Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / X86 / X86FastISel.cpp
blob8f34f49444f9331510a34b5b90b9793bef873427
1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86-specific support for the FastISel class. Much
10 // of the target-specific code is generated by tablegen in the file
11 // X86GenFastISel.inc, which is #included here.
13 //===----------------------------------------------------------------------===//
15 #include "X86.h"
16 #include "X86CallingConv.h"
17 #include "X86InstrBuilder.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86RegisterInfo.h"
21 #include "X86Subtarget.h"
22 #include "X86TargetMachine.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/MCSymbol.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Target/TargetOptions.h"
43 using namespace llvm;
45 namespace {
47 class X86FastISel final : public FastISel {
48 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
49 /// make the right decision when generating code for different targets.
50 const X86Subtarget *Subtarget;
52 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
53 /// floating point ops.
54 /// When SSE is available, use it for f32 operations.
55 /// When SSE2 is available, use it for f64 operations.
56 bool X86ScalarSSEf64;
57 bool X86ScalarSSEf32;
59 public:
60 explicit X86FastISel(FunctionLoweringInfo &funcInfo,
61 const TargetLibraryInfo *libInfo)
62 : FastISel(funcInfo, libInfo) {
63 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
64 X86ScalarSSEf64 = Subtarget->hasSSE2();
65 X86ScalarSSEf32 = Subtarget->hasSSE1();
68 bool fastSelectInstruction(const Instruction *I) override;
70 /// The specified machine instr operand is a vreg, and that
71 /// vreg is being provided by the specified load instruction. If possible,
72 /// try to fold the load as an operand to the instruction, returning true if
73 /// possible.
74 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
75 const LoadInst *LI) override;
77 bool fastLowerArguments() override;
78 bool fastLowerCall(CallLoweringInfo &CLI) override;
79 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
81 #include "X86GenFastISel.inc"
83 private:
84 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
85 const DebugLoc &DL);
87 bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
88 unsigned &ResultReg, unsigned Alignment = 1);
90 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
91 MachineMemOperand *MMO = nullptr, bool Aligned = false);
92 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
93 X86AddressMode &AM,
94 MachineMemOperand *MMO = nullptr, bool Aligned = false);
96 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
97 unsigned &ResultReg);
99 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
100 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
102 bool X86SelectLoad(const Instruction *I);
104 bool X86SelectStore(const Instruction *I);
106 bool X86SelectRet(const Instruction *I);
108 bool X86SelectCmp(const Instruction *I);
110 bool X86SelectZExt(const Instruction *I);
112 bool X86SelectSExt(const Instruction *I);
114 bool X86SelectBranch(const Instruction *I);
116 bool X86SelectShift(const Instruction *I);
118 bool X86SelectDivRem(const Instruction *I);
120 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
122 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
124 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
126 bool X86SelectSelect(const Instruction *I);
128 bool X86SelectTrunc(const Instruction *I);
130 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
131 const TargetRegisterClass *RC);
133 bool X86SelectFPExt(const Instruction *I);
134 bool X86SelectFPTrunc(const Instruction *I);
135 bool X86SelectSIToFP(const Instruction *I);
136 bool X86SelectUIToFP(const Instruction *I);
137 bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
139 const X86InstrInfo *getInstrInfo() const {
140 return Subtarget->getInstrInfo();
142 const X86TargetMachine *getTargetMachine() const {
143 return static_cast<const X86TargetMachine *>(&TM);
146 bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
148 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
149 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
150 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
151 unsigned fastMaterializeConstant(const Constant *C) override;
153 unsigned fastMaterializeAlloca(const AllocaInst *C) override;
155 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
157 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
158 /// computed in an SSE register, not on the X87 floating point stack.
159 bool isScalarFPTypeInSSEReg(EVT VT) const {
160 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
161 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
164 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
166 bool IsMemcpySmall(uint64_t Len);
168 bool TryEmitSmallMemcpy(X86AddressMode DestAM,
169 X86AddressMode SrcAM, uint64_t Len);
171 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
172 const Value *Cond);
174 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
175 X86AddressMode &AM);
177 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
178 const TargetRegisterClass *RC, unsigned Op0,
179 bool Op0IsKill, unsigned Op1, bool Op1IsKill,
180 unsigned Op2, bool Op2IsKill, unsigned Op3,
181 bool Op3IsKill);
184 } // end anonymous namespace.
186 static std::pair<unsigned, bool>
187 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
188 unsigned CC;
189 bool NeedSwap = false;
191 // SSE Condition code mapping:
192 // 0 - EQ
193 // 1 - LT
194 // 2 - LE
195 // 3 - UNORD
196 // 4 - NEQ
197 // 5 - NLT
198 // 6 - NLE
199 // 7 - ORD
200 switch (Predicate) {
201 default: llvm_unreachable("Unexpected predicate");
202 case CmpInst::FCMP_OEQ: CC = 0; break;
203 case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH;
204 case CmpInst::FCMP_OLT: CC = 1; break;
205 case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH;
206 case CmpInst::FCMP_OLE: CC = 2; break;
207 case CmpInst::FCMP_UNO: CC = 3; break;
208 case CmpInst::FCMP_UNE: CC = 4; break;
209 case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH;
210 case CmpInst::FCMP_UGE: CC = 5; break;
211 case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH;
212 case CmpInst::FCMP_UGT: CC = 6; break;
213 case CmpInst::FCMP_ORD: CC = 7; break;
214 case CmpInst::FCMP_UEQ: CC = 8; break;
215 case CmpInst::FCMP_ONE: CC = 12; break;
218 return std::make_pair(CC, NeedSwap);
221 /// Adds a complex addressing mode to the given machine instr builder.
222 /// Note, this will constrain the index register. If its not possible to
223 /// constrain the given index register, then a new one will be created. The
224 /// IndexReg field of the addressing mode will be updated to match in this case.
225 const MachineInstrBuilder &
226 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
227 X86AddressMode &AM) {
228 // First constrain the index register. It needs to be a GR64_NOSP.
229 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
230 MIB->getNumOperands() +
231 X86::AddrIndexReg);
232 return ::addFullAddress(MIB, AM);
235 /// Check if it is possible to fold the condition from the XALU intrinsic
236 /// into the user. The condition code will only be updated on success.
237 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
238 const Value *Cond) {
239 if (!isa<ExtractValueInst>(Cond))
240 return false;
242 const auto *EV = cast<ExtractValueInst>(Cond);
243 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
244 return false;
246 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
247 MVT RetVT;
248 const Function *Callee = II->getCalledFunction();
249 Type *RetTy =
250 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
251 if (!isTypeLegal(RetTy, RetVT))
252 return false;
254 if (RetVT != MVT::i32 && RetVT != MVT::i64)
255 return false;
257 X86::CondCode TmpCC;
258 switch (II->getIntrinsicID()) {
259 default: return false;
260 case Intrinsic::sadd_with_overflow:
261 case Intrinsic::ssub_with_overflow:
262 case Intrinsic::smul_with_overflow:
263 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
264 case Intrinsic::uadd_with_overflow:
265 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
268 // Check if both instructions are in the same basic block.
269 if (II->getParent() != I->getParent())
270 return false;
272 // Make sure nothing is in the way
273 BasicBlock::const_iterator Start(I);
274 BasicBlock::const_iterator End(II);
275 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
276 // We only expect extractvalue instructions between the intrinsic and the
277 // instruction to be selected.
278 if (!isa<ExtractValueInst>(Itr))
279 return false;
281 // Check that the extractvalue operand comes from the intrinsic.
282 const auto *EVI = cast<ExtractValueInst>(Itr);
283 if (EVI->getAggregateOperand() != II)
284 return false;
287 CC = TmpCC;
288 return true;
291 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
292 EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true);
293 if (evt == MVT::Other || !evt.isSimple())
294 // Unhandled type. Halt "fast" selection and bail.
295 return false;
297 VT = evt.getSimpleVT();
298 // For now, require SSE/SSE2 for performing floating-point operations,
299 // since x87 requires additional work.
300 if (VT == MVT::f64 && !X86ScalarSSEf64)
301 return false;
302 if (VT == MVT::f32 && !X86ScalarSSEf32)
303 return false;
304 // Similarly, no f80 support yet.
305 if (VT == MVT::f80)
306 return false;
307 // We only handle legal types. For example, on x86-32 the instruction
308 // selector contains all of the 64-bit instructions from x86-64,
309 // under the assumption that i64 won't be used if the target doesn't
310 // support it.
311 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
314 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
315 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
316 /// Return true and the result register by reference if it is possible.
317 bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
318 MachineMemOperand *MMO, unsigned &ResultReg,
319 unsigned Alignment) {
320 bool HasSSE41 = Subtarget->hasSSE41();
321 bool HasAVX = Subtarget->hasAVX();
322 bool HasAVX2 = Subtarget->hasAVX2();
323 bool HasAVX512 = Subtarget->hasAVX512();
324 bool HasVLX = Subtarget->hasVLX();
325 bool IsNonTemporal = MMO && MMO->isNonTemporal();
327 // Get opcode and regclass of the output for the given load instruction.
328 unsigned Opc = 0;
329 const TargetRegisterClass *RC = nullptr;
330 switch (VT.getSimpleVT().SimpleTy) {
331 default: return false;
332 case MVT::i1:
333 case MVT::i8:
334 Opc = X86::MOV8rm;
335 RC = &X86::GR8RegClass;
336 break;
337 case MVT::i16:
338 Opc = X86::MOV16rm;
339 RC = &X86::GR16RegClass;
340 break;
341 case MVT::i32:
342 Opc = X86::MOV32rm;
343 RC = &X86::GR32RegClass;
344 break;
345 case MVT::i64:
346 // Must be in x86-64 mode.
347 Opc = X86::MOV64rm;
348 RC = &X86::GR64RegClass;
349 break;
350 case MVT::f32:
351 if (X86ScalarSSEf32) {
352 Opc = HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm;
353 RC = HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass;
354 } else {
355 Opc = X86::LD_Fp32m;
356 RC = &X86::RFP32RegClass;
358 break;
359 case MVT::f64:
360 if (X86ScalarSSEf64) {
361 Opc = HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm;
362 RC = HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass;
363 } else {
364 Opc = X86::LD_Fp64m;
365 RC = &X86::RFP64RegClass;
367 break;
368 case MVT::f80:
369 // No f80 support yet.
370 return false;
371 case MVT::v4f32:
372 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
373 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
374 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
375 else if (Alignment >= 16)
376 Opc = HasVLX ? X86::VMOVAPSZ128rm :
377 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
378 else
379 Opc = HasVLX ? X86::VMOVUPSZ128rm :
380 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
381 RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass;
382 break;
383 case MVT::v2f64:
384 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
385 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
386 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
387 else if (Alignment >= 16)
388 Opc = HasVLX ? X86::VMOVAPDZ128rm :
389 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
390 else
391 Opc = HasVLX ? X86::VMOVUPDZ128rm :
392 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
393 RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass;
394 break;
395 case MVT::v4i32:
396 case MVT::v2i64:
397 case MVT::v8i16:
398 case MVT::v16i8:
399 if (IsNonTemporal && Alignment >= 16)
400 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
401 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
402 else if (Alignment >= 16)
403 Opc = HasVLX ? X86::VMOVDQA64Z128rm :
404 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
405 else
406 Opc = HasVLX ? X86::VMOVDQU64Z128rm :
407 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
408 RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass;
409 break;
410 case MVT::v8f32:
411 assert(HasAVX);
412 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
413 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
414 else if (IsNonTemporal && Alignment >= 16)
415 return false; // Force split for X86::VMOVNTDQArm
416 else if (Alignment >= 32)
417 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
418 else
419 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
420 RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass;
421 break;
422 case MVT::v4f64:
423 assert(HasAVX);
424 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
425 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
426 else if (IsNonTemporal && Alignment >= 16)
427 return false; // Force split for X86::VMOVNTDQArm
428 else if (Alignment >= 32)
429 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
430 else
431 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
432 RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass;
433 break;
434 case MVT::v8i32:
435 case MVT::v4i64:
436 case MVT::v16i16:
437 case MVT::v32i8:
438 assert(HasAVX);
439 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
440 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
441 else if (IsNonTemporal && Alignment >= 16)
442 return false; // Force split for X86::VMOVNTDQArm
443 else if (Alignment >= 32)
444 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
445 else
446 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
447 RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass;
448 break;
449 case MVT::v16f32:
450 assert(HasAVX512);
451 if (IsNonTemporal && Alignment >= 64)
452 Opc = X86::VMOVNTDQAZrm;
453 else
454 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
455 RC = &X86::VR512RegClass;
456 break;
457 case MVT::v8f64:
458 assert(HasAVX512);
459 if (IsNonTemporal && Alignment >= 64)
460 Opc = X86::VMOVNTDQAZrm;
461 else
462 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
463 RC = &X86::VR512RegClass;
464 break;
465 case MVT::v8i64:
466 case MVT::v16i32:
467 case MVT::v32i16:
468 case MVT::v64i8:
469 assert(HasAVX512);
470 // Note: There are a lot more choices based on type with AVX-512, but
471 // there's really no advantage when the load isn't masked.
472 if (IsNonTemporal && Alignment >= 64)
473 Opc = X86::VMOVNTDQAZrm;
474 else
475 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
476 RC = &X86::VR512RegClass;
477 break;
480 ResultReg = createResultReg(RC);
481 MachineInstrBuilder MIB =
482 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
483 addFullAddress(MIB, AM);
484 if (MMO)
485 MIB->addMemOperand(*FuncInfo.MF, MMO);
486 return true;
489 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
490 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
491 /// and a displacement offset, or a GlobalAddress,
492 /// i.e. V. Return true if it is possible.
493 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
494 X86AddressMode &AM,
495 MachineMemOperand *MMO, bool Aligned) {
496 bool HasSSE1 = Subtarget->hasSSE1();
497 bool HasSSE2 = Subtarget->hasSSE2();
498 bool HasSSE4A = Subtarget->hasSSE4A();
499 bool HasAVX = Subtarget->hasAVX();
500 bool HasAVX512 = Subtarget->hasAVX512();
501 bool HasVLX = Subtarget->hasVLX();
502 bool IsNonTemporal = MMO && MMO->isNonTemporal();
504 // Get opcode and regclass of the output for the given store instruction.
505 unsigned Opc = 0;
506 switch (VT.getSimpleVT().SimpleTy) {
507 case MVT::f80: // No f80 support yet.
508 default: return false;
509 case MVT::i1: {
510 // Mask out all but lowest bit.
511 unsigned AndResult = createResultReg(&X86::GR8RegClass);
512 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
513 TII.get(X86::AND8ri), AndResult)
514 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
515 ValReg = AndResult;
516 LLVM_FALLTHROUGH; // handle i1 as i8.
518 case MVT::i8: Opc = X86::MOV8mr; break;
519 case MVT::i16: Opc = X86::MOV16mr; break;
520 case MVT::i32:
521 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
522 break;
523 case MVT::i64:
524 // Must be in x86-64 mode.
