1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines a pass that optimizes call sequences on x86.
10 // Currently, it converts movs of function parameters onto the stack into
11 // pushes. This is beneficial for two main reasons:
12 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
13 // 2) It is possible to push memory arguments directly. So, if the
14 // the transformation is performed pre-reg-alloc, it can help relieve
17 //===----------------------------------------------------------------------===//
19 #include "MCTargetDesc/X86BaseInfo.h"
20 #include "X86FrameLowering.h"
21 #include "X86InstrInfo.h"
22 #include "X86MachineFunctionInfo.h"
23 #include "X86RegisterInfo.h"
24 #include "X86Subtarget.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/MC/MCDwarf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
51 #define DEBUG_TYPE "x86-cf-opt"
54 NoX86CFOpt("no-x86-call-frame-opt",
55 cl::desc("Avoid optimizing x86 call frames for size"),
56 cl::init(false), cl::Hidden
);
60 class X86CallFrameOptimization
: public MachineFunctionPass
{
62 X86CallFrameOptimization() : MachineFunctionPass(ID
) {
63 initializeX86CallFrameOptimizationPass(
64 *PassRegistry::getPassRegistry());
67 bool runOnMachineFunction(MachineFunction
&MF
) override
;
72 // Information we know about a particular call site
74 CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}
76 // Iterator referring to the frame setup instruction
77 MachineBasicBlock::iterator FrameSetup
;
79 // Actual call instruction
80 MachineInstr
*Call
= nullptr;
82 // A copy of the stack pointer
83 MachineInstr
*SPCopy
= nullptr;
85 // The total displacement of all passed parameters
86 int64_t ExpectedDist
= 0;
88 // The sequence of storing instructions used to pass the parameters
89 SmallVector
<MachineInstr
*, 4> ArgStoreVector
;
91 // True if this call site has no stack parameters
92 bool NoStackParams
= false;
94 // True if this call site can use push instructions
98 typedef SmallVector
<CallContext
, 8> ContextVector
;
100 bool isLegal(MachineFunction
&MF
);
102 bool isProfitable(MachineFunction
&MF
, ContextVector
&CallSeqMap
);
104 void collectCallInfo(MachineFunction
&MF
, MachineBasicBlock
&MBB
,
105 MachineBasicBlock::iterator I
, CallContext
&Context
);
107 void adjustCallSequence(MachineFunction
&MF
, const CallContext
&Context
);
109 MachineInstr
*canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup
,
112 enum InstClassification
{ Convert
, Skip
, Exit
};
114 InstClassification
classifyInstruction(MachineBasicBlock
&MBB
,
115 MachineBasicBlock::iterator MI
,
116 const X86RegisterInfo
&RegInfo
,
117 DenseSet
<unsigned int> &UsedRegs
);
119 StringRef
getPassName() const override
{ return "X86 Optimize Call Frame"; }
121 const X86InstrInfo
*TII
;
122 const X86FrameLowering
*TFL
;
123 const X86Subtarget
*STI
;
124 MachineRegisterInfo
*MRI
;
126 unsigned Log2SlotSize
;
129 } // end anonymous namespace
130 char X86CallFrameOptimization::ID
= 0;
131 INITIALIZE_PASS(X86CallFrameOptimization
, DEBUG_TYPE
,
132 "X86 Call Frame Optimization", false, false)
134 // This checks whether the transformation is legal.
135 // Also returns false in cases where it's potentially legal, but
136 // we don't even want to try.
137 bool X86CallFrameOptimization::isLegal(MachineFunction
&MF
) {
138 if (NoX86CFOpt
.getValue())
141 // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
142 // in the compact unwind encoding that Darwin uses. So, bail if there
143 // is a danger of that being generated.
144 if (STI
->isTargetDarwin() &&
145 (!MF
.getLandingPads().empty() ||
146 (MF
.getFunction().needsUnwindTableEntry() && !TFL
->hasFP(MF
))))
149 // It is not valid to change the stack pointer outside the prolog/epilog
150 // on 64-bit Windows.
151 if (STI
->isTargetWin64())
154 // You would expect straight-line code between call-frame setup and
155 // call-frame destroy. You would be wrong. There are circumstances (e.g.
156 // CMOV_GR8 expansion of a select that feeds a function call!) where we can
157 // end up with the setup and the destroy in different basic blocks.
158 // This is bad, and breaks SP adjustment.
