 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8526 DAG.getConstant(ShiftElts, dl, MVT::i32));
8527 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8530 if (Subtarget.hasP9Vector()) {
8531 if (PPC::isXXBRHShuffleMask(SVOp)) {
8532 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8533 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8534 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8535 } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8536 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8537 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8538 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8539 } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8540 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8541 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8542 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8543 } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8544 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8545 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8546 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8550 if (Subtarget.hasVSX()) {
8551 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8552 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8554 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8555 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8556 DAG.getConstant(SplatIdx, dl, MVT::i32));
8557 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8560 // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8561 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8562 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8563 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8564 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8568 if (Subtarget.hasQPX()) {
8569 if (VT.getVectorNumElements() != 4)
8570 return SDValue();
8572 if (V2.isUndef()) V2 = V1;
8574 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8575 if (AlignIdx != -1) {
8576 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8577 DAG.getConstant(AlignIdx, dl, MVT::i32));
8578 } else if (SVOp->isSplat()) {
8579 int SplatIdx = SVOp->getSplatIndex();
8580 if (SplatIdx >= 4) {
8581 std::swap(V1, V2);
8582 SplatIdx -= 4;
8585 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8586 DAG.getConstant(SplatIdx, dl, MVT::i32));
8589 // Lower this into a qvgpci/qvfperm pair.
8591 // Compute the qvgpci literal
8592 unsigned idx = 0;
8593 for (unsigned i = 0; i < 4; ++i) {
8594 int m = SVOp->getMaskElt(i);
8595 unsigned mm = m >= 0 ? (unsigned) m : i;
8596 idx |= mm << (3-i)*3;
8599 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8600 DAG.getConstant(idx, dl, MVT::i32));
8601 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8604 // Cases that are handled by instructions that take permute immediates
8605 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8606 // selected by the instruction selector.
8607 if (V2.isUndef()) {
8608 if (PPC::isSplatShuffleMask(SVOp, 1) ||
8609 PPC::isSplatShuffleMask(SVOp, 2) ||
8610 PPC::isSplatShuffleMask(SVOp, 4) ||
8611 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8612 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8613 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8614 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8615 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8616 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8617 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8618 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8619 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8620 (Subtarget.hasP8Altivec() && (
8621 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8622 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8623 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8624 return Op;
8628 // Altivec has a variety of "shuffle immediates" that take two vector inputs
8629 // and produce a fixed permutation. If any of these match, do not lower to
8630 // VPERM.
8631 unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8632 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8633 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8634 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8635 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8636 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8637 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8638 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8639 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8640 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8641 (Subtarget.hasP8Altivec() && (
8642 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8643 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8644 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8645 return Op;
8647 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
8648 // perfect shuffle table to emit an optimal matching sequence.
8649 ArrayRef<int> PermMask = SVOp->getMask();
8651 unsigned PFIndexes[4];
8652 bool isFourElementShuffle = true;
8653 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8654 unsigned EltNo = 8; // Start out undef.
8655 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
8656 if (PermMask[i*4+j] < 0)
8657 continue; // Undef, ignore it.
8659 unsigned ByteSource = PermMask[i*4+j];
8660 if ((ByteSource & 3) != j) {
8661 isFourElementShuffle = false;
8662 break;
8665 if (EltNo == 8) {
8666 EltNo = ByteSource/4;
8667 } else if (EltNo != ByteSource/4) {
8668 isFourElementShuffle = false;
8669 break;
8672 PFIndexes[i] = EltNo;
8675 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8676 // perfect shuffle vector to determine if it is cost effective to do this as
8677 // discrete instructions, or whether we should use a vperm.
8678 // For now, we skip this for little endian until such time as we have a
8679 // little-endian perfect shuffle table.
8680 if (isFourElementShuffle && !isLittleEndian) {
8681 // Compute the index in the perfect shuffle table.
8682 unsigned PFTableIndex =
8683 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8685 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8686 unsigned Cost = (PFEntry >> 30);
8688 // Determining when to avoid vperm is tricky. Many things affect the cost
8689 // of vperm, particularly how many times the perm mask needs to be computed.
8690 // For example, if the perm mask can be hoisted out of a loop or is already
8691 // used (perhaps because there are multiple permutes with the same shuffle
8692 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
8693 // the loop requires an extra register.
8695 // As a compromise, we only emit discrete instructions if the shuffle can be
8696 // generated in 3 or fewer operations. When we have loop information
8697 // available, if this block is within a loop, we should avoid using vperm
8698 // for 3-operation perms and use a constant pool load instead.
8699 if (Cost < 3)
8700 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8703 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8704 // vector that will get spilled to the constant pool.
8705 if (V2.isUndef()) V2 = V1;
8707 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8708 // that it is in input element units, not in bytes. Convert now.
8710 // For little endian, the order of the input vectors is reversed, and
8711 // the permutation mask is complemented with respect to 31. This is
8712 // necessary to produce proper semantics with the big-endian-biased vperm
8713 // instruction.
8714 EVT EltVT = V1.getValueType().getVectorElementType();
8715 unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8717 SmallVector<SDValue, 16> ResultMask;
8718 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8719 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8721 for (unsigned j = 0; j != BytesPerElement; ++j)
8722 if (isLittleEndian)
8723 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8724 dl, MVT::i32));
8725 else
8726 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8727 MVT::i32));
8730 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8731 if (isLittleEndian)
8732 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8733 V2, V1, VPermMask);
8734 else
8735 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8736 V1, V2, VPermMask);
8739 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
8740 /// vector comparison. If it is, return true and fill in Opc/isDot with
8741 /// information about the intrinsic.
8742 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
8743 bool &isDot, const PPCSubtarget &Subtarget) {
8744 unsigned IntrinsicID =
8745 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
8746 CompareOpc = -1;
8747 isDot = false;
8748 switch (IntrinsicID) {
8749 default:
8750 return false;
8751 // Comparison predicates.
8752 case Intrinsic::ppc_altivec_vcmpbfp_p:
8753 CompareOpc = 966;
8754 isDot = true;
8755 break;
8756 case Intrinsic::ppc_altivec_vcmpeqfp_p:
8757 CompareOpc = 198;
8758 isDot = true;
8759 break;
8760 case Intrinsic::ppc_altivec_vcmpequb_p:
8761 CompareOpc = 6;
8762 isDot = true;
8763 break;
8764 case Intrinsic::ppc_altivec_vcmpequh_p:
8765 CompareOpc = 70;
8766 isDot = true;
8767 break;
8768 case Intrinsic::ppc_altivec_vcmpequw_p:
8769 CompareOpc = 134;
8770 isDot = true;
8771 break;
8772 case Intrinsic::ppc_altivec_vcmpequd_p:
8773 if (Subtarget.hasP8Altivec()) {
8774 CompareOpc = 199;
8775 isDot = true;
8776 } else
8777 return false;
8778 break;
8779 case Intrinsic::ppc_altivec_vcmpneb_p:
8780 case Intrinsic::ppc_altivec_vcmpneh_p:
8781 case Intrinsic::ppc_altivec_vcmpnew_p:
8782 case Intrinsic::ppc_altivec_vcmpnezb_p:
8783 case Intrinsic::ppc_altivec_vcmpnezh_p:
8784 case Intrinsic::ppc_altivec_vcmpnezw_p:
8785 if (Subtarget.hasP9Altivec()) {
8786 switch (IntrinsicID) {
8787 default:
8788 llvm_unreachable("Unknown comparison intrinsic.");
8789 case Intrinsic::ppc_altivec_vcmpneb_p:
8790 CompareOpc = 7;
8791 break;
8792 case Intrinsic::ppc_altivec_vcmpneh_p:
8793 CompareOpc = 71;
8794 break;
8795 case Intrinsic::ppc_altivec_vcmpnew_p:
8796 CompareOpc = 135;
8797 break;
8798 case Intrinsic::ppc_altivec_vcmpnezb_p:
8799 CompareOpc = 263;
8800 break;
8801 case Intrinsic::ppc_altivec_vcmpnezh_p:
8802 CompareOpc = 327;
8803 break;
8804 case Intrinsic::ppc_altivec_vcmpnezw_p:
8805 CompareOpc = 391;
8806 break;
8808 isDot = true;
8809 } else
8810 return false;
8811 break;
8812 case Intrinsic::ppc_altivec_vcmpgefp_p:
8813 CompareOpc = 454;
8814 isDot = true;
8815 break;
8816 case Intrinsic::ppc_altivec_vcmpgtfp_p:
8817 CompareOpc = 710;
8818 isDot = true;
8819 break;
8820 case Intrinsic::ppc_altivec_vcmpgtsb_p:
8821 CompareOpc = 774;
8822 isDot = true;
8823 break;
8824 case Intrinsic::ppc_altivec_vcmpgtsh_p:
8825 CompareOpc = 838;
8826 isDot = true;
8827 break;
8828 case Intrinsic::ppc_altivec_vcmpgtsw_p:
8829 CompareOpc = 902;
8830 isDot = true;
8831 break;
8832 case Intrinsic::ppc_altivec_vcmpgtsd_p:
8833 if (Subtarget.hasP8Altivec()) {
8834 CompareOpc = 967;
8835 isDot = true;
8836 } else
8837 return false;
8838 break;
8839 case Intrinsic::ppc_altivec_vcmpgtub_p:
8840 CompareOpc = 518;
8841 isDot = true;
8842 break;
8843 case Intrinsic::ppc_altivec_vcmpgtuh_p:
8844 CompareOpc = 582;
8845 isDot = true;
8846 break;
8847 case Intrinsic::ppc_altivec_vcmpgtuw_p:
8848 CompareOpc = 646;
8849 isDot = true;
8850 break;
8851 case Intrinsic::ppc_altivec_vcmpgtud_p:
8852 if (Subtarget.hasP8Altivec()) {
8853 CompareOpc = 711;
8854 isDot = true;
8855 } else
8856 return false;
8857 break;
8859 // VSX predicate comparisons use the same infrastructure
8860 case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8861 case Intrinsic::ppc_vsx_xvcmpgedp_p:
8862 case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8863 case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8864 case Intrinsic::ppc_vsx_xvcmpgesp_p:
8865 case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8866 if (Subtarget.hasVSX()) {
8867 switch (IntrinsicID) {
8868 case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8869 CompareOpc = 99;
8870 break;
8871 case Intrinsic::ppc_vsx_xvcmpgedp_p:
8872 CompareOpc = 115;
8873 break;
8874 case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8875 CompareOpc = 107;
8876 break;
8877 case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8878 CompareOpc = 67;
8879 break;
8880 case Intrinsic::ppc_vsx_xvcmpgesp_p:
8881 CompareOpc = 83;
8882 break;
8883 case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8884 CompareOpc = 75;
8885 break;
8887 isDot = true;
8888 } else
8889 return false;
8890 break;
8892 // Normal Comparisons.
8893 case Intrinsic::ppc_altivec_vcmpbfp:
8894 CompareOpc = 966;
8895 break;
8896 case Intrinsic::ppc_altivec_vcmpeqfp:
8897 CompareOpc = 198;
8898 break;
8899 case Intrinsic::ppc_altivec_vcmpequb:
8900 CompareOpc = 6;
8901 break;
8902 case Intrinsic::ppc_altivec_vcmpequh:
8903 CompareOpc = 70;
8904 break;
8905 case Intrinsic::ppc_altivec_vcmpequw:
8906 CompareOpc = 134;
8907 break;
8908 case Intrinsic::ppc_altivec_vcmpequd:
8909 if (Subtarget.hasP8Altivec())
8910 CompareOpc = 199;
8911 else
8912 return false;
8913 break;
8914 case Intrinsic::ppc_altivec_vcmpneb:
8915 case Intrinsic::ppc_altivec_vcmpneh:
8916 case Intrinsic::ppc_altivec_vcmpnew:
8917 case Intrinsic::ppc_altivec_vcmpnezb:
8918 case Intrinsic::ppc_altivec_vcmpnezh:
8919 case Intrinsic::ppc_altivec_vcmpnezw:
8920 if (Subtarget.hasP9Altivec())
8921 switch (IntrinsicID) {
8922 default:
8923 llvm_unreachable("Unknown comparison intrinsic.");
8924 case Intrinsic::ppc_altivec_vcmpneb:
8925 CompareOpc = 7;
8926 break;
8927 case Intrinsic::ppc_altivec_vcmpneh:
8928 CompareOpc = 71;
8929 break;
8930 case Intrinsic::ppc_altivec_vcmpnew:
8931 CompareOpc = 135;
8932 break;
8933 case Intrinsic::ppc_altivec_vcmpnezb:
8934 CompareOpc = 263;
8935 break;
8936 case Intrinsic::ppc_altivec_vcmpnezh:
8937 CompareOpc = 327;
8938 break;
8939 case Intrinsic::ppc_altivec_vcmpnezw:
8940 CompareOpc = 391;
8941 break;
8943 else
8944 return false;
8945 break;
8946 case Intrinsic::ppc_altivec_vcmpgefp:
8947 CompareOpc = 454;
8948 break;
8949 case Intrinsic::ppc_altivec_vcmpgtfp:
8950 CompareOpc = 710;
8951 break;
8952 case Intrinsic::ppc_altivec_vcmpgtsb:
8953 CompareOpc = 774;
8954 break;
8955 case Intrinsic::ppc_altivec_vcmpgtsh:
8956 CompareOpc = 838;
8957 break;
8958 case Intrinsic::ppc_altivec_vcmpgtsw:
8959 CompareOpc = 902;
8960 break;
8961 case Intrinsic::ppc_altivec_vcmpgtsd:
8962 if (Subtarget.hasP8Altivec())
8963 CompareOpc = 967;
8964 else
8965 return false;
8966 break;
8967 case Intrinsic::ppc_altivec_vcmpgtub:
8968 CompareOpc = 518;
8969 break;
8970 case Intrinsic::ppc_altivec_vcmpgtuh:
8971 CompareOpc = 582;
8972 break;
8973 case Intrinsic::ppc_altivec_vcmpgtuw:
8974 CompareOpc = 646;
8975 break;
8976 case Intrinsic::ppc_altivec_vcmpgtud:
8977 if (Subtarget.hasP8Altivec())
8978 CompareOpc = 711;
8979 else
8980 return false;
8981 break;
8983 return true;
8986 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
8987 /// lower, do it, otherwise return null.
8988 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
8989 SelectionDAG &DAG) const {
8990 unsigned IntrinsicID =
8991 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8993 SDLoc dl(Op);
8995 if (IntrinsicID == Intrinsic::thread_pointer) {
8996 // Reads the thread pointer register, used for __builtin_thread_pointer.
8997 if (Subtarget.isPPC64())
8998 return DAG.getRegister(PPC::X13, MVT::i64);
8999 return DAG.getRegister(PPC::R2, MVT::i32);
9002 // If this is a lowered altivec predicate compare, CompareOpc is set to the
9003 // opcode number of the comparison.
9004 int CompareOpc;
9005 bool isDot;
9006 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9007 return SDValue(); // Don't custom lower most intrinsics.
9009 // If this is a non-dot comparison, make the VCMP node and we are done.
9010 if (!isDot) {
9011 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9012 Op.getOperand(1), Op.getOperand(2),
9013 DAG.getConstant(CompareOpc, dl, MVT::i32));
9014 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9017 // Create the PPCISD altivec 'dot' comparison node.
9018 SDValue Ops[] = {
9019 Op.getOperand(2), // LHS
9020 Op.getOperand(3), // RHS
9021 DAG.getConstant(CompareOpc, dl, MVT::i32)
9023 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9024 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9026 // Now that we have the comparison, emit a copy from the CR to a GPR.
9027 // This is flagged to the above dot comparison.
9028 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9029 DAG.getRegister(PPC::CR6, MVT::i32),
9030 CompNode.getValue(1));
9032 // Unpack the result based on how the target uses it.
9033 unsigned BitNo; // Bit # of CR6.
9034 bool InvertBit; // Invert result?
9035 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9036 default: // Can't happen, don't crash on invalid number though.
9037 case 0: // Return the value of the EQ bit of CR6.
9038 BitNo = 0; InvertBit = false;
9039 break;
9040 case 1: // Return the inverted value of the EQ bit of CR6.
9041 BitNo = 0; InvertBit = true;
9042 break;
9043 case 2: // Return the value of the LT bit of CR6.
9044 BitNo = 2; InvertBit = false;
9045 break;
9046 case 3: // Return the inverted value of the LT bit of CR6.
9047 BitNo = 2; InvertBit = true;
9048 break;
9051 // Shift the bit into the low position.
9052 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9053 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9054 // Isolate the bit.
9055 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9056 DAG.getConstant(1, dl, MVT::i32));
9058 // If we are supposed to, toggle the bit.
9059 if (InvertBit)
9060 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9061 DAG.getConstant(1, dl, MVT::i32));
9062 return Flags;
9065 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9066 SelectionDAG &DAG) const {
9067 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9068 // the beginning of the argument list.
9069 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9070 SDLoc DL(Op);
9071 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9072 case Intrinsic::ppc_cfence: {
9073 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9074 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9075 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9076 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9077 Op.getOperand(ArgStart + 1)),
9078 Op.getOperand(0)),
9081 default:
9082 break;
9084 return SDValue();
9087 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9088 // Check for a DIV with the same operands as this REM.
9089 for (auto UI : Op.getOperand(1)->uses()) {
9090 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9091 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9092 if (UI->getOperand(0) == Op.getOperand(0) &&
9093 UI->getOperand(1) == Op.getOperand(1))
9094 return SDValue();
9096 return Op;
9099 // Lower scalar BSWAP64 to xxbrd.
9100 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9101 SDLoc dl(Op);
9102 // MTVSRDD
9103 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9104 Op.getOperand(0));
9105 // XXBRD
9106 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
9107 // MFVSRD
9108 int VectorIndex = 0;
9109 if (Subtarget.isLittleEndian())
9110 VectorIndex = 1;
9111 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9112 DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9113 return Op;
9116 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9117 // compared to a value that is atomically loaded (atomic loads zero-extend).
9118 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9119 SelectionDAG &DAG) const {
9120 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9121 "Expecting an atomic compare-and-swap here.");
9122 SDLoc dl(Op);
9123 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9124 EVT MemVT = AtomicNode->getMemoryVT();
9125 if (MemVT.getSizeInBits() >= 32)
9126 return Op;
9128 SDValue CmpOp = Op.getOperand(2);
9129 // If this is already correctly zero-extended, leave it alone.
9130 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9131 if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9132 return Op;
9134 // Clear the high bits of the compare operand.
9135 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9136 SDValue NewCmpOp =
9137 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9138 DAG.getConstant(MaskVal, dl, MVT::i32));
9140 // Replace the existing compare operand with the properly zero-extended one.
9141 SmallVector<SDValue, 4> Ops;
9142 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9143 Ops.push_back(AtomicNode->getOperand(i));
9144 Ops[2] = NewCmpOp;
9145 MachineMemOperand *MMO = AtomicNode->getMemOperand();
9146 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9147 auto NodeTy =
9148 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9149 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9152 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9153 SelectionDAG &DAG) const {
9154 SDLoc dl(Op);
9155 // Create a stack slot that is 16-byte aligned.
9156 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9157 int FrameIdx = MFI.CreateStackObject(16, 16, false);
9158 EVT PtrVT = getPointerTy(DAG.getDataLayout());
9159 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9161 // Store the input value into Value#0 of the stack slot.
9162 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9163 MachinePointerInfo());
9164 // Load it out.
9165 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9168 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9169 SelectionDAG &DAG) const {
9170 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9171 "Should only be called for ISD::INSERT_VECTOR_ELT");
9173 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9174 // We have legal lowering for constant indices but not for variable ones.
9175 if (!C)
9176 return SDValue();
9178 EVT VT = Op.getValueType();
9179 SDLoc dl(Op);
9180 SDValue V1 = Op.getOperand(0);
9181 SDValue V2 = Op.getOperand(1);
9182 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9183 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9184 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9185 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9186 unsigned InsertAtElement = C->getZExtValue();
9187 unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9188 if (Subtarget.isLittleEndian()) {
9189 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9191 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9192 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9194 return Op;
9197 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9198 SelectionDAG &DAG) const {
9199 SDLoc dl(Op);
9200 SDNode *N = Op.getNode();
9202 assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9203 "Unknown extract_vector_elt type");
9205 SDValue Value = N->getOperand(0);
9207 // The first part of this is like the store lowering except that we don't
9208 // need to track the chain.
9210 // The values are now known to be -1 (false) or 1 (true). To convert this
9211 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9212 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9213 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9215 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9216 // understand how to form the extending load.
9217 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9219 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9221 // Now convert to an integer and store.
9222 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9223 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9224 Value);
9226 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9227 int FrameIdx = MFI.CreateStackObject(16, 16, false);
9228 MachinePointerInfo PtrInfo =
9229 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9230 EVT PtrVT = getPointerTy(DAG.getDataLayout());
9231 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9233 SDValue StoreChain = DAG.getEntryNode();
9234 SDValue Ops[] = {StoreChain,
9235 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9236 Value, FIdx};
9237 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9239 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9240 dl, VTs, Ops, MVT::v4i32, PtrInfo);
9242 // Extract the value requested.
9243 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9244 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9245 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9247 SDValue IntVal =
9248 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9250 if (!Subtarget.useCRBits())
9251 return IntVal;
9253 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9256 /// Lowering for QPX v4i1 loads
9257 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9258 SelectionDAG &DAG) const {
9259 SDLoc dl(Op);
9260 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9261 SDValue LoadChain = LN->getChain();
9262 SDValue BasePtr = LN->getBasePtr();
9264 if (Op.getValueType() == MVT::v4f64 ||
9265 Op.getValueType() == MVT::v4f32) {
9266 EVT MemVT = LN->getMemoryVT();
9267 unsigned Alignment = LN->getAlignment();
9269 // If this load is properly aligned, then it is legal.
9270 if (Alignment >= MemVT.getStoreSize())
9271 return Op;
9273 EVT ScalarVT = Op.getValueType().getScalarType(),
9274 ScalarMemVT = MemVT.getScalarType();
9275 unsigned Stride = ScalarMemVT.getStoreSize();
9277 SDValue Vals[4], LoadChains[4];
9278 for (unsigned Idx = 0; Idx < 4; ++Idx) {
9279 SDValue Load;
9280 if (ScalarVT != ScalarMemVT)
9281 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9282 BasePtr,
9283 LN->getPointerInfo().getWithOffset(Idx * Stride),
9284 ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9285 LN->getMemOperand()->getFlags(), LN->getAAInfo());
9286 else
9287 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9288 LN->getPointerInfo().getWithOffset(Idx * Stride),
9289 MinAlign(Alignment, Idx * Stride),
9290 LN->getMemOperand()->getFlags(), LN->getAAInfo());
9292 if (Idx == 0 && LN->isIndexed()) {
9293 assert(LN->getAddressingMode() == ISD::PRE_INC &&
9294 "Unknown addressing mode on vector load");
9295 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9296 LN->getAddressingMode());
9299 Vals[Idx] = Load;
9300 LoadChains[Idx] = Load.getValue(1);
9302 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9303 DAG.getConstant(Stride, dl,
9304 BasePtr.getValueType()));
9307 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9308 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9310 if (LN->isIndexed()) {
9311 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9312 return DAG.getMergeValues(RetOps, dl);
9315 SDValue RetOps[] = { Value, TF };
9316 return DAG.getMergeValues(RetOps, dl);
9319 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9320 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9322 // To lower v4i1 from a byte array, we load the byte elements of the
9323 // vector and then reuse the BUILD_VECTOR logic.
9325 SDValue VectElmts[4], VectElmtChains[4];
9326 for (unsigned i = 0; i < 4; ++i) {
9327 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9328 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9330 VectElmts[i] = DAG.getExtLoad(
9331 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9332 LN->getPointerInfo().getWithOffset(i), MVT::i8,
9333 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9334 VectElmtChains[i] = VectElmts[i].getValue(1);
9337 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9338 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9340 SDValue RVals[] = { Value, LoadChain };
9341 return DAG.getMergeValues(RVals, dl);
9344 /// Lowering for QPX v4i1 stores
9345 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9346 SelectionDAG &DAG) const {
9347 SDLoc dl(Op);
9348 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9349 SDValue StoreChain = SN->getChain();
9350 SDValue BasePtr = SN->getBasePtr();
9351 SDValue Value = SN->getValue();
9353 if (Value.getValueType() == MVT::v4f64 ||
9354 Value.getValueType() == MVT::v4f32) {
9355 EVT MemVT = SN->getMemoryVT();
9356 unsigned Alignment = SN->getAlignment();
9358 // If this store is properly aligned, then it is legal.
