Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / X86 / MCTargetDesc / X86BaseInfo.h
blob62dd685b36078aaa539526b149a52e81c1f1cdc9
1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone helper functions and enum definitions for
10 // the X86 target useful for the compiler back-end and the MC libraries.
11 // As such, it deliberately does not include references to LLVM core
12 // code gen types, passes, etc..
14 //===----------------------------------------------------------------------===//
16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
19 #include "X86MCTargetDesc.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/ErrorHandling.h"
24 namespace llvm {
26 namespace X86 {
27 // Enums for memory operand decoding. Each memory operand is represented with
28 // a 5 operand sequence in the form:
29 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30 // These enums help decode this.
31 enum {
32 AddrBaseReg = 0,
33 AddrScaleAmt = 1,
34 AddrIndexReg = 2,
35 AddrDisp = 3,
37 /// AddrSegmentReg - The operand # of the segment in the memory operand.
38 AddrSegmentReg = 4,
40 /// AddrNumOperands - Total number of operands in a memory reference.
41 AddrNumOperands = 5
44 /// AVX512 static rounding constants. These need to match the values in
45 /// avx512fintrin.h.
46 enum STATIC_ROUNDING {
47 TO_NEAREST_INT = 0,
48 TO_NEG_INF = 1,
49 TO_POS_INF = 2,
50 TO_ZERO = 3,
51 CUR_DIRECTION = 4
54 /// The constants to describe instr prefixes if there are
55 enum IPREFIXES {
56 IP_NO_PREFIX = 0,
57 IP_HAS_OP_SIZE = 1,
58 IP_HAS_AD_SIZE = 2,
59 IP_HAS_REPEAT_NE = 4,
60 IP_HAS_REPEAT = 8,
61 IP_HAS_LOCK = 16,
62 IP_HAS_NOTRACK = 32
64 } // end namespace X86;
66 /// X86II - This namespace holds all of the target specific flags that
67 /// instruction info tracks.
68 ///
69 namespace X86II {
70 /// Target Operand Flag enum.
71 enum TOF {
72 //===------------------------------------------------------------------===//
73 // X86 Specific MachineOperand flags.
75 MO_NO_FLAG,
77 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
78 /// relocation of:
79 /// SYMBOL_LABEL + [. - PICBASELABEL]
80 MO_GOT_ABSOLUTE_ADDRESS,
82 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
83 /// immediate should get the value of the symbol minus the PIC base label:
84 /// SYMBOL_LABEL - PICBASELABEL
85 MO_PIC_BASE_OFFSET,
87 /// MO_GOT - On a symbol operand this indicates that the immediate is the
88 /// offset to the GOT entry for the symbol name from the base of the GOT.
89 ///
90 /// See the X86-64 ELF ABI supplement for more details.
91 /// SYMBOL_LABEL @GOT
92 MO_GOT,
94 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
95 /// the offset to the location of the symbol name from the base of the GOT.
96 ///
97 /// See the X86-64 ELF ABI supplement for more details.
98 /// SYMBOL_LABEL @GOTOFF
99 MO_GOTOFF,
101 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
102 /// offset to the GOT entry for the symbol name from the current code
103 /// location.
105 /// See the X86-64 ELF ABI supplement for more details.
106 /// SYMBOL_LABEL @GOTPCREL
107 MO_GOTPCREL,
109 /// MO_PLT - On a symbol operand this indicates that the immediate is
110 /// offset to the PLT entry of symbol name from the current code location.
112 /// See the X86-64 ELF ABI supplement for more details.
113 /// SYMBOL_LABEL @PLT
114 MO_PLT,
116 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
117 /// the offset of the GOT entry with the TLS index structure that contains
118 /// the module number and variable offset for the symbol. Used in the
119 /// general dynamic TLS access model.
121 /// See 'ELF Handling for Thread-Local Storage' for more details.
122 /// SYMBOL_LABEL @TLSGD
123 MO_TLSGD,
125 /// MO_TLSLD - On a symbol operand this indicates that the immediate is
126 /// the offset of the GOT entry with the TLS index for the module that
127 /// contains the symbol. When this index is passed to a call to
128 /// __tls_get_addr, the function will return the base address of the TLS
129 /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
131 /// See 'ELF Handling for Thread-Local Storage' for more details.
