1 //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements a pass that converts X86 cmov instructions into
11 /// branches when profitable. This pass is conservative. It transforms if and
12 /// only if it can guarantee a gain with high confidence.
14 /// Thus, the optimization applies under the following conditions:
15 /// 1. Consider as candidates only CMOVs in innermost loops (assume that
16 /// most hotspots are represented by these loops).
17 /// 2. Given a group of CMOV instructions that are using the same EFLAGS def
19 /// a. Consider them as candidates only if all have the same code condition
20 /// or the opposite one to prevent generating more than one conditional
21 /// jump per EFLAGS def instruction.
22 /// b. Consider them as candidates only if all are profitable to be
23 /// converted (assume that one bad conversion may cause a degradation).
24 /// 3. Apply conversion only for loops that are found profitable and only for
25 /// CMOV candidates that were found profitable.
26 /// a. A loop is considered profitable only if conversion will reduce its
27 /// depth cost by some threshold.
28 /// b. CMOV is considered profitable if the cost of its condition is higher
29 /// than the average cost of its true-value and false-value by 25% of
30 /// branch-misprediction-penalty. This assures no degradation even with
31 /// 25% branch misprediction.
33 /// Note: This pass is assumed to run on SSA machine code.
35 //===----------------------------------------------------------------------===//
37 // External interfaces:
38 // FunctionPass *llvm::createX86CmovConverterPass();
39 // bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF);
41 //===----------------------------------------------------------------------===//
44 #include "X86InstrInfo.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/STLExtras.h"
48 #include "llvm/ADT/SmallPtrSet.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/CodeGen/MachineBasicBlock.h"
52 #include "llvm/CodeGen/MachineFunction.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineInstr.h"
55 #include "llvm/CodeGen/MachineInstrBuilder.h"
56 #include "llvm/CodeGen/MachineLoopInfo.h"
57 #include "llvm/CodeGen/MachineOperand.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSchedule.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/MC/MCSchedule.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
76 #define DEBUG_TYPE "x86-cmov-conversion"
78 STATISTIC(NumOfSkippedCmovGroups
, "Number of unsupported CMOV-groups");
79 STATISTIC(NumOfCmovGroupCandidate
, "Number of CMOV-group candidates");
80 STATISTIC(NumOfLoopCandidate
, "Number of CMOV-conversion profitable loops");
81 STATISTIC(NumOfOptimizedCmovGroups
, "Number of optimized CMOV-groups");
83 // This internal switch can be used to turn off the cmov/branch optimization.
85 EnableCmovConverter("x86-cmov-converter",
86 cl::desc("Enable the X86 cmov-to-branch optimization."),
87 cl::init(true), cl::Hidden
);
89 static cl::opt
<unsigned>
90 GainCycleThreshold("x86-cmov-converter-threshold",
91 cl::desc("Minimum gain per loop (in cycles) threshold."),
92 cl::init(4), cl::Hidden
);
94 static cl::opt
<bool> ForceMemOperand(
95 "x86-cmov-converter-force-mem-operand",
96 cl::desc("Convert cmovs to branches whenever they have memory operands."),
97 cl::init(true), cl::Hidden
);
101 /// Converts X86 cmov instructions into branches when profitable.
102 class X86CmovConverterPass
: public MachineFunctionPass
{
104 X86CmovConverterPass() : MachineFunctionPass(ID
) {
105 initializeX86CmovConverterPassPass(*PassRegistry::getPassRegistry());
108 StringRef
getPassName() const override
{ return "X86 cmov Conversion"; }
109 bool runOnMachineFunction(MachineFunction
&MF
) override
;
110 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
112 /// Pass identification, replacement for typeid.
116 MachineRegisterInfo
*MRI
;
117 const TargetInstrInfo
*TII
;
118 const TargetRegisterInfo
*TRI
;
119 TargetSchedModel TSchedModel
;
121 /// List of consecutive CMOV instructions.
122 using CmovGroup
= SmallVector
<MachineInstr
*, 2>;
123 using CmovGroups
= SmallVector
<CmovGroup
, 2>;
125 /// Collect all CMOV-group-candidates in \p CurrLoop and update \p
126 /// CmovInstGroups accordingly.
128 /// \param Blocks List of blocks to process.
129 /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
130 /// \returns true iff it found any CMOV-group-candidate.
