Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / PowerPC / PPCInstrInfo.h
blobee16d439d9e4d8deda176c9b14a1e0df63d1b585
1 //===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
14 #define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
16 #include "PPC.h"
17 #include "PPCRegisterInfo.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
20 #define GET_INSTRINFO_HEADER
21 #include "PPCGenInstrInfo.inc"
23 namespace llvm {
25 /// PPCII - This namespace holds all of the PowerPC target-specific
26 /// per-instruction flags. These must match the corresponding definitions in
27 /// PPC.td and PPCInstrFormats.td.
28 namespace PPCII {
29 enum {
30 // PPC970 Instruction Flags. These flags describe the characteristics of the
31 // PowerPC 970 (aka G5) dispatch groups and how they are formed out of
32 // raw machine instructions.
34 /// PPC970_First - This instruction starts a new dispatch group, so it will
35 /// always be the first one in the group.
36 PPC970_First = 0x1,
38 /// PPC970_Single - This instruction starts a new dispatch group and
39 /// terminates it, so it will be the sole instruction in the group.
40 PPC970_Single = 0x2,
42 /// PPC970_Cracked - This instruction is cracked into two pieces, requiring
43 /// two dispatch pipes to be available to issue.
44 PPC970_Cracked = 0x4,
46 /// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
47 /// an instruction is issued to.
48 PPC970_Shift = 3,
49 PPC970_Mask = 0x07 << PPC970_Shift
51 enum PPC970_Unit {
52 /// These are the various PPC970 execution unit pipelines. Each instruction
53 /// is one of these.
54 PPC970_Pseudo = 0 << PPC970_Shift, // Pseudo instruction
55 PPC970_FXU = 1 << PPC970_Shift, // Fixed Point (aka Integer/ALU) Unit
56 PPC970_LSU = 2 << PPC970_Shift, // Load Store Unit
57 PPC970_FPU = 3 << PPC970_Shift, // Floating Point Unit
58 PPC970_CRU = 4 << PPC970_Shift, // Control Register Unit
59 PPC970_VALU = 5 << PPC970_Shift, // Vector ALU
60 PPC970_VPERM = 6 << PPC970_Shift, // Vector Permute Unit
61 PPC970_BRU = 7 << PPC970_Shift // Branch Unit
64 enum {
65 /// Shift count to bypass PPC970 flags
66 NewDef_Shift = 6,
68 /// The VSX instruction that uses VSX register (vs0-vs63), instead of VMX
69 /// register (v0-v31).
70 UseVSXReg = 0x1 << NewDef_Shift,
71 /// This instruction is an X-Form memory operation.
72 XFormMemOp = 0x1 << (NewDef_Shift+1)
74 } // end namespace PPCII
76 // Instructions that have an immediate form might be convertible to that
77 // form if the correct input is a result of a load immediate. In order to
78 // know whether the transformation is special, we might need to know some
79 // of the details of the two forms.
80 struct ImmInstrInfo {
81 // Is the immediate field in the immediate form signed or unsigned?
82 uint64_t SignedImm : 1;
83 // Does the immediate need to be a multiple of some value?
84 uint64_t ImmMustBeMultipleOf : 5;
85 // Is R0/X0 treated specially by the original r+r instruction?
86 // If so, in which operand?
87 uint64_t ZeroIsSpecialOrig : 3;
88 // Is R0/X0 treated specially by the new r+i instruction?
89 // If so, in which operand?
90 uint64_t ZeroIsSpecialNew : 3;
91 // Is the operation commutative?
92 uint64_t IsCommutative : 1;
93 // The operand number to check for add-immediate def.
94 uint64_t OpNoForForwarding : 3;
95 // The operand number for the immediate.
96 uint64_t ImmOpNo : 3;
97 // The opcode of the new instruction.
98 uint64_t ImmOpcode : 16;
99 // The size of the immediate.
100 uint64_t ImmWidth : 5;
101 // The immediate should be truncated to N bits.
102 uint64_t TruncateImmTo : 5;
103 // Is the instruction summing the operand
104 uint64_t IsSummingOperands : 1;
107 // Information required to convert an instruction to just a materialized
108 // immediate.
109 struct LoadImmediateInfo {
110 unsigned Imm : 16;
111 unsigned Is64Bit : 1;
112 unsigned SetCR : 1;
115 class PPCSubtarget;
116 class PPCInstrInfo : public PPCGenInstrInfo {
117 PPCSubtarget &Subtarget;
118 const PPCRegisterInfo RI;
120 void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill,
121 int FrameIdx, const TargetRegisterClass *RC,
122 SmallVectorImpl<MachineInstr *> &NewMIs) const;
123 void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
124 unsigned DestReg, int FrameIdx,
125 const TargetRegisterClass *RC,
126 SmallVectorImpl<MachineInstr *> &NewMIs) const;
128 // If the inst has imm-form and one of its operand is produced by a LI,
129 // put the imm into the inst directly and remove the LI if possible.
130 bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III,
131 unsigned ConstantOpNo, int64_t Imm) const;
132 // If the inst has imm-form and one of its operand is produced by an
133 // add-immediate, try to transform it when possible.
134 bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III,
135 unsigned ConstantOpNo,
136 MachineInstr &DefMI,
137 bool KillDefMI) const;
138 // Try to find that, if the instruction 'MI' contains any operand that
139 // could be forwarded from some inst that feeds it. If yes, return the
140 // Def of that operand. And OpNoForForwarding is the operand index in
141 // the 'MI' for that 'Def'. If we see another use of this Def between
142 // the Def and the MI, SeenIntermediateUse becomes 'true'.
143 MachineInstr *getForwardingDefMI(MachineInstr &MI,
144 unsigned &OpNoForForwarding,
145 bool &SeenIntermediateUse) const;
147 // Can the user MI have it's source at index \p OpNoForForwarding
148 // forwarded from an add-immediate that feeds it?
149 bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III,
150 unsigned OpNoForForwarding) const;
151 bool isDefMIElgibleForForwarding(MachineInstr &DefMI,
152 const ImmInstrInfo &III,
153 MachineOperand *&ImmMO,
154 MachineOperand *&RegMO) const;
155 bool isImmElgibleForForwarding(const MachineOperand &ImmMO,
156 const MachineInstr &DefMI,
157 const ImmInstrInfo &III,
158 int64_t &Imm) const;
159 bool isRegElgibleForForwarding(const MachineOperand &RegMO,
160 const MachineInstr &DefMI,
161 const MachineInstr &MI,
162 bool KillDefMI) const;
163 const unsigned *getStoreOpcodesForSpillArray() const;
164 const unsigned *getLoadOpcodesForSpillArray() const;
165 virtual void anchor();
167 protected:
168 /// Commutes the operands in the given instruction.
169 /// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
171 /// Do not call this method for a non-commutable instruction or for
172 /// non-commutable pair of operand indices OpIdx1 and OpIdx2.
173 /// Even though the instruction is commutable, the method may still
174 /// fail to commute the operands, null pointer is returned in such cases.
176 /// For example, we can commute rlwimi instructions, but only if the
177 /// rotate amt is zero. We also have to munge the immediates a bit.
178 MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
179 unsigned OpIdx1,
180 unsigned OpIdx2) const override;
182 public:
183 explicit PPCInstrInfo(PPCSubtarget &STI);
185 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
186 /// such, whenever a client has an instance of instruction info, it should
187 /// always be able to get register info as well (through this method).
189 const PPCRegisterInfo &getRegisterInfo() const { return RI; }
191 bool isXFormMemOp(unsigned Opcode) const {
192 return get(Opcode).TSFlags & PPCII::XFormMemOp;
194 static bool isSameClassPhysRegCopy(unsigned Opcode) {
195 unsigned CopyOpcodes[] =
196 { PPC::OR, PPC::OR8, PPC::FMR, PPC::VOR, PPC::XXLOR, PPC::XXLORf,
197 PPC::XSCPSGNDP, PPC::MCRF, PPC::QVFMR, PPC::QVFMRs, PPC::QVFMRb,
198 PPC::CROR, PPC::EVOR, -1U };
199 for (int i = 0; CopyOpcodes[i] != -1U; i++)
200 if (Opcode == CopyOpcodes[i])
201 return true;
202 return false;
205 ScheduleHazardRecognizer *
206 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
207 const ScheduleDAG *DAG) const override;
208 ScheduleHazardRecognizer *
209 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
210 const ScheduleDAG *DAG) const override;
212 unsigned getInstrLatency(const InstrItineraryData *ItinData,
213 const MachineInstr &MI,
214 unsigned *PredCost = nullptr) const override;
216 int getOperandLatency(const InstrItineraryData *ItinData,
217 const MachineInstr &DefMI, unsigned DefIdx,
218 const MachineInstr &UseMI,
219 unsigned UseIdx) const override;
220 int getOperandLatency(const InstrItineraryData *ItinData,
221 SDNode *DefNode, unsigned DefIdx,
222 SDNode *UseNode, unsigned UseIdx) const override {
223 return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
224 UseNode, UseIdx);
227 bool hasLowDefLatency(const TargetSchedModel &SchedModel,
228 const MachineInstr &DefMI,
229 unsigned DefIdx) const override {
230 // Machine LICM should hoist all instructions in low-register-pressure
231 // situations; none are sufficiently free to justify leaving in a loop
232 // body.
233 return false;
236 bool useMachineCombiner() const override {
237 return true;
240 /// Return true when there is potentially a faster code sequence
241 /// for an instruction chain ending in <Root>. All potential patterns are
242 /// output in the <Pattern> array.
243 bool getMachineCombinerPatterns(
244 MachineInstr &Root,
245 SmallVectorImpl<MachineCombinerPattern> &P) const override;
247 bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
249 bool isCoalescableExtInstr(const MachineInstr &MI,
250 unsigned &SrcReg, unsigned &DstReg,
251 unsigned &SubIdx) const override;
252 unsigned isLoadFromStackSlot(const MachineInstr &MI,
253 int &FrameIndex) const override;
254 bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
255 AliasAnalysis *AA) const override;
256 unsigned isStoreToStackSlot(const MachineInstr &MI,
257 int &FrameIndex) const override;
259 bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
260 unsigned &SrcOpIdx2) const override;
262 void insertNoop(MachineBasicBlock &MBB,
263 MachineBasicBlock::iterator MI) const override;
266 // Branch analysis.
267 bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
268 MachineBasicBlock *&FBB,
269 SmallVectorImpl<MachineOperand> &Cond,
270 bool AllowModify) const override;
271 unsigned removeBranch(MachineBasicBlock &MBB,
272 int *BytesRemoved = nullptr) const override;
273 unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
274 MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
275 const DebugLoc &DL,
276 int *BytesAdded = nullptr) const override;
278 // Select analysis.
279 bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
280 unsigned, unsigned, int &, int &, int &) const override;
281 void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
282 const DebugLoc &DL, unsigned DstReg,
283 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
284 unsigned FalseReg) const override;
286 void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
287 const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
288 bool KillSrc) const override;
290 void storeRegToStackSlot(MachineBasicBlock &MBB,
291 MachineBasicBlock::iterator MBBI,
292 unsigned SrcReg, bool isKill, int FrameIndex,
293 const TargetRegisterClass *RC,
294 const TargetRegisterInfo *TRI) const override;
296 void loadRegFromStackSlot(MachineBasicBlock &MBB,
297 MachineBasicBlock::iterator MBBI,
298 unsigned DestReg, int FrameIndex,
299 const TargetRegisterClass *RC,
300 const TargetRegisterInfo *TRI) const override;
302 unsigned getStoreOpcodeForSpill(unsigned Reg,
303 const TargetRegisterClass *RC = nullptr) const;
305 unsigned getLoadOpcodeForSpill(unsigned Reg,
306 const TargetRegisterClass *RC = nullptr) const;
308 bool
309 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
311 bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, unsigned Reg,
312 MachineRegisterInfo *MRI) const override;
314 // If conversion by predication (only supported by some branch instructions).
315 // All of the profitability checks always return true; it is always
316 // profitable to use the predicated branches.
317 bool isProfitableToIfCvt(MachineBasicBlock &MBB,
318 unsigned NumCycles, unsigned ExtraPredCycles,
319 BranchProbability Probability) const override {
320 return true;
323 bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
324 unsigned NumT, unsigned ExtraT,
325 MachineBasicBlock &FMBB,
326 unsigned NumF, unsigned ExtraF,
327 BranchProbability Probability) const override;
329 bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
330 BranchProbability Probability) const override {
331 return true;
334 bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
335 MachineBasicBlock &FMBB) const override {
336 return false;
339 // Predication support.
340 bool isPredicated(const MachineInstr &MI) const override;
342 bool isUnpredicatedTerminator(const MachineInstr &MI) const override;
344 bool PredicateInstruction(MachineInstr &MI,
345 ArrayRef<MachineOperand> Pred) const override;
347 bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
348 ArrayRef<MachineOperand> Pred2) const override;
350 bool DefinesPredicate(MachineInstr &MI,
351 std::vector<MachineOperand> &Pred) const override;
353 bool isPredicable(const MachineInstr &MI) const override;
355 // Comparison optimization.
357 bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
358 unsigned &SrcReg2, int &Mask, int &Value) const override;
360 bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
361 unsigned SrcReg2, int Mask, int Value,
362 const MachineRegisterInfo *MRI) const override;
364 /// GetInstSize - Return the number of bytes of code the specified
365 /// instruction may be. This returns the maximum number of bytes.
367 unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
369 void getNoop(MCInst &NopInst) const override;
371 std::pair<unsigned, unsigned>
372 decomposeMachineOperandsTargetFlags(unsigned TF) const override;
374 ArrayRef<std::pair<unsigned, const char *>>
375 getSerializableDirectMachineOperandTargetFlags() const override;
377 ArrayRef<std::pair<unsigned, const char *>>
378 getSerializableBitmaskMachineOperandTargetFlags() const override;
380 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
381 bool expandVSXMemPseudo(MachineInstr &MI) const;
383 // Lower pseudo instructions after register allocation.
384 bool expandPostRAPseudo(MachineInstr &MI) const override;
386 static bool isVFRegister(unsigned Reg) {
387 return Reg >= PPC::VF0 && Reg <= PPC::VF31;
389 static bool isVRRegister(unsigned Reg) {
390 return Reg >= PPC::V0 && Reg <= PPC::V31;
392 const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
393 static int getRecordFormOpcode(unsigned Opcode);
395 bool isTOCSaveMI(const MachineInstr &MI) const;
397 bool isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
398 const unsigned PhiDepth) const;
400 /// Return true if the output of the instruction is always a sign-extended,
401 /// i.e. 0 to 31-th bits are same as 32-th bit.
402 bool isSignExtended(const MachineInstr &MI, const unsigned depth = 0) const {
403 return isSignOrZeroExtended(MI, true, depth);
406 /// Return true if the output of the instruction is always zero-extended,
407 /// i.e. 0 to 31-th bits are all zeros
408 bool isZeroExtended(const MachineInstr &MI, const unsigned depth = 0) const {
409 return isSignOrZeroExtended(MI, false, depth);
412 bool convertToImmediateForm(MachineInstr &MI,
413 MachineInstr **KilledDef = nullptr) const;
414 void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
415 void replaceInstrOperandWithImm(MachineInstr &MI, unsigned OpNo,
416 int64_t Imm) const;
418 bool instrHasImmForm(const MachineInstr &MI, ImmInstrInfo &III,
419 bool PostRA) const;
421 /// getRegNumForOperand - some operands use different numbering schemes
422 /// for the same registers. For example, a VSX instruction may have any of
423 /// vs0-vs63 allocated whereas an Altivec instruction could only have
424 /// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual
425 /// register number needed for the opcode/operand number combination.
426 /// The operand number argument will be useful when we need to extend this
427 /// to instructions that use both Altivec and VSX numbering (for different
428 /// operands).
429 static unsigned getRegNumForOperand(const MCInstrDesc &Desc, unsigned Reg,
430 unsigned OpNo) {
431 if (Desc.TSFlags & PPCII::UseVSXReg) {
432 if (isVRRegister(Reg))
433 Reg = PPC::VSX32 + (Reg - PPC::V0);
434 else if (isVFRegister(Reg))
435 Reg = PPC::VSX32 + (Reg - PPC::VF0);
437 return Reg;
443 #endif