Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / X86 / Disassembler / X86Disassembler.cpp
blob8337995622223a11ebf6cfc90176b2e8d279a608
1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 // MCInsts.
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets. The main decode sequence for an assembly
16 // instruction in this disassembler is:
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 // These attributes, recorded in enum attributeBits
20 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
21 // provides a mapping from bitmasks to contexts, which are represented by
22 // enum InstructionContext (ibid.).
24 // 2. Read the opcode, and determine what kind of opcode it is. The
25 // disassembler distinguishes four kinds of opcodes, which are enumerated in
26 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
32 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
33 // a ModRMDecision (ibid.).
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from
38 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 // ModR/M byte is required and how to interpret it.
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
43 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 // meanings of its operands.
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 // (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 // OperandType (ibid.). The encoding indicates how to read it from the
49 // instruction; the type indicates how to interpret the value once it has
50 // been read. For example, a register operand could be stored in the R/M
51 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM
53 // register, for instance). Given this information, the operands can be
54 // extracted and interpreted.
56 // 7. As the last step, the disassembler translates the instruction information
57 // and operands into a format understandable by the client - in this case, an
58 // MCInst for use by the MC infrastructure.
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself. The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 // invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 // table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 // factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 // responsible for steps 1-6.
74 //===----------------------------------------------------------------------===//
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "X86DisassemblerDecoder.h"
79 #include "llvm/MC/MCContext.h"
80 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
81 #include "llvm/MC/MCExpr.h"
82 #include "llvm/MC/MCInst.h"
83 #include "llvm/MC/MCInstrInfo.h"
84 #include "llvm/MC/MCSubtargetInfo.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/TargetRegistry.h"
87 #include "llvm/Support/raw_ostream.h"
89 using namespace llvm;
90 using namespace llvm::X86Disassembler;
92 #define DEBUG_TYPE "x86-disassembler"
94 void llvm::X86Disassembler::Debug(const char *file, unsigned line,
95 const char *s) {
96 dbgs() << file << ":" << line << ": " << s;
99 StringRef llvm::X86Disassembler::GetInstrName(unsigned Opcode,
100 const void *mii) {
101 const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii);
102 return MII->getName(Opcode);
105 #define debug(s) LLVM_DEBUG(Debug(__FILE__, __LINE__, s));
107 namespace llvm {
109 // Fill-ins to make the compiler happy. These constants are never actually
110 // assigned; they are just filler to make an automatically-generated switch
111 // statement work.
112 namespace X86 {
113 enum {
114 BX_SI = 500,
115 BX_DI = 501,
116 BP_SI = 502,
117 BP_DI = 503,
118 sib = 504,
119 sib64 = 505
125 static bool translateInstruction(MCInst &target,
126 InternalInstruction &source,
127 const MCDisassembler *Dis);
129 namespace {
131 /// Generic disassembler for all X86 platforms. All each platform class should
132 /// have to do is subclass the constructor, and provide a different
133 /// disassemblerMode value.
134 class X86GenericDisassembler : public MCDisassembler {
135 std::unique_ptr<const MCInstrInfo> MII;
136 public:
137 X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
138 std::unique_ptr<const MCInstrInfo> MII);
139 public:
140 DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
141 ArrayRef<uint8_t> Bytes, uint64_t Address,
142 raw_ostream &vStream,
143 raw_ostream &cStream) const override;
145 private:
146 DisassemblerMode fMode;
151 X86GenericDisassembler::X86GenericDisassembler(
152 const MCSubtargetInfo &STI,
153 MCContext &Ctx,
154 std::unique_ptr<const MCInstrInfo> MII)
155 : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
156 const FeatureBitset &FB = STI.getFeatureBits();
157 if (FB[X86::Mode16Bit]) {
158 fMode = MODE_16BIT;
159 return;
160 } else if (FB[X86::Mode32Bit]) {
161 fMode = MODE_32BIT;
162 return;
163 } else if (FB[X86::Mode64Bit]) {
164 fMode = MODE_64BIT;
165 return;
168 llvm_unreachable("Invalid CPU mode");
171 namespace {
172 struct Region {
173 ArrayRef<uint8_t> Bytes;
174 uint64_t Base;
175 Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {}
177 } // end anonymous namespace
179 /// A callback function that wraps the readByte method from Region.
181 /// @param Arg - The generic callback parameter. In this case, this should
182 /// be a pointer to a Region.
183 /// @param Byte - A pointer to the byte to be read.
184 /// @param Address - The address to be read.
185 static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) {
186 auto *R = static_cast<const Region *>(Arg);
187 ArrayRef<uint8_t> Bytes = R->Bytes;
188 unsigned Index = Address - R->Base;
189 if (Bytes.size() <= Index)
190 return -1;
191 *Byte = Bytes[Index];
192 return 0;
195 /// logger - a callback function that wraps the operator<< method from
196 /// raw_ostream.
198 /// @param arg - The generic callback parameter. This should be a pointe
199 /// to a raw_ostream.
200 /// @param log - A string to be logged. logger() adds a newline.