525 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
526 break;
527 case MVT::f32:
528 if (X86ScalarSSEf32) {
529 if (IsNonTemporal && HasSSE4A)
530 Opc = X86::MOVNTSS;
531 else
532 Opc = HasAVX512 ? X86::VMOVSSZmr :
533 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
534 } else
535 Opc = X86::ST_Fp32m;
536 break;
537 case MVT::f64:
538 if (X86ScalarSSEf32) {
539 if (IsNonTemporal && HasSSE4A)
540 Opc = X86::MOVNTSD;
541 else
542 Opc = HasAVX512 ? X86::VMOVSDZmr :
543 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
544 } else
545 Opc = X86::ST_Fp64m;
546 break;
547 case MVT::x86mmx:
548 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
549 break;
550 case MVT::v4f32:
551 if (Aligned) {
552 if (IsNonTemporal)
553 Opc = HasVLX ? X86::VMOVNTPSZ128mr :
554 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
555 else
556 Opc = HasVLX ? X86::VMOVAPSZ128mr :
557 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
558 } else
559 Opc = HasVLX ? X86::VMOVUPSZ128mr :
560 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
561 break;
562 case MVT::v2f64:
563 if (Aligned) {
564 if (IsNonTemporal)
565 Opc = HasVLX ? X86::VMOVNTPDZ128mr :
566 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
567 else
568 Opc = HasVLX ? X86::VMOVAPDZ128mr :
569 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
570 } else
571 Opc = HasVLX ? X86::VMOVUPDZ128mr :
572 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
573 break;
574 case MVT::v4i32:
575 case MVT::v2i64:
576 case MVT::v8i16:
577 case MVT::v16i8:
578 if (Aligned) {
579 if (IsNonTemporal)
580 Opc = HasVLX ? X86::VMOVNTDQZ128mr :
581 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
582 else
583 Opc = HasVLX ? X86::VMOVDQA64Z128mr :
584 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
585 } else
586 Opc = HasVLX ? X86::VMOVDQU64Z128mr :
587 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
588 break;
589 case MVT::v8f32:
590 assert(HasAVX);
591 if (Aligned) {
592 if (IsNonTemporal)
593 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
594 else
595 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
596 } else
597 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
598 break;
599 case MVT::v4f64:
600 assert(HasAVX);
601 if (Aligned) {
602 if (IsNonTemporal)
603 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
604 else
605 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
606 } else
607 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
608 break;
609 case MVT::v8i32:
610 case MVT::v4i64:
611 case MVT::v16i16:
612 case MVT::v32i8:
613 assert(HasAVX);
614 if (Aligned) {
615 if (IsNonTemporal)
616 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
617 else
618 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
619 } else
620 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
621 break;
622 case MVT::v16f32:
623 assert(HasAVX512);
624 if (Aligned)
625 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
626 else
627 Opc = X86::VMOVUPSZmr;
628 break;
629 case MVT::v8f64:
630 assert(HasAVX512);
631 if (Aligned) {
632 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
633 } else
634 Opc = X86::VMOVUPDZmr;
635 break;
636 case MVT::v8i64:
637 case MVT::v16i32:
638 case MVT::v32i16:
639 case MVT::v64i8:
640 assert(HasAVX512);
641 // Note: There are a lot more choices based on type with AVX-512, but
642 // there's really no advantage when the store isn't masked.
643 if (Aligned)
644 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
645 else
646 Opc = X86::VMOVDQU64Zmr;
647 break;
650 const MCInstrDesc &Desc = TII.get(Opc);
651 // Some of the instructions in the previous switch use FR128 instead
652 // of FR32 for ValReg. Make sure the register we feed the instruction
653 // matches its register class constraints.
654 // Note: This is fine to do a copy from FR32 to FR128, this is the
655 // same registers behind the scene and actually why it did not trigger
656 // any bugs before.
657 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
658 MachineInstrBuilder MIB =
659 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
660 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
661 if (MMO)
662 MIB->addMemOperand(*FuncInfo.MF, MMO);
664 return true;
667 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
668 X86AddressMode &AM,
669 MachineMemOperand *MMO, bool Aligned) {
670 // Handle 'null' like i32/i64 0.
671 if (isa<ConstantPointerNull>(Val))
672 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
674 // If this is a store of a simple constant, fold the constant into the store.
675 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
676 unsigned Opc = 0;
677 bool Signed = true;
678 switch (VT.getSimpleVT().SimpleTy) {
679 default: break;
680 case MVT::i1:
681 Signed = false;
682 LLVM_FALLTHROUGH; // Handle as i8.
683 case MVT::i8: Opc = X86::MOV8mi; break;
684 case MVT::i16: Opc = X86::MOV16mi; break;
685 case MVT::i32: Opc = X86::MOV32mi; break;
686 case MVT::i64:
687 // Must be a 32-bit sign extended value.
688 if (isInt<32>(CI->getSExtValue()))
689 Opc = X86::MOV64mi32;
690 break;
693 if (Opc) {
694 MachineInstrBuilder MIB =
695 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
696 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
697 : CI->getZExtValue());
698 if (MMO)
699 MIB->addMemOperand(*FuncInfo.MF, MMO);
700 return true;
704 unsigned ValReg = getRegForValue(Val);
705 if (ValReg == 0)
706 return false;
708 bool ValKill = hasTrivialKill(Val);
709 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
712 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
713 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
714 /// ISD::SIGN_EXTEND).
715 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
716 unsigned Src, EVT SrcVT,
717 unsigned &ResultReg) {
718 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
719 Src, /*TODO: Kill=*/false);
720 if (RR == 0)
721 return false;
723 ResultReg = RR;
724 return true;
727 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
728 // Handle constant address.
729 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
730 // Can't handle alternate code models yet.
731 if (TM.getCodeModel() != CodeModel::Small)
732 return false;
734 // Can't handle TLS yet.
735 if (GV->isThreadLocal())
736 return false;
738 // Can't handle !absolute_symbol references yet.
739 if (GV->isAbsoluteSymbolRef())
740 return false;
742 // RIP-relative addresses can't have additional register operands, so if
743 // we've already folded stuff into the addressing mode, just force the
744 // global value into its own register, which we can use as the basereg.
745 if (!Subtarget->isPICStyleRIPRel() ||
746 (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
747 // Okay, we've committed to selecting this global. Set up the address.
748 AM.GV = GV;
750 // Allow the subtarget to classify the global.
751 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
753 // If this reference is relative to the pic base, set it now.
754 if (isGlobalRelativeToPICBase(GVFlags)) {
755 // FIXME: How do we know Base.Reg is free??
756 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
759 // Unless the ABI requires an extra load, return a direct reference to
760 // the global.
761 if (!isGlobalStubReference(GVFlags)) {
762 if (Subtarget->isPICStyleRIPRel()) {
763 // Use rip-relative addressing if we can. Above we verified that the
764 // base and index registers are unused.
765 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
766 AM.Base.Reg = X86::RIP;
768 AM.GVOpFlags = GVFlags;
769 return true;
772 // Ok, we need to do a load from a stub. If we've already loaded from
773 // this stub, reuse the loaded pointer, otherwise emit the load now.
774 DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
775 unsigned LoadReg;
776 if (I != LocalValueMap.end() && I->second != 0) {
777 LoadReg = I->second;
778 } else {
779 // Issue load from stub.
780 unsigned Opc = 0;
781 const TargetRegisterClass *RC = nullptr;
782 X86AddressMode StubAM;
783 StubAM.Base.Reg = AM.Base.Reg;
784 StubAM.GV = GV;
785 StubAM.GVOpFlags = GVFlags;
787 // Prepare for inserting code in the local-value area.
788 SavePoint SaveInsertPt = enterLocalValueArea();
790 if (TLI.getPointerTy(DL) == MVT::i64) {
791 Opc = X86::MOV64rm;
792 RC = &X86::GR64RegClass;
794 if (Subtarget->isPICStyleRIPRel())
795 StubAM.Base.Reg = X86::RIP;
796 } else {
797 Opc = X86::MOV32rm;
798 RC = &X86::GR32RegClass;
801 LoadReg = createResultReg(RC);
802 MachineInstrBuilder LoadMI =
803 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
804 addFullAddress(LoadMI, StubAM);
806 // Ok, back to normal mode.
807 leaveLocalValueArea(SaveInsertPt);
809 // Prevent loading GV stub multiple times in same MBB.
810 LocalValueMap[V] = LoadReg;
813 // Now construct the final address. Note that the Disp, Scale,
814 // and Index values may already be set here.
815 AM.Base.Reg = LoadReg;
816 AM.GV = nullptr;
817 return true;
821 // If all else fails, try to materialize the value in a register.
822 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
823 if (AM.Base.Reg == 0) {
824 AM.Base.Reg = getRegForValue(V);
825 return AM.Base.Reg != 0;
827 if (AM.IndexReg == 0) {
828 assert(AM.Scale == 1 && "Scale with no index!");
829 AM.IndexReg = getRegForValue(V);
830 return AM.IndexReg != 0;
834 return false;
837 /// X86SelectAddress - Attempt to fill in an address from the given value.
839 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
840 SmallVector<const Value *, 32> GEPs;
841 redo_gep:
842 const User *U = nullptr;
843 unsigned Opcode = Instruction::UserOp1;
844 if (const Instruction *I = dyn_cast<Instruction>(V)) {
845 // Don't walk into other basic blocks; it's possible we haven't
846 // visited them yet, so the instructions may not yet be assigned
847 // virtual registers.
848 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
849 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
850 Opcode = I->getOpcode();
851 U = I;
853 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
854 Opcode = C->getOpcode();
855 U = C;
858 if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
859 if (Ty->getAddressSpace() > 255)
860 // Fast instruction selection doesn't support the special
861 // address spaces.
862 return false;
864 switch (Opcode) {
865 default: break;
866 case Instruction::BitCast:
867 // Look past bitcasts.
868 return X86SelectAddress(U->getOperand(0), AM);
870 case Instruction::IntToPtr:
871 // Look past no-op inttoptrs.
872 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
873 TLI.getPointerTy(DL))
874 return X86SelectAddress(U->getOperand(0), AM);
875 break;
877 case Instruction::PtrToInt:
878 // Look past no-op ptrtoints.
879 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
880 return X86SelectAddress(U->getOperand(0), AM);
881 break;
883 case Instruction::Alloca: {
884 // Do static allocas.
885 const AllocaInst *A = cast<AllocaInst>(V);
886 DenseMap<const AllocaInst *, int>::iterator SI =
887 FuncInfo.StaticAllocaMap.find(A);
888 if (SI != FuncInfo.StaticAllocaMap.end()) {
889 AM.BaseType = X86AddressMode::FrameIndexBase;
890 AM.Base.FrameIndex = SI->second;
891 return true;
893 break;
896 case Instruction::Add: {
897 // Adds of constants are common and easy enough.
898 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
899 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
900 // They have to fit in the 32-bit signed displacement field though.
901 if (isInt<32>(Disp)) {
902 AM.Disp = (uint32_t)Disp;
903 return X86SelectAddress(U->getOperand(0), AM);
906 break;
909 case Instruction::GetElementPtr: {
910 X86AddressMode SavedAM = AM;
912 // Pattern-match simple GEPs.
913 uint64_t Disp = (int32_t)AM.Disp;
914 unsigned IndexReg = AM.IndexReg;
915 unsigned Scale = AM.Scale;
916 gep_type_iterator GTI = gep_type_begin(U);
917 // Iterate through the indices, folding what we can. Constants can be
918 // folded, and one dynamic index can be handled, if the scale is supported.
919 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
920 i != e; ++i, ++GTI) {
921 const Value *Op = *i;
922 if (StructType *STy = GTI.getStructTypeOrNull()) {
923 const StructLayout *SL = DL.getStructLayout(STy);
924 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
925 continue;
928 // A array/variable index is always of the form i*S where S is the
929 // constant scale size. See if we can push the scale into immediates.
930 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
931 for (;;) {
932 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
933 // Constant-offset addressing.
934 Disp += CI->getSExtValue() * S;
935 break;
937 if (canFoldAddIntoGEP(U, Op)) {
938 // A compatible add with a constant operand. Fold the constant.
939 ConstantInt *CI =
940 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
941 Disp += CI->getSExtValue() * S;
942 // Iterate on the other operand.
943 Op = cast<AddOperator>(Op)->getOperand(0);
944 continue;
946 if (IndexReg == 0 &&
947 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
948 (S == 1 || S == 2 || S == 4 || S == 8)) {
949 // Scaled-index addressing.
950 Scale = S;
951 IndexReg = getRegForGEPIndex(Op).first;
952 if (IndexReg == 0)
953 return false;
954 break;
956 // Unsupported.
957 goto unsupported_gep;
961 // Check for displacement overflow.
962 if (!isInt<32>(Disp))
963 break;
965 AM.IndexReg = IndexReg;
966 AM.Scale = Scale;
967 AM.Disp = (uint32_t)Disp;
968 GEPs.push_back(V);
970 if (const GetElementPtrInst *GEP =
971 dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
972 // Ok, the GEP indices were covered by constant-offset and scaled-index
973 // addressing. Update the address state and move on to examining the base.
974 V = GEP;
975 goto redo_gep;
976 } else if (X86SelectAddress(U->getOperand(0), AM)) {
977 return true;
980 // If we couldn't merge the gep value into this addr mode, revert back to
981 // our address and just match the value instead of completely failing.
982 AM = SavedAM;
984 for (const Value *I : reverse(GEPs))
985 if (handleConstantAddresses(I, AM))
986 return true;
988 return false;
989 unsupported_gep:
990 // Ok, the GEP indices weren't all covered.
991 break;
995 return handleConstantAddresses(V, AM);
998 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
1000 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
1001 const User *U = nullptr;
1002 unsigned Opcode = Instruction::UserOp1;
1003 const Instruction *I = dyn_cast<Instruction>(V);
1004 // Record if the value is defined in the same basic block.
1006 // This information is crucial to know whether or not folding an
1007 // operand is valid.
1008 // Indeed, FastISel generates or reuses a virtual register for all
1009 // operands of all instructions it selects. Obviously, the definition and
1010 // its uses must use the same virtual register otherwise the produced
1011 // code is incorrect.
1012 // Before instruction selection, FunctionLoweringInfo::set sets the virtual
1013 // registers for values that are alive across basic blocks. This ensures
1014 // that the values are consistently set between across basic block, even
1015 // if different instruction selection mechanisms are used (e.g., a mix of
1016 // SDISel and FastISel).
1017 // For values local to a basic block, the instruction selection process
1018 // generates these virtual registers with whatever method is appropriate
1019 // for its needs. In particular, FastISel and SDISel do not share the way
1020 // local virtual registers are set.
1021 // Therefore, this is impossible (or at least unsafe) to share values
1022 // between basic blocks unless they use the same instruction selection
1023 // method, which is not guarantee for X86.
