Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / X86 / X86CallFrameOptimization.cpp
blobb38e2bbe492c2a730a941821aed90129d8426087
1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pass that optimizes call sequences on x86.
10 // Currently, it converts movs of function parameters onto the stack into
11 // pushes. This is beneficial for two main reasons:
12 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
13 // 2) It is possible to push memory arguments directly. So, if the
14 // the transformation is performed pre-reg-alloc, it can help relieve
15 // register pressure.
17 //===----------------------------------------------------------------------===//
19 #include "MCTargetDesc/X86BaseInfo.h"
20 #include "X86FrameLowering.h"
21 #include "X86InstrInfo.h"
22 #include "X86MachineFunctionInfo.h"
23 #include "X86RegisterInfo.h"
24 #include "X86Subtarget.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/MC/MCDwarf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <iterator>
49 using namespace llvm;
51 #define DEBUG_TYPE "x86-cf-opt"
53 static cl::opt<bool>
54 NoX86CFOpt("no-x86-call-frame-opt",
55 cl::desc("Avoid optimizing x86 call frames for size"),
56 cl::init(false), cl::Hidden);
58 namespace {
60 class X86CallFrameOptimization : public MachineFunctionPass {
61 public:
62 X86CallFrameOptimization() : MachineFunctionPass(ID) {
63 initializeX86CallFrameOptimizationPass(
64 *PassRegistry::getPassRegistry());
67 bool runOnMachineFunction(MachineFunction &MF) override;
69 static char ID;
71 private:
72 // Information we know about a particular call site
73 struct CallContext {
74 CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}
76 // Iterator referring to the frame setup instruction
77 MachineBasicBlock::iterator FrameSetup;
79 // Actual call instruction
80 MachineInstr *Call = nullptr;
82 // A copy of the stack pointer
83 MachineInstr *SPCopy = nullptr;
85 // The total displacement of all passed parameters
86 int64_t ExpectedDist = 0;
88 // The sequence of storing instructions used to pass the parameters
89 SmallVector<MachineInstr *, 4> ArgStoreVector;
91 // True if this call site has no stack parameters
92 bool NoStackParams = false;
94 // True if this call site can use push instructions
95 bool UsePush = false;
98 typedef SmallVector<CallContext, 8> ContextVector;
100 bool isLegal(MachineFunction &MF);
102 bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
104 void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
105 MachineBasicBlock::iterator I, CallContext &Context);
107 void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
109 MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
110 unsigned Reg);
112 enum InstClassification { Convert, Skip, Exit };
114 InstClassification classifyInstruction(MachineBasicBlock &MBB,
115 MachineBasicBlock::iterator MI,
116 const X86RegisterInfo &RegInfo,
117 DenseSet<unsigned int> &UsedRegs);
119 StringRef getPassName() const override { return "X86 Optimize Call Frame"; }
121 const X86InstrInfo *TII;
122 const X86FrameLowering *TFL;
123 const X86Subtarget *STI;
124 MachineRegisterInfo *MRI;
125 unsigned SlotSize;
126 unsigned Log2SlotSize;
129 } // end anonymous namespace
130 char X86CallFrameOptimization::ID = 0;
131 INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE,
132 "X86 Call Frame Optimization", false, false)
134 // This checks whether the transformation is legal.
135 // Also returns false in cases where it's potentially legal, but
136 // we don't even want to try.
137 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
138 if (NoX86CFOpt.getValue())
139 return false;
141 // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
142 // in the compact unwind encoding that Darwin uses. So, bail if there
143 // is a danger of that being generated.
144 if (STI->isTargetDarwin() &&
145 (!MF.getLandingPads().empty() ||
146 (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF))))
147 return false;
149 // It is not valid to change the stack pointer outside the prolog/epilog
150 // on 64-bit Windows.
151 if (STI->isTargetWin64())
152 return false;
154 // You would expect straight-line code between call-frame setup and
155 // call-frame destroy. You would be wrong. There are circumstances (e.g.