201 static void logger(void* arg, const char* log) {
202 if (!arg)
203 return;
205 raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
206 vStream << log << "\n";
210 // Public interface for the disassembler
213 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
214 MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
215 raw_ostream &VStream, raw_ostream &CStream) const {
216 CommentStream = &CStream;
218 InternalInstruction InternalInstr;
220 dlog_t LoggerFn = logger;
221 if (&VStream == &nulls())
222 LoggerFn = nullptr; // Disable logging completely if it's going to nulls().
224 Region R(Bytes, Address);
226 int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R,
227 LoggerFn, (void *)&VStream,
228 (const void *)MII.get(), Address, fMode);
230 if (Ret) {
231 Size = InternalInstr.readerCursor - Address;
232 return Fail;
233 } else {
234 Size = InternalInstr.length;
235 bool Ret = translateInstruction(Instr, InternalInstr, this);
236 if (!Ret) {
237 unsigned Flags = X86::IP_NO_PREFIX;
238 if (InternalInstr.hasAdSize)
239 Flags |= X86::IP_HAS_AD_SIZE;
240 if (!InternalInstr.mandatoryPrefix) {
241 if (InternalInstr.hasOpSize)
242 Flags |= X86::IP_HAS_OP_SIZE;
243 if (InternalInstr.repeatPrefix == 0xf2)
244 Flags |= X86::IP_HAS_REPEAT_NE;
245 else if (InternalInstr.repeatPrefix == 0xf3 &&
246 // It should not be 'pause' f3 90
247 InternalInstr.opcode != 0x90)
248 Flags |= X86::IP_HAS_REPEAT;
249 if (InternalInstr.hasLockPrefix)
250 Flags |= X86::IP_HAS_LOCK;
252 Instr.setFlags(Flags);
254 return (!Ret) ? Success : Fail;
259 // Private code that translates from struct InternalInstructions to MCInsts.
262 /// translateRegister - Translates an internal register to the appropriate LLVM
263 /// register, and appends it as an operand to an MCInst.
265 /// @param mcInst - The MCInst to append to.
266 /// @param reg - The Reg to append.
267 static void translateRegister(MCInst &mcInst, Reg reg) {
268 #define ENTRY(x) X86::x,
269 static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
270 #undef ENTRY
272 MCPhysReg llvmRegnum = llvmRegnums[reg];
273 mcInst.addOperand(MCOperand::createReg(llvmRegnum));
276 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
277 /// immediate Value in the MCInst.
279 /// @param Value - The immediate Value, has had any PC adjustment made by
280 /// the caller.
281 /// @param isBranch - If the instruction is a branch instruction
282 /// @param Address - The starting address of the instruction
283 /// @param Offset - The byte offset to this immediate in the instruction
284 /// @param Width - The byte width of this immediate in the instruction
286 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
287 /// called then that function is called to get any symbolic information for the
288 /// immediate in the instruction using the Address, Offset and Width. If that
289 /// returns non-zero then the symbolic information it returns is used to create
290 /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
291 /// returns zero and isBranch is true then a symbol look up for immediate Value
292 /// is done and if a symbol is found an MCExpr is created with that, else
293 /// an MCExpr with the immediate Value is created. This function returns true
294 /// if it adds an operand to the MCInst and false otherwise.
295 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
296 uint64_t Address, uint64_t Offset,
297 uint64_t Width, MCInst &MI,
298 const MCDisassembler *Dis) {
299 return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
300 Offset, Width);
303 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
304 /// referenced by a load instruction with the base register that is the rip.
305 /// These can often be addresses in a literal pool. The Address of the
306 /// instruction and its immediate Value are used to determine the address
307 /// being referenced in the literal pool entry. The SymbolLookUp call back will
308 /// return a pointer to a literal 'C' string if the referenced address is an
309 /// address into a section with 'C' string literals.
310 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
311 const void *Decoder) {
312 const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
313 Dis->tryAddingPcLoadReferenceComment(Value, Address);
316 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
317 0, // SEG_OVERRIDE_NONE
318 X86::CS,
319 X86::SS,
320 X86::DS,
321 X86::ES,
322 X86::FS,
323 X86::GS
326 /// translateSrcIndex - Appends a source index operand to an MCInst.
328 /// @param mcInst - The MCInst to append to.
329 /// @param insn - The internal instruction.
330 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
331 unsigned baseRegNo;
333 if (insn.mode == MODE_64BIT)
334 baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
335 else if (insn.mode == MODE_32BIT)
336 baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
337 else {
338 assert(insn.mode == MODE_16BIT);
339 baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
341 MCOperand baseReg = MCOperand::createReg(baseRegNo);
342 mcInst.addOperand(baseReg);
344 MCOperand segmentReg;
345 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
346 mcInst.addOperand(segmentReg);
347 return false;
350 /// translateDstIndex - Appends a destination index operand to an MCInst.
352 /// @param mcInst - The MCInst to append to.
353 /// @param insn - The internal instruction.
355 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
356 unsigned baseRegNo;
358 if (insn.mode == MODE_64BIT)
359 baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
360 else if (insn.mode == MODE_32BIT)
361 baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
362 else {
363 assert(insn.mode == MODE_16BIT);
364 baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
366 MCOperand baseReg = MCOperand::createReg(baseRegNo);
367 mcInst.addOperand(baseReg);
368 return false;
371 /// translateImmediate - Appends an immediate operand to an MCInst.
373 /// @param mcInst - The MCInst to append to.
374 /// @param immediate - The immediate value to append.
375 /// @param operand - The operand, as stored in the descriptor table.
376 /// @param insn - The internal instruction.
377 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
378 const OperandSpecifier &operand,
379 InternalInstruction &insn,
380 const MCDisassembler *Dis) {
381 // Sign-extend the immediate if necessary.