132 /// SYMBOL_LABEL @TLSLD
133 MO_TLSLD,
135 /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
136 /// the offset of the GOT entry with the TLS index for the module that
137 /// contains the symbol. When this index is passed to a call to
138 /// ___tls_get_addr, the function will return the base address of the TLS
139 /// block for the symbol. Used in the IA32 local dynamic TLS access model.
141 /// See 'ELF Handling for Thread-Local Storage' for more details.
142 /// SYMBOL_LABEL @TLSLDM
143 MO_TLSLDM,
145 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
146 /// the offset of the GOT entry with the thread-pointer offset for the
147 /// symbol. Used in the x86-64 initial exec TLS access model.
149 /// See 'ELF Handling for Thread-Local Storage' for more details.
150 /// SYMBOL_LABEL @GOTTPOFF
151 MO_GOTTPOFF,
153 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
154 /// the absolute address of the GOT entry with the negative thread-pointer
155 /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
156 /// model.
158 /// See 'ELF Handling for Thread-Local Storage' for more details.
159 /// SYMBOL_LABEL @INDNTPOFF
160 MO_INDNTPOFF,
162 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
163 /// the thread-pointer offset for the symbol. Used in the x86-64 local
164 /// exec TLS access model.
166 /// See 'ELF Handling for Thread-Local Storage' for more details.
167 /// SYMBOL_LABEL @TPOFF
168 MO_TPOFF,
170 /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
171 /// the offset of the GOT entry with the TLS offset of the symbol. Used
172 /// in the local dynamic TLS access model.
174 /// See 'ELF Handling for Thread-Local Storage' for more details.
175 /// SYMBOL_LABEL @DTPOFF
176 MO_DTPOFF,
178 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
179 /// the negative thread-pointer offset for the symbol. Used in the IA32
180 /// local exec TLS access model.
182 /// See 'ELF Handling for Thread-Local Storage' for more details.
183 /// SYMBOL_LABEL @NTPOFF
184 MO_NTPOFF,
186 /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
187 /// the offset of the GOT entry with the negative thread-pointer offset for
188 /// the symbol. Used in the PIC IA32 initial exec TLS access model.
190 /// See 'ELF Handling for Thread-Local Storage' for more details.
191 /// SYMBOL_LABEL @GOTNTPOFF
192 MO_GOTNTPOFF,
194 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
195 /// reference is actually to the "__imp_FOO" symbol. This is used for
196 /// dllimport linkage on windows.
197 MO_DLLIMPORT,
199 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
200 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
201 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
202 MO_DARWIN_NONLAZY,
204 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
205 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
206 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
207 MO_DARWIN_NONLAZY_PIC_BASE,
209 /// MO_TLVP - On a symbol operand this indicates that the immediate is
210 /// some TLS offset.
212 /// This is the TLS offset for the Darwin TLS mechanism.
213 MO_TLVP,
215 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
216 /// is some TLS offset from the picbase.
218 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
219 MO_TLVP_PIC_BASE,
221 /// MO_SECREL - On a symbol operand this indicates that the immediate is
222 /// the offset from beginning of section.
224 /// This is the TLS offset for the COFF/Windows TLS mechanism.
225 MO_SECREL,
227 /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
228 /// to be an absolute symbol in range [0,128), so we can use the @ABS8
229 /// symbol modifier.
230 MO_ABS8,
232 /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
233 /// reference is actually to the ".refptr.FOO" symbol. This is used for
234 /// stub symbols on windows.
235 MO_COFFSTUB,
238 enum : uint64_t {
239 //===------------------------------------------------------------------===//
240 // Instruction encodings. These are the standard/most common forms for X86
241 // instructions.
244 // PseudoFrm - This represents an instruction that is a pseudo instruction
245 // or one that has not been implemented yet. It is illegal to code generate
246 // it, but tolerated for intermediate implementation stages.
