1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains small standalone helper functions and enum definitions for
10 // the X86 target useful for the compiler back-end and the MC libraries.
11 // As such, it deliberately does not include references to LLVM core
12 // code gen types, passes, etc..
14 //===----------------------------------------------------------------------===//
16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
19 #include "X86MCTargetDesc.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/ErrorHandling.h"
27 // Enums for memory operand decoding. Each memory operand is represented with
28 // a 5 operand sequence in the form:
29 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30 // These enums help decode this.
37 /// AddrSegmentReg - The operand # of the segment in the memory operand.
40 /// AddrNumOperands - Total number of operands in a memory reference.
44 /// AVX512 static rounding constants. These need to match the values in
46 enum STATIC_ROUNDING
{
54 /// The constants to describe instr prefixes if there are
64 } // end namespace X86;
66 /// X86II - This namespace holds all of the target specific flags that
67 /// instruction info tracks.
70 /// Target Operand Flag enum.
72 //===------------------------------------------------------------------===//
73 // X86 Specific MachineOperand flags.
77 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
79 /// SYMBOL_LABEL + [. - PICBASELABEL]
80 MO_GOT_ABSOLUTE_ADDRESS
,
82 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
83 /// immediate should get the value of the symbol minus the PIC base label:
84 /// SYMBOL_LABEL - PICBASELABEL
87 /// MO_GOT - On a symbol operand this indicates that the immediate is the
88 /// offset to the GOT entry for the symbol name from the base of the GOT.
90 /// See the X86-64 ELF ABI supplement for more details.
94 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
95 /// the offset to the location of the symbol name from the base of the GOT.
97 /// See the X86-64 ELF ABI supplement for more details.
98 /// SYMBOL_LABEL @GOTOFF
101 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
102 /// offset to the GOT entry for the symbol name from the current code
105 /// See the X86-64 ELF ABI supplement for more details.
106 /// SYMBOL_LABEL @GOTPCREL
109 /// MO_PLT - On a symbol operand this indicates that the immediate is
110 /// offset to the PLT entry of symbol name from the current code location.
112 /// See the X86-64 ELF ABI supplement for more details.
113 /// SYMBOL_LABEL @PLT
116 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
117 /// the offset of the GOT entry with the TLS index structure that contains
118 /// the module number and variable offset for the symbol. Used in the
119 /// general dynamic TLS access model.
121 /// See 'ELF Handling for Thread-Local Storage' for more details.
122 /// SYMBOL_LABEL @TLSGD
125 /// MO_TLSLD - On a symbol operand this indicates that the immediate is
126 /// the offset of the GOT entry with the TLS index for the module that
127 /// contains the symbol. When this index is passed to a call to
128 /// __tls_get_addr, the function will return the base address of the TLS
129 /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
131 /// See 'ELF Handling for Thread-Local Storage' for more details.
132 /// SYMBOL_LABEL @TLSLD
135 /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
136 /// the offset of the GOT entry with the TLS index for the module that
137 /// contains the symbol. When this index is passed to a call to
138 /// ___tls_get_addr, the function will return the base address of the TLS
139 /// block for the symbol. Used in the IA32 local dynamic TLS access model.
141 /// See 'ELF Handling for Thread-Local Storage' for more details.
142 /// SYMBOL_LABEL @TLSLDM
145 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
146 /// the offset of the GOT entry with the thread-pointer offset for the
147 /// symbol. Used in the x86-64 initial exec TLS access model.
149 /// See 'ELF Handling for Thread-Local Storage' for more details.
150 /// SYMBOL_LABEL @GOTTPOFF
153 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
154 /// the absolute address of the GOT entry with the negative thread-pointer
155 /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
158 /// See 'ELF Handling for Thread-Local Storage' for more details.
159 /// SYMBOL_LABEL @INDNTPOFF
162 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
163 /// the thread-pointer offset for the symbol. Used in the x86-64 local
164 /// exec TLS access model.
166 /// See 'ELF Handling for Thread-Local Storage' for more details.
167 /// SYMBOL_LABEL @TPOFF
170 /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
171 /// the offset of the GOT entry with the TLS offset of the symbol. Used
172 /// in the local dynamic TLS access model.
174 /// See 'ELF Handling for Thread-Local Storage' for more details.