159 // So, check that all of the frames in the function are closed inside
160 // the same block, and, for good measure, that there are no nested frames.
161 unsigned FrameSetupOpcode
= TII
->getCallFrameSetupOpcode();
162 unsigned FrameDestroyOpcode
= TII
->getCallFrameDestroyOpcode();
163 for (MachineBasicBlock
&BB
: MF
) {
164 bool InsideFrameSequence
= false;
165 for (MachineInstr
&MI
: BB
) {
166 if (MI
.getOpcode() == FrameSetupOpcode
) {
167 if (InsideFrameSequence
)
169 InsideFrameSequence
= true;
170 } else if (MI
.getOpcode() == FrameDestroyOpcode
) {
171 if (!InsideFrameSequence
)
173 InsideFrameSequence
= false;
177 if (InsideFrameSequence
)
184 // Check whether this transformation is profitable for a particular
185 // function - in terms of code size.
186 bool X86CallFrameOptimization::isProfitable(MachineFunction
&MF
,
187 ContextVector
&CallSeqVector
) {
188 // This transformation is always a win when we do not expect to have
189 // a reserved call frame. Under other circumstances, it may be either
190 // a win or a loss, and requires a heuristic.
191 bool CannotReserveFrame
= MF
.getFrameInfo().hasVarSizedObjects();
192 if (CannotReserveFrame
)
195 unsigned StackAlign
= TFL
->getStackAlignment();
197 int64_t Advantage
= 0;
198 for (auto CC
: CallSeqVector
) {
199 // Call sites where no parameters are passed on the stack
200 // do not affect the cost, since there needs to be no
202 if (CC
.NoStackParams
)
206 // If we don't use pushes for a particular call site,
207 // we pay for not having a reserved call frame with an
208 // additional sub/add esp pair. The cost is ~3 bytes per instruction,
209 // depending on the size of the constant.
210 // TODO: Callee-pop functions should have a smaller penalty, because
211 // an add is needed even with a reserved call frame.
214 // We can use pushes. First, account for the fixed costs.
215 // We'll need a add after the call.
217 // If we have to realign the stack, we'll also need a sub before
218 if (CC
.ExpectedDist
% StackAlign
)
220 // Now, for each push, we save ~3 bytes. For small constants, we actually,
221 // save more (up to 5 bytes), but 3 should be a good approximation.
222 Advantage
+= (CC
.ExpectedDist
>> Log2SlotSize
) * 3;
226 return Advantage
>= 0;
229 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction
&MF
) {
230 STI
= &MF
.getSubtarget
<X86Subtarget
>();
231 TII
= STI
->getInstrInfo();
232 TFL
= STI
->getFrameLowering();
233 MRI
= &MF
.getRegInfo();
235 const X86RegisterInfo
&RegInfo
=
236 *static_cast<const X86RegisterInfo
*>(STI
->getRegisterInfo());
237 SlotSize
= RegInfo
.getSlotSize();
238 assert(isPowerOf2_32(SlotSize
) && "Expect power of 2 stack slot size");
239 Log2SlotSize
= Log2_32(SlotSize
);
241 if (skipFunction(MF
.getFunction()) || !isLegal(MF
))
244 unsigned FrameSetupOpcode
= TII
->getCallFrameSetupOpcode();
246 bool Changed
= false;
248 ContextVector CallSeqVector
;
252 if (MI
.getOpcode() == FrameSetupOpcode
) {
254 collectCallInfo(MF
, MBB
, MI
, Context
);
255 CallSeqVector
.push_back(Context
);
258 if (!isProfitable(MF
, CallSeqVector
))
261 for (auto CC
: CallSeqVector
) {
263 adjustCallSequence(MF
, CC
);
271 X86CallFrameOptimization::InstClassification
272 X86CallFrameOptimization::classifyInstruction(
273 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
274 const X86RegisterInfo
&RegInfo
, DenseSet
<unsigned int> &UsedRegs
) {
278 // The instructions we actually care about are movs onto the stack or special
279 // cases of constant-stores to stack
280 switch (MI
->getOpcode()) {
283 case X86::AND64mi8
: {
284 MachineOperand ImmOp
= MI
->getOperand(X86::AddrNumOperands
);
285 return ImmOp
.getImm() == 0 ? Convert
: Exit
;
290 MachineOperand ImmOp
= MI
->getOperand(X86::AddrNumOperands
);
291 return ImmOp
.getImm() == -1 ? Convert
: Exit
;
300 // Not all calling conventions have only stack MOVs between the stack
301 // adjust and the call.