247 Pseudo = 0,
249 /// Raw - This form is for instructions that don't have any operands, so
250 /// they are just a fixed opcode value, like 'leave'.
251 RawFrm = 1,
253 /// AddRegFrm - This form is used for instructions like 'push r32' that have
254 /// their one register operand added to their opcode.
255 AddRegFrm = 2,
257 /// RawFrmMemOffs - This form is for instructions that store an absolute
258 /// memory offset as an immediate with a possible segment override.
259 RawFrmMemOffs = 3,
261 /// RawFrmSrc - This form is for instructions that use the source index
262 /// register SI/ESI/RSI with a possible segment override.
263 RawFrmSrc = 4,
265 /// RawFrmDst - This form is for instructions that use the destination index
266 /// register DI/EDI/RDI.
267 RawFrmDst = 5,
269 /// RawFrmDstSrc - This form is for instructions that use the source index
270 /// register SI/ESI/RSI with a possible segment override, and also the
271 /// destination index register DI/EDI/RDI.
272 RawFrmDstSrc = 6,
274 /// RawFrmImm8 - This is used for the ENTER instruction, which has two
275 /// immediates, the first of which is a 16-bit immediate (specified by
276 /// the imm encoding) and the second is a 8-bit fixed value.
277 RawFrmImm8 = 7,
279 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
280 /// immediates, the first of which is a 16 or 32-bit immediate (specified by
281 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
282 /// manual, this operand is described as pntr16:32 and pntr16:16
283 RawFrmImm16 = 8,
285 /// MRM[0-7][rm] - These forms are used to represent instructions that use
286 /// a Mod/RM byte, and use the middle field to hold extended opcode
287 /// information. In the intel manual these are represented as /0, /1, ...
290 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
291 /// to specify a destination, which in this case is memory.
293 MRMDestMem = 32,
295 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
296 /// to specify a source, which in this case is memory.
298 MRMSrcMem = 33,
300 /// MRMSrcMem4VOp3 - This form is used for instructions that encode
301 /// operand 3 with VEX.VVVV and load from memory.
303 MRMSrcMem4VOp3 = 34,
305 /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
306 /// byte to specify the fourth source, which in this case is memory.
308 MRMSrcMemOp4 = 35,
310 /// MRMXm - This form is used for instructions that use the Mod/RM byte
311 /// to specify a memory source, but doesn't use the middle field.
313 MRMXm = 39, // Instruction that uses Mod/RM but not the middle field.
315 // Next, instructions that operate on a memory r/m operand...
316 MRM0m = 40, MRM1m = 41, MRM2m = 42, MRM3m = 43, // Format /0 /1 /2 /3
317 MRM4m = 44, MRM5m = 45, MRM6m = 46, MRM7m = 47, // Format /4 /5 /6 /7
319 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
320 /// to specify a destination, which in this case is a register.
322 MRMDestReg = 48,
324 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
325 /// to specify a source, which in this case is a register.
327 MRMSrcReg = 49,
329 /// MRMSrcReg4VOp3 - This form is used for instructions that encode
330 /// operand 3 with VEX.VVVV and do not load from memory.
332 MRMSrcReg4VOp3 = 50,
334 /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
335 /// byte to specify the fourth source, which in this case is a register.
337 MRMSrcRegOp4 = 51,
339 /// MRMXr - This form is used for instructions that use the Mod/RM byte
340 /// to specify a register source, but doesn't use the middle field.
342 MRMXr = 55, // Instruction that uses Mod/RM but not the middle field.
344 // Instructions that operate on a register r/m operand...
345 MRM0r = 56, MRM1r = 57, MRM2r = 58, MRM3r = 59, // Format /0 /1 /2 /3
346 MRM4r = 60, MRM5r = 61, MRM6r = 62, MRM7r = 63, // Format /4 /5 /6 /7
348 /// MRM_XX - A mod/rm byte of exactly 0xXX.
