Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / PowerPC / PPCMIPeephole.cpp
blob255ba2d868158816e35c2f0ce2352a9a014a54d7
1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer. It runs at the end of
11 // the SSA phases, following VSX swap removal. A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here. Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects: it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
19 //===---------------------------------------------------------------------===//
21 #include "PPC.h"
22 #include "PPCInstrBuilder.h"
23 #include "PPCInstrInfo.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/Support/Debug.h"
31 #include "MCTargetDesc/PPCPredicates.h"
33 using namespace llvm;
35 #define DEBUG_TYPE "ppc-mi-peepholes"
37 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
38 STATISTIC(MultiTOCSaves,
39 "Number of functions with multiple TOC saves that must be kept");
40 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
41 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
42 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
43 STATISTIC(NumConvertedToImmediateForm,
44 "Number of instructions converted to their immediate form");
45 STATISTIC(NumFunctionsEnteredInMIPeephole,
46 "Number of functions entered in PPC MI Peepholes");
47 STATISTIC(NumFixedPointIterations,
48 "Number of fixed-point iterations converting reg-reg instructions "
49 "to reg-imm ones");
51 static cl::opt<bool>
52 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
53 cl::desc("Iterate to a fixed point when attempting to "
54 "convert reg-reg instructions to reg-imm"));
56 static cl::opt<bool>
57 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
58 cl::desc("Convert eligible reg+reg instructions to reg+imm"));
60 static cl::opt<bool>
61 EnableSExtElimination("ppc-eliminate-signext",
62 cl::desc("enable elimination of sign-extensions"),
63 cl::init(false), cl::Hidden);
65 static cl::opt<bool>
66 EnableZExtElimination("ppc-eliminate-zeroext",
67 cl::desc("enable elimination of zero-extensions"),
68 cl::init(false), cl::Hidden);
70 namespace {
72 struct PPCMIPeephole : public MachineFunctionPass {
74 static char ID;
75 const PPCInstrInfo *TII;
76 MachineFunction *MF;
77 MachineRegisterInfo *MRI;
79 PPCMIPeephole() : MachineFunctionPass(ID) {
80 initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
83 private:
84 MachineDominatorTree *MDT;
86 // Initialize class variables.
87 void initialize(MachineFunction &MFParm);
89 // Perform peepholes.
90 bool simplifyCode(void);
92 // Perform peepholes.
93 bool eliminateRedundantCompare(void);
94 bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
95 void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
96 MachineInstr *MI);
98 public:
100 void getAnalysisUsage(AnalysisUsage &AU) const override {
101 AU.addRequired<MachineDominatorTree>();
102 AU.addPreserved<MachineDominatorTree>();
103 MachineFunctionPass::getAnalysisUsage(AU);
106 // Main entry point for this pass.
107 bool runOnMachineFunction(MachineFunction &MF) override {
108 if (skipFunction(MF.getFunction()))
109 return false;
110 initialize(MF);
111 return simplifyCode();
115 // Initialize class variables.
116 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
117 MF = &MFParm;
118 MRI = &MF->getRegInfo();
119 MDT = &getAnalysis<MachineDominatorTree>();
120 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
121 LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
122 LLVM_DEBUG(MF->dump());
125 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
126 MachineRegisterInfo *MRI) {
127 assert(Op && "Invalid Operand!");
128 if (!Op->isReg())
129 return nullptr;
131 unsigned Reg = Op->getReg();
132 if (!TargetRegisterInfo::isVirtualRegister(Reg))
133 return nullptr;
135 return MRI->getVRegDef(Reg);
138 // This function returns number of known zero bits in output of MI
139 // starting from the most significant bit.
140 static unsigned
141 getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
142 unsigned Opcode = MI->getOpcode();
143 if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
144 Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo)
145 return MI->getOperand(3).getImm();
147 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
148 MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
149 return MI->getOperand(3).getImm();
151 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
152 Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo ||
153 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
154 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
155 return 32 + MI->getOperand(3).getImm();
157 if (Opcode == PPC::ANDIo) {
158 uint16_t Imm = MI->getOperand(2).getImm();
159 return 48 + countLeadingZeros(Imm);
162 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo ||
163 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo ||
164 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
165 // The result ranges from 0 to 32.
166 return 58;
168 if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo ||
169 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo)
170 // The result ranges from 0 to 64.
171 return 57;
173 if (Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
174 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
175 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
176 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
177 return 48;
179 if (Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
180 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
181 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
182 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
183 return 56;
185 if (TII->isZeroExtended(*MI))
186 return 32;
188 return 0;
191 // This function maintains a map for the pairs <TOC Save Instr, Keep>
192 // Each time a new TOC save is encountered, it checks if any of the existing
193 // ones are dominated by the new one. If so, it marks the existing one as
194 // redundant by setting it's entry in the map as false. It then adds the new
195 // instruction to the map with either true or false depending on if any
196 // existing instructions dominated the new one.