131 bool collectCmovCandidates(ArrayRef
<MachineBasicBlock
*> Blocks
,
132 CmovGroups
&CmovInstGroups
,
133 bool IncludeLoads
= false);
135 /// Check if it is profitable to transform each CMOV-group-candidates into
136 /// branch. Remove all groups that are not profitable from \p CmovInstGroups.
138 /// \param Blocks List of blocks to process.
139 /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
140 /// \returns true iff any CMOV-group-candidate remain.
141 bool checkForProfitableCmovCandidates(ArrayRef
<MachineBasicBlock
*> Blocks
,
142 CmovGroups
&CmovInstGroups
);
144 /// Convert the given list of consecutive CMOV instructions into a branch.
146 /// \param Group Consecutive CMOV instructions to be converted into branch.
147 void convertCmovInstsToBranches(SmallVectorImpl
<MachineInstr
*> &Group
) const;
150 } // end anonymous namespace
152 char X86CmovConverterPass::ID
= 0;
154 void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
155 MachineFunctionPass::getAnalysisUsage(AU
);
156 AU
.addRequired
<MachineLoopInfo
>();
159 bool X86CmovConverterPass::runOnMachineFunction(MachineFunction
&MF
) {
160 if (skipFunction(MF
.getFunction()))
162 if (!EnableCmovConverter
)
165 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF
.getName()
168 bool Changed
= false;
169 MachineLoopInfo
&MLI
= getAnalysis
<MachineLoopInfo
>();
170 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
171 MRI
= &MF
.getRegInfo();
172 TII
= STI
.getInstrInfo();
173 TRI
= STI
.getRegisterInfo();
174 TSchedModel
.init(&STI
);
176 // Before we handle the more subtle cases of register-register CMOVs inside
177 // of potentially hot loops, we want to quickly remove all CMOVs with
178 // a memory operand. The CMOV will risk a stall waiting for the load to
179 // complete that speculative execution behind a branch is better suited to
180 // handle on modern x86 chips.
181 if (ForceMemOperand
) {
182 CmovGroups AllCmovGroups
;
183 SmallVector
<MachineBasicBlock
*, 4> Blocks
;
185 Blocks
.push_back(&MBB
);
186 if (collectCmovCandidates(Blocks
, AllCmovGroups
, /*IncludeLoads*/ true)) {
187 for (auto &Group
: AllCmovGroups
) {
188 // Skip any group that doesn't do at least one memory operand cmov.
189 if (!llvm::any_of(Group
, [&](MachineInstr
*I
) { return I
->mayLoad(); }))
192 // For CMOV groups which we can rewrite and which contain a memory load,
193 // always rewrite them. On x86, a CMOV will dramatically amplify any
194 // memory latency by blocking speculative execution.
196 convertCmovInstsToBranches(Group
);
201 //===--------------------------------------------------------------------===//
202 // Register-operand Conversion Algorithm
204 // For each inner most loop
205 // collectCmovCandidates() {
206 // Find all CMOV-group-candidates.
209 // checkForProfitableCmovCandidates() {
210 // * Calculate both loop-depth and optimized-loop-depth.
211 // * Use these depth to check for loop transformation profitability.
212 // * Check for CMOV-group-candidate transformation profitability.
215 // For each profitable CMOV-group-candidate
216 // convertCmovInstsToBranches() {
217 // * Create FalseBB, SinkBB, Conditional branch to SinkBB.
218 // * Replace each CMOV instruction with a PHI instruction in SinkBB.
221 // Note: For more details, see each function description.
222 //===--------------------------------------------------------------------===//
224 // Build up the loops in pre-order.
225 SmallVector
<MachineLoop
*, 4> Loops(MLI
.begin(), MLI
.end());
226 // Note that we need to check size on each iteration as we accumulate child
228 for (int i
= 0; i
< (int)Loops
.size(); ++i
)
229 for (MachineLoop
*Child
: Loops
[i
]->getSubLoops())
230 Loops
.push_back(Child
);
232 for (MachineLoop
*CurrLoop
: Loops
) {
233 // Optimize only inner most loops.
234 if (!CurrLoop
->getSubLoops().empty())
237 // List of consecutive CMOV instructions to be processed.