383 OperandType type = (OperandType)operand.type;
385 bool isBranch = false;
386 uint64_t pcrel = 0;
387 if (type == TYPE_REL) {
388 isBranch = true;
389 pcrel = insn.startLocation +
390 insn.immediateOffset + insn.immediateSize;
391 switch (operand.encoding) {
392 default:
393 break;
394 case ENCODING_Iv:
395 switch (insn.displacementSize) {
396 default:
397 break;
398 case 1:
399 if(immediate & 0x80)
400 immediate |= ~(0xffull);
401 break;
402 case 2:
403 if(immediate & 0x8000)
404 immediate |= ~(0xffffull);
405 break;
406 case 4:
407 if(immediate & 0x80000000)
408 immediate |= ~(0xffffffffull);
409 break;
410 case 8:
411 break;
413 break;
414 case ENCODING_IB:
415 if(immediate & 0x80)
416 immediate |= ~(0xffull);
417 break;
418 case ENCODING_IW:
419 if(immediate & 0x8000)
420 immediate |= ~(0xffffull);
421 break;
422 case ENCODING_ID:
423 if(immediate & 0x80000000)
424 immediate |= ~(0xffffffffull);
425 break;
428 // By default sign-extend all X86 immediates based on their encoding.
429 else if (type == TYPE_IMM) {
430 switch (operand.encoding) {
431 default:
432 break;
433 case ENCODING_IB:
434 if(immediate & 0x80)
435 immediate |= ~(0xffull);
436 break;
437 case ENCODING_IW:
438 if(immediate & 0x8000)
439 immediate |= ~(0xffffull);
440 break;
441 case ENCODING_ID:
442 if(immediate & 0x80000000)
443 immediate |= ~(0xffffffffull);
444 break;
445 case ENCODING_IO:
446 break;
448 } else if (type == TYPE_IMM3) {
449 // Check for immediates that printSSECC can't handle.
450 if (immediate >= 8) {
451 unsigned NewOpc;
452 switch (mcInst.getOpcode()) {
453 default: llvm_unreachable("unexpected opcode");
454 case X86::CMPPDrmi: NewOpc = X86::CMPPDrmi_alt; break;
455 case X86::CMPPDrri: NewOpc = X86::CMPPDrri_alt; break;
456 case X86::CMPPSrmi: NewOpc = X86::CMPPSrmi_alt; break;
457 case X86::CMPPSrri: NewOpc = X86::CMPPSrri_alt; break;
458 case X86::CMPSDrm: NewOpc = X86::CMPSDrm_alt; break;
459 case X86::CMPSDrr: NewOpc = X86::CMPSDrr_alt; break;
460 case X86::CMPSSrm: NewOpc = X86::CMPSSrm_alt; break;
461 case X86::CMPSSrr: NewOpc = X86::CMPSSrr_alt; break;
462 case X86::VPCOMBri: NewOpc = X86::VPCOMBri_alt; break;
463 case X86::VPCOMBmi: NewOpc = X86::VPCOMBmi_alt; break;
464 case X86::VPCOMWri: NewOpc = X86::VPCOMWri_alt; break;
465 case X86::VPCOMWmi: NewOpc = X86::VPCOMWmi_alt; break;
466 case X86::VPCOMDri: NewOpc = X86::VPCOMDri_alt; break;
467 case X86::VPCOMDmi: NewOpc = X86::VPCOMDmi_alt; break;
468 case X86::VPCOMQri: NewOpc = X86::VPCOMQri_alt; break;
469 case X86::VPCOMQmi: NewOpc = X86::VPCOMQmi_alt; break;
470 case X86::VPCOMUBri: NewOpc = X86::VPCOMUBri_alt; break;
471 case X86::VPCOMUBmi: NewOpc = X86::VPCOMUBmi_alt; break;
472 case X86::VPCOMUWri: NewOpc = X86::VPCOMUWri_alt; break;
473 case X86::VPCOMUWmi: NewOpc = X86::VPCOMUWmi_alt; break;
474 case X86::VPCOMUDri: NewOpc = X86::VPCOMUDri_alt; break;
475 case X86::VPCOMUDmi: NewOpc = X86::VPCOMUDmi_alt; break;
476 case X86::VPCOMUQri: NewOpc = X86::VPCOMUQri_alt; break;
477 case X86::VPCOMUQmi: NewOpc = X86::VPCOMUQmi_alt; break;
479 // Switch opcode to the one that doesn't get special printing.
480 mcInst.setOpcode(NewOpc);
482 } else if (type == TYPE_IMM5) {
483 // Check for immediates that printAVXCC can't handle.