197 void PPCMIPeephole::UpdateTOCSaves(
198 std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
199 assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
200 bool Keep = true;
201 for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) {
202 MachineInstr *CurrInst = It->first;
203 // If new instruction dominates an existing one, mark existing one as
204 // redundant.
205 if (It->second && MDT->dominates(MI, CurrInst))
206 It->second = false;
207 // Check if the new instruction is redundant.
208 if (MDT->dominates(CurrInst, MI)) {
209 Keep = false;
210 break;
213 // Add new instruction to map.
214 TOCSaves[MI] = Keep;
217 // Perform peephole optimizations.
218 bool PPCMIPeephole::simplifyCode(void) {
219 bool Simplified = false;
220 MachineInstr* ToErase = nullptr;
221 std::map<MachineInstr *, bool> TOCSaves;
222 const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
223 NumFunctionsEnteredInMIPeephole++;
224 if (ConvertRegReg) {
225 // Fixed-point conversion of reg/reg instructions fed by load-immediate
226 // into reg/imm instructions. FIXME: This is expensive, control it with
227 // an option.
228 bool SomethingChanged = false;
229 do {
230 NumFixedPointIterations++;
231 SomethingChanged = false;
232 for (MachineBasicBlock &MBB : *MF) {
233 for (MachineInstr &MI : MBB) {
234 if (MI.isDebugInstr())
235 continue;
237 if (TII->convertToImmediateForm(MI)) {
238 // We don't erase anything in case the def has other uses. Let DCE
239 // remove it if it can be removed.
240 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
241 LLVM_DEBUG(MI.dump());
242 NumConvertedToImmediateForm++;
243 SomethingChanged = true;
244 Simplified = true;
245 continue;
249 } while (SomethingChanged && FixedPointRegToImm);
252 for (MachineBasicBlock &MBB : *MF) {
253 for (MachineInstr &MI : MBB) {
255 // If the previous instruction was marked for elimination,
256 // remove it now.
257 if (ToErase) {
258 ToErase->eraseFromParent();
259 ToErase = nullptr;
262 // Ignore debug instructions.
263 if (MI.isDebugInstr())
264 continue;
266 // Per-opcode peepholes.
267 switch (MI.getOpcode()) {
269 default:
270 break;
272 case PPC::STD: {
273 MachineFrameInfo &MFI = MF->getFrameInfo();
274 if (MFI.hasVarSizedObjects() ||
275 !MF->getSubtarget<PPCSubtarget>().isELFv2ABI())
276 break;
277 // When encountering a TOC save instruction, call UpdateTOCSaves
278 // to add it to the TOCSaves map and mark any existing TOC saves
279 // it dominates as redundant.
280 if (TII->isTOCSaveMI(MI))
281 UpdateTOCSaves(TOCSaves, &MI);
282 break;
284 case PPC::XXPERMDI: {
285 // Perform simplifications of 2x64 vector swaps and splats.
286 // A swap is identified by an immediate value of 2, and a splat
287 // is identified by an immediate value of 0 or 3.
288 int Immed = MI.getOperand(3).getImm();
290 if (Immed != 1) {
292 // For each of these simplifications, we need the two source
293 // regs to match. Unfortunately, MachineCSE ignores COPY and
294 // SUBREG_TO_REG, so for example we can see
295 // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
296 // We have to look through chains of COPY and SUBREG_TO_REG
297 // to find the real source values for comparison.
298 unsigned TrueReg1 =
299 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
300 unsigned TrueReg2 =
301 TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
303 if (TrueReg1 == TrueReg2
304 && TargetRegisterInfo::isVirtualRegister(TrueReg1)) {
305 MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
306 unsigned DefOpc = DefMI ? DefMI->getOpcode() : 0;
308 // If this is a splat fed by a splatting load, the splat is
309 // redundant. Replace with a copy. This doesn't happen directly due
310 // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
311 // a load of a double to a vector of 64-bit integers.
312 auto isConversionOfLoadAndSplat = [=]() -> bool {
313 if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
314 return false;
315 unsigned DefReg =
316 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
317 if (TargetRegisterInfo::isVirtualRegister(DefReg)) {
318 MachineInstr *LoadMI = MRI->getVRegDef(DefReg);
319 if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
320 return true;
322 return false;
324 if (DefMI && (Immed == 0 || Immed == 3)) {
325 if (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat()) {
326 LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
327 "to load-and-splat/copy: ");
328 LLVM_DEBUG(MI.dump());
329 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
330 MI.getOperand(0).getReg())
331 .add(MI.getOperand(1));
332 ToErase = &MI;
333 Simplified = true;
337 // If this is a splat or a swap fed by another splat, we
338 // can replace it with a copy.
339 if (DefOpc == PPC::XXPERMDI) {
340 unsigned FeedImmed = DefMI->getOperand(3).getImm();
341 unsigned FeedReg1 =
342 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
343 unsigned FeedReg2 =
344 TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
346 if ((FeedImmed == 0 || FeedImmed == 3) && FeedReg1 == FeedReg2) {
347 LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
348 "to splat/copy: ");
349 LLVM_DEBUG(MI.dump());
350 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
351 MI.getOperand(0).getReg())
352 .add(MI.getOperand(1));
353 ToErase = &MI;
354 Simplified = true;
357 // If this is a splat fed by a swap, we can simplify modify
358 // the splat to splat the other value from the swap's input
359 // parameter.