175 /// SYMBOL_LABEL @DTPOFF
178 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
179 /// the negative thread-pointer offset for the symbol. Used in the IA32
180 /// local exec TLS access model.
182 /// See 'ELF Handling for Thread-Local Storage' for more details.
183 /// SYMBOL_LABEL @NTPOFF
186 /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
187 /// the offset of the GOT entry with the negative thread-pointer offset for
188 /// the symbol. Used in the PIC IA32 initial exec TLS access model.
190 /// See 'ELF Handling for Thread-Local Storage' for more details.
191 /// SYMBOL_LABEL @GOTNTPOFF
194 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
195 /// reference is actually to the "__imp_FOO" symbol. This is used for
196 /// dllimport linkage on windows.
199 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
200 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
201 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
204 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
205 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
206 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
207 MO_DARWIN_NONLAZY_PIC_BASE
,
209 /// MO_TLVP - On a symbol operand this indicates that the immediate is
212 /// This is the TLS offset for the Darwin TLS mechanism.
215 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
216 /// is some TLS offset from the picbase.
218 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
221 /// MO_SECREL - On a symbol operand this indicates that the immediate is
222 /// the offset from beginning of section.
224 /// This is the TLS offset for the COFF/Windows TLS mechanism.
227 /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
228 /// to be an absolute symbol in range [0,128), so we can use the @ABS8
232 /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
233 /// reference is actually to the ".refptr.FOO" symbol. This is used for
234 /// stub symbols on windows.
239 //===------------------------------------------------------------------===//
240 // Instruction encodings. These are the standard/most common forms for X86
244 // PseudoFrm - This represents an instruction that is a pseudo instruction
245 // or one that has not been implemented yet. It is illegal to code generate
246 // it, but tolerated for intermediate implementation stages.
249 /// Raw - This form is for instructions that don't have any operands, so
250 /// they are just a fixed opcode value, like 'leave'.
253 /// AddRegFrm - This form is used for instructions like 'push r32' that have
254 /// their one register operand added to their opcode.
257 /// RawFrmMemOffs - This form is for instructions that store an absolute
258 /// memory offset as an immediate with a possible segment override.
261 /// RawFrmSrc - This form is for instructions that use the source index
262 /// register SI/ESI/RSI with a possible segment override.
265 /// RawFrmDst - This form is for instructions that use the destination index
266 /// register DI/EDI/RDI.
269 /// RawFrmDstSrc - This form is for instructions that use the source index
270 /// register SI/ESI/RSI with a possible segment override, and also the
271 /// destination index register DI/EDI/RDI.
274 /// RawFrmImm8 - This is used for the ENTER instruction, which has two
275 /// immediates, the first of which is a 16-bit immediate (specified by
276 /// the imm encoding) and the second is a 8-bit fixed value.
279 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
280 /// immediates, the first of which is a 16 or 32-bit immediate (specified by
281 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
282 /// manual, this operand is described as pntr16:32 and pntr16:16
285 /// MRM[0-7][rm] - These forms are used to represent instructions that use
286 /// a Mod/RM byte, and use the middle field to hold extended opcode
287 /// information. In the intel manual these are represented as /0, /1, ...
290 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
291 /// to specify a destination, which in this case is memory.
295 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
296 /// to specify a source, which in this case is memory.
300 /// MRMSrcMem4VOp3 - This form is used for instructions that encode
301 /// operand 3 with VEX.VVVV and load from memory.
305 /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
306 /// byte to specify the fourth source, which in this case is memory.
310 /// MRMXm - This form is used for instructions that use the Mod/RM byte
311 /// to specify a memory source, but doesn't use the middle field.
313 MRMXm
= 39, // Instruction that uses Mod/RM but not the middle field.
315 // Next, instructions that operate on a memory r/m operand...
316 MRM0m
= 40, MRM1m
= 41, MRM2m
= 42, MRM3m
= 43, // Format /0 /1 /2 /3
317 MRM4m
= 44, MRM5m
= 45, MRM6m
= 46, MRM7m
= 47, // Format /4 /5 /6 /7
319 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
320 /// to specify a destination, which in this case is a register.
324 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
325 /// to specify a source, which in this case is a register.
329 /// MRMSrcReg4VOp3 - This form is used for instructions that encode
330 /// operand 3 with VEX.VVVV and do not load from memory.
334 /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
335 /// byte to specify the fourth source, which in this case is a register.