349 MRM_C0 = 64, MRM_C1 = 65, MRM_C2 = 66, MRM_C3 = 67,
350 MRM_C4 = 68, MRM_C5 = 69, MRM_C6 = 70, MRM_C7 = 71,
351 MRM_C8 = 72, MRM_C9 = 73, MRM_CA = 74, MRM_CB = 75,
352 MRM_CC = 76, MRM_CD = 77, MRM_CE = 78, MRM_CF = 79,
353 MRM_D0 = 80, MRM_D1 = 81, MRM_D2 = 82, MRM_D3 = 83,
354 MRM_D4 = 84, MRM_D5 = 85, MRM_D6 = 86, MRM_D7 = 87,
355 MRM_D8 = 88, MRM_D9 = 89, MRM_DA = 90, MRM_DB = 91,
356 MRM_DC = 92, MRM_DD = 93, MRM_DE = 94, MRM_DF = 95,
357 MRM_E0 = 96, MRM_E1 = 97, MRM_E2 = 98, MRM_E3 = 99,
358 MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
359 MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
360 MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
361 MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
362 MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
363 MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
364 MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
366 FormMask = 127,
368 //===------------------------------------------------------------------===//
369 // Actual flags...
371 // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
372 // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
373 // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
374 // prefix in 16-bit mode.
375 OpSizeShift = 7,
376 OpSizeMask = 0x3 << OpSizeShift,
378 OpSizeFixed = 0 << OpSizeShift,
379 OpSize16 = 1 << OpSizeShift,
380 OpSize32 = 2 << OpSizeShift,
382 // AsSize - AdSizeX implies this instruction determines its need of 0x67
383 // prefix from a normal ModRM memory operand. The other types indicate that
384 // an operand is encoded with a specific width and a prefix is needed if
385 // it differs from the current mode.
386 AdSizeShift = OpSizeShift + 2,
387 AdSizeMask = 0x3 << AdSizeShift,
389 AdSizeX = 0 << AdSizeShift,
390 AdSize16 = 1 << AdSizeShift,
391 AdSize32 = 2 << AdSizeShift,
392 AdSize64 = 3 << AdSizeShift,
394 //===------------------------------------------------------------------===//
395 // OpPrefix - There are several prefix bytes that are used as opcode
396 // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
397 // no prefix.
399 OpPrefixShift = AdSizeShift + 2,
400 OpPrefixMask = 0x3 << OpPrefixShift,
402 // PD - Prefix code for packed double precision vector floating point
403 // operations performed in the SSE registers.
404 PD = 1 << OpPrefixShift,
406 // XS, XD - These prefix codes are for single and double precision scalar
407 // floating point operations performed in the SSE registers.
408 XS = 2 << OpPrefixShift, XD = 3 << OpPrefixShift,
410 //===------------------------------------------------------------------===//
411 // OpMap - This field determines which opcode map this instruction
412 // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
414 OpMapShift = OpPrefixShift + 2,
415 OpMapMask = 0x7 << OpMapShift,
417 // OB - OneByte - Set if this instruction has a one byte opcode.
418 OB = 0 << OpMapShift,
420 // TB - TwoByte - Set if this instruction has a two byte opcode, which
421 // starts with a 0x0F byte before the real opcode.
422 TB = 1 << OpMapShift,
424 // T8, TA - Prefix after the 0x0F prefix.
425 T8 = 2 << OpMapShift, TA = 3 << OpMapShift,
427 // XOP8 - Prefix to include use of imm byte.
428 XOP8 = 4 << OpMapShift,
430 // XOP9 - Prefix to exclude use of imm byte.
431 XOP9 = 5 << OpMapShift,
433 // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
434 XOPA = 6 << OpMapShift,
436 /// ThreeDNow - This indicates that the instruction uses the
437 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
438 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
439 /// storing a classifier in the imm8 field. To simplify our implementation,
440 /// we handle this by storeing the classifier in the opcode field and using
441 /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
442 ThreeDNow = 7 << OpMapShift,
444 //===------------------------------------------------------------------===//
445 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
446 // They are used to specify GPRs and SSE registers, 64-bit operand size,
447 // etc. We only cares about REX.W and REX.R bits and only the former is
448 // statically determined.
450 REXShift = OpMapShift + 3,
451 REX_W = 1 << REXShift,
453 //===------------------------------------------------------------------===//
454 // This three-bit field describes the size of an immediate operand. Zero is
455 // unused so that we can tell if we forgot to set a value.
