Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / PowerPC / PPCTargetTransformInfo.cpp
blob6185355f419f4250aa8dbf7f570bd81c6e413826
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/TargetTransformInfo.h"
11 #include "llvm/CodeGen/BasicTTIImpl.h"
12 #include "llvm/CodeGen/CostTable.h"
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/Support/CommandLine.h"
15 #include "llvm/Support/Debug.h"
16 using namespace llvm;
18 #define DEBUG_TYPE "ppctti"
20 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
21 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
23 // This is currently only used for the data prefetch pass which is only enabled
24 // for BG/Q by default.
25 static cl::opt<unsigned>
26 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
27 cl::desc("The loop prefetch cache line size"));
29 static cl::opt<bool>
30 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
31 cl::desc("Enable using coldcc calling conv for cold "
32 "internal functions"));
34 //===----------------------------------------------------------------------===//
36 // PPC cost model.
38 //===----------------------------------------------------------------------===//
40 TargetTransformInfo::PopcntSupportKind
41 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
42 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
43 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
44 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
45 TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
46 return TTI::PSK_Software;
49 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
50 if (DisablePPCConstHoist)
51 return BaseT::getIntImmCost(Imm, Ty);
53 assert(Ty->isIntegerTy());
55 unsigned BitSize = Ty->getPrimitiveSizeInBits();
56 if (BitSize == 0)
57 return ~0U;
59 if (Imm == 0)
60 return TTI::TCC_Free;
62 if (Imm.getBitWidth() <= 64) {
63 if (isInt<16>(Imm.getSExtValue()))
64 return TTI::TCC_Basic;
66 if (isInt<32>(Imm.getSExtValue())) {
67 // A constant that can be materialized using lis.
68 if ((Imm.getZExtValue() & 0xFFFF) == 0)
69 return TTI::TCC_Basic;
71 return 2 * TTI::TCC_Basic;
75 return 4 * TTI::TCC_Basic;
78 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
79 Type *Ty) {
80 if (DisablePPCConstHoist)
81 return BaseT::getIntImmCost(IID, Idx, Imm, Ty);
83 assert(Ty->isIntegerTy());
85 unsigned BitSize = Ty->getPrimitiveSizeInBits();
86 if (BitSize == 0)
87 return ~0U;
89 switch (IID) {
90 default:
91 return TTI::TCC_Free;
92 case Intrinsic::sadd_with_overflow:
93 case Intrinsic::uadd_with_overflow:
94 case Intrinsic::ssub_with_overflow:
95 case Intrinsic::usub_with_overflow:
96 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
97 return TTI::TCC_Free;
98 break;
99 case Intrinsic::experimental_stackmap:
100 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
101 return TTI::TCC_Free;
102 break;
103 case Intrinsic::experimental_patchpoint_void:
104 case Intrinsic::experimental_patchpoint_i64:
105 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
106 return TTI::TCC_Free;
107 break;
109 return PPCTTIImpl::getIntImmCost(Imm, Ty);
112 int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
113 Type *Ty) {
114 if (DisablePPCConstHoist)
115 return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);
117 assert(Ty->isIntegerTy());
119 unsigned BitSize = Ty->getPrimitiveSizeInBits();
120 if (BitSize == 0)
121 return ~0U;
123 unsigned ImmIdx = ~0U;
124 bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
125 ZeroFree = false;
126 switch (Opcode) {
127 default:
128 return TTI::TCC_Free;
129 case Instruction::GetElementPtr:
130 // Always hoist the base address of a GetElementPtr. This prevents the
131 // creation of new constants for every base constant that gets constant
132 // folded with the offset.
133 if (Idx == 0)
134 return 2 * TTI::TCC_Basic;
135 return TTI::TCC_Free;
136 case Instruction::And:
137 RunFree = true; // (for the rotate-and-mask instructions)
138 LLVM_FALLTHROUGH;
139 case Instruction::Add:
140 case Instruction::Or:
141 case Instruction::Xor:
142 ShiftedFree = true;
143 LLVM_FALLTHROUGH;
144 case Instruction::Sub:
145 case Instruction::Mul:
146 case Instruction::Shl:
147 case Instruction::LShr:
148 case Instruction::AShr:
149 ImmIdx = 1;
150 break;
151 case Instruction::ICmp:
152 UnsignedFree = true;
153 ImmIdx = 1;
154 // Zero comparisons can use record-form instructions.