339 /// MRMXr - This form is used for instructions that use the Mod/RM byte
340 /// to specify a register source, but doesn't use the middle field.
342 MRMXr
= 55, // Instruction that uses Mod/RM but not the middle field.
344 // Instructions that operate on a register r/m operand...
345 MRM0r
= 56, MRM1r
= 57, MRM2r
= 58, MRM3r
= 59, // Format /0 /1 /2 /3
346 MRM4r
= 60, MRM5r
= 61, MRM6r
= 62, MRM7r
= 63, // Format /4 /5 /6 /7
348 /// MRM_XX - A mod/rm byte of exactly 0xXX.
349 MRM_C0
= 64, MRM_C1
= 65, MRM_C2
= 66, MRM_C3
= 67,
350 MRM_C4
= 68, MRM_C5
= 69, MRM_C6
= 70, MRM_C7
= 71,
351 MRM_C8
= 72, MRM_C9
= 73, MRM_CA
= 74, MRM_CB
= 75,
352 MRM_CC
= 76, MRM_CD
= 77, MRM_CE
= 78, MRM_CF
= 79,
353 MRM_D0
= 80, MRM_D1
= 81, MRM_D2
= 82, MRM_D3
= 83,
354 MRM_D4
= 84, MRM_D5
= 85, MRM_D6
= 86, MRM_D7
= 87,
355 MRM_D8
= 88, MRM_D9
= 89, MRM_DA
= 90, MRM_DB
= 91,
356 MRM_DC
= 92, MRM_DD
= 93, MRM_DE
= 94, MRM_DF
= 95,
357 MRM_E0
= 96, MRM_E1
= 97, MRM_E2
= 98, MRM_E3
= 99,
358 MRM_E4
= 100, MRM_E5
= 101, MRM_E6
= 102, MRM_E7
= 103,
359 MRM_E8
= 104, MRM_E9
= 105, MRM_EA
= 106, MRM_EB
= 107,
360 MRM_EC
= 108, MRM_ED
= 109, MRM_EE
= 110, MRM_EF
= 111,
361 MRM_F0
= 112, MRM_F1
= 113, MRM_F2
= 114, MRM_F3
= 115,
362 MRM_F4
= 116, MRM_F5
= 117, MRM_F6
= 118, MRM_F7
= 119,
363 MRM_F8
= 120, MRM_F9
= 121, MRM_FA
= 122, MRM_FB
= 123,
364 MRM_FC
= 124, MRM_FD
= 125, MRM_FE
= 126, MRM_FF
= 127,
368 //===------------------------------------------------------------------===//
371 // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
372 // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
373 // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
374 // prefix in 16-bit mode.
376 OpSizeMask
= 0x3 << OpSizeShift
,
378 OpSizeFixed
= 0 << OpSizeShift
,
379 OpSize16
= 1 << OpSizeShift
,
380 OpSize32
= 2 << OpSizeShift
,
382 // AsSize - AdSizeX implies this instruction determines its need of 0x67
383 // prefix from a normal ModRM memory operand. The other types indicate that
384 // an operand is encoded with a specific width and a prefix is needed if
385 // it differs from the current mode.
386 AdSizeShift
= OpSizeShift
+ 2,
387 AdSizeMask
= 0x3 << AdSizeShift
,
389 AdSizeX
= 0 << AdSizeShift
,
390 AdSize16
= 1 << AdSizeShift
,
391 AdSize32
= 2 << AdSizeShift
,
392 AdSize64
= 3 << AdSizeShift
,
394 //===------------------------------------------------------------------===//
395 // OpPrefix - There are several prefix bytes that are used as opcode
396 // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
399 OpPrefixShift
= AdSizeShift
+ 2,
400 OpPrefixMask
= 0x3 << OpPrefixShift
,
402 // PD - Prefix code for packed double precision vector floating point
403 // operations performed in the SSE registers.
404 PD
= 1 << OpPrefixShift
,
406 // XS, XD - These prefix codes are for single and double precision scalar
407 // floating point operations performed in the SSE registers.
408 XS
= 2 << OpPrefixShift
, XD
= 3 << OpPrefixShift
,
410 //===------------------------------------------------------------------===//
411 // OpMap - This field determines which opcode map this instruction
412 // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
414 OpMapShift
= OpPrefixShift
+ 2,
415 OpMapMask
= 0x7 << OpMapShift
,
417 // OB - OneByte - Set if this instruction has a one byte opcode.