456 ImmShift = REXShift + 1,
457 ImmMask = 15 << ImmShift,
458 Imm8 = 1 << ImmShift,
459 Imm8PCRel = 2 << ImmShift,
460 Imm8Reg = 3 << ImmShift,
461 Imm16 = 4 << ImmShift,
462 Imm16PCRel = 5 << ImmShift,
463 Imm32 = 6 << ImmShift,
464 Imm32PCRel = 7 << ImmShift,
465 Imm32S = 8 << ImmShift,
466 Imm64 = 9 << ImmShift,
468 //===------------------------------------------------------------------===//
469 // FP Instruction Classification... Zero is non-fp instruction.
471 // FPTypeMask - Mask for all of the FP types...
472 FPTypeShift = ImmShift + 4,
473 FPTypeMask = 7 << FPTypeShift,
475 // NotFP - The default, set for instructions that do not use FP registers.
476 NotFP = 0 << FPTypeShift,
478 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
479 ZeroArgFP = 1 << FPTypeShift,
481 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
482 OneArgFP = 2 << FPTypeShift,
484 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
485 // result back to ST(0). For example, fcos, fsqrt, etc.
487 OneArgFPRW = 3 << FPTypeShift,
489 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
490 // explicit argument, storing the result to either ST(0) or the implicit
491 // argument. For example: fadd, fsub, fmul, etc...
492 TwoArgFP = 4 << FPTypeShift,
494 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
495 // explicit argument, but have no destination. Example: fucom, fucomi, ...
496 CompareFP = 5 << FPTypeShift,
498 // CondMovFP - "2 operand" floating point conditional move instructions.
499 CondMovFP = 6 << FPTypeShift,
501 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
502 SpecialFP = 7 << FPTypeShift,
504 // Lock prefix
505 LOCKShift = FPTypeShift + 3,
506 LOCK = 1 << LOCKShift,
508 // REP prefix
509 REPShift = LOCKShift + 1,
510 REP = 1 << REPShift,
512 // Execution domain for SSE instructions.
513 // 0 means normal, non-SSE instruction.
514 SSEDomainShift = REPShift + 1,
516 // Encoding
517 EncodingShift = SSEDomainShift + 2,
518 EncodingMask = 0x3 << EncodingShift,
520 // VEX - encoding using 0xC4/0xC5
521 VEX = 1 << EncodingShift,
523 /// XOP - Opcode prefix used by XOP instructions.
524 XOP = 2 << EncodingShift,
526 // VEX_EVEX - Specifies that this instruction use EVEX form which provides
527 // syntax support up to 32 512-bit register operands and up to 7 16-bit
528 // mask operands as well as source operand data swizzling/memory operand
529 // conversion, eviction hint, and rounding mode.
530 EVEX = 3 << EncodingShift,
532 // Opcode
533 OpcodeShift = EncodingShift + 2,
535 /// VEX_W - Has a opcode specific functionality, but is used in the same
536 /// way as REX_W is for regular SSE instructions.
537 VEX_WShift = OpcodeShift + 8,
538 VEX_W = 1ULL << VEX_WShift,
540 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
541 /// address instructions in SSE are represented as 3 address ones in AVX
542 /// and the additional register is encoded in VEX_VVVV prefix.
543 VEX_4VShift = VEX_WShift + 1,
544 VEX_4V = 1ULL << VEX_4VShift,
546 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
547 /// instruction uses 256-bit wide registers. This is usually auto detected
548 /// if a VR256 register is used, but some AVX instructions also have this
549 /// field marked when using a f256 memory references.
550 VEX_LShift = VEX_4VShift + 1,
551 VEX_L = 1ULL << VEX_LShift,
553 // EVEX_K - Set if this instruction requires masking
554 EVEX_KShift = VEX_LShift + 1,
555 EVEX_K = 1ULL << EVEX_KShift,
557 // EVEX_Z - Set if this instruction has EVEX.Z field set.
558 EVEX_ZShift = EVEX_KShift + 1,
559 EVEX_Z = 1ULL << EVEX_ZShift,
561 // EVEX_L2 - Set if this instruction has EVEX.L' field set.
562 EVEX_L2Shift = EVEX_ZShift + 1,
563 EVEX_L2 = 1ULL << EVEX_L2Shift,
565 // EVEX_B - Set if this instruction has EVEX.B field set.
566 EVEX_BShift = EVEX_L2Shift + 1,
567 EVEX_B = 1ULL << EVEX_BShift,
569 // The scaling factor for the AVX512's 8-bit compressed displacement.
570 CD8_Scale_Shift = EVEX_BShift + 1,
571 CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
573 /// Explicitly specified rounding control
574 EVEX_RCShift = CD8_Scale_Shift + 7,
575 EVEX_RC = 1ULL << EVEX_RCShift,
577 // NOTRACK prefix
578 NoTrackShift = EVEX_RCShift + 1,
579 NOTRACK = 1ULL << NoTrackShift
582 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
583 // specified machine instruction.
585 inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
586 return TSFlags >> X86II::OpcodeShift;
589 inline bool hasImm(uint64_t TSFlags) {
590 return (TSFlags & X86II::ImmMask) != 0;
593 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
594 /// of the specified instruction.
595 inline unsigned getSizeOfImm(uint64_t TSFlags) {
596 switch (TSFlags & X86II::ImmMask) {
597 default: llvm_unreachable("Unknown immediate size");
598 case X86II::Imm8:
599 case X86II::Imm8PCRel:
600 case X86II::Imm8Reg: return 1;
601 case X86II::Imm16:
602 case X86II::Imm16PCRel: return 2;
603 case X86II::Imm32:
604 case X86II::Imm32S:
605 case X86II::Imm32PCRel: return 4;
606 case X86II::Imm64: return 8;
610 /// isImmPCRel - Return true if the immediate of the specified instruction's
611 /// TSFlags indicates that it is pc relative.
612 inline unsigned isImmPCRel(uint64_t TSFlags) {
613 switch (TSFlags & X86II::ImmMask) {
614 default: llvm_unreachable("Unknown immediate size");
615 case X86II::Imm8PCRel:
616 case X86II::Imm16PCRel:
617 case X86II::Imm32PCRel:
618 return true;
619 case X86II::Imm8:
620 case X86II::Imm8Reg:
621 case X86II::Imm16:
622 case X86II::Imm32:
623 case X86II::Imm32S:
624 case X86II::Imm64:
625 return false;
629 /// isImmSigned - Return true if the immediate of the specified instruction's
630 /// TSFlags indicates that it is signed.
631 inline unsigned isImmSigned(uint64_t TSFlags) {
632 switch (TSFlags & X86II::ImmMask) {
633 default: llvm_unreachable("Unknown immediate signedness");
634 case X86II::Imm32S:
635 return true;
636 case X86II::Imm8:
637 case X86II::Imm8PCRel:
638 case X86II::Imm8Reg:
639 case X86II::Imm16:
640 case X86II::Imm16PCRel:
641 case X86II::Imm32:
642 case X86II::Imm32PCRel:
643 case X86II::Imm64:
644 return false;
648 /// getOperandBias - compute whether all of the def operands are repeated
649 /// in the uses and therefore should be skipped.
650 /// This determines the start of the unique operand list. We need to determine
651 /// if all of the defs have a corresponding tied operand in the uses.
652 /// Unfortunately, the tied operand information is encoded in the uses not
653 /// the defs so we have to use some heuristics to find which operands to
654 /// query.
655 inline unsigned getOperandBias(const MCInstrDesc& Desc) {
656 unsigned NumDefs = Desc.getNumDefs();
657 unsigned NumOps = Desc.getNumOperands();
658 switch (NumDefs) {
659 default: llvm_unreachable("Unexpected number of defs");
660 case 0:
661 return 0;
662 case 1:
663 // Common two addr case.
664 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
665 return 1;
666 // Check for AVX-512 scatter which has a TIED_TO in the second to last
667 // operand.
668 if (NumOps == 8 &&
669 Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
670 return 1;
671 return 0;
672 case 2:
673 // XCHG/XADD have two destinations and two sources.