303 // We want to tolerate other instructions, to cover more cases.
305 // a) PCrel calls, where we expect an additional COPY of the basereg.
306 // b) Passing frame-index addresses.
307 // c) Calling conventions that have inreg parameters. These generate
308 // both copies and movs into registers.
309 // To avoid creating lots of special cases, allow any instruction
310 // that does not write into memory, does not def or use the stack
311 // pointer, and does not def any register that was used by a preceding
313 // (Reading from memory is allowed, even if referenced through a
314 // frame index, since these will get adjusted properly in PEI)
316 // The reason for the last condition is that the pushes can't replace
317 // the movs in place, because the order must be reversed.
318 // So if we have a MOV32mr that uses EDX, then an instruction that defs
319 // EDX, and then the call, after the transformation the push will use
320 // the modified version of EDX, and not the original one.
321 // Since we are still in SSA form at this point, we only need to
322 // make sure we don't clobber any *physical* registers that were
323 // used by an earlier mov that will become a push.
325 if (MI
->isCall() || MI
->mayStore())
328 for (const MachineOperand
&MO
: MI
->operands()) {
331 unsigned int Reg
= MO
.getReg();
332 if (!RegInfo
.isPhysicalRegister(Reg
))
334 if (RegInfo
.regsOverlap(Reg
, RegInfo
.getStackRegister()))
337 for (unsigned int U
: UsedRegs
)
338 if (RegInfo
.regsOverlap(Reg
, U
))
346 void X86CallFrameOptimization::collectCallInfo(MachineFunction
&MF
,
347 MachineBasicBlock
&MBB
,
348 MachineBasicBlock::iterator I
,
349 CallContext
&Context
) {
350 // Check that this particular call sequence is amenable to the
352 const X86RegisterInfo
&RegInfo
=
353 *static_cast<const X86RegisterInfo
*>(STI
->getRegisterInfo());
355 // We expect to enter this at the beginning of a call sequence
356 assert(I
->getOpcode() == TII
->getCallFrameSetupOpcode());
357 MachineBasicBlock::iterator FrameSetup
= I
++;
358 Context
.FrameSetup
= FrameSetup
;
360 // How much do we adjust the stack? This puts an upper bound on
361 // the number of parameters actually passed on it.
362 unsigned int MaxAdjust
= TII
->getFrameSize(*FrameSetup
) >> Log2SlotSize
;
364 // A zero adjustment means no stack parameters
366 Context
.NoStackParams
= true;
370 // Skip over DEBUG_VALUE.
371 // For globals in PIC mode, we can have some LEAs here. Skip them as well.
372 // TODO: Extend this to something that covers more cases.
373 while (I
->getOpcode() == X86::LEA32r
|| I
->isDebugInstr())
376 unsigned StackPtr
= RegInfo
.getStackRegister();
377 auto StackPtrCopyInst
= MBB
.end();
378 // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
379 // register. If it's there, use that virtual register as stack pointer
380 // instead. Also, we need to locate this instruction so that we can later
381 // safely ignore it while doing the conservative processing of the call chain.
382 // The COPY can be located anywhere between the call-frame setup
383 // instruction and its first use. We use the call instruction as a boundary
384 // because it is usually cheaper to check if an instruction is a call than
385 // checking if an instruction uses a register.
386 for (auto J
= I
; !J
->isCall(); ++J
)
387 if (J
->isCopy() && J
->getOperand(0).isReg() && J
->getOperand(1).isReg() &&
388 J
->getOperand(1).getReg() == StackPtr
) {
389 StackPtrCopyInst
= J
;
390 Context
.SPCopy
= &*J
++;
391 StackPtr
= Context
.SPCopy
->getOperand(0).getReg();
395 // Scan the call setup sequence for the pattern we're looking for.
396 // We only handle a simple case - a sequence of store instructions that
397 // push a sequence of stack-slot-aligned values onto the stack, with
398 // no gaps between them.
400 Context
.ArgStoreVector
.resize(MaxAdjust
, nullptr);
402 DenseSet
<unsigned int> UsedRegs
;
404 for (InstClassification Classification
= Skip
; Classification
!= Exit
; ++I
) {
405 // If this is the COPY of the stack pointer, it's ok to ignore.
406 if (I
== StackPtrCopyInst
)
408 Classification
= classifyInstruction(MBB
, I
, RegInfo
, UsedRegs
);
409 if (Classification
!= Convert
)
411 // We know the instruction has a supported store opcode.