418 OB
= 0 << OpMapShift
,
420 // TB - TwoByte - Set if this instruction has a two byte opcode, which
421 // starts with a 0x0F byte before the real opcode.
422 TB
= 1 << OpMapShift
,
424 // T8, TA - Prefix after the 0x0F prefix.
425 T8
= 2 << OpMapShift
, TA
= 3 << OpMapShift
,
427 // XOP8 - Prefix to include use of imm byte.
428 XOP8
= 4 << OpMapShift
,
430 // XOP9 - Prefix to exclude use of imm byte.
431 XOP9
= 5 << OpMapShift
,
433 // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
434 XOPA
= 6 << OpMapShift
,
436 /// ThreeDNow - This indicates that the instruction uses the
437 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
438 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
439 /// storing a classifier in the imm8 field. To simplify our implementation,
440 /// we handle this by storeing the classifier in the opcode field and using
441 /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
442 ThreeDNow
= 7 << OpMapShift
,
444 //===------------------------------------------------------------------===//
445 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
446 // They are used to specify GPRs and SSE registers, 64-bit operand size,
447 // etc. We only cares about REX.W and REX.R bits and only the former is
448 // statically determined.
450 REXShift
= OpMapShift
+ 3,
451 REX_W
= 1 << REXShift
,
453 //===------------------------------------------------------------------===//
454 // This three-bit field describes the size of an immediate operand. Zero is
455 // unused so that we can tell if we forgot to set a value.
456 ImmShift
= REXShift
+ 1,
457 ImmMask
= 15 << ImmShift
,
458 Imm8
= 1 << ImmShift
,
459 Imm8PCRel
= 2 << ImmShift
,
460 Imm8Reg
= 3 << ImmShift
,
461 Imm16
= 4 << ImmShift
,
462 Imm16PCRel
= 5 << ImmShift
,
463 Imm32
= 6 << ImmShift
,
464 Imm32PCRel
= 7 << ImmShift
,
465 Imm32S
= 8 << ImmShift
,
466 Imm64
= 9 << ImmShift
,
468 //===------------------------------------------------------------------===//
469 // FP Instruction Classification... Zero is non-fp instruction.
471 // FPTypeMask - Mask for all of the FP types...
472 FPTypeShift
= ImmShift
+ 4,
473 FPTypeMask
= 7 << FPTypeShift
,
475 // NotFP - The default, set for instructions that do not use FP registers.
476 NotFP
= 0 << FPTypeShift
,
478 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
479 ZeroArgFP
= 1 << FPTypeShift
,
481 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
482 OneArgFP
= 2 << FPTypeShift
,
484 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
485 // result back to ST(0). For example, fcos, fsqrt, etc.
487 OneArgFPRW
= 3 << FPTypeShift
,
489 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
490 // explicit argument, storing the result to either ST(0) or the implicit
491 // argument. For example: fadd, fsub, fmul, etc...
492 TwoArgFP
= 4 << FPTypeShift
,
494 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
495 // explicit argument, but have no destination. Example: fucom, fucomi, ...
496 CompareFP
= 5 << FPTypeShift
,
498 // CondMovFP - "2 operand" floating point conditional move instructions.
499 CondMovFP
= 6 << FPTypeShift
,
501 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
502 SpecialFP
= 7 << FPTypeShift
,
505 LOCKShift
= FPTypeShift
+ 3,
506 LOCK
= 1 << LOCKShift
,
509 REPShift
= LOCKShift
+ 1,
512 // Execution domain for SSE instructions.
513 // 0 means normal, non-SSE instruction.
514 SSEDomainShift
= REPShift
+ 1,
517 EncodingShift
= SSEDomainShift
+ 2,
518 EncodingMask
= 0x3 << EncodingShift
,
520 // VEX - encoding using 0xC4/0xC5
521 VEX
= 1 << EncodingShift
,
523 /// XOP - Opcode prefix used by XOP instructions.
524 XOP
= 2 << EncodingShift
,
526 // VEX_EVEX - Specifies that this instruction use EVEX form which provides
527 // syntax support up to 32 512-bit register operands and up to 7 16-bit
528 // mask operands as well as source operand data swizzling/memory operand
529 // conversion, eviction hint, and rounding mode.