1024 // Moreover, things like hasOneUse could not be used accurately, if we
1025 // allow to reference values across basic blocks whereas they are not
1026 // alive across basic blocks initially.
1027 bool InMBB = true;
1028 if (I) {
1029 Opcode = I->getOpcode();
1030 U = I;
1031 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1032 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1033 Opcode = C->getOpcode();
1034 U = C;
1037 switch (Opcode) {
1038 default: break;
1039 case Instruction::BitCast:
1040 // Look past bitcasts if its operand is in the same BB.
1041 if (InMBB)
1042 return X86SelectCallAddress(U->getOperand(0), AM);
1043 break;
1045 case Instruction::IntToPtr:
1046 // Look past no-op inttoptrs if its operand is in the same BB.
1047 if (InMBB &&
1048 TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1049 TLI.getPointerTy(DL))
1050 return X86SelectCallAddress(U->getOperand(0), AM);
1051 break;
1053 case Instruction::PtrToInt:
1054 // Look past no-op ptrtoints if its operand is in the same BB.
1055 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1056 return X86SelectCallAddress(U->getOperand(0), AM);
1057 break;
1060 // Handle constant address.
1061 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1062 // Can't handle alternate code models yet.
1063 if (TM.getCodeModel() != CodeModel::Small)
1064 return false;
1066 // RIP-relative addresses can't have additional register operands.
1067 if (Subtarget->isPICStyleRIPRel() &&
1068 (AM.Base.Reg != 0 || AM.IndexReg != 0))
1069 return false;
1071 // Can't handle TLS.
1072 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1073 if (GVar->isThreadLocal())
1074 return false;
1076 // Okay, we've committed to selecting this global. Set up the basic address.
1077 AM.GV = GV;
1079 // Return a direct reference to the global. Fastisel can handle calls to
1080 // functions that require loads, such as dllimport and nonlazybind
1081 // functions.
1082 if (Subtarget->isPICStyleRIPRel()) {
1083 // Use rip-relative addressing if we can. Above we verified that the
1084 // base and index registers are unused.
1085 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1086 AM.Base.Reg = X86::RIP;
1087 } else {
1088 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1091 return true;
1094 // If all else fails, try to materialize the value in a register.
1095 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1096 if (AM.Base.Reg == 0) {
1097 AM.Base.Reg = getRegForValue(V);
1098 return AM.Base.Reg != 0;
1100 if (AM.IndexReg == 0) {
1101 assert(AM.Scale == 1 && "Scale with no index!");
1102 AM.IndexReg = getRegForValue(V);
1103 return AM.IndexReg != 0;
1107 return false;
1111 /// X86SelectStore - Select and emit code to implement store instructions.
1112 bool X86FastISel::X86SelectStore(const Instruction *I) {
1113 // Atomic stores need special handling.
1114 const StoreInst *S = cast<StoreInst>(I);
1116 if (S->isAtomic())
1117 return false;
1119 const Value *PtrV = I->getOperand(1);
1120 if (TLI.supportSwiftError()) {
1121 // Swifterror values can come from either a function parameter with
1122 // swifterror attribute or an alloca with swifterror attribute.
1123 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1124 if (Arg->hasSwiftErrorAttr())
1125 return false;
1128 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1129 if (Alloca->isSwiftError())
1130 return false;
1134 const Value *Val = S->getValueOperand();
1135 const Value *Ptr = S->getPointerOperand();
1137 MVT VT;
1138 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1139 return false;
1141 unsigned Alignment = S->getAlignment();
1142 unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
1143 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1144 Alignment = ABIAlignment;
1145 bool Aligned = Alignment >= ABIAlignment;
1147 X86AddressMode AM;
1148 if (!X86SelectAddress(Ptr, AM))
1149 return false;
1151 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1154 /// X86SelectRet - Select and emit code to implement ret instructions.
1155 bool X86FastISel::X86SelectRet(const Instruction *I) {
1156 const ReturnInst *Ret = cast<ReturnInst>(I);
1157 const Function &F = *I->getParent()->getParent();
1158 const X86MachineFunctionInfo *X86MFInfo =
1159 FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1161 if (!FuncInfo.CanLowerReturn)
1162 return false;
1164 if (TLI.supportSwiftError() &&
1165 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1166 return false;
1168 if (TLI.supportSplitCSR(FuncInfo.MF))
1169 return false;
1171 CallingConv::ID CC = F.getCallingConv();
1172 if (CC != CallingConv::C &&
1173 CC != CallingConv::Fast &&
1174 CC != CallingConv::X86_FastCall &&
1175 CC != CallingConv::X86_StdCall &&
1176 CC != CallingConv::X86_ThisCall &&
1177 CC != CallingConv::X86_64_SysV &&
1178 CC != CallingConv::Win64)
1179 return false;
1181 // Don't handle popping bytes if they don't fit the ret's immediate.
1182 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1183 return false;
1185 // fastcc with -tailcallopt is intended to provide a guaranteed
1186 // tail call optimization. Fastisel doesn't know how to do that.
1187 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
1188 return false;
1190 // Let SDISel handle vararg functions.
1191 if (F.isVarArg())
1192 return false;
1194 // Build a list of return value registers.
1195 SmallVector<unsigned, 4> RetRegs;
1197 if (Ret->getNumOperands() > 0) {
1198 SmallVector<ISD::OutputArg, 4> Outs;
1199 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1201 // Analyze operands of the call, assigning locations to each operand.
1202 SmallVector<CCValAssign, 16> ValLocs;
1203 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1204 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1206 const Value *RV = Ret->getOperand(0);
1207 unsigned Reg = getRegForValue(RV);
1208 if (Reg == 0)
1209 return false;
1211 // Only handle a single return value for now.
1212 if (ValLocs.size() != 1)
1213 return false;
1215 CCValAssign &VA = ValLocs[0];
1217 // Don't bother handling odd stuff for now.
1218 if (VA.getLocInfo() != CCValAssign::Full)
1219 return false;
1220 // Only handle register returns for now.
1221 if (!VA.isRegLoc())
1222 return false;
1224 // The calling-convention tables for x87 returns don't tell
1225 // the whole story.
1226 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1227 return false;
1229 unsigned SrcReg = Reg + VA.getValNo();
1230 EVT SrcVT = TLI.getValueType(DL, RV->getType());
1231 EVT DstVT = VA.getValVT();
1232 // Special handling for extended integers.
1233 if (SrcVT != DstVT) {
1234 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1235 return false;
1237 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1238 return false;
1240 assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1242 if (SrcVT == MVT::i1) {
1243 if (Outs[0].Flags.isSExt())
1244 return false;
1245 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1246 SrcVT = MVT::i8;
1248 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1249 ISD::SIGN_EXTEND;
1250 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1251 SrcReg, /*TODO: Kill=*/false);
1254 // Make the copy.
1255 unsigned DstReg = VA.getLocReg();
1256 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1257 // Avoid a cross-class copy. This is very unlikely.
1258 if (!SrcRC->contains(DstReg))
1259 return false;
1260 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1261 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1263 // Add register to return instruction.
1264 RetRegs.push_back(VA.getLocReg());
1267 // Swift calling convention does not require we copy the sret argument
1268 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1270 // All x86 ABIs require that for returning structs by value we copy
1271 // the sret argument into %rax/%eax (depending on ABI) for the return.
1272 // We saved the argument into a virtual register in the entry block,
1273 // so now we copy the value out and into %rax/%eax.
1274 if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
1275 unsigned Reg = X86MFInfo->getSRetReturnReg();
1276 assert(Reg &&
1277 "SRetReturnReg should have been set in LowerFormalArguments()!");
1278 unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1280 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1281 RetRegs.push_back(RetReg);
1284 // Now emit the RET.
1285 MachineInstrBuilder MIB;
1286 if (X86MFInfo->getBytesToPopOnReturn()) {
1287 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1288 TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL))
1289 .addImm(X86MFInfo->getBytesToPopOnReturn());
1290 } else {
1291 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1292 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1294 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1295 MIB.addReg(RetRegs[i], RegState::Implicit);
1296 return true;
1299 /// X86SelectLoad - Select and emit code to implement load instructions.
1301 bool X86FastISel::X86SelectLoad(const Instruction *I) {
1302 const LoadInst *LI = cast<LoadInst>(I);
1304 // Atomic loads need special handling.
1305 if (LI->isAtomic())
1306 return false;
1308 const Value *SV = I->getOperand(0);
1309 if (TLI.supportSwiftError()) {
1310 // Swifterror values can come from either a function parameter with
1311 // swifterror attribute or an alloca with swifterror attribute.
1312 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1313 if (Arg->hasSwiftErrorAttr())
1314 return false;
1317 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1318 if (Alloca->isSwiftError())
1319 return false;
1323 MVT VT;
1324 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1325 return false;
1327 const Value *Ptr = LI->getPointerOperand();
1329 X86AddressMode AM;
1330 if (!X86SelectAddress(Ptr, AM))
1331 return false;
1333 unsigned Alignment = LI->getAlignment();
1334 unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1335 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1336 Alignment = ABIAlignment;
1338 unsigned ResultReg = 0;
1339 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1340 Alignment))
1341 return false;
1343 updateValueMap(I, ResultReg);
1344 return true;
1347 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1348 bool HasAVX512 = Subtarget->hasAVX512();
1349 bool HasAVX = Subtarget->hasAVX();
1350 bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1351 bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1353 switch (VT.getSimpleVT().SimpleTy) {
1354 default: return 0;
1355 case MVT::i8: return X86::CMP8rr;
1356 case MVT::i16: return X86::CMP16rr;
1357 case MVT::i32: return X86::CMP32rr;
1358 case MVT::i64: return X86::CMP64rr;
1359 case MVT::f32:
1360 return X86ScalarSSEf32
1361 ? (HasAVX512 ? X86::VUCOMISSZrr
1362 : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr)
1363 : 0;
1364 case MVT::f64:
1365 return X86ScalarSSEf64
1366 ? (HasAVX512 ? X86::VUCOMISDZrr
1367 : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr)
1368 : 0;
1372 /// If we have a comparison with RHS as the RHS of the comparison, return an
1373 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1374 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1375 int64_t Val = RHSC->getSExtValue();
1376 switch (VT.getSimpleVT().SimpleTy) {
1377 // Otherwise, we can't fold the immediate into this comparison.
1378 default:
1379 return 0;
1380 case MVT::i8:
1381 return X86::CMP8ri;
1382 case MVT::i16:
1383 if (isInt<8>(Val))
1384 return X86::CMP16ri8;
1385 return X86::CMP16ri;
1386 case MVT::i32:
1387 if (isInt<8>(Val))
1388 return X86::CMP32ri8;
1389 return X86::CMP32ri;
1390 case MVT::i64:
1391 if (isInt<8>(Val))
1392 return X86::CMP64ri8;
1393 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1394 // field.
1395 if (isInt<32>(Val))
1396 return X86::CMP64ri32;
1397 return 0;
1401 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1402 const DebugLoc &CurDbgLoc) {
1403 unsigned Op0Reg = getRegForValue(Op0);
1404 if (Op0Reg == 0) return false;
1406 // Handle 'null' like i32/i64 0.
1407 if (isa<ConstantPointerNull>(Op1))
1408 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1410 // We have two options: compare with register or immediate. If the RHS of
1411 // the compare is an immediate that we can fold into this compare, use
1412 // CMPri, otherwise use CMPrr.
1413 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1414 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1415 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1416 .addReg(Op0Reg)
1417 .addImm(Op1C->getSExtValue());
1418 return true;
1422 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1423 if (CompareOpc == 0) return false;
1425 unsigned Op1Reg = getRegForValue(Op1);
1426 if (Op1Reg == 0) return false;
1427 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1428 .addReg(Op0Reg)
1429 .addReg(Op1Reg);
1431 return true;
1434 bool X86FastISel::X86SelectCmp(const Instruction *I) {
1435 const CmpInst *CI = cast<CmpInst>(I);
1437 MVT VT;
1438 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1439 return false;
1441 // Try to optimize or fold the cmp.
1442 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1443 unsigned ResultReg = 0;
1444 switch (Predicate) {
1445 default: break;
1446 case CmpInst::FCMP_FALSE: {
1447 ResultReg = createResultReg(&X86::GR32RegClass);
1448 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1449 ResultReg);
1450 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1451 X86::sub_8bit);
1452 if (!ResultReg)
1453 return false;
1454 break;
1456 case CmpInst::FCMP_TRUE: {
1457 ResultReg = createResultReg(&X86::GR8RegClass);
1458 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1459 ResultReg).addImm(1);
1460 break;
1464 if (ResultReg) {
1465 updateValueMap(I, ResultReg);
1466 return true;
1469 const Value *LHS = CI->getOperand(0);
1470 const Value *RHS = CI->getOperand(1);
1472 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1473 // We don't have to materialize a zero constant for this case and can just use
1474 // %x again on the RHS.
1475 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1476 const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1477 if (RHSC && RHSC->isNullValue())
1478 RHS = LHS;
1481 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1482 static const uint16_t SETFOpcTable[2][3] = {
1483 { X86::SETEr, X86::SETNPr, X86::AND8rr },
1484 { X86::SETNEr, X86::SETPr, X86::OR8rr }
1486 const uint16_t *SETFOpc = nullptr;
1487 switch (Predicate) {
1488 default: break;
1489 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1490 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1493 ResultReg = createResultReg(&X86::GR8RegClass);
1494 if (SETFOpc) {
1495 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1496 return false;
1498 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1499 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1500 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1501 FlagReg1);
1502 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1503 FlagReg2);
1504 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1505 ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1506 updateValueMap(I, ResultReg);
1507 return true;
1510 X86::CondCode CC;
1511 bool SwapArgs;
1512 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1513 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1514 unsigned Opc = X86::getSETFromCond(CC);
1516 if (SwapArgs)
1517 std::swap(LHS, RHS);
1519 // Emit a compare of LHS/RHS.
1520 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1521 return false;
1523 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
1524 updateValueMap(I, ResultReg);
1525 return true;
1528 bool X86FastISel::X86SelectZExt(const Instruction *I) {
1529 EVT DstVT = TLI.getValueType(DL, I->getType());
1530 if (!TLI.isTypeLegal(DstVT))
1531 return false;
1533 unsigned ResultReg = getRegForValue(I->getOperand(0));
1534 if (ResultReg == 0)
1535 return false;
1537 // Handle zero-extension from i1 to i8, which is common.
1538 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1539 if (SrcVT == MVT::i1) {
1540 // Set the high bits to zero.
1541 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1542 SrcVT = MVT::i8;
1544 if (ResultReg == 0)
1545 return false;
1548 if (DstVT == MVT::i64) {
1549 // Handle extension to 64-bits via sub-register shenanigans.