484 if (immediate >= 32) {
485 unsigned NewOpc;
486 switch (mcInst.getOpcode()) {
487 default: llvm_unreachable("unexpected opcode");
488 case X86::VCMPPDrmi: NewOpc = X86::VCMPPDrmi_alt; break;
489 case X86::VCMPPDrri: NewOpc = X86::VCMPPDrri_alt; break;
490 case X86::VCMPPSrmi: NewOpc = X86::VCMPPSrmi_alt; break;
491 case X86::VCMPPSrri: NewOpc = X86::VCMPPSrri_alt; break;
492 case X86::VCMPSDrm: NewOpc = X86::VCMPSDrm_alt; break;
493 case X86::VCMPSDrr: NewOpc = X86::VCMPSDrr_alt; break;
494 case X86::VCMPSSrm: NewOpc = X86::VCMPSSrm_alt; break;
495 case X86::VCMPSSrr: NewOpc = X86::VCMPSSrr_alt; break;
496 case X86::VCMPPDYrmi: NewOpc = X86::VCMPPDYrmi_alt; break;
497 case X86::VCMPPDYrri: NewOpc = X86::VCMPPDYrri_alt; break;
498 case X86::VCMPPSYrmi: NewOpc = X86::VCMPPSYrmi_alt; break;
499 case X86::VCMPPSYrri: NewOpc = X86::VCMPPSYrri_alt; break;
500 case X86::VCMPPDZrmi: NewOpc = X86::VCMPPDZrmi_alt; break;
501 case X86::VCMPPDZrri: NewOpc = X86::VCMPPDZrri_alt; break;
502 case X86::VCMPPDZrrib: NewOpc = X86::VCMPPDZrrib_alt; break;
503 case X86::VCMPPSZrmi: NewOpc = X86::VCMPPSZrmi_alt; break;
504 case X86::VCMPPSZrri: NewOpc = X86::VCMPPSZrri_alt; break;
505 case X86::VCMPPSZrrib: NewOpc = X86::VCMPPSZrrib_alt; break;
506 case X86::VCMPPDZ128rmi: NewOpc = X86::VCMPPDZ128rmi_alt; break;
507 case X86::VCMPPDZ128rri: NewOpc = X86::VCMPPDZ128rri_alt; break;
508 case X86::VCMPPSZ128rmi: NewOpc = X86::VCMPPSZ128rmi_alt; break;
509 case X86::VCMPPSZ128rri: NewOpc = X86::VCMPPSZ128rri_alt; break;
510 case X86::VCMPPDZ256rmi: NewOpc = X86::VCMPPDZ256rmi_alt; break;
511 case X86::VCMPPDZ256rri: NewOpc = X86::VCMPPDZ256rri_alt; break;
512 case X86::VCMPPSZ256rmi: NewOpc = X86::VCMPPSZ256rmi_alt; break;
513 case X86::VCMPPSZ256rri: NewOpc = X86::VCMPPSZ256rri_alt; break;
514 case X86::VCMPSDZrm_Int: NewOpc = X86::VCMPSDZrmi_alt; break;
515 case X86::VCMPSDZrr_Int: NewOpc = X86::VCMPSDZrri_alt; break;
516 case X86::VCMPSDZrrb_Int: NewOpc = X86::VCMPSDZrrb_alt; break;
517 case X86::VCMPSSZrm_Int: NewOpc = X86::VCMPSSZrmi_alt; break;
518 case X86::VCMPSSZrr_Int: NewOpc = X86::VCMPSSZrri_alt; break;
519 case X86::VCMPSSZrrb_Int: NewOpc = X86::VCMPSSZrrb_alt; break;
521 // Switch opcode to the one that doesn't get special printing.
522 mcInst.setOpcode(NewOpc);
524 } else if (type == TYPE_AVX512ICC) {
525 if (immediate >= 8 || ((immediate & 0x3) == 3)) {
526 unsigned NewOpc;
527 switch (mcInst.getOpcode()) {
528 default: llvm_unreachable("unexpected opcode");
529 case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPBZ128rmi_alt; break;
530 case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPBZ128rmik_alt; break;
531 case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPBZ128rri_alt; break;
532 case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPBZ128rrik_alt; break;
533 case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPBZ256rmi_alt; break;
534 case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPBZ256rmik_alt; break;
535 case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPBZ256rri_alt; break;
536 case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPBZ256rrik_alt; break;
537 case X86::VPCMPBZrmi: NewOpc = X86::VPCMPBZrmi_alt; break;
538 case X86::VPCMPBZrmik: NewOpc = X86::VPCMPBZrmik_alt; break;
539 case X86::VPCMPBZrri: NewOpc = X86::VPCMPBZrri_alt; break;
540 case X86::VPCMPBZrrik: NewOpc = X86::VPCMPBZrrik_alt; break;
541 case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPDZ128rmi_alt; break;
542 case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPDZ128rmib_alt; break;
543 case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPDZ128rmibk_alt; break;
544 case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPDZ128rmik_alt; break;
545 case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPDZ128rri_alt; break;
546 case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPDZ128rrik_alt; break;
547 case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPDZ256rmi_alt; break;
548 case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPDZ256rmib_alt; break;
549 case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPDZ256rmibk_alt; break;
550 case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPDZ256rmik_alt; break;
551 case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPDZ256rri_alt; break;
552 case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPDZ256rrik_alt; break;
553 case X86::VPCMPDZrmi: NewOpc = X86::VPCMPDZrmi_alt; break;