9359 if (Alignment >= MemVT.getStoreSize())
9360 return Op;
9362 EVT ScalarVT = Value.getValueType().getScalarType(),
9363 ScalarMemVT = MemVT.getScalarType();
9364 unsigned Stride = ScalarMemVT.getStoreSize();
9366 SDValue Stores[4];
9367 for (unsigned Idx = 0; Idx < 4; ++Idx) {
9368 SDValue Ex = DAG.getNode(
9369 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9370 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9371 SDValue Store;
9372 if (ScalarVT != ScalarMemVT)
9373 Store =
9374 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9375 SN->getPointerInfo().getWithOffset(Idx * Stride),
9376 ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9377 SN->getMemOperand()->getFlags(), SN->getAAInfo());
9378 else
9379 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9380 SN->getPointerInfo().getWithOffset(Idx * Stride),
9381 MinAlign(Alignment, Idx * Stride),
9382 SN->getMemOperand()->getFlags(), SN->getAAInfo());
9384 if (Idx == 0 && SN->isIndexed()) {
9385 assert(SN->getAddressingMode() == ISD::PRE_INC &&
9386 "Unknown addressing mode on vector store");
9387 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9388 SN->getAddressingMode());
9391 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9392 DAG.getConstant(Stride, dl,
9393 BasePtr.getValueType()));
9394 Stores[Idx] = Store;
9397 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9399 if (SN->isIndexed()) {
9400 SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9401 return DAG.getMergeValues(RetOps, dl);
9404 return TF;
9407 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9408 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9410 // The values are now known to be -1 (false) or 1 (true). To convert this
9411 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9412 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9413 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9415 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9416 // understand how to form the extending load.
9417 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9419 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9421 // Now convert to an integer and store.
9422 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9423 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9424 Value);
9426 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9427 int FrameIdx = MFI.CreateStackObject(16, 16, false);
9428 MachinePointerInfo PtrInfo =
9429 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9430 EVT PtrVT = getPointerTy(DAG.getDataLayout());
9431 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9433 SDValue Ops[] = {StoreChain,
9434 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9435 Value, FIdx};
9436 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9438 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9439 dl, VTs, Ops, MVT::v4i32, PtrInfo);
9441 // Move data into the byte array.
9442 SDValue Loads[4], LoadChains[4];
9443 for (unsigned i = 0; i < 4; ++i) {
9444 unsigned Offset = 4*i;
9445 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9446 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9448 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9449 PtrInfo.getWithOffset(Offset));
9450 LoadChains[i] = Loads[i].getValue(1);
9453 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9455 SDValue Stores[4];
9456 for (unsigned i = 0; i < 4; ++i) {
9457 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9458 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9460 Stores[i] = DAG.getTruncStore(
9461 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9462 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9463 SN->getAAInfo());
9466 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9468 return StoreChain;
9471 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9472 SDLoc dl(Op);
9473 if (Op.getValueType() == MVT::v4i32) {
9474 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9476 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
9477 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9479 SDValue RHSSwap = // = vrlw RHS, 16
9480 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9482 // Shrinkify inputs to v8i16.
9483 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9484 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9485 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9487 // Low parts multiplied together, generating 32-bit results (we ignore the
9488 // top parts).
9489 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9490 LHS, RHS, DAG, dl, MVT::v4i32);
9492 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9493 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9494 // Shift the high parts up 16 bits.
9495 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9496 Neg16, DAG, dl);
9497 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9498 } else if (Op.getValueType() == MVT::v8i16) {
9499 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9501 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9503 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9504 LHS, RHS, Zero, DAG, dl);
9505 } else if (Op.getValueType() == MVT::v16i8) {
9506 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9507 bool isLittleEndian = Subtarget.isLittleEndian();
9509 // Multiply the even 8-bit parts, producing 16-bit sums.
9510 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9511 LHS, RHS, DAG, dl, MVT::v8i16);
9512 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9514 // Multiply the odd 8-bit parts, producing 16-bit sums.
9515 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9516 LHS, RHS, DAG, dl, MVT::v8i16);
9517 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9519 // Merge the results together. Because vmuleub and vmuloub are
9520 // instructions with a big-endian bias, we must reverse the
9521 // element numbering and reverse the meaning of "odd" and "even"
9522 // when generating little endian code.
9523 int Ops[16];
9524 for (unsigned i = 0; i != 8; ++i) {
9525 if (isLittleEndian) {
9526 Ops[i*2 ] = 2*i;
9527 Ops[i*2+1] = 2*i+16;
9528 } else {
9529 Ops[i*2 ] = 2*i+1;
9530 Ops[i*2+1] = 2*i+1+16;
9533 if (isLittleEndian)
9534 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9535 else
9536 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9537 } else {
9538 llvm_unreachable("Unknown mul to lower!");
9542 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
9544 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
9546 EVT VT = Op.getValueType();
9547 assert(VT.isVector() &&
9548 "Only set vector abs as custom, scalar abs shouldn't reach here!");
9549 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
9550 VT == MVT::v16i8) &&
9551 "Unexpected vector element type!");
9552 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
9553 "Current subtarget doesn't support smax v2i64!");
9555 // For vector abs, it can be lowered to:
9556 // abs x
9557 // ==>
9558 // y = -x
9559 // smax(x, y)
9561 SDLoc dl(Op);
9562 SDValue X = Op.getOperand(0);
9563 SDValue Zero = DAG.getConstant(0, dl, VT);
9564 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
9566 // SMAX patch https://reviews.llvm.org/D47332
9567 // hasn't landed yet, so use intrinsic first here.
9568 // TODO: Should use SMAX directly once SMAX patch landed
9569 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
9570 if (VT == MVT::v2i64)
9571 BifID = Intrinsic::ppc_altivec_vmaxsd;
9572 else if (VT == MVT::v8i16)
9573 BifID = Intrinsic::ppc_altivec_vmaxsh;
9574 else if (VT == MVT::v16i8)
9575 BifID = Intrinsic::ppc_altivec_vmaxsb;
9577 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
9580 /// LowerOperation - Provide custom lowering hooks for some operations.
9582 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9583 switch (Op.getOpcode()) {
9584 default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9585 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
9586 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
9587 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
9588 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
9589 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
9590 case ISD::SETCC: return LowerSETCC(Op, DAG);
9591 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
9592 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
9594 // Variable argument lowering.
9595 case ISD::VASTART: return LowerVASTART(Op, DAG);
9596 case ISD::VAARG: return LowerVAARG(Op, DAG);
9597 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
9599 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG);
9600 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9601 case ISD::GET_DYNAMIC_AREA_OFFSET:
9602 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9604 // Exception handling lowering.
9605 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG);
9606 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
9607 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
9609 case ISD::LOAD: return LowerLOAD(Op, DAG);
9610 case ISD::STORE: return LowerSTORE(Op, DAG);
9611 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
9612 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
9613 case ISD::FP_TO_UINT:
9614 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
9615 case ISD::UINT_TO_FP:
9616 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
9617 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
9619 // Lower 64-bit shifts.
9620 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
9621 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
9622 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
9624 // Vector-related lowering.
9625 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
9626 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
9627 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9628 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
9629 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9630 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
9631 case ISD::MUL: return LowerMUL(Op, DAG);
9632 case ISD::ABS: return LowerABS(Op, DAG);
9634 // For counter-based loop handling.
9635 case ISD::INTRINSIC_W_CHAIN: return SDValue();
9637 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
9639 // Frame & Return address.
9640 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
9641 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
9643 case ISD::INTRINSIC_VOID:
9644 return LowerINTRINSIC_VOID(Op, DAG);
9645 case ISD::SREM:
9646 case ISD::UREM:
9647 return LowerREM(Op, DAG);
9648 case ISD::BSWAP:
9649 return LowerBSWAP(Op, DAG);
9650 case ISD::ATOMIC_CMP_SWAP:
9651 return LowerATOMIC_CMP_SWAP(Op, DAG);
9655 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9656 SmallVectorImpl<SDValue>&Results,
9657 SelectionDAG &DAG) const {
9658 SDLoc dl(N);
9659 switch (N->getOpcode()) {
9660 default:
9661 llvm_unreachable("Do not know how to custom type legalize this operation!");
9662 case ISD::READCYCLECOUNTER: {
9663 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9664 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9666 Results.push_back(RTB);
9667 Results.push_back(RTB.getValue(1));
9668 Results.push_back(RTB.getValue(2));
9669 break;
9671 case ISD::INTRINSIC_W_CHAIN: {
9672 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9673 Intrinsic::ppc_is_decremented_ctr_nonzero)
9674 break;
9676 assert(N->getValueType(0) == MVT::i1 &&
9677 "Unexpected result type for CTR decrement intrinsic");
9678 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9679 N->getValueType(0));
9680 SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
9681 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
9682 N->getOperand(1));
9684 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
9685 Results.push_back(NewInt.getValue(1));
9686 break;
9688 case ISD::VAARG: {
9689 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
9690 return;
9692 EVT VT = N->getValueType(0);
9694 if (VT == MVT::i64) {
9695 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
9697 Results.push_back(NewNode);
9698 Results.push_back(NewNode.getValue(1));
9700 return;
9702 case ISD::FP_TO_SINT:
9703 case ISD::FP_TO_UINT:
9704 // LowerFP_TO_INT() can only handle f32 and f64.
9705 if (N->getOperand(0).getValueType() == MVT::ppcf128)
9706 return;
9707 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
9708 return;
9709 case ISD::TRUNCATE: {
9710 EVT TrgVT = N->getValueType(0);
9711 if (TrgVT.isVector() &&
9712 isOperationCustom(N->getOpcode(), TrgVT) &&
9713 N->getOperand(0).getValueType().getSizeInBits() <= 128)
9714 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
9715 return;
9717 case ISD::BITCAST:
9718 // Don't handle bitcast here.
9719 return;
9723 //===----------------------------------------------------------------------===//
9724 // Other Lowering Code
9725 //===----------------------------------------------------------------------===//
9727 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
9728 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9729 Function *Func = Intrinsic::getDeclaration(M, Id);
9730 return Builder.CreateCall(Func, {});
9733 // The mappings for emitLeading/TrailingFence is taken from
9734 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
9735 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
9736 Instruction *Inst,
9737 AtomicOrdering Ord) const {
9738 if (Ord == AtomicOrdering::SequentiallyConsistent)
9739 return callIntrinsic(Builder, Intrinsic::ppc_sync);
9740 if (isReleaseOrStronger(Ord))
9741 return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9742 return nullptr;
9745 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
9746 Instruction *Inst,
9747 AtomicOrdering Ord) const {
9748 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
9749 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
9750 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
9751 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
9752 if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
9753 return Builder.CreateCall(
9754 Intrinsic::getDeclaration(
9755 Builder.GetInsertBlock()->getParent()->getParent(),
9756 Intrinsic::ppc_cfence, {Inst->getType()}),
9757 {Inst});
9758 // FIXME: Can use isync for rmw operation.
9759 return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9761 return nullptr;
9764 MachineBasicBlock *
9765 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
9766 unsigned AtomicSize,
9767 unsigned BinOpcode,
9768 unsigned CmpOpcode,
9769 unsigned CmpPred) const {
9770 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9771 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9773 auto LoadMnemonic = PPC::LDARX;
9774 auto StoreMnemonic = PPC::STDCX;
9775 switch (AtomicSize) {
9776 default:
9777 llvm_unreachable("Unexpected size of atomic entity");
9778 case 1:
9779 LoadMnemonic = PPC::LBARX;
9780 StoreMnemonic = PPC::STBCX;
9781 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9782 break;
9783 case 2:
9784 LoadMnemonic = PPC::LHARX;
9785 StoreMnemonic = PPC::STHCX;
9786 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9787 break;
9788 case 4:
9789 LoadMnemonic = PPC::LWARX;
9790 StoreMnemonic = PPC::STWCX;
9791 break;
9792 case 8:
9793 LoadMnemonic = PPC::LDARX;
9794 StoreMnemonic = PPC::STDCX;
9795 break;
9798 const BasicBlock *LLVM_BB = BB->getBasicBlock();
9799 MachineFunction *F = BB->getParent();
9800 MachineFunction::iterator It = ++BB->getIterator();
9802 unsigned dest = MI.getOperand(0).getReg();
9803 unsigned ptrA = MI.getOperand(1).getReg();
9804 unsigned ptrB = MI.getOperand(2).getReg();
9805 unsigned incr = MI.getOperand(3).getReg();
9806 DebugLoc dl = MI.getDebugLoc();
9808 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9809 MachineBasicBlock *loop2MBB =
9810 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9811 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9812 F->insert(It, loopMBB);
9813 if (CmpOpcode)
9814 F->insert(It, loop2MBB);
9815 F->insert(It, exitMBB);
9816 exitMBB->splice(exitMBB->begin(), BB,
9817 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9818 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9820 MachineRegisterInfo &RegInfo = F->getRegInfo();
9821 unsigned TmpReg = (!BinOpcode) ? incr :
9822 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
9823 : &PPC::GPRCRegClass);
9825 // thisMBB:
9826 // ...
9827 // fallthrough --> loopMBB
9828 BB->addSuccessor(loopMBB);
9830 // loopMBB:
9831 // l[wd]arx dest, ptr
9832 // add r0, dest, incr
9833 // st[wd]cx. r0, ptr
9834 // bne- loopMBB
9835 // fallthrough --> exitMBB
9837 // For max/min...
9838 // loopMBB:
9839 // l[wd]arx dest, ptr
9840 // cmpl?[wd] incr, dest
9841 // bgt exitMBB
9842 // loop2MBB:
9843 // st[wd]cx. dest, ptr
9844 // bne- loopMBB
9845 // fallthrough --> exitMBB
9847 BB = loopMBB;
9848 BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9849 .addReg(ptrA).addReg(ptrB);
9850 if (BinOpcode)
9851 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
9852 if (CmpOpcode) {
9853 // Signed comparisons of byte or halfword values must be sign-extended.
9854 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
9855 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9856 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
9857 ExtReg).addReg(dest);
9858 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9859 .addReg(incr).addReg(ExtReg);
9860 } else
9861 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9862 .addReg(incr).addReg(dest);
9864 BuildMI(BB, dl, TII->get(PPC::BCC))
9865 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9866 BB->addSuccessor(loop2MBB);
9867 BB->addSuccessor(exitMBB);
9868 BB = loop2MBB;
9870 BuildMI(BB, dl, TII->get(StoreMnemonic))
9871 .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
9872 BuildMI(BB, dl, TII->get(PPC::BCC))
9873 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9874 BB->addSuccessor(loopMBB);
9875 BB->addSuccessor(exitMBB);
9877 // exitMBB:
9878 // ...
9879 BB = exitMBB;
9880 return BB;
9883 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
9884 MachineInstr &MI, MachineBasicBlock *BB,
9885 bool is8bit, // operation
9886 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
9887 // If we support part-word atomic mnemonics, just use them
9888 if (Subtarget.hasPartwordAtomics())
9889 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
9890 CmpPred);
9892 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9893 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9894 // In 64 bit mode we have to use 64 bits for addresses, even though the
9895 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
9896 // registers without caring whether they're 32 or 64, but here we're
9897 // doing actual arithmetic on the addresses.
9898 bool is64bit = Subtarget.isPPC64();
9899 bool isLittleEndian = Subtarget.isLittleEndian();
9900 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9902 const BasicBlock *LLVM_BB = BB->getBasicBlock();
9903 MachineFunction *F = BB->getParent();
9904 MachineFunction::iterator It = ++BB->getIterator();
9906 unsigned dest = MI.getOperand(0).getReg();
9907 unsigned ptrA = MI.getOperand(1).getReg();
9908 unsigned ptrB = MI.getOperand(2).getReg();
9909 unsigned incr = MI.getOperand(3).getReg();
9910 DebugLoc dl = MI.getDebugLoc();
9912 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9913 MachineBasicBlock *loop2MBB =
9914 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9915 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9916 F->insert(It, loopMBB);
9917 if (CmpOpcode)
9918 F->insert(It, loop2MBB);
9919 F->insert(It, exitMBB);
9920 exitMBB->splice(exitMBB->begin(), BB,
9921 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9922 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9924 MachineRegisterInfo &RegInfo = F->getRegInfo();
9925 const TargetRegisterClass *RC =
9926 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
9927 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
9929 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9930 unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
9931 unsigned ShiftReg =
9932 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
9933 unsigned Incr2Reg = RegInfo.createVirtualRegister(GPRC);
9934 unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
9935 unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
9936 unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
9937 unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
9938 unsigned Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
9939 unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
9940 unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
9941 unsigned Ptr1Reg;
9942 unsigned TmpReg =
9943 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
9945 // thisMBB:
9946 // ...
9947 // fallthrough --> loopMBB
9948 BB->addSuccessor(loopMBB);
9950 // The 4-byte load must be aligned, while a char or short may be
9951 // anywhere in the word. Hence all this nasty bookkeeping code.
9952 // add ptr1, ptrA, ptrB [copy if ptrA==0]
9953 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9954 // xori shift, shift1, 24 [16]
9955 // rlwinm ptr, ptr1, 0, 0, 29
9956 // slw incr2, incr, shift
9957 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9958 // slw mask, mask2, shift
9959 // loopMBB:
9960 // lwarx tmpDest, ptr
9961 // add tmp, tmpDest, incr2
9962 // andc tmp2, tmpDest, mask
9963 // and tmp3, tmp, mask
9964 // or tmp4, tmp3, tmp2
9965 // stwcx. tmp4, ptr
9966 // bne- loopMBB
9967 // fallthrough --> exitMBB
9968 // srw dest, tmpDest, shift
9969 if (ptrA != ZeroReg) {
9970 Ptr1Reg = RegInfo.createVirtualRegister(RC);
9971 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9972 .addReg(ptrA)
9973 .addReg(ptrB);
9974 } else {
9975 Ptr1Reg = ptrB;
9977 // We need use 32-bit subregister to avoid mismatch register class in 64-bit
9978 // mode.
9979 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
9980 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
9981 .addImm(3)
9982 .addImm(27)
9983 .addImm(is8bit ? 28 : 27);
9984 if (!isLittleEndian)
9985 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
9986 .addReg(Shift1Reg)
9987 .addImm(is8bit ? 24 : 16);
9988 if (is64bit)
9989 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9990 .addReg(Ptr1Reg)
9991 .addImm(0)
9992 .addImm(61);
9993 else
9994 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9995 .addReg(Ptr1Reg)
9996 .addImm(0)
9997 .addImm(0)
9998 .addImm(29);
9999 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10000 if (is8bit)
10001 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10002 else {
10003 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10004 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10005 .addReg(Mask3Reg)
10006 .addImm(65535);
10008 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10009 .addReg(Mask2Reg)
10010 .addReg(ShiftReg);
10012 BB = loopMBB;
10013 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10014 .addReg(ZeroReg)
10015 .addReg(PtrReg);
10016 if (BinOpcode)
10017 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10018 .addReg(Incr2Reg)
10019 .addReg(TmpDestReg);
10020 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10021 .addReg(TmpDestReg)
10022 .addReg(MaskReg);
10023 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10024 if (CmpOpcode) {
10025 // For unsigned comparisons, we can directly compare the shifted values.
10026 // For signed comparisons we shift and sign extend.
10027 unsigned SReg = RegInfo.createVirtualRegister(GPRC);
10028 BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10029 .addReg(TmpDestReg)
10030 .addReg(MaskReg);
10031 unsigned ValueReg = SReg;
10032 unsigned CmpReg = Incr2Reg;
10033 if (CmpOpcode == PPC::CMPW) {
10034 ValueReg = RegInfo.createVirtualRegister(GPRC);
10035 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10036 .addReg(SReg)
10037 .addReg(ShiftReg);
10038 unsigned ValueSReg = RegInfo.createVirtualRegister(GPRC);
10039 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10040 .addReg(ValueReg);
10041 ValueReg = ValueSReg;
10042 CmpReg = incr;
10044 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10045 .addReg(CmpReg)
10046 .addReg(ValueReg);
10047 BuildMI(BB, dl, TII->get(PPC::BCC))
10048 .addImm(CmpPred)
10049 .addReg(PPC::CR0)
10050 .addMBB(exitMBB);
10051 BB->addSuccessor(loop2MBB);
10052 BB->addSuccessor(exitMBB);
10053 BB = loop2MBB;
10055 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10056 BuildMI(BB, dl, TII->get(PPC::STWCX))
10057 .addReg(Tmp4Reg)
10058 .addReg(ZeroReg)
10059 .addReg(PtrReg);
10060 BuildMI(BB, dl, TII->get(PPC::BCC))
10061 .addImm(PPC::PRED_NE)
10062 .addReg(PPC::CR0)
10063 .addMBB(loopMBB);
10064 BB->addSuccessor(loopMBB);
10065 BB->addSuccessor(exitMBB);
10067 // exitMBB:
10068 // ...
10069 BB = exitMBB;
10070 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10071 .addReg(TmpDestReg)
10072 .addReg(ShiftReg);
10073 return BB;
10076 llvm::MachineBasicBlock *
10077 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10078 MachineBasicBlock *MBB) const {
10079 DebugLoc DL = MI.getDebugLoc();
10080 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10081 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10083 MachineFunction *MF = MBB->getParent();
10084 MachineRegisterInfo &MRI = MF->getRegInfo();
10086 const BasicBlock *BB = MBB->getBasicBlock();
10087 MachineFunction::iterator I = ++MBB->getIterator();
10089 unsigned DstReg = MI.getOperand(0).getReg();
10090 const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10091 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10092 unsigned mainDstReg = MRI.createVirtualRegister(RC);
10093 unsigned restoreDstReg = MRI.createVirtualRegister(RC);
10095 MVT PVT = getPointerTy(MF->getDataLayout());
10096 assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10097 "Invalid Pointer Size!");
10098 // For v = setjmp(buf), we generate
10100 // thisMBB:
10101 // SjLjSetup mainMBB
10102 // bl mainMBB
10103 // v_restore = 1
10104 // b sinkMBB
10106 // mainMBB:
10107 // buf[LabelOffset] = LR
10108 // v_main = 0
10110 // sinkMBB:
10111 // v = phi(main, restore)
10114 MachineBasicBlock *thisMBB = MBB;
10115 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10116 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10117 MF->insert(I, mainMBB);
10118 MF->insert(I, sinkMBB);
10120 MachineInstrBuilder MIB;
10122 // Transfer the remainder of BB and its successor edges to sinkMBB.
10123 sinkMBB->splice(sinkMBB->begin(), MBB,
10124 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10125 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10127 // Note that the structure of the jmp_buf used here is not compatible
10128 // with that used by libc, and is not designed to be. Specifically, it
10129 // stores only those 'reserved' registers that LLVM does not otherwise
10130 // understand how to spill. Also, by convention, by the time this
10131 // intrinsic is called, Clang has already stored the frame address in the
10132 // first slot of the buffer and stack address in the third. Following the
10133 // X86 target code, we'll store the jump address in the second slot. We also
10134 // need to save the TOC pointer (R2) to handle jumps between shared
10135 // libraries, and that will be stored in the fourth slot. The thread
10136 // identifier (R13) is not affected.
10138 // thisMBB:
10139 const int64_t LabelOffset = 1 * PVT.getStoreSize();
10140 const int64_t TOCOffset = 3 * PVT.getStoreSize();
10141 const int64_t BPOffset = 4 * PVT.getStoreSize();
10143 // Prepare IP either in reg.
10144 const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10145 unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
10146 unsigned BufReg = MI.getOperand(1).getReg();
10148 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
10149 setUsesTOCBasePtr(*MBB->getParent());
10150 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10151 .addReg(PPC::X2)
10152 .addImm(TOCOffset)
10153 .addReg(BufReg)
10154 .cloneMemRefs(MI);
10157 // Naked functions never have a base pointer, and so we use r1. For all
10158 // other functions, this decision must be delayed until during PEI.