1550 unsigned MovInst;
1552 switch (SrcVT.SimpleTy) {
1553 case MVT::i8: MovInst = X86::MOVZX32rr8; break;
1554 case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1555 case MVT::i32: MovInst = X86::MOV32rr; break;
1556 default: llvm_unreachable("Unexpected zext to i64 source type");
1559 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1560 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1561 .addReg(ResultReg);
1563 ResultReg = createResultReg(&X86::GR64RegClass);
1564 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1565 ResultReg)
1566 .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1567 } else if (DstVT == MVT::i16) {
1568 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1569 // extend to 32-bits and then extract down to 16-bits.
1570 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1571 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8),
1572 Result32).addReg(ResultReg);
1574 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1575 X86::sub_16bit);
1576 } else if (DstVT != MVT::i8) {
1577 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1578 ResultReg, /*Kill=*/true);
1579 if (ResultReg == 0)
1580 return false;
1583 updateValueMap(I, ResultReg);
1584 return true;
1587 bool X86FastISel::X86SelectSExt(const Instruction *I) {
1588 EVT DstVT = TLI.getValueType(DL, I->getType());
1589 if (!TLI.isTypeLegal(DstVT))
1590 return false;
1592 unsigned ResultReg = getRegForValue(I->getOperand(0));
1593 if (ResultReg == 0)
1594 return false;
1596 // Handle sign-extension from i1 to i8.
1597 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1598 if (SrcVT == MVT::i1) {
1599 // Set the high bits to zero.
1600 unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg,
1601 /*TODO: Kill=*/false);
1602 if (ZExtReg == 0)
1603 return false;
1605 // Negate the result to make an 8-bit sign extended value.
1606 ResultReg = createResultReg(&X86::GR8RegClass);
1607 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r),
1608 ResultReg).addReg(ZExtReg);
1610 SrcVT = MVT::i8;
1613 if (DstVT == MVT::i16) {
1614 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1615 // extend to 32-bits and then extract down to 16-bits.
1616 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1617 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8),
1618 Result32).addReg(ResultReg);
1620 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1621 X86::sub_16bit);
1622 } else if (DstVT != MVT::i8) {
1623 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1624 ResultReg, /*Kill=*/true);
1625 if (ResultReg == 0)
1626 return false;
1629 updateValueMap(I, ResultReg);
1630 return true;
1633 bool X86FastISel::X86SelectBranch(const Instruction *I) {
1634 // Unconditional branches are selected by tablegen-generated code.
1635 // Handle a conditional branch.
1636 const BranchInst *BI = cast<BranchInst>(I);
1637 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1638 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1640 // Fold the common case of a conditional branch with a comparison
1641 // in the same block (values defined on other blocks may not have
1642 // initialized registers).
1643 X86::CondCode CC;
1644 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1645 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1646 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1648 // Try to optimize or fold the cmp.
1649 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1650 switch (Predicate) {
1651 default: break;
1652 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1653 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true;
1656 const Value *CmpLHS = CI->getOperand(0);
1657 const Value *CmpRHS = CI->getOperand(1);
1659 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1660 // 0.0.
1661 // We don't have to materialize a zero constant for this case and can just
1662 // use %x again on the RHS.
1663 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1664 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1665 if (CmpRHSC && CmpRHSC->isNullValue())
1666 CmpRHS = CmpLHS;
1669 // Try to take advantage of fallthrough opportunities.
1670 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1671 std::swap(TrueMBB, FalseMBB);
1672 Predicate = CmpInst::getInversePredicate(Predicate);
1675 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1676 // code check. Instead two branch instructions are required to check all
1677 // the flags. First we change the predicate to a supported condition code,
1678 // which will be the first branch. Later one we will emit the second
1679 // branch.
1680 bool NeedExtraBranch = false;
1681 switch (Predicate) {
1682 default: break;
1683 case CmpInst::FCMP_OEQ:
1684 std::swap(TrueMBB, FalseMBB);
1685 LLVM_FALLTHROUGH;
1686 case CmpInst::FCMP_UNE:
1687 NeedExtraBranch = true;
1688 Predicate = CmpInst::FCMP_ONE;
1689 break;
1692 bool SwapArgs;
1693 unsigned BranchOpc;
1694 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1695 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1697 BranchOpc = X86::GetCondBranchFromCond(CC);
1698 if (SwapArgs)
1699 std::swap(CmpLHS, CmpRHS);
1701 // Emit a compare of the LHS and RHS, setting the flags.
1702 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1703 return false;
1705 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1706 .addMBB(TrueMBB);
1708 // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1709 // to UNE above).
1710 if (NeedExtraBranch) {
1711 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
1712 .addMBB(TrueMBB);
1715 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1716 return true;
1718 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1719 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1720 // typically happen for _Bool and C++ bools.
1721 MVT SourceVT;
1722 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1723 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1724 unsigned TestOpc = 0;
1725 switch (SourceVT.SimpleTy) {
1726 default: break;
1727 case MVT::i8: TestOpc = X86::TEST8ri; break;
1728 case MVT::i16: TestOpc = X86::TEST16ri; break;
1729 case MVT::i32: TestOpc = X86::TEST32ri; break;
1730 case MVT::i64: TestOpc = X86::TEST64ri32; break;
1732 if (TestOpc) {
1733 unsigned OpReg = getRegForValue(TI->getOperand(0));
1734 if (OpReg == 0) return false;
1736 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1737 .addReg(OpReg).addImm(1);
1739 unsigned JmpOpc = X86::JNE_1;
1740 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1741 std::swap(TrueMBB, FalseMBB);
1742 JmpOpc = X86::JE_1;
1745 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
1746 .addMBB(TrueMBB);
1748 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1749 return true;
1752 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1753 // Fake request the condition, otherwise the intrinsic might be completely
1754 // optimized away.
1755 unsigned TmpReg = getRegForValue(BI->getCondition());
1756 if (TmpReg == 0)
1757 return false;
1759 unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
1761 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1762 .addMBB(TrueMBB);
1763 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1764 return true;
1767 // Otherwise do a clumsy setcc and re-test it.
1768 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1769 // in an explicit cast, so make sure to handle that correctly.
1770 unsigned OpReg = getRegForValue(BI->getCondition());
1771 if (OpReg == 0) return false;
1773 // In case OpReg is a K register, COPY to a GPR
1774 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1775 unsigned KOpReg = OpReg;
1776 OpReg = createResultReg(&X86::GR32RegClass);
1777 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1778 TII.get(TargetOpcode::COPY), OpReg)
1779 .addReg(KOpReg);
1780 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true,
1781 X86::sub_8bit);
1783 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1784 .addReg(OpReg)
1785 .addImm(1);
1786 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
1787 .addMBB(TrueMBB);
1788 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1789 return true;
1792 bool X86FastISel::X86SelectShift(const Instruction *I) {
1793 unsigned CReg = 0, OpReg = 0;
1794 const TargetRegisterClass *RC = nullptr;
1795 if (I->getType()->isIntegerTy(8)) {
1796 CReg = X86::CL;
1797 RC = &X86::GR8RegClass;
1798 switch (I->getOpcode()) {
1799 case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1800 case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1801 case Instruction::Shl: OpReg = X86::SHL8rCL; break;
1802 default: return false;
1804 } else if (I->getType()->isIntegerTy(16)) {
1805 CReg = X86::CX;
1806 RC = &X86::GR16RegClass;
1807 switch (I->getOpcode()) {
1808 default: llvm_unreachable("Unexpected shift opcode");
1809 case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1810 case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1811 case Instruction::Shl: OpReg = X86::SHL16rCL; break;
1813 } else if (I->getType()->isIntegerTy(32)) {
1814 CReg = X86::ECX;
1815 RC = &X86::GR32RegClass;
1816 switch (I->getOpcode()) {
1817 default: llvm_unreachable("Unexpected shift opcode");
1818 case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1819 case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1820 case Instruction::Shl: OpReg = X86::SHL32rCL; break;
1822 } else if (I->getType()->isIntegerTy(64)) {
1823 CReg = X86::RCX;
1824 RC = &X86::GR64RegClass;
1825 switch (I->getOpcode()) {
1826 default: llvm_unreachable("Unexpected shift opcode");
1827 case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1828 case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1829 case Instruction::Shl: OpReg = X86::SHL64rCL; break;
1831 } else {
1832 return false;
1835 MVT VT;
1836 if (!isTypeLegal(I->getType(), VT))
1837 return false;
1839 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1840 if (Op0Reg == 0) return false;
1842 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1843 if (Op1Reg == 0) return false;
1844 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1845 CReg).addReg(Op1Reg);
1847 // The shift instruction uses X86::CL. If we defined a super-register
1848 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1849 if (CReg != X86::CL)
1850 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1851 TII.get(TargetOpcode::KILL), X86::CL)
1852 .addReg(CReg, RegState::Kill);
1854 unsigned ResultReg = createResultReg(RC);
1855 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1856 .addReg(Op0Reg);
1857 updateValueMap(I, ResultReg);
1858 return true;
1861 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1862 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1863 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1864 const static bool S = true; // IsSigned
1865 const static bool U = false; // !IsSigned
1866 const static unsigned Copy = TargetOpcode::COPY;
1867 // For the X86 DIV/IDIV instruction, in most cases the dividend
1868 // (numerator) must be in a specific register pair highreg:lowreg,
1869 // producing the quotient in lowreg and the remainder in highreg.
1870 // For most data types, to set up the instruction, the dividend is
1871 // copied into lowreg, and lowreg is sign-extended or zero-extended
1872 // into highreg. The exception is i8, where the dividend is defined
1873 // as a single register rather than a register pair, and we
1874 // therefore directly sign-extend or zero-extend the dividend into
1875 // lowreg, instead of copying, and ignore the highreg.
1876 const static struct DivRemEntry {
1877 // The following portion depends only on the data type.
1878 const TargetRegisterClass *RC;
1879 unsigned LowInReg; // low part of the register pair
1880 unsigned HighInReg; // high part of the register pair
1881 // The following portion depends on both the data type and the operation.
1882 struct DivRemResult {
1883 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1884 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1885 // highreg, or copying a zero into highreg.
1886 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1887 // zero/sign-extending into lowreg for i8.
1888 unsigned DivRemResultReg; // Register containing the desired result.
1889 bool IsOpSigned; // Whether to use signed or unsigned form.
1890 } ResultTable[NumOps];
1891 } OpTable[NumTypes] = {
1892 { &X86::GR8RegClass, X86::AX, 0, {
1893 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
1894 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
1895 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
1896 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
1898 }, // i8
1899 { &X86::GR16RegClass, X86::AX, X86::DX, {
1900 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
1901 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
1902 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
1903 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
1905 }, // i16
1906 { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1907 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
1908 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
1909 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
1910 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
1912 }, // i32
1913 { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1914 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
1915 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
1916 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
1917 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
1919 }, // i64
1922 MVT VT;
1923 if (!isTypeLegal(I->getType(), VT))
1924 return false;
1926 unsigned TypeIndex, OpIndex;
1927 switch (VT.SimpleTy) {
1928 default: return false;
1929 case MVT::i8: TypeIndex = 0; break;
1930 case MVT::i16: TypeIndex = 1; break;
1931 case MVT::i32: TypeIndex = 2; break;
1932 case MVT::i64: TypeIndex = 3;
1933 if (!Subtarget->is64Bit())
1934 return false;
1935 break;
1938 switch (I->getOpcode()) {
1939 default: llvm_unreachable("Unexpected div/rem opcode");
1940 case Instruction::SDiv: OpIndex = 0; break;
1941 case Instruction::SRem: OpIndex = 1; break;
1942 case Instruction::UDiv: OpIndex = 2; break;
1943 case Instruction::URem: OpIndex = 3; break;
1946 const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1947 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1948 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1949 if (Op0Reg == 0)
1950 return false;
1951 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1952 if (Op1Reg == 0)
1953 return false;
1955 // Move op0 into low-order input register.
1956 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1957 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1958 // Zero-extend or sign-extend into high-order input register.
1959 if (OpEntry.OpSignExtend) {
1960 if (OpEntry.IsOpSigned)
1961 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1962 TII.get(OpEntry.OpSignExtend));
1963 else {
1964 unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1965 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1966 TII.get(X86::MOV32r0), Zero32);
1968 // Copy the zero into the appropriate sub/super/identical physical
1969 // register. Unfortunately the operations needed are not uniform enough
1970 // to fit neatly into the table above.
1971 if (VT == MVT::i16) {
1972 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1973 TII.get(Copy), TypeEntry.HighInReg)
1974 .addReg(Zero32, 0, X86::sub_16bit);
1975 } else if (VT == MVT::i32) {
1976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1977 TII.get(Copy), TypeEntry.HighInReg)
1978 .addReg(Zero32);
1979 } else if (VT == MVT::i64) {
1980 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1981 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1982 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1986 // Generate the DIV/IDIV instruction.
1987 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1988 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1989 // For i8 remainder, we can't reference ah directly, as we'll end
1990 // up with bogus copies like %r9b = COPY %ah. Reference ax
1991 // instead to prevent ah references in a rex instruction.
1993 // The current assumption of the fast register allocator is that isel
1994 // won't generate explicit references to the GR8_NOREX registers. If
1995 // the allocator and/or the backend get enhanced to be more robust in
1996 // that regard, this can be, and should be, removed.
1997 unsigned ResultReg = 0;
1998 if ((I->getOpcode() == Instruction::SRem ||
1999 I->getOpcode() == Instruction::URem) &&
2000 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
2001 unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
2002 unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
2003 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2004 TII.get(Copy), SourceSuperReg).addReg(X86::AX);
2006 // Shift AX right by 8 bits instead of using AH.
2007 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
2008 ResultSuperReg).addReg(SourceSuperReg).addImm(8);
2010 // Now reference the 8-bit subreg of the result.
2011 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2012 /*Kill=*/true, X86::sub_8bit);
2014 // Copy the result out of the physreg if we haven't already.
2015 if (!ResultReg) {
2016 ResultReg = createResultReg(TypeEntry.RC);
2017 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
2018 .addReg(OpEntry.DivRemResultReg);
2020 updateValueMap(I, ResultReg);
2022 return true;
2025 /// Emit a conditional move instruction (if the are supported) to lower
2026 /// the select.
2027 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2028 // Check if the subtarget supports these instructions.
2029 if (!Subtarget->hasCMov())
2030 return false;
2032 // FIXME: Add support for i8.
2033 if (RetVT < MVT::i16 || RetVT > MVT::i64)
2034 return false;
2036 const Value *Cond = I->getOperand(0);
2037 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2038 bool NeedTest = true;
2039 X86::CondCode CC = X86::COND_NE;
2041 // Optimize conditions coming from a compare if both instructions are in the
2042 // same basic block (values defined in other basic blocks may not have
2043 // initialized registers).