238 CmovGroups CmovInstGroups
;
240 if (!collectCmovCandidates(CurrLoop
->getBlocks(), CmovInstGroups
))
243 if (!checkForProfitableCmovCandidates(CurrLoop
->getBlocks(),
248 for (auto &Group
: CmovInstGroups
)
249 convertCmovInstsToBranches(Group
);
255 bool X86CmovConverterPass::collectCmovCandidates(
256 ArrayRef
<MachineBasicBlock
*> Blocks
, CmovGroups
&CmovInstGroups
,
258 //===--------------------------------------------------------------------===//
259 // Collect all CMOV-group-candidates and add them into CmovInstGroups.
262 // CMOV instructions, in same MBB, that uses same EFLAGS def instruction.
264 // CMOV-group-candidate:
265 // CMOV-group where all the CMOV instructions are
267 // 2. have same condition code or opposite one.
268 // 3. have only operand registers (X86::CMOVrr).
269 //===--------------------------------------------------------------------===//
270 // List of possible improvement (TODO's):
271 // --------------------------------------
272 // TODO: Add support for X86::CMOVrm instructions.
273 // TODO: Add support for X86::SETcc instructions.
274 // TODO: Add support for CMOV-groups with non consecutive CMOV instructions.
275 //===--------------------------------------------------------------------===//
277 // Current processed CMOV-Group.
279 for (auto *MBB
: Blocks
) {
281 // Condition code of first CMOV instruction current processed range and its
282 // opposite condition code.
283 X86::CondCode FirstCC
, FirstOppCC
, MemOpCC
;
284 // Indicator of a non CMOVrr instruction in the current processed range.
285 bool FoundNonCMOVInst
= false;
286 // Indicator for current processed CMOV-group if it should be skipped.
287 bool SkipGroup
= false;
289 for (auto &I
: *MBB
) {
290 // Skip debug instructions.
291 if (I
.isDebugInstr())
293 X86::CondCode CC
= X86::getCondFromCMovOpc(I
.getOpcode());
294 // Check if we found a X86::CMOVrr instruction.
295 if (CC
!= X86::COND_INVALID
&& (IncludeLoads
|| !I
.mayLoad())) {
297 // We found first CMOV in the range, reset flags.
299 FirstOppCC
= X86::GetOppositeBranchCondition(CC
);
300 // Clear out the prior group's memory operand CC.
301 MemOpCC
= X86::COND_INVALID
;
302 FoundNonCMOVInst
= false;
306 // Check if it is a non-consecutive CMOV instruction or it has different
307 // condition code than FirstCC or FirstOppCC.
308 if (FoundNonCMOVInst
|| (CC
!= FirstCC
&& CC
!= FirstOppCC
))
309 // Mark the SKipGroup indicator to skip current processed CMOV-Group.
312 if (MemOpCC
== X86::COND_INVALID
)
313 // The first memory operand CMOV.
315 else if (CC
!= MemOpCC
)
316 // Can't handle mixed conditions with memory operands.
319 // Check if we were relying on zero-extending behavior of the CMOV.
322 MRI
->use_nodbg_instructions(I
.defs().begin()->getReg()),
323 [&](MachineInstr
&UseI
) {
324 return UseI
.getOpcode() == X86::SUBREG_TO_REG
;
326 // FIXME: We should model the cost of using an explicit MOV to handle
327 // the zero-extension rather than just refusing to handle this.
331 // If Group is empty, keep looking for first CMOV in the range.
335 // We found a non X86::CMOVrr instruction.
336 FoundNonCMOVInst
= true;
337 // Check if this instruction define EFLAGS, to determine end of processed
338 // range, as there would be no more instructions using current EFLAGS def.
339 if (I
.definesRegister(X86::EFLAGS
)) {
340 // Check if current processed CMOV-group should not be skipped and add
341 // it as a CMOV-group-candidate.
343 CmovInstGroups
.push_back(Group
);
345 ++NumOfSkippedCmovGroups
;
349 // End of basic block is considered end of range, check if current processed
350 // CMOV-group should not be skipped and add it as a CMOV-group-candidate.
354 CmovInstGroups
.push_back(Group
);
356 ++NumOfSkippedCmovGroups
;
359 NumOfCmovGroupCandidate
+= CmovInstGroups
.size();
360 return !CmovInstGroups
.empty();
363 /// \returns Depth of CMOV instruction as if it was converted into branch.
364 /// \param TrueOpDepth depth cost of CMOV true value operand.
365 /// \param FalseOpDepth depth cost of CMOV false value operand.