156 // CMOV_GR8 expansion of a select that feeds a function call!) where we can
157 // end up with the setup and the destroy in different basic blocks.
158 // This is bad, and breaks SP adjustment.
159 // So, check that all of the frames in the function are closed inside
160 // the same block, and, for good measure, that there are no nested frames.
161 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
162 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
163 for (MachineBasicBlock &BB : MF) {
164 bool InsideFrameSequence = false;
165 for (MachineInstr &MI : BB) {
166 if (MI.getOpcode() == FrameSetupOpcode) {
167 if (InsideFrameSequence)
168 return false;
169 InsideFrameSequence = true;
170 } else if (MI.getOpcode() == FrameDestroyOpcode) {
171 if (!InsideFrameSequence)
172 return false;
173 InsideFrameSequence = false;
177 if (InsideFrameSequence)
178 return false;
181 return true;
184 // Check whether this transformation is profitable for a particular
185 // function - in terms of code size.
186 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
187 ContextVector &CallSeqVector) {
188 // This transformation is always a win when we do not expect to have
189 // a reserved call frame. Under other circumstances, it may be either
190 // a win or a loss, and requires a heuristic.
191 bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects();
192 if (CannotReserveFrame)
193 return true;
195 unsigned StackAlign = TFL->getStackAlignment();
197 int64_t Advantage = 0;
198 for (auto CC : CallSeqVector) {
199 // Call sites where no parameters are passed on the stack
200 // do not affect the cost, since there needs to be no
201 // stack adjustment.
202 if (CC.NoStackParams)
203 continue;
205 if (!CC.UsePush) {
206 // If we don't use pushes for a particular call site,
207 // we pay for not having a reserved call frame with an
208 // additional sub/add esp pair. The cost is ~3 bytes per instruction,
209 // depending on the size of the constant.
210 // TODO: Callee-pop functions should have a smaller penalty, because
211 // an add is needed even with a reserved call frame.
212 Advantage -= 6;
213 } else {
214 // We can use pushes. First, account for the fixed costs.
215 // We'll need a add after the call.
216 Advantage -= 3;
217 // If we have to realign the stack, we'll also need a sub before
218 if (CC.ExpectedDist % StackAlign)
219 Advantage -= 3;
220 // Now, for each push, we save ~3 bytes. For small constants, we actually,
221 // save more (up to 5 bytes), but 3 should be a good approximation.
222 Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
226 return Advantage >= 0;
229 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
230 STI = &MF.getSubtarget<X86Subtarget>();
231 TII = STI->getInstrInfo();
232 TFL = STI->getFrameLowering();
233 MRI = &MF.getRegInfo();
235 const X86RegisterInfo &RegInfo =
236 *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
237 SlotSize = RegInfo.getSlotSize();
238 assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
239 Log2SlotSize = Log2_32(SlotSize);
241 if (skipFunction(MF.getFunction()) || !isLegal(MF))
242 return false;
244 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
246 bool Changed = false;
248 ContextVector CallSeqVector;
250 for (auto &MBB : MF)
251 for (auto &MI : MBB)
252 if (MI.getOpcode() == FrameSetupOpcode) {
253 CallContext Context;
254 collectCallInfo(MF, MBB, MI, Context);
255 CallSeqVector.push_back(Context);
258 if (!isProfitable(MF, CallSeqVector))
259 return false;
261 for (auto CC : CallSeqVector) {
262 if (CC.UsePush) {
263 adjustCallSequence(MF, CC);
264 Changed = true;
268 return Changed;
271 X86CallFrameOptimization::InstClassification
272 X86CallFrameOptimization::classifyInstruction(
273 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
274 const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
275 if (MI == MBB.end())
276 return Exit;
278 // The instructions we actually care about are movs onto the stack or special
279 // cases of constant-stores to stack
280 switch (MI->getOpcode()) {
281 case X86::AND16mi8:
282 case X86::AND32mi8:
283 case X86::AND64mi8: {
284 MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
285 return ImmOp.getImm() == 0 ? Convert : Exit;
287 case X86::OR16mi8:
288 case X86::OR32mi8:
289 case X86::OR64mi8: {
290 MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
291 return ImmOp.getImm() == -1 ? Convert : Exit;
293 case X86::MOV32mi:
294 case X86::MOV32mr:
295 case X86::MOV64mi32:
296 case X86::MOV64mr:
297 return Convert;
300 // Not all calling conventions have only stack MOVs between the stack
301 // adjust and the call.