530 EVEX
= 3 << EncodingShift
,
533 OpcodeShift
= EncodingShift
+ 2,
535 /// VEX_W - Has a opcode specific functionality, but is used in the same
536 /// way as REX_W is for regular SSE instructions.
537 VEX_WShift
= OpcodeShift
+ 8,
538 VEX_W
= 1ULL << VEX_WShift
,
540 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
541 /// address instructions in SSE are represented as 3 address ones in AVX
542 /// and the additional register is encoded in VEX_VVVV prefix.
543 VEX_4VShift
= VEX_WShift
+ 1,
544 VEX_4V
= 1ULL << VEX_4VShift
,
546 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
547 /// instruction uses 256-bit wide registers. This is usually auto detected
548 /// if a VR256 register is used, but some AVX instructions also have this
549 /// field marked when using a f256 memory references.
550 VEX_LShift
= VEX_4VShift
+ 1,
551 VEX_L
= 1ULL << VEX_LShift
,
553 // EVEX_K - Set if this instruction requires masking
554 EVEX_KShift
= VEX_LShift
+ 1,
555 EVEX_K
= 1ULL << EVEX_KShift
,
557 // EVEX_Z - Set if this instruction has EVEX.Z field set.
558 EVEX_ZShift
= EVEX_KShift
+ 1,
559 EVEX_Z
= 1ULL << EVEX_ZShift
,
561 // EVEX_L2 - Set if this instruction has EVEX.L' field set.
562 EVEX_L2Shift
= EVEX_ZShift
+ 1,
563 EVEX_L2
= 1ULL << EVEX_L2Shift
,
565 // EVEX_B - Set if this instruction has EVEX.B field set.
566 EVEX_BShift
= EVEX_L2Shift
+ 1,
567 EVEX_B
= 1ULL << EVEX_BShift
,
569 // The scaling factor for the AVX512's 8-bit compressed displacement.
570 CD8_Scale_Shift
= EVEX_BShift
+ 1,
571 CD8_Scale_Mask
= 127ULL << CD8_Scale_Shift
,
573 /// Explicitly specified rounding control
574 EVEX_RCShift
= CD8_Scale_Shift
+ 7,
575 EVEX_RC
= 1ULL << EVEX_RCShift
,
578 NoTrackShift
= EVEX_RCShift
+ 1,
579 NOTRACK
= 1ULL << NoTrackShift
582 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
583 // specified machine instruction.
585 inline uint8_t getBaseOpcodeFor(uint64_t TSFlags
) {
586 return TSFlags
>> X86II::OpcodeShift
;
589 inline bool hasImm(uint64_t TSFlags
) {
590 return (TSFlags
& X86II::ImmMask
) != 0;
593 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
594 /// of the specified instruction.
595 inline unsigned getSizeOfImm(uint64_t TSFlags
) {
596 switch (TSFlags
& X86II::ImmMask
) {
597 default: llvm_unreachable("Unknown immediate size");
599 case X86II::Imm8PCRel
:
600 case X86II::Imm8Reg
: return 1;
602 case X86II::Imm16PCRel
: return 2;
605 case X86II::Imm32PCRel
: return 4;
606 case X86II::Imm64
: return 8;
610 /// isImmPCRel - Return true if the immediate of the specified instruction's
611 /// TSFlags indicates that it is pc relative.
612 inline unsigned isImmPCRel(uint64_t TSFlags
) {
613 switch (TSFlags
& X86II::ImmMask
) {
614 default: llvm_unreachable("Unknown immediate size");
615 case X86II::Imm8PCRel
:
616 case X86II::Imm16PCRel
:
617 case X86II::Imm32PCRel
:
629 /// isImmSigned - Return true if the immediate of the specified instruction's
630 /// TSFlags indicates that it is signed.
631 inline unsigned isImmSigned(uint64_t TSFlags
) {
632 switch (TSFlags
& X86II::ImmMask
) {
633 default: llvm_unreachable("Unknown immediate signedness");
637 case X86II::Imm8PCRel
:
640 case X86II::Imm16PCRel
:
642 case X86II::Imm32PCRel
:
648 /// getOperandBias - compute whether all of the def operands are repeated
649 /// in the uses and therefore should be skipped.
