1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file defines the pass that looks through the machine instructions
10 /// late in the compilation, and finds byte or word instructions that
11 /// can be profitably replaced with 32 bit instructions that give equivalent
12 /// results for the bits of the results that are used. There are two possible
13 /// reasons to do this.
15 /// One reason is to avoid false-dependences on the upper portions
16 /// of the registers. Only instructions that have a destination register
17 /// which is not in any of the source registers can be affected by this.
18 /// Any instruction where one of the source registers is also the destination
19 /// register is unaffected, because it has a true dependence on the source
20 /// register already. So, this consideration primarily affects load
21 /// instructions and register-to-register moves. It would
22 /// seem like cmov(s) would also be affected, but because of the way cmov is
23 /// really implemented by most machines as reading both the destination and
24 /// and source registers, and then "merging" the two based on a condition,
25 /// it really already should be considered as having a true dependence on the
26 /// destination register as well.
28 /// The other reason to do this is for potential code size savings. Word
29 /// operations need an extra override byte compared to their 32 bit
30 /// versions. So this can convert many word operations to their larger
31 /// size, saving a byte in encoding. This could introduce partial register
32 /// dependences where none existed however. As an example take:
35 /// now if this were to get transformed into
38 /// because the addl encodes shorter than the addw, this would introduce
39 /// a use of a register that was only partially written earlier. On older
40 /// Intel processors this can be quite a performance penalty, so this should
41 /// probably only be done when it can be proven that a new partial dependence
42 /// wouldn't be created, or when your know a newer processor is being
43 /// targeted, or when optimizing for minimum code size.
45 //===----------------------------------------------------------------------===//
48 #include "X86InstrInfo.h"
49 #include "X86Subtarget.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/CodeGen/LivePhysRegs.h"
52 #include "llvm/CodeGen/MachineFunctionPass.h"
53 #include "llvm/CodeGen/MachineInstrBuilder.h"
54 #include "llvm/CodeGen/MachineLoopInfo.h"
55 #include "llvm/CodeGen/MachineRegisterInfo.h"
56 #include "llvm/CodeGen/Passes.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
62 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
63 #define FIXUPBW_NAME "x86-fixup-bw-insts"
65 #define DEBUG_TYPE FIXUPBW_NAME
67 // Option to allow this optimization pass to have fine-grained control.
69 FixupBWInsts("fixup-byte-word-insts",
70 cl::desc("Change byte and word instructions to larger sizes"),
71 cl::init(true), cl::Hidden
);
74 class FixupBWInstPass
: public MachineFunctionPass
{
75 /// Loop over all of the instructions in the basic block replacing applicable
76 /// byte or word instructions with better alternatives.
77 void processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
79 /// This sets the \p SuperDestReg to the 32 bit super reg of the original
80 /// destination register of the MachineInstr passed in. It returns true if
81 /// that super register is dead just prior to \p OrigMI, and false if not.
82 bool getSuperRegDestIfDead(MachineInstr
*OrigMI
,
83 unsigned &SuperDestReg
) const;
85 /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
86 /// register if it is safe to do so. Return the replacement instruction if
87 /// OK, otherwise return nullptr.
88 MachineInstr
*tryReplaceLoad(unsigned New32BitOpcode
, MachineInstr
*MI
) const;
90 /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
91 /// safe to do so. Return the replacement instruction if OK, otherwise return
93 MachineInstr
*tryReplaceCopy(MachineInstr
*MI
) const;
95 // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
96 // possible. Return the replacement instruction if OK, return nullptr
98 MachineInstr
*tryReplaceInstr(MachineInstr
*MI
, MachineBasicBlock
&MBB
) const;
103 StringRef
getPassName() const override
{ return FIXUPBW_DESC
; }
105 FixupBWInstPass() : MachineFunctionPass(ID
) {
106 initializeFixupBWInstPassPass(*PassRegistry::getPassRegistry());
109 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
110 AU
.addRequired
<MachineLoopInfo
>(); // Machine loop info is used to
111 // guide some heuristics.
112 MachineFunctionPass::getAnalysisUsage(AU
);
115 /// Loop over all of the basic blocks, replacing byte and word instructions by
116 /// equivalent 32 bit instructions where performance or code size can be
118 bool runOnMachineFunction(MachineFunction
&MF
) override
;
120 MachineFunctionProperties
getRequiredProperties() const override
{
121 return MachineFunctionProperties().set(
122 MachineFunctionProperties::Property::NoVRegs
);
128 /// Machine instruction info used throughout the class.
129 const X86InstrInfo
*TII
;
131 /// Local member for function's OptForSize attribute.
134 /// Machine loop info used for guiding some heruistics.
135 MachineLoopInfo
*MLI
;
137 /// Register Liveness information after the current instruction.
138 LivePhysRegs LiveRegs
;
140 char FixupBWInstPass::ID
= 0;
143 INITIALIZE_PASS(FixupBWInstPass
, FIXUPBW_NAME
, FIXUPBW_DESC
, false, false)
145 FunctionPass
*llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
147 bool FixupBWInstPass::runOnMachineFunction(MachineFunction
&MF
) {
148 if (!FixupBWInsts
|| skipFunction(MF
.getFunction()))
152 TII
= MF
.getSubtarget
<X86Subtarget
>().getInstrInfo();
153 OptForSize
= MF
.getFunction().optForSize();
154 MLI
= &getAnalysis
<MachineLoopInfo
>();
155 LiveRegs
.init(TII
->getRegisterInfo());
157 LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
159 // Process all basic blocks.
161 processBasicBlock(MF
, MBB
);
163 LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
168 /// Check if after \p OrigMI the only portion of super register
169 /// of the destination register of \p OrigMI that is alive is that
170 /// destination register.
172 /// If so, return that super register in \p SuperDestReg.
173 bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr
*OrigMI
,
174 unsigned &SuperDestReg
) const {
175 auto *TRI
= &TII
->getRegisterInfo();
177 unsigned OrigDestReg
= OrigMI
->getOperand(0).getReg();
178 SuperDestReg
= getX86SubSuperRegister(OrigDestReg
, 32);
180 const auto SubRegIdx
= TRI
->getSubRegIndex(SuperDestReg
, OrigDestReg
);
182 // Make sure that the sub-register that this instruction has as its
183 // destination is the lowest order sub-register of the super-register.
184 // If it isn't, then the register isn't really dead even if the
185 // super-register is considered dead.
186 if (SubRegIdx
== X86::sub_8bit_hi
)
189 // If neither the destination-super register nor any applicable subregisters
190 // are live after this instruction, then the super register is safe to use.
191 if (!LiveRegs
.contains(SuperDestReg
)) {
192 // If the original destination register was not the low 8-bit subregister
193 // then the super register check is sufficient.
194 if (SubRegIdx
!= X86::sub_8bit
)
196 // If the original destination register was the low 8-bit subregister and
197 // we also need to check the 16-bit subregister and the high 8-bit
199 if (!LiveRegs
.contains(getX86SubSuperRegister(OrigDestReg
, 16)) &&
200 !LiveRegs
.contains(getX86SubSuperRegister(SuperDestReg
, 8,
203 // Otherwise, we have a little more checking to do.
206 // If we get here, the super-register destination (or some part of it) is
207 // marked as live after the original instruction.
209 // The X86 backend does not have subregister liveness tracking enabled,
210 // so liveness information might be overly conservative. Specifically, the
211 // super register might be marked as live because it is implicitly defined
212 // by the instruction we are examining.
214 // However, for some specific instructions (this pass only cares about MOVs)
215 // we can produce more precise results by analysing that MOV's operands.
217 // Indeed, if super-register is not live before the mov it means that it
218 // was originally <read-undef> and so we are free to modify these
219 // undef upper bits. That may happen in case where the use is in another MBB
220 // and the vreg/physreg corresponding to the move has higher width than
221 // necessary (e.g. due to register coalescing with a "truncate" copy).
222 // So, we would like to handle patterns like this:
224 // %bb.2: derived from LLVM BB %if.then
226 // Predecessors according to CFG: %bb.0
227 // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
228 // ; No implicit %eax
229 // Successors according to CFG: %bb.3(?%)
231 // %bb.3: derived from LLVM BB %if.end
232 // Live Ins: %eax Only %ax is actually live
233 // Predecessors according to CFG: %bb.2 %bb.1
234 // %ax = KILL %ax, implicit killed %eax
236 unsigned Opc
= OrigMI
->getOpcode(); (void)Opc
;
237 // These are the opcodes currently handled by the pass, if something
238 // else will be added we need to ensure that new opcode has the same
240 assert((Opc
== X86::MOV8rm
|| Opc
== X86::MOV16rm
|| Opc
== X86::MOV8rr
||
241 Opc
== X86::MOV16rr
) &&
242 "Unexpected opcode.");
244 bool IsDefined
= false;
245 for (auto &MO
: OrigMI
->implicit_operands()) {
249 assert((MO
.isDef() || MO
.isUse()) && "Expected Def or Use only!");
251 if (MO
.isDef() && TRI
->isSuperRegisterEq(OrigDestReg
, MO
.getReg()))
254 // If MO is a use of any part of the destination register but is not equal
255 // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
256 // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
257 // %eax, or %rax will prevent us from using the %eax register.
258 if (MO
.isUse() && !TRI
->isSubRegisterEq(OrigDestReg
, MO
.getReg()) &&
259 TRI
->regsOverlap(SuperDestReg
, MO
.getReg()))
262 // Reg is not Imp-def'ed -> it's live both before/after the instruction.
266 // Otherwise, the Reg is not live before the MI and the MOV can't
267 // make it really live, so it's in fact dead even after the MI.
271 MachineInstr
*FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode
,
272 MachineInstr
*MI
) const {
275 // We are going to try to rewrite this load to a larger zero-extending
276 // load. This is safe if all portions of the 32 bit super-register
277 // of the original destination register, except for the original destination
278 // register are dead. getSuperRegDestIfDead checks that.
279 if (!getSuperRegDestIfDead(MI
, NewDestReg
))
282 // Safe to change the instruction.
283 MachineInstrBuilder MIB
=
284 BuildMI(*MF
, MI
->getDebugLoc(), TII
->get(New32BitOpcode
), NewDestReg
);
286 unsigned NumArgs
= MI
->getNumOperands();
287 for (unsigned i
= 1; i
< NumArgs
; ++i
)
288 MIB
.add(MI
->getOperand(i
));
290 MIB
.setMemRefs(MI
->memoperands());
295 MachineInstr
*FixupBWInstPass::tryReplaceCopy(MachineInstr
*MI
) const {
296 assert(MI
->getNumExplicitOperands() == 2);
297 auto &OldDest
= MI
->getOperand(0);
298 auto &OldSrc
= MI
->getOperand(1);
301 if (!getSuperRegDestIfDead(MI
, NewDestReg
))
304 unsigned NewSrcReg
= getX86SubSuperRegister(OldSrc
.getReg(), 32);
306 // This is only correct if we access the same subregister index: otherwise,
307 // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
308 auto *TRI
= &TII
->getRegisterInfo();
309 if (TRI
->getSubRegIndex(NewSrcReg
, OldSrc
.getReg()) !=
310 TRI
->getSubRegIndex(NewDestReg
, OldDest
.getReg()))
313 // Safe to change the instruction.
314 // Don't set src flags, as we don't know if we're also killing the superreg.
315 // However, the superregister might not be defined; make it explicit that
316 // we don't care about the higher bits by reading it as Undef, and adding
317 // an imp-use on the original subregister.
318 MachineInstrBuilder MIB
=
319 BuildMI(*MF
, MI
->getDebugLoc(), TII
->get(X86::MOV32rr
), NewDestReg
)
320 .addReg(NewSrcReg
, RegState::Undef
)
321 .addReg(OldSrc
.getReg(), RegState::Implicit
);
323 // Drop imp-defs/uses that would be redundant with the new def/use.
324 for (auto &Op
: MI
->implicit_operands())
325 if (Op
.getReg() != (Op
.isDef() ? NewDestReg
: NewSrcReg
))
331 MachineInstr
*FixupBWInstPass::tryReplaceInstr(MachineInstr
*MI
,
332 MachineBasicBlock
&MBB
) const {
333 // See if this is an instruction of the type we are currently looking for.
334 switch (MI
->getOpcode()) {
337 // Only replace 8 bit loads with the zero extending versions if
338 // in an inner most loop and not optimizing for size. This takes
339 // an extra byte to encode, and provides limited performance upside.
340 if (MachineLoop
*ML
= MLI
->getLoopFor(&MBB
))
341 if (ML
->begin() == ML
->end() && !OptForSize
)
342 return tryReplaceLoad(X86::MOVZX32rm8
, MI
);
346 // Always try to replace 16 bit load with 32 bit zero extending.
347 // Code size is the same, and there is sometimes a perf advantage
348 // from eliminating a false dependence on the upper portion of
350 return tryReplaceLoad(X86::MOVZX32rm16
, MI
);
354 // Always try to replace 8/16 bit copies with a 32 bit copy.
355 // Code size is either less (16) or equal (8), and there is sometimes a
356 // perf advantage from eliminating a false dependence on the upper portion
358 return tryReplaceCopy(MI
);
361 // nothing to do here.
368 void FixupBWInstPass::processBasicBlock(MachineFunction
&MF
,
369 MachineBasicBlock
&MBB
) {
371 // This algorithm doesn't delete the instructions it is replacing
372 // right away. By leaving the existing instructions in place, the
373 // register liveness information doesn't change, and this makes the
374 // analysis that goes on be better than if the replaced instructions
375 // were immediately removed.
377 // This algorithm always creates a replacement instruction
378 // and notes that and the original in a data structure, until the
379 // whole BB has been analyzed. This keeps the replacement instructions
380 // from making it seem as if the larger register might be live.
381 SmallVector
<std::pair
<MachineInstr
*, MachineInstr
*>, 8> MIReplacements
;
383 // Start computing liveness for this block. We iterate from the end to be able
384 // to update this for each instruction.
386 // We run after PEI, so we need to AddPristinesAndCSRs.
387 LiveRegs
.addLiveOuts(MBB
);
389 for (auto I
= MBB
.rbegin(); I
!= MBB
.rend(); ++I
) {
390 MachineInstr
*MI
= &*I
;
392 if (MachineInstr
*NewMI
= tryReplaceInstr(MI
, MBB
))
393 MIReplacements
.push_back(std::make_pair(MI
, NewMI
));
395 // We're done with this instruction, update liveness for the next one.
396 LiveRegs
.stepBackward(*MI
);
399 while (!MIReplacements
.empty()) {
400 MachineInstr
*MI
= MIReplacements
.back().first
;
401 MachineInstr
*NewMI
= MIReplacements
.back().second
;
402 MIReplacements
.pop_back();
403 MBB
.insert(MI
, NewMI
);