554 case X86::VPCMPDZrmib: NewOpc = X86::VPCMPDZrmib_alt; break;
555 case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPDZrmibk_alt; break;
556 case X86::VPCMPDZrmik: NewOpc = X86::VPCMPDZrmik_alt; break;
557 case X86::VPCMPDZrri: NewOpc = X86::VPCMPDZrri_alt; break;
558 case X86::VPCMPDZrrik: NewOpc = X86::VPCMPDZrrik_alt; break;
559 case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPQZ128rmi_alt; break;
560 case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPQZ128rmib_alt; break;
561 case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPQZ128rmibk_alt; break;
562 case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPQZ128rmik_alt; break;
563 case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPQZ128rri_alt; break;
564 case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPQZ128rrik_alt; break;
565 case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPQZ256rmi_alt; break;
566 case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPQZ256rmib_alt; break;
567 case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPQZ256rmibk_alt; break;
568 case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPQZ256rmik_alt; break;
569 case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPQZ256rri_alt; break;
570 case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPQZ256rrik_alt; break;
571 case X86::VPCMPQZrmi: NewOpc = X86::VPCMPQZrmi_alt; break;
572 case X86::VPCMPQZrmib: NewOpc = X86::VPCMPQZrmib_alt; break;
573 case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPQZrmibk_alt; break;
574 case X86::VPCMPQZrmik: NewOpc = X86::VPCMPQZrmik_alt; break;
575 case X86::VPCMPQZrri: NewOpc = X86::VPCMPQZrri_alt; break;
576 case X86::VPCMPQZrrik: NewOpc = X86::VPCMPQZrrik_alt; break;
577 case X86::VPCMPUBZ128rmi: NewOpc = X86::VPCMPUBZ128rmi_alt; break;
578 case X86::VPCMPUBZ128rmik: NewOpc = X86::VPCMPUBZ128rmik_alt; break;
579 case X86::VPCMPUBZ128rri: NewOpc = X86::VPCMPUBZ128rri_alt; break;
580 case X86::VPCMPUBZ128rrik: NewOpc = X86::VPCMPUBZ128rrik_alt; break;
581 case X86::VPCMPUBZ256rmi: NewOpc = X86::VPCMPUBZ256rmi_alt; break;
582 case X86::VPCMPUBZ256rmik: NewOpc = X86::VPCMPUBZ256rmik_alt; break;
583 case X86::VPCMPUBZ256rri: NewOpc = X86::VPCMPUBZ256rri_alt; break;
584 case X86::VPCMPUBZ256rrik: NewOpc = X86::VPCMPUBZ256rrik_alt; break;
585 case X86::VPCMPUBZrmi: NewOpc = X86::VPCMPUBZrmi_alt; break;
586 case X86::VPCMPUBZrmik: NewOpc = X86::VPCMPUBZrmik_alt; break;
587 case X86::VPCMPUBZrri: NewOpc = X86::VPCMPUBZrri_alt; break;
588 case X86::VPCMPUBZrrik: NewOpc = X86::VPCMPUBZrrik_alt; break;
589 case X86::VPCMPUDZ128rmi: NewOpc = X86::VPCMPUDZ128rmi_alt; break;
590 case X86::VPCMPUDZ128rmib: NewOpc = X86::VPCMPUDZ128rmib_alt; break;
591 case X86::VPCMPUDZ128rmibk: NewOpc = X86::VPCMPUDZ128rmibk_alt; break;
592 case X86::VPCMPUDZ128rmik: NewOpc = X86::VPCMPUDZ128rmik_alt; break;
593 case X86::VPCMPUDZ128rri: NewOpc = X86::VPCMPUDZ128rri_alt; break;
594 case X86::VPCMPUDZ128rrik: NewOpc = X86::VPCMPUDZ128rrik_alt; break;
595 case X86::VPCMPUDZ256rmi: NewOpc = X86::VPCMPUDZ256rmi_alt; break;
596 case X86::VPCMPUDZ256rmib: NewOpc = X86::VPCMPUDZ256rmib_alt; break;
597 case X86::VPCMPUDZ256rmibk: NewOpc = X86::VPCMPUDZ256rmibk_alt; break;
598 case X86::VPCMPUDZ256rmik: NewOpc = X86::VPCMPUDZ256rmik_alt; break;
599 case X86::VPCMPUDZ256rri: NewOpc = X86::VPCMPUDZ256rri_alt; break;
600 case X86::VPCMPUDZ256rrik: NewOpc = X86::VPCMPUDZ256rrik_alt; break;
601 case X86::VPCMPUDZrmi: NewOpc = X86::VPCMPUDZrmi_alt; break;
602 case X86::VPCMPUDZrmib: NewOpc = X86::VPCMPUDZrmib_alt; break;
603 case X86::VPCMPUDZrmibk: NewOpc = X86::VPCMPUDZrmibk_alt; break;
604 case X86::VPCMPUDZrmik: NewOpc = X86::VPCMPUDZrmik_alt; break;
605 case X86::VPCMPUDZrri: NewOpc = X86::VPCMPUDZrri_alt; break;
606 case X86::VPCMPUDZrrik: NewOpc = X86::VPCMPUDZrrik_alt; break;
607 case X86::VPCMPUQZ128rmi: NewOpc = X86::VPCMPUQZ128rmi_alt; break;
608 case X86::VPCMPUQZ128rmib: NewOpc = X86::VPCMPUQZ128rmib_alt; break;
609 case X86::VPCMPUQZ128rmibk: NewOpc = X86::VPCMPUQZ128rmibk_alt; break;
610 case X86::VPCMPUQZ128rmik: NewOpc = X86::VPCMPUQZ128rmik_alt; break;
611 case X86::VPCMPUQZ128rri: NewOpc = X86::VPCMPUQZ128rri_alt; break;
612 case X86::VPCMPUQZ128rrik: NewOpc = X86::VPCMPUQZ128rrik_alt; break;
613 case X86::VPCMPUQZ256rmi: NewOpc = X86::VPCMPUQZ256rmi_alt; break;
614 case X86::VPCMPUQZ256rmib: NewOpc = X86::VPCMPUQZ256rmib_alt; break;
615 case X86::VPCMPUQZ256rmibk: NewOpc = X86::VPCMPUQZ256rmibk_alt; break;