360 else if ((Immed == 0 || Immed == 3)
361 && FeedImmed == 2 && FeedReg1 == FeedReg2) {
362 LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
363 LLVM_DEBUG(MI.dump());
364 MI.getOperand(1).setReg(DefMI->getOperand(1).getReg());
365 MI.getOperand(2).setReg(DefMI->getOperand(2).getReg());
366 MI.getOperand(3).setImm(3 - Immed);
367 Simplified = true;
370 // If this is a swap fed by a swap, we can replace it
371 // with a copy from the first swap's input.
372 else if (Immed == 2 && FeedImmed == 2 && FeedReg1 == FeedReg2) {
373 LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
374 LLVM_DEBUG(MI.dump());
375 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
376 MI.getOperand(0).getReg())
377 .add(DefMI->getOperand(1));
378 ToErase = &MI;
379 Simplified = true;
381 } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
382 (DefMI->getOperand(2).getImm() == 0 ||
383 DefMI->getOperand(2).getImm() == 3)) {
384 // Splat fed by another splat - switch the output of the first
385 // and remove the second.
386 DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
387 ToErase = &MI;
388 Simplified = true;
389 LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
390 LLVM_DEBUG(MI.dump());
394 break;
396 case PPC::VSPLTB:
397 case PPC::VSPLTH:
398 case PPC::XXSPLTW: {
399 unsigned MyOpcode = MI.getOpcode();
400 unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
401 unsigned TrueReg =
402 TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
403 if (!TargetRegisterInfo::isVirtualRegister(TrueReg))
404 break;
405 MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
406 if (!DefMI)
407 break;
408 unsigned DefOpcode = DefMI->getOpcode();
409 auto isConvertOfSplat = [=]() -> bool {
410 if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
411 return false;
412 unsigned ConvReg = DefMI->getOperand(1).getReg();
413 if (!TargetRegisterInfo::isVirtualRegister(ConvReg))
414 return false;
415 MachineInstr *Splt = MRI->getVRegDef(ConvReg);
416 return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
417 Splt->getOpcode() == PPC::XXSPLTW);
419 bool AlreadySplat = (MyOpcode == DefOpcode) ||
420 (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
421 (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
422 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
423 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
424 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
425 (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
426 // If the instruction[s] that feed this splat have already splat
427 // the value, this splat is redundant.
428 if (AlreadySplat) {
429 LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
430 LLVM_DEBUG(MI.dump());
431 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
432 MI.getOperand(0).getReg())
433 .add(MI.getOperand(OpNo));
434 ToErase = &MI;
435 Simplified = true;
437 // Splat fed by a shift. Usually when we align value to splat into
438 // vector element zero.
439 if (DefOpcode == PPC::XXSLDWI) {
440 unsigned ShiftRes = DefMI->getOperand(0).getReg();
441 unsigned ShiftOp1 = DefMI->getOperand(1).getReg();
442 unsigned ShiftOp2 = DefMI->getOperand(2).getReg();
443 unsigned ShiftImm = DefMI->getOperand(3).getImm();
444 unsigned SplatImm = MI.getOperand(2).getImm();
445 if (ShiftOp1 == ShiftOp2) {
446 unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
447 if (MRI->hasOneNonDBGUse(ShiftRes)) {
448 LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
449 LLVM_DEBUG(DefMI->dump());
450 ToErase = DefMI;
452 Simplified = true;
453 LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
454 << " to " << NewElem << " in instruction: ");
455 LLVM_DEBUG(MI.dump());
456 MI.getOperand(1).setReg(ShiftOp1);
457 MI.getOperand(2).setImm(NewElem);
460 break;
462 case PPC::XVCVDPSP: {
463 // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
464 unsigned TrueReg =
465 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
466 if (!TargetRegisterInfo::isVirtualRegister(TrueReg))
467 break;
468 MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
470 // This can occur when building a vector of single precision or integer
471 // values.
472 if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
473 unsigned DefsReg1 =
474 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
475 unsigned DefsReg2 =
476 TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
477 if (!TargetRegisterInfo::isVirtualRegister(DefsReg1) ||
478 !TargetRegisterInfo::isVirtualRegister(DefsReg2))
479 break;
480 MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
481 MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
483 if (!P1 || !P2)
484 break;
486 // Remove the passed FRSP instruction if it only feeds this MI and
487 // set any uses of that FRSP (in this MI) to the source of the FRSP.