303 // We want to tolerate other instructions, to cover more cases.
304 // In particular:
305 // a) PCrel calls, where we expect an additional COPY of the basereg.
306 // b) Passing frame-index addresses.
307 // c) Calling conventions that have inreg parameters. These generate
308 // both copies and movs into registers.
309 // To avoid creating lots of special cases, allow any instruction
310 // that does not write into memory, does not def or use the stack
311 // pointer, and does not def any register that was used by a preceding
312 // push.
313 // (Reading from memory is allowed, even if referenced through a
314 // frame index, since these will get adjusted properly in PEI)
316 // The reason for the last condition is that the pushes can't replace
317 // the movs in place, because the order must be reversed.
318 // So if we have a MOV32mr that uses EDX, then an instruction that defs
319 // EDX, and then the call, after the transformation the push will use
320 // the modified version of EDX, and not the original one.
321 // Since we are still in SSA form at this point, we only need to
322 // make sure we don't clobber any *physical* registers that were
323 // used by an earlier mov that will become a push.
325 if (MI->isCall() || MI->mayStore())
326 return Exit;
328 for (const MachineOperand &MO : MI->operands()) {
329 if (!MO.isReg())
330 continue;
331 unsigned int Reg = MO.getReg();
332 if (!RegInfo.isPhysicalRegister(Reg))
333 continue;
334 if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
335 return Exit;
336 if (MO.isDef()) {
337 for (unsigned int U : UsedRegs)
338 if (RegInfo.regsOverlap(Reg, U))
339 return Exit;
343 return Skip;
346 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
347 MachineBasicBlock &MBB,
348 MachineBasicBlock::iterator I,
349 CallContext &Context) {
350 // Check that this particular call sequence is amenable to the
351 // transformation.
352 const X86RegisterInfo &RegInfo =
353 *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
355 // We expect to enter this at the beginning of a call sequence
356 assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
357 MachineBasicBlock::iterator FrameSetup = I++;
358 Context.FrameSetup = FrameSetup;
360 // How much do we adjust the stack? This puts an upper bound on
361 // the number of parameters actually passed on it.
362 unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize;
364 // A zero adjustment means no stack parameters
365 if (!MaxAdjust) {
366 Context.NoStackParams = true;
367 return;
370 // Skip over DEBUG_VALUE.
371 // For globals in PIC mode, we can have some LEAs here. Skip them as well.
372 // TODO: Extend this to something that covers more cases.
373 while (I->getOpcode() == X86::LEA32r || I->isDebugInstr())
374 ++I;
376 unsigned StackPtr = RegInfo.getStackRegister();
377 auto StackPtrCopyInst = MBB.end();
378 // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
379 // register. If it's there, use that virtual register as stack pointer
380 // instead. Also, we need to locate this instruction so that we can later
381 // safely ignore it while doing the conservative processing of the call chain.
382 // The COPY can be located anywhere between the call-frame setup
383 // instruction and its first use. We use the call instruction as a boundary
384 // because it is usually cheaper to check if an instruction is a call than
385 // checking if an instruction uses a register.