366 static unsigned getDepthOfOptCmov(unsigned TrueOpDepth
, unsigned FalseOpDepth
) {
367 //===--------------------------------------------------------------------===//
368 // With no info about branch weight, we assume 50% for each value operand.
369 // Thus, depth of optimized CMOV instruction is the rounded up average of
370 // its True-Operand-Value-Depth and False-Operand-Value-Depth.
371 //===--------------------------------------------------------------------===//
372 return (TrueOpDepth
+ FalseOpDepth
+ 1) / 2;
375 bool X86CmovConverterPass::checkForProfitableCmovCandidates(
376 ArrayRef
<MachineBasicBlock
*> Blocks
, CmovGroups
&CmovInstGroups
) {
378 /// Depth of original loop.
380 /// Depth of optimized loop.
383 /// Number of loop iterations to calculate depth for ?!
384 static const unsigned LoopIterations
= 2;
385 DenseMap
<MachineInstr
*, DepthInfo
> DepthMap
;
386 DepthInfo LoopDepth
[LoopIterations
] = {{0, 0}, {0, 0}};
387 enum { PhyRegType
= 0, VirRegType
= 1, RegTypeNum
= 2 };
388 /// For each register type maps the register to its last def instruction.
389 DenseMap
<unsigned, MachineInstr
*> RegDefMaps
[RegTypeNum
];
390 /// Maps register operand to its def instruction, which can be nullptr if it
391 /// is unknown (e.g., operand is defined outside the loop).
392 DenseMap
<MachineOperand
*, MachineInstr
*> OperandToDefMap
;
394 // Set depth of unknown instruction (i.e., nullptr) to zero.
395 DepthMap
[nullptr] = {0, 0};
397 SmallPtrSet
<MachineInstr
*, 4> CmovInstructions
;
398 for (auto &Group
: CmovInstGroups
)
399 CmovInstructions
.insert(Group
.begin(), Group
.end());
401 //===--------------------------------------------------------------------===//
402 // Step 1: Calculate instruction depth and loop depth.
404 // loop with CMOV-group-candidates converted into branches.
406 // Instruction-Depth:
407 // instruction latency + max operand depth.
408 // * For CMOV instruction in optimized loop the depth is calculated as:
409 // CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth)
410 // TODO: Find a better way to estimate the latency of the branch instruction
411 // rather than using the CMOV latency.
414 // max instruction depth of all instructions in the loop.
415 // Note: instruction with max depth represents the critical-path in the loop.
418 // Loop-Depth calculated for first `i` iterations.
419 // Note: it is enough to calculate depth for up to two iterations.
422 // Number of cycles saved in first 'i` iterations by optimizing the loop.
423 //===--------------------------------------------------------------------===//
424 for (unsigned I
= 0; I
< LoopIterations
; ++I
) {
425 DepthInfo
&MaxDepth
= LoopDepth
[I
];
426 for (auto *MBB
: Blocks
) {
427 // Clear physical registers Def map.
428 RegDefMaps
[PhyRegType
].clear();
429 for (MachineInstr
&MI
: *MBB
) {
430 // Skip debug instructions.
431 if (MI
.isDebugInstr())
433 unsigned MIDepth
= 0;
434 unsigned MIDepthOpt
= 0;
435 bool IsCMOV
= CmovInstructions
.count(&MI
);
436 for (auto &MO
: MI
.uses()) {
437 // Checks for "isUse()" as "uses()" returns also implicit definitions.
438 if (!MO
.isReg() || !MO
.isUse())
440 unsigned Reg
= MO
.getReg();
441 auto &RDM
= RegDefMaps
[TargetRegisterInfo::isVirtualRegister(Reg
)];
442 if (MachineInstr
*DefMI
= RDM
.lookup(Reg
)) {
443 OperandToDefMap
[&MO
] = DefMI
;
444 DepthInfo Info
= DepthMap
.lookup(DefMI
);
445 MIDepth
= std::max(MIDepth
, Info
.Depth
);
447 MIDepthOpt
= std::max(MIDepthOpt
, Info
.OptDepth
);
452 MIDepthOpt
= getDepthOfOptCmov(
453 DepthMap
[OperandToDefMap
.lookup(&MI
.getOperand(1))].OptDepth
,
454 DepthMap
[OperandToDefMap
.lookup(&MI
.getOperand(2))].OptDepth
);
456 // Iterates over all operands to handle implicit definitions as well.