488 auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
489 if (RoundInstr->getOpcode() == PPC::FRSP &&
490 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
491 Simplified = true;
492 unsigned ConvReg1 = RoundInstr->getOperand(1).getReg();
493 unsigned FRSPDefines = RoundInstr->getOperand(0).getReg();
494 MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines));
495 for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
496 if (Use.getOperand(i).isReg() &&
497 Use.getOperand(i).getReg() == FRSPDefines)
498 Use.getOperand(i).setReg(ConvReg1);
499 LLVM_DEBUG(dbgs() << "Removing redundant FRSP:\n");
500 LLVM_DEBUG(RoundInstr->dump());
501 LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
502 LLVM_DEBUG(MI.dump());
503 LLVM_DEBUG(dbgs() << "Through instruction:\n");
504 LLVM_DEBUG(DefMI->dump());
505 RoundInstr->eraseFromParent();
509 // If the input to XVCVDPSP is a vector that was built (even
510 // partially) out of FRSP's, the FRSP(s) can safely be removed
511 // since this instruction performs the same operation.
512 if (P1 != P2) {
513 removeFRSPIfPossible(P1);
514 removeFRSPIfPossible(P2);
515 break;
517 removeFRSPIfPossible(P1);
519 break;
521 case PPC::EXTSH:
522 case PPC::EXTSH8:
523 case PPC::EXTSH8_32_64: {
524 if (!EnableSExtElimination) break;
525 unsigned NarrowReg = MI.getOperand(1).getReg();
526 if (!TargetRegisterInfo::isVirtualRegister(NarrowReg))
527 break;
529 MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
530 // If we've used a zero-extending load that we will sign-extend,
531 // just do a sign-extending load.
532 if (SrcMI->getOpcode() == PPC::LHZ ||
533 SrcMI->getOpcode() == PPC::LHZX) {
534 if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
535 break;
536 auto is64Bit = [] (unsigned Opcode) {
537 return Opcode == PPC::EXTSH8;
539 auto isXForm = [] (unsigned Opcode) {
540 return Opcode == PPC::LHZX;
542 auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
543 if (is64Bit)
544 if (isXForm) return PPC::LHAX8;
545 else return PPC::LHA8;
546 else
547 if (isXForm) return PPC::LHAX;
548 else return PPC::LHA;
550 unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
551 isXForm(SrcMI->getOpcode()));
552 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
553 LLVM_DEBUG(SrcMI->dump());
554 LLVM_DEBUG(dbgs() << "and sign-extension\n");
555 LLVM_DEBUG(MI.dump());
556 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
557 SrcMI->setDesc(TII->get(Opc));
558 SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
559 ToErase = &MI;
560 Simplified = true;
561 NumEliminatedSExt++;
563 break;
565 case PPC::EXTSW:
566 case PPC::EXTSW_32:
567 case PPC::EXTSW_32_64: {
568 if (!EnableSExtElimination) break;
569 unsigned NarrowReg = MI.getOperand(1).getReg();
570 if (!TargetRegisterInfo::isVirtualRegister(NarrowReg))
571 break;
573 MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
574 // If we've used a zero-extending load that we will sign-extend,
575 // just do a sign-extending load.
576 if (SrcMI->getOpcode() == PPC::LWZ ||
577 SrcMI->getOpcode() == PPC::LWZX) {
578 if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
579 break;
580 auto is64Bit = [] (unsigned Opcode) {
581 return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
583 auto isXForm = [] (unsigned Opcode) {
584 return Opcode == PPC::LWZX;
586 auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
587 if (is64Bit)
588 if (isXForm) return PPC::LWAX;
589 else return PPC::LWA;
590 else
591 if (isXForm) return PPC::LWAX_32;
592 else return PPC::LWA_32;
594 unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
595 isXForm(SrcMI->getOpcode()));
596 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
597 LLVM_DEBUG(SrcMI->dump());
598 LLVM_DEBUG(dbgs() << "and sign-extension\n");
599 LLVM_DEBUG(MI.dump());
600 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
601 SrcMI->setDesc(TII->get(Opc));
602 SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
603 ToErase = &MI;
604 Simplified = true;
605 NumEliminatedSExt++;
606 } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
607 TII->isSignExtended(*SrcMI)) {
608 // We can eliminate EXTSW if the input is known to be already
609 // sign-extended.
610 LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
611 unsigned TmpReg =
612 MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
613 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
614 TmpReg);
615 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
616 MI.getOperand(0).getReg())
617 .addReg(TmpReg)
618 .addReg(NarrowReg)
619 .addImm(PPC::sub_32);
620 ToErase = &MI;
621 Simplified = true;
622 NumEliminatedSExt++;
624 break;
626 case PPC::RLDICL: {
627 // We can eliminate RLDICL (e.g. for zero-extension)
628 // if all bits to clear are already zero in the input.
629 // This code assume following code sequence for zero-extension.