2044 const auto *CI = dyn_cast<CmpInst>(Cond);
2045 if (CI && (CI->getParent() == I->getParent())) {
2046 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2048 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2049 static const uint16_t SETFOpcTable[2][3] = {
2050 { X86::SETNPr, X86::SETEr , X86::TEST8rr },
2051 { X86::SETPr, X86::SETNEr, X86::OR8rr }
2053 const uint16_t *SETFOpc = nullptr;
2054 switch (Predicate) {
2055 default: break;
2056 case CmpInst::FCMP_OEQ:
2057 SETFOpc = &SETFOpcTable[0][0];
2058 Predicate = CmpInst::ICMP_NE;
2059 break;
2060 case CmpInst::FCMP_UNE:
2061 SETFOpc = &SETFOpcTable[1][0];
2062 Predicate = CmpInst::ICMP_NE;
2063 break;
2066 bool NeedSwap;
2067 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2068 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2070 const Value *CmpLHS = CI->getOperand(0);
2071 const Value *CmpRHS = CI->getOperand(1);
2072 if (NeedSwap)
2073 std::swap(CmpLHS, CmpRHS);
2075 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2076 // Emit a compare of the LHS and RHS, setting the flags.
2077 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2078 return false;
2080 if (SETFOpc) {
2081 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
2082 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
2083 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
2084 FlagReg1);
2085 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
2086 FlagReg2);
2087 auto const &II = TII.get(SETFOpc[2]);
2088 if (II.getNumDefs()) {
2089 unsigned TmpReg = createResultReg(&X86::GR8RegClass);
2090 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
2091 .addReg(FlagReg2).addReg(FlagReg1);
2092 } else {
2093 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2094 .addReg(FlagReg2).addReg(FlagReg1);
2097 NeedTest = false;
2098 } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2099 // Fake request the condition, otherwise the intrinsic might be completely
2100 // optimized away.
2101 unsigned TmpReg = getRegForValue(Cond);
2102 if (TmpReg == 0)
2103 return false;
2105 NeedTest = false;
2108 if (NeedTest) {
2109 // Selects operate on i1, however, CondReg is 8 bits width and may contain
2110 // garbage. Indeed, only the less significant bit is supposed to be
2111 // accurate. If we read more than the lsb, we may see non-zero values
2112 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2113 // the select. This is achieved by performing TEST against 1.
2114 unsigned CondReg = getRegForValue(Cond);
2115 if (CondReg == 0)
2116 return false;
2117 bool CondIsKill = hasTrivialKill(Cond);
2119 // In case OpReg is a K register, COPY to a GPR
2120 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2121 unsigned KCondReg = CondReg;
2122 CondReg = createResultReg(&X86::GR32RegClass);
2123 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2124 TII.get(TargetOpcode::COPY), CondReg)
2125 .addReg(KCondReg, getKillRegState(CondIsKill));
2126 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2127 X86::sub_8bit);
2129 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2130 .addReg(CondReg, getKillRegState(CondIsKill))
2131 .addImm(1);
2134 const Value *LHS = I->getOperand(1);
2135 const Value *RHS = I->getOperand(2);
2137 unsigned RHSReg = getRegForValue(RHS);
2138 bool RHSIsKill = hasTrivialKill(RHS);
2140 unsigned LHSReg = getRegForValue(LHS);
2141 bool LHSIsKill = hasTrivialKill(LHS);
2143 if (!LHSReg || !RHSReg)
2144 return false;
2146 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2147 unsigned Opc = X86::getCMovFromCond(CC, TRI.getRegSizeInBits(*RC)/8);
2148 unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
2149 LHSReg, LHSIsKill);
2150 updateValueMap(I, ResultReg);
2151 return true;
2154 /// Emit SSE or AVX instructions to lower the select.
2156 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2157 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2158 /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2159 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2160 // Optimize conditions coming from a compare if both instructions are in the
2161 // same basic block (values defined in other basic blocks may not have
2162 // initialized registers).
2163 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2164 if (!CI || (CI->getParent() != I->getParent()))
2165 return false;
2167 if (I->getType() != CI->getOperand(0)->getType() ||
2168 !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2169 (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2170 return false;
2172 const Value *CmpLHS = CI->getOperand(0);
2173 const Value *CmpRHS = CI->getOperand(1);
2174 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2176 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2177 // We don't have to materialize a zero constant for this case and can just use
2178 // %x again on the RHS.
2179 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2180 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2181 if (CmpRHSC && CmpRHSC->isNullValue())
2182 CmpRHS = CmpLHS;
2185 unsigned CC;
2186 bool NeedSwap;
2187 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2188 if (CC > 7 && !Subtarget->hasAVX())
2189 return false;
2191 if (NeedSwap)
2192 std::swap(CmpLHS, CmpRHS);
2194 // Choose the SSE instruction sequence based on data type (float or double).
2195 static const uint16_t OpcTable[2][4] = {
2196 { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr },
2197 { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr }
2200 const uint16_t *Opc = nullptr;
2201 switch (RetVT.SimpleTy) {
2202 default: return false;
2203 case MVT::f32: Opc = &OpcTable[0][0]; break;
2204 case MVT::f64: Opc = &OpcTable[1][0]; break;
2207 const Value *LHS = I->getOperand(1);
2208 const Value *RHS = I->getOperand(2);
2210 unsigned LHSReg = getRegForValue(LHS);
2211 bool LHSIsKill = hasTrivialKill(LHS);
2213 unsigned RHSReg = getRegForValue(RHS);
2214 bool RHSIsKill = hasTrivialKill(RHS);
2216 unsigned CmpLHSReg = getRegForValue(CmpLHS);
2217 bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
2219 unsigned CmpRHSReg = getRegForValue(CmpRHS);
2220 bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
2222 if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
2223 return false;
2225 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2226 unsigned ResultReg;
2228 if (Subtarget->hasAVX512()) {
2229 // If we have AVX512 we can use a mask compare and masked movss/sd.
2230 const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2231 const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2233 unsigned CmpOpcode =
2234 (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
2235 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill,
2236 CmpRHSReg, CmpRHSIsKill, CC);
2238 // Need an IMPLICIT_DEF for the input that is used to generate the upper
2239 // bits of the result register since its not based on any of the inputs.
2240 unsigned ImplicitDefReg = createResultReg(VR128X);
2241 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2242 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2244 // Place RHSReg is the passthru of the masked movss/sd operation and put
2245 // LHS in the input. The mask input comes from the compare.
2246 unsigned MovOpcode =
2247 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2248 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill,
2249 CmpReg, true, ImplicitDefReg, true,
2250 LHSReg, LHSIsKill);
2252 ResultReg = createResultReg(RC);
2253 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2254 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2256 } else if (Subtarget->hasAVX()) {
2257 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2259 // If we have AVX, create 1 blendv instead of 3 logic instructions.
2260 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2261 // uses XMM0 as the selection register. That may need just as many
2262 // instructions as the AND/ANDN/OR sequence due to register moves, so
2263 // don't bother.
2264 unsigned CmpOpcode =
2265 (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2266 unsigned BlendOpcode =
2267 (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2269 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill,
2270 CmpRHSReg, CmpRHSIsKill, CC);
2271 unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
2272 LHSReg, LHSIsKill, CmpReg, true);
2273 ResultReg = createResultReg(RC);
2274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2275 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2276 } else {
2277 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2278 unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
2279 CmpRHSReg, CmpRHSIsKill, CC);
2280 unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false,
2281 LHSReg, LHSIsKill);
2282 unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true,
2283 RHSReg, RHSIsKill);
2284 unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true,
2285 AndReg, /*IsKill=*/true);
2286 ResultReg = createResultReg(RC);
2287 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2288 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2290 updateValueMap(I, ResultReg);
2291 return true;
2294 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2295 // These are pseudo CMOV instructions and will be later expanded into control-
2296 // flow.
2297 unsigned Opc;
2298 switch (RetVT.SimpleTy) {
2299 default: return false;
2300 case MVT::i8: Opc = X86::CMOV_GR8; break;
2301 case MVT::i16: Opc = X86::CMOV_GR16; break;
2302 case MVT::i32: Opc = X86::CMOV_GR32; break;
2303 case MVT::f32: Opc = X86::CMOV_FR32; break;
2304 case MVT::f64: Opc = X86::CMOV_FR64; break;
2307 const Value *Cond = I->getOperand(0);
2308 X86::CondCode CC = X86::COND_NE;
2310 // Optimize conditions coming from a compare if both instructions are in the
2311 // same basic block (values defined in other basic blocks may not have
2312 // initialized registers).
2313 const auto *CI = dyn_cast<CmpInst>(Cond);
2314 if (CI && (CI->getParent() == I->getParent())) {
2315 bool NeedSwap;
2316 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2317 if (CC > X86::LAST_VALID_COND)
2318 return false;
2320 const Value *CmpLHS = CI->getOperand(0);
2321 const Value *CmpRHS = CI->getOperand(1);
2323 if (NeedSwap)
2324 std::swap(CmpLHS, CmpRHS);
2326 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2327 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2328 return false;
2329 } else {
2330 unsigned CondReg = getRegForValue(Cond);
2331 if (CondReg == 0)
2332 return false;
2333 bool CondIsKill = hasTrivialKill(Cond);
2335 // In case OpReg is a K register, COPY to a GPR
2336 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2337 unsigned KCondReg = CondReg;
2338 CondReg = createResultReg(&X86::GR32RegClass);
2339 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2340 TII.get(TargetOpcode::COPY), CondReg)
2341 .addReg(KCondReg, getKillRegState(CondIsKill));
2342 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2343 X86::sub_8bit);
2345 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2346 .addReg(CondReg, getKillRegState(CondIsKill))
2347 .addImm(1);
2350 const Value *LHS = I->getOperand(1);
2351 const Value *RHS = I->getOperand(2);
2353 unsigned LHSReg = getRegForValue(LHS);
2354 bool LHSIsKill = hasTrivialKill(LHS);
2356 unsigned RHSReg = getRegForValue(RHS);
2357 bool RHSIsKill = hasTrivialKill(RHS);
2359 if (!LHSReg || !RHSReg)
2360 return false;
2362 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2364 unsigned ResultReg =
2365 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2366 updateValueMap(I, ResultReg);
2367 return true;
2370 bool X86FastISel::X86SelectSelect(const Instruction *I) {
2371 MVT RetVT;
2372 if (!isTypeLegal(I->getType(), RetVT))
2373 return false;
2375 // Check if we can fold the select.
2376 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2377 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2378 const Value *Opnd = nullptr;
2379 switch (Predicate) {
2380 default: break;
2381 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2382 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
2384 // No need for a select anymore - this is an unconditional move.
2385 if (Opnd) {
2386 unsigned OpReg = getRegForValue(Opnd);
2387 if (OpReg == 0)
2388 return false;
2389 bool OpIsKill = hasTrivialKill(Opnd);
2390 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2391 unsigned ResultReg = createResultReg(RC);
2392 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2393 TII.get(TargetOpcode::COPY), ResultReg)
2394 .addReg(OpReg, getKillRegState(OpIsKill));
2395 updateValueMap(I, ResultReg);
2396 return true;
2400 // First try to use real conditional move instructions.
2401 if (X86FastEmitCMoveSelect(RetVT, I))
2402 return true;
2404 // Try to use a sequence of SSE instructions to simulate a conditional move.
2405 if (X86FastEmitSSESelect(RetVT, I))
2406 return true;
2408 // Fall-back to pseudo conditional move instructions, which will be later
2409 // converted to control-flow.
2410 if (X86FastEmitPseudoSelect(RetVT, I))
2411 return true;
2413 return false;
2416 // Common code for X86SelectSIToFP and X86SelectUIToFP.
2417 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2418 // The target-independent selection algorithm in FastISel already knows how
2419 // to select a SINT_TO_FP if the target is SSE but not AVX.
2420 // Early exit if the subtarget doesn't have AVX.
2421 // Unsigned conversion requires avx512.
2422 bool HasAVX512 = Subtarget->hasAVX512();
2423 if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2424 return false;
2426 // TODO: We could sign extend narrower types.
2427 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
2428 if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2429 return false;
2431 // Select integer to float/double conversion.
2432 unsigned OpReg = getRegForValue(I->getOperand(0));
2433 if (OpReg == 0)
2434 return false;
2436 unsigned Opcode;
2438 static const uint16_t SCvtOpc[2][2][2] = {
2439 { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr },
2440 { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } },
2441 { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2442 { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2444 static const uint16_t UCvtOpc[2][2] = {
2445 { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2446 { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2448 bool Is64Bit = SrcVT == MVT::i64;
2450 if (I->getType()->isDoubleTy()) {
2451 // s/uitofp int -> double
2452 Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2453 } else if (I->getType()->isFloatTy()) {
2454 // s/uitofp int -> float
2455 Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2456 } else
2457 return false;
2459 MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2460 const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2461 unsigned ImplicitDefReg = createResultReg(RC);
2462 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2463 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2464 unsigned ResultReg =
2465 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
2466 updateValueMap(I, ResultReg);
2467 return true;
2470 bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2471 return X86SelectIntToFP(I, /*IsSigned*/true);
2474 bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2475 return X86SelectIntToFP(I, /*IsSigned*/false);
2478 // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2479 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2480 unsigned TargetOpc,
2481 const TargetRegisterClass *RC) {
2482 assert((I->getOpcode() == Instruction::FPExt ||
2483 I->getOpcode() == Instruction::FPTrunc) &&
2484 "Instruction must be an FPExt or FPTrunc!");
2486 unsigned OpReg = getRegForValue(I->getOperand(0));
2487 if (OpReg == 0)
2488 return false;
2490 unsigned ImplicitDefReg;
2491 if (Subtarget->hasAVX()) {
2492 ImplicitDefReg = createResultReg(RC);
2493 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2494 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2498 unsigned ResultReg = createResultReg(RC);
2499 MachineInstrBuilder MIB;
2500 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2501 ResultReg);
2503 if (Subtarget->hasAVX())
2504 MIB.addReg(ImplicitDefReg);
2506 MIB.addReg(OpReg);
2507 updateValueMap(I, ResultReg);
2508 return true;
2511 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2512 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2513 I->getOperand(0)->getType()->isFloatTy()) {
2514 bool HasAVX512 = Subtarget->hasAVX512();
2515 // fpext from float to double.
2516 unsigned Opc =
2517 HasAVX512 ? X86::VCVTSS2SDZrr
2518 : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2519 return X86SelectFPExtOrFPTrunc(
2520 I, Opc, HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass);
2523 return false;
2526 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2527 if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2528 I->getOperand(0)->getType()->isDoubleTy()) {
2529 bool HasAVX512 = Subtarget->hasAVX512();
2530 // fptrunc from double to float.
2531 unsigned Opc =
2532 HasAVX512 ? X86::VCVTSD2SSZrr
2533 : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2534 return X86SelectFPExtOrFPTrunc(
2535 I, Opc, HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass);
2538 return false;
2541 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2542 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2543 EVT DstVT = TLI.getValueType(DL, I->getType());
2545 // This code only handles truncation to byte.
2546 if (DstVT != MVT::i8 && DstVT != MVT::i1)
2547 return false;
2548 if (!TLI.isTypeLegal(SrcVT))
2549 return false;
2551 unsigned InputReg = getRegForValue(I->getOperand(0));
2552 if (!InputReg)
2553 // Unhandled operand. Halt "fast" selection and bail.