155 LLVM_FALLTHROUGH;
156 case Instruction::Select:
157 ZeroFree = true;
158 break;
159 case Instruction::PHI:
160 case Instruction::Call:
161 case Instruction::Ret:
162 case Instruction::Load:
163 case Instruction::Store:
164 break;
167 if (ZeroFree && Imm == 0)
168 return TTI::TCC_Free;
170 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
171 if (isInt<16>(Imm.getSExtValue()))
172 return TTI::TCC_Free;
174 if (RunFree) {
175 if (Imm.getBitWidth() <= 32 &&
176 (isShiftedMask_32(Imm.getZExtValue()) ||
177 isShiftedMask_32(~Imm.getZExtValue())))
178 return TTI::TCC_Free;
180 if (ST->isPPC64() &&
181 (isShiftedMask_64(Imm.getZExtValue()) ||
182 isShiftedMask_64(~Imm.getZExtValue())))
183 return TTI::TCC_Free;
186 if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
187 return TTI::TCC_Free;
189 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
190 return TTI::TCC_Free;
193 return PPCTTIImpl::getIntImmCost(Imm, Ty);
196 unsigned PPCTTIImpl::getUserCost(const User *U,
197 ArrayRef<const Value *> Operands) {
198 if (U->getType()->isVectorTy()) {
199 // Instructions that need to be split should cost more.
200 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType());
201 return LT.first * BaseT::getUserCost(U, Operands);
204 return BaseT::getUserCost(U, Operands);
207 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
208 TTI::UnrollingPreferences &UP) {
209 if (ST->getDarwinDirective() == PPC::DIR_A2) {
210 // The A2 is in-order with a deep pipeline, and concatenation unrolling
211 // helps expose latency-hiding opportunities to the instruction scheduler.
212 UP.Partial = UP.Runtime = true;
214 // We unroll a lot on the A2 (hundreds of instructions), and the benefits
215 // often outweigh the cost of a division to compute the trip count.
216 UP.AllowExpensiveTripCount = true;
219 BaseT::getUnrollingPreferences(L, SE, UP);
222 // This function returns true to allow using coldcc calling convention.
223 // Returning true results in coldcc being used for functions which are cold at
224 // all call sites when the callers of the functions are not calling any other
225 // non coldcc functions.
226 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
227 return EnablePPCColdCC;
230 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
231 // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
232 // on combining the loads generated for consecutive accesses, and failure to
233 // do so is particularly expensive. This makes it much more likely (compared
234 // to only using concatenation unrolling).
235 if (ST->getDarwinDirective() == PPC::DIR_A2)
236 return true;
238 return LoopHasReductions;
241 const PPCTTIImpl::TTI::MemCmpExpansionOptions *
242 PPCTTIImpl::enableMemCmpExpansion(bool IsZeroCmp) const {
243 static const auto Options = []() {
244 TTI::MemCmpExpansionOptions Options;
245 Options.LoadSizes.push_back(8);
246 Options.LoadSizes.push_back(4);
247 Options.LoadSizes.push_back(2);
248 Options.LoadSizes.push_back(1);
249 return Options;
250 }();
251 return &Options;
254 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
255 return true;
258 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) {
259 if (Vector && !ST->hasAltivec() && !ST->hasQPX())
260 return 0;
261 return ST->hasVSX() ? 64 : 32;
264 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const {
265 if (Vector) {
266 if (ST->hasQPX()) return 256;
267 if (ST->hasAltivec()) return 128;
268 return 0;
271 if (ST->isPPC64())
272 return 64;
273 return 32;
277 unsigned PPCTTIImpl::getCacheLineSize() {
278 // Check first if the user specified a custom line size.
279 if (CacheLineSize.getNumOccurrences() > 0)
280 return CacheLineSize;
282 // On P7, P8 or P9 we have a cache line size of 128.