630 // %6 = COPY %5:sub_32; (optional)
631 // %8 = IMPLICIT_DEF;
632 // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
633 if (!EnableZExtElimination) break;
635 if (MI.getOperand(2).getImm() != 0)
636 break;
638 unsigned SrcReg = MI.getOperand(1).getReg();
639 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
640 break;
642 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
643 if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
644 SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
645 break;
647 MachineInstr *ImpDefMI, *SubRegMI;
648 ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
649 SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
650 if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
652 SrcMI = SubRegMI;
653 if (SubRegMI->getOpcode() == PPC::COPY) {
654 unsigned CopyReg = SubRegMI->getOperand(1).getReg();
655 if (TargetRegisterInfo::isVirtualRegister(CopyReg))
656 SrcMI = MRI->getVRegDef(CopyReg);
659 unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
660 if (MI.getOperand(3).getImm() <= KnownZeroCount) {
661 LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
662 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
663 MI.getOperand(0).getReg())
664 .addReg(SrcReg);
665 ToErase = &MI;
666 Simplified = true;
667 NumEliminatedZExt++;
669 break;
672 // TODO: Any instruction that has an immediate form fed only by a PHI
673 // whose operands are all load immediate can be folded away. We currently
674 // do this for ADD instructions, but should expand it to arithmetic and
675 // binary instructions with immediate forms in the future.
676 case PPC::ADD4:
677 case PPC::ADD8: {
678 auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
679 assert(PhiOp && "Invalid Operand!");
680 MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
682 return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
683 MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
686 auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
687 MachineOperand *PhiOp) {
688 assert(PhiOp && "Invalid Operand!");
689 assert(DominatorOp && "Invalid Operand!");
690 MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
691 MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
693 // Note: the vregs only show up at odd indices position of PHI Node,
694 // the even indices position save the BB info.
695 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
696 MachineInstr *LiMI =
697 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
698 if (!LiMI ||
699 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
700 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
701 !MDT->dominates(DefDomMI, LiMI))
702 return false;
705 return true;
708 MachineOperand Op1 = MI.getOperand(1);
709 MachineOperand Op2 = MI.getOperand(2);
710 if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
711 std::swap(Op1, Op2);
712 else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
713 break; // We don't have an ADD fed by LI's that can be transformed
715 // Now we know that Op1 is the PHI node and Op2 is the dominator
716 unsigned DominatorReg = Op2.getReg();
718 const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
719 ? &PPC::G8RC_and_G8RC_NOX0RegClass
720 : &PPC::GPRC_and_GPRC_NOR0RegClass;
721 MRI->setRegClass(DominatorReg, TRC);
723 // replace LIs with ADDIs
724 MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
725 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
726 MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
727 LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
728 LLVM_DEBUG(LiMI->dump());
730 // There could be repeated registers in the PHI, e.g: %1 =
731 // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
732 // already replaced the def instruction, skip.
733 if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
734 continue;
736 assert((LiMI->getOpcode() == PPC::LI ||
737 LiMI->getOpcode() == PPC::LI8) &&
738 "Invalid Opcode!");
739 auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
740 LiMI->RemoveOperand(1); // remove the imm of LI
741 LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
742 : PPC::ADDI8));
743 MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
744 .addReg(DominatorReg)
745 .addImm(LiImm); // restore the imm of LI
746 LLVM_DEBUG(LiMI->dump());
749 // Replace ADD with COPY
750 LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
751 LLVM_DEBUG(MI.dump());
752 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
753 MI.getOperand(0).getReg())
754 .add(Op1);
755 ToErase = &MI;
756 Simplified = true;
757 NumOptADDLIs++;
758 break;
763 // If the last instruction was marked for elimination,
764 // remove it now.
765 if (ToErase) {
766 ToErase->eraseFromParent();
767 ToErase = nullptr;
771 // Eliminate all the TOC save instructions which are redundant.
772 Simplified |= eliminateRedundantTOCSaves(TOCSaves);
773 // We try to eliminate redundant compare instruction.
774 Simplified |= eliminateRedundantCompare();
776 return Simplified;
779 // helper functions for eliminateRedundantCompare
780 static bool isEqOrNe(MachineInstr *BI) {
781 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
782 unsigned PredCond = PPC::getPredicateCondition(Pred);
783 return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
786 static bool isSupportedCmpOp(unsigned opCode) {
787 return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
788 opCode == PPC::CMPLW || opCode == PPC::CMPW ||
789 opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
790 opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
793 static bool is64bitCmpOp(unsigned opCode) {
794 return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
795 opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
798 static bool isSignedCmpOp(unsigned opCode) {
799 return (opCode == PPC::CMPD || opCode == PPC::CMPW ||
800 opCode == PPC::CMPDI || opCode == PPC::CMPWI);
803 static unsigned getSignedCmpOpCode(unsigned opCode) {
804 if (opCode == PPC::CMPLD) return PPC::CMPD;
805 if (opCode == PPC::CMPLW) return PPC::CMPW;
806 if (opCode == PPC::CMPLDI) return PPC::CMPDI;
807 if (opCode == PPC::CMPLWI) return PPC::CMPWI;
808 return opCode;
811 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
812 // (LT x) to (LE x-1)
813 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
814 uint64_t Imm = CMPI->getOperand(2).getImm();
815 bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
816 if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
817 return 0;
819 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
820 unsigned PredCond = PPC::getPredicateCondition(Pred);
821 unsigned PredHint = PPC::getPredicateHint(Pred);
822 if (PredCond == PPC::PRED_GE)
823 return PPC::getPredicate(PPC::PRED_GT, PredHint);
824 if (PredCond == PPC::PRED_LT)
825 return PPC::getPredicate(PPC::PRED_LE, PredHint);
827 return 0;
830 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
831 // (LE x) to (LT x+1)
832 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
833 uint64_t Imm = CMPI->getOperand(2).getImm();
834 bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
835 if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
836 return 0;
838 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
839 unsigned PredCond = PPC::getPredicateCondition(Pred);
840 unsigned PredHint = PPC::getPredicateHint(Pred);
841 if (PredCond == PPC::PRED_GT)
842 return PPC::getPredicate(PPC::PRED_GE, PredHint);
843 if (PredCond == PPC::PRED_LE)
844 return PPC::getPredicate(PPC::PRED_LT, PredHint);
846 return 0;
849 // This takes a Phi node and returns a register value for the specified BB.