616 case X86::VPCMPUQZ256rmik: NewOpc = X86::VPCMPUQZ256rmik_alt; break;
617 case X86::VPCMPUQZ256rri: NewOpc = X86::VPCMPUQZ256rri_alt; break;
618 case X86::VPCMPUQZ256rrik: NewOpc = X86::VPCMPUQZ256rrik_alt; break;
619 case X86::VPCMPUQZrmi: NewOpc = X86::VPCMPUQZrmi_alt; break;
620 case X86::VPCMPUQZrmib: NewOpc = X86::VPCMPUQZrmib_alt; break;
621 case X86::VPCMPUQZrmibk: NewOpc = X86::VPCMPUQZrmibk_alt; break;
622 case X86::VPCMPUQZrmik: NewOpc = X86::VPCMPUQZrmik_alt; break;
623 case X86::VPCMPUQZrri: NewOpc = X86::VPCMPUQZrri_alt; break;
624 case X86::VPCMPUQZrrik: NewOpc = X86::VPCMPUQZrrik_alt; break;
625 case X86::VPCMPUWZ128rmi: NewOpc = X86::VPCMPUWZ128rmi_alt; break;
626 case X86::VPCMPUWZ128rmik: NewOpc = X86::VPCMPUWZ128rmik_alt; break;
627 case X86::VPCMPUWZ128rri: NewOpc = X86::VPCMPUWZ128rri_alt; break;
628 case X86::VPCMPUWZ128rrik: NewOpc = X86::VPCMPUWZ128rrik_alt; break;
629 case X86::VPCMPUWZ256rmi: NewOpc = X86::VPCMPUWZ256rmi_alt; break;
630 case X86::VPCMPUWZ256rmik: NewOpc = X86::VPCMPUWZ256rmik_alt; break;
631 case X86::VPCMPUWZ256rri: NewOpc = X86::VPCMPUWZ256rri_alt; break;
632 case X86::VPCMPUWZ256rrik: NewOpc = X86::VPCMPUWZ256rrik_alt; break;
633 case X86::VPCMPUWZrmi: NewOpc = X86::VPCMPUWZrmi_alt; break;
634 case X86::VPCMPUWZrmik: NewOpc = X86::VPCMPUWZrmik_alt; break;
635 case X86::VPCMPUWZrri: NewOpc = X86::VPCMPUWZrri_alt; break;
636 case X86::VPCMPUWZrrik: NewOpc = X86::VPCMPUWZrrik_alt; break;
637 case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPWZ128rmi_alt; break;
638 case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPWZ128rmik_alt; break;
639 case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPWZ128rri_alt; break;
640 case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPWZ128rrik_alt; break;
641 case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPWZ256rmi_alt; break;
642 case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPWZ256rmik_alt; break;
643 case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPWZ256rri_alt; break;
644 case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPWZ256rrik_alt; break;
645 case X86::VPCMPWZrmi: NewOpc = X86::VPCMPWZrmi_alt; break;
646 case X86::VPCMPWZrmik: NewOpc = X86::VPCMPWZrmik_alt; break;
647 case X86::VPCMPWZrri: NewOpc = X86::VPCMPWZrri_alt; break;
648 case X86::VPCMPWZrrik: NewOpc = X86::VPCMPWZrrik_alt; break;
650 // Switch opcode to the one that doesn't get special printing.
651 mcInst.setOpcode(NewOpc);
655 switch (type) {
656 case TYPE_XMM:
657 mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
658 return;
659 case TYPE_YMM:
660 mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
661 return;
662 case TYPE_ZMM:
663 mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
664 return;
665 default:
666 // operand is 64 bits wide. Do nothing.
667 break;
670 if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
671 insn.immediateOffset, insn.immediateSize,
672 mcInst, Dis))
673 mcInst.addOperand(MCOperand::createImm(immediate));
675 if (type == TYPE_MOFFS) {
676 MCOperand segmentReg;
677 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
678 mcInst.addOperand(segmentReg);
682 /// translateRMRegister - Translates a register stored in the R/M field of the
683 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
684 /// @param mcInst - The MCInst to append to.
685 /// @param insn - The internal instruction to extract the R/M field
686 /// from.
687 /// @return - 0 on success; -1 otherwise
688 static bool translateRMRegister(MCInst &mcInst,
689 InternalInstruction &insn) {
690 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
691 debug("A R/M register operand may not have a SIB byte");
692 return true;
695 switch (insn.eaBase) {
696 default:
697 debug("Unexpected EA base register");
698 return true;
699 case EA_BASE_NONE:
700 debug("EA_BASE_NONE for ModR/M base");
701 return true;
702 #define ENTRY(x) case EA_BASE_##x:
703 ALL_EA_BASES
704 #undef ENTRY
705 debug("A R/M register operand may not have a base; "
706 "the operand must be a register.");
707 return true;
708 #define ENTRY(x) \
709 case EA_REG_##x: \
710 mcInst.addOperand(MCOperand::createReg(X86::x)); break;
711 ALL_REGS
712 #undef ENTRY
715 return false;
718 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
719 /// fields of an internal instruction (and possibly its SIB byte) to a memory
720 /// operand in LLVM's format, and appends it to an MCInst.
722 /// @param mcInst - The MCInst to append to.
723 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
724 /// from.
725 /// @return - 0 on success; nonzero otherwise
726 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
727 const MCDisassembler *Dis) {
728 // Addresses in an MCInst are represented as five operands:
729 // 1. basereg (register) The R/M base, or (if there is a SIB) the
730 // SIB base
731 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
732 // scale amount
733 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
734 // the index (which is multiplied by the
735 // scale amount)
736 // 4. displacement (immediate) 0, or the displacement if there is one
737 // 5. segmentreg (register) x86_registerNONE for now, but could be set
738 // if we have segment overrides
740 MCOperand baseReg;
741 MCOperand scaleAmount;
742 MCOperand indexReg;
743 MCOperand displacement;
744 MCOperand segmentReg;
745 uint64_t pcrel = 0;
747 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
748 if (insn.sibBase != SIB_BASE_NONE) {
749 switch (insn.sibBase) {
750 default:
751 debug("Unexpected sibBase");
752 return true;
753 #define ENTRY(x) \
754 case SIB_BASE_##x: \
755 baseReg = MCOperand::createReg(X86::x); break;
756 ALL_SIB_BASES
757 #undef ENTRY
759 } else {
760 baseReg = MCOperand::createReg(X86::NoRegister);
763 if (insn.sibIndex != SIB_INDEX_NONE) {
764 switch (insn.sibIndex) {
765 default:
766 debug("Unexpected sibIndex");
767 return true;
768 #define ENTRY(x) \
769 case SIB_INDEX_##x: \
770 indexReg = MCOperand::createReg(X86::x); break;
771 EA_BASES_32BIT
772 EA_BASES_64BIT
773 REGS_XMM
774 REGS_YMM
775 REGS_ZMM
776 #undef ENTRY
778 } else {
779 // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
780 // but no index is used and modrm alone should have been enough.
781 // -No base register in 32-bit mode. In 64-bit mode this is used to
782 // avoid rip-relative addressing.
783 // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
784 // base always requires a SIB byte.
785 // -A scale other than 1 is used.
786 if (insn.sibScale != 1 ||
787 (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
788 (insn.sibBase != SIB_BASE_NONE &&
789 insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
790 insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12)) {
791 indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
792 X86::RIZ);
793 } else
794 indexReg = MCOperand::createReg(X86::NoRegister);
797 scaleAmount = MCOperand::createImm(insn.sibScale);
798 } else {
799 switch (insn.eaBase) {
800 case EA_BASE_NONE:
801 if (insn.eaDisplacement == EA_DISP_NONE) {
802 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
803 return true;
805 if (insn.mode == MODE_64BIT){
806 pcrel = insn.startLocation +
807 insn.displacementOffset + insn.displacementSize;
808 tryAddingPcLoadReferenceComment(insn.startLocation +
809 insn.displacementOffset,
810 insn.displacement + pcrel, Dis);
811 // Section 2.2.1.6
812 baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
813 X86::RIP);
815 else
816 baseReg = MCOperand::createReg(X86::NoRegister);
818 indexReg = MCOperand::createReg(X86::NoRegister);
819 break;
820 case EA_BASE_BX_SI:
821 baseReg = MCOperand::createReg(X86::BX);
822 indexReg = MCOperand::createReg(X86::SI);
823 break;
824 case EA_BASE_BX_DI:
825 baseReg = MCOperand::createReg(X86::BX);
826 indexReg = MCOperand::createReg(X86::DI);
827 break;
828 case EA_BASE_BP_SI:
829 baseReg = MCOperand::createReg(X86::BP);
830 indexReg = MCOperand::createReg(X86::SI);
831 break;
832 case EA_BASE_BP_DI:
833 baseReg = MCOperand::createReg(X86::BP);
834 indexReg = MCOperand::createReg(X86::DI);
835 break;
836 default:
837 indexReg = MCOperand::createReg(X86::NoRegister);
838 switch (insn.eaBase) {
839 default:
840 debug("Unexpected eaBase");
841 return true;
842 // Here, we will use the fill-ins defined above. However,
843 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
844 // sib and sib64 were handled in the top-level if, so they're only
845 // placeholders to keep the compiler happy.
846 #define ENTRY(x) \
847 case EA_BASE_##x: \
848 baseReg = MCOperand::createReg(X86::x); break;
849 ALL_EA_BASES
850 #undef ENTRY
851 #define ENTRY(x) case EA_REG_##x:
852 ALL_REGS
853 #undef ENTRY
854 debug("A R/M memory operand may not be a register; "
855 "the base field must be a base.");
856 return true;
860 scaleAmount = MCOperand::createImm(1);
863 displacement = MCOperand::createImm(insn.displacement);
865 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
867 mcInst.addOperand(baseReg);
868 mcInst.addOperand(scaleAmount);
869 mcInst.addOperand(indexReg);
870 if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
871 insn.startLocation, insn.displacementOffset,
872 insn.displacementSize, mcInst, Dis))
873 mcInst.addOperand(displacement);
874 mcInst.addOperand(segmentReg);
875 return false;
878 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
879 /// byte of an instruction to LLVM form, and appends it to an MCInst.
881 /// @param mcInst - The MCInst to append to.
882 /// @param operand - The operand, as stored in the descriptor table.
883 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
884 /// from.
885 /// @return - 0 on success; nonzero otherwise
886 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
887 InternalInstruction &insn, const MCDisassembler *Dis) {
888 switch (operand.type) {
889 default:
890 debug("Unexpected type for a R/M operand");
891 return true;
892 case TYPE_R8:
893 case TYPE_R16:
894 case TYPE_R32:
895 case TYPE_R64:
896 case TYPE_Rv:
897 case TYPE_MM64:
898 case TYPE_XMM:
899 case TYPE_YMM:
900 case TYPE_ZMM:
901 case TYPE_VK:
902 case TYPE_DEBUGREG:
903 case TYPE_CONTROLREG:
904 case TYPE_BNDR:
905 return translateRMRegister(mcInst, insn);
906 case TYPE_M:
907 case TYPE_MVSIBX:
908 case TYPE_MVSIBY:
909 case TYPE_MVSIBZ:
910 return translateRMMemory(mcInst, insn, Dis);
914 /// translateFPRegister - Translates a stack position on the FPU stack to its
915 /// LLVM form, and appends it to an MCInst.
917 /// @param mcInst - The MCInst to append to.
918 /// @param stackPos - The stack position to translate.
919 static void translateFPRegister(MCInst &mcInst,
920 uint8_t stackPos) {
921 mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
924 /// translateMaskRegister - Translates a 3-bit mask register number to
925 /// LLVM form, and appends it to an MCInst.
927 /// @param mcInst - The MCInst to append to.
928 /// @param maskRegNum - Number of mask register from 0 to 7.
929 /// @return - false on success; true otherwise.
930 static bool translateMaskRegister(MCInst &mcInst,
931 uint8_t maskRegNum) {
932 if (maskRegNum >= 8) {
933 debug("Invalid mask register number");
934 return true;
937 mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
938 return false;
941 /// translateOperand - Translates an operand stored in an internal instruction
942 /// to LLVM's format and appends it to an MCInst.
944 /// @param mcInst - The MCInst to append to.
945 /// @param operand - The operand, as stored in the descriptor table.
946 /// @param insn - The internal instruction.
947 /// @return - false on success; true otherwise.
948 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
949 InternalInstruction &insn,
950 const MCDisassembler *Dis) {
951 switch (operand.encoding) {
952 default:
953 debug("Unhandled operand encoding during translation");
954 return true;
955 case ENCODING_REG:
956 translateRegister(mcInst, insn.reg);
957 return false;
958 case ENCODING_WRITEMASK:
959 return translateMaskRegister(mcInst, insn.writemask);
960 CASE_ENCODING_RM:
961 CASE_ENCODING_VSIB:
962 return translateRM(mcInst, operand, insn, Dis);
963 case ENCODING_IB:
964 case ENCODING_IW:
965 case ENCODING_ID:
966 case ENCODING_IO:
967 case ENCODING_Iv:
968 case ENCODING_Ia:
969 translateImmediate(mcInst,
970 insn.immediates[insn.numImmediatesTranslated++],
971 operand,
972 insn,
973 Dis);
974 return false;
975 case ENCODING_IRC:
976 mcInst.addOperand(MCOperand::createImm(insn.RC));
977 return false;
978 case ENCODING_SI:
979 return translateSrcIndex(mcInst, insn);
980 case ENCODING_DI:
981 return translateDstIndex(mcInst, insn);
982 case ENCODING_RB:
983 case ENCODING_RW:
984 case ENCODING_RD:
985 case ENCODING_RO:
986 case ENCODING_Rv:
987 translateRegister(mcInst, insn.opcodeRegister);
988 return false;
989 case ENCODING_FP:
990 translateFPRegister(mcInst, insn.modRM & 7);
991 return false;
992 case ENCODING_VVVV:
993 translateRegister(mcInst, insn.vvvv);
994 return false;
995 case ENCODING_DUP:
996 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
997 insn, Dis);
1001 /// translateInstruction - Translates an internal instruction and all its
1002 /// operands to an MCInst.
1004 /// @param mcInst - The MCInst to populate with the instruction's data.
1005 /// @param insn - The internal instruction.
1006 /// @return - false on success; true otherwise.
1007 static bool translateInstruction(MCInst &mcInst,
1008 InternalInstruction &insn,
1009 const MCDisassembler *Dis) {
1010 if (!insn.spec) {
1011 debug("Instruction has no specification");
1012 return true;
1015 mcInst.clear();
1016 mcInst.setOpcode(insn.instructionID);
1017 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
1018 // prefix bytes should be disassembled as xrelease and xacquire then set the
1019 // opcode to those instead of the rep and repne opcodes.
1020 if (insn.xAcquireRelease) {
1021 if(mcInst.getOpcode() == X86::REP_PREFIX)
1022 mcInst.setOpcode(X86::XRELEASE_PREFIX);
1023 else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
1024 mcInst.setOpcode(X86::XACQUIRE_PREFIX);
1027 insn.numImmediatesTranslated = 0;
1029 for (const auto &Op : insn.operands) {
1030 if (Op.encoding != ENCODING_NONE) {
1031 if (translateOperand(mcInst, Op, insn, Dis)) {
1032 return true;
1037 return false;
1040 static MCDisassembler *createX86Disassembler(const Target &T,
1041 const MCSubtargetInfo &STI,
1042 MCContext &Ctx) {
1043 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
1044 return new X86GenericDisassembler(STI, Ctx, std::move(MII));
1047 extern "C" void LLVMInitializeX86Disassembler() {
1048 // Register the disassembler.
1049 TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
1050 createX86Disassembler);
1051 TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
1052 createX86Disassembler);