2554 return false;
2556 if (SrcVT == MVT::i8) {
2557 // Truncate from i8 to i1; no code needed.
2558 updateValueMap(I, InputReg);
2559 return true;
2562 // Issue an extract_subreg.
2563 unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
2564 InputReg, false,
2565 X86::sub_8bit);
2566 if (!ResultReg)
2567 return false;
2569 updateValueMap(I, ResultReg);
2570 return true;
2573 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2574 return Len <= (Subtarget->is64Bit() ? 32 : 16);
2577 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2578 X86AddressMode SrcAM, uint64_t Len) {
2580 // Make sure we don't bloat code by inlining very large memcpy's.
2581 if (!IsMemcpySmall(Len))
2582 return false;
2584 bool i64Legal = Subtarget->is64Bit();
2586 // We don't care about alignment here since we just emit integer accesses.
2587 while (Len) {
2588 MVT VT;
2589 if (Len >= 8 && i64Legal)
2590 VT = MVT::i64;
2591 else if (Len >= 4)
2592 VT = MVT::i32;
2593 else if (Len >= 2)
2594 VT = MVT::i16;
2595 else
2596 VT = MVT::i8;
2598 unsigned Reg;
2599 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2600 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2601 assert(RV && "Failed to emit load or store??");
2603 unsigned Size = VT.getSizeInBits()/8;
2604 Len -= Size;
2605 DestAM.Disp += Size;
2606 SrcAM.Disp += Size;
2609 return true;
2612 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2613 // FIXME: Handle more intrinsics.
2614 switch (II->getIntrinsicID()) {
2615 default: return false;
2616 case Intrinsic::convert_from_fp16:
2617 case Intrinsic::convert_to_fp16: {
2618 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2619 return false;
2621 const Value *Op = II->getArgOperand(0);
2622 unsigned InputReg = getRegForValue(Op);
2623 if (InputReg == 0)
2624 return false;
2626 // F16C only allows converting from float to half and from half to float.
2627 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2628 if (IsFloatToHalf) {
2629 if (!Op->getType()->isFloatTy())
2630 return false;
2631 } else {
2632 if (!II->getType()->isFloatTy())
2633 return false;
2636 unsigned ResultReg = 0;
2637 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2638 if (IsFloatToHalf) {
2639 // 'InputReg' is implicitly promoted from register class FR32 to
2640 // register class VR128 by method 'constrainOperandRegClass' which is
2641 // directly called by 'fastEmitInst_ri'.
2642 // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2643 // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2644 // It's consistent with the other FP instructions, which are usually
2645 // controlled by MXCSR.
2646 InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
2648 // Move the lower 32-bits of ResultReg to another register of class GR32.
2649 ResultReg = createResultReg(&X86::GR32RegClass);
2650 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2651 TII.get(X86::VMOVPDI2DIrr), ResultReg)
2652 .addReg(InputReg, RegState::Kill);
2654 // The result value is in the lower 16-bits of ResultReg.
2655 unsigned RegIdx = X86::sub_16bit;
2656 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2657 } else {
2658 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2659 // Explicitly sign-extend the input to 32-bit.
2660 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2661 /*Kill=*/false);
2663 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2664 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2665 InputReg, /*Kill=*/true);
2667 InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2669 // The result value is in the lower 32-bits of ResultReg.
2670 // Emit an explicit copy from register class VR128 to register class FR32.
2671 ResultReg = createResultReg(&X86::FR32RegClass);
2672 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2673 TII.get(TargetOpcode::COPY), ResultReg)
2674 .addReg(InputReg, RegState::Kill);
2677 updateValueMap(II, ResultReg);
2678 return true;
2680 case Intrinsic::frameaddress: {
2681 MachineFunction *MF = FuncInfo.MF;
2682 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2683 return false;
2685 Type *RetTy = II->getCalledFunction()->getReturnType();
2687 MVT VT;
2688 if (!isTypeLegal(RetTy, VT))
2689 return false;
2691 unsigned Opc;
2692 const TargetRegisterClass *RC = nullptr;
2694 switch (VT.SimpleTy) {
2695 default: llvm_unreachable("Invalid result type for frameaddress.");
2696 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2697 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2700 // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2701 // we get the wrong frame register.
2702 MachineFrameInfo &MFI = MF->getFrameInfo();
2703 MFI.setFrameAddressIsTaken(true);
2705 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2706 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2707 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2708 (FrameReg == X86::EBP && VT == MVT::i32)) &&
2709 "Invalid Frame Register!");
2711 // Always make a copy of the frame register to a vreg first, so that we
2712 // never directly reference the frame register (the TwoAddressInstruction-
2713 // Pass doesn't like that).
2714 unsigned SrcReg = createResultReg(RC);
2715 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2716 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2718 // Now recursively load from the frame address.
2719 // movq (%rbp), %rax
2720 // movq (%rax), %rax
2721 // movq (%rax), %rax
2722 // ...
2723 unsigned DestReg;
2724 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2725 while (Depth--) {
2726 DestReg = createResultReg(RC);
2727 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2728 TII.get(Opc), DestReg), SrcReg);
2729 SrcReg = DestReg;
2732 updateValueMap(II, SrcReg);
2733 return true;
2735 case Intrinsic::memcpy: {
2736 const MemCpyInst *MCI = cast<MemCpyInst>(II);
2737 // Don't handle volatile or variable length memcpys.
2738 if (MCI->isVolatile())
2739 return false;
2741 if (isa<ConstantInt>(MCI->getLength())) {
2742 // Small memcpy's are common enough that we want to do them
2743 // without a call if possible.
2744 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2745 if (IsMemcpySmall(Len)) {
2746 X86AddressMode DestAM, SrcAM;
2747 if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2748 !X86SelectAddress(MCI->getRawSource(), SrcAM))
2749 return false;
2750 TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2751 return true;
2755 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2756 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2757 return false;
2759 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2760 return false;
2762 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1);
2764 case Intrinsic::memset: {
2765 const MemSetInst *MSI = cast<MemSetInst>(II);
2767 if (MSI->isVolatile())
2768 return false;
2770 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2771 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2772 return false;
2774 if (MSI->getDestAddressSpace() > 255)
2775 return false;
2777 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
2779 case Intrinsic::stackprotector: {
2780 // Emit code to store the stack guard onto the stack.
2781 EVT PtrTy = TLI.getPointerTy(DL);
2783 const Value *Op1 = II->getArgOperand(0); // The guard's value.
2784 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2786 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2788 // Grab the frame index.
2789 X86AddressMode AM;
2790 if (!X86SelectAddress(Slot, AM)) return false;
2791 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2792 return true;
2794 case Intrinsic::dbg_declare: {
2795 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2796 X86AddressMode AM;
2797 assert(DI->getAddress() && "Null address should be checked earlier!");
2798 if (!X86SelectAddress(DI->getAddress(), AM))
2799 return false;
2800 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2801 // FIXME may need to add RegState::Debug to any registers produced,
2802 // although ESP/EBP should be the only ones at the moment.
2803 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2804 "Expected inlined-at fields to agree");
2805 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2806 .addImm(0)
2807 .addMetadata(DI->getVariable())
2808 .addMetadata(DI->getExpression());
2809 return true;
2811 case Intrinsic::trap: {
2812 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2813 return true;
2815 case Intrinsic::sqrt: {
2816 if (!Subtarget->hasSSE1())
2817 return false;
2819 Type *RetTy = II->getCalledFunction()->getReturnType();
2821 MVT VT;
2822 if (!isTypeLegal(RetTy, VT))
2823 return false;
2825 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2826 // is not generated by FastISel yet.
2827 // FIXME: Update this code once tablegen can handle it.
2828 static const uint16_t SqrtOpc[3][2] = {
2829 { X86::SQRTSSr, X86::SQRTSDr },
2830 { X86::VSQRTSSr, X86::VSQRTSDr },
2831 { X86::VSQRTSSZr, X86::VSQRTSDZr },
2833 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2834 Subtarget->hasAVX() ? 1 :
2836 unsigned Opc;
2837 switch (VT.SimpleTy) {
2838 default: return false;
2839 case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2840 case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2843 const Value *SrcVal = II->getArgOperand(0);
2844 unsigned SrcReg = getRegForValue(SrcVal);
2846 if (SrcReg == 0)
2847 return false;
2849 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2850 unsigned ImplicitDefReg = 0;
2851 if (AVXLevel > 0) {
2852 ImplicitDefReg = createResultReg(RC);
2853 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2854 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2857 unsigned ResultReg = createResultReg(RC);
2858 MachineInstrBuilder MIB;
2859 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2860 ResultReg);
2862 if (ImplicitDefReg)
2863 MIB.addReg(ImplicitDefReg);
2865 MIB.addReg(SrcReg);
2867 updateValueMap(II, ResultReg);
2868 return true;
2870 case Intrinsic::sadd_with_overflow:
2871 case Intrinsic::uadd_with_overflow:
2872 case Intrinsic::ssub_with_overflow:
2873 case Intrinsic::usub_with_overflow:
2874 case Intrinsic::smul_with_overflow:
2875 case Intrinsic::umul_with_overflow: {
2876 // This implements the basic lowering of the xalu with overflow intrinsics
2877 // into add/sub/mul followed by either seto or setb.
2878 const Function *Callee = II->getCalledFunction();
2879 auto *Ty = cast<StructType>(Callee->getReturnType());
2880 Type *RetTy = Ty->getTypeAtIndex(0U);
2881 assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2882 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2883 "Overflow value expected to be an i1");
2885 MVT VT;
2886 if (!isTypeLegal(RetTy, VT))
2887 return false;
2889 if (VT < MVT::i8 || VT > MVT::i64)
2890 return false;
2892 const Value *LHS = II->getArgOperand(0);
2893 const Value *RHS = II->getArgOperand(1);
2895 // Canonicalize immediate to the RHS.
2896 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2897 isCommutativeIntrinsic(II))
2898 std::swap(LHS, RHS);
2900 unsigned BaseOpc, CondOpc;
2901 switch (II->getIntrinsicID()) {
2902 default: llvm_unreachable("Unexpected intrinsic!");
2903 case Intrinsic::sadd_with_overflow:
2904 BaseOpc = ISD::ADD; CondOpc = X86::SETOr; break;
2905 case Intrinsic::uadd_with_overflow:
2906 BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
2907 case Intrinsic::ssub_with_overflow:
2908 BaseOpc = ISD::SUB; CondOpc = X86::SETOr; break;
2909 case Intrinsic::usub_with_overflow:
2910 BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
2911 case Intrinsic::smul_with_overflow:
2912 BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
2913 case Intrinsic::umul_with_overflow:
2914 BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
2917 unsigned LHSReg = getRegForValue(LHS);
2918 if (LHSReg == 0)
2919 return false;
2920 bool LHSIsKill = hasTrivialKill(LHS);
2922 unsigned ResultReg = 0;
2923 // Check if we have an immediate version.
2924 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2925 static const uint16_t Opc[2][4] = {
2926 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2927 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2930 if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2931 CondOpc == X86::SETOr) {
2932 // We can use INC/DEC.
2933 ResultReg = createResultReg(TLI.getRegClassFor(VT));
2934 bool IsDec = BaseOpc == ISD::SUB;
2935 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2936 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2937 .addReg(LHSReg, getKillRegState(LHSIsKill));
2938 } else
2939 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2940 CI->getZExtValue());
2943 unsigned RHSReg;
2944 bool RHSIsKill;
2945 if (!ResultReg) {
2946 RHSReg = getRegForValue(RHS);
2947 if (RHSReg == 0)
2948 return false;
2949 RHSIsKill = hasTrivialKill(RHS);
2950 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2951 RHSIsKill);
2954 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2955 // it manually.
2956 if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2957 static const uint16_t MULOpc[] =
2958 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2959 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2960 // First copy the first operand into RAX, which is an implicit input to
2961 // the X86::MUL*r instruction.
2962 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2963 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2964 .addReg(LHSReg, getKillRegState(LHSIsKill));
2965 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2966 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2967 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2968 static const uint16_t MULOpc[] =
2969 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2970 if (VT == MVT::i8) {
2971 // Copy the first operand into AL, which is an implicit input to the
2972 // X86::IMUL8r instruction.
2973 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2974 TII.get(TargetOpcode::COPY), X86::AL)
2975 .addReg(LHSReg, getKillRegState(LHSIsKill));
2976 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2977 RHSIsKill);
2978 } else
2979 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2980 TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2981 RHSReg, RHSIsKill);
2984 if (!ResultReg)
2985 return false;
2987 // Assign to a GPR since the overflow return value is lowered to a SETcc.
2988 unsigned ResultReg2 = createResultReg(&X86::GR8RegClass);
2989 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
2991 ResultReg2);
2993 updateValueMap(II, ResultReg, 2);
2994 return true;
2996 case Intrinsic::x86_sse_cvttss2si:
2997 case Intrinsic::x86_sse_cvttss2si64:
2998 case Intrinsic::x86_sse2_cvttsd2si:
2999 case Intrinsic::x86_sse2_cvttsd2si64: {
3000 bool IsInputDouble;
3001 switch (II->getIntrinsicID()) {
3002 default: llvm_unreachable("Unexpected intrinsic.");
3003 case Intrinsic::x86_sse_cvttss2si:
3004 case Intrinsic::x86_sse_cvttss2si64:
3005 if (!Subtarget->hasSSE1())
3006 return false;
3007 IsInputDouble = false;
3008 break;
3009 case Intrinsic::x86_sse2_cvttsd2si:
3010 case Intrinsic::x86_sse2_cvttsd2si64:
3011 if (!Subtarget->hasSSE2())
3012 return false;
3013 IsInputDouble = true;
3014 break;
3017 Type *RetTy = II->getCalledFunction()->getReturnType();
3018 MVT VT;
3019 if (!isTypeLegal(RetTy, VT))
3020 return false;
3022 static const uint16_t CvtOpc[3][2][2] = {
3023 { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr },
3024 { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } },
3025 { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr },
3026 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } },
3027 { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
3028 { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
3030 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
3031 Subtarget->hasAVX() ? 1 :
3033 unsigned Opc;
3034 switch (VT.SimpleTy) {
3035 default: llvm_unreachable("Unexpected result type.");
3036 case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3037 case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3040 // Check if we can fold insertelement instructions into the convert.