386 for (auto J = I; !J->isCall(); ++J)
387 if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() &&
388 J->getOperand(1).getReg() == StackPtr) {
389 StackPtrCopyInst = J;
390 Context.SPCopy = &*J++;
391 StackPtr = Context.SPCopy->getOperand(0).getReg();
392 break;
395 // Scan the call setup sequence for the pattern we're looking for.
396 // We only handle a simple case - a sequence of store instructions that
397 // push a sequence of stack-slot-aligned values onto the stack, with
398 // no gaps between them.
399 if (MaxAdjust > 4)
400 Context.ArgStoreVector.resize(MaxAdjust, nullptr);
402 DenseSet<unsigned int> UsedRegs;
404 for (InstClassification Classification = Skip; Classification != Exit; ++I) {
405 // If this is the COPY of the stack pointer, it's ok to ignore.
406 if (I == StackPtrCopyInst)
407 continue;
408 Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs);
409 if (Classification != Convert)
410 continue;
411 // We know the instruction has a supported store opcode.
412 // We only want movs of the form:
413 // mov imm/reg, k(%StackPtr)
414 // If we run into something else, bail.
415 // Note that AddrBaseReg may, counter to its name, not be a register,
416 // but rather a frame index.
417 // TODO: Support the fi case. This should probably work now that we
418 // have the infrastructure to track the stack pointer within a call
419 // sequence.
420 if (!I->getOperand(X86::AddrBaseReg).isReg() ||
421 (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
422 !I->getOperand(X86::AddrScaleAmt).isImm() ||
423 (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
424 (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
425 (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
426 !I->getOperand(X86::AddrDisp).isImm())
427 return;
429 int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
430 assert(StackDisp >= 0 &&
431 "Negative stack displacement when passing parameters");
433 // We really don't want to consider the unaligned case.
434 if (StackDisp & (SlotSize - 1))
435 return;
436 StackDisp >>= Log2SlotSize;
438 assert((size_t)StackDisp < Context.ArgStoreVector.size() &&
439 "Function call has more parameters than the stack is adjusted for.");
441 // If the same stack slot is being filled twice, something's fishy.
442 if (Context.ArgStoreVector[StackDisp] != nullptr)
443 return;
444 Context.ArgStoreVector[StackDisp] = &*I;
446 for (const MachineOperand &MO : I->uses()) {
447 if (!MO.isReg())
448 continue;
449 unsigned int Reg = MO.getReg();
450 if (RegInfo.isPhysicalRegister(Reg))
451 UsedRegs.insert(Reg);
455 --I;
457 // We now expect the end of the sequence. If we stopped early,
458 // or reached the end of the block without finding a call, bail.
459 if (I == MBB.end() || !I->isCall())
460 return;
462 Context.Call = &*I;
463 if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode())
464 return;
466 // Now, go through the vector, and see that we don't have any gaps,
467 // but only a series of storing instructions.
468 auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end();
469 for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
470 if (*MMI == nullptr)
471 break;
473 // If the call had no parameters, do nothing
474 if (MMI == Context.ArgStoreVector.begin())
475 return;
477 // We are either at the last parameter, or a gap.
478 // Make sure it's not a gap
479 for (; MMI != MME; ++MMI)
480 if (*MMI != nullptr)
481 return;
483 Context.UsePush = true;
486 void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
487 const CallContext &Context) {
488 // Ok, we can in fact do the transformation for this call.
489 // Do not remove the FrameSetup instruction, but adjust the parameters.
490 // PEI will end up finalizing the handling of this.
491 MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
492 MachineBasicBlock &MBB = *(FrameSetup->getParent());
493 TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);
495 DebugLoc DL = FrameSetup->getDebugLoc();
496 bool Is64Bit = STI->is64Bit();
497 // Now, iterate through the vector in reverse order, and replace the store to
498 // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
499 // replace uses.