457 for (auto &MO
: MI
.operands()) {
458 if (!MO
.isReg() || !MO
.isDef())
460 unsigned Reg
= MO
.getReg();
461 RegDefMaps
[TargetRegisterInfo::isVirtualRegister(Reg
)][Reg
] = &MI
;
464 unsigned Latency
= TSchedModel
.computeInstrLatency(&MI
);
465 DepthMap
[&MI
] = {MIDepth
+= Latency
, MIDepthOpt
+= Latency
};
466 MaxDepth
.Depth
= std::max(MaxDepth
.Depth
, MIDepth
);
467 MaxDepth
.OptDepth
= std::max(MaxDepth
.OptDepth
, MIDepthOpt
);
472 unsigned Diff
[LoopIterations
] = {LoopDepth
[0].Depth
- LoopDepth
[0].OptDepth
,
473 LoopDepth
[1].Depth
- LoopDepth
[1].OptDepth
};
475 //===--------------------------------------------------------------------===//
476 // Step 2: Check if Loop worth to be optimized.
477 // Worth-Optimize-Loop:
478 // case 1: Diff[1] == Diff[0]
479 // Critical-path is iteration independent - there is no dependency
480 // of critical-path instructions on critical-path instructions of
481 // previous iteration.
482 // Thus, it is enough to check gain percent of 1st iteration -
483 // To be conservative, the optimized loop need to have a depth of
484 // 12.5% cycles less than original loop, per iteration.
486 // case 2: Diff[1] > Diff[0]
487 // Critical-path is iteration dependent - there is dependency of
488 // critical-path instructions on critical-path instructions of
489 // previous iteration.
490 // Thus, check the gain percent of the 2nd iteration (similar to the
491 // previous case), but it is also required to check the gradient of
492 // the gain - the change in Depth-Diff compared to the change in
493 // Loop-Depth between 1st and 2nd iterations.
494 // To be conservative, the gradient need to be at least 50%.
496 // In addition, In order not to optimize loops with very small gain, the
497 // gain (in cycles) after 2nd iteration should not be less than a given
498 // threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply.
500 // If loop is not worth optimizing, remove all CMOV-group-candidates.
501 //===--------------------------------------------------------------------===//
502 if (Diff
[1] < GainCycleThreshold
)
505 bool WorthOptLoop
= false;
506 if (Diff
[1] == Diff
[0])
507 WorthOptLoop
= Diff
[0] * 8 >= LoopDepth
[0].Depth
;
508 else if (Diff
[1] > Diff
[0])
510 (Diff
[1] - Diff
[0]) * 2 >= (LoopDepth
[1].Depth
- LoopDepth
[0].Depth
) &&
511 (Diff
[1] * 8 >= LoopDepth
[1].Depth
);
516 ++NumOfLoopCandidate
;
518 //===--------------------------------------------------------------------===//
519 // Step 3: Check for each CMOV-group-candidate if it worth to be optimized.
520 // Worth-Optimize-Group:
521 // Iff it worths to optimize all CMOV instructions in the group.
523 // Worth-Optimize-CMOV:
524 // Predicted branch is faster than CMOV by the difference between depth of
525 // condition operand and depth of taken (predicted) value operand.
526 // To be conservative, the gain of such CMOV transformation should cover at
527 // at least 25% of branch-misprediction-penalty.
528 //===--------------------------------------------------------------------===//
529 unsigned MispredictPenalty
= TSchedModel
.getMCSchedModel()->MispredictPenalty
;
530 CmovGroups TempGroups
;
531 std::swap(TempGroups
, CmovInstGroups
);
532 for (auto &Group
: TempGroups
) {
533 bool WorthOpGroup
= true;
534 for (auto *MI
: Group
) {
535 // Avoid CMOV instruction which value is used as a pointer to load from.
536 // This is another conservative check to avoid converting CMOV instruction
537 // used with tree-search like algorithm, where the branch is unpredicted.