3041 const Value *Op = II->getArgOperand(0);
3042 while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3043 const Value *Index = IE->getOperand(2);
3044 if (!isa<ConstantInt>(Index))
3045 break;
3046 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3048 if (Idx == 0) {
3049 Op = IE->getOperand(1);
3050 break;
3052 Op = IE->getOperand(0);
3055 unsigned Reg = getRegForValue(Op);
3056 if (Reg == 0)
3057 return false;
3059 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3060 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
3061 .addReg(Reg);
3063 updateValueMap(II, ResultReg);
3064 return true;
3069 bool X86FastISel::fastLowerArguments() {
3070 if (!FuncInfo.CanLowerReturn)
3071 return false;
3073 const Function *F = FuncInfo.Fn;
3074 if (F->isVarArg())
3075 return false;
3077 CallingConv::ID CC = F->getCallingConv();
3078 if (CC != CallingConv::C)
3079 return false;
3081 if (Subtarget->isCallingConvWin64(CC))
3082 return false;
3084 if (!Subtarget->is64Bit())
3085 return false;
3087 if (Subtarget->useSoftFloat())
3088 return false;
3090 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3091 unsigned GPRCnt = 0;
3092 unsigned FPRCnt = 0;
3093 for (auto const &Arg : F->args()) {
3094 if (Arg.hasAttribute(Attribute::ByVal) ||
3095 Arg.hasAttribute(Attribute::InReg) ||
3096 Arg.hasAttribute(Attribute::StructRet) ||
3097 Arg.hasAttribute(Attribute::SwiftSelf) ||
3098 Arg.hasAttribute(Attribute::SwiftError) ||
3099 Arg.hasAttribute(Attribute::Nest))
3100 return false;
3102 Type *ArgTy = Arg.getType();
3103 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3104 return false;
3106 EVT ArgVT = TLI.getValueType(DL, ArgTy);
3107 if (!ArgVT.isSimple()) return false;
3108 switch (ArgVT.getSimpleVT().SimpleTy) {
3109 default: return false;
3110 case MVT::i32:
3111 case MVT::i64:
3112 ++GPRCnt;
3113 break;
3114 case MVT::f32:
3115 case MVT::f64:
3116 if (!Subtarget->hasSSE1())
3117 return false;
3118 ++FPRCnt;
3119 break;
3122 if (GPRCnt > 6)
3123 return false;
3125 if (FPRCnt > 8)
3126 return false;
3129 static const MCPhysReg GPR32ArgRegs[] = {
3130 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3132 static const MCPhysReg GPR64ArgRegs[] = {
3133 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3135 static const MCPhysReg XMMArgRegs[] = {
3136 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3137 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3140 unsigned GPRIdx = 0;
3141 unsigned FPRIdx = 0;
3142 for (auto const &Arg : F->args()) {
3143 MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3144 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3145 unsigned SrcReg;
3146 switch (VT.SimpleTy) {
3147 default: llvm_unreachable("Unexpected value type.");
3148 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3149 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3150 case MVT::f32: LLVM_FALLTHROUGH;
3151 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3153 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3154 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3155 // Without this, EmitLiveInCopies may eliminate the livein if its only
3156 // use is a bitcast (which isn't turned into an instruction).
3157 unsigned ResultReg = createResultReg(RC);
3158 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3159 TII.get(TargetOpcode::COPY), ResultReg)
3160 .addReg(DstReg, getKillRegState(true));
3161 updateValueMap(&Arg, ResultReg);
3163 return true;
3166 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3167 CallingConv::ID CC,
3168 ImmutableCallSite *CS) {
3169 if (Subtarget->is64Bit())
3170 return 0;
3171 if (Subtarget->getTargetTriple().isOSMSVCRT())
3172 return 0;
3173 if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3174 CC == CallingConv::HiPE)
3175 return 0;
3177 if (CS)
3178 if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) ||
3179 CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3180 return 0;
3182 return 4;
3185 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3186 auto &OutVals = CLI.OutVals;
3187 auto &OutFlags = CLI.OutFlags;
3188 auto &OutRegs = CLI.OutRegs;
3189 auto &Ins = CLI.Ins;
3190 auto &InRegs = CLI.InRegs;
3191 CallingConv::ID CC = CLI.CallConv;
3192 bool &IsTailCall = CLI.IsTailCall;
3193 bool IsVarArg = CLI.IsVarArg;
3194 const Value *Callee = CLI.Callee;
3195 MCSymbol *Symbol = CLI.Symbol;
3197 bool Is64Bit = Subtarget->is64Bit();
3198 bool IsWin64 = Subtarget->isCallingConvWin64(CC);
3200 const CallInst *CI =
3201 CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr;
3202 const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr;
3204 // Call / invoke instructions with NoCfCheck attribute require special
3205 // handling.
3206 const auto *II =
3207 CLI.CS ? dyn_cast<InvokeInst>(CLI.CS->getInstruction()) : nullptr;
3208 if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck()))
3209 return false;
3211 // Functions with no_caller_saved_registers that need special handling.
3212 if ((CI && CI->hasFnAttr("no_caller_saved_registers")) ||
3213 (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers")))
3214 return false;
3216 // Functions using retpoline for indirect calls need to use SDISel.
3217 if (Subtarget->useRetpolineIndirectCalls())
3218 return false;
3220 // Handle only C, fastcc, and webkit_js calling conventions for now.
3221 switch (CC) {
3222 default: return false;
3223 case CallingConv::C:
3224 case CallingConv::Fast:
3225 case CallingConv::WebKit_JS:
3226 case CallingConv::Swift:
3227 case CallingConv::X86_FastCall:
3228 case CallingConv::X86_StdCall:
3229 case CallingConv::X86_ThisCall:
3230 case CallingConv::Win64:
3231 case CallingConv::X86_64_SysV:
3232 break;
3235 // Allow SelectionDAG isel to handle tail calls.
3236 if (IsTailCall)
3237 return false;
3239 // fastcc with -tailcallopt is intended to provide a guaranteed
3240 // tail call optimization. Fastisel doesn't know how to do that.
3241 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
3242 return false;
3244 // Don't know how to handle Win64 varargs yet. Nothing special needed for
3245 // x86-32. Special handling for x86-64 is implemented.
3246 if (IsVarArg && IsWin64)
3247 return false;
3249 // Don't know about inalloca yet.
3250 if (CLI.CS && CLI.CS->hasInAllocaArgument())
3251 return false;
3253 for (auto Flag : CLI.OutFlags)
3254 if (Flag.isSwiftError())
3255 return false;
3257 SmallVector<MVT, 16> OutVTs;
3258 SmallVector<unsigned, 16> ArgRegs;
3260 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3261 // instruction. This is safe because it is common to all FastISel supported
3262 // calling conventions on x86.
3263 for (int i = 0, e = OutVals.size(); i != e; ++i) {
3264 Value *&Val = OutVals[i];
3265 ISD::ArgFlagsTy Flags = OutFlags[i];
3266 if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3267 if (CI->getBitWidth() < 32) {
3268 if (Flags.isSExt())
3269 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3270 else
3271 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3275 // Passing bools around ends up doing a trunc to i1 and passing it.
3276 // Codegen this as an argument + "and 1".
3277 MVT VT;
3278 auto *TI = dyn_cast<TruncInst>(Val);
3279 unsigned ResultReg;
3280 if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
3281 (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
3282 TI->hasOneUse()) {
3283 Value *PrevVal = TI->getOperand(0);
3284 ResultReg = getRegForValue(PrevVal);
3286 if (!ResultReg)
3287 return false;
3289 if (!isTypeLegal(PrevVal->getType(), VT))
3290 return false;
3292 ResultReg =
3293 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
3294 } else {
3295 if (!isTypeLegal(Val->getType(), VT))
3296 return false;
3297 ResultReg = getRegForValue(Val);
3300 if (!ResultReg)
3301 return false;
3303 ArgRegs.push_back(ResultReg);
3304 OutVTs.push_back(VT);
3307 // Analyze operands of the call, assigning locations to each operand.
3308 SmallVector<CCValAssign, 16> ArgLocs;
3309 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3311 // Allocate shadow area for Win64
3312 if (IsWin64)
3313 CCInfo.AllocateStack(32, 8);
3315 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3317 // Get a count of how many bytes are to be pushed on the stack.
3318 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3320 // Issue CALLSEQ_START
3321 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3322 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
3323 .addImm(NumBytes).addImm(0).addImm(0);
3325 // Walk the register/memloc assignments, inserting copies/loads.
3326 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3327 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3328 CCValAssign const &VA = ArgLocs[i];
3329 const Value *ArgVal = OutVals[VA.getValNo()];
3330 MVT ArgVT = OutVTs[VA.getValNo()];
3332 if (ArgVT == MVT::x86mmx)
3333 return false;
3335 unsigned ArgReg = ArgRegs[VA.getValNo()];
3337 // Promote the value if needed.
3338 switch (VA.getLocInfo()) {
3339 case CCValAssign::Full: break;
3340 case CCValAssign::SExt: {
3341 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3342 "Unexpected extend");
3344 if (ArgVT == MVT::i1)
3345 return false;
3347 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3348 ArgVT, ArgReg);
3349 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3350 ArgVT = VA.getLocVT();
3351 break;
3353 case CCValAssign::ZExt: {
3354 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3355 "Unexpected extend");
3357 // Handle zero-extension from i1 to i8, which is common.
3358 if (ArgVT == MVT::i1) {
3359 // Set the high bits to zero.
3360 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
3361 ArgVT = MVT::i8;
3363 if (ArgReg == 0)
3364 return false;
3367 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3368 ArgVT, ArgReg);
3369 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3370 ArgVT = VA.getLocVT();
3371 break;
3373 case CCValAssign::AExt: {
3374 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3375 "Unexpected extend");
3376 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3377 ArgVT, ArgReg);
3378 if (!Emitted)
3379 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3380 ArgVT, ArgReg);
3381 if (!Emitted)
3382 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3383 ArgVT, ArgReg);
3385 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3386 ArgVT = VA.getLocVT();
3387 break;
3389 case CCValAssign::BCvt: {
3390 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3391 /*TODO: Kill=*/false);
3392 assert(ArgReg && "Failed to emit a bitcast!");
3393 ArgVT = VA.getLocVT();
3394 break;
3396 case CCValAssign::VExt:
3397 // VExt has not been implemented, so this should be impossible to reach
3398 // for now. However, fallback to Selection DAG isel once implemented.
3399 return false;
3400 case CCValAssign::AExtUpper:
3401 case CCValAssign::SExtUpper:
3402 case CCValAssign::ZExtUpper:
3403 case CCValAssign::FPExt:
3404 llvm_unreachable("Unexpected loc info!");
3405 case CCValAssign::Indirect:
3406 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3407 // support this.
3408 return false;
3411 if (VA.isRegLoc()) {
3412 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3413 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3414 OutRegs.push_back(VA.getLocReg());
3415 } else {
3416 assert(VA.isMemLoc());
3418 // Don't emit stores for undef values.
3419 if (isa<UndefValue>(ArgVal))
3420 continue;
3422 unsigned LocMemOffset = VA.getLocMemOffset();
3423 X86AddressMode AM;
3424 AM.Base.Reg = RegInfo->getStackRegister();
3425 AM.Disp = LocMemOffset;
3426 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3427 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3428 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3429 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3430 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3431 if (Flags.isByVal()) {
3432 X86AddressMode SrcAM;
3433 SrcAM.Base.Reg = ArgReg;
3434 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3435 return false;
3436 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3437 // If this is a really simple value, emit this with the Value* version
3438 // of X86FastEmitStore. If it isn't simple, we don't want to do this,
3439 // as it can cause us to reevaluate the argument.
3440 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3441 return false;
3442 } else {
3443 bool ValIsKill = hasTrivialKill(ArgVal);
3444 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3445 return false;
3450 // ELF / PIC requires GOT in the EBX register before function calls via PLT
3451 // GOT pointer.
3452 if (Subtarget->isPICStyleGOT()) {
3453 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3454 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3455 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3458 if (Is64Bit && IsVarArg && !IsWin64) {
3459 // From AMD64 ABI document:
3460 // For calls that may call functions that use varargs or stdargs
3461 // (prototype-less calls or calls to functions containing ellipsis (...) in
3462 // the declaration) %al is used as hidden argument to specify the number
3463 // of SSE registers used. The contents of %al do not need to match exactly
3464 // the number of registers, but must be an ubound on the number of SSE
3465 // registers used and is in the range 0 - 8 inclusive.
3467 // Count the number of XMM registers allocated.
3468 static const MCPhysReg XMMArgRegs[] = {
3469 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3470 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3472 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3473 assert((Subtarget->hasSSE1() || !NumXMMRegs)
3474 && "SSE registers cannot be used when SSE is disabled");
3475 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3476 X86::AL).addImm(NumXMMRegs);
3479 // Materialize callee address in a register. FIXME: GV address can be
3480 // handled with a CALLpcrel32 instead.
3481 X86AddressMode CalleeAM;
3482 if (!X86SelectCallAddress(Callee, CalleeAM))
3483 return false;
3485 unsigned CalleeOp = 0;
3486 const GlobalValue *GV = nullptr;
3487 if (CalleeAM.GV != nullptr) {
3488 GV = CalleeAM.GV;
3489 } else if (CalleeAM.Base.Reg != 0) {
3490 CalleeOp = CalleeAM.Base.Reg;
3491 } else
3492 return false;
3494 // Issue the call.
3495 MachineInstrBuilder MIB;
3496 if (CalleeOp) {
3497 // Register-indirect call.
3498 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3499 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3500 .addReg(CalleeOp);
3501 } else {
3502 // Direct call.
3503 assert(GV && "Not a direct call");
3504 // See if we need any target-specific flags on the GV operand.
3505 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3507 // This will be a direct call, or an indirect call through memory for
3508 // NonLazyBind calls or dllimport calls.
3509 bool NeedLoad =
3510 OpFlags == X86II::MO_DLLIMPORT || OpFlags == X86II::MO_GOTPCREL;
3511 unsigned CallOpc = NeedLoad
3512 ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3513 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3515 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
3516 if (NeedLoad)
3517 MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3518 if (Symbol)
3519 MIB.addSym(Symbol, OpFlags);
3520 else
3521 MIB.addGlobalAddress(GV, 0, OpFlags);
3522 if (NeedLoad)
3523 MIB.addReg(0);
3526 // Add a register mask operand representing the call-preserved registers.
3527 // Proper defs for return values will be added by setPhysRegsDeadExcept().
3528 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3530 // Add an implicit use GOT pointer in EBX.
3531 if (Subtarget->isPICStyleGOT())
3532 MIB.addReg(X86::EBX, RegState::Implicit);
3534 if (Is64Bit && IsVarArg && !IsWin64)
3535 MIB.addReg(X86::AL, RegState::Implicit);
3537 // Add implicit physical register uses to the call.
3538 for (auto Reg : OutRegs)
3539 MIB.addReg(Reg, RegState::Implicit);
3541 // Issue CALLSEQ_END
3542 unsigned NumBytesForCalleeToPop =
3543 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3544 TM.Options.GuaranteedTailCallOpt)
3545 ? NumBytes // Callee pops everything.
3546 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS);
3547 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3548 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3549 .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3551 // Now handle call return values.
3552 SmallVector<CCValAssign, 16> RVLocs;
3553 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3554 CLI.RetTy->getContext());
3555 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3557 // Copy all of the result registers out of their specified physreg.
3558 unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3559 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3560 CCValAssign &VA = RVLocs[i];
3561 EVT CopyVT = VA.getValVT();
3562 unsigned CopyReg = ResultReg + i;
3563 unsigned SrcReg = VA.getLocReg();
3565 // If this is x86-64, and we disabled SSE, we can't return FP values
3566 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3567 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3568 report_fatal_error("SSE register return with SSE disabled");
3571 // If we prefer to use the value in xmm registers, copy it out as f80 and
3572 // use a truncate to move it from fp stack reg to xmm reg.
3573 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3574 isScalarFPTypeInSSEReg(VA.getValVT())) {
3575 CopyVT = MVT::f80;
3576 CopyReg = createResultReg(&X86::RFP80RegClass);
3579 // Copy out the result.
3580 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3581 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3582 InRegs.push_back(VA.getLocReg());
3584 // Round the f80 to the right size, which also moves it to the appropriate
3585 // xmm register. This is accomplished by storing the f80 value in memory
3586 // and then loading it back.
3587 if (CopyVT != VA.getValVT()) {
3588 EVT ResVT = VA.getValVT();
3589 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3590 unsigned MemSize = ResVT.getSizeInBits()/8;
3591 int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3592 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3593 TII.get(Opc)), FI)
3594 .addReg(CopyReg);
3595 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
3596 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3597 TII.get(Opc), ResultReg + i), FI);
3601 CLI.ResultReg = ResultReg;
3602 CLI.NumResultRegs = RVLocs.size();
3603 CLI.Call = MIB;
3605 return true;
3608 bool
3609 X86FastISel::fastSelectInstruction(const Instruction *I) {
3610 switch (I->getOpcode()) {
3611 default: break;
3612 case Instruction::Load:
3613 return X86SelectLoad(I);
3614 case Instruction::Store:
3615 return X86SelectStore(I);
3616 case Instruction::Ret:
3617 return X86SelectRet(I);
3618 case Instruction::ICmp:
3619 case Instruction::FCmp:
3620 return X86SelectCmp(I);
3621 case Instruction::ZExt:
3622 return X86SelectZExt(I);
3623 case Instruction::SExt:
3624 return X86SelectSExt(I);
3625 case Instruction::Br:
3626 return X86SelectBranch(I);
3627 case Instruction::LShr:
3628 case Instruction::AShr:
3629 case Instruction::Shl:
3630 return X86SelectShift(I);
3631 case Instruction::SDiv:
3632 case Instruction::UDiv:
3633 case Instruction::SRem:
3634 case Instruction::URem:
3635 return X86SelectDivRem(I);
3636 case Instruction::Select:
3637 return X86SelectSelect(I);
3638 case Instruction::Trunc:
3639 return X86SelectTrunc(I);
3640 case Instruction::FPExt:
3641 return X86SelectFPExt(I);
3642 case Instruction::FPTrunc:
3643 return X86SelectFPTrunc(I);
3644 case Instruction::SIToFP:
3645 return X86SelectSIToFP(I);
3646 case Instruction::UIToFP:
3647 return X86SelectUIToFP(I);
3648 case Instruction::IntToPtr: // Deliberate fall-through.
3649 case Instruction::PtrToInt: {
3650 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3651 EVT DstVT = TLI.getValueType(DL, I->getType());
3652 if (DstVT.bitsGT(SrcVT))
3653 return X86SelectZExt(I);
3654 if (DstVT.bitsLT(SrcVT))
3655 return X86SelectTrunc(I);
3656 unsigned Reg = getRegForValue(I->getOperand(0));
3657 if (Reg == 0) return false;
3658 updateValueMap(I, Reg);
3659 return true;
3661 case Instruction::BitCast: {
3662 // Select SSE2/AVX bitcasts between 128/256 bit vector types.
3663 if (!Subtarget->hasSSE2())
3664 return false;
3666 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3667 EVT DstVT = TLI.getValueType(DL, I->getType());
3669 if (!SrcVT.isSimple() || !DstVT.isSimple())
3670 return false;
3672 MVT SVT = SrcVT.getSimpleVT();
3673 MVT DVT = DstVT.getSimpleVT();
3675 if (!SVT.is128BitVector() &&
3676 !(Subtarget->hasAVX() && SVT.is256BitVector()) &&
3677 !(Subtarget->hasAVX512() && SVT.is512BitVector() &&
3678 (Subtarget->hasBWI() || (SVT.getScalarSizeInBits() >= 32 &&
3679 DVT.getScalarSizeInBits() >= 32))))
3680 return false;
3682 unsigned Reg = getRegForValue(I->getOperand(0));
3683 if (Reg == 0)
3684 return false;
3686 // No instruction is needed for conversion. Reuse the register used by
3687 // the fist operand.
3688 updateValueMap(I, Reg);
3689 return true;
3693 return false;
3696 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3697 if (VT > MVT::i64)
3698 return 0;
3700 uint64_t Imm = CI->getZExtValue();
3701 if (Imm == 0) {
3702 unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3703 switch (VT.SimpleTy) {
3704 default: llvm_unreachable("Unexpected value type");
3705 case MVT::i1:
3706 case MVT::i8:
3707 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3708 X86::sub_8bit);
3709 case MVT::i16:
3710 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3711 X86::sub_16bit);
3712 case MVT::i32:
3713 return SrcReg;
3714 case MVT::i64: {
3715 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3716 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3717 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3718 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3719 return ResultReg;
3724 unsigned Opc = 0;
3725 switch (VT.SimpleTy) {
3726 default: llvm_unreachable("Unexpected value type");
3727 case MVT::i1:
3728 VT = MVT::i8;
3729 LLVM_FALLTHROUGH;
3730 case MVT::i8: Opc = X86::MOV8ri; break;
3731 case MVT::i16: Opc = X86::MOV16ri; break;
3732 case MVT::i32: Opc = X86::MOV32ri; break;
3733 case MVT::i64: {
3734 if (isUInt<32>(Imm))
3735 Opc = X86::MOV32ri64;
3736 else if (isInt<32>(Imm))
3737 Opc = X86::MOV64ri32;
3738 else
3739 Opc = X86::MOV64ri;
3740 break;
3743 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3746 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3747 if (CFP->isNullValue())
3748 return fastMaterializeFloatZero(CFP);
3750 // Can't handle alternate code models yet.
3751 CodeModel::Model CM = TM.getCodeModel();
3752 if (CM != CodeModel::Small && CM != CodeModel::Large)
3753 return 0;
3755 // Get opcode and regclass of the output for the given load instruction.
3756 unsigned Opc = 0;
3757 const TargetRegisterClass *RC = nullptr;
3758 switch (VT.SimpleTy) {
3759 default: return 0;
3760 case MVT::f32:
3761 if (X86ScalarSSEf32) {
3762 Opc = Subtarget->hasAVX512()
3763 ? X86::VMOVSSZrm
3764 : Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
3765 RC = Subtarget->hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass;
3766 } else {
3767 Opc = X86::LD_Fp32m;
3768 RC = &X86::RFP32RegClass;
3770 break;
3771 case MVT::f64:
3772 if (X86ScalarSSEf64) {
3773 Opc = Subtarget->hasAVX512()
3774 ? X86::VMOVSDZrm
3775 : Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
3776 RC = Subtarget->hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass;
3777 } else {
3778 Opc = X86::LD_Fp64m;
3779 RC = &X86::RFP64RegClass;
3781 break;
3782 case MVT::f80:
3783 // No f80 support yet.
3784 return 0;
3787 // MachineConstantPool wants an explicit alignment.
3788 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3789 if (Align == 0) {
3790 // Alignment of vector types. FIXME!
3791 Align = DL.getTypeAllocSize(CFP->getType());
3794 // x86-32 PIC requires a PIC base register for constant pools.
3795 unsigned PICBase = 0;
3796 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3797 if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3798 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3799 else if (OpFlag == X86II::MO_GOTOFF)
3800 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3801 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
3802 PICBase = X86::RIP;
3804 // Create the load from the constant pool.
3805 unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3806 unsigned ResultReg = createResultReg(RC);
3808 if (CM == CodeModel::Large) {
3809 unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3810 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3811 AddrReg)
3812 .addConstantPoolIndex(CPI, 0, OpFlag);
3813 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3814 TII.get(Opc), ResultReg);
3815 addDirectMem(MIB, AddrReg);
3816 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3817 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3818 MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
3819 MIB->addMemOperand(*FuncInfo.MF, MMO);
3820 return ResultReg;
3823 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3824 TII.get(Opc), ResultReg),
3825 CPI, PICBase, OpFlag);
3826 return ResultReg;
3829 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3830 // Can't handle alternate code models yet.
3831 if (TM.getCodeModel() != CodeModel::Small)
3832 return 0;
3834 // Materialize addresses with LEA/MOV instructions.
3835 X86AddressMode AM;
3836 if (X86SelectAddress(GV, AM)) {
3837 // If the expression is just a basereg, then we're done, otherwise we need
3838 // to emit an LEA.
3839 if (AM.BaseType == X86AddressMode::RegBase &&
3840 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3841 return AM.Base.Reg;
3843 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3844 if (TM.getRelocationModel() == Reloc::Static &&
3845 TLI.getPointerTy(DL) == MVT::i64) {
3846 // The displacement code could be more than 32 bits away so we need to use
3847 // an instruction with a 64 bit immediate
3848 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3849 ResultReg)
3850 .addGlobalAddress(GV);
3851 } else {
3852 unsigned Opc =
3853 TLI.getPointerTy(DL) == MVT::i32
3854 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3855 : X86::LEA64r;
3856 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3857 TII.get(Opc), ResultReg), AM);
3859 return ResultReg;
3861 return 0;
3864 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3865 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3867 // Only handle simple types.
3868 if (!CEVT.isSimple())
3869 return 0;
3870 MVT VT = CEVT.getSimpleVT();
3872 if (const auto *CI = dyn_cast<ConstantInt>(C))
3873 return X86MaterializeInt(CI, VT);
3874 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3875 return X86MaterializeFP(CFP, VT);
3876 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3877 return X86MaterializeGV(GV, VT);
3879 return 0;
3882 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3883 // Fail on dynamic allocas. At this point, getRegForValue has already
3884 // checked its CSE maps, so if we're here trying to handle a dynamic
3885 // alloca, we're not going to succeed. X86SelectAddress has a
3886 // check for dynamic allocas, because it's called directly from
3887 // various places, but targetMaterializeAlloca also needs a check
3888 // in order to avoid recursion between getRegForValue,
3889 // X86SelectAddrss, and targetMaterializeAlloca.
3890 if (!FuncInfo.StaticAllocaMap.count(C))
3891 return 0;
3892 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3894 X86AddressMode AM;
3895 if (!X86SelectAddress(C, AM))
3896 return 0;
3897 unsigned Opc =
3898 TLI.getPointerTy(DL) == MVT::i32
3899 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3900 : X86::LEA64r;
3901 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3902 unsigned ResultReg = createResultReg(RC);
3903 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3904 TII.get(Opc), ResultReg), AM);
3905 return ResultReg;
3908 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3909 MVT VT;
3910 if (!isTypeLegal(CF->getType(), VT))
3911 return 0;
3913 // Get opcode and regclass for the given zero.
3914 bool HasAVX512 = Subtarget->hasAVX512();
3915 unsigned Opc = 0;
3916 const TargetRegisterClass *RC = nullptr;
3917 switch (VT.SimpleTy) {
3918 default: return 0;
3919 case MVT::f32:
3920 if (X86ScalarSSEf32) {
3921 Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS;
3922 RC = HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass;
3923 } else {
3924 Opc = X86::LD_Fp032;
3925 RC = &X86::RFP32RegClass;
3927 break;
3928 case MVT::f64:
3929 if (X86ScalarSSEf64) {
3930 Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD;
3931 RC = HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass;
3932 } else {
3933 Opc = X86::LD_Fp064;
3934 RC = &X86::RFP64RegClass;
3936 break;
3937 case MVT::f80:
3938 // No f80 support yet.
3939 return 0;
3942 unsigned ResultReg = createResultReg(RC);
3943 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3944 return ResultReg;
3948 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3949 const LoadInst *LI) {
3950 const Value *Ptr = LI->getPointerOperand();
3951 X86AddressMode AM;
3952 if (!X86SelectAddress(Ptr, AM))
3953 return false;
3955 const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3957 unsigned Size = DL.getTypeAllocSize(LI->getType());
3958 unsigned Alignment = LI->getAlignment();
3960 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3961 Alignment = DL.getABITypeAlignment(LI->getType());
3963 SmallVector<MachineOperand, 8> AddrOps;
3964 AM.getFullAddress(AddrOps);
3966 MachineInstr *Result = XII.foldMemoryOperandImpl(
3967 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
3968 /*AllowCommute=*/true);
3969 if (!Result)
3970 return false;
3972 // The index register could be in the wrong register class. Unfortunately,
3973 // foldMemoryOperandImpl could have commuted the instruction so its not enough
3974 // to just look at OpNo + the offset to the index reg. We actually need to
3975 // scan the instruction to find the index reg and see if its the correct reg
3976 // class.
3977 unsigned OperandNo = 0;
3978 for (MachineInstr::mop_iterator I = Result->operands_begin(),
3979 E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3980 MachineOperand &MO = *I;
3981 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
3982 continue;
3983 // Found the index reg, now try to rewrite it.
3984 unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
3985 MO.getReg(), OperandNo);
3986 if (IndexReg == MO.getReg())
3987 continue;
3988 MO.setReg(IndexReg);
3991 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
3992 MachineBasicBlock::iterator I(MI);
3993 removeDeadCode(I, std::next(I));
3994 return true;
3997 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
3998 const TargetRegisterClass *RC,
3999 unsigned Op0, bool Op0IsKill,
4000 unsigned Op1, bool Op1IsKill,
4001 unsigned Op2, bool Op2IsKill,
4002 unsigned Op3, bool Op3IsKill) {
4003 const MCInstrDesc &II = TII.get(MachineInstOpcode);
4005 unsigned ResultReg = createResultReg(RC);
4006 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
4007 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
4008 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
4009 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
4011 if (II.getNumDefs() >= 1)
4012 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
4013 .addReg(Op0, getKillRegState(Op0IsKill))
4014 .addReg(Op1, getKillRegState(Op1IsKill))
4015 .addReg(Op2, getKillRegState(Op2IsKill))
4016 .addReg(Op3, getKillRegState(Op3IsKill));
4017 else {
4018 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
4019 .addReg(Op0, getKillRegState(Op0IsKill))
4020 .addReg(Op1, getKillRegState(Op1IsKill))
4021 .addReg(Op2, getKillRegState(Op2IsKill))
4022 .addReg(Op3, getKillRegState(Op3IsKill));
4023 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4024 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
4026 return ResultReg;
4030 namespace llvm {
4031 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
4032 const TargetLibraryInfo *libInfo) {
4033 return new X86FastISel(funcInfo, libInfo);