850 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
851 MachineBasicBlock *MBB) {
852 for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
853 MachineOperand &MO = Phi->getOperand(I);
854 if (MO.getMBB() == MBB)
855 return Phi->getOperand(I-1).getReg();
857 llvm_unreachable("invalid src basic block for this Phi node\n");
858 return 0;
861 // This function tracks the source of the register through register copy.
862 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
863 // assuming that the control comes from BB1 into BB2.
864 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
865 MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
866 unsigned SrcReg = Reg;
867 while (1) {
868 unsigned NextReg = SrcReg;
869 MachineInstr *Inst = MRI->getVRegDef(SrcReg);
870 if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
871 NextReg = getIncomingRegForBlock(Inst, BB1);
872 // We track through PHI only once to avoid infinite loop.
873 BB1 = nullptr;
875 else if (Inst->isFullCopy())
876 NextReg = Inst->getOperand(1).getReg();
877 if (NextReg == SrcReg || !TargetRegisterInfo::isVirtualRegister(NextReg))
878 break;
879 SrcReg = NextReg;
881 return SrcReg;
884 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
885 MachineBasicBlock *&PredMBB,
886 MachineBasicBlock *&MBBtoMoveCmp,
887 MachineRegisterInfo *MRI) {
889 auto isEligibleBB = [&](MachineBasicBlock &BB) {
890 auto BII = BB.getFirstInstrTerminator();
891 // We optimize BBs ending with a conditional branch.
892 // We check only for BCC here, not BCCLR, because BCCLR
893 // will be formed only later in the pipeline.
894 if (BB.succ_size() == 2 &&
895 BII != BB.instr_end() &&
896 (*BII).getOpcode() == PPC::BCC &&
897 (*BII).getOperand(1).isReg()) {
898 // We optimize only if the condition code is used only by one BCC.
899 unsigned CndReg = (*BII).getOperand(1).getReg();
900 if (!TargetRegisterInfo::isVirtualRegister(CndReg) ||
901 !MRI->hasOneNonDBGUse(CndReg))
902 return false;
904 MachineInstr *CMPI = MRI->getVRegDef(CndReg);
905 // We assume compare and branch are in the same BB for ease of analysis.
906 if (CMPI->getParent() != &BB)
907 return false;
909 // We skip this BB if a physical register is used in comparison.
910 for (MachineOperand &MO : CMPI->operands())
911 if (MO.isReg() && !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
912 return false;
914 return true;
916 return false;
919 // If this BB has more than one successor, we can create a new BB and
920 // move the compare instruction in the new BB.
921 // So far, we do not move compare instruction to a BB having multiple
922 // successors to avoid potentially increasing code size.
923 auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
924 return BB.succ_size() == 1;
927 if (!isEligibleBB(MBB))
928 return false;
930 unsigned NumPredBBs = MBB.pred_size();
931 if (NumPredBBs == 1) {
932 MachineBasicBlock *TmpMBB = *MBB.pred_begin();
933 if (isEligibleBB(*TmpMBB)) {
934 PredMBB = TmpMBB;
935 MBBtoMoveCmp = nullptr;
936 return true;
939 else if (NumPredBBs == 2) {
940 // We check for partially redundant case.
941 // So far, we support cases with only two predecessors
942 // to avoid increasing the number of instructions.
943 MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
944 MachineBasicBlock *Pred1MBB = *PI;
945 MachineBasicBlock *Pred2MBB = *(PI+1);
947 if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
948 // We assume Pred1MBB is the BB containing the compare to be merged and
949 // Pred2MBB is the BB to which we will append a compare instruction.
950 // Hence we can proceed as is.
952 else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
953 // We need to swap Pred1MBB and Pred2MBB to canonicalize.
954 std::swap(Pred1MBB, Pred2MBB);
956 else return false;
958 // Here, Pred2MBB is the BB to which we need to append a compare inst.