674 if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
675 Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
676 return 2;
677 // Check for gather. AVX-512 has the second tied operand early. AVX2
678 // has it as the last op.
679 if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
680 (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
681 Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1) &&
682 "Instruction with 2 defs isn't gather?")
683 return 2;
684 return 0;
688 /// getMemoryOperandNo - The function returns the MCInst operand # for the
689 /// first field of the memory operand. If the instruction doesn't have a
690 /// memory operand, this returns -1.
692 /// Note that this ignores tied operands. If there is a tied register which
693 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
694 /// counted as one operand.
696 inline int getMemoryOperandNo(uint64_t TSFlags) {
697 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
698 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
700 switch (TSFlags & X86II::FormMask) {
701 default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
702 case X86II::Pseudo:
703 case X86II::RawFrm:
704 case X86II::AddRegFrm:
705 case X86II::RawFrmImm8:
706 case X86II::RawFrmImm16:
707 case X86II::RawFrmMemOffs:
708 case X86II::RawFrmSrc:
709 case X86II::RawFrmDst:
710 case X86II::RawFrmDstSrc:
711 return -1;
712 case X86II::MRMDestMem:
713 return 0;
714 case X86II::MRMSrcMem:
715 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
716 // mask register.
717 return 1 + HasVEX_4V + HasEVEX_K;
718 case X86II::MRMSrcMem4VOp3:
719 // Skip registers encoded in reg.
720 return 1 + HasEVEX_K;
721 case X86II::MRMSrcMemOp4:
722 // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
723 return 3;
724 case X86II::MRMDestReg:
725 case X86II::MRMSrcReg:
726 case X86II::MRMSrcReg4VOp3:
727 case X86II::MRMSrcRegOp4:
728 case X86II::MRMXr:
729 case X86II::MRM0r: case X86II::MRM1r:
730 case X86II::MRM2r: case X86II::MRM3r:
731 case X86II::MRM4r: case X86II::MRM5r:
732 case X86II::MRM6r: case X86II::MRM7r:
733 return -1;
734 case X86II::MRMXm:
735 case X86II::MRM0m: case X86II::MRM1m:
736 case X86II::MRM2m: case X86II::MRM3m:
737 case X86II::MRM4m: case X86II::MRM5m:
738 case X86II::MRM6m: case X86II::MRM7m:
739 // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
740 return 0 + HasVEX_4V + HasEVEX_K;
741 case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
742 case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
743 case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
744 case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
745 case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
746 case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
747 case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
748 case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
749 case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
750 case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
751 case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
752 case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
753 case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
754 case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
755 case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
756 case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
757 case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
758 case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
759 case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
760 case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
761 case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
762 case X86II::MRM_FF:
763 return -1;
767 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
768 /// higher) register? e.g. r8, xmm8, xmm13, etc.
769 inline bool isX86_64ExtendedReg(unsigned RegNo) {
770 if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
771 (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
772 (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
773 return true;
775 switch (RegNo) {
776 default: break;
777 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
778 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
779 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
780 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
781 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
782 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
783 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
784 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
785 case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
786 case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
787 case X86::DR8: case X86::DR9: case X86::DR10: case X86::DR11:
788 case X86::DR12: case X86::DR13: case X86::DR14: case X86::DR15:
789 return true;
791 return false;
794 /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
795 /// registers? e.g. zmm21, etc.
796 static inline bool is32ExtendedReg(unsigned RegNo) {
797 return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
798 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
799 (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
803 inline bool isX86_64NonExtLowByteReg(unsigned reg) {
804 return (reg == X86::SPL || reg == X86::BPL ||
805 reg == X86::SIL || reg == X86::DIL);
808 /// isKMasked - Is this a masked instruction.
809 inline bool isKMasked(uint64_t TSFlags) {
810 return (TSFlags & X86II::EVEX_K) != 0;
813 /// isKMergedMasked - Is this a merge masked instruction.
814 inline bool isKMergeMasked(uint64_t TSFlags) {
815 return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
819 } // end namespace llvm;
821 #endif