412 // We only want movs of the form:
413 // mov imm/reg, k(%StackPtr)
414 // If we run into something else, bail.
415 // Note that AddrBaseReg may, counter to its name, not be a register,
416 // but rather a frame index.
417 // TODO: Support the fi case. This should probably work now that we
418 // have the infrastructure to track the stack pointer within a call
420 if (!I
->getOperand(X86::AddrBaseReg
).isReg() ||
421 (I
->getOperand(X86::AddrBaseReg
).getReg() != StackPtr
) ||
422 !I
->getOperand(X86::AddrScaleAmt
).isImm() ||
423 (I
->getOperand(X86::AddrScaleAmt
).getImm() != 1) ||
424 (I
->getOperand(X86::AddrIndexReg
).getReg() != X86::NoRegister
) ||
425 (I
->getOperand(X86::AddrSegmentReg
).getReg() != X86::NoRegister
) ||
426 !I
->getOperand(X86::AddrDisp
).isImm())
429 int64_t StackDisp
= I
->getOperand(X86::AddrDisp
).getImm();
430 assert(StackDisp
>= 0 &&
431 "Negative stack displacement when passing parameters");
433 // We really don't want to consider the unaligned case.
434 if (StackDisp
& (SlotSize
- 1))
436 StackDisp
>>= Log2SlotSize
;
438 assert((size_t)StackDisp
< Context
.ArgStoreVector
.size() &&
439 "Function call has more parameters than the stack is adjusted for.");
441 // If the same stack slot is being filled twice, something's fishy.
442 if (Context
.ArgStoreVector
[StackDisp
] != nullptr)
444 Context
.ArgStoreVector
[StackDisp
] = &*I
;
446 for (const MachineOperand
&MO
: I
->uses()) {
449 unsigned int Reg
= MO
.getReg();
450 if (RegInfo
.isPhysicalRegister(Reg
))
451 UsedRegs
.insert(Reg
);
457 // We now expect the end of the sequence. If we stopped early,
458 // or reached the end of the block without finding a call, bail.
459 if (I
== MBB
.end() || !I
->isCall())
463 if ((++I
)->getOpcode() != TII
->getCallFrameDestroyOpcode())
466 // Now, go through the vector, and see that we don't have any gaps,
467 // but only a series of storing instructions.
468 auto MMI
= Context
.ArgStoreVector
.begin(), MME
= Context
.ArgStoreVector
.end();
469 for (; MMI
!= MME
; ++MMI
, Context
.ExpectedDist
+= SlotSize
)
473 // If the call had no parameters, do nothing
474 if (MMI
== Context
.ArgStoreVector
.begin())
477 // We are either at the last parameter, or a gap.
478 // Make sure it's not a gap
479 for (; MMI
!= MME
; ++MMI
)
483 Context
.UsePush
= true;
486 void X86CallFrameOptimization::adjustCallSequence(MachineFunction
&MF
,
487 const CallContext
&Context
) {
488 // Ok, we can in fact do the transformation for this call.
489 // Do not remove the FrameSetup instruction, but adjust the parameters.
490 // PEI will end up finalizing the handling of this.
491 MachineBasicBlock::iterator FrameSetup
= Context
.FrameSetup
;
492 MachineBasicBlock
&MBB
= *(FrameSetup
->getParent());
493 TII
->setFrameAdjustment(*FrameSetup
, Context
.ExpectedDist
);
495 DebugLoc DL
= FrameSetup
->getDebugLoc();
496 bool Is64Bit
= STI
->is64Bit();
497 // Now, iterate through the vector in reverse order, and replace the store to
498 // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
500 for (int Idx
= (Context
.ExpectedDist
>> Log2SlotSize
) - 1; Idx
>= 0; --Idx
) {
501 MachineBasicBlock::iterator Store
= *Context
.ArgStoreVector
[Idx
];
502 MachineOperand PushOp
= Store
->getOperand(X86::AddrNumOperands
);
503 MachineBasicBlock::iterator Push
= nullptr;
505 switch (Store
->getOpcode()) {
507 llvm_unreachable("Unexpected Opcode!");
516 PushOpcode
= Is64Bit
? X86::PUSH64i32
: X86::PUSHi32
;
517 // If the operand is a small (8-bit) immediate, we can use a
518 // PUSH instruction with a shorter encoding.