10159 unsigned BaseReg;
10160 if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10161 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10162 else
10163 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10165 MIB = BuildMI(*thisMBB, MI, DL,
10166 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10167 .addReg(BaseReg)
10168 .addImm(BPOffset)
10169 .addReg(BufReg)
10170 .cloneMemRefs(MI);
10172 // Setup
10173 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10174 MIB.addRegMask(TRI->getNoPreservedMask());
10176 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10178 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10179 .addMBB(mainMBB);
10180 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10182 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10183 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10185 // mainMBB:
10186 // mainDstReg = 0
10187 MIB =
10188 BuildMI(mainMBB, DL,
10189 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
10191 // Store IP
10192 if (Subtarget.isPPC64()) {
10193 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
10194 .addReg(LabelReg)
10195 .addImm(LabelOffset)
10196 .addReg(BufReg);
10197 } else {
10198 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
10199 .addReg(LabelReg)
10200 .addImm(LabelOffset)
10201 .addReg(BufReg);
10203 MIB.cloneMemRefs(MI);
10205 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
10206 mainMBB->addSuccessor(sinkMBB);
10208 // sinkMBB:
10209 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10210 TII->get(PPC::PHI), DstReg)
10211 .addReg(mainDstReg).addMBB(mainMBB)
10212 .addReg(restoreDstReg).addMBB(thisMBB);
10214 MI.eraseFromParent();
10215 return sinkMBB;
10218 MachineBasicBlock *
10219 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
10220 MachineBasicBlock *MBB) const {
10221 DebugLoc DL = MI.getDebugLoc();
10222 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10224 MachineFunction *MF = MBB->getParent();
10225 MachineRegisterInfo &MRI = MF->getRegInfo();
10227 MVT PVT = getPointerTy(MF->getDataLayout());
10228 assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10229 "Invalid Pointer Size!");
10231 const TargetRegisterClass *RC =
10232 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10233 unsigned Tmp = MRI.createVirtualRegister(RC);
10234 // Since FP is only updated here but NOT referenced, it's treated as GPR.
10235 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
10236 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
10237 unsigned BP =
10238 (PVT == MVT::i64)
10239 ? PPC::X30
10240 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10241 : PPC::R30);
10243 MachineInstrBuilder MIB;
10245 const int64_t LabelOffset = 1 * PVT.getStoreSize();
10246 const int64_t SPOffset = 2 * PVT.getStoreSize();
10247 const int64_t TOCOffset = 3 * PVT.getStoreSize();
10248 const int64_t BPOffset = 4 * PVT.getStoreSize();
10250 unsigned BufReg = MI.getOperand(0).getReg();
10252 // Reload FP (the jumped-to function may not have had a
10253 // frame pointer, and if so, then its r31 will be restored
10254 // as necessary).
10255 if (PVT == MVT::i64) {
10256 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10257 .addImm(0)
10258 .addReg(BufReg);
10259 } else {
10260 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10261 .addImm(0)
10262 .addReg(BufReg);
10264 MIB.cloneMemRefs(MI);
10266 // Reload IP
10267 if (PVT == MVT::i64) {
10268 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10269 .addImm(LabelOffset)
10270 .addReg(BufReg);
10271 } else {
10272 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
10273 .addImm(LabelOffset)
10274 .addReg(BufReg);
10276 MIB.cloneMemRefs(MI);
10278 // Reload SP
10279 if (PVT == MVT::i64) {
10280 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10281 .addImm(SPOffset)
10282 .addReg(BufReg);
10283 } else {
10284 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10285 .addImm(SPOffset)
10286 .addReg(BufReg);
10288 MIB.cloneMemRefs(MI);
10290 // Reload BP
10291 if (PVT == MVT::i64) {
10292 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10293 .addImm(BPOffset)
10294 .addReg(BufReg);
10295 } else {
10296 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10297 .addImm(BPOffset)
10298 .addReg(BufReg);
10300 MIB.cloneMemRefs(MI);
10302 // Reload TOC
10303 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10304 setUsesTOCBasePtr(*MBB->getParent());
10305 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10306 .addImm(TOCOffset)
10307 .addReg(BufReg)
10308 .cloneMemRefs(MI);
10311 // Jump
10312 BuildMI(*MBB, MI, DL,
10313 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10314 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10316 MI.eraseFromParent();
10317 return MBB;
10320 MachineBasicBlock *
10321 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10322 MachineBasicBlock *BB) const {
10323 if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10324 MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10325 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
10326 MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10327 // Call lowering should have added an r2 operand to indicate a dependence
10328 // on the TOC base pointer value. It can't however, because there is no
10329 // way to mark the dependence as implicit there, and so the stackmap code
10330 // will confuse it with a regular operand. Instead, add the dependence
10331 // here.
10332 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10335 return emitPatchPoint(MI, BB);
10338 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10339 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10340 return emitEHSjLjSetJmp(MI, BB);
10341 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10342 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10343 return emitEHSjLjLongJmp(MI, BB);
10346 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10348 // To "insert" these instructions we actually have to insert their
10349 // control-flow patterns.
10350 const BasicBlock *LLVM_BB = BB->getBasicBlock();
10351 MachineFunction::iterator It = ++BB->getIterator();
10353 MachineFunction *F = BB->getParent();
10355 if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10356 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
10357 MI.getOpcode() == PPC::SELECT_I8) {
10358 SmallVector<MachineOperand, 2> Cond;
10359 if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10360 MI.getOpcode() == PPC::SELECT_CC_I8)
10361 Cond.push_back(MI.getOperand(4));
10362 else
10363 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10364 Cond.push_back(MI.getOperand(1));
10366 DebugLoc dl = MI.getDebugLoc();
10367 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10368 MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10369 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10370 MI.getOpcode() == PPC::SELECT_CC_I8 ||
10371 MI.getOpcode() == PPC::SELECT_CC_F4 ||
10372 MI.getOpcode() == PPC::SELECT_CC_F8 ||
10373 MI.getOpcode() == PPC::SELECT_CC_F16 ||
10374 MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10375 MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10376 MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10377 MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10378 MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10379 MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10380 MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10381 MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
10382 MI.getOpcode() == PPC::SELECT_CC_SPE ||
10383 MI.getOpcode() == PPC::SELECT_I4 ||
10384 MI.getOpcode() == PPC::SELECT_I8 ||
10385 MI.getOpcode() == PPC::SELECT_F4 ||
10386 MI.getOpcode() == PPC::SELECT_F8 ||
10387 MI.getOpcode() == PPC::SELECT_F16 ||
10388 MI.getOpcode() == PPC::SELECT_QFRC ||
10389 MI.getOpcode() == PPC::SELECT_QSRC ||
10390 MI.getOpcode() == PPC::SELECT_QBRC ||
10391 MI.getOpcode() == PPC::SELECT_SPE ||
10392 MI.getOpcode() == PPC::SELECT_SPE4 ||
10393 MI.getOpcode() == PPC::SELECT_VRRC ||
10394 MI.getOpcode() == PPC::SELECT_VSFRC ||
10395 MI.getOpcode() == PPC::SELECT_VSSRC ||
10396 MI.getOpcode() == PPC::SELECT_VSRC) {
10397 // The incoming instruction knows the destination vreg to set, the
10398 // condition code register to branch on, the true/false values to
10399 // select between, and a branch opcode to use.
10401 // thisMBB:
10402 // ...
10403 // TrueVal = ...
10404 // cmpTY ccX, r1, r2
10405 // bCC copy1MBB
10406 // fallthrough --> copy0MBB
10407 MachineBasicBlock *thisMBB = BB;
10408 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10409 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10410 DebugLoc dl = MI.getDebugLoc();
10411 F->insert(It, copy0MBB);
10412 F->insert(It, sinkMBB);
10414 // Transfer the remainder of BB and its successor edges to sinkMBB.
10415 sinkMBB->splice(sinkMBB->begin(), BB,
10416 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10417 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10419 // Next, add the true and fallthrough blocks as its successors.
10420 BB->addSuccessor(copy0MBB);
10421 BB->addSuccessor(sinkMBB);
10423 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10424 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10425 MI.getOpcode() == PPC::SELECT_F16 ||
10426 MI.getOpcode() == PPC::SELECT_SPE4 ||
10427 MI.getOpcode() == PPC::SELECT_SPE ||
10428 MI.getOpcode() == PPC::SELECT_QFRC ||
10429 MI.getOpcode() == PPC::SELECT_QSRC ||
10430 MI.getOpcode() == PPC::SELECT_QBRC ||
10431 MI.getOpcode() == PPC::SELECT_VRRC ||
10432 MI.getOpcode() == PPC::SELECT_VSFRC ||
10433 MI.getOpcode() == PPC::SELECT_VSSRC ||
10434 MI.getOpcode() == PPC::SELECT_VSRC) {
10435 BuildMI(BB, dl, TII->get(PPC::BC))
10436 .addReg(MI.getOperand(1).getReg())
10437 .addMBB(sinkMBB);
10438 } else {
10439 unsigned SelectPred = MI.getOperand(4).getImm();
10440 BuildMI(BB, dl, TII->get(PPC::BCC))
10441 .addImm(SelectPred)
10442 .addReg(MI.getOperand(1).getReg())
10443 .addMBB(sinkMBB);
10446 // copy0MBB:
10447 // %FalseValue = ...
10448 // # fallthrough to sinkMBB
10449 BB = copy0MBB;
10451 // Update machine-CFG edges
10452 BB->addSuccessor(sinkMBB);
10454 // sinkMBB:
10455 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10456 // ...
10457 BB = sinkMBB;
10458 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10459 .addReg(MI.getOperand(3).getReg())
10460 .addMBB(copy0MBB)
10461 .addReg(MI.getOperand(2).getReg())
10462 .addMBB(thisMBB);
10463 } else if (MI.getOpcode() == PPC::ReadTB) {
10464 // To read the 64-bit time-base register on a 32-bit target, we read the
10465 // two halves. Should the counter have wrapped while it was being read, we
10466 // need to try again.
10467 // ...
10468 // readLoop:
10469 // mfspr Rx,TBU # load from TBU
10470 // mfspr Ry,TB # load from TB
10471 // mfspr Rz,TBU # load from TBU
10472 // cmpw crX,Rx,Rz # check if 'old'='new'
10473 // bne readLoop # branch if they're not equal
10474 // ...
10476 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10477 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10478 DebugLoc dl = MI.getDebugLoc();
10479 F->insert(It, readMBB);
10480 F->insert(It, sinkMBB);
10482 // Transfer the remainder of BB and its successor edges to sinkMBB.
10483 sinkMBB->splice(sinkMBB->begin(), BB,
10484 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10485 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10487 BB->addSuccessor(readMBB);
10488 BB = readMBB;
10490 MachineRegisterInfo &RegInfo = F->getRegInfo();
10491 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10492 unsigned LoReg = MI.getOperand(0).getReg();
10493 unsigned HiReg = MI.getOperand(1).getReg();
10495 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10496 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10497 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10499 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10501 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10502 .addReg(HiReg)
10503 .addReg(ReadAgainReg);
10504 BuildMI(BB, dl, TII->get(PPC::BCC))
10505 .addImm(PPC::PRED_NE)
10506 .addReg(CmpReg)
10507 .addMBB(readMBB);
10509 BB->addSuccessor(readMBB);
10510 BB->addSuccessor(sinkMBB);
10511 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10512 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10513 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10514 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10515 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10516 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10517 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10518 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10520 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10521 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10522 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10523 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10524 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10525 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10526 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10527 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10529 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10530 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10531 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10532 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10533 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10534 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10535 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10536 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10538 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10539 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10540 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10541 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10542 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10543 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10544 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10545 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10547 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10548 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10549 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10550 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10551 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10552 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10553 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10554 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10556 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10557 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10558 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10559 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10560 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10561 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10562 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10563 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10565 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10566 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10567 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10568 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10569 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10570 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10571 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10572 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10574 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10575 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10576 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10577 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10578 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10579 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10580 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10581 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10583 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10584 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10585 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10586 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10587 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10588 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10589 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10590 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10592 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10593 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10594 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10595 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10596 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10597 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10598 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10599 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10601 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10602 BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10603 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10604 BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10605 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10606 BB = EmitAtomicBinary(MI, BB, 4, 0);
10607 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10608 BB = EmitAtomicBinary(MI, BB, 8, 0);
10609 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10610 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10611 (Subtarget.hasPartwordAtomics() &&
10612 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10613 (Subtarget.hasPartwordAtomics() &&
10614 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10615 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10617 auto LoadMnemonic = PPC::LDARX;
10618 auto StoreMnemonic = PPC::STDCX;
10619 switch (MI.getOpcode()) {
10620 default:
10621 llvm_unreachable("Compare and swap of unknown size");
10622 case PPC::ATOMIC_CMP_SWAP_I8:
10623 LoadMnemonic = PPC::LBARX;
10624 StoreMnemonic = PPC::STBCX;
10625 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10626 break;
10627 case PPC::ATOMIC_CMP_SWAP_I16:
10628 LoadMnemonic = PPC::LHARX;
10629 StoreMnemonic = PPC::STHCX;
10630 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10631 break;
10632 case PPC::ATOMIC_CMP_SWAP_I32:
10633 LoadMnemonic = PPC::LWARX;
10634 StoreMnemonic = PPC::STWCX;
10635 break;
10636 case PPC::ATOMIC_CMP_SWAP_I64:
10637 LoadMnemonic = PPC::LDARX;
10638 StoreMnemonic = PPC::STDCX;
10639 break;
10641 unsigned dest = MI.getOperand(0).getReg();
10642 unsigned ptrA = MI.getOperand(1).getReg();
10643 unsigned ptrB = MI.getOperand(2).getReg();
10644 unsigned oldval = MI.getOperand(3).getReg();
10645 unsigned newval = MI.getOperand(4).getReg();
10646 DebugLoc dl = MI.getDebugLoc();
10648 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10649 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10650 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10651 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10652 F->insert(It, loop1MBB);
10653 F->insert(It, loop2MBB);
10654 F->insert(It, midMBB);
10655 F->insert(It, exitMBB);
10656 exitMBB->splice(exitMBB->begin(), BB,
10657 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10658 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10660 // thisMBB:
10661 // ...
10662 // fallthrough --> loopMBB
10663 BB->addSuccessor(loop1MBB);
10665 // loop1MBB:
10666 // l[bhwd]arx dest, ptr
10667 // cmp[wd] dest, oldval
10668 // bne- midMBB
10669 // loop2MBB:
10670 // st[bhwd]cx. newval, ptr
10671 // bne- loopMBB
10672 // b exitBB
10673 // midMBB:
10674 // st[bhwd]cx. dest, ptr
10675 // exitBB:
10676 BB = loop1MBB;
10677 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
10678 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10679 .addReg(oldval)
10680 .addReg(dest);
10681 BuildMI(BB, dl, TII->get(PPC::BCC))
10682 .addImm(PPC::PRED_NE)
10683 .addReg(PPC::CR0)
10684 .addMBB(midMBB);
10685 BB->addSuccessor(loop2MBB);
10686 BB->addSuccessor(midMBB);
10688 BB = loop2MBB;
10689 BuildMI(BB, dl, TII->get(StoreMnemonic))
10690 .addReg(newval)
10691 .addReg(ptrA)
10692 .addReg(ptrB);
10693 BuildMI(BB, dl, TII->get(PPC::BCC))
10694 .addImm(PPC::PRED_NE)
10695 .addReg(PPC::CR0)
10696 .addMBB(loop1MBB);
10697 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10698 BB->addSuccessor(loop1MBB);
10699 BB->addSuccessor(exitMBB);
10701 BB = midMBB;
10702 BuildMI(BB, dl, TII->get(StoreMnemonic))
10703 .addReg(dest)
10704 .addReg(ptrA)
10705 .addReg(ptrB);
10706 BB->addSuccessor(exitMBB);
10708 // exitMBB:
10709 // ...
10710 BB = exitMBB;
10711 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
10712 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
10713 // We must use 64-bit registers for addresses when targeting 64-bit,
10714 // since we're actually doing arithmetic on them. Other registers
10715 // can be 32-bit.
10716 bool is64bit = Subtarget.isPPC64();
10717 bool isLittleEndian = Subtarget.isLittleEndian();
10718 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
10720 unsigned dest = MI.getOperand(0).getReg();
10721 unsigned ptrA = MI.getOperand(1).getReg();
10722 unsigned ptrB = MI.getOperand(2).getReg();
10723 unsigned oldval = MI.getOperand(3).getReg();
10724 unsigned newval = MI.getOperand(4).getReg();
10725 DebugLoc dl = MI.getDebugLoc();
10727 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10728 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10729 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10730 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10731 F->insert(It, loop1MBB);
10732 F->insert(It, loop2MBB);
10733 F->insert(It, midMBB);
10734 F->insert(It, exitMBB);
10735 exitMBB->splice(exitMBB->begin(), BB,
10736 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10737 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10739 MachineRegisterInfo &RegInfo = F->getRegInfo();
10740 const TargetRegisterClass *RC =
10741 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10742 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10744 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10745 unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10746 unsigned ShiftReg =
10747 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10748 unsigned NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
10749 unsigned NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
10750 unsigned OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
10751 unsigned OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
10752 unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
10753 unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10754 unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10755 unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10756 unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10757 unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10758 unsigned Ptr1Reg;
10759 unsigned TmpReg = RegInfo.createVirtualRegister(GPRC);
10760 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10761 // thisMBB:
10762 // ...
10763 // fallthrough --> loopMBB
10764 BB->addSuccessor(loop1MBB);
10766 // The 4-byte load must be aligned, while a char or short may be
10767 // anywhere in the word. Hence all this nasty bookkeeping code.
10768 // add ptr1, ptrA, ptrB [copy if ptrA==0]
10769 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10770 // xori shift, shift1, 24 [16]
10771 // rlwinm ptr, ptr1, 0, 0, 29
10772 // slw newval2, newval, shift
10773 // slw oldval2, oldval,shift
10774 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10775 // slw mask, mask2, shift
10776 // and newval3, newval2, mask
10777 // and oldval3, oldval2, mask
10778 // loop1MBB:
10779 // lwarx tmpDest, ptr
10780 // and tmp, tmpDest, mask
10781 // cmpw tmp, oldval3
10782 // bne- midMBB
10783 // loop2MBB:
10784 // andc tmp2, tmpDest, mask
10785 // or tmp4, tmp2, newval3
10786 // stwcx. tmp4, ptr
10787 // bne- loop1MBB
10788 // b exitBB
10789 // midMBB:
10790 // stwcx. tmpDest, ptr
10791 // exitBB:
10792 // srw dest, tmpDest, shift
10793 if (ptrA != ZeroReg) {
10794 Ptr1Reg = RegInfo.createVirtualRegister(RC);
10795 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10796 .addReg(ptrA)
10797 .addReg(ptrB);
10798 } else {
10799 Ptr1Reg = ptrB;
10802 // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10803 // mode.
10804 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10805 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10806 .addImm(3)
10807 .addImm(27)
10808 .addImm(is8bit ? 28 : 27);
10809 if (!isLittleEndian)
10810 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10811 .addReg(Shift1Reg)
10812 .addImm(is8bit ? 24 : 16);
10813 if (is64bit)
10814 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10815 .addReg(Ptr1Reg)
10816 .addImm(0)
10817 .addImm(61);
10818 else
10819 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10820 .addReg(Ptr1Reg)
10821 .addImm(0)
10822 .addImm(0)
10823 .addImm(29);
10824 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
10825 .addReg(newval)
10826 .addReg(ShiftReg);
10827 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
10828 .addReg(oldval)
10829 .addReg(ShiftReg);
10830 if (is8bit)
10831 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10832 else {
10833 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10834 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10835 .addReg(Mask3Reg)
10836 .addImm(65535);
10838 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10839 .addReg(Mask2Reg)
10840 .addReg(ShiftReg);
10841 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
10842 .addReg(NewVal2Reg)
10843 .addReg(MaskReg);
10844 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
10845 .addReg(OldVal2Reg)
10846 .addReg(MaskReg);
10848 BB = loop1MBB;
10849 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10850 .addReg(ZeroReg)
10851 .addReg(PtrReg);
10852 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
10853 .addReg(TmpDestReg)
10854 .addReg(MaskReg);
10855 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
10856 .addReg(TmpReg)
10857 .addReg(OldVal3Reg);
10858 BuildMI(BB, dl, TII->get(PPC::BCC))
10859 .addImm(PPC::PRED_NE)
10860 .addReg(PPC::CR0)
10861 .addMBB(midMBB);
10862 BB->addSuccessor(loop2MBB);
10863 BB->addSuccessor(midMBB);
10865 BB = loop2MBB;
10866 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10867 .addReg(TmpDestReg)
10868 .addReg(MaskReg);
10869 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
10870 .addReg(Tmp2Reg)
10871 .addReg(NewVal3Reg);
10872 BuildMI(BB, dl, TII->get(PPC::STWCX))
10873 .addReg(Tmp4Reg)
10874 .addReg(ZeroReg)
10875 .addReg(PtrReg);
10876 BuildMI(BB, dl, TII->get(PPC::BCC))
10877 .addImm(PPC::PRED_NE)
10878 .addReg(PPC::CR0)
10879 .addMBB(loop1MBB);
10880 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10881 BB->addSuccessor(loop1MBB);
10882 BB->addSuccessor(exitMBB);
10884 BB = midMBB;
10885 BuildMI(BB, dl, TII->get(PPC::STWCX))
10886 .addReg(TmpDestReg)
10887 .addReg(ZeroReg)
10888 .addReg(PtrReg);
10889 BB->addSuccessor(exitMBB);
10891 // exitMBB:
10892 // ...
10893 BB = exitMBB;
10894 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10895 .addReg(TmpReg)
10896 .addReg(ShiftReg);
10897 } else if (MI.getOpcode() == PPC::FADDrtz) {
10898 // This pseudo performs an FADD with rounding mode temporarily forced
10899 // to round-to-zero. We emit this via custom inserter since the FPSCR
10900 // is not modeled at the SelectionDAG level.
10901 unsigned Dest = MI.getOperand(0).getReg();
10902 unsigned Src1 = MI.getOperand(1).getReg();
10903 unsigned Src2 = MI.getOperand(2).getReg();
10904 DebugLoc dl = MI.getDebugLoc();
10906 MachineRegisterInfo &RegInfo = F->getRegInfo();
10907 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
10909 // Save FPSCR value.
10910 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
10912 // Set rounding mode to round-to-zero.
10913 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
10914 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
10916 // Perform addition.
10917 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
10919 // Restore FPSCR value.
10920 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
10921 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10922 MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
10923 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10924 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
10925 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10926 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
10927 ? PPC::ANDIo8
10928 : PPC::ANDIo;
10929 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10930 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
10932 MachineRegisterInfo &RegInfo = F->getRegInfo();
10933 unsigned Dest = RegInfo.createVirtualRegister(
10934 Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
10936 DebugLoc dl = MI.getDebugLoc();
10937 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
10938 .addReg(MI.getOperand(1).getReg())
10939 .addImm(1);
10940 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
10941 MI.getOperand(0).getReg())
10942 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
10943 } else if (MI.getOpcode() == PPC::TCHECK_RET) {
10944 DebugLoc Dl = MI.getDebugLoc();
10945 MachineRegisterInfo &RegInfo = F->getRegInfo();
10946 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10947 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
10948 return BB;
10949 } else {
10950 llvm_unreachable("Unexpected instr type to insert");
10953 MI.eraseFromParent(); // The pseudo instruction is gone now.
10954 return BB;
10957 //===----------------------------------------------------------------------===//
10958 // Target Optimization Hooks
10959 //===----------------------------------------------------------------------===//
10961 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
10962 // For the estimates, convergence is quadratic, so we essentially double the
10963 // number of digits correct after every iteration. For both FRE and FRSQRTE,
10964 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
10965 // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
10966 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
10967 if (VT.getScalarType() == MVT::f64)
10968 RefinementSteps++;
10969 return RefinementSteps;
10972 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
10973 int Enabled, int &RefinementSteps,
10974 bool &UseOneConstNR,
10975 bool Reciprocal) const {
10976 EVT VT = Operand.getValueType();
10977 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
10978 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
10979 (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10980 (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10981 (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10982 (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10983 if (RefinementSteps == ReciprocalEstimate::Unspecified)
10984 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10986 UseOneConstNR = true;
10987 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
10989 return SDValue();
10992 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
10993 int Enabled,
10994 int &RefinementSteps) const {
10995 EVT VT = Operand.getValueType();
10996 if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
10997 (VT == MVT::f64 && Subtarget.hasFRE()) ||
10998 (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10999 (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11000 (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11001 (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11002 if (RefinementSteps == ReciprocalEstimate::Unspecified)
11003 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11004 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
11006 return SDValue();
11009 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
11010 // Note: This functionality is used only when unsafe-fp-math is enabled, and
11011 // on cores with reciprocal estimates (which are used when unsafe-fp-math is
11012 // enabled for division), this functionality is redundant with the default
11013 // combiner logic (once the division -> reciprocal/multiply transformation
11014 // has taken place). As a result, this matters more for older cores than for
11015 // newer ones.
11017 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11018 // reciprocal if there are two or more FDIVs (for embedded cores with only
11019 // one FP pipeline) for three or more FDIVs (for generic OOO cores).