538 auto UIs
= MRI
->use_instructions(MI
->defs().begin()->getReg());
539 if (UIs
.begin() != UIs
.end() && ++UIs
.begin() == UIs
.end()) {
540 unsigned Op
= UIs
.begin()->getOpcode();
541 if (Op
== X86::MOV64rm
|| Op
== X86::MOV32rm
) {
542 WorthOpGroup
= false;
548 DepthMap
[OperandToDefMap
.lookup(&MI
->getOperand(3))].Depth
;
549 unsigned ValCost
= getDepthOfOptCmov(
550 DepthMap
[OperandToDefMap
.lookup(&MI
->getOperand(1))].Depth
,
551 DepthMap
[OperandToDefMap
.lookup(&MI
->getOperand(2))].Depth
);
552 if (ValCost
> CondCost
|| (CondCost
- ValCost
) * 4 < MispredictPenalty
) {
553 WorthOpGroup
= false;
559 CmovInstGroups
.push_back(Group
);
562 return !CmovInstGroups
.empty();
565 static bool checkEFLAGSLive(MachineInstr
*MI
) {
566 if (MI
->killsRegister(X86::EFLAGS
))
569 // The EFLAGS operand of MI might be missing a kill marker.
570 // Figure out whether EFLAGS operand should LIVE after MI instruction.
571 MachineBasicBlock
*BB
= MI
->getParent();
572 MachineBasicBlock::iterator ItrMI
= MI
;
574 // Scan forward through BB for a use/def of EFLAGS.
575 for (auto I
= std::next(ItrMI
), E
= BB
->end(); I
!= E
; ++I
) {
576 if (I
->readsRegister(X86::EFLAGS
))
578 if (I
->definesRegister(X86::EFLAGS
))
582 // We hit the end of the block, check whether EFLAGS is live into a successor.
583 for (auto I
= BB
->succ_begin(), E
= BB
->succ_end(); I
!= E
; ++I
) {
584 if ((*I
)->isLiveIn(X86::EFLAGS
))
591 /// Given /p First CMOV instruction and /p Last CMOV instruction representing a
592 /// group of CMOV instructions, which may contain debug instructions in between,
593 /// move all debug instructions to after the last CMOV instruction, making the
594 /// CMOV group consecutive.
595 static void packCmovGroup(MachineInstr
*First
, MachineInstr
*Last
) {
596 assert(X86::getCondFromCMovOpc(Last
->getOpcode()) != X86::COND_INVALID
&&
597 "Last instruction in a CMOV group must be a CMOV instruction");
599 SmallVector
<MachineInstr
*, 2> DBGInstructions
;
600 for (auto I
= First
->getIterator(), E
= Last
->getIterator(); I
!= E
; I
++) {
601 if (I
->isDebugInstr())
602 DBGInstructions
.push_back(&*I
);
605 // Splice the debug instruction after the cmov group.
606 MachineBasicBlock
*MBB
= First
->getParent();
607 for (auto *MI
: DBGInstructions
)
608 MBB
->insertAfter(Last
, MI
->removeFromParent());
611 void X86CmovConverterPass::convertCmovInstsToBranches(
612 SmallVectorImpl
<MachineInstr
*> &Group
) const {
613 assert(!Group
.empty() && "No CMOV instructions to convert");
614 ++NumOfOptimizedCmovGroups
;
616 // If the CMOV group is not packed, e.g., there are debug instructions between
617 // first CMOV and last CMOV, then pack the group and make the CMOV instruction
618 // consecutive by moving the debug instructions to after the last CMOV.
619 packCmovGroup(Group
.front(), Group
.back());
621 // To convert a CMOVcc instruction, we actually have to insert the diamond
622 // control-flow pattern. The incoming instruction knows the destination vreg
623 // to set, the condition code register to branch on, the true/false values to
624 // select between, and a branch opcode to use.
630 // v1 = CMOVge t1, f1, cond
631 // v2 = CMOVlt t2, f2, cond
632 // v3 = CMOVge v1, f3, cond
644 // %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
645 // %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
646 // ; true-value with false-value
647 // %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use
648 // ; previous Phi instruction result
650 MachineInstr
&MI
= *Group
.front();
651 MachineInstr
*LastCMOV
= Group
.back();
652 DebugLoc DL
= MI
.getDebugLoc();
654 X86::CondCode CC
= X86::CondCode(X86::getCondFromCMovOpc(MI
.getOpcode()));
655 X86::CondCode OppCC
= X86::GetOppositeBranchCondition(CC
);
656 // Potentially swap the condition codes so that any memory operand to a CMOV
657 // is in the *false* position instead of the *true* position. We can invert
658 // any non-memory operand CMOV instructions to cope with this and we ensure
659 // memory operand CMOVs are only included with a single condition code.