500 for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
501 MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx];
502 MachineOperand PushOp = Store->getOperand(X86::AddrNumOperands);
503 MachineBasicBlock::iterator Push = nullptr;
504 unsigned PushOpcode;
505 switch (Store->getOpcode()) {
506 default:
507 llvm_unreachable("Unexpected Opcode!");
508 case X86::AND16mi8:
509 case X86::AND32mi8:
510 case X86::AND64mi8:
511 case X86::OR16mi8:
512 case X86::OR32mi8:
513 case X86::OR64mi8:
514 case X86::MOV32mi:
515 case X86::MOV64mi32:
516 PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
517 // If the operand is a small (8-bit) immediate, we can use a
518 // PUSH instruction with a shorter encoding.
519 // Note that isImm() may fail even though this is a MOVmi, because
520 // the operand can also be a symbol.
521 if (PushOp.isImm()) {
522 int64_t Val = PushOp.getImm();
523 if (isInt<8>(Val))
524 PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
526 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
527 break;
528 case X86::MOV32mr:
529 case X86::MOV64mr: {
530 unsigned int Reg = PushOp.getReg();
532 // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
533 // in preparation for the PUSH64. The upper 32 bits can be undef.
534 if (Is64Bit && Store->getOpcode() == X86::MOV32mr) {
535 unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
536 Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
537 BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
538 BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
539 .addReg(UndefReg)
540 .add(PushOp)
541 .addImm(X86::sub_32bit);
544 // If PUSHrmm is not slow on this target, try to fold the source of the
545 // push into the instruction.
546 bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();
548 // Check that this is legal to fold. Right now, we're extremely
549 // conservative about that.
550 MachineInstr *DefMov = nullptr;
551 if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
552 PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
553 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
555 unsigned NumOps = DefMov->getDesc().getNumOperands();
556 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
557 Push->addOperand(DefMov->getOperand(i));
559 DefMov->eraseFromParent();
560 } else {
561 PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
562 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
563 .addReg(Reg)
564 .getInstr();
566 break;
570 // For debugging, when using SP-based CFA, we need to adjust the CFA
571 // offset after each push.
572 // TODO: This is needed only if we require precise CFA.
573 if (!TFL->hasFP(MF))
574 TFL->BuildCFI(
575 MBB, std::next(Push), DL,
576 MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
578 MBB.erase(Store);
581 // The stack-pointer copy is no longer used in the call sequences.
582 // There should not be any other users, but we can't commit to that, so:
583 if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
584 Context.SPCopy->eraseFromParent();
586 // Once we've done this, we need to make sure PEI doesn't assume a reserved
587 // frame.
588 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
589 FuncInfo->setHasPushSequences(true);
592 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
593 MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
594 // Do an extremely restricted form of load folding.
595 // ISel will often create patterns like:
596 // movl 4(%edi), %eax
597 // movl 8(%edi), %ecx
598 // movl 12(%edi), %edx
599 // movl %edx, 8(%esp)
600 // movl %ecx, 4(%esp)
601 // movl %eax, (%esp)
602 // call
603 // Get rid of those with prejudice.
604 if (!TargetRegisterInfo::isVirtualRegister(Reg))
605 return nullptr;
607 // Make sure this is the only use of Reg.
608 if (!MRI->hasOneNonDBGUse(Reg))
609 return nullptr;
611 MachineInstr &DefMI = *MRI->getVRegDef(Reg);
613 // Make sure the def is a MOV from memory.
614 // If the def is in another block, give up.
615 if ((DefMI.getOpcode() != X86::MOV32rm &&
616 DefMI.getOpcode() != X86::MOV64rm) ||
617 DefMI.getParent() != FrameSetup->getParent())
618 return nullptr;
620 // Make sure we don't have any instructions between DefMI and the
621 // push that make folding the load illegal.
622 for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
623 if (I->isLoadFoldBarrier())
624 return nullptr;
626 return &DefMI;
629 FunctionPass *llvm::createX86CallFrameOptimization() {
630 return new X86CallFrameOptimization();