11020 switch (Subtarget.getDarwinDirective()) {
11021 default:
11022 return 3;
11023 case PPC::DIR_440:
11024 case PPC::DIR_A2:
11025 case PPC::DIR_E500:
11026 case PPC::DIR_E500mc:
11027 case PPC::DIR_E5500:
11028 return 2;
11032 // isConsecutiveLSLoc needs to work even if all adds have not yet been
11033 // collapsed, and so we need to look through chains of them.
11034 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
11035 int64_t& Offset, SelectionDAG &DAG) {
11036 if (DAG.isBaseWithConstantOffset(Loc)) {
11037 Base = Loc.getOperand(0);
11038 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
11040 // The base might itself be a base plus an offset, and if so, accumulate
11041 // that as well.
11042 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
11046 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
11047 unsigned Bytes, int Dist,
11048 SelectionDAG &DAG) {
11049 if (VT.getSizeInBits() / 8 != Bytes)
11050 return false;
11052 SDValue BaseLoc = Base->getBasePtr();
11053 if (Loc.getOpcode() == ISD::FrameIndex) {
11054 if (BaseLoc.getOpcode() != ISD::FrameIndex)
11055 return false;
11056 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
11057 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
11058 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
11059 int FS = MFI.getObjectSize(FI);
11060 int BFS = MFI.getObjectSize(BFI);
11061 if (FS != BFS || FS != (int)Bytes) return false;
11062 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
11065 SDValue Base1 = Loc, Base2 = BaseLoc;
11066 int64_t Offset1 = 0, Offset2 = 0;
11067 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
11068 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
11069 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
11070 return true;
11072 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11073 const GlobalValue *GV1 = nullptr;
11074 const GlobalValue *GV2 = nullptr;
11075 Offset1 = 0;
11076 Offset2 = 0;
11077 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
11078 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
11079 if (isGA1 && isGA2 && GV1 == GV2)
11080 return Offset1 == (Offset2 + Dist*Bytes);
11081 return false;
11084 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
11085 // not enforce equality of the chain operands.
11086 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
11087 unsigned Bytes, int Dist,
11088 SelectionDAG &DAG) {
11089 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
11090 EVT VT = LS->getMemoryVT();
11091 SDValue Loc = LS->getBasePtr();
11092 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
11095 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
11096 EVT VT;
11097 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11098 default: return false;
11099 case Intrinsic::ppc_qpx_qvlfd:
11100 case Intrinsic::ppc_qpx_qvlfda:
11101 VT = MVT::v4f64;
11102 break;
11103 case Intrinsic::ppc_qpx_qvlfs:
11104 case Intrinsic::ppc_qpx_qvlfsa:
11105 VT = MVT::v4f32;
11106 break;
11107 case Intrinsic::ppc_qpx_qvlfcd:
11108 case Intrinsic::ppc_qpx_qvlfcda:
11109 VT = MVT::v2f64;
11110 break;
11111 case Intrinsic::ppc_qpx_qvlfcs:
11112 case Intrinsic::ppc_qpx_qvlfcsa:
11113 VT = MVT::v2f32;
11114 break;
11115 case Intrinsic::ppc_qpx_qvlfiwa:
11116 case Intrinsic::ppc_qpx_qvlfiwz:
11117 case Intrinsic::ppc_altivec_lvx:
11118 case Intrinsic::ppc_altivec_lvxl:
11119 case Intrinsic::ppc_vsx_lxvw4x:
11120 case Intrinsic::ppc_vsx_lxvw4x_be:
11121 VT = MVT::v4i32;
11122 break;
11123 case Intrinsic::ppc_vsx_lxvd2x:
11124 case Intrinsic::ppc_vsx_lxvd2x_be:
11125 VT = MVT::v2f64;
11126 break;
11127 case Intrinsic::ppc_altivec_lvebx:
11128 VT = MVT::i8;
11129 break;
11130 case Intrinsic::ppc_altivec_lvehx:
11131 VT = MVT::i16;
11132 break;
11133 case Intrinsic::ppc_altivec_lvewx:
11134 VT = MVT::i32;
11135 break;
11138 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
11141 if (N->getOpcode() == ISD::INTRINSIC_VOID) {
11142 EVT VT;
11143 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11144 default: return false;
11145 case Intrinsic::ppc_qpx_qvstfd:
11146 case Intrinsic::ppc_qpx_qvstfda:
11147 VT = MVT::v4f64;
11148 break;
11149 case Intrinsic::ppc_qpx_qvstfs:
11150 case Intrinsic::ppc_qpx_qvstfsa:
11151 VT = MVT::v4f32;
11152 break;
11153 case Intrinsic::ppc_qpx_qvstfcd:
11154 case Intrinsic::ppc_qpx_qvstfcda:
11155 VT = MVT::v2f64;
11156 break;
11157 case Intrinsic::ppc_qpx_qvstfcs:
11158 case Intrinsic::ppc_qpx_qvstfcsa:
11159 VT = MVT::v2f32;
11160 break;
11161 case Intrinsic::ppc_qpx_qvstfiw:
11162 case Intrinsic::ppc_qpx_qvstfiwa:
11163 case Intrinsic::ppc_altivec_stvx:
11164 case Intrinsic::ppc_altivec_stvxl:
11165 case Intrinsic::ppc_vsx_stxvw4x:
11166 VT = MVT::v4i32;
11167 break;
11168 case Intrinsic::ppc_vsx_stxvd2x:
11169 VT = MVT::v2f64;
11170 break;
11171 case Intrinsic::ppc_vsx_stxvw4x_be:
11172 VT = MVT::v4i32;
11173 break;
11174 case Intrinsic::ppc_vsx_stxvd2x_be:
11175 VT = MVT::v2f64;
11176 break;
11177 case Intrinsic::ppc_altivec_stvebx:
11178 VT = MVT::i8;
11179 break;
11180 case Intrinsic::ppc_altivec_stvehx:
11181 VT = MVT::i16;
11182 break;
11183 case Intrinsic::ppc_altivec_stvewx:
11184 VT = MVT::i32;
11185 break;
11188 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
11191 return false;
11194 // Return true is there is a nearyby consecutive load to the one provided
11195 // (regardless of alignment). We search up and down the chain, looking though
11196 // token factors and other loads (but nothing else). As a result, a true result
11197 // indicates that it is safe to create a new consecutive load adjacent to the
11198 // load provided.
11199 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
11200 SDValue Chain = LD->getChain();
11201 EVT VT = LD->getMemoryVT();
11203 SmallSet<SDNode *, 16> LoadRoots;
11204 SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
11205 SmallSet<SDNode *, 16> Visited;
11207 // First, search up the chain, branching to follow all token-factor operands.
11208 // If we find a consecutive load, then we're done, otherwise, record all
11209 // nodes just above the top-level loads and token factors.
11210 while (!Queue.empty()) {
11211 SDNode *ChainNext = Queue.pop_back_val();
11212 if (!Visited.insert(ChainNext).second)
11213 continue;
11215 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
11216 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11217 return true;
11219 if (!Visited.count(ChainLD->getChain().getNode()))
11220 Queue.push_back(ChainLD->getChain().getNode());
11221 } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
11222 for (const SDUse &O : ChainNext->ops())
11223 if (!Visited.count(O.getNode()))
11224 Queue.push_back(O.getNode());
11225 } else
11226 LoadRoots.insert(ChainNext);
11229 // Second, search down the chain, starting from the top-level nodes recorded
11230 // in the first phase. These top-level nodes are the nodes just above all
11231 // loads and token factors. Starting with their uses, recursively look though
11232 // all loads (just the chain uses) and token factors to find a consecutive
11233 // load.
11234 Visited.clear();
11235 Queue.clear();
11237 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
11238 IE = LoadRoots.end(); I != IE; ++I) {
11239 Queue.push_back(*I);
11241 while (!Queue.empty()) {
11242 SDNode *LoadRoot = Queue.pop_back_val();
11243 if (!Visited.insert(LoadRoot).second)
11244 continue;
11246 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
11247 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11248 return true;
11250 for (SDNode::use_iterator UI = LoadRoot->use_begin(),
11251 UE = LoadRoot->use_end(); UI != UE; ++UI)
11252 if (((isa<MemSDNode>(*UI) &&
11253 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
11254 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
11255 Queue.push_back(*UI);
11259 return false;
11262 /// This function is called when we have proved that a SETCC node can be replaced
11263 /// by subtraction (and other supporting instructions) so that the result of
11264 /// comparison is kept in a GPR instead of CR. This function is purely for
11265 /// codegen purposes and has some flags to guide the codegen process.
11266 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
11267 bool Swap, SDLoc &DL, SelectionDAG &DAG) {
11268 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11270 // Zero extend the operands to the largest legal integer. Originally, they
11271 // must be of a strictly smaller size.
11272 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
11273 DAG.getConstant(Size, DL, MVT::i32));
11274 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
11275 DAG.getConstant(Size, DL, MVT::i32));
11277 // Swap if needed. Depends on the condition code.
11278 if (Swap)
11279 std::swap(Op0, Op1);
11281 // Subtract extended integers.
11282 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
11284 // Move the sign bit to the least significant position and zero out the rest.
11285 // Now the least significant bit carries the result of original comparison.
11286 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
11287 DAG.getConstant(Size - 1, DL, MVT::i32));
11288 auto Final = Shifted;
11290 // Complement the result if needed. Based on the condition code.
11291 if (Complement)
11292 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
11293 DAG.getConstant(1, DL, MVT::i64));
11295 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
11298 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
11299 DAGCombinerInfo &DCI) const {
11300 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11302 SelectionDAG &DAG = DCI.DAG;
11303 SDLoc DL(N);
11305 // Size of integers being compared has a critical role in the following
11306 // analysis, so we prefer to do this when all types are legal.
11307 if (!DCI.isAfterLegalizeDAG())
11308 return SDValue();
11310 // If all users of SETCC extend its value to a legal integer type
11311 // then we replace SETCC with a subtraction
11312 for (SDNode::use_iterator UI = N->use_begin(),
11313 UE = N->use_end(); UI != UE; ++UI) {
11314 if (UI->getOpcode() != ISD::ZERO_EXTEND)
11315 return SDValue();
11318 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11319 auto OpSize = N->getOperand(0).getValueSizeInBits();
11321 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
11323 if (OpSize < Size) {
11324 switch (CC) {
11325 default: break;
11326 case ISD::SETULT:
11327 return generateEquivalentSub(N, Size, false, false, DL, DAG);
11328 case ISD::SETULE:
11329 return generateEquivalentSub(N, Size, true, true, DL, DAG);
11330 case ISD::SETUGT:
11331 return generateEquivalentSub(N, Size, false, true, DL, DAG);
11332 case ISD::SETUGE:
11333 return generateEquivalentSub(N, Size, true, false, DL, DAG);
11337 return SDValue();
11340 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
11341 DAGCombinerInfo &DCI) const {
11342 SelectionDAG &DAG = DCI.DAG;
11343 SDLoc dl(N);
11345 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
11346 // If we're tracking CR bits, we need to be careful that we don't have:
11347 // trunc(binary-ops(zext(x), zext(y)))
11348 // or
11349 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11350 // such that we're unnecessarily moving things into GPRs when it would be
11351 // better to keep them in CR bits.
11353 // Note that trunc here can be an actual i1 trunc, or can be the effective
11354 // truncation that comes from a setcc or select_cc.
11355 if (N->getOpcode() == ISD::TRUNCATE &&
11356 N->getValueType(0) != MVT::i1)
11357 return SDValue();
11359 if (N->getOperand(0).getValueType() != MVT::i32 &&
11360 N->getOperand(0).getValueType() != MVT::i64)
11361 return SDValue();
11363 if (N->getOpcode() == ISD::SETCC ||
11364 N->getOpcode() == ISD::SELECT_CC) {
11365 // If we're looking at a comparison, then we need to make sure that the
11366 // high bits (all except for the first) don't matter the result.
11367 ISD::CondCode CC =
11368 cast<CondCodeSDNode>(N->getOperand(
11369 N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
11370 unsigned OpBits = N->getOperand(0).getValueSizeInBits();
11372 if (ISD::isSignedIntSetCC(CC)) {
11373 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
11374 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
11375 return SDValue();
11376 } else if (ISD::isUnsignedIntSetCC(CC)) {
11377 if (!DAG.MaskedValueIsZero(N->getOperand(0),
11378 APInt::getHighBitsSet(OpBits, OpBits-1)) ||
11379 !DAG.MaskedValueIsZero(N->getOperand(1),
11380 APInt::getHighBitsSet(OpBits, OpBits-1)))
11381 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
11382 : SDValue());
11383 } else {
11384 // This is neither a signed nor an unsigned comparison, just make sure
11385 // that the high bits are equal.
11386 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
11387 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
11389 // We don't really care about what is known about the first bit (if
11390 // anything), so clear it in all masks prior to comparing them.
11391 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
11392 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
11394 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
11395 return SDValue();
11399 // We now know that the higher-order bits are irrelevant, we just need to
11400 // make sure that all of the intermediate operations are bit operations, and
11401 // all inputs are extensions.
11402 if (N->getOperand(0).getOpcode() != ISD::AND &&
11403 N->getOperand(0).getOpcode() != ISD::OR &&
11404 N->getOperand(0).getOpcode() != ISD::XOR &&
11405 N->getOperand(0).getOpcode() != ISD::SELECT &&
11406 N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
11407 N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
11408 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
11409 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
11410 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
11411 return SDValue();
11413 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
11414 N->getOperand(1).getOpcode() != ISD::AND &&
11415 N->getOperand(1).getOpcode() != ISD::OR &&
11416 N->getOperand(1).getOpcode() != ISD::XOR &&
11417 N->getOperand(1).getOpcode() != ISD::SELECT &&
11418 N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11419 N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11420 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11421 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11422 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11423 return SDValue();
11425 SmallVector<SDValue, 4> Inputs;
11426 SmallVector<SDValue, 8> BinOps, PromOps;
11427 SmallPtrSet<SDNode *, 16> Visited;
11429 for (unsigned i = 0; i < 2; ++i) {
11430 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11431 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11432 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11433 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11434 isa<ConstantSDNode>(N->getOperand(i)))
11435 Inputs.push_back(N->getOperand(i));
11436 else
11437 BinOps.push_back(N->getOperand(i));
11439 if (N->getOpcode() == ISD::TRUNCATE)
11440 break;
11443 // Visit all inputs, collect all binary operations (and, or, xor and
11444 // select) that are all fed by extensions.
11445 while (!BinOps.empty()) {
11446 SDValue BinOp = BinOps.back();
11447 BinOps.pop_back();
11449 if (!Visited.insert(BinOp.getNode()).second)
11450 continue;
11452 PromOps.push_back(BinOp);
11454 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11455 // The condition of the select is not promoted.
11456 if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11457 continue;
11458 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11459 continue;
11461 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11462 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11463 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11464 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11465 isa<ConstantSDNode>(BinOp.getOperand(i))) {
11466 Inputs.push_back(BinOp.getOperand(i));
11467 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11468 BinOp.getOperand(i).getOpcode() == ISD::OR ||
11469 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11470 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11471 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11472 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11473 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11474 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11475 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11476 BinOps.push_back(BinOp.getOperand(i));
11477 } else {
11478 // We have an input that is not an extension or another binary
11479 // operation; we'll abort this transformation.
11480 return SDValue();
11485 // Make sure that this is a self-contained cluster of operations (which
11486 // is not quite the same thing as saying that everything has only one
11487 // use).
11488 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11489 if (isa<ConstantSDNode>(Inputs[i]))
11490 continue;
11492 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11493 UE = Inputs[i].getNode()->use_end();
11494 UI != UE; ++UI) {
11495 SDNode *User = *UI;
11496 if (User != N && !Visited.count(User))
11497 return SDValue();
11499 // Make sure that we're not going to promote the non-output-value
11500 // operand(s) or SELECT or SELECT_CC.
11501 // FIXME: Although we could sometimes handle this, and it does occur in
11502 // practice that one of the condition inputs to the select is also one of
11503 // the outputs, we currently can't deal with this.
11504 if (User->getOpcode() == ISD::SELECT) {
11505 if (User->getOperand(0) == Inputs[i])
11506 return SDValue();
11507 } else if (User->getOpcode() == ISD::SELECT_CC) {
11508 if (User->getOperand(0) == Inputs[i] ||
11509 User->getOperand(1) == Inputs[i])
11510 return SDValue();
11515 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11516 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11517 UE = PromOps[i].getNode()->use_end();
11518 UI != UE; ++UI) {
11519 SDNode *User = *UI;
11520 if (User != N && !Visited.count(User))
11521 return SDValue();
11523 // Make sure that we're not going to promote the non-output-value
11524 // operand(s) or SELECT or SELECT_CC.
11525 // FIXME: Although we could sometimes handle this, and it does occur in
11526 // practice that one of the condition inputs to the select is also one of
11527 // the outputs, we currently can't deal with this.
11528 if (User->getOpcode() == ISD::SELECT) {
11529 if (User->getOperand(0) == PromOps[i])
11530 return SDValue();
11531 } else if (User->getOpcode() == ISD::SELECT_CC) {
11532 if (User->getOperand(0) == PromOps[i] ||
11533 User->getOperand(1) == PromOps[i])
11534 return SDValue();
11539 // Replace all inputs with the extension operand.
11540 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11541 // Constants may have users outside the cluster of to-be-promoted nodes,
11542 // and so we need to replace those as we do the promotions.
11543 if (isa<ConstantSDNode>(Inputs[i]))
11544 continue;
11545 else
11546 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
11549 std::list<HandleSDNode> PromOpHandles;
11550 for (auto &PromOp : PromOps)
11551 PromOpHandles.emplace_back(PromOp);
11553 // Replace all operations (these are all the same, but have a different
11554 // (i1) return type). DAG.getNode will validate that the types of
11555 // a binary operator match, so go through the list in reverse so that
11556 // we've likely promoted both operands first. Any intermediate truncations or
11557 // extensions disappear.
11558 while (!PromOpHandles.empty()) {
11559 SDValue PromOp = PromOpHandles.back().getValue();
11560 PromOpHandles.pop_back();
11562 if (PromOp.getOpcode() == ISD::TRUNCATE ||
11563 PromOp.getOpcode() == ISD::SIGN_EXTEND ||
11564 PromOp.getOpcode() == ISD::ZERO_EXTEND ||
11565 PromOp.getOpcode() == ISD::ANY_EXTEND) {
11566 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
11567 PromOp.getOperand(0).getValueType() != MVT::i1) {
11568 // The operand is not yet ready (see comment below).
11569 PromOpHandles.emplace_front(PromOp);
11570 continue;
11573 SDValue RepValue = PromOp.getOperand(0);
11574 if (isa<ConstantSDNode>(RepValue))
11575 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
11577 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
11578 continue;
11581 unsigned C;
11582 switch (PromOp.getOpcode()) {
11583 default: C = 0; break;
11584 case ISD::SELECT: C = 1; break;
11585 case ISD::SELECT_CC: C = 2; break;
11588 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11589 PromOp.getOperand(C).getValueType() != MVT::i1) ||
11590 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11591 PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
11592 // The to-be-promoted operands of this node have not yet been
11593 // promoted (this should be rare because we're going through the
11594 // list backward, but if one of the operands has several users in
11595 // this cluster of to-be-promoted nodes, it is possible).
11596 PromOpHandles.emplace_front(PromOp);
11597 continue;
11600 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11601 PromOp.getNode()->op_end());
11603 // If there are any constant inputs, make sure they're replaced now.
11604 for (unsigned i = 0; i < 2; ++i)
11605 if (isa<ConstantSDNode>(Ops[C+i]))
11606 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
11608 DAG.ReplaceAllUsesOfValueWith(PromOp,
11609 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
11612 // Now we're left with the initial truncation itself.
11613 if (N->getOpcode() == ISD::TRUNCATE)
11614 return N->getOperand(0);
11616 // Otherwise, this is a comparison. The operands to be compared have just
11617 // changed type (to i1), but everything else is the same.
11618 return SDValue(N, 0);
11621 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
11622 DAGCombinerInfo &DCI) const {
11623 SelectionDAG &DAG = DCI.DAG;
11624 SDLoc dl(N);
11626 // If we're tracking CR bits, we need to be careful that we don't have:
11627 // zext(binary-ops(trunc(x), trunc(y)))
11628 // or
11629 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
11630 // such that we're unnecessarily moving things into CR bits that can more
11631 // efficiently stay in GPRs. Note that if we're not certain that the high
11632 // bits are set as required by the final extension, we still may need to do
11633 // some masking to get the proper behavior.
11635 // This same functionality is important on PPC64 when dealing with
11636 // 32-to-64-bit extensions; these occur often when 32-bit values are used as
11637 // the return values of functions. Because it is so similar, it is handled
11638 // here as well.
11640 if (N->getValueType(0) != MVT::i32 &&
11641 N->getValueType(0) != MVT::i64)
11642 return SDValue();
11644 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
11645 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
11646 return SDValue();
11648 if (N->getOperand(0).getOpcode() != ISD::AND &&
11649 N->getOperand(0).getOpcode() != ISD::OR &&
11650 N->getOperand(0).getOpcode() != ISD::XOR &&
11651 N->getOperand(0).getOpcode() != ISD::SELECT &&
11652 N->getOperand(0).getOpcode() != ISD::SELECT_CC)
11653 return SDValue();
11655 SmallVector<SDValue, 4> Inputs;
11656 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
11657 SmallPtrSet<SDNode *, 16> Visited;
11659 // Visit all inputs, collect all binary operations (and, or, xor and
11660 // select) that are all fed by truncations.
11661 while (!BinOps.empty()) {
11662 SDValue BinOp = BinOps.back();
11663 BinOps.pop_back();
11665 if (!Visited.insert(BinOp.getNode()).second)
11666 continue;
11668 PromOps.push_back(BinOp);
11670 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11671 // The condition of the select is not promoted.
11672 if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11673 continue;
11674 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11675 continue;
11677 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11678 isa<ConstantSDNode>(BinOp.getOperand(i))) {
11679 Inputs.push_back(BinOp.getOperand(i));
11680 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11681 BinOp.getOperand(i).getOpcode() == ISD::OR ||
11682 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11683 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11684 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
11685 BinOps.push_back(BinOp.getOperand(i));
11686 } else {
11687 // We have an input that is not a truncation or another binary
11688 // operation; we'll abort this transformation.
11689 return SDValue();
11694 // The operands of a select that must be truncated when the select is
11695 // promoted because the operand is actually part of the to-be-promoted set.
11696 DenseMap<SDNode *, EVT> SelectTruncOp[2];
11698 // Make sure that this is a self-contained cluster of operations (which
11699 // is not quite the same thing as saying that everything has only one
11700 // use).
11701 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11702 if (isa<ConstantSDNode>(Inputs[i]))
11703 continue;
11705 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11706 UE = Inputs[i].getNode()->use_end();
11707 UI != UE; ++UI) {
11708 SDNode *User = *UI;
11709 if (User != N && !Visited.count(User))
11710 return SDValue();
11712 // If we're going to promote the non-output-value operand(s) or SELECT or
11713 // SELECT_CC, record them for truncation.
11714 if (User->getOpcode() == ISD::SELECT) {
11715 if (User->getOperand(0) == Inputs[i])
11716 SelectTruncOp[0].insert(std::make_pair(User,
11717 User->getOperand(0).getValueType()));
11718 } else if (User->getOpcode() == ISD::SELECT_CC) {
11719 if (User->getOperand(0) == Inputs[i])
11720 SelectTruncOp[0].insert(std::make_pair(User,
11721 User->getOperand(0).getValueType()));
11722 if (User->getOperand(1) == Inputs[i])
11723 SelectTruncOp[1].insert(std::make_pair(User,
11724 User->getOperand(1).getValueType()));
11729 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11730 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11731 UE = PromOps[i].getNode()->use_end();
11732 UI != UE; ++UI) {
11733 SDNode *User = *UI;
11734 if (User != N && !Visited.count(User))
11735 return SDValue();
11737 // If we're going to promote the non-output-value operand(s) or SELECT or
11738 // SELECT_CC, record them for truncation.
11739 if (User->getOpcode() == ISD::SELECT) {
11740 if (User->getOperand(0) == PromOps[i])
11741 SelectTruncOp[0].insert(std::make_pair(User,
11742 User->getOperand(0).getValueType()));
11743 } else if (User->getOpcode() == ISD::SELECT_CC) {
11744 if (User->getOperand(0) == PromOps[i])
11745 SelectTruncOp[0].insert(std::make_pair(User,
11746 User->getOperand(0).getValueType()));
11747 if (User->getOperand(1) == PromOps[i])
11748 SelectTruncOp[1].insert(std::make_pair(User,
11749 User->getOperand(1).getValueType()));
11754 unsigned PromBits = N->getOperand(0).getValueSizeInBits();
11755 bool ReallyNeedsExt = false;
11756 if (N->getOpcode() != ISD::ANY_EXTEND) {
11757 // If all of the inputs are not already sign/zero extended, then
11758 // we'll still need to do that at the end.