519 // Note that isImm() may fail even though this is a MOVmi, because
520 // the operand can also be a symbol.
521 if (PushOp
.isImm()) {
522 int64_t Val
= PushOp
.getImm();
524 PushOpcode
= Is64Bit
? X86::PUSH64i8
: X86::PUSH32i8
;
526 Push
= BuildMI(MBB
, Context
.Call
, DL
, TII
->get(PushOpcode
)).add(PushOp
);
530 unsigned int Reg
= PushOp
.getReg();
532 // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
533 // in preparation for the PUSH64. The upper 32 bits can be undef.
534 if (Is64Bit
&& Store
->getOpcode() == X86::MOV32mr
) {
535 unsigned UndefReg
= MRI
->createVirtualRegister(&X86::GR64RegClass
);
536 Reg
= MRI
->createVirtualRegister(&X86::GR64RegClass
);
537 BuildMI(MBB
, Context
.Call
, DL
, TII
->get(X86::IMPLICIT_DEF
), UndefReg
);
538 BuildMI(MBB
, Context
.Call
, DL
, TII
->get(X86::INSERT_SUBREG
), Reg
)
541 .addImm(X86::sub_32bit
);
544 // If PUSHrmm is not slow on this target, try to fold the source of the
545 // push into the instruction.
546 bool SlowPUSHrmm
= STI
->isAtom() || STI
->isSLM();
548 // Check that this is legal to fold. Right now, we're extremely
549 // conservative about that.
550 MachineInstr
*DefMov
= nullptr;
551 if (!SlowPUSHrmm
&& (DefMov
= canFoldIntoRegPush(FrameSetup
, Reg
))) {
552 PushOpcode
= Is64Bit
? X86::PUSH64rmm
: X86::PUSH32rmm
;
553 Push
= BuildMI(MBB
, Context
.Call
, DL
, TII
->get(PushOpcode
));
555 unsigned NumOps
= DefMov
->getDesc().getNumOperands();
556 for (unsigned i
= NumOps
- X86::AddrNumOperands
; i
!= NumOps
; ++i
)
557 Push
->addOperand(DefMov
->getOperand(i
));
559 DefMov
->eraseFromParent();
561 PushOpcode
= Is64Bit
? X86::PUSH64r
: X86::PUSH32r
;
562 Push
= BuildMI(MBB
, Context
.Call
, DL
, TII
->get(PushOpcode
))
570 // For debugging, when using SP-based CFA, we need to adjust the CFA
571 // offset after each push.
572 // TODO: This is needed only if we require precise CFA.
575 MBB
, std::next(Push
), DL
,
576 MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize
));
581 // The stack-pointer copy is no longer used in the call sequences.
582 // There should not be any other users, but we can't commit to that, so:
583 if (Context
.SPCopy
&& MRI
->use_empty(Context
.SPCopy
->getOperand(0).getReg()))
584 Context
.SPCopy
->eraseFromParent();
586 // Once we've done this, we need to make sure PEI doesn't assume a reserved
588 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
589 FuncInfo
->setHasPushSequences(true);
592 MachineInstr
*X86CallFrameOptimization::canFoldIntoRegPush(
593 MachineBasicBlock::iterator FrameSetup
, unsigned Reg
) {
594 // Do an extremely restricted form of load folding.
595 // ISel will often create patterns like:
596 // movl 4(%edi), %eax
597 // movl 8(%edi), %ecx
598 // movl 12(%edi), %edx
599 // movl %edx, 8(%esp)
600 // movl %ecx, 4(%esp)
603 // Get rid of those with prejudice.
604 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
607 // Make sure this is the only use of Reg.
608 if (!MRI
->hasOneNonDBGUse(Reg
))
611 MachineInstr
&DefMI
= *MRI
->getVRegDef(Reg
);
613 // Make sure the def is a MOV from memory.
614 // If the def is in another block, give up.
615 if ((DefMI
.getOpcode() != X86::MOV32rm
&&
616 DefMI
.getOpcode() != X86::MOV64rm
) ||
617 DefMI
.getParent() != FrameSetup
->getParent())
620 // Make sure we don't have any instructions between DefMI and the
621 // push that make folding the load illegal.
622 for (MachineBasicBlock::iterator I
= DefMI
; I
!= FrameSetup
; ++I
)
623 if (I
->isLoadFoldBarrier())
629 FunctionPass
*llvm::createX86CallFrameOptimization() {
630 return new X86CallFrameOptimization();