650 /// This determines the start of the unique operand list. We need to determine
651 /// if all of the defs have a corresponding tied operand in the uses.
652 /// Unfortunately, the tied operand information is encoded in the uses not
653 /// the defs so we have to use some heuristics to find which operands to
655 inline unsigned getOperandBias(const MCInstrDesc
& Desc
) {
656 unsigned NumDefs
= Desc
.getNumDefs();
657 unsigned NumOps
= Desc
.getNumOperands();
659 default: llvm_unreachable("Unexpected number of defs");
663 // Common two addr case.
664 if (NumOps
> 1 && Desc
.getOperandConstraint(1, MCOI::TIED_TO
) == 0)
666 // Check for AVX-512 scatter which has a TIED_TO in the second to last
669 Desc
.getOperandConstraint(6, MCOI::TIED_TO
) == 0)
673 // XCHG/XADD have two destinations and two sources.
674 if (NumOps
>= 4 && Desc
.getOperandConstraint(2, MCOI::TIED_TO
) == 0 &&
675 Desc
.getOperandConstraint(3, MCOI::TIED_TO
) == 1)
677 // Check for gather. AVX-512 has the second tied operand early. AVX2
678 // has it as the last op.
679 if (NumOps
== 9 && Desc
.getOperandConstraint(2, MCOI::TIED_TO
) == 0 &&
680 (Desc
.getOperandConstraint(3, MCOI::TIED_TO
) == 1 ||
681 Desc
.getOperandConstraint(8, MCOI::TIED_TO
) == 1) &&
682 "Instruction with 2 defs isn't gather?")
688 /// getMemoryOperandNo - The function returns the MCInst operand # for the
689 /// first field of the memory operand. If the instruction doesn't have a
690 /// memory operand, this returns -1.
692 /// Note that this ignores tied operands. If there is a tied register which
693 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
694 /// counted as one operand.
696 inline int getMemoryOperandNo(uint64_t TSFlags
) {
697 bool HasVEX_4V
= TSFlags
& X86II::VEX_4V
;
698 bool HasEVEX_K
= TSFlags
& X86II::EVEX_K
;
700 switch (TSFlags
& X86II::FormMask
) {
701 default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
704 case X86II::AddRegFrm
:
705 case X86II::RawFrmImm8
:
706 case X86II::RawFrmImm16
:
707 case X86II::RawFrmMemOffs
:
708 case X86II::RawFrmSrc
:
709 case X86II::RawFrmDst
:
710 case X86II::RawFrmDstSrc
:
712 case X86II::MRMDestMem
:
714 case X86II::MRMSrcMem
:
715 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
717 return 1 + HasVEX_4V
+ HasEVEX_K
;
718 case X86II::MRMSrcMem4VOp3
:
719 // Skip registers encoded in reg.
720 return 1 + HasEVEX_K
;
721 case X86II::MRMSrcMemOp4
:
722 // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
724 case X86II::MRMDestReg
:
725 case X86II::MRMSrcReg
:
726 case X86II::MRMSrcReg4VOp3
:
727 case X86II::MRMSrcRegOp4
:
729 case X86II::MRM0r
: case X86II::MRM1r
:
730 case X86II::MRM2r
: case X86II::MRM3r
:
731 case X86II::MRM4r
: case X86II::MRM5r
:
732 case X86II::MRM6r
: case X86II::MRM7r
:
735 case X86II::MRM0m
: case X86II::MRM1m
:
736 case X86II::MRM2m
: case X86II::MRM3m
:
737 case X86II::MRM4m
: case X86II::MRM5m
:
738 case X86II::MRM6m
: case X86II::MRM7m
:
739 // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
740 return 0 + HasVEX_4V
+ HasEVEX_K
;
741 case X86II::MRM_C0
: case X86II::MRM_C1
: case X86II::MRM_C2
:
742 case X86II::MRM_C3
: case X86II::MRM_C4
: case X86II::MRM_C5
:
743 case X86II::MRM_C6
: case X86II::MRM_C7