11759 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11760 if (isa<ConstantSDNode>(Inputs[i]))
11761 continue;
11763 unsigned OpBits =
11764 Inputs[i].getOperand(0).getValueSizeInBits();
11765 assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
11767 if ((N->getOpcode() == ISD::ZERO_EXTEND &&
11768 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
11769 APInt::getHighBitsSet(OpBits,
11770 OpBits-PromBits))) ||
11771 (N->getOpcode() == ISD::SIGN_EXTEND &&
11772 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
11773 (OpBits-(PromBits-1)))) {
11774 ReallyNeedsExt = true;
11775 break;
11780 // Replace all inputs, either with the truncation operand, or a
11781 // truncation or extension to the final output type.
11782 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11783 // Constant inputs need to be replaced with the to-be-promoted nodes that
11784 // use them because they might have users outside of the cluster of
11785 // promoted nodes.
11786 if (isa<ConstantSDNode>(Inputs[i]))
11787 continue;
11789 SDValue InSrc = Inputs[i].getOperand(0);
11790 if (Inputs[i].getValueType() == N->getValueType(0))
11791 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
11792 else if (N->getOpcode() == ISD::SIGN_EXTEND)
11793 DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11794 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
11795 else if (N->getOpcode() == ISD::ZERO_EXTEND)
11796 DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11797 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
11798 else
11799 DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11800 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
11803 std::list<HandleSDNode> PromOpHandles;
11804 for (auto &PromOp : PromOps)
11805 PromOpHandles.emplace_back(PromOp);
11807 // Replace all operations (these are all the same, but have a different
11808 // (promoted) return type). DAG.getNode will validate that the types of
11809 // a binary operator match, so go through the list in reverse so that
11810 // we've likely promoted both operands first.
11811 while (!PromOpHandles.empty()) {
11812 SDValue PromOp = PromOpHandles.back().getValue();
11813 PromOpHandles.pop_back();
11815 unsigned C;
11816 switch (PromOp.getOpcode()) {
11817 default: C = 0; break;
11818 case ISD::SELECT: C = 1; break;
11819 case ISD::SELECT_CC: C = 2; break;
11822 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11823 PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
11824 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11825 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
11826 // The to-be-promoted operands of this node have not yet been
11827 // promoted (this should be rare because we're going through the
11828 // list backward, but if one of the operands has several users in
11829 // this cluster of to-be-promoted nodes, it is possible).
11830 PromOpHandles.emplace_front(PromOp);
11831 continue;
11834 // For SELECT and SELECT_CC nodes, we do a similar check for any
11835 // to-be-promoted comparison inputs.
11836 if (PromOp.getOpcode() == ISD::SELECT ||
11837 PromOp.getOpcode() == ISD::SELECT_CC) {
11838 if ((SelectTruncOp[0].count(PromOp.getNode()) &&
11839 PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
11840 (SelectTruncOp[1].count(PromOp.getNode()) &&
11841 PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
11842 PromOpHandles.emplace_front(PromOp);
11843 continue;
11847 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11848 PromOp.getNode()->op_end());
11850 // If this node has constant inputs, then they'll need to be promoted here.
11851 for (unsigned i = 0; i < 2; ++i) {
11852 if (!isa<ConstantSDNode>(Ops[C+i]))
11853 continue;
11854 if (Ops[C+i].getValueType() == N->getValueType(0))
11855 continue;
11857 if (N->getOpcode() == ISD::SIGN_EXTEND)
11858 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11859 else if (N->getOpcode() == ISD::ZERO_EXTEND)
11860 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11861 else
11862 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11865 // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
11866 // truncate them again to the original value type.
11867 if (PromOp.getOpcode() == ISD::SELECT ||
11868 PromOp.getOpcode() == ISD::SELECT_CC) {
11869 auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
11870 if (SI0 != SelectTruncOp[0].end())
11871 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
11872 auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
11873 if (SI1 != SelectTruncOp[1].end())
11874 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
11877 DAG.ReplaceAllUsesOfValueWith(PromOp,
11878 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
11881 // Now we're left with the initial extension itself.
11882 if (!ReallyNeedsExt)
11883 return N->getOperand(0);
11885 // To zero extend, just mask off everything except for the first bit (in the
11886 // i1 case).
11887 if (N->getOpcode() == ISD::ZERO_EXTEND)
11888 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
11889 DAG.getConstant(APInt::getLowBitsSet(
11890 N->getValueSizeInBits(0), PromBits),
11891 dl, N->getValueType(0)));
11893 assert(N->getOpcode() == ISD::SIGN_EXTEND &&
11894 "Invalid extension type");
11895 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
11896 SDValue ShiftCst =
11897 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
11898 return DAG.getNode(
11899 ISD::SRA, dl, N->getValueType(0),
11900 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
11901 ShiftCst);
11904 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
11905 DAGCombinerInfo &DCI) const {
11906 assert(N->getOpcode() == ISD::SETCC &&
11907 "Should be called with a SETCC node");
11909 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11910 if (CC == ISD::SETNE || CC == ISD::SETEQ) {
11911 SDValue LHS = N->getOperand(0);
11912 SDValue RHS = N->getOperand(1);
11914 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
11915 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
11916 LHS.hasOneUse())
11917 std::swap(LHS, RHS);
11919 // x == 0-y --> x+y == 0
11920 // x != 0-y --> x+y != 0
11921 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
11922 RHS.hasOneUse()) {
11923 SDLoc DL(N);
11924 SelectionDAG &DAG = DCI.DAG;
11925 EVT VT = N->getValueType(0);
11926 EVT OpVT = LHS.getValueType();
11927 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
11928 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
11932 return DAGCombineTruncBoolExt(N, DCI);
11935 // Is this an extending load from an f32 to an f64?
11936 static bool isFPExtLoad(SDValue Op) {
11937 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
11938 return LD->getExtensionType() == ISD::EXTLOAD &&
11939 Op.getValueType() == MVT::f64;
11940 return false;
11943 /// Reduces the number of fp-to-int conversion when building a vector.
11945 /// If this vector is built out of floating to integer conversions,
11946 /// transform it to a vector built out of floating point values followed by a
11947 /// single floating to integer conversion of the vector.
11948 /// Namely (build_vector (fptosi $A), (fptosi $B), ...)
11949 /// becomes (fptosi (build_vector ($A, $B, ...)))
11950 SDValue PPCTargetLowering::
11951 combineElementTruncationToVectorTruncation(SDNode *N,
11952 DAGCombinerInfo &DCI) const {
11953 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11954 "Should be called with a BUILD_VECTOR node");
11956 SelectionDAG &DAG = DCI.DAG;
11957 SDLoc dl(N);
11959 SDValue FirstInput = N->getOperand(0);
11960 assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
11961 "The input operand must be an fp-to-int conversion.");
11963 // This combine happens after legalization so the fp_to_[su]i nodes are
11964 // already converted to PPCSISD nodes.
11965 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
11966 if (FirstConversion == PPCISD::FCTIDZ ||
11967 FirstConversion == PPCISD::FCTIDUZ ||
11968 FirstConversion == PPCISD::FCTIWZ ||
11969 FirstConversion == PPCISD::FCTIWUZ) {
11970 bool IsSplat = true;
11971 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
11972 FirstConversion == PPCISD::FCTIWUZ;
11973 EVT SrcVT = FirstInput.getOperand(0).getValueType();
11974 SmallVector<SDValue, 4> Ops;
11975 EVT TargetVT = N->getValueType(0);
11976 for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11977 SDValue NextOp = N->getOperand(i);
11978 if (NextOp.getOpcode() != PPCISD::MFVSR)
11979 return SDValue();
11980 unsigned NextConversion = NextOp.getOperand(0).getOpcode();
11981 if (NextConversion != FirstConversion)
11982 return SDValue();
11983 // If we are converting to 32-bit integers, we need to add an FP_ROUND.
11984 // This is not valid if the input was originally double precision. It is
11985 // also not profitable to do unless this is an extending load in which
11986 // case doing this combine will allow us to combine consecutive loads.
11987 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
11988 return SDValue();
11989 if (N->getOperand(i) != FirstInput)
11990 IsSplat = false;
11993 // If this is a splat, we leave it as-is since there will be only a single
11994 // fp-to-int conversion followed by a splat of the integer. This is better
11995 // for 32-bit and smaller ints and neutral for 64-bit ints.
11996 if (IsSplat)
11997 return SDValue();
11999 // Now that we know we have the right type of node, get its operands
12000 for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12001 SDValue In = N->getOperand(i).getOperand(0);
12002 if (Is32Bit) {
12003 // For 32-bit values, we need to add an FP_ROUND node (if we made it
12004 // here, we know that all inputs are extending loads so this is safe).
12005 if (In.isUndef())
12006 Ops.push_back(DAG.getUNDEF(SrcVT));
12007 else {
12008 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
12009 MVT::f32, In.getOperand(0),
12010 DAG.getIntPtrConstant(1, dl));
12011 Ops.push_back(Trunc);
12013 } else
12014 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
12017 unsigned Opcode;
12018 if (FirstConversion == PPCISD::FCTIDZ ||
12019 FirstConversion == PPCISD::FCTIWZ)
12020 Opcode = ISD::FP_TO_SINT;
12021 else
12022 Opcode = ISD::FP_TO_UINT;
12024 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
12025 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
12026 return DAG.getNode(Opcode, dl, TargetVT, BV);
12028 return SDValue();
12031 /// Reduce the number of loads when building a vector.
12033 /// Building a vector out of multiple loads can be converted to a load
12034 /// of the vector type if the loads are consecutive. If the loads are
12035 /// consecutive but in descending order, a shuffle is added at the end
12036 /// to reorder the vector.
12037 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
12038 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12039 "Should be called with a BUILD_VECTOR node");
12041 SDLoc dl(N);
12042 bool InputsAreConsecutiveLoads = true;
12043 bool InputsAreReverseConsecutive = true;
12044 unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
12045 SDValue FirstInput = N->getOperand(0);
12046 bool IsRoundOfExtLoad = false;
12048 if (FirstInput.getOpcode() == ISD::FP_ROUND &&
12049 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
12050 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
12051 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
12053 // Not a build vector of (possibly fp_rounded) loads.
12054 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
12055 N->getNumOperands() == 1)
12056 return SDValue();
12058 for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
12059 // If any inputs are fp_round(extload), they all must be.
12060 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
12061 return SDValue();
12063 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
12064 N->getOperand(i);
12065 if (NextInput.getOpcode() != ISD::LOAD)
12066 return SDValue();
12068 SDValue PreviousInput =
12069 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
12070 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
12071 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
12073 // If any inputs are fp_round(extload), they all must be.
12074 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
12075 return SDValue();
12077 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
12078 InputsAreConsecutiveLoads = false;
12079 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
12080 InputsAreReverseConsecutive = false;
12082 // Exit early if the loads are neither consecutive nor reverse consecutive.
12083 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
12084 return SDValue();
12087 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
12088 "The loads cannot be both consecutive and reverse consecutive.");
12090 SDValue FirstLoadOp =
12091 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
12092 SDValue LastLoadOp =
12093 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
12094 N->getOperand(N->getNumOperands()-1);
12096 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
12097 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
12098 if (InputsAreConsecutiveLoads) {
12099 assert(LD1 && "Input needs to be a LoadSDNode.");
12100 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
12101 LD1->getBasePtr(), LD1->getPointerInfo(),
12102 LD1->getAlignment());
12104 if (InputsAreReverseConsecutive) {
12105 assert(LDL && "Input needs to be a LoadSDNode.");
12106 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
12107 LDL->getBasePtr(), LDL->getPointerInfo(),
12108 LDL->getAlignment());
12109 SmallVector<int, 16> Ops;
12110 for (int i = N->getNumOperands() - 1; i >= 0; i--)
12111 Ops.push_back(i);
12113 return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
12114 DAG.getUNDEF(N->getValueType(0)), Ops);
12116 return SDValue();
12119 // This function adds the required vector_shuffle needed to get
12120 // the elements of the vector extract in the correct position
12121 // as specified by the CorrectElems encoding.
12122 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
12123 SDValue Input, uint64_t Elems,
12124 uint64_t CorrectElems) {
12125 SDLoc dl(N);
12127 unsigned NumElems = Input.getValueType().getVectorNumElements();
12128 SmallVector<int, 16> ShuffleMask(NumElems, -1);
12130 // Knowing the element indices being extracted from the original
12131 // vector and the order in which they're being inserted, just put
12132 // them at element indices required for the instruction.
12133 for (unsigned i = 0; i < N->getNumOperands(); i++) {
12134 if (DAG.getDataLayout().isLittleEndian())
12135 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
12136 else
12137 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
12138 CorrectElems = CorrectElems >> 8;
12139 Elems = Elems >> 8;
12142 SDValue Shuffle =
12143 DAG.getVectorShuffle(Input.getValueType(), dl, Input,
12144 DAG.getUNDEF(Input.getValueType()), ShuffleMask);
12146 EVT Ty = N->getValueType(0);
12147 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
12148 return BV;
12151 // Look for build vector patterns where input operands come from sign
12152 // extended vector_extract elements of specific indices. If the correct indices
12153 // aren't used, add a vector shuffle to fix up the indices and create a new
12154 // PPCISD:SExtVElems node which selects the vector sign extend instructions
12155 // during instruction selection.
12156 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
12157 // This array encodes the indices that the vector sign extend instructions
12158 // extract from when extending from one type to another for both BE and LE.
12159 // The right nibble of each byte corresponds to the LE incides.
12160 // and the left nibble of each byte corresponds to the BE incides.
12161 // For example: 0x3074B8FC byte->word
12162 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
12163 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
12164 // For example: 0x000070F8 byte->double word
12165 // For LE: the allowed indices are: 0x0,0x8
12166 // For BE: the allowed indices are: 0x7,0xF
12167 uint64_t TargetElems[] = {
12168 0x3074B8FC, // b->w
12169 0x000070F8, // b->d
12170 0x10325476, // h->w
12171 0x00003074, // h->d
12172 0x00001032, // w->d
12175 uint64_t Elems = 0;
12176 int Index;
12177 SDValue Input;
12179 auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
12180 if (!Op)
12181 return false;
12182 if (Op.getOpcode() != ISD::SIGN_EXTEND &&
12183 Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
12184 return false;
12186 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
12187 // of the right width.
12188 SDValue Extract = Op.getOperand(0);
12189 if (Extract.getOpcode() == ISD::ANY_EXTEND)
12190 Extract = Extract.getOperand(0);
12191 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12192 return false;
12194 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
12195 if (!ExtOp)
12196 return false;
12198 Index = ExtOp->getZExtValue();
12199 if (Input && Input != Extract.getOperand(0))
12200 return false;
12202 if (!Input)
12203 Input = Extract.getOperand(0);
12205 Elems = Elems << 8;
12206 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
12207 Elems |= Index;
12209 return true;
12212 // If the build vector operands aren't sign extended vector extracts,
12213 // of the same input vector, then return.
12214 for (unsigned i = 0; i < N->getNumOperands(); i++) {
12215 if (!isSExtOfVecExtract(N->getOperand(i))) {
12216 return SDValue();
12220 // If the vector extract indicies are not correct, add the appropriate
12221 // vector_shuffle.
12222 int TgtElemArrayIdx;
12223 int InputSize = Input.getValueType().getScalarSizeInBits();
12224 int OutputSize = N->getValueType(0).getScalarSizeInBits();
12225 if (InputSize + OutputSize == 40)
12226 TgtElemArrayIdx = 0;
12227 else if (InputSize + OutputSize == 72)
12228 TgtElemArrayIdx = 1;
12229 else if (InputSize + OutputSize == 48)
12230 TgtElemArrayIdx = 2;
12231 else if (InputSize + OutputSize == 80)
12232 TgtElemArrayIdx = 3;
12233 else if (InputSize + OutputSize == 96)
12234 TgtElemArrayIdx = 4;
12235 else
12236 return SDValue();
12238 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
12239 CorrectElems = DAG.getDataLayout().isLittleEndian()
12240 ? CorrectElems & 0x0F0F0F0F0F0F0F0F
12241 : CorrectElems & 0xF0F0F0F0F0F0F0F0;
12242 if (Elems != CorrectElems) {
12243 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
12246 // Regular lowering will catch cases where a shuffle is not needed.
12247 return SDValue();
12250 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
12251 DAGCombinerInfo &DCI) const {
12252 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12253 "Should be called with a BUILD_VECTOR node");
12255 SelectionDAG &DAG = DCI.DAG;
12256 SDLoc dl(N);
12258 if (!Subtarget.hasVSX())
12259 return SDValue();
12261 // The target independent DAG combiner will leave a build_vector of
12262 // float-to-int conversions intact. We can generate MUCH better code for
12263 // a float-to-int conversion of a vector of floats.
12264 SDValue FirstInput = N->getOperand(0);
12265 if (FirstInput.getOpcode() == PPCISD::MFVSR) {
12266 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
12267 if (Reduced)
12268 return Reduced;
12271 // If we're building a vector out of consecutive loads, just load that
12272 // vector type.
12273 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
12274 if (Reduced)
12275 return Reduced;
12277 // If we're building a vector out of extended elements from another vector
12278 // we have P9 vector integer extend instructions. The code assumes legal
12279 // input types (i.e. it can't handle things like v4i16) so do not run before
12280 // legalization.
12281 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
12282 Reduced = combineBVOfVecSExt(N, DAG);
12283 if (Reduced)
12284 return Reduced;
12288 if (N->getValueType(0) != MVT::v2f64)
12289 return SDValue();
12291 // Looking for:
12292 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
12293 if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
12294 FirstInput.getOpcode() != ISD::UINT_TO_FP)
12295 return SDValue();
12296 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
12297 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
12298 return SDValue();
12299 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
12300 return SDValue();
12302 SDValue Ext1 = FirstInput.getOperand(0);
12303 SDValue Ext2 = N->getOperand(1).getOperand(0);
12304 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12305 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12306 return SDValue();
12308 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
12309 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
12310 if (!Ext1Op || !Ext2Op)
12311 return SDValue();
12312 if (Ext1.getValueType() != MVT::i32 ||
12313 Ext2.getValueType() != MVT::i32)
12314 if (Ext1.getOperand(0) != Ext2.getOperand(0))
12315 return SDValue();
12317 int FirstElem = Ext1Op->getZExtValue();
12318 int SecondElem = Ext2Op->getZExtValue();
12319 int SubvecIdx;
12320 if (FirstElem == 0 && SecondElem == 1)
12321 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
12322 else if (FirstElem == 2 && SecondElem == 3)
12323 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
12324 else
12325 return SDValue();
12327 SDValue SrcVec = Ext1.getOperand(0);
12328 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
12329 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
12330 return DAG.getNode(NodeType, dl, MVT::v2f64,
12331 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
12334 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
12335 DAGCombinerInfo &DCI) const {
12336 assert((N->getOpcode() == ISD::SINT_TO_FP ||
12337 N->getOpcode() == ISD::UINT_TO_FP) &&
12338 "Need an int -> FP conversion node here");
12340 if (useSoftFloat() || !Subtarget.has64BitSupport())
12341 return SDValue();
12343 SelectionDAG &DAG = DCI.DAG;
12344 SDLoc dl(N);
12345 SDValue Op(N, 0);
12347 // Don't handle ppc_fp128 here or conversions that are out-of-range capable
12348 // from the hardware.
12349 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
12350 return SDValue();
12351 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
12352 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
12353 return SDValue();
12355 SDValue FirstOperand(Op.getOperand(0));
12356 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
12357 (FirstOperand.getValueType() == MVT::i8 ||
12358 FirstOperand.getValueType() == MVT::i16);
12359 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
12360 bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
12361 bool DstDouble = Op.getValueType() == MVT::f64;
12362 unsigned ConvOp = Signed ?
12363 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) :
12364 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
12365 SDValue WidthConst =
12366 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
12367 dl, false);
12368 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
12369 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
12370 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
12371 DAG.getVTList(MVT::f64, MVT::Other),
12372 Ops, MVT::i8, LDN->getMemOperand());
12374 // For signed conversion, we need to sign-extend the value in the VSR
12375 if (Signed) {
12376 SDValue ExtOps[] = { Ld, WidthConst };
12377 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
12378 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
12379 } else
12380 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
12384 // For i32 intermediate values, unfortunately, the conversion functions
12385 // leave the upper 32 bits of the value are undefined. Within the set of
12386 // scalar instructions, we have no method for zero- or sign-extending the
12387 // value. Thus, we cannot handle i32 intermediate values here.
12388 if (Op.getOperand(0).getValueType() == MVT::i32)
12389 return SDValue();
12391 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
12392 "UINT_TO_FP is supported only with FPCVT");
12394 // If we have FCFIDS, then use it when converting to single-precision.
12395 // Otherwise, convert to double-precision and then round.
12396 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12397 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
12398 : PPCISD::FCFIDS)
12399 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
12400 : PPCISD::FCFID);
12401 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12402 ? MVT::f32
12403 : MVT::f64;
12405 // If we're converting from a float, to an int, and back to a float again,
12406 // then we don't need the store/load pair at all.
12407 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
12408 Subtarget.hasFPCVT()) ||
12409 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
12410 SDValue Src = Op.getOperand(0).getOperand(0);
12411 if (Src.getValueType() == MVT::f32) {
12412 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
12413 DCI.AddToWorklist(Src.getNode());
12414 } else if (Src.getValueType() != MVT::f64) {
12415 // Make sure that we don't pick up a ppc_fp128 source value.
12416 return SDValue();
12419 unsigned FCTOp =
12420 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
12421 PPCISD::FCTIDUZ;
12423 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
12424 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
12426 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
12427 FP = DAG.getNode(ISD::FP_ROUND, dl,
12428 MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
12429 DCI.AddToWorklist(FP.getNode());
12432 return FP;
12435 return SDValue();
12438 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12439 // builtins) into loads with swaps.
12440 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
12441 DAGCombinerInfo &DCI) const {
12442 SelectionDAG &DAG = DCI.DAG;
12443 SDLoc dl(N);
12444 SDValue Chain;
12445 SDValue Base;
12446 MachineMemOperand *MMO;
12448 switch (N->getOpcode()) {
12449 default:
12450 llvm_unreachable("Unexpected opcode for little endian VSX load");
12451 case ISD::LOAD: {
12452 LoadSDNode *LD = cast<LoadSDNode>(N);
12453 Chain = LD->getChain();
12454 Base = LD->getBasePtr();
12455 MMO = LD->getMemOperand();
12456 // If the MMO suggests this isn't a load of a full vector, leave
12457 // things alone. For a built-in, we have to make the change for
12458 // correctness, so if there is a size problem that will be a bug.
12459 if (MMO->getSize() < 16)
12460 return SDValue();
12461 break;
12463 case ISD::INTRINSIC_W_CHAIN: {
12464 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12465 Chain = Intrin->getChain();
12466 // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12467 // us what we want. Get operand 2 instead.
12468 Base = Intrin->getOperand(2);
12469 MMO = Intrin->getMemOperand();
12470 break;
12474 MVT VecTy = N->getValueType(0).getSimpleVT();
12476 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12477 // aligned and the type is a vector with elements up to 4 bytes
12478 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12479 && VecTy.getScalarSizeInBits() <= 32 ) {
12480 return SDValue();
12483 SDValue LoadOps[] = { Chain, Base };
12484 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12485 DAG.getVTList(MVT::v2f64, MVT::Other),
12486 LoadOps, MVT::v2f64, MMO);
12488 DCI.AddToWorklist(Load.getNode());
12489 Chain = Load.getValue(1);
12490 SDValue Swap = DAG.getNode(
12491 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12492 DCI.AddToWorklist(Swap.getNode());
12494 // Add a bitcast if the resulting load type doesn't match v2f64.
12495 if (VecTy != MVT::v2f64) {
12496 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12497 DCI.AddToWorklist(N.getNode());
12498 // Package {bitcast value, swap's chain} to match Load's shape.
12499 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12500 N, Swap.getValue(1));
12503 return Swap;
12506 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12507 // builtins) into stores with swaps.