660 if (llvm::any_of(Group
, [&](MachineInstr
*I
) {
661 return I
->mayLoad() && X86::getCondFromCMovOpc(I
->getOpcode()) == CC
;
663 std::swap(CC
, OppCC
);
665 MachineBasicBlock
*MBB
= MI
.getParent();
666 MachineFunction::iterator It
= ++MBB
->getIterator();
667 MachineFunction
*F
= MBB
->getParent();
668 const BasicBlock
*BB
= MBB
->getBasicBlock();
670 MachineBasicBlock
*FalseMBB
= F
->CreateMachineBasicBlock(BB
);
671 MachineBasicBlock
*SinkMBB
= F
->CreateMachineBasicBlock(BB
);
672 F
->insert(It
, FalseMBB
);
673 F
->insert(It
, SinkMBB
);
675 // If the EFLAGS register isn't dead in the terminator, then claim that it's
676 // live into the sink and copy blocks.
677 if (checkEFLAGSLive(LastCMOV
)) {
678 FalseMBB
->addLiveIn(X86::EFLAGS
);
679 SinkMBB
->addLiveIn(X86::EFLAGS
);
682 // Transfer the remainder of BB and its successor edges to SinkMBB.
683 SinkMBB
->splice(SinkMBB
->begin(), MBB
,
684 std::next(MachineBasicBlock::iterator(LastCMOV
)), MBB
->end());
685 SinkMBB
->transferSuccessorsAndUpdatePHIs(MBB
);
687 // Add the false and sink blocks as its successors.
688 MBB
->addSuccessor(FalseMBB
);
689 MBB
->addSuccessor(SinkMBB
);
691 // Create the conditional branch instruction.
692 BuildMI(MBB
, DL
, TII
->get(X86::GetCondBranchFromCond(CC
))).addMBB(SinkMBB
);
694 // Add the sink block to the false block successors.
695 FalseMBB
->addSuccessor(SinkMBB
);
697 MachineInstrBuilder MIB
;
698 MachineBasicBlock::iterator MIItBegin
= MachineBasicBlock::iterator(MI
);
699 MachineBasicBlock::iterator MIItEnd
=
700 std::next(MachineBasicBlock::iterator(LastCMOV
));
701 MachineBasicBlock::iterator FalseInsertionPoint
= FalseMBB
->begin();
702 MachineBasicBlock::iterator SinkInsertionPoint
= SinkMBB
->begin();
704 // First we need to insert an explicit load on the false path for any memory
705 // operand. We also need to potentially do register rewriting here, but it is
706 // simpler as the memory operands are always on the false path so we can
707 // simply take that input, whatever it is.
708 DenseMap
<unsigned, unsigned> FalseBBRegRewriteTable
;
709 for (MachineBasicBlock::iterator MIIt
= MIItBegin
; MIIt
!= MIItEnd
;) {
711 // Skip any CMOVs in this group which don't load from memory.
713 // Remember the false-side register input.
715 MI
.getOperand(X86::getCondFromCMovOpc(MI
.getOpcode()) == CC
? 1 : 2)
717 // Walk back through any intermediate cmovs referenced.
719 auto FRIt
= FalseBBRegRewriteTable
.find(FalseReg
);
720 if (FRIt
== FalseBBRegRewriteTable
.end())
722 FalseReg
= FRIt
->second
;
724 FalseBBRegRewriteTable
[MI
.getOperand(0).getReg()] = FalseReg
;
728 // The condition must be the *opposite* of the one we've decided to branch
729 // on as the branch will go *around* the load and the load should happen
730 // when the CMOV condition is false.
731 assert(X86::getCondFromCMovOpc(MI
.getOpcode()) == OppCC
&&
732 "Can only handle memory-operand cmov instructions with a condition "
733 "opposite to the selected branch direction.");
735 // The goal is to rewrite the cmov from:
738 // %A = CMOVcc %B (tied), (mem)
743 // %A = CMOVcc %B (tied), %C
747 // Which will allow the next loop to rewrite the CMOV in terms of a PHI:
754 // %A = PHI [ %C, FalseMBB ], [ %B, MBB]
756 // Get a fresh register to use as the destination of the MOV.