: case X86II::MRM_C8
:
744 case X86II::MRM_C9
: case X86II::MRM_CA
: case X86II::MRM_CB
:
745 case X86II::MRM_CC
: case X86II::MRM_CD
: case X86II::MRM_CE
:
746 case X86II::MRM_CF
: case X86II::MRM_D0
: case X86II::MRM_D1
:
747 case X86II::MRM_D2
: case X86II::MRM_D3
: case X86II::MRM_D4
:
748 case X86II::MRM_D5
: case X86II::MRM_D6
: case X86II::MRM_D7
:
749 case X86II::MRM_D8
: case X86II::MRM_D9
: case X86II::MRM_DA
:
750 case X86II::MRM_DB
: case X86II::MRM_DC
: case X86II::MRM_DD
:
751 case X86II::MRM_DE
: case X86II::MRM_DF
: case X86II::MRM_E0
:
752 case X86II::MRM_E1
: case X86II::MRM_E2
: case X86II::MRM_E3
:
753 case X86II::MRM_E4
: case X86II::MRM_E5
: case X86II::MRM_E6
:
754 case X86II::MRM_E7
: case X86II::MRM_E8
: case X86II::MRM_E9
:
755 case X86II::MRM_EA
: case X86II::MRM_EB
: case X86II::MRM_EC
:
756 case X86II::MRM_ED
: case X86II::MRM_EE
: case X86II::MRM_EF
:
757 case X86II::MRM_F0
: case X86II::MRM_F1
: case X86II::MRM_F2
:
758 case X86II::MRM_F3
: case X86II::MRM_F4
: case X86II::MRM_F5
:
759 case X86II::MRM_F6
: case X86II::MRM_F7
: case X86II::MRM_F8
:
760 case X86II::MRM_F9
: case X86II::MRM_FA
: case X86II::MRM_FB
:
761 case X86II::MRM_FC
: case X86II::MRM_FD
: case X86II::MRM_FE
:
767 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
768 /// higher) register? e.g. r8, xmm8, xmm13, etc.
769 inline bool isX86_64ExtendedReg(unsigned RegNo
) {
770 if ((RegNo
>= X86::XMM8
&& RegNo
<= X86::XMM31
) ||
771 (RegNo
>= X86::YMM8
&& RegNo
<= X86::YMM31
) ||
772 (RegNo
>= X86::ZMM8
&& RegNo
<= X86::ZMM31
))
777 case X86::R8
: case X86::R9
: case X86::R10
: case X86::R11
:
778 case X86::R12
: case X86::R13
: case X86::R14
: case X86::R15
:
779 case X86::R8D
: case X86::R9D
: case X86::R10D
: case X86::R11D
:
780 case X86::R12D
: case X86::R13D
: case X86::R14D
: case X86::R15D
:
781 case X86::R8W
: case X86::R9W
: case X86::R10W
: case X86::R11W
:
782 case X86::R12W
: case X86::R13W
: case X86::R14W
: case X86::R15W
:
783 case X86::R8B
: case X86::R9B
: case X86::R10B
: case X86::R11B
:
784 case X86::R12B
: case X86::R13B
: case X86::R14B
: case X86::R15B
:
785 case X86::CR8
: case X86::CR9
: case X86::CR10
: case X86::CR11
:
786 case X86::CR12
: case X86::CR13
: case X86::CR14
: case X86::CR15
:
787 case X86::DR8
: case X86::DR9
: case X86::DR10
: case X86::DR11
:
788 case X86::DR12
: case X86::DR13
: case X86::DR14
: case X86::DR15
:
794 /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
795 /// registers? e.g. zmm21, etc.
796 static inline bool is32ExtendedReg(unsigned RegNo
) {
797 return ((RegNo
>= X86::XMM16
&& RegNo
<= X86::XMM31
) ||
798 (RegNo
>= X86::YMM16
&& RegNo
<= X86::YMM31
) ||
799 (RegNo
>= X86::ZMM16
&& RegNo
<= X86::ZMM31
));
803 inline bool isX86_64NonExtLowByteReg(unsigned reg
) {
804 return (reg
== X86::SPL
|| reg
== X86::BPL
||
805 reg
== X86::SIL
|| reg
== X86::DIL
);
808 /// isKMasked - Is this a masked instruction.
809 inline bool isKMasked(uint64_t TSFlags
) {
810 return (TSFlags
& X86II::EVEX_K
) != 0;
813 /// isKMergedMasked - Is this a merge masked instruction.
814 inline bool isKMergeMasked(uint64_t TSFlags
) {
815 return isKMasked(TSFlags
) && (TSFlags
& X86II::EVEX_Z
) == 0;
819 } // end namespace llvm;