959 // We cannot move the compare instruction if operands are not available
960 // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
961 MachineInstr *BI = &*MBB.getFirstInstrTerminator();
962 MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
963 for (int I = 1; I <= 2; I++)
964 if (CMPI->getOperand(I).isReg()) {
965 MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
966 if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
967 return false;
970 PredMBB = Pred1MBB;
971 MBBtoMoveCmp = Pred2MBB;
972 return true;
975 return false;
978 // This function will iterate over the input map containing a pair of TOC save
979 // instruction and a flag. The flag will be set to false if the TOC save is
980 // proven redundant. This function will erase from the basic block all the TOC
981 // saves marked as redundant.
982 bool PPCMIPeephole::eliminateRedundantTOCSaves(
983 std::map<MachineInstr *, bool> &TOCSaves) {
984 bool Simplified = false;
985 int NumKept = 0;
986 for (auto TOCSave : TOCSaves) {
987 if (!TOCSave.second) {
988 TOCSave.first->eraseFromParent();
989 RemoveTOCSave++;
990 Simplified = true;
991 } else {
992 NumKept++;
996 if (NumKept > 1)
997 MultiTOCSaves++;
999 return Simplified;
1002 // If multiple conditional branches are executed based on the (essentially)
1003 // same comparison, we merge compare instructions into one and make multiple
1004 // conditional branches on this comparison.
1005 // For example,
1006 // if (a == 0) { ... }
1007 // else if (a < 0) { ... }
1008 // can be executed by one compare and two conditional branches instead of
1009 // two pairs of a compare and a conditional branch.
1011 // This method merges two compare instructions in two MBBs and modifies the
1012 // compare and conditional branch instructions if needed.
1013 // For the above example, the input for this pass looks like:
1014 // cmplwi r3, 0
1015 // beq 0, .LBB0_3
1016 // cmpwi r3, -1
1017 // bgt 0, .LBB0_4
1018 // So, before merging two compares, we need to modify these instructions as
1019 // cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq
1020 // beq 0, .LBB0_3
1021 // cmpwi r3, 0 ; greather than -1 means greater or equal to 0
1022 // bge 0, .LBB0_4
1024 bool PPCMIPeephole::eliminateRedundantCompare(void) {
1025 bool Simplified = false;
1027 for (MachineBasicBlock &MBB2 : *MF) {
1028 MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1030 // For fully redundant case, we select two basic blocks MBB1 and MBB2
1031 // as an optimization target if
1032 // - both MBBs end with a conditional branch,
1033 // - MBB1 is the only predecessor of MBB2, and
1034 // - compare does not take a physical register as a operand in both MBBs.
1035 // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1037 // As partially redundant case, we additionally handle if MBB2 has one
1038 // additional predecessor, which has only one successor (MBB2).
1039 // In this case, we move the compare instruction originally in MBB2 into
1040 // MBBtoMoveCmp. This partially redundant case is typically appear by
1041 // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1043 // Overview of CFG of related basic blocks
1044 // Fully redundant case Partially redundant case
1045 // -------- ---------------- --------
1046 // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ)
1047 // -------- ---------------- --------
1048 // | \ (w/ 1 succ) \ | \
1049 // | \ \ | \
1050 // | \ |
1051 // -------- --------
1052 // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred
1053 // -------- and 2 succ) -------- and 2 succ)
1054 // | \ | \
1055 // | \ | \
1057 if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1058 continue;
1060 MachineInstr *BI1 = &*MBB1->getFirstInstrTerminator();
1061 MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1063 MachineInstr *BI2 = &*MBB2.getFirstInstrTerminator();
1064 MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1065 bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1067 // We cannot optimize an unsupported compare opcode or
1068 // a mix of 32-bit and 64-bit comaprisons
1069 if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1070 !isSupportedCmpOp(CMPI2->getOpcode()) ||
1071 is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1072 continue;
1074 unsigned NewOpCode = 0;
1075 unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1076 int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1077 bool SwapOperands = false;
1079 if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1080 // Typically, unsigned comparison is used for equality check, but
1081 // we replace it with a signed comparison if the comparison
1082 // to be merged is a signed comparison.
1083 // In other cases of opcode mismatch, we cannot optimize this.
1085 // We cannot change opcode when comparing against an immediate
1086 // if the most significant bit of the immediate is one
1087 // due to the difference in sign extension.
1088 auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1089 if (!I->getOperand(2).isImm())
1090 return false;
1091 int16_t Imm = (int16_t)I->getOperand(2).getImm();
1092 return Imm < 0;
1095 if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1096 CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1097 NewOpCode = CMPI1->getOpcode();
1098 else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1099 getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1100 NewOpCode = CMPI2->getOpcode();
1101 else continue;
1104 if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1105 // In case of comparisons between two registers, these two registers
1106 // must be same to merge two comparisons.
1107 unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1108 nullptr, nullptr, MRI);
1109 unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1110 nullptr, nullptr, MRI);
1111 unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1112 MBB1, &MBB2, MRI);
1113 unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1114 MBB1, &MBB2, MRI);
1116 if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1117 // Same pair of registers in the same order; ready to merge as is.
1119 else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1120 // Same pair of registers in different order.
1121 // We reverse the predicate to merge compare instructions.