283 unsigned Directive = ST->getDarwinDirective();
284 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
285 Directive == PPC::DIR_PWR9)
286 return 128;
288 // On other processors return a default of 64 bytes.
289 return 64;
292 unsigned PPCTTIImpl::getPrefetchDistance() {
293 // This seems like a reasonable default for the BG/Q (this pass is enabled, by
294 // default, only on the BG/Q).
295 return 300;
298 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
299 unsigned Directive = ST->getDarwinDirective();
300 // The 440 has no SIMD support, but floating-point instructions
301 // have a 5-cycle latency, so unroll by 5x for latency hiding.
302 if (Directive == PPC::DIR_440)
303 return 5;
305 // The A2 has no SIMD support, but floating-point instructions
306 // have a 6-cycle latency, so unroll by 6x for latency hiding.
307 if (Directive == PPC::DIR_A2)
308 return 6;
310 // FIXME: For lack of any better information, do no harm...
311 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
312 return 1;
314 // For P7 and P8, floating-point instructions have a 6-cycle latency and
315 // there are two execution units, so unroll by 12x for latency hiding.
316 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
317 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
318 Directive == PPC::DIR_PWR9)
319 return 12;
321 // For most things, modern systems have two execution units (and
322 // out-of-order execution).
323 return 2;
326 // Adjust the cost of vector instructions on targets which there is overlap
327 // between the vector and scalar units, thereby reducing the overall throughput
328 // of vector code wrt. scalar code.
329 int PPCTTIImpl::vectorCostAdjustment(int Cost, unsigned Opcode, Type *Ty1,
330 Type *Ty2) {
331 if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
332 return Cost;
334 std::pair<int, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1);
335 // If type legalization involves splitting the vector, we don't want to
336 // double the cost at every step - only the last step.
337 if (LT1.first != 1 || !LT1.second.isVector())
338 return Cost;
340 int ISD = TLI->InstructionOpcodeToISD(Opcode);
341 if (TLI->isOperationExpand(ISD, LT1.second))
342 return Cost;
344 if (Ty2) {
345 std::pair<int, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2);
346 if (LT2.first != 1 || !LT2.second.isVector())
347 return Cost;
350 return Cost * 2;
353 int PPCTTIImpl::getArithmeticInstrCost(
354 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
355 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
356 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
357 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
359 // Fallback to the default implementation.
360 int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
361 Opd1PropInfo, Opd2PropInfo);
362 return vectorCostAdjustment(Cost, Opcode, Ty, nullptr);
365 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
366 Type *SubTp) {
367 // Legalize the type.
368 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
370 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
371 // (at least in the sense that there need only be one non-loop-invariant
372 // instruction). We need one such shuffle instruction for each actual
373 // register (this is not true for arbitrary shuffles, but is true for the
374 // structured types of shuffles covered by TTI::ShuffleKind).
375 return vectorCostAdjustment(LT.first, Instruction::ShuffleVector, Tp,
376 nullptr);
379 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
380 const Instruction *I) {
381 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
383 int Cost = BaseT::getCastInstrCost(Opcode, Dst, Src);
384 return vectorCostAdjustment(Cost, Opcode, Dst, Src);
387 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
388 const Instruction *I) {
389 int Cost = BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
390 return vectorCostAdjustment(Cost, Opcode, ValTy, nullptr);
393 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
394 assert(Val->isVectorTy() && "This must be a vector type");
396 int ISD = TLI->InstructionOpcodeToISD(Opcode);
397 assert(ISD && "Invalid opcode");
399 int Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
400 Cost = vectorCostAdjustment(Cost, Opcode, Val, nullptr);
402 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
403 // Double-precision scalars are already located in index #0 (or #1 if LE).
404 if (ISD == ISD::EXTRACT_VECTOR_ELT && Index == ST->isLittleEndian() ? 1 : 0)
405 return 0;
407 return Cost;
409 } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
410 // Floating point scalars are already located in index #0.
411 if (Index == 0)
412 return 0;
414 return Cost;
417 // Estimated cost of a load-hit-store delay. This was obtained
418 // experimentally as a minimum needed to prevent unprofitable
419 // vectorization for the paq8p benchmark. It may need to be
420 // raised further if other unprofitable cases remain.
421 unsigned LHSPenalty = 2;
422 if (ISD == ISD::INSERT_VECTOR_ELT)
423 LHSPenalty += 7;
425 // Vector element insert/extract with Altivec is very expensive,
426 // because they require store and reload with the attendant
427 // processor stall for load-hit-store. Until VSX is available,
428 // these need to be estimated as very costly.
429 if (ISD == ISD::EXTRACT_VECTOR_ELT ||
430 ISD == ISD::INSERT_VECTOR_ELT)
431 return LHSPenalty + Cost;
433 return Cost;
436 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
437 unsigned AddressSpace, const Instruction *I) {
438 // Legalize the type.
439 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
440 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
441 "Invalid Opcode");
443 int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
444 Cost = vectorCostAdjustment(Cost, Opcode, Src, nullptr);
446 bool IsAltivecType = ST->hasAltivec() &&
447 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
448 LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
449 bool IsVSXType = ST->hasVSX() &&
450 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
451 bool IsQPXType = ST->hasQPX() &&
452 (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
454 // VSX has 32b/64b load instructions. Legalization can handle loading of
455 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
456 // PPCTargetLowering can't compute the cost appropriately. So here we
457 // explicitly check this case.
458 unsigned MemBytes = Src->getPrimitiveSizeInBits();
459 if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
460 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
461 return 1;
463 // Aligned loads and stores are easy.
464 unsigned SrcBytes = LT.second.getStoreSize();
465 if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
466 return Cost;
468 // If we can use the permutation-based load sequence, then this is also
469 // relatively cheap (not counting loop-invariant instructions): one load plus
470 // one permute (the last load in a series has extra cost, but we're
471 // neglecting that here). Note that on the P7, we could do unaligned loads
472 // for Altivec types using the VSX instructions, but that's more expensive
473 // than using the permutation-based load sequence. On the P8, that's no
474 // longer true.
475 if (Opcode == Instruction::Load &&
476 ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
477 Alignment >= LT.second.getScalarType().getStoreSize())
478 return Cost + LT.first; // Add the cost of the permutations.
480 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
481 // P7, unaligned vector loads are more expensive than the permutation-based
482 // load sequence, so that might be used instead, but regardless, the net cost
483 // is about the same (not counting loop-invariant instructions).
484 if (IsVSXType || (ST->hasVSX() && IsAltivecType))
485 return Cost;
487 // Newer PPC supports unaligned memory access.
488 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
489 return Cost;
491 // PPC in general does not support unaligned loads and stores. They'll need
492 // to be decomposed based on the alignment factor.
494 // Add the cost of each scalar load or store.
495 Cost += LT.first*(SrcBytes/Alignment-1);
497 // For a vector type, there is also scalarization overhead (only for
498 // stores, loads are expanded using the vector-load + permutation sequence,
499 // which is much less expensive).
500 if (Src->isVectorTy() && Opcode == Instruction::Store)
501 for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
502 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
504 return Cost;
507 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
508 unsigned Factor,
509 ArrayRef<unsigned> Indices,
510 unsigned Alignment,
511 unsigned AddressSpace,
512 bool UseMaskForCond,
513 bool UseMaskForGaps) {
514 if (UseMaskForCond || UseMaskForGaps)
515 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
516 Alignment, AddressSpace,
517 UseMaskForCond, UseMaskForGaps);
519 assert(isa<VectorType>(VecTy) &&
520 "Expect a vector type for interleaved memory op");
522 // Legalize the type.
523 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
525 // Firstly, the cost of load/store operation.
526 int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace);
528 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
529 // (at least in the sense that there need only be one non-loop-invariant
530 // instruction). For each result vector, we need one shuffle per incoming
531 // vector (except that the first shuffle can take two incoming vectors
532 // because it does not need to take itself).
533 Cost += Factor*(LT.first-1);
535 return Cost;