757 const TargetRegisterClass
*RC
= MRI
->getRegClass(MI
.getOperand(0).getReg());
758 unsigned TmpReg
= MRI
->createVirtualRegister(RC
);
760 SmallVector
<MachineInstr
*, 4> NewMIs
;
761 bool Unfolded
= TII
->unfoldMemoryOperand(*MBB
->getParent(), MI
, TmpReg
,
763 /*UnfoldStore*/ false, NewMIs
);
765 assert(Unfolded
&& "Should never fail to unfold a loading cmov!");
767 // Move the new CMOV to just before the old one and reset any impacted
769 auto *NewCMOV
= NewMIs
.pop_back_val();
770 assert(X86::getCondFromCMovOpc(NewCMOV
->getOpcode()) == OppCC
&&
771 "Last new instruction isn't the expected CMOV!");
772 LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV
->dump());
773 MBB
->insert(MachineBasicBlock::iterator(MI
), NewCMOV
);
774 if (&*MIItBegin
== &MI
)
775 MIItBegin
= MachineBasicBlock::iterator(NewCMOV
);
777 // Sink whatever instructions were needed to produce the unfolded operand
778 // into the false block.
779 for (auto *NewMI
: NewMIs
) {
780 LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI
->dump());
781 FalseMBB
->insert(FalseInsertionPoint
, NewMI
);
782 // Re-map any operands that are from other cmovs to the inputs for this block.
783 for (auto &MOp
: NewMI
->uses()) {
786 auto It
= FalseBBRegRewriteTable
.find(MOp
.getReg());
787 if (It
== FalseBBRegRewriteTable
.end())
790 MOp
.setReg(It
->second
);
791 // This might have been a kill when it referenced the cmov result, but
792 // it won't necessarily be once rewritten.
793 // FIXME: We could potentially improve this by tracking whether the
794 // operand to the cmov was also a kill, and then skipping the PHI node
795 // construction below.
796 MOp
.setIsKill(false);
799 MBB
->erase(MachineBasicBlock::iterator(MI
),
800 std::next(MachineBasicBlock::iterator(MI
)));
802 // Add this PHI to the rewrite table.
803 FalseBBRegRewriteTable
[NewCMOV
->getOperand(0).getReg()] = TmpReg
;
806 // As we are creating the PHIs, we have to be careful if there is more than
807 // one. Later CMOVs may reference the results of earlier CMOVs, but later
808 // PHIs have to reference the individual true/false inputs from earlier PHIs.
809 // That also means that PHI construction must work forward from earlier to
810 // later, and that the code must maintain a mapping from earlier PHI's
811 // destination registers, and the registers that went into the PHI.
812 DenseMap
<unsigned, std::pair
<unsigned, unsigned>> RegRewriteTable
;
814 for (MachineBasicBlock::iterator MIIt
= MIItBegin
; MIIt
!= MIItEnd
; ++MIIt
) {
815 unsigned DestReg
= MIIt
->getOperand(0).getReg();
816 unsigned Op1Reg
= MIIt
->getOperand(1).getReg();
817 unsigned Op2Reg
= MIIt
->getOperand(2).getReg();
819 // If this CMOV we are processing is the opposite condition from the jump we
820 // generated, then we have to swap the operands for the PHI that is going to
822 if (X86::getCondFromCMovOpc(MIIt
->getOpcode()) == OppCC
)
823 std::swap(Op1Reg
, Op2Reg
);
825 auto Op1Itr
= RegRewriteTable
.find(Op1Reg
);
826 if (Op1Itr
!= RegRewriteTable
.end())
827 Op1Reg
= Op1Itr
->second
.first
;
829 auto Op2Itr
= RegRewriteTable
.find(Op2Reg
);
830 if (Op2Itr
!= RegRewriteTable
.end())
831 Op2Reg
= Op2Itr
->second
.second
;
834 // %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ]
836 MIB
= BuildMI(*SinkMBB
, SinkInsertionPoint
, DL
, TII
->get(X86::PHI
), DestReg
)
842 LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt
->dump());
843 LLVM_DEBUG(dbgs() << "\tTo: "; MIB
->dump());
845 // Add this PHI to the rewrite table.
846 RegRewriteTable
[DestReg
] = std::make_pair(Op1Reg
, Op2Reg
);
849 // Now remove the CMOV(s).
850 MBB
->erase(MIItBegin
, MIItEnd
);
853 INITIALIZE_PASS_BEGIN(X86CmovConverterPass
, DEBUG_TYPE
, "X86 cmov Conversion",
855 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
856 INITIALIZE_PASS_END(X86CmovConverterPass
, DEBUG_TYPE
, "X86 cmov Conversion",
859 FunctionPass
*llvm::createX86CmovConverterPass() {
860 return new X86CmovConverterPass();