12508 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
12509 DAGCombinerInfo &DCI) const {
12510 SelectionDAG &DAG = DCI.DAG;
12511 SDLoc dl(N);
12512 SDValue Chain;
12513 SDValue Base;
12514 unsigned SrcOpnd;
12515 MachineMemOperand *MMO;
12517 switch (N->getOpcode()) {
12518 default:
12519 llvm_unreachable("Unexpected opcode for little endian VSX store");
12520 case ISD::STORE: {
12521 StoreSDNode *ST = cast<StoreSDNode>(N);
12522 Chain = ST->getChain();
12523 Base = ST->getBasePtr();
12524 MMO = ST->getMemOperand();
12525 SrcOpnd = 1;
12526 // If the MMO suggests this isn't a store of a full vector, leave
12527 // things alone. For a built-in, we have to make the change for
12528 // correctness, so if there is a size problem that will be a bug.
12529 if (MMO->getSize() < 16)
12530 return SDValue();
12531 break;
12533 case ISD::INTRINSIC_VOID: {
12534 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12535 Chain = Intrin->getChain();
12536 // Intrin->getBasePtr() oddly does not get what we want.
12537 Base = Intrin->getOperand(3);
12538 MMO = Intrin->getMemOperand();
12539 SrcOpnd = 2;
12540 break;
12544 SDValue Src = N->getOperand(SrcOpnd);
12545 MVT VecTy = Src.getValueType().getSimpleVT();
12547 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
12548 // aligned and the type is a vector with elements up to 4 bytes
12549 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12550 && VecTy.getScalarSizeInBits() <= 32 ) {
12551 return SDValue();
12554 // All stores are done as v2f64 and possible bit cast.
12555 if (VecTy != MVT::v2f64) {
12556 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
12557 DCI.AddToWorklist(Src.getNode());
12560 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
12561 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
12562 DCI.AddToWorklist(Swap.getNode());
12563 Chain = Swap.getValue(1);
12564 SDValue StoreOps[] = { Chain, Swap, Base };
12565 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
12566 DAG.getVTList(MVT::Other),
12567 StoreOps, VecTy, MMO);
12568 DCI.AddToWorklist(Store.getNode());
12569 return Store;
12572 // Handle DAG combine for STORE (FP_TO_INT F).
12573 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
12574 DAGCombinerInfo &DCI) const {
12576 SelectionDAG &DAG = DCI.DAG;
12577 SDLoc dl(N);
12578 unsigned Opcode = N->getOperand(1).getOpcode();
12580 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
12581 && "Not a FP_TO_INT Instruction!");
12583 SDValue Val = N->getOperand(1).getOperand(0);
12584 EVT Op1VT = N->getOperand(1).getValueType();
12585 EVT ResVT = Val.getValueType();
12587 // Floating point types smaller than 32 bits are not legal on Power.
12588 if (ResVT.getScalarSizeInBits() < 32)
12589 return SDValue();
12591 // Only perform combine for conversion to i64/i32 or power9 i16/i8.
12592 bool ValidTypeForStoreFltAsInt =
12593 (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
12594 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
12596 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
12597 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
12598 return SDValue();
12600 // Extend f32 values to f64
12601 if (ResVT.getScalarSizeInBits() == 32) {
12602 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
12603 DCI.AddToWorklist(Val.getNode());
12606 // Set signed or unsigned conversion opcode.
12607 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
12608 PPCISD::FP_TO_SINT_IN_VSR :
12609 PPCISD::FP_TO_UINT_IN_VSR;
12611 Val = DAG.getNode(ConvOpcode,
12612 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
12613 DCI.AddToWorklist(Val.getNode());
12615 // Set number of bytes being converted.
12616 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
12617 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
12618 DAG.getIntPtrConstant(ByteSize, dl, false),
12619 DAG.getValueType(Op1VT) };
12621 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
12622 DAG.getVTList(MVT::Other), Ops,
12623 cast<StoreSDNode>(N)->getMemoryVT(),
12624 cast<StoreSDNode>(N)->getMemOperand());
12626 DCI.AddToWorklist(Val.getNode());
12627 return Val;
12630 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
12631 DAGCombinerInfo &DCI) const {
12632 SelectionDAG &DAG = DCI.DAG;
12633 SDLoc dl(N);
12634 switch (N->getOpcode()) {
12635 default: break;
12636 case ISD::ADD:
12637 return combineADD(N, DCI);
12638 case ISD::SHL:
12639 return combineSHL(N, DCI);
12640 case ISD::SRA:
12641 return combineSRA(N, DCI);
12642 case ISD::SRL:
12643 return combineSRL(N, DCI);
12644 case PPCISD::SHL:
12645 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
12646 return N->getOperand(0);
12647 break;
12648 case PPCISD::SRL:
12649 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
12650 return N->getOperand(0);
12651 break;
12652 case PPCISD::SRA:
12653 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12654 if (C->isNullValue() || // 0 >>s V -> 0.
12655 C->isAllOnesValue()) // -1 >>s V -> -1.
12656 return N->getOperand(0);
12658 break;
12659 case ISD::SIGN_EXTEND:
12660 case ISD::ZERO_EXTEND:
12661 case ISD::ANY_EXTEND:
12662 return DAGCombineExtBoolTrunc(N, DCI);
12663 case ISD::TRUNCATE:
12664 return combineTRUNCATE(N, DCI);
12665 case ISD::SETCC:
12666 if (SDValue CSCC = combineSetCC(N, DCI))
12667 return CSCC;
12668 LLVM_FALLTHROUGH;
12669 case ISD::SELECT_CC:
12670 return DAGCombineTruncBoolExt(N, DCI);
12671 case ISD::SINT_TO_FP:
12672 case ISD::UINT_TO_FP:
12673 return combineFPToIntToFP(N, DCI);
12674 case ISD::STORE: {
12676 EVT Op1VT = N->getOperand(1).getValueType();
12677 unsigned Opcode = N->getOperand(1).getOpcode();
12679 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
12680 SDValue Val= combineStoreFPToInt(N, DCI);
12681 if (Val)
12682 return Val;
12685 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
12686 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
12687 N->getOperand(1).getNode()->hasOneUse() &&
12688 (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
12689 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
12691 // STBRX can only handle simple types and it makes no sense to store less
12692 // two bytes in byte-reversed order.
12693 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
12694 if (mVT.isExtended() || mVT.getSizeInBits() < 16)
12695 break;
12697 SDValue BSwapOp = N->getOperand(1).getOperand(0);
12698 // Do an any-extend to 32-bits if this is a half-word input.
12699 if (BSwapOp.getValueType() == MVT::i16)
12700 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
12702 // If the type of BSWAP operand is wider than stored memory width
12703 // it need to be shifted to the right side before STBRX.
12704 if (Op1VT.bitsGT(mVT)) {
12705 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
12706 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
12707 DAG.getConstant(Shift, dl, MVT::i32));
12708 // Need to truncate if this is a bswap of i64 stored as i32/i16.
12709 if (Op1VT == MVT::i64)
12710 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
12713 SDValue Ops[] = {
12714 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
12716 return
12717 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
12718 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
12719 cast<StoreSDNode>(N)->getMemOperand());
12722 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0>
12723 // So it can increase the chance of CSE constant construction.
12724 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
12725 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
12726 // Need to sign-extended to 64-bits to handle negative values.
12727 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
12728 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
12729 MemVT.getSizeInBits());
12730 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
12732 // DAG.getTruncStore() can't be used here because it doesn't accept
12733 // the general (base + offset) addressing mode.
12734 // So we use UpdateNodeOperands and setTruncatingStore instead.
12735 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
12736 N->getOperand(3));
12737 cast<StoreSDNode>(N)->setTruncatingStore(true);
12738 return SDValue(N, 0);
12741 // For little endian, VSX stores require generating xxswapd/lxvd2x.
12742 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12743 if (Op1VT.isSimple()) {
12744 MVT StoreVT = Op1VT.getSimpleVT();
12745 if (Subtarget.needsSwapsForVSXMemOps() &&
12746 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
12747 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
12748 return expandVSXStoreForLE(N, DCI);
12750 break;
12752 case ISD::LOAD: {
12753 LoadSDNode *LD = cast<LoadSDNode>(N);
12754 EVT VT = LD->getValueType(0);
12756 // For little endian, VSX loads require generating lxvd2x/xxswapd.
12757 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12758 if (VT.isSimple()) {
12759 MVT LoadVT = VT.getSimpleVT();
12760 if (Subtarget.needsSwapsForVSXMemOps() &&
12761 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
12762 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
12763 return expandVSXLoadForLE(N, DCI);
12766 // We sometimes end up with a 64-bit integer load, from which we extract
12767 // two single-precision floating-point numbers. This happens with
12768 // std::complex<float>, and other similar structures, because of the way we
12769 // canonicalize structure copies. However, if we lack direct moves,
12770 // then the final bitcasts from the extracted integer values to the
12771 // floating-point numbers turn into store/load pairs. Even with direct moves,
12772 // just loading the two floating-point numbers is likely better.
12773 auto ReplaceTwoFloatLoad = [&]() {
12774 if (VT != MVT::i64)
12775 return false;
12777 if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
12778 LD->isVolatile())
12779 return false;
12781 // We're looking for a sequence like this:
12782 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
12783 // t16: i64 = srl t13, Constant:i32<32>
12784 // t17: i32 = truncate t16
12785 // t18: f32 = bitcast t17
12786 // t19: i32 = truncate t13
12787 // t20: f32 = bitcast t19
12789 if (!LD->hasNUsesOfValue(2, 0))
12790 return false;
12792 auto UI = LD->use_begin();
12793 while (UI.getUse().getResNo() != 0) ++UI;
12794 SDNode *Trunc = *UI++;
12795 while (UI.getUse().getResNo() != 0) ++UI;
12796 SDNode *RightShift = *UI;
12797 if (Trunc->getOpcode() != ISD::TRUNCATE)
12798 std::swap(Trunc, RightShift);
12800 if (Trunc->getOpcode() != ISD::TRUNCATE ||
12801 Trunc->getValueType(0) != MVT::i32 ||
12802 !Trunc->hasOneUse())
12803 return false;
12804 if (RightShift->getOpcode() != ISD::SRL ||
12805 !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
12806 RightShift->getConstantOperandVal(1) != 32 ||
12807 !RightShift->hasOneUse())
12808 return false;
12810 SDNode *Trunc2 = *RightShift->use_begin();
12811 if (Trunc2->getOpcode() != ISD::TRUNCATE ||
12812 Trunc2->getValueType(0) != MVT::i32 ||
12813 !Trunc2->hasOneUse())
12814 return false;
12816 SDNode *Bitcast = *Trunc->use_begin();
12817 SDNode *Bitcast2 = *Trunc2->use_begin();
12819 if (Bitcast->getOpcode() != ISD::BITCAST ||
12820 Bitcast->getValueType(0) != MVT::f32)
12821 return false;
12822 if (Bitcast2->getOpcode() != ISD::BITCAST ||
12823 Bitcast2->getValueType(0) != MVT::f32)
12824 return false;
12826 if (Subtarget.isLittleEndian())
12827 std::swap(Bitcast, Bitcast2);
12829 // Bitcast has the second float (in memory-layout order) and Bitcast2
12830 // has the first one.
12832 SDValue BasePtr = LD->getBasePtr();
12833 if (LD->isIndexed()) {
12834 assert(LD->getAddressingMode() == ISD::PRE_INC &&
12835 "Non-pre-inc AM on PPC?");
12836 BasePtr =
12837 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
12838 LD->getOffset());
12841 auto MMOFlags =
12842 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
12843 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
12844 LD->getPointerInfo(), LD->getAlignment(),
12845 MMOFlags, LD->getAAInfo());
12846 SDValue AddPtr =
12847 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
12848 BasePtr, DAG.getIntPtrConstant(4, dl));
12849 SDValue FloatLoad2 = DAG.getLoad(
12850 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
12851 LD->getPointerInfo().getWithOffset(4),
12852 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
12854 if (LD->isIndexed()) {
12855 // Note that DAGCombine should re-form any pre-increment load(s) from
12856 // what is produced here if that makes sense.
12857 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
12860 DCI.CombineTo(Bitcast2, FloatLoad);
12861 DCI.CombineTo(Bitcast, FloatLoad2);
12863 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
12864 SDValue(FloatLoad2.getNode(), 1));
12865 return true;
12868 if (ReplaceTwoFloatLoad())
12869 return SDValue(N, 0);
12871 EVT MemVT = LD->getMemoryVT();
12872 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
12873 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
12874 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
12875 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
12876 if (LD->isUnindexed() && VT.isVector() &&
12877 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
12878 // P8 and later hardware should just use LOAD.
12879 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
12880 VT == MVT::v4i32 || VT == MVT::v4f32)) ||
12881 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
12882 LD->getAlignment() >= ScalarABIAlignment)) &&
12883 LD->getAlignment() < ABIAlignment) {
12884 // This is a type-legal unaligned Altivec or QPX load.
12885 SDValue Chain = LD->getChain();
12886 SDValue Ptr = LD->getBasePtr();
12887 bool isLittleEndian = Subtarget.isLittleEndian();
12889 // This implements the loading of unaligned vectors as described in
12890 // the venerable Apple Velocity Engine overview. Specifically:
12891 // https://developer.apple.com/hardwaredrivers/ve/alignment.html
12892 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
12894 // The general idea is to expand a sequence of one or more unaligned
12895 // loads into an alignment-based permutation-control instruction (lvsl
12896 // or lvsr), a series of regular vector loads (which always truncate
12897 // their input address to an aligned address), and a series of
12898 // permutations. The results of these permutations are the requested
12899 // loaded values. The trick is that the last "extra" load is not taken
12900 // from the address you might suspect (sizeof(vector) bytes after the
12901 // last requested load), but rather sizeof(vector) - 1 bytes after the
12902 // last requested vector. The point of this is to avoid a page fault if
12903 // the base address happened to be aligned. This works because if the
12904 // base address is aligned, then adding less than a full vector length
12905 // will cause the last vector in the sequence to be (re)loaded.
12906 // Otherwise, the next vector will be fetched as you might suspect was
12907 // necessary.
12909 // We might be able to reuse the permutation generation from
12910 // a different base address offset from this one by an aligned amount.
12911 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
12912 // optimization later.
12913 Intrinsic::ID Intr, IntrLD, IntrPerm;
12914 MVT PermCntlTy, PermTy, LDTy;
12915 if (Subtarget.hasAltivec()) {
12916 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr :
12917 Intrinsic::ppc_altivec_lvsl;
12918 IntrLD = Intrinsic::ppc_altivec_lvx;
12919 IntrPerm = Intrinsic::ppc_altivec_vperm;
12920 PermCntlTy = MVT::v16i8;
12921 PermTy = MVT::v4i32;
12922 LDTy = MVT::v4i32;
12923 } else {
12924 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
12925 Intrinsic::ppc_qpx_qvlpcls;
12926 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
12927 Intrinsic::ppc_qpx_qvlfs;
12928 IntrPerm = Intrinsic::ppc_qpx_qvfperm;
12929 PermCntlTy = MVT::v4f64;
12930 PermTy = MVT::v4f64;
12931 LDTy = MemVT.getSimpleVT();
12934 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
12936 // Create the new MMO for the new base load. It is like the original MMO,
12937 // but represents an area in memory almost twice the vector size centered
12938 // on the original address. If the address is unaligned, we might start
12939 // reading up to (sizeof(vector)-1) bytes below the address of the
12940 // original unaligned load.
12941 MachineFunction &MF = DAG.getMachineFunction();
12942 MachineMemOperand *BaseMMO =
12943 MF.getMachineMemOperand(LD->getMemOperand(),
12944 -(long)MemVT.getStoreSize()+1,
12945 2*MemVT.getStoreSize()-1);
12947 // Create the new base load.
12948 SDValue LDXIntID =
12949 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
12950 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
12951 SDValue BaseLoad =
12952 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12953 DAG.getVTList(PermTy, MVT::Other),
12954 BaseLoadOps, LDTy, BaseMMO);
12956 // Note that the value of IncOffset (which is provided to the next
12957 // load's pointer info offset value, and thus used to calculate the
12958 // alignment), and the value of IncValue (which is actually used to
12959 // increment the pointer value) are different! This is because we
12960 // require the next load to appear to be aligned, even though it
12961 // is actually offset from the base pointer by a lesser amount.
12962 int IncOffset = VT.getSizeInBits() / 8;
12963 int IncValue = IncOffset;
12965 // Walk (both up and down) the chain looking for another load at the real
12966 // (aligned) offset (the alignment of the other load does not matter in
12967 // this case). If found, then do not use the offset reduction trick, as
12968 // that will prevent the loads from being later combined (as they would
12969 // otherwise be duplicates).
12970 if (!findConsecutiveLoad(LD, DAG))
12971 --IncValue;
12973 SDValue Increment =
12974 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
12975 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
12977 MachineMemOperand *ExtraMMO =
12978 MF.getMachineMemOperand(LD->getMemOperand(),
12979 1, 2*MemVT.getStoreSize()-1);
12980 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
12981 SDValue ExtraLoad =
12982 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12983 DAG.getVTList(PermTy, MVT::Other),
12984 ExtraLoadOps, LDTy, ExtraMMO);
12986 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
12987 BaseLoad.getValue(1), ExtraLoad.getValue(1));
12989 // Because vperm has a big-endian bias, we must reverse the order
12990 // of the input vectors and complement the permute control vector
12991 // when generating little endian code. We have already handled the
12992 // latter by using lvsr instead of lvsl, so just reverse BaseLoad
12993 // and ExtraLoad here.
12994 SDValue Perm;
12995 if (isLittleEndian)
12996 Perm = BuildIntrinsicOp(IntrPerm,
12997 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
12998 else
12999 Perm = BuildIntrinsicOp(IntrPerm,
13000 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
13002 if (VT != PermTy)
13003 Perm = Subtarget.hasAltivec() ?
13004 DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
13005 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
13006 DAG.getTargetConstant(1, dl, MVT::i64));
13007 // second argument is 1 because this rounding
13008 // is always exact.
13010 // The output of the permutation is our loaded result, the TokenFactor is
13011 // our new chain.
13012 DCI.CombineTo(N, Perm, TF);
13013 return SDValue(N, 0);
13016 break;
13017 case ISD::INTRINSIC_WO_CHAIN: {
13018 bool isLittleEndian = Subtarget.isLittleEndian();
13019 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
13020 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
13021 : Intrinsic::ppc_altivec_lvsl);
13022 if ((IID == Intr ||
13023 IID == Intrinsic::ppc_qpx_qvlpcld ||
13024 IID == Intrinsic::ppc_qpx_qvlpcls) &&
13025 N->getOperand(1)->getOpcode() == ISD::ADD) {
13026 SDValue Add = N->getOperand(1);
13028 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
13029 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
13031 if (DAG.MaskedValueIsZero(Add->getOperand(1),
13032 APInt::getAllOnesValue(Bits /* alignment */)
13033 .zext(Add.getScalarValueSizeInBits()))) {
13034 SDNode *BasePtr = Add->getOperand(0).getNode();
13035 for (SDNode::use_iterator UI = BasePtr->use_begin(),
13036 UE = BasePtr->use_end();
13037 UI != UE; ++UI) {
13038 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13039 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
13040 // We've found another LVSL/LVSR, and this address is an aligned
13041 // multiple of that one. The results will be the same, so use the
13042 // one we've just found instead.
13044 return SDValue(*UI, 0);
13049 if (isa<ConstantSDNode>(Add->getOperand(1))) {
13050 SDNode *BasePtr = Add->getOperand(0).getNode();
13051 for (SDNode::use_iterator UI = BasePtr->use_begin(),
13052 UE = BasePtr->use_end(); UI != UE; ++UI) {
13053 if (UI->getOpcode() == ISD::ADD &&
13054 isa<ConstantSDNode>(UI->getOperand(1)) &&
13055 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
13056 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
13057 (1ULL << Bits) == 0) {
13058 SDNode *OtherAdd = *UI;
13059 for (SDNode::use_iterator VI = OtherAdd->use_begin(),
13060 VE = OtherAdd->use_end(); VI != VE; ++VI) {
13061 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13062 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
13063 return SDValue(*VI, 0);
13071 // Combine vmaxsw/h/b(a, a's negation) to abs(a)
13072 // Expose the vabsduw/h/b opportunity for down stream
13073 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
13074 (IID == Intrinsic::ppc_altivec_vmaxsw ||
13075 IID == Intrinsic::ppc_altivec_vmaxsh ||
13076 IID == Intrinsic::ppc_altivec_vmaxsb)) {
13077 SDValue V1 = N->getOperand(1);
13078 SDValue V2 = N->getOperand(2);
13079 if ((V1.getSimpleValueType() == MVT::v4i32 ||
13080 V1.getSimpleValueType() == MVT::v8i16 ||
13081 V1.getSimpleValueType() == MVT::v16i8) &&
13082 V1.getSimpleValueType() == V2.getSimpleValueType()) {
13083 // (0-a, a)
13084 if (V1.getOpcode() == ISD::SUB &&
13085 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
13086 V1.getOperand(1) == V2) {
13087 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
13089 // (a, 0-a)
13090 if (V2.getOpcode() == ISD::SUB &&
13091 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
13092 V2.getOperand(1) == V1) {
13093 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13095 // (x-y, y-x)
13096 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
13097 V1.getOperand(0) == V2.getOperand(1) &&
13098 V1.getOperand(1) == V2.getOperand(0)) {
13099 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13105 break;
13106 case ISD::INTRINSIC_W_CHAIN:
13107 // For little endian, VSX loads require generating lxvd2x/xxswapd.
13108 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13109 if (Subtarget.needsSwapsForVSXMemOps()) {
13110 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13111 default:
13112 break;
13113 case Intrinsic::ppc_vsx_lxvw4x:
13114 case Intrinsic::ppc_vsx_lxvd2x:
13115 return expandVSXLoadForLE(N, DCI);
13118 break;
13119 case ISD::INTRINSIC_VOID:
13120 // For little endian, VSX stores require generating xxswapd/stxvd2x.
13121 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13122 if (Subtarget.needsSwapsForVSXMemOps()) {
13123 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13124 default:
13125 break;
13126 case Intrinsic::ppc_vsx_stxvw4x:
13127 case Intrinsic::ppc_vsx_stxvd2x:
13128 return expandVSXStoreForLE(N, DCI);
13131 break;
13132 case ISD::BSWAP:
13133 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
13134 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
13135 N->getOperand(0).hasOneUse() &&
13136 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
13137 (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
13138 N->getValueType(0) == MVT::i64))) {
13139 SDValue Load = N->getOperand(0);
13140 LoadSDNode *LD = cast<LoadSDNode>(Load);
13141 // Create the byte-swapping load.
13142 SDValue Ops[] = {
13143 LD->getChain(), // Chain
13144 LD->getBasePtr(), // Ptr
13145 DAG.getValueType(N->getValueType(0)) // VT
13147 SDValue BSLoad =
13148 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
13149 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
13150 MVT::i64 : MVT::i32, MVT::Other),
13151 Ops, LD->getMemoryVT(), LD->getMemOperand());
13153 // If this is an i16 load, insert the truncate.
13154 SDValue ResVal = BSLoad;
13155 if (N->getValueType(0) == MVT::i16)
13156 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
13158 // First, combine the bswap away. This makes the value produced by the
13159 // load dead.
13160 DCI.CombineTo(N, ResVal);
13162 // Next, combine the load away, we give it a bogus result value but a real
13163 // chain result. The result value is dead because the bswap is dead.
13164 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
13166 // Return N so it doesn't get rechecked!
13167 return SDValue(N, 0);
13169 break;
13170 case PPCISD::VCMP:
13171 // If a VCMPo node already exists with exactly the same operands as this
13172 // node, use its result instead of this node (VCMPo computes both a CR6 and
13173 // a normal output).
13175 if (!N->getOperand(0).hasOneUse() &&
13176 !N->getOperand(1).hasOneUse() &&
13177 !N->getOperand(2).hasOneUse()) {
13179 // Scan all of the users of the LHS, looking for VCMPo's that match.
13180 SDNode *VCMPoNode = nullptr;
13182 SDNode *LHSN = N->getOperand(0).getNode();
13183 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
13184 UI != E; ++UI)
13185 if (UI->getOpcode() == PPCISD::VCMPo &&
13186 UI->getOperand(1) == N->getOperand(1) &&
13187 UI->getOperand(2) == N->getOperand(2) &&
13188 UI->getOperand(0) == N->getOperand(0)) {
13189 VCMPoNode = *UI;
13190 break;
13193 // If there is no VCMPo node, or if the flag value has a single use, don't
13194 // transform this.
13195 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
13196 break;
13198 // Look at the (necessarily single) use of the flag value. If it has a
13199 // chain, this transformation is more complex. Note that multiple things
13200 // could use the value result, which we should ignore.
13201 SDNode *FlagUser = nullptr;
13202 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
13203 FlagUser == nullptr; ++UI) {
13204 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
13205 SDNode *User = *UI;
13206 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
13207 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
13208 FlagUser = User;
13209 break;
13214 // If the user is a MFOCRF instruction, we know this is safe.
13215 // Otherwise we give up for right now.
13216 if (FlagUser->getOpcode() == PPCISD::MFOCRF)
13217 return SDValue(VCMPoNode, 0);
13219 break;
13220 case ISD::BRCOND: {
13221 SDValue Cond = N->getOperand(1);
13222 SDValue Target = N->getOperand(2);
13224 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13225 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
13226 Intrinsic::ppc_is_decremented_ctr_nonzero) {
13228 // We now need to make the intrinsic dead (it cannot be instruction
13229 // selected).
13230 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
13231 assert(Cond.getNode()->hasOneUse() &&
13232 "Counter decrement has more than one use");
13234 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
13235 N->getOperand(0), Target);
13238 break;
13239 case ISD::BR_CC: {
13240 // If this is a branch on an altivec predicate comparison, lower this so
13241 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This
13242 // lowering is done pre-legalize, because the legalizer lowers the predicate
13243 // compare down to code that is difficult to reassemble.
13244 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
13245 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
13247 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
13248 // value. If so, pass-through the AND to get to the intrinsic.
13249 if (LHS.getOpcode() == ISD::AND &&
13250 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13251 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
13252 Intrinsic::ppc_is_decremented_ctr_nonzero &&
13253 isa<ConstantSDNode>(LHS.getOperand(1)) &&
13254 !isNullConstant(LHS.getOperand(1)))
13255 LHS = LHS.getOperand(0);
13257 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13258 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
13259 Intrinsic::ppc_is_decremented_ctr_nonzero &&
13260 isa<ConstantSDNode>(RHS)) {
13261 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
13262 "Counter decrement comparison is not EQ or NE");
13264 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13265 bool isBDNZ = (CC == ISD::SETEQ && Val) ||
13266 (CC == ISD::SETNE && !Val);
13268 // We now need to make the intrinsic dead (it cannot be instruction
13269 // selected).
13270 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
13271 assert(LHS.getNode()->hasOneUse() &&
13272 "Counter decrement has more than one use");
13274 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
13275 N->getOperand(0), N->getOperand(4));
13278 int CompareOpc;
13279 bool isDot;
13281 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13282 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
13283 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
13284 assert(isDot && "Can't compare against a vector result!");
13286 // If this is a comparison against something other than 0/1, then we know
13287 // that the condition is never/always true.
13288 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13289 if (Val != 0 && Val != 1) {
13290 if (CC == ISD::SETEQ) // Cond never true, remove branch.
13291 return N->getOperand(0);
13292 // Always !=, turn it into an unconditional branch.
13293 return DAG.getNode(ISD::BR, dl, MVT::Other,
13294 N->getOperand(0), N->getOperand(4));
13297 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
13299 // Create the PPCISD altivec 'dot' comparison node.
13300 SDValue Ops[] = {
13301 LHS.getOperand(2), // LHS of compare
13302 LHS.getOperand(3), // RHS of compare
13303 DAG.getConstant(CompareOpc, dl, MVT::i32)
13305 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
13306 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
13308 // Unpack the result based on how the target uses it.
13309 PPC::Predicate CompOpc;
13310 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
13311 default: // Can't happen, don't crash on invalid number though.
13312 case 0: // Branch on the value of the EQ bit of CR6.
13313 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
13314 break;
13315 case 1: // Branch on the inverted value of the EQ bit of CR6.
13316 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
13317 break;
13318 case 2: // Branch on the value of the LT bit of CR6.
13319 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
13320 break;
13321 case 3: // Branch on the inverted value of the LT bit of CR6.
13322 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
13323 break;
13326 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
13327 DAG.getConstant(CompOpc, dl, MVT::i32),
13328 DAG.getRegister(PPC::CR6, MVT::i32),
13329 N->getOperand(4), CompNode.getValue(1));
13331 break;
13333 case ISD::BUILD_VECTOR:
13334 return DAGCombineBuildVector(N, DCI);
13335 case ISD::ABS:
13336 return combineABS(N, DCI);
13337 case ISD::VSELECT:
13338 return combineVSelect(N, DCI);
13341 return SDValue();
13344 SDValue
13345 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
13346 SelectionDAG &DAG,
13347 SmallVectorImpl<SDNode *> &Created) const {
13348 // fold (sdiv X, pow2)
13349 EVT VT = N->getValueType(0);
13350 if (VT == MVT::i64 && !Subtarget.isPPC64())
13351 return SDValue();
13352 if ((VT != MVT::i32 && VT != MVT::i64) ||
13353 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
13354 return SDValue();
13356 SDLoc DL(N);
13357 SDValue N0 = N->getOperand(0);
13359 bool IsNegPow2 = (-Divisor).isPowerOf2();
13360 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
13361 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
13363 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
13364 Created.push_back(Op.getNode());
13366 if (IsNegPow2) {
13367 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
13368 Created.push_back(Op.getNode());
13371 return Op;
13374 //===----------------------------------------------------------------------===//
13375 // Inline Assembly Support
13376 //===----------------------------------------------------------------------===//
13378 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13379 KnownBits &Known,
13380 const APInt &DemandedElts,
13381 const SelectionDAG &DAG,
13382 unsigned Depth) const {
13383 Known.resetAll();
13384 switch (Op.getOpcode()) {
13385 default: break;
13386 case PPCISD::LBRX: {
13387 // lhbrx is known to have the top bits cleared out.
13388 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
13389 Known.Zero = 0xFFFF0000;
13390 break;
13392 case ISD::INTRINSIC_WO_CHAIN: {
13393 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
13394 default: break;
13395 case Intrinsic::ppc_altivec_vcmpbfp_p:
13396 case Intrinsic::ppc_altivec_vcmpeqfp_p:
13397 case Intrinsic::ppc_altivec_vcmpequb_p:
13398 case Intrinsic::ppc_altivec_vcmpequh_p:
13399 case Intrinsic::ppc_altivec_vcmpequw_p:
13400 case Intrinsic::ppc_altivec_vcmpequd_p:
13401 case Intrinsic::ppc_altivec_vcmpgefp_p:
13402 case Intrinsic::ppc_altivec_vcmpgtfp_p:
13403 case Intrinsic::ppc_altivec_vcmpgtsb_p:
13404 case Intrinsic::ppc_altivec_vcmpgtsh_p:
13405 case Intrinsic::ppc_altivec_vcmpgtsw_p:
13406 case Intrinsic::ppc_altivec_vcmpgtsd_p:
13407 case Intrinsic::ppc_altivec_vcmpgtub_p:
13408 case Intrinsic::ppc_altivec_vcmpgtuh_p:
13409 case Intrinsic::ppc_altivec_vcmpgtuw_p:
13410 case Intrinsic::ppc_altivec_vcmpgtud_p:
13411 Known.Zero = ~1U; // All bits but the low one are known to be zero.
13412 break;
13418 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
13419 switch (Subtarget.getDarwinDirective()) {
13420 default: break;
13421 case PPC::DIR_970:
13422 case PPC::DIR_PWR4:
13423 case PPC::DIR_PWR5:
13424 case PPC::DIR_PWR5X:
13425 case PPC::DIR_PWR6:
13426 case PPC::DIR_PWR6X:
13427 case PPC::DIR_PWR7:
13428 case PPC::DIR_PWR8:
13429 case PPC::DIR_PWR9: {
13430 if (!ML)
13431 break;
13433 const PPCInstrInfo *TII = Subtarget.getInstrInfo();
13435 // For small loops (between 5 and 8 instructions), align to a 32-byte
13436 // boundary so that the entire loop fits in one instruction-cache line.
13437 uint64_t LoopSize = 0;
13438 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
13439 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
13440 LoopSize += TII->getInstSizeInBytes(*J);
13441 if (LoopSize > 32)
13442 break;
13445 if (LoopSize > 16 && LoopSize <= 32)
13446 return 5;
13448 break;
13452 return TargetLowering::getPrefLoopAlignment(ML);
13455 /// getConstraintType - Given a constraint, return the type of
13456 /// constraint it is for this target.
13457 PPCTargetLowering::ConstraintType
13458 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
13459 if (Constraint.size() == 1) {
13460 switch (Constraint[0]) {
13461 default: break;
13462 case 'b':
13463 case 'r':
13464 case 'f':
13465 case 'd':
13466 case 'v':
13467 case 'y':
13468 return C_RegisterClass;
13469 case 'Z':
13470 // FIXME: While Z does indicate a memory constraint, it specifically
13471 // indicates an r+r address (used in conjunction with the 'y' modifier
13472 // in the replacement string). Currently, we're forcing the base
13473 // register to be r0 in the asm printer (which is interpreted as zero)
13474 // and forming the complete address in the second register. This is
13475 // suboptimal.
13476 return C_Memory;
13478 } else if (Constraint == "wc") { // individual CR bits.
13479 return C_RegisterClass;
13480 } else if (Constraint == "wa" || Constraint == "wd" ||
13481 Constraint == "wf" || Constraint == "ws" ||
13482 Constraint == "wi") {
13483 return C_RegisterClass; // VSX registers.
13485 return TargetLowering::getConstraintType(Constraint);
13488 /// Examine constraint type and operand type and determine a weight value.
13489 /// This object must already have been set up with the operand type
13490 /// and the current alternative constraint selected.
13491 TargetLowering::ConstraintWeight
13492 PPCTargetLowering::getSingleConstraintMatchWeight(
13493 AsmOperandInfo &info, const char *constraint) const {
13494 ConstraintWeight weight = CW_Invalid;
13495 Value *CallOperandVal = info.CallOperandVal;
13496 // If we don't have a value, we can't do a match,
13497 // but allow it at the lowest weight.
13498 if (!CallOperandVal)
13499 return CW_Default;
13500 Type *type = CallOperandVal->getType();
13502 // Look at the constraint type.
13503 if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
13504 return CW_Register; // an individual CR bit.
13505 else if ((StringRef(constraint) == "wa" ||
13506 StringRef(constraint) == "wd" ||
13507 StringRef(constraint) == "wf") &&
13508 type->isVectorTy())
13509 return CW_Register;
13510 else if (StringRef(constraint) == "ws" && type->isDoubleTy())
13511 return CW_Register;
13512 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
13513 return CW_Register; // just hold 64-bit integers data.
13515 switch (*constraint) {
13516 default:
13517 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13518 break;
13519 case 'b':
13520 if (type->isIntegerTy())
13521 weight = CW_Register;
13522 break;
13523 case 'f':
13524 if (type->isFloatTy())
13525 weight = CW_Register;
13526 break;
13527 case 'd':
13528 if (type->isDoubleTy())
13529 weight = CW_Register;
13530 break;
13531 case 'v':
13532 if (type->isVectorTy())
13533 weight = CW_Register;
13534 break;
13535 case 'y':
13536 weight = CW_Register;
13537 break;
13538 case 'Z':
13539 weight = CW_Memory;
13540 break;
13542 return weight;
13545 std::pair<unsigned, const TargetRegisterClass *>
13546 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
13547 StringRef Constraint,
13548 MVT VT) const {
13549 if (Constraint.size() == 1) {
13550 // GCC RS6000 Constraint Letters
13551 switch (Constraint[0]) {
13552 case 'b': // R1-R31
13553 if (VT == MVT::i64 && Subtarget.isPPC64())
13554 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
13555 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
13556 case 'r': // R0-R31
13557 if (VT == MVT::i64 && Subtarget.isPPC64())
13558 return std::make_pair(0U, &PPC::G8RCRegClass);
13559 return std::make_pair(0U, &PPC::GPRCRegClass);
13560 // 'd' and 'f' constraints are both defined to be "the floating point
13561 // registers", where one is for 32-bit and the other for 64-bit. We don't
13562 // really care overly much here so just give them all the same reg classes.
13563 case 'd':
13564 case 'f':
13565 if (Subtarget.hasSPE()) {
13566 if (VT == MVT::f32 || VT == MVT::i32)
13567 return std::make_pair(0U, &PPC::SPE4RCRegClass);
13568 if (VT == MVT::f64 || VT == MVT::i64)
13569 return std::make_pair(0U, &PPC::SPERCRegClass);
13570 } else {
13571 if (VT == MVT::f32 || VT == MVT::i32)
13572 return std::make_pair(0U, &PPC::F4RCRegClass);
13573 if (VT == MVT::f64 || VT == MVT::i64)
13574 return std::make_pair(0U, &PPC::F8RCRegClass);
13575 if (VT == MVT::v4f64 && Subtarget.hasQPX())
13576 return std::make_pair(0U, &PPC::QFRCRegClass);
13577 if (VT == MVT::v4f32 && Subtarget.hasQPX())
13578 return std::make_pair(0U, &PPC::QSRCRegClass);
13580 break;
13581 case 'v':
13582 if (VT == MVT::v4f64 && Subtarget.hasQPX())
13583 return std::make_pair(0U, &PPC::QFRCRegClass);
13584 if (VT == MVT::v4f32 && Subtarget.hasQPX())
13585 return std::make_pair(0U, &PPC::QSRCRegClass);
13586 if (Subtarget.hasAltivec())
13587 return std::make_pair(0U, &PPC::VRRCRegClass);
13588 break;
13589 case 'y': // crrc
13590 return std::make_pair(0U, &PPC::CRRCRegClass);
13592 } else if (Constraint == "wc" && Subtarget.useCRBits()) {
13593 // An individual CR bit.
13594 return std::make_pair(0U, &PPC::CRBITRCRegClass);
13595 } else if ((Constraint == "wa" || Constraint == "wd" ||
13596 Constraint == "wf" || Constraint == "wi") &&
13597 Subtarget.hasVSX()) {
13598 return std::make_pair(0U, &PPC::VSRCRegClass);
13599 } else if (Constraint == "ws" && Subtarget.hasVSX()) {
13600 if (VT == MVT::f32 && Subtarget.hasP8Vector())
13601 return std::make_pair(0U, &PPC::VSSRCRegClass);
13602 else
13603 return std::make_pair(0U, &PPC::VSFRCRegClass);
13606 std::pair<unsigned, const TargetRegisterClass *> R =
13607 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13609 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
13610 // (which we call X[0-9]+). If a 64-bit value has been requested, and a
13611 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
13612 // register.
13613 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
13614 // the AsmName field from *RegisterInfo.td, then this would not be necessary.
13615 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
13616 PPC::GPRCRegClass.contains(R.first))
13617 return std::make_pair(TRI->getMatchingSuperReg(R.first,
13618 PPC::sub_32, &PPC::G8RCRegClass),
13619 &PPC::G8RCRegClass);
13621 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
13622 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
13623 R.first = PPC::CR0;
13624 R.second = &PPC::CRRCRegClass;
13627 return R;
13630 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13631 /// vector. If it is invalid, don't add anything to Ops.
13632 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13633 std::string &Constraint,
13634 std::vector<SDValue>&Ops,
13635 SelectionDAG &DAG) const {
13636 SDValue Result;
13638 // Only support length 1 constraints.
13639 if (Constraint.length() > 1) return;
13641 char Letter = Constraint[0];
13642 switch (Letter) {
13643 default: break;
13644 case 'I':
13645 case 'J':
13646 case 'K':
13647 case 'L':
13648 case 'M':
13649 case 'N':
13650 case 'O':
13651 case 'P': {
13652 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
13653 if (!CST) return; // Must be an immediate to match.
13654 SDLoc dl(Op);
13655 int64_t Value = CST->getSExtValue();
13656 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
13657 // numbers are printed as such.
13658 switch (Letter) {
13659 default: llvm_unreachable("Unknown constraint letter!");
13660 case 'I': // "I" is a signed 16-bit constant.
13661 if (isInt<16>(Value))
13662 Result = DAG.getTargetConstant(Value, dl, TCVT);
13663 break;
13664 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
13665 if (isShiftedUInt<16, 16>(Value))
13666 Result = DAG.getTargetConstant(Value, dl, TCVT);
13667 break;
13668 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
13669 if (isShiftedInt<16, 16>(Value))
13670 Result = DAG.getTargetConstant(Value, dl, TCVT);
13671 break;
13672 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
13673 if (isUInt<16>(Value))
13674 Result = DAG.getTargetConstant(Value, dl, TCVT);
13675 break;
13676 case 'M': // "M" is a constant that is greater than 31.
13677 if (Value > 31)
13678 Result = DAG.getTargetConstant(Value, dl, TCVT);
13679 break;
13680 case 'N': // "N" is a positive constant that is an exact power of two.
13681 if (Value > 0 && isPowerOf2_64(Value))
13682 Result = DAG.getTargetConstant(Value, dl, TCVT);
13683 break;
13684 case 'O': // "O" is the constant zero.
13685 if (Value == 0)
13686 Result = DAG.getTargetConstant(Value, dl, TCVT);
13687 break;
13688 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
13689 if (isInt<16>(-Value))
13690 Result = DAG.getTargetConstant(Value, dl, TCVT);
13691 break;
13693 break;
13697 if (Result.getNode()) {
13698 Ops.push_back(Result);
13699 return;
13702 // Handle standard constraint letters.
13703 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13706 // isLegalAddressingMode - Return true if the addressing mode represented
13707 // by AM is legal for this target, for a load/store of the specified type.
13708 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13709 const AddrMode &AM, Type *Ty,
13710 unsigned AS, Instruction *I) const {
13711 // PPC does not allow r+i addressing modes for vectors!
13712 if (Ty->isVectorTy() && AM.BaseOffs != 0)
13713 return false;
13715 // PPC allows a sign-extended 16-bit immediate field.
13716 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
13717 return false;
13719 // No global is ever allowed as a base.
13720 if (AM.BaseGV)
13721 return false;
13723 // PPC only support r+r,
13724 switch (AM.Scale) {
13725 case 0: // "r+i" or just "i", depending on HasBaseReg.
13726 break;
13727 case 1:
13728 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
13729 return false;
13730 // Otherwise we have r+r or r+i.
13731 break;
13732 case 2:
13733 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
13734 return false;
13735 // Allow 2*r as r+r.
13736 break;
13737 default:
13738 // No other scales are supported.
13739 return false;
13742 return true;
13745 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
13746 SelectionDAG &DAG) const {
13747 MachineFunction &MF = DAG.getMachineFunction();
13748 MachineFrameInfo &MFI = MF.getFrameInfo();
13749 MFI.setReturnAddressIsTaken(true);
13751 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
13752 return SDValue();
13754 SDLoc dl(Op);
13755 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13757 // Make sure the function does not optimize away the store of the RA to
13758 // the stack.
13759 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
13760 FuncInfo->setLRStoreRequired();
13761 bool isPPC64 = Subtarget.isPPC64();
13762 auto PtrVT = getPointerTy(MF.getDataLayout());
13764 if (Depth > 0) {
13765 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
13766 SDValue Offset =
13767 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
13768 isPPC64 ? MVT::i64 : MVT::i32);
13769 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
13770 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
13771 MachinePointerInfo());
13774 // Just load the return address off the stack.
13775 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
13776 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
13777 MachinePointerInfo());
13780 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
13781 SelectionDAG &DAG) const {
13782 SDLoc dl(Op);
13783 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13785 MachineFunction &MF = DAG.getMachineFunction();
13786 MachineFrameInfo &MFI = MF.getFrameInfo();
13787 MFI.setFrameAddressIsTaken(true);
13789 EVT PtrVT = getPointerTy(MF.getDataLayout());
13790 bool isPPC64 = PtrVT == MVT::i64;
13792 // Naked functions never have a frame pointer, and so we use r1. For all
13793 // other functions, this decision must be delayed until during PEI.
13794 unsigned FrameReg;
13795 if (MF.getFunction().hasFnAttribute(Attribute::Naked))
13796 FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
13797 else
13798 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
13800 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
13801 PtrVT);
13802 while (Depth--)
13803 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
13804 FrameAddr, MachinePointerInfo());
13805 return FrameAddr;
13808 // FIXME? Maybe this could be a TableGen attribute on some registers and
13809 // this table could be generated automatically from RegInfo.
13810 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
13811 SelectionDAG &DAG) const {
13812 bool isPPC64 = Subtarget.isPPC64();
13813 bool isDarwinABI = Subtarget.isDarwinABI();
13815 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
13816 (!isPPC64 && VT != MVT::i32))
13817 report_fatal_error("Invalid register global variable type");
13819 bool is64Bit = isPPC64 && VT == MVT::i64;
13820 unsigned Reg = StringSwitch<unsigned>(RegName)
13821 .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
13822 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
13823 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
13824 (is64Bit ? PPC::X13 : PPC::R13))
13825 .Default(0);
13827 if (Reg)
13828 return Reg;
13829 report_fatal_error("Invalid register name global variable");
13832 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
13833 // 32-bit SVR4 ABI access everything as got-indirect.
13834 if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
13835 return true;
13837 CodeModel::Model CModel = getTargetMachine().getCodeModel();
13838 // If it is small or large code model, module locals are accessed
13839 // indirectly by loading their address from .toc/.got. The difference
13840 // is that for large code model we have ADDISTocHa + LDtocL and for
13841 // small code model we simply have LDtoc.
13842 if (CModel == CodeModel::Small || CModel == CodeModel::Large)
13843 return true;
13845 // JumpTable and BlockAddress are accessed as got-indirect.
13846 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
13847 return true;
13849 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
13850 const GlobalValue *GV = G->getGlobal();
13851 unsigned char GVFlags = Subtarget.classifyGlobalReference(GV);
13852 // The NLP flag indicates that a global access has to use an
13853 // extra indirection.
13854 if (GVFlags & PPCII::MO_NLP_FLAG)
13855 return true;
13858 return false;
13861 bool
13862 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
13863 // The PowerPC target isn't yet aware of offsets.
13864 return false;
13867 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
13868 const CallInst &I,
13869 MachineFunction &MF,
13870 unsigned Intrinsic) const {
13871 switch (Intrinsic) {
13872 case Intrinsic::ppc_qpx_qvlfd:
13873 case Intrinsic::ppc_qpx_qvlfs:
13874 case Intrinsic::ppc_qpx_qvlfcd:
13875 case Intrinsic::ppc_qpx_qvlfcs:
13876 case Intrinsic::ppc_qpx_qvlfiwa:
13877 case Intrinsic::ppc_qpx_qvlfiwz:
13878 case Intrinsic::ppc_altivec_lvx:
13879 case Intrinsic::ppc_altivec_lvxl:
13880 case Intrinsic::ppc_altivec_lvebx:
13881 case Intrinsic::ppc_altivec_lvehx:
13882 case Intrinsic::ppc_altivec_lvewx:
13883 case Intrinsic::ppc_vsx_lxvd2x:
13884 case Intrinsic::ppc_vsx_lxvw4x: {
13885 EVT VT;
13886 switch (Intrinsic) {
13887 case Intrinsic::ppc_altivec_lvebx:
13888 VT = MVT::i8;
13889 break;
13890 case Intrinsic::ppc_altivec_lvehx:
13891 VT = MVT::i16;
13892 break;
13893 case Intrinsic::ppc_altivec_lvewx:
13894 VT = MVT::i32;
13895 break;
13896 case Intrinsic::ppc_vsx_lxvd2x:
13897 VT = MVT::v2f64;
13898 break;
13899 case Intrinsic::ppc_qpx_qvlfd:
13900 VT = MVT::v4f64;
13901 break;
13902 case Intrinsic::ppc_qpx_qvlfs:
13903 VT = MVT::v4f32;
13904 break;
13905 case Intrinsic::ppc_qpx_qvlfcd:
13906 VT = MVT::v2f64;
13907 break;
13908 case Intrinsic::ppc_qpx_qvlfcs:
13909 VT = MVT::v2f32;
13910 break;
13911 default:
13912 VT = MVT::v4i32;
13913 break;
13916 Info.opc = ISD::INTRINSIC_W_CHAIN;
13917 Info.memVT = VT;
13918 Info.ptrVal = I.getArgOperand(0);
13919 Info.offset = -VT.getStoreSize()+1;
13920 Info.size = 2*VT.getStoreSize()-1;
13921 Info.align = 1;
13922 Info.flags = MachineMemOperand::MOLoad;
13923 return true;
13925 case Intrinsic::ppc_qpx_qvlfda:
13926 case Intrinsic::ppc_qpx_qvlfsa:
13927 case Intrinsic::ppc_qpx_qvlfcda:
13928 case Intrinsic::ppc_qpx_qvlfcsa:
13929 case Intrinsic::ppc_qpx_qvlfiwaa:
13930 case Intrinsic::ppc_qpx_qvlfiwza: {
13931 EVT VT;
13932 switch (Intrinsic) {
13933 case Intrinsic::ppc_qpx_qvlfda:
13934 VT = MVT::v4f64;
13935 break;
13936 case Intrinsic::ppc_qpx_qvlfsa:
13937 VT = MVT::v4f32;
13938 break;
13939 case Intrinsic::ppc_qpx_qvlfcda:
13940 VT = MVT::v2f64;
13941 break;
13942 case Intrinsic::ppc_qpx_qvlfcsa:
13943 VT = MVT::v2f32;
13944 break;
13945 default:
13946 VT = MVT::v4i32;
13947 break;
13950 Info.opc = ISD::INTRINSIC_W_CHAIN;
13951 Info.memVT = VT;
13952 Info.ptrVal = I.getArgOperand(0);
13953 Info.offset = 0;
13954 Info.size = VT.getStoreSize();
13955 Info.align = 1;
13956 Info.flags = MachineMemOperand::MOLoad;
13957 return true;
13959 case Intrinsic::ppc_qpx_qvstfd:
13960 case Intrinsic::ppc_qpx_qvstfs:
13961 case Intrinsic::ppc_qpx_qvstfcd:
13962 case Intrinsic::ppc_qpx_qvstfcs:
13963 case Intrinsic::ppc_qpx_qvstfiw:
13964 case Intrinsic::ppc_altivec_stvx:
13965 case Intrinsic::ppc_altivec_stvxl:
13966 case Intrinsic::ppc_altivec_stvebx:
13967 case Intrinsic::ppc_altivec_stvehx:
13968 case Intrinsic::ppc_altivec_stvewx:
13969 case Intrinsic::ppc_vsx_stxvd2x:
13970 case Intrinsic::ppc_vsx_stxvw4x: {
13971 EVT VT;
13972 switch (Intrinsic) {
13973 case Intrinsic::ppc_altivec_stvebx:
13974 VT = MVT::i8;
13975 break;
13976 case Intrinsic::ppc_altivec_stvehx:
13977 VT = MVT::i16;
13978 break;
13979 case Intrinsic::ppc_altivec_stvewx:
13980 VT = MVT::i32;
13981 break;
13982 case Intrinsic::ppc_vsx_stxvd2x:
13983 VT = MVT::v2f64;
13984 break;
13985 case Intrinsic::ppc_qpx_qvstfd:
13986 VT = MVT::v4f64;
13987 break;
13988 case Intrinsic::ppc_qpx_qvstfs:
13989 VT = MVT::v4f32;
13990 break;
13991 case Intrinsic::ppc_qpx_qvstfcd:
13992 VT = MVT::v2f64;
13993 break;
13994 case Intrinsic::ppc_qpx_qvstfcs:
13995 VT = MVT::v2f32;
13996 break;
13997 default:
13998 VT = MVT::v4i32;
13999 break;
14002 Info.opc = ISD::INTRINSIC_VOID;
14003 Info.memVT = VT;
14004 Info.ptrVal = I.getArgOperand(1);
14005 Info.offset = -VT.getStoreSize()+1;
14006 Info.size = 2*VT.getStoreSize()-1;
14007 Info.align = 1;
14008 Info.flags = MachineMemOperand::MOStore;
14009 return true;
14011 case Intrinsic::ppc_qpx_qvstfda:
14012 case Intrinsic::ppc_qpx_qvstfsa:
14013 case Intrinsic::ppc_qpx_qvstfcda:
14014 case Intrinsic::ppc_qpx_qvstfcsa:
14015 case Intrinsic::ppc_qpx_qvstfiwa: {
14016 EVT VT;
14017 switch (Intrinsic) {
14018 case Intrinsic::ppc_qpx_qvstfda:
14019 VT = MVT::v4f64;
14020 break;
14021 case Intrinsic::ppc_qpx_qvstfsa:
14022 VT = MVT::v4f32;
14023 break;
14024 case Intrinsic::ppc_qpx_qvstfcda:
14025 VT = MVT::v2f64;
14026 break;
14027 case Intrinsic::ppc_qpx_qvstfcsa:
14028 VT = MVT::v2f32;
14029 break;
14030 default:
14031 VT = MVT::v4i32;
14032 break;
14035 Info.opc = ISD::INTRINSIC_VOID;
14036 Info.memVT = VT;
14037 Info.ptrVal = I.getArgOperand(1);
14038 Info.offset = 0;
14039 Info.size = VT.getStoreSize();
14040 Info.align = 1;
14041 Info.flags = MachineMemOperand::MOStore;
14042 return true;
14044 default:
14045 break;
14048 return false;
14051 /// getOptimalMemOpType - Returns the target specific optimal type for load
14052 /// and store operations as a result of memset, memcpy, and memmove
14053 /// lowering. If DstAlign is zero that means it's safe to destination
14054 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
14055 /// means there isn't a need to check it against alignment requirement,
14056 /// probably because the source does not need to be loaded. If 'IsMemset' is
14057 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
14058 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
14059 /// source is constant so it does not need to be loaded.
14060 /// It returns EVT::Other if the type should be determined using generic
14061 /// target-independent logic.
14062 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
14063 unsigned DstAlign, unsigned SrcAlign,
14064 bool IsMemset, bool ZeroMemset,
14065 bool MemcpyStrSrc,
14066 MachineFunction &MF) const {
14067 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
14068 const Function &F = MF.getFunction();
14069 // When expanding a memset, require at least two QPX instructions to cover
14070 // the cost of loading the value to be stored from the constant pool.
14071 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
14072 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
14073 !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
14074 return MVT::v4f64;
14077 // We should use Altivec/VSX loads and stores when available. For unaligned
14078 // addresses, unaligned VSX loads are only fast starting with the P8.
14079 if (Subtarget.hasAltivec() && Size >= 16 &&
14080 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
14081 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
14082 return MVT::v4i32;
14085 if (Subtarget.isPPC64()) {
14086 return MVT::i64;
14089 return MVT::i32;
14092 /// Returns true if it is beneficial to convert a load of a constant
14093 /// to just the constant itself.
14094 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14095 Type *Ty) const {
14096 assert(Ty->isIntegerTy());
14098 unsigned BitSize = Ty->getPrimitiveSizeInBits();
14099 return !(BitSize == 0 || BitSize > 64);
14102 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
14103 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
14104 return false;
14105 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
14106 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
14107 return NumBits1 == 64 && NumBits2 == 32;
14110 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
14111 if (!VT1.isInteger() || !VT2.isInteger())
14112 return false;
14113 unsigned NumBits1 = VT1.getSizeInBits();
14114 unsigned NumBits2 = VT2.getSizeInBits();
14115 return NumBits1 == 64 && NumBits2 == 32;
14118 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
14119 // Generally speaking, zexts are not free, but they are free when they can be
14120 // folded with other operations.
14121 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
14122 EVT MemVT = LD->getMemoryVT();
14123 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
14124 (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
14125 (LD->getExtensionType() == ISD::NON_EXTLOAD ||
14126 LD->getExtensionType() == ISD::ZEXTLOAD))
14127 return true;
14130 // FIXME: Add other cases...
14131 // - 32-bit shifts with a zext to i64
14132 // - zext after ctlz, bswap, etc.
14133 // - zext after and by a constant mask
14135 return TargetLowering::isZExtFree(Val, VT2);
14138 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
14139 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
14140 "invalid fpext types");
14141 // Extending to float128 is not free.
14142 if (DestVT == MVT::f128)
14143 return false;
14144 return true;
14147 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
14148 return isInt<16>(Imm) || isUInt<16>(Imm);
14151 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
14152 return isInt<16>(Imm) || isUInt<16>(Imm);
14155 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
14156 unsigned,
14157 unsigned,
14158 bool *Fast) const {
14159 if (DisablePPCUnaligned)
14160 return false;
14162 // PowerPC supports unaligned memory access for simple non-vector types.
14163 // Although accessing unaligned addresses is not as efficient as accessing
14164 // aligned addresses, it is generally more efficient than manual expansion,
14165 // and generally only traps for software emulation when crossing page
14166 // boundaries.
14168 if (!VT.isSimple())
14169 return false;
14171 if (VT.getSimpleVT().isVector()) {
14172 if (Subtarget.hasVSX()) {
14173 if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
14174 VT != MVT::v4f32 && VT != MVT::v4i32)
14175 return false;
14176 } else {
14177 return false;
14181 if (VT == MVT::ppcf128)
14182 return false;
14184 if (Fast)
14185 *Fast = true;
14187 return true;
14190 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
14191 VT = VT.getScalarType();
14193 if (!VT.isSimple())
14194 return false;
14196 switch (VT.getSimpleVT().SimpleTy) {
14197 case MVT::f32:
14198 case MVT::f64:
14199 return true;
14200 case MVT::f128:
14201 return (EnableQuadPrecision && Subtarget.hasP9Vector());
14202 default:
14203 break;
14206 return false;
14209 const MCPhysReg *
14210 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
14211 // LR is a callee-save register, but we must treat it as clobbered by any call
14212 // site. Hence we include LR in the scratch registers, which are in turn added
14213 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
14214 // to CTR, which is used by any indirect call.
14215 static const MCPhysReg ScratchRegs[] = {
14216 PPC::X12, PPC::LR8, PPC::CTR8, 0
14219 return ScratchRegs;
14222 unsigned PPCTargetLowering::getExceptionPointerRegister(
14223 const Constant *PersonalityFn) const {
14224 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
14227 unsigned PPCTargetLowering::getExceptionSelectorRegister(
14228 const Constant *PersonalityFn) const {
14229 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
14232 bool
14233 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
14234 EVT VT , unsigned DefinedValues) const {
14235 if (VT == MVT::v2i64)
14236 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
14238 if (Subtarget.hasVSX() || Subtarget.hasQPX())
14239 return true;
14241 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
14244 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
14245 if (DisableILPPref || Subtarget.enableMachineScheduler())
14246 return TargetLowering::getSchedulingPreference(N);
14248 return Sched::ILP;
14251 // Create a fast isel object.
14252 FastISel *
14253 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
14254 const TargetLibraryInfo *LibInfo) const {
14255 return PPC::createFastISel(FuncInfo, LibInfo);
14258 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
14259 if (Subtarget.isDarwinABI()) return;
14260 if (!Subtarget.isPPC64()) return;
14262 // Update IsSplitCSR in PPCFunctionInfo
14263 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
14264 PFI->setIsSplitCSR(true);
14267 void PPCTargetLowering::insertCopiesSplitCSR(
14268 MachineBasicBlock *Entry,
14269 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14270 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
14271 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14272 if (!IStart)
14273 return;
14275 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
14276 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14277 MachineBasicBlock::iterator MBBI = Entry->begin();
14278 for (const MCPhysReg *I = IStart; *I; ++I) {
14279 const TargetRegisterClass *RC = nullptr;
14280 if (PPC::G8RCRegClass.contains(*I))
14281 RC = &PPC::G8RCRegClass;
14282 else if (PPC::F8RCRegClass.contains(*I))
14283 RC = &PPC::F8RCRegClass;
14284 else if (PPC::CRRCRegClass.contains(*I))
14285 RC = &PPC::CRRCRegClass;
14286 else if (PPC::VRRCRegClass.contains(*I))
14287 RC = &PPC::VRRCRegClass;
14288 else
14289 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14291 unsigned NewVR = MRI->createVirtualRegister(RC);
14292 // Create copy from CSR to a virtual register.
14293 // FIXME: this currently does not emit CFI pseudo-instructions, it works
14294 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14295 // nounwind. If we want to generalize this later, we may need to emit
14296 // CFI pseudo-instructions.
14297 assert(Entry->getParent()->getFunction().hasFnAttribute(
14298 Attribute::NoUnwind) &&
14299 "Function should be nounwind in insertCopiesSplitCSR!");
14300 Entry->addLiveIn(*I);
14301 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14302 .addReg(*I);
14304 // Insert the copy-back instructions right before the terminator
14305 for (auto *Exit : Exits)
14306 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14307 TII->get(TargetOpcode::COPY), *I)
14308 .addReg(NewVR);
14312 // Override to enable LOAD_STACK_GUARD lowering on Linux.
14313 bool PPCTargetLowering::useLoadStackGuardNode() const {
14314 if (!Subtarget.isTargetLinux())
14315 return TargetLowering::useLoadStackGuardNode();
14316 return true;
14319 // Override to disable global variable loading on Linux.
14320 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
14321 if (!Subtarget.isTargetLinux())
14322 return TargetLowering::insertSSPDeclarations(M);
14325 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
14326 if (!VT.isSimple() || !Subtarget.hasVSX())
14327 return false;
14329 switch(VT.getSimpleVT().SimpleTy) {
14330 default:
14331 // For FP types that are currently not supported by PPC backend, return
14332 // false. Examples: f16, f80.
14333 return false;
14334 case MVT::f32:
14335 case MVT::f64:
14336 case MVT::ppcf128:
14337 return Imm.isPosZero();
14341 // For vector shift operation op, fold
14342 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
14343 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
14344 SelectionDAG &DAG) {
14345 SDValue N0 = N->getOperand(0);
14346 SDValue N1 = N->getOperand(1);
14347 EVT VT = N0.getValueType();
14348 unsigned OpSizeInBits = VT.getScalarSizeInBits();
14349 unsigned Opcode = N->getOpcode();
14350 unsigned TargetOpcode;
14352 switch (Opcode) {
14353 default:
14354 llvm_unreachable("Unexpected shift operation");
14355 case ISD::SHL:
14356 TargetOpcode = PPCISD::SHL;
14357 break;
14358 case ISD::SRL:
14359 TargetOpcode = PPCISD::SRL;
14360 break;
14361 case ISD::SRA:
14362 TargetOpcode = PPCISD::SRA;
14363 break;
14366 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
14367 N1->getOpcode() == ISD::AND)
14368 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
14369 if (Mask->getZExtValue() == OpSizeInBits - 1)
14370 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
14372 return SDValue();
14375 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
14376 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14377 return Value;
14379 SDValue N0 = N->getOperand(0);
14380 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
14381 if (!Subtarget.isISA3_0() ||
14382 N0.getOpcode() != ISD::SIGN_EXTEND ||
14383 N0.getOperand(0).getValueType() != MVT::i32 ||
14384 CN1 == nullptr || N->getValueType(0) != MVT::i64)
14385 return SDValue();
14387 // We can't save an operation here if the value is already extended, and
14388 // the existing shift is easier to combine.
14389 SDValue ExtsSrc = N0.getOperand(0);
14390 if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
14391 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
14392 return SDValue();
14394 SDLoc DL(N0);
14395 SDValue ShiftBy = SDValue(CN1, 0);
14396 // We want the shift amount to be i32 on the extswli, but the shift could
14397 // have an i64.
14398 if (ShiftBy.getValueType() == MVT::i64)
14399 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
14401 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
14402 ShiftBy);
14405 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
14406 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14407 return Value;
14409 return SDValue();
14412 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
14413 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14414 return Value;
14416 return SDValue();
14419 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
14420 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
14421 // When C is zero, the equation (addi Z, -C) can be simplified to Z
14422 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
14423 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
14424 const PPCSubtarget &Subtarget) {
14425 if (!Subtarget.isPPC64())
14426 return SDValue();
14428 SDValue LHS = N->getOperand(0);
14429 SDValue RHS = N->getOperand(1);
14431 auto isZextOfCompareWithConstant = [](SDValue Op) {
14432 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
14433 Op.getValueType() != MVT::i64)
14434 return false;
14436 SDValue Cmp = Op.getOperand(0);
14437 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
14438 Cmp.getOperand(0).getValueType() != MVT::i64)
14439 return false;
14441 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
14442 int64_t NegConstant = 0 - Constant->getSExtValue();
14443 // Due to the limitations of the addi instruction,
14444 // -C is required to be [-32768, 32767].
14445 return isInt<16>(NegConstant);
14448 return false;
14451 bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
14452 bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
14454 // If there is a pattern, canonicalize a zext operand to the RHS.
14455 if (LHSHasPattern && !RHSHasPattern)
14456 std::swap(LHS, RHS);
14457 else if (!LHSHasPattern && !RHSHasPattern)
14458 return SDValue();
14460 SDLoc DL(N);
14461 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
14462 SDValue Cmp = RHS.getOperand(0);
14463 SDValue Z = Cmp.getOperand(0);
14464 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
14466 assert(Constant && "Constant Should not be a null pointer.");
14467 int64_t NegConstant = 0 - Constant->getSExtValue();
14469 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
14470 default: break;
14471 case ISD::SETNE: {
14472 // when C == 0
14473 // --> addze X, (addic Z, -1).carry
14474 // /
14475 // add X, (zext(setne Z, C))--
14476 // \ when -32768 <= -C <= 32767 && C != 0
14477 // --> addze X, (addic (addi Z, -C), -1).carry
14478 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14479 DAG.getConstant(NegConstant, DL, MVT::i64));
14480 SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14481 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14482 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
14483 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14484 SDValue(Addc.getNode(), 1));
14486 case ISD::SETEQ: {
14487 // when C == 0
14488 // --> addze X, (subfic Z, 0).carry
14489 // /
14490 // add X, (zext(sete Z, C))--
14491 // \ when -32768 <= -C <= 32767 && C != 0
14492 // --> addze X, (subfic (addi Z, -C), 0).carry
14493 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14494 DAG.getConstant(NegConstant, DL, MVT::i64));
14495 SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14496 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14497 DAG.getConstant(0, DL, MVT::i64), AddOrZ);
14498 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14499 SDValue(Subc.getNode(), 1));
14503 return SDValue();
14506 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
14507 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
14508 return Value;
14510 return SDValue();
14513 // Detect TRUNCATE operations on bitcasts of float128 values.
14514 // What we are looking for here is the situtation where we extract a subset
14515 // of bits from a 128 bit float.
14516 // This can be of two forms:
14517 // 1) BITCAST of f128 feeding TRUNCATE
14518 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
14519 // The reason this is required is because we do not have a legal i128 type
14520 // and so we want to prevent having to store the f128 and then reload part
14521 // of it.
14522 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
14523 DAGCombinerInfo &DCI) const {
14524 // If we are using CRBits then try that first.
14525 if (Subtarget.useCRBits()) {
14526 // Check if CRBits did anything and return that if it did.
14527 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
14528 return CRTruncValue;
14531 SDLoc dl(N);
14532 SDValue Op0 = N->getOperand(0);
14534 // Looking for a truncate of i128 to i64.
14535 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
14536 return SDValue();
14538 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
14540 // SRL feeding TRUNCATE.
14541 if (Op0.getOpcode() == ISD::SRL) {
14542 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
14543 // The right shift has to be by 64 bits.
14544 if (!ConstNode || ConstNode->getZExtValue() != 64)
14545 return SDValue();
14547 // Switch the element number to extract.
14548 EltToExtract = EltToExtract ? 0 : 1;
14549 // Update Op0 past the SRL.
14550 Op0 = Op0.getOperand(0);
14553 // BITCAST feeding a TRUNCATE possibly via SRL.
14554 if (Op0.getOpcode() == ISD::BITCAST &&
14555 Op0.getValueType() == MVT::i128 &&
14556 Op0.getOperand(0).getValueType() == MVT::f128) {
14557 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
14558 return DCI.DAG.getNode(
14559 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
14560 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
14562 return SDValue();
14565 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
14566 // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
14567 if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
14568 return false;
14570 // If not a tail call then no need to proceed.
14571 if (!CI->isTailCall())
14572 return false;
14574 // If tail calls are disabled for the caller then we are done.
14575 const Function *Caller = CI->getParent()->getParent();
14576 auto Attr = Caller->getFnAttribute("disable-tail-calls");
14577 if (Attr.getValueAsString() == "true")
14578 return false;
14580 // If sibling calls have been disabled and tail-calls aren't guaranteed
14581 // there is no reason to duplicate.
14582 auto &TM = getTargetMachine();
14583 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
14584 return false;
14586 // Can't tail call a function called indirectly, or if it has variadic args.
14587 const Function *Callee = CI->getCalledFunction();
14588 if (!Callee || Callee->isVarArg())
14589 return false;
14591 // Make sure the callee and caller calling conventions are eligible for tco.
14592 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
14593 CI->getCallingConv()))
14594 return false;
14596 // If the function is local then we have a good chance at tail-calling it
14597 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
14600 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
14601 if (!Subtarget.hasVSX())
14602 return false;
14603 if (Subtarget.hasP9Vector() && VT == MVT::f128)
14604 return true;
14605 return VT == MVT::f32 || VT == MVT::f64 ||
14606 VT == MVT::v4f32 || VT == MVT::v2f64;
14609 bool PPCTargetLowering::
14610 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
14611 const Value *Mask = AndI.getOperand(1);
14612 // If the mask is suitable for andi. or andis. we should sink the and.
14613 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
14614 // Can't handle constants wider than 64-bits.
14615 if (CI->getBitWidth() > 64)
14616 return false;
14617 int64_t ConstVal = CI->getZExtValue();
14618 return isUInt<16>(ConstVal) ||
14619 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
14622 // For non-constant masks, we can always use the record-form and.
14623 return true;
14626 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
14627 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
14628 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
14629 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
14630 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
14631 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
14632 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
14633 assert(Subtarget.hasP9Altivec() &&
14634 "Only combine this when P9 altivec supported!");
14635 EVT VT = N->getValueType(0);
14636 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
14637 return SDValue();
14639 SelectionDAG &DAG = DCI.DAG;
14640 SDLoc dl(N);
14641 if (N->getOperand(0).getOpcode() == ISD::SUB) {
14642 // Even for signed integers, if it's known to be positive (as signed
14643 // integer) due to zero-extended inputs.
14644 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
14645 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
14646 if ((SubOpcd0 == ISD::ZERO_EXTEND ||
14647 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
14648 (SubOpcd1 == ISD::ZERO_EXTEND ||
14649 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
14650 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
14651 N->getOperand(0)->getOperand(0),
14652 N->getOperand(0)->getOperand(1),
14653 DAG.getTargetConstant(0, dl, MVT::i32));
14656 // For type v4i32, it can be optimized with xvnegsp + vabsduw
14657 if (N->getOperand(0).getValueType() == MVT::v4i32 &&
14658 N->getOperand(0).hasOneUse()) {
14659 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
14660 N->getOperand(0)->getOperand(0),
14661 N->getOperand(0)->getOperand(1),
14662 DAG.getTargetConstant(1, dl, MVT::i32));
14666 return SDValue();
14669 // For type v4i32/v8ii16/v16i8, transform
14670 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
14671 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
14672 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
14673 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
14674 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
14675 DAGCombinerInfo &DCI) const {
14676 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
14677 assert(Subtarget.hasP9Altivec() &&
14678 "Only combine this when P9 altivec supported!");
14680 SelectionDAG &DAG = DCI.DAG;
14681 SDLoc dl(N);
14682 SDValue Cond = N->getOperand(0);
14683 SDValue TrueOpnd = N->getOperand(1);
14684 SDValue FalseOpnd = N->getOperand(2);
14685 EVT VT = N->getOperand(1).getValueType();
14687 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
14688 FalseOpnd.getOpcode() != ISD::SUB)
14689 return SDValue();
14691 // ABSD only available for type v4i32/v8i16/v16i8
14692 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
14693 return SDValue();
14695 // At least to save one more dependent computation
14696 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
14697 return SDValue();
14699 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14701 // Can only handle unsigned comparison here
14702 switch (CC) {
14703 default:
14704 return SDValue();
14705 case ISD::SETUGT:
14706 case ISD::SETUGE:
14707 break;
14708 case ISD::SETULT:
14709 case ISD::SETULE:
14710 std::swap(TrueOpnd, FalseOpnd);
14711 break;
14714 SDValue CmpOpnd1 = Cond.getOperand(0);
14715 SDValue CmpOpnd2 = Cond.getOperand(1);
14717 // SETCC CmpOpnd1 CmpOpnd2 cond
14718 // TrueOpnd = CmpOpnd1 - CmpOpnd2
14719 // FalseOpnd = CmpOpnd2 - CmpOpnd1
14720 if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
14721 TrueOpnd.getOperand(1) == CmpOpnd2 &&
14722 FalseOpnd.getOperand(0) == CmpOpnd2 &&
14723 FalseOpnd.getOperand(1) == CmpOpnd1) {
14724 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
14725 CmpOpnd1, CmpOpnd2,
14726 DAG.getTargetConstant(0, dl, MVT::i32));
14729 return SDValue();