1122 PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1123 NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1124 // In case of partial redundancy, we need to swap operands
1125 // in another compare instruction.
1126 SwapOperands = true;
1128 else continue;
1130 else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1131 // In case of comparisons between a register and an immediate,
1132 // the operand register must be same for two compare instructions.
1133 unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1134 nullptr, nullptr, MRI);
1135 unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1136 MBB1, &MBB2, MRI);
1137 if (Cmp1Operand1 != Cmp2Operand1)
1138 continue;
1140 NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1141 NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1143 // If immediate are not same, we try to adjust by changing predicate;
1144 // e.g. GT imm means GE (imm+1).
1145 if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1146 int Diff = Imm1 - Imm2;
1147 if (Diff < -2 || Diff > 2)
1148 continue;
1150 unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1151 unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1152 unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1153 unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1154 if (Diff == 2) {
1155 if (PredToInc2 && PredToDec1) {
1156 NewPredicate2 = PredToInc2;
1157 NewPredicate1 = PredToDec1;
1158 NewImm2++;
1159 NewImm1--;
1162 else if (Diff == 1) {
1163 if (PredToInc2) {
1164 NewImm2++;
1165 NewPredicate2 = PredToInc2;
1167 else if (PredToDec1) {
1168 NewImm1--;
1169 NewPredicate1 = PredToDec1;
1172 else if (Diff == -1) {
1173 if (PredToDec2) {
1174 NewImm2--;
1175 NewPredicate2 = PredToDec2;
1177 else if (PredToInc1) {
1178 NewImm1++;
1179 NewPredicate1 = PredToInc1;
1182 else if (Diff == -2) {
1183 if (PredToDec2 && PredToInc1) {
1184 NewPredicate2 = PredToDec2;
1185 NewPredicate1 = PredToInc1;
1186 NewImm2--;
1187 NewImm1++;
1192 // We cannot merge two compares if the immediates are not same.
1193 if (NewImm2 != NewImm1)
1194 continue;
1197 LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1198 LLVM_DEBUG(CMPI1->dump());
1199 LLVM_DEBUG(BI1->dump());
1200 LLVM_DEBUG(CMPI2->dump());
1201 LLVM_DEBUG(BI2->dump());
1203 // We adjust opcode, predicates and immediate as we determined above.
1204 if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1205 CMPI1->setDesc(TII->get(NewOpCode));
1207 if (NewPredicate1) {
1208 BI1->getOperand(0).setImm(NewPredicate1);
1210 if (NewPredicate2) {
1211 BI2->getOperand(0).setImm(NewPredicate2);
1213 if (NewImm1 != Imm1) {
1214 CMPI1->getOperand(2).setImm(NewImm1);
1217 if (IsPartiallyRedundant) {
1218 // We touch up the compare instruction in MBB2 and move it to
1219 // a previous BB to handle partially redundant case.
1220 if (SwapOperands) {
1221 unsigned Op1 = CMPI2->getOperand(1).getReg();
1222 unsigned Op2 = CMPI2->getOperand(2).getReg();
1223 CMPI2->getOperand(1).setReg(Op2);
1224 CMPI2->getOperand(2).setReg(Op1);
1226 if (NewImm2 != Imm2)
1227 CMPI2->getOperand(2).setImm(NewImm2);
1229 for (int I = 1; I <= 2; I++) {
1230 if (CMPI2->getOperand(I).isReg()) {
1231 MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1232 if (Inst->getParent() != &MBB2)
1233 continue;
1235 assert(Inst->getOpcode() == PPC::PHI &&
1236 "We cannot support if an operand comes from this BB.");
1237 unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1238 CMPI2->getOperand(I).setReg(SrcReg);
1241 auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1242 MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1244 DebugLoc DL = CMPI2->getDebugLoc();
1245 unsigned NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1246 BuildMI(MBB2, MBB2.begin(), DL,
1247 TII->get(PPC::PHI), NewVReg)
1248 .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1249 .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1250 BI2->getOperand(1).setReg(NewVReg);
1252 else {
1253 // We finally eliminate compare instruction in MBB2.
1254 BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1255 CMPI2->eraseFromParent();
1257 BI2->getOperand(1).setIsKill(true);
1258 BI1->getOperand(1).setIsKill(false);
1260 LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1261 LLVM_DEBUG(CMPI1->dump());
1262 LLVM_DEBUG(BI1->dump());
1263 LLVM_DEBUG(BI2->dump());
1264 if (IsPartiallyRedundant) {
1265 LLVM_DEBUG(dbgs() << "The following compare is moved into "
1266 << printMBBReference(*MBBtoMoveCmp)
1267 << " to handle partial redundancy.\n");
1268 LLVM_DEBUG(CMPI2->dump());
1271 Simplified = true;
1274 return Simplified;
1277 } // end default namespace
1279 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
1280 "PowerPC MI Peephole Optimization", false, false)
1281 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
1282 "PowerPC MI Peephole Optimization", false, false)
1284 char PPCMIPeephole::ID = 0;
1285 FunctionPass*
1286 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }