Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / X86 / X86FrameLowering.cpp
blobfb8a5396d3d91e9af29941756e5cd3c49d49cbb7
1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "X86FrameLowering.h"
14 #include "X86InstrBuilder.h"
15 #include "X86InstrInfo.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/WinEHFuncInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include <cstdlib>
35 using namespace llvm;
37 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
38 unsigned StackAlignOverride)
39 : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
40 STI.is64Bit() ? -8 : -4),
41 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
42 // Cache a bunch of frame-related predicates for this subtarget.
43 SlotSize = TRI->getSlotSize();
44 Is64Bit = STI.is64Bit();
45 IsLP64 = STI.isTarget64BitLP64();
46 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
47 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
48 StackPtr = TRI->getStackRegister();
51 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
52 return !MF.getFrameInfo().hasVarSizedObjects() &&
53 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
56 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
57 /// call frame pseudos can be simplified. Having a FP, as in the default
58 /// implementation, is not sufficient here since we can't always use it.
59 /// Use a more nuanced condition.
60 bool
61 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
62 return hasReservedCallFrame(MF) ||
63 (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
64 TRI->hasBasePointer(MF);
67 // needsFrameIndexResolution - Do we need to perform FI resolution for
68 // this function. Normally, this is required only when the function
69 // has any stack objects. However, FI resolution actually has another job,
70 // not apparent from the title - it resolves callframesetup/destroy
71 // that were not simplified earlier.
72 // So, this is required for x86 functions that have push sequences even
73 // when there are no stack objects.
74 bool
75 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
76 return MF.getFrameInfo().hasStackObjects() ||
77 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
80 /// hasFP - Return true if the specified function should have a dedicated frame
81 /// pointer register. This is true if the function has variable sized allocas
82 /// or if frame pointer elimination is disabled.
83 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
84 const MachineFrameInfo &MFI = MF.getFrameInfo();
85 return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
86 TRI->needsStackRealignment(MF) ||
87 MFI.hasVarSizedObjects() ||
88 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
89 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
90 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
91 MFI.hasStackMap() || MFI.hasPatchPoint() ||
92 MFI.hasCopyImplyingStackAdjustment());
95 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
96 if (IsLP64) {
97 if (isInt<8>(Imm))
98 return X86::SUB64ri8;
99 return X86::SUB64ri32;
100 } else {
101 if (isInt<8>(Imm))
102 return X86::SUB32ri8;
103 return X86::SUB32ri;
107 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
108 if (IsLP64) {
109 if (isInt<8>(Imm))
110 return X86::ADD64ri8;
111 return X86::ADD64ri32;
112 } else {
113 if (isInt<8>(Imm))
114 return X86::ADD32ri8;
115 return X86::ADD32ri;
119 static unsigned getSUBrrOpcode(unsigned isLP64) {
120 return isLP64 ? X86::SUB64rr : X86::SUB32rr;
123 static unsigned getADDrrOpcode(unsigned isLP64) {
124 return isLP64 ? X86::ADD64rr : X86::ADD32rr;
127 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
128 if (IsLP64) {
129 if (isInt<8>(Imm))
130 return X86::AND64ri8;
131 return X86::AND64ri32;
133 if (isInt<8>(Imm))
134 return X86::AND32ri8;
135 return X86::AND32ri;
138 static unsigned getLEArOpcode(unsigned IsLP64) {
139 return IsLP64 ? X86::LEA64r : X86::LEA32r;
142 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
143 /// when it reaches the "return" instruction. We can then pop a stack object
144 /// to this register without worry about clobbering it.
145 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
146 MachineBasicBlock::iterator &MBBI,
147 const X86RegisterInfo *TRI,
148 bool Is64Bit) {
149 const MachineFunction *MF = MBB.getParent();
150 if (MF->callsEHReturn())
151 return 0;
153 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
155 if (MBBI == MBB.end())
156 return 0;
158 switch (MBBI->getOpcode()) {
159 default: return 0;
160 case TargetOpcode::PATCHABLE_RET:
161 case X86::RET:
162 case X86::RETL:
163 case X86::RETQ:
164 case X86::RETIL:
165 case X86::RETIQ:
166 case X86::TCRETURNdi:
167 case X86::TCRETURNri:
168 case X86::TCRETURNmi:
169 case X86::TCRETURNdi64:
170 case X86::TCRETURNri64:
171 case X86::TCRETURNmi64:
172 case X86::EH_RETURN:
173 case X86::EH_RETURN64: {
174 SmallSet<uint16_t, 8> Uses;
175 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
176 MachineOperand &MO = MBBI->getOperand(i);
177 if (!MO.isReg() || MO.isDef())
178 continue;
179 unsigned Reg = MO.getReg();
180 if (!Reg)
181 continue;
182 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
183 Uses.insert(*AI);
186 for (auto CS : AvailableRegs)
187 if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP &&
188 CS != X86::ESP)
189 return CS;
193 return 0;
196 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
197 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
198 unsigned Reg = RegMask.PhysReg;
200 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
201 Reg == X86::AH || Reg == X86::AL)
202 return true;
205 return false;
208 /// Check if the flags need to be preserved before the terminators.
209 /// This would be the case, if the eflags is live-in of the region
210 /// composed by the terminators or live-out of that region, without
211 /// being defined by a terminator.
212 static bool
213 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
214 for (const MachineInstr &MI : MBB.terminators()) {
215 bool BreakNext = false;
216 for (const MachineOperand &MO : MI.operands()) {
217 if (!MO.isReg())
218 continue;
219 unsigned Reg = MO.getReg();
220 if (Reg != X86::EFLAGS)
221 continue;
223 // This terminator needs an eflags that is not defined
224 // by a previous another terminator:
225 // EFLAGS is live-in of the region composed by the terminators.
226 if (!MO.isDef())
227 return true;
228 // This terminator defines the eflags, i.e., we don't need to preserve it.
229 // However, we still need to check this specific terminator does not
230 // read a live-in value.
231 BreakNext = true;
233 // We found a definition of the eflags, no need to preserve them.
234 if (BreakNext)
235 return false;
238 // None of the terminators use or define the eflags.
239 // Check if they are live-out, that would imply we need to preserve them.
240 for (const MachineBasicBlock *Succ : MBB.successors())
241 if (Succ->isLiveIn(X86::EFLAGS))
242 return true;
244 return false;
247 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
248 /// stack pointer by a constant value.
249 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
250 MachineBasicBlock::iterator &MBBI,
251 const DebugLoc &DL,
252 int64_t NumBytes, bool InEpilogue) const {
253 bool isSub = NumBytes < 0;
254 uint64_t Offset = isSub ? -NumBytes : NumBytes;
255 MachineInstr::MIFlag Flag =
256 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
258 uint64_t Chunk = (1LL << 31) - 1;
260 if (Offset > Chunk) {
261 // Rather than emit a long series of instructions for large offsets,
262 // load the offset into a register and do one sub/add
263 unsigned Reg = 0;
264 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
266 if (isSub && !isEAXLiveIn(MBB))
267 Reg = Rax;
268 else
269 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
271 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
272 unsigned AddSubRROpc =
273 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
274 if (Reg) {
275 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
276 .addImm(Offset)
277 .setMIFlag(Flag);
278 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
279 .addReg(StackPtr)
280 .addReg(Reg);
281 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
282 return;
283 } else if (Offset > 8 * Chunk) {
284 // If we would need more than 8 add or sub instructions (a >16GB stack
285 // frame), it's worth spilling RAX to materialize this immediate.
286 // pushq %rax
287 // movabsq +-$Offset+-SlotSize, %rax
288 // addq %rsp, %rax
289 // xchg %rax, (%rsp)
290 // movq (%rsp), %rsp
291 assert(Is64Bit && "can't have 32-bit 16GB stack frame");
292 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
293 .addReg(Rax, RegState::Kill)
294 .setMIFlag(Flag);
295 // Subtract is not commutative, so negate the offset and always use add.
296 // Subtract 8 less and add 8 more to account for the PUSH we just did.
297 if (isSub)
298 Offset = -(Offset - SlotSize);
299 else
300 Offset = Offset + SlotSize;
301 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
302 .addImm(Offset)
303 .setMIFlag(Flag);
304 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
305 .addReg(Rax)
306 .addReg(StackPtr);
307 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
308 // Exchange the new SP in RAX with the top of the stack.
309 addRegOffset(
310 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
311 StackPtr, false, 0);
312 // Load new SP from the top of the stack into RSP.
313 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
314 StackPtr, false, 0);
315 return;
319 while (Offset) {
320 uint64_t ThisVal = std::min(Offset, Chunk);
321 if (ThisVal == SlotSize) {
322 // Use push / pop for slot sized adjustments as a size optimization. We
323 // need to find a dead register when using pop.
324 unsigned Reg = isSub
325 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
326 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
327 if (Reg) {
328 unsigned Opc = isSub
329 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
330 : (Is64Bit ? X86::POP64r : X86::POP32r);
331 BuildMI(MBB, MBBI, DL, TII.get(Opc))
332 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
333 .setMIFlag(Flag);
334 Offset -= ThisVal;
335 continue;
339 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
340 .setMIFlag(Flag);
342 Offset -= ThisVal;
346 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
347 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
348 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
349 assert(Offset != 0 && "zero offset stack adjustment requested");
351 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
352 // is tricky.
353 bool UseLEA;
354 if (!InEpilogue) {
355 // Check if inserting the prologue at the beginning
356 // of MBB would require to use LEA operations.
357 // We need to use LEA operations if EFLAGS is live in, because
358 // it means an instruction will read it before it gets defined.
359 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
360 } else {
361 // If we can use LEA for SP but we shouldn't, check that none
362 // of the terminators uses the eflags. Otherwise we will insert
363 // a ADD that will redefine the eflags and break the condition.
364 // Alternatively, we could move the ADD, but this may not be possible
365 // and is an optimization anyway.
366 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
367 if (UseLEA && !STI.useLeaForSP())
368 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
369 // If that assert breaks, that means we do not do the right thing
370 // in canUseAsEpilogue.
371 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
372 "We shouldn't have allowed this insertion point");
375 MachineInstrBuilder MI;
376 if (UseLEA) {
377 MI = addRegOffset(BuildMI(MBB, MBBI, DL,
378 TII.get(getLEArOpcode(Uses64BitFramePtr)),
379 StackPtr),
380 StackPtr, false, Offset);
381 } else {
382 bool IsSub = Offset < 0;
383 uint64_t AbsOffset = IsSub ? -Offset : Offset;
384 unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
385 : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
386 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
387 .addReg(StackPtr)
388 .addImm(AbsOffset);
389 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
391 return MI;
394 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
395 MachineBasicBlock::iterator &MBBI,
396 bool doMergeWithPrevious) const {
397 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
398 (!doMergeWithPrevious && MBBI == MBB.end()))
399 return 0;
401 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
403 PI = skipDebugInstructionsBackward(PI, MBB.begin());
404 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
405 // instruction, and that there are no DBG_VALUE or other instructions between
406 // ADD/SUB/LEA and its corresponding CFI instruction.
407 /* TODO: Add support for the case where there are multiple CFI instructions
408 below the ADD/SUB/LEA, e.g.:
411 cfi_def_cfa_offset
412 cfi_offset
415 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
416 PI = std::prev(PI);
418 unsigned Opc = PI->getOpcode();
419 int Offset = 0;
421 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
422 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
423 PI->getOperand(0).getReg() == StackPtr){
424 assert(PI->getOperand(1).getReg() == StackPtr);
425 Offset = PI->getOperand(2).getImm();
426 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
427 PI->getOperand(0).getReg() == StackPtr &&
428 PI->getOperand(1).getReg() == StackPtr &&
429 PI->getOperand(2).getImm() == 1 &&
430 PI->getOperand(3).getReg() == X86::NoRegister &&
431 PI->getOperand(5).getReg() == X86::NoRegister) {
432 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
433 Offset = PI->getOperand(4).getImm();
434 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
435 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
436 PI->getOperand(0).getReg() == StackPtr) {
437 assert(PI->getOperand(1).getReg() == StackPtr);
438 Offset = -PI->getOperand(2).getImm();
439 } else
440 return 0;
442 PI = MBB.erase(PI);
443 if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
444 if (!doMergeWithPrevious)
445 MBBI = skipDebugInstructionsForward(PI, MBB.end());
447 return Offset;
450 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
451 MachineBasicBlock::iterator MBBI,
452 const DebugLoc &DL,
453 const MCCFIInstruction &CFIInst) const {
454 MachineFunction &MF = *MBB.getParent();
455 unsigned CFIIndex = MF.addFrameInst(CFIInst);
456 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
457 .addCFIIndex(CFIIndex);
460 void X86FrameLowering::emitCalleeSavedFrameMoves(
461 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
462 const DebugLoc &DL) const {
463 MachineFunction &MF = *MBB.getParent();
464 MachineFrameInfo &MFI = MF.getFrameInfo();
465 MachineModuleInfo &MMI = MF.getMMI();
466 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
468 // Add callee saved registers to move list.
469 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
470 if (CSI.empty()) return;
472 // Calculate offsets.
473 for (std::vector<CalleeSavedInfo>::const_iterator
474 I = CSI.begin(), E = CSI.end(); I != E; ++I) {
475 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
476 unsigned Reg = I->getReg();
478 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
479 BuildCFI(MBB, MBBI, DL,
480 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
484 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
485 MachineBasicBlock &MBB,
486 MachineBasicBlock::iterator MBBI,
487 const DebugLoc &DL, bool InProlog) const {
488 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
489 if (STI.isTargetWindowsCoreCLR()) {
490 if (InProlog) {
491 emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
492 } else {
493 emitStackProbeInline(MF, MBB, MBBI, DL, false);
495 } else {
496 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
500 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
501 MachineBasicBlock &PrologMBB) const {
502 const StringