1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===---------------------------------------------------------------------===//
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer. It runs at the end of
11 // the SSA phases, following VSX swap removal. A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here. Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects: it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
19 //===---------------------------------------------------------------------===//
22 #include "PPCInstrBuilder.h"
23 #include "PPCInstrInfo.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/Support/Debug.h"
31 #include "MCTargetDesc/PPCPredicates.h"
35 #define DEBUG_TYPE "ppc-mi-peepholes"
37 STATISTIC(RemoveTOCSave
, "Number of TOC saves removed");
38 STATISTIC(MultiTOCSaves
,
39 "Number of functions with multiple TOC saves that must be kept");
40 STATISTIC(NumEliminatedSExt
, "Number of eliminated sign-extensions");
41 STATISTIC(NumEliminatedZExt
, "Number of eliminated zero-extensions");
42 STATISTIC(NumOptADDLIs
, "Number of optimized ADD instruction fed by LI");
43 STATISTIC(NumConvertedToImmediateForm
,
44 "Number of instructions converted to their immediate form");
45 STATISTIC(NumFunctionsEnteredInMIPeephole
,
46 "Number of functions entered in PPC MI Peepholes");
47 STATISTIC(NumFixedPointIterations
,
48 "Number of fixed-point iterations converting reg-reg instructions "
52 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden
, cl::init(true),
53 cl::desc("Iterate to a fixed point when attempting to "
54 "convert reg-reg instructions to reg-imm"));
57 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden
, cl::init(true),
58 cl::desc("Convert eligible reg+reg instructions to reg+imm"));
61 EnableSExtElimination("ppc-eliminate-signext",
62 cl::desc("enable elimination of sign-extensions"),
63 cl::init(false), cl::Hidden
);
66 EnableZExtElimination("ppc-eliminate-zeroext",
67 cl::desc("enable elimination of zero-extensions"),
68 cl::init(false), cl::Hidden
);
72 struct PPCMIPeephole
: public MachineFunctionPass
{
75 const PPCInstrInfo
*TII
;
77 MachineRegisterInfo
*MRI
;
79 PPCMIPeephole() : MachineFunctionPass(ID
) {
80 initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
84 MachineDominatorTree
*MDT
;
86 // Initialize class variables.
87 void initialize(MachineFunction
&MFParm
);
90 bool simplifyCode(void);
93 bool eliminateRedundantCompare(void);
94 bool eliminateRedundantTOCSaves(std::map
<MachineInstr
*, bool> &TOCSaves
);
95 void UpdateTOCSaves(std::map
<MachineInstr
*, bool> &TOCSaves
,
100 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
101 AU
.addRequired
<MachineDominatorTree
>();
102 AU
.addPreserved
<MachineDominatorTree
>();
103 MachineFunctionPass::getAnalysisUsage(AU
);
106 // Main entry point for this pass.
107 bool runOnMachineFunction(MachineFunction
&MF
) override
{
108 if (skipFunction(MF
.getFunction()))
111 return simplifyCode();
115 // Initialize class variables.
116 void PPCMIPeephole::initialize(MachineFunction
&MFParm
) {
118 MRI
= &MF
->getRegInfo();
119 MDT
= &getAnalysis
<MachineDominatorTree
>();
120 TII
= MF
->getSubtarget
<PPCSubtarget
>().getInstrInfo();
121 LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
122 LLVM_DEBUG(MF
->dump());
125 static MachineInstr
*getVRegDefOrNull(MachineOperand
*Op
,
126 MachineRegisterInfo
*MRI
) {
127 assert(Op
&& "Invalid Operand!");
131 unsigned Reg
= Op
->getReg();
132 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
135 return MRI
->getVRegDef(Reg
);
138 // This function returns number of known zero bits in output of MI
139 // starting from the most significant bit.
141 getKnownLeadingZeroCount(MachineInstr
*MI
, const PPCInstrInfo
*TII
) {
142 unsigned Opcode
= MI
->getOpcode();
143 if (Opcode
== PPC::RLDICL
|| Opcode
== PPC::RLDICLo
||
144 Opcode
== PPC::RLDCL
|| Opcode
== PPC::RLDCLo
)
145 return MI
->getOperand(3).getImm();
147 if ((Opcode
== PPC::RLDIC
|| Opcode
== PPC::RLDICo
) &&
148 MI
->getOperand(3).getImm() <= 63 - MI
->getOperand(2).getImm())
149 return MI
->getOperand(3).getImm();
151 if ((Opcode
== PPC::RLWINM
|| Opcode
== PPC::RLWINMo
||
152 Opcode
== PPC::RLWNM
|| Opcode
== PPC::RLWNMo
||
153 Opcode
== PPC::RLWINM8
|| Opcode
== PPC::RLWNM8
) &&
154 MI
->getOperand(3).getImm() <= MI
->getOperand(4).getImm())
155 return 32 + MI
->getOperand(3).getImm();
157 if (Opcode
== PPC::ANDIo
) {
158 uint16_t Imm
= MI
->getOperand(2).getImm();
159 return 48 + countLeadingZeros(Imm
);
162 if (Opcode
== PPC::CNTLZW
|| Opcode
== PPC::CNTLZWo
||
163 Opcode
== PPC::CNTTZW
|| Opcode
== PPC::CNTTZWo
||
164 Opcode
== PPC::CNTLZW8
|| Opcode
== PPC::CNTTZW8
)
165 // The result ranges from 0 to 32.
168 if (Opcode
== PPC::CNTLZD
|| Opcode
== PPC::CNTLZDo
||
169 Opcode
== PPC::CNTTZD
|| Opcode
== PPC::CNTTZDo
)
170 // The result ranges from 0 to 64.
173 if (Opcode
== PPC::LHZ
|| Opcode
== PPC::LHZX
||
174 Opcode
== PPC::LHZ8
|| Opcode
== PPC::LHZX8
||
175 Opcode
== PPC::LHZU
|| Opcode
== PPC::LHZUX
||
176 Opcode
== PPC::LHZU8
|| Opcode
== PPC::LHZUX8
)
179 if (Opcode
== PPC::LBZ
|| Opcode
== PPC::LBZX
||
180 Opcode
== PPC::LBZ8
|| Opcode
== PPC::LBZX8
||
181 Opcode
== PPC::LBZU
|| Opcode
== PPC::LBZUX
||
182 Opcode
== PPC::LBZU8
|| Opcode
== PPC::LBZUX8
)
185 if (TII
->isZeroExtended(*MI
))
191 // This function maintains a map for the pairs <TOC Save Instr, Keep>
192 // Each time a new TOC save is encountered, it checks if any of the existing
193 // ones are dominated by the new one. If so, it marks the existing one as
194 // redundant by setting it's entry in the map as false. It then adds the new
195 // instruction to the map with either true or false depending on if any
196 // existing instructions dominated the new one.
197 void PPCMIPeephole::UpdateTOCSaves(
198 std::map
<MachineInstr
*, bool> &TOCSaves
, MachineInstr
*MI
) {
199 assert(TII
->isTOCSaveMI(*MI
) && "Expecting a TOC save instruction here");
201 for (auto It
= TOCSaves
.begin(); It
!= TOCSaves
.end(); It
++ ) {
202 MachineInstr
*CurrInst
= It
->first
;
203 // If new instruction dominates an existing one, mark existing one as
205 if (It
->second
&& MDT
->dominates(MI
, CurrInst
))
207 // Check if the new instruction is redundant.
208 if (MDT
->dominates(CurrInst
, MI
)) {
213 // Add new instruction to map.
217 // Perform peephole optimizations.
218 bool PPCMIPeephole::simplifyCode(void) {
219 bool Simplified
= false;
220 MachineInstr
* ToErase
= nullptr;
221 std::map
<MachineInstr
*, bool> TOCSaves
;
222 const TargetRegisterInfo
*TRI
= &TII
->getRegisterInfo();
223 NumFunctionsEnteredInMIPeephole
++;
225 // Fixed-point conversion of reg/reg instructions fed by load-immediate
226 // into reg/imm instructions. FIXME: This is expensive, control it with
228 bool SomethingChanged
= false;
230 NumFixedPointIterations
++;
231 SomethingChanged
= false;
232 for (MachineBasicBlock
&MBB
: *MF
) {
233 for (MachineInstr
&MI
: MBB
) {
234 if (MI
.isDebugInstr())
237 if (TII
->convertToImmediateForm(MI
)) {
238 // We don't erase anything in case the def has other uses. Let DCE
239 // remove it if it can be removed.
240 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
241 LLVM_DEBUG(MI
.dump());
242 NumConvertedToImmediateForm
++;
243 SomethingChanged
= true;
249 } while (SomethingChanged
&& FixedPointRegToImm
);
252 for (MachineBasicBlock
&MBB
: *MF
) {
253 for (MachineInstr
&MI
: MBB
) {
255 // If the previous instruction was marked for elimination,
258 ToErase
->eraseFromParent();
262 // Ignore debug instructions.
263 if (MI
.isDebugInstr())
266 // Per-opcode peepholes.
267 switch (MI
.getOpcode()) {
273 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
274 if (MFI
.hasVarSizedObjects() ||
275 !MF
->getSubtarget
<PPCSubtarget
>().isELFv2ABI())
277 // When encountering a TOC save instruction, call UpdateTOCSaves
278 // to add it to the TOCSaves map and mark any existing TOC saves
279 // it dominates as redundant.
280 if (TII
->isTOCSaveMI(MI
))
281 UpdateTOCSaves(TOCSaves
, &MI
);
284 case PPC::XXPERMDI
: {
285 // Perform simplifications of 2x64 vector swaps and splats.
286 // A swap is identified by an immediate value of 2, and a splat
287 // is identified by an immediate value of 0 or 3.
288 int Immed
= MI
.getOperand(3).getImm();
292 // For each of these simplifications, we need the two source
293 // regs to match. Unfortunately, MachineCSE ignores COPY and
294 // SUBREG_TO_REG, so for example we can see
295 // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
296 // We have to look through chains of COPY and SUBREG_TO_REG
297 // to find the real source values for comparison.
299 TRI
->lookThruCopyLike(MI
.getOperand(1).getReg(), MRI
);
301 TRI
->lookThruCopyLike(MI
.getOperand(2).getReg(), MRI
);
303 if (TrueReg1
== TrueReg2
304 && TargetRegisterInfo::isVirtualRegister(TrueReg1
)) {
305 MachineInstr
*DefMI
= MRI
->getVRegDef(TrueReg1
);
306 unsigned DefOpc
= DefMI
? DefMI
->getOpcode() : 0;
308 // If this is a splat fed by a splatting load, the splat is
309 // redundant. Replace with a copy. This doesn't happen directly due
310 // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
311 // a load of a double to a vector of 64-bit integers.
312 auto isConversionOfLoadAndSplat
= [=]() -> bool {
313 if (DefOpc
!= PPC::XVCVDPSXDS
&& DefOpc
!= PPC::XVCVDPUXDS
)
316 TRI
->lookThruCopyLike(DefMI
->getOperand(1).getReg(), MRI
);
317 if (TargetRegisterInfo::isVirtualRegister(DefReg
)) {
318 MachineInstr
*LoadMI
= MRI
->getVRegDef(DefReg
);
319 if (LoadMI
&& LoadMI
->getOpcode() == PPC::LXVDSX
)
324 if (DefMI
&& (Immed
== 0 || Immed
== 3)) {
325 if (DefOpc
== PPC::LXVDSX
|| isConversionOfLoadAndSplat()) {
326 LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
327 "to load-and-splat/copy: ");
328 LLVM_DEBUG(MI
.dump());
329 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
330 MI
.getOperand(0).getReg())
331 .add(MI
.getOperand(1));
337 // If this is a splat or a swap fed by another splat, we
338 // can replace it with a copy.
339 if (DefOpc
== PPC::XXPERMDI
) {
340 unsigned FeedImmed
= DefMI
->getOperand(3).getImm();
342 TRI
->lookThruCopyLike(DefMI
->getOperand(1).getReg(), MRI
);
344 TRI
->lookThruCopyLike(DefMI
->getOperand(2).getReg(), MRI
);
346 if ((FeedImmed
== 0 || FeedImmed
== 3) && FeedReg1
== FeedReg2
) {
347 LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
349 LLVM_DEBUG(MI
.dump());
350 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
351 MI
.getOperand(0).getReg())
352 .add(MI
.getOperand(1));
357 // If this is a splat fed by a swap, we can simplify modify
358 // the splat to splat the other value from the swap's input
360 else if ((Immed
== 0 || Immed
== 3)
361 && FeedImmed
== 2 && FeedReg1
== FeedReg2
) {
362 LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
363 LLVM_DEBUG(MI
.dump());
364 MI
.getOperand(1).setReg(DefMI
->getOperand(1).getReg());
365 MI
.getOperand(2).setReg(DefMI
->getOperand(2).getReg());
366 MI
.getOperand(3).setImm(3 - Immed
);
370 // If this is a swap fed by a swap, we can replace it
371 // with a copy from the first swap's input.
372 else if (Immed
== 2 && FeedImmed
== 2 && FeedReg1
== FeedReg2
) {
373 LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
374 LLVM_DEBUG(MI
.dump());
375 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
376 MI
.getOperand(0).getReg())
377 .add(DefMI
->getOperand(1));
381 } else if ((Immed
== 0 || Immed
== 3) && DefOpc
== PPC::XXPERMDIs
&&
382 (DefMI
->getOperand(2).getImm() == 0 ||
383 DefMI
->getOperand(2).getImm() == 3)) {
384 // Splat fed by another splat - switch the output of the first
385 // and remove the second.
386 DefMI
->getOperand(0).setReg(MI
.getOperand(0).getReg());
389 LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
390 LLVM_DEBUG(MI
.dump());
399 unsigned MyOpcode
= MI
.getOpcode();
400 unsigned OpNo
= MyOpcode
== PPC::XXSPLTW
? 1 : 2;
402 TRI
->lookThruCopyLike(MI
.getOperand(OpNo
).getReg(), MRI
);
403 if (!TargetRegisterInfo::isVirtualRegister(TrueReg
))
405 MachineInstr
*DefMI
= MRI
->getVRegDef(TrueReg
);
408 unsigned DefOpcode
= DefMI
->getOpcode();
409 auto isConvertOfSplat
= [=]() -> bool {
410 if (DefOpcode
!= PPC::XVCVSPSXWS
&& DefOpcode
!= PPC::XVCVSPUXWS
)
412 unsigned ConvReg
= DefMI
->getOperand(1).getReg();
413 if (!TargetRegisterInfo::isVirtualRegister(ConvReg
))
415 MachineInstr
*Splt
= MRI
->getVRegDef(ConvReg
);
416 return Splt
&& (Splt
->getOpcode() == PPC::LXVWSX
||
417 Splt
->getOpcode() == PPC::XXSPLTW
);
419 bool AlreadySplat
= (MyOpcode
== DefOpcode
) ||
420 (MyOpcode
== PPC::VSPLTB
&& DefOpcode
== PPC::VSPLTBs
) ||
421 (MyOpcode
== PPC::VSPLTH
&& DefOpcode
== PPC::VSPLTHs
) ||
422 (MyOpcode
== PPC::XXSPLTW
&& DefOpcode
== PPC::XXSPLTWs
) ||
423 (MyOpcode
== PPC::XXSPLTW
&& DefOpcode
== PPC::LXVWSX
) ||
424 (MyOpcode
== PPC::XXSPLTW
&& DefOpcode
== PPC::MTVSRWS
)||
425 (MyOpcode
== PPC::XXSPLTW
&& isConvertOfSplat());
426 // If the instruction[s] that feed this splat have already splat
427 // the value, this splat is redundant.
429 LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
430 LLVM_DEBUG(MI
.dump());
431 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
432 MI
.getOperand(0).getReg())
433 .add(MI
.getOperand(OpNo
));
437 // Splat fed by a shift. Usually when we align value to splat into
438 // vector element zero.
439 if (DefOpcode
== PPC::XXSLDWI
) {
440 unsigned ShiftRes
= DefMI
->getOperand(0).getReg();
441 unsigned ShiftOp1
= DefMI
->getOperand(1).getReg();
442 unsigned ShiftOp2
= DefMI
->getOperand(2).getReg();
443 unsigned ShiftImm
= DefMI
->getOperand(3).getImm();
444 unsigned SplatImm
= MI
.getOperand(2).getImm();
445 if (ShiftOp1
== ShiftOp2
) {
446 unsigned NewElem
= (SplatImm
+ ShiftImm
) & 0x3;
447 if (MRI
->hasOneNonDBGUse(ShiftRes
)) {
448 LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
449 LLVM_DEBUG(DefMI
->dump());
453 LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
454 << " to " << NewElem
<< " in instruction: ");
455 LLVM_DEBUG(MI
.dump());
456 MI
.getOperand(1).setReg(ShiftOp1
);
457 MI
.getOperand(2).setImm(NewElem
);
462 case PPC::XVCVDPSP
: {
463 // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
465 TRI
->lookThruCopyLike(MI
.getOperand(1).getReg(), MRI
);
466 if (!TargetRegisterInfo::isVirtualRegister(TrueReg
))
468 MachineInstr
*DefMI
= MRI
->getVRegDef(TrueReg
);
470 // This can occur when building a vector of single precision or integer
472 if (DefMI
&& DefMI
->getOpcode() == PPC::XXPERMDI
) {
474 TRI
->lookThruCopyLike(DefMI
->getOperand(1).getReg(), MRI
);
476 TRI
->lookThruCopyLike(DefMI
->getOperand(2).getReg(), MRI
);
477 if (!TargetRegisterInfo::isVirtualRegister(DefsReg1
) ||
478 !TargetRegisterInfo::isVirtualRegister(DefsReg2
))
480 MachineInstr
*P1
= MRI
->getVRegDef(DefsReg1
);
481 MachineInstr
*P2
= MRI
->getVRegDef(DefsReg2
);
486 // Remove the passed FRSP instruction if it only feeds this MI and
487 // set any uses of that FRSP (in this MI) to the source of the FRSP.
488 auto removeFRSPIfPossible
= [&](MachineInstr
*RoundInstr
) {
489 if (RoundInstr
->getOpcode() == PPC::FRSP
&&
490 MRI
->hasOneNonDBGUse(RoundInstr
->getOperand(0).getReg())) {
492 unsigned ConvReg1
= RoundInstr
->getOperand(1).getReg();
493 unsigned FRSPDefines
= RoundInstr
->getOperand(0).getReg();
494 MachineInstr
&Use
= *(MRI
->use_instr_begin(FRSPDefines
));
495 for (int i
= 0, e
= Use
.getNumOperands(); i
< e
; ++i
)
496 if (Use
.getOperand(i
).isReg() &&
497 Use
.getOperand(i
).getReg() == FRSPDefines
)
498 Use
.getOperand(i
).setReg(ConvReg1
);
499 LLVM_DEBUG(dbgs() << "Removing redundant FRSP:\n");
500 LLVM_DEBUG(RoundInstr
->dump());
501 LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
502 LLVM_DEBUG(MI
.dump());
503 LLVM_DEBUG(dbgs() << "Through instruction:\n");
504 LLVM_DEBUG(DefMI
->dump());
505 RoundInstr
->eraseFromParent();
509 // If the input to XVCVDPSP is a vector that was built (even
510 // partially) out of FRSP's, the FRSP(s) can safely be removed
511 // since this instruction performs the same operation.
513 removeFRSPIfPossible(P1
);
514 removeFRSPIfPossible(P2
);
517 removeFRSPIfPossible(P1
);
523 case PPC::EXTSH8_32_64
: {
524 if (!EnableSExtElimination
) break;
525 unsigned NarrowReg
= MI
.getOperand(1).getReg();
526 if (!TargetRegisterInfo::isVirtualRegister(NarrowReg
))
529 MachineInstr
*SrcMI
= MRI
->getVRegDef(NarrowReg
);
530 // If we've used a zero-extending load that we will sign-extend,
531 // just do a sign-extending load.
532 if (SrcMI
->getOpcode() == PPC::LHZ
||
533 SrcMI
->getOpcode() == PPC::LHZX
) {
534 if (!MRI
->hasOneNonDBGUse(SrcMI
->getOperand(0).getReg()))
536 auto is64Bit
= [] (unsigned Opcode
) {
537 return Opcode
== PPC::EXTSH8
;
539 auto isXForm
= [] (unsigned Opcode
) {
540 return Opcode
== PPC::LHZX
;
542 auto getSextLoadOp
= [] (bool is64Bit
, bool isXForm
) {
544 if (isXForm
) return PPC::LHAX8
;
545 else return PPC::LHA8
;
547 if (isXForm
) return PPC::LHAX
;
548 else return PPC::LHA
;
550 unsigned Opc
= getSextLoadOp(is64Bit(MI
.getOpcode()),
551 isXForm(SrcMI
->getOpcode()));
552 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
553 LLVM_DEBUG(SrcMI
->dump());
554 LLVM_DEBUG(dbgs() << "and sign-extension\n");
555 LLVM_DEBUG(MI
.dump());
556 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
557 SrcMI
->setDesc(TII
->get(Opc
));
558 SrcMI
->getOperand(0).setReg(MI
.getOperand(0).getReg());
567 case PPC::EXTSW_32_64
: {
568 if (!EnableSExtElimination
) break;
569 unsigned NarrowReg
= MI
.getOperand(1).getReg();
570 if (!TargetRegisterInfo::isVirtualRegister(NarrowReg
))
573 MachineInstr
*SrcMI
= MRI
->getVRegDef(NarrowReg
);
574 // If we've used a zero-extending load that we will sign-extend,
575 // just do a sign-extending load.
576 if (SrcMI
->getOpcode() == PPC::LWZ
||
577 SrcMI
->getOpcode() == PPC::LWZX
) {
578 if (!MRI
->hasOneNonDBGUse(SrcMI
->getOperand(0).getReg()))
580 auto is64Bit
= [] (unsigned Opcode
) {
581 return Opcode
== PPC::EXTSW
|| Opcode
== PPC::EXTSW_32_64
;
583 auto isXForm
= [] (unsigned Opcode
) {
584 return Opcode
== PPC::LWZX
;
586 auto getSextLoadOp
= [] (bool is64Bit
, bool isXForm
) {
588 if (isXForm
) return PPC::LWAX
;
589 else return PPC::LWA
;
591 if (isXForm
) return PPC::LWAX_32
;
592 else return PPC::LWA_32
;
594 unsigned Opc
= getSextLoadOp(is64Bit(MI
.getOpcode()),
595 isXForm(SrcMI
->getOpcode()));
596 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
597 LLVM_DEBUG(SrcMI
->dump());
598 LLVM_DEBUG(dbgs() << "and sign-extension\n");
599 LLVM_DEBUG(MI
.dump());
600 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
601 SrcMI
->setDesc(TII
->get(Opc
));
602 SrcMI
->getOperand(0).setReg(MI
.getOperand(0).getReg());
606 } else if (MI
.getOpcode() == PPC::EXTSW_32_64
&&
607 TII
->isSignExtended(*SrcMI
)) {
608 // We can eliminate EXTSW if the input is known to be already
610 LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
612 MF
->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass
);
613 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::IMPLICIT_DEF
),
615 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::INSERT_SUBREG
),
616 MI
.getOperand(0).getReg())
619 .addImm(PPC::sub_32
);
627 // We can eliminate RLDICL (e.g. for zero-extension)
628 // if all bits to clear are already zero in the input.
629 // This code assume following code sequence for zero-extension.
630 // %6 = COPY %5:sub_32; (optional)
631 // %8 = IMPLICIT_DEF;
632 // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
633 if (!EnableZExtElimination
) break;
635 if (MI
.getOperand(2).getImm() != 0)
638 unsigned SrcReg
= MI
.getOperand(1).getReg();
639 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
642 MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
643 if (!(SrcMI
&& SrcMI
->getOpcode() == PPC::INSERT_SUBREG
&&
644 SrcMI
->getOperand(0).isReg() && SrcMI
->getOperand(1).isReg()))
647 MachineInstr
*ImpDefMI
, *SubRegMI
;
648 ImpDefMI
= MRI
->getVRegDef(SrcMI
->getOperand(1).getReg());
649 SubRegMI
= MRI
->getVRegDef(SrcMI
->getOperand(2).getReg());
650 if (ImpDefMI
->getOpcode() != PPC::IMPLICIT_DEF
) break;
653 if (SubRegMI
->getOpcode() == PPC::COPY
) {
654 unsigned CopyReg
= SubRegMI
->getOperand(1).getReg();
655 if (TargetRegisterInfo::isVirtualRegister(CopyReg
))
656 SrcMI
= MRI
->getVRegDef(CopyReg
);
659 unsigned KnownZeroCount
= getKnownLeadingZeroCount(SrcMI
, TII
);
660 if (MI
.getOperand(3).getImm() <= KnownZeroCount
) {
661 LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
662 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
663 MI
.getOperand(0).getReg())
672 // TODO: Any instruction that has an immediate form fed only by a PHI
673 // whose operands are all load immediate can be folded away. We currently
674 // do this for ADD instructions, but should expand it to arithmetic and
675 // binary instructions with immediate forms in the future.
678 auto isSingleUsePHI
= [&](MachineOperand
*PhiOp
) {
679 assert(PhiOp
&& "Invalid Operand!");
680 MachineInstr
*DefPhiMI
= getVRegDefOrNull(PhiOp
, MRI
);
682 return DefPhiMI
&& (DefPhiMI
->getOpcode() == PPC::PHI
) &&
683 MRI
->hasOneNonDBGUse(DefPhiMI
->getOperand(0).getReg());
686 auto dominatesAllSingleUseLIs
= [&](MachineOperand
*DominatorOp
,
687 MachineOperand
*PhiOp
) {
688 assert(PhiOp
&& "Invalid Operand!");
689 assert(DominatorOp
&& "Invalid Operand!");
690 MachineInstr
*DefPhiMI
= getVRegDefOrNull(PhiOp
, MRI
);
691 MachineInstr
*DefDomMI
= getVRegDefOrNull(DominatorOp
, MRI
);
693 // Note: the vregs only show up at odd indices position of PHI Node,
694 // the even indices position save the BB info.
695 for (unsigned i
= 1; i
< DefPhiMI
->getNumOperands(); i
+= 2) {
697 getVRegDefOrNull(&DefPhiMI
->getOperand(i
), MRI
);
699 (LiMI
->getOpcode() != PPC::LI
&& LiMI
->getOpcode() != PPC::LI8
)
700 || !MRI
->hasOneNonDBGUse(LiMI
->getOperand(0).getReg()) ||
701 !MDT
->dominates(DefDomMI
, LiMI
))
708 MachineOperand Op1
= MI
.getOperand(1);
709 MachineOperand Op2
= MI
.getOperand(2);
710 if (isSingleUsePHI(&Op2
) && dominatesAllSingleUseLIs(&Op1
, &Op2
))
712 else if (!isSingleUsePHI(&Op1
) || !dominatesAllSingleUseLIs(&Op2
, &Op1
))
713 break; // We don't have an ADD fed by LI's that can be transformed
715 // Now we know that Op1 is the PHI node and Op2 is the dominator
716 unsigned DominatorReg
= Op2
.getReg();
718 const TargetRegisterClass
*TRC
= MI
.getOpcode() == PPC::ADD8
719 ? &PPC::G8RC_and_G8RC_NOX0RegClass
720 : &PPC::GPRC_and_GPRC_NOR0RegClass
;
721 MRI
->setRegClass(DominatorReg
, TRC
);
723 // replace LIs with ADDIs
724 MachineInstr
*DefPhiMI
= getVRegDefOrNull(&Op1
, MRI
);
725 for (unsigned i
= 1; i
< DefPhiMI
->getNumOperands(); i
+= 2) {
726 MachineInstr
*LiMI
= getVRegDefOrNull(&DefPhiMI
->getOperand(i
), MRI
);
727 LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
728 LLVM_DEBUG(LiMI
->dump());
730 // There could be repeated registers in the PHI, e.g: %1 =
731 // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
732 // already replaced the def instruction, skip.
733 if (LiMI
->getOpcode() == PPC::ADDI
|| LiMI
->getOpcode() == PPC::ADDI8
)
736 assert((LiMI
->getOpcode() == PPC::LI
||
737 LiMI
->getOpcode() == PPC::LI8
) &&
739 auto LiImm
= LiMI
->getOperand(1).getImm(); // save the imm of LI
740 LiMI
->RemoveOperand(1); // remove the imm of LI
741 LiMI
->setDesc(TII
->get(LiMI
->getOpcode() == PPC::LI
? PPC::ADDI
743 MachineInstrBuilder(*LiMI
->getParent()->getParent(), *LiMI
)
744 .addReg(DominatorReg
)
745 .addImm(LiImm
); // restore the imm of LI
746 LLVM_DEBUG(LiMI
->dump());
749 // Replace ADD with COPY
750 LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
751 LLVM_DEBUG(MI
.dump());
752 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
753 MI
.getOperand(0).getReg())
763 // If the last instruction was marked for elimination,
766 ToErase
->eraseFromParent();
771 // Eliminate all the TOC save instructions which are redundant.
772 Simplified
|= eliminateRedundantTOCSaves(TOCSaves
);
773 // We try to eliminate redundant compare instruction.
774 Simplified
|= eliminateRedundantCompare();
779 // helper functions for eliminateRedundantCompare
780 static bool isEqOrNe(MachineInstr
*BI
) {
781 PPC::Predicate Pred
= (PPC::Predicate
)BI
->getOperand(0).getImm();
782 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
783 return (PredCond
== PPC::PRED_EQ
|| PredCond
== PPC::PRED_NE
);
786 static bool isSupportedCmpOp(unsigned opCode
) {
787 return (opCode
== PPC::CMPLD
|| opCode
== PPC::CMPD
||
788 opCode
== PPC::CMPLW
|| opCode
== PPC::CMPW
||
789 opCode
== PPC::CMPLDI
|| opCode
== PPC::CMPDI
||
790 opCode
== PPC::CMPLWI
|| opCode
== PPC::CMPWI
);
793 static bool is64bitCmpOp(unsigned opCode
) {
794 return (opCode
== PPC::CMPLD
|| opCode
== PPC::CMPD
||
795 opCode
== PPC::CMPLDI
|| opCode
== PPC::CMPDI
);
798 static bool isSignedCmpOp(unsigned opCode
) {
799 return (opCode
== PPC::CMPD
|| opCode
== PPC::CMPW
||
800 opCode
== PPC::CMPDI
|| opCode
== PPC::CMPWI
);
803 static unsigned getSignedCmpOpCode(unsigned opCode
) {
804 if (opCode
== PPC::CMPLD
) return PPC::CMPD
;
805 if (opCode
== PPC::CMPLW
) return PPC::CMPW
;
806 if (opCode
== PPC::CMPLDI
) return PPC::CMPDI
;
807 if (opCode
== PPC::CMPLWI
) return PPC::CMPWI
;
811 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
812 // (LT x) to (LE x-1)
813 static unsigned getPredicateToDecImm(MachineInstr
*BI
, MachineInstr
*CMPI
) {
814 uint64_t Imm
= CMPI
->getOperand(2).getImm();
815 bool SignedCmp
= isSignedCmpOp(CMPI
->getOpcode());
816 if ((!SignedCmp
&& Imm
== 0) || (SignedCmp
&& Imm
== 0x8000))
819 PPC::Predicate Pred
= (PPC::Predicate
)BI
->getOperand(0).getImm();
820 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
821 unsigned PredHint
= PPC::getPredicateHint(Pred
);
822 if (PredCond
== PPC::PRED_GE
)
823 return PPC::getPredicate(PPC::PRED_GT
, PredHint
);
824 if (PredCond
== PPC::PRED_LT
)
825 return PPC::getPredicate(PPC::PRED_LE
, PredHint
);
830 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
831 // (LE x) to (LT x+1)
832 static unsigned getPredicateToIncImm(MachineInstr
*BI
, MachineInstr
*CMPI
) {
833 uint64_t Imm
= CMPI
->getOperand(2).getImm();
834 bool SignedCmp
= isSignedCmpOp(CMPI
->getOpcode());
835 if ((!SignedCmp
&& Imm
== 0xFFFF) || (SignedCmp
&& Imm
== 0x7FFF))
838 PPC::Predicate Pred
= (PPC::Predicate
)BI
->getOperand(0).getImm();
839 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
840 unsigned PredHint
= PPC::getPredicateHint(Pred
);
841 if (PredCond
== PPC::PRED_GT
)
842 return PPC::getPredicate(PPC::PRED_GE
, PredHint
);
843 if (PredCond
== PPC::PRED_LE
)
844 return PPC::getPredicate(PPC::PRED_LT
, PredHint
);
849 // This takes a Phi node and returns a register value for the specified BB.
850 static unsigned getIncomingRegForBlock(MachineInstr
*Phi
,
851 MachineBasicBlock
*MBB
) {
852 for (unsigned I
= 2, E
= Phi
->getNumOperands() + 1; I
!= E
; I
+= 2) {
853 MachineOperand
&MO
= Phi
->getOperand(I
);
854 if (MO
.getMBB() == MBB
)
855 return Phi
->getOperand(I
-1).getReg();
857 llvm_unreachable("invalid src basic block for this Phi node\n");
861 // This function tracks the source of the register through register copy.
862 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
863 // assuming that the control comes from BB1 into BB2.
864 static unsigned getSrcVReg(unsigned Reg
, MachineBasicBlock
*BB1
,
865 MachineBasicBlock
*BB2
, MachineRegisterInfo
*MRI
) {
866 unsigned SrcReg
= Reg
;
868 unsigned NextReg
= SrcReg
;
869 MachineInstr
*Inst
= MRI
->getVRegDef(SrcReg
);
870 if (BB1
&& Inst
->getOpcode() == PPC::PHI
&& Inst
->getParent() == BB2
) {
871 NextReg
= getIncomingRegForBlock(Inst
, BB1
);
872 // We track through PHI only once to avoid infinite loop.
875 else if (Inst
->isFullCopy())
876 NextReg
= Inst
->getOperand(1).getReg();
877 if (NextReg
== SrcReg
|| !TargetRegisterInfo::isVirtualRegister(NextReg
))
884 static bool eligibleForCompareElimination(MachineBasicBlock
&MBB
,
885 MachineBasicBlock
*&PredMBB
,
886 MachineBasicBlock
*&MBBtoMoveCmp
,
887 MachineRegisterInfo
*MRI
) {
889 auto isEligibleBB
= [&](MachineBasicBlock
&BB
) {
890 auto BII
= BB
.getFirstInstrTerminator();
891 // We optimize BBs ending with a conditional branch.
892 // We check only for BCC here, not BCCLR, because BCCLR
893 // will be formed only later in the pipeline.
894 if (BB
.succ_size() == 2 &&
895 BII
!= BB
.instr_end() &&
896 (*BII
).getOpcode() == PPC::BCC
&&
897 (*BII
).getOperand(1).isReg()) {
898 // We optimize only if the condition code is used only by one BCC.
899 unsigned CndReg
= (*BII
).getOperand(1).getReg();
900 if (!TargetRegisterInfo::isVirtualRegister(CndReg
) ||
901 !MRI
->hasOneNonDBGUse(CndReg
))
904 MachineInstr
*CMPI
= MRI
->getVRegDef(CndReg
);
905 // We assume compare and branch are in the same BB for ease of analysis.
906 if (CMPI
->getParent() != &BB
)
909 // We skip this BB if a physical register is used in comparison.
910 for (MachineOperand
&MO
: CMPI
->operands())
911 if (MO
.isReg() && !TargetRegisterInfo::isVirtualRegister(MO
.getReg()))
919 // If this BB has more than one successor, we can create a new BB and
920 // move the compare instruction in the new BB.
921 // So far, we do not move compare instruction to a BB having multiple
922 // successors to avoid potentially increasing code size.
923 auto isEligibleForMoveCmp
= [](MachineBasicBlock
&BB
) {
924 return BB
.succ_size() == 1;
927 if (!isEligibleBB(MBB
))
930 unsigned NumPredBBs
= MBB
.pred_size();
931 if (NumPredBBs
== 1) {
932 MachineBasicBlock
*TmpMBB
= *MBB
.pred_begin();
933 if (isEligibleBB(*TmpMBB
)) {
935 MBBtoMoveCmp
= nullptr;
939 else if (NumPredBBs
== 2) {
940 // We check for partially redundant case.
941 // So far, we support cases with only two predecessors
942 // to avoid increasing the number of instructions.
943 MachineBasicBlock::pred_iterator PI
= MBB
.pred_begin();
944 MachineBasicBlock
*Pred1MBB
= *PI
;
945 MachineBasicBlock
*Pred2MBB
= *(PI
+1);
947 if (isEligibleBB(*Pred1MBB
) && isEligibleForMoveCmp(*Pred2MBB
)) {
948 // We assume Pred1MBB is the BB containing the compare to be merged and
949 // Pred2MBB is the BB to which we will append a compare instruction.
950 // Hence we can proceed as is.
952 else if (isEligibleBB(*Pred2MBB
) && isEligibleForMoveCmp(*Pred1MBB
)) {
953 // We need to swap Pred1MBB and Pred2MBB to canonicalize.
954 std::swap(Pred1MBB
, Pred2MBB
);
958 // Here, Pred2MBB is the BB to which we need to append a compare inst.
959 // We cannot move the compare instruction if operands are not available
960 // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
961 MachineInstr
*BI
= &*MBB
.getFirstInstrTerminator();
962 MachineInstr
*CMPI
= MRI
->getVRegDef(BI
->getOperand(1).getReg());
963 for (int I
= 1; I
<= 2; I
++)
964 if (CMPI
->getOperand(I
).isReg()) {
965 MachineInstr
*Inst
= MRI
->getVRegDef(CMPI
->getOperand(I
).getReg());
966 if (Inst
->getParent() == &MBB
&& Inst
->getOpcode() != PPC::PHI
)
971 MBBtoMoveCmp
= Pred2MBB
;
978 // This function will iterate over the input map containing a pair of TOC save
979 // instruction and a flag. The flag will be set to false if the TOC save is
980 // proven redundant. This function will erase from the basic block all the TOC
981 // saves marked as redundant.
982 bool PPCMIPeephole::eliminateRedundantTOCSaves(
983 std::map
<MachineInstr
*, bool> &TOCSaves
) {
984 bool Simplified
= false;
986 for (auto TOCSave
: TOCSaves
) {
987 if (!TOCSave
.second
) {
988 TOCSave
.first
->eraseFromParent();
1002 // If multiple conditional branches are executed based on the (essentially)
1003 // same comparison, we merge compare instructions into one and make multiple
1004 // conditional branches on this comparison.
1006 // if (a == 0) { ... }
1007 // else if (a < 0) { ... }
1008 // can be executed by one compare and two conditional branches instead of
1009 // two pairs of a compare and a conditional branch.
1011 // This method merges two compare instructions in two MBBs and modifies the
1012 // compare and conditional branch instructions if needed.
1013 // For the above example, the input for this pass looks like:
1018 // So, before merging two compares, we need to modify these instructions as
1019 // cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq
1021 // cmpwi r3, 0 ; greather than -1 means greater or equal to 0
1024 bool PPCMIPeephole::eliminateRedundantCompare(void) {
1025 bool Simplified
= false;
1027 for (MachineBasicBlock
&MBB2
: *MF
) {
1028 MachineBasicBlock
*MBB1
= nullptr, *MBBtoMoveCmp
= nullptr;
1030 // For fully redundant case, we select two basic blocks MBB1 and MBB2
1031 // as an optimization target if
1032 // - both MBBs end with a conditional branch,
1033 // - MBB1 is the only predecessor of MBB2, and
1034 // - compare does not take a physical register as a operand in both MBBs.
1035 // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1037 // As partially redundant case, we additionally handle if MBB2 has one
1038 // additional predecessor, which has only one successor (MBB2).
1039 // In this case, we move the compare instruction originally in MBB2 into
1040 // MBBtoMoveCmp. This partially redundant case is typically appear by
1041 // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1043 // Overview of CFG of related basic blocks
1044 // Fully redundant case Partially redundant case
1045 // -------- ---------------- --------
1046 // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ)
1047 // -------- ---------------- --------
1048 // | \ (w/ 1 succ) \ | \
1051 // -------- --------
1052 // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred
1053 // -------- and 2 succ) -------- and 2 succ)
1057 if (!eligibleForCompareElimination(MBB2
, MBB1
, MBBtoMoveCmp
, MRI
))
1060 MachineInstr
*BI1
= &*MBB1
->getFirstInstrTerminator();
1061 MachineInstr
*CMPI1
= MRI
->getVRegDef(BI1
->getOperand(1).getReg());
1063 MachineInstr
*BI2
= &*MBB2
.getFirstInstrTerminator();
1064 MachineInstr
*CMPI2
= MRI
->getVRegDef(BI2
->getOperand(1).getReg());
1065 bool IsPartiallyRedundant
= (MBBtoMoveCmp
!= nullptr);
1067 // We cannot optimize an unsupported compare opcode or
1068 // a mix of 32-bit and 64-bit comaprisons
1069 if (!isSupportedCmpOp(CMPI1
->getOpcode()) ||
1070 !isSupportedCmpOp(CMPI2
->getOpcode()) ||
1071 is64bitCmpOp(CMPI1
->getOpcode()) != is64bitCmpOp(CMPI2
->getOpcode()))
1074 unsigned NewOpCode
= 0;
1075 unsigned NewPredicate1
= 0, NewPredicate2
= 0;
1076 int16_t Imm1
= 0, NewImm1
= 0, Imm2
= 0, NewImm2
= 0;
1077 bool SwapOperands
= false;
1079 if (CMPI1
->getOpcode() != CMPI2
->getOpcode()) {
1080 // Typically, unsigned comparison is used for equality check, but
1081 // we replace it with a signed comparison if the comparison
1082 // to be merged is a signed comparison.
1083 // In other cases of opcode mismatch, we cannot optimize this.
1085 // We cannot change opcode when comparing against an immediate
1086 // if the most significant bit of the immediate is one
1087 // due to the difference in sign extension.
1088 auto CmpAgainstImmWithSignBit
= [](MachineInstr
*I
) {
1089 if (!I
->getOperand(2).isImm())
1091 int16_t Imm
= (int16_t)I
->getOperand(2).getImm();
1095 if (isEqOrNe(BI2
) && !CmpAgainstImmWithSignBit(CMPI2
) &&
1096 CMPI1
->getOpcode() == getSignedCmpOpCode(CMPI2
->getOpcode()))
1097 NewOpCode
= CMPI1
->getOpcode();
1098 else if (isEqOrNe(BI1
) && !CmpAgainstImmWithSignBit(CMPI1
) &&
1099 getSignedCmpOpCode(CMPI1
->getOpcode()) == CMPI2
->getOpcode())
1100 NewOpCode
= CMPI2
->getOpcode();
1104 if (CMPI1
->getOperand(2).isReg() && CMPI2
->getOperand(2).isReg()) {
1105 // In case of comparisons between two registers, these two registers
1106 // must be same to merge two comparisons.
1107 unsigned Cmp1Operand1
= getSrcVReg(CMPI1
->getOperand(1).getReg(),
1108 nullptr, nullptr, MRI
);
1109 unsigned Cmp1Operand2
= getSrcVReg(CMPI1
->getOperand(2).getReg(),
1110 nullptr, nullptr, MRI
);
1111 unsigned Cmp2Operand1
= getSrcVReg(CMPI2
->getOperand(1).getReg(),
1113 unsigned Cmp2Operand2
= getSrcVReg(CMPI2
->getOperand(2).getReg(),
1116 if (Cmp1Operand1
== Cmp2Operand1
&& Cmp1Operand2
== Cmp2Operand2
) {
1117 // Same pair of registers in the same order; ready to merge as is.
1119 else if (Cmp1Operand1
== Cmp2Operand2
&& Cmp1Operand2
== Cmp2Operand1
) {
1120 // Same pair of registers in different order.
1121 // We reverse the predicate to merge compare instructions.
1122 PPC::Predicate Pred
= (PPC::Predicate
)BI2
->getOperand(0).getImm();
1123 NewPredicate2
= (unsigned)PPC::getSwappedPredicate(Pred
);
1124 // In case of partial redundancy, we need to swap operands
1125 // in another compare instruction.
1126 SwapOperands
= true;
1130 else if (CMPI1
->getOperand(2).isImm() && CMPI2
->getOperand(2).isImm()) {
1131 // In case of comparisons between a register and an immediate,
1132 // the operand register must be same for two compare instructions.
1133 unsigned Cmp1Operand1
= getSrcVReg(CMPI1
->getOperand(1).getReg(),
1134 nullptr, nullptr, MRI
);
1135 unsigned Cmp2Operand1
= getSrcVReg(CMPI2
->getOperand(1).getReg(),
1137 if (Cmp1Operand1
!= Cmp2Operand1
)
1140 NewImm1
= Imm1
= (int16_t)CMPI1
->getOperand(2).getImm();
1141 NewImm2
= Imm2
= (int16_t)CMPI2
->getOperand(2).getImm();
1143 // If immediate are not same, we try to adjust by changing predicate;
1144 // e.g. GT imm means GE (imm+1).
1145 if (Imm1
!= Imm2
&& (!isEqOrNe(BI2
) || !isEqOrNe(BI1
))) {
1146 int Diff
= Imm1
- Imm2
;
1147 if (Diff
< -2 || Diff
> 2)
1150 unsigned PredToInc1
= getPredicateToIncImm(BI1
, CMPI1
);
1151 unsigned PredToDec1
= getPredicateToDecImm(BI1
, CMPI1
);
1152 unsigned PredToInc2
= getPredicateToIncImm(BI2
, CMPI2
);
1153 unsigned PredToDec2
= getPredicateToDecImm(BI2
, CMPI2
);
1155 if (PredToInc2
&& PredToDec1
) {
1156 NewPredicate2
= PredToInc2
;
1157 NewPredicate1
= PredToDec1
;
1162 else if (Diff
== 1) {
1165 NewPredicate2
= PredToInc2
;
1167 else if (PredToDec1
) {
1169 NewPredicate1
= PredToDec1
;
1172 else if (Diff
== -1) {
1175 NewPredicate2
= PredToDec2
;
1177 else if (PredToInc1
) {
1179 NewPredicate1
= PredToInc1
;
1182 else if (Diff
== -2) {
1183 if (PredToDec2
&& PredToInc1
) {
1184 NewPredicate2
= PredToDec2
;
1185 NewPredicate1
= PredToInc1
;
1192 // We cannot merge two compares if the immediates are not same.
1193 if (NewImm2
!= NewImm1
)
1197 LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1198 LLVM_DEBUG(CMPI1
->dump());
1199 LLVM_DEBUG(BI1
->dump());
1200 LLVM_DEBUG(CMPI2
->dump());
1201 LLVM_DEBUG(BI2
->dump());
1203 // We adjust opcode, predicates and immediate as we determined above.
1204 if (NewOpCode
!= 0 && NewOpCode
!= CMPI1
->getOpcode()) {
1205 CMPI1
->setDesc(TII
->get(NewOpCode
));
1207 if (NewPredicate1
) {
1208 BI1
->getOperand(0).setImm(NewPredicate1
);
1210 if (NewPredicate2
) {
1211 BI2
->getOperand(0).setImm(NewPredicate2
);
1213 if (NewImm1
!= Imm1
) {
1214 CMPI1
->getOperand(2).setImm(NewImm1
);
1217 if (IsPartiallyRedundant
) {
1218 // We touch up the compare instruction in MBB2 and move it to
1219 // a previous BB to handle partially redundant case.
1221 unsigned Op1
= CMPI2
->getOperand(1).getReg();
1222 unsigned Op2
= CMPI2
->getOperand(2).getReg();
1223 CMPI2
->getOperand(1).setReg(Op2
);
1224 CMPI2
->getOperand(2).setReg(Op1
);
1226 if (NewImm2
!= Imm2
)
1227 CMPI2
->getOperand(2).setImm(NewImm2
);
1229 for (int I
= 1; I
<= 2; I
++) {
1230 if (CMPI2
->getOperand(I
).isReg()) {
1231 MachineInstr
*Inst
= MRI
->getVRegDef(CMPI2
->getOperand(I
).getReg());
1232 if (Inst
->getParent() != &MBB2
)
1235 assert(Inst
->getOpcode() == PPC::PHI
&&
1236 "We cannot support if an operand comes from this BB.");
1237 unsigned SrcReg
= getIncomingRegForBlock(Inst
, MBBtoMoveCmp
);
1238 CMPI2
->getOperand(I
).setReg(SrcReg
);
1241 auto I
= MachineBasicBlock::iterator(MBBtoMoveCmp
->getFirstTerminator());
1242 MBBtoMoveCmp
->splice(I
, &MBB2
, MachineBasicBlock::iterator(CMPI2
));
1244 DebugLoc DL
= CMPI2
->getDebugLoc();
1245 unsigned NewVReg
= MRI
->createVirtualRegister(&PPC::CRRCRegClass
);
1246 BuildMI(MBB2
, MBB2
.begin(), DL
,
1247 TII
->get(PPC::PHI
), NewVReg
)
1248 .addReg(BI1
->getOperand(1).getReg()).addMBB(MBB1
)
1249 .addReg(BI2
->getOperand(1).getReg()).addMBB(MBBtoMoveCmp
);
1250 BI2
->getOperand(1).setReg(NewVReg
);
1253 // We finally eliminate compare instruction in MBB2.
1254 BI2
->getOperand(1).setReg(BI1
->getOperand(1).getReg());
1255 CMPI2
->eraseFromParent();
1257 BI2
->getOperand(1).setIsKill(true);
1258 BI1
->getOperand(1).setIsKill(false);
1260 LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1261 LLVM_DEBUG(CMPI1
->dump());
1262 LLVM_DEBUG(BI1
->dump());
1263 LLVM_DEBUG(BI2
->dump());
1264 if (IsPartiallyRedundant
) {
1265 LLVM_DEBUG(dbgs() << "The following compare is moved into "
1266 << printMBBReference(*MBBtoMoveCmp
)
1267 << " to handle partial redundancy.\n");
1268 LLVM_DEBUG(CMPI2
->dump());
1277 } // end default namespace
1279 INITIALIZE_PASS_BEGIN(PPCMIPeephole
, DEBUG_TYPE
,
1280 "PowerPC MI Peephole Optimization", false, false)
1281 INITIALIZE_PASS_END(PPCMIPeephole
, DEBUG_TYPE
,
1282 "PowerPC MI Peephole Optimization", false, false)
1284 char PPCMIPeephole::ID
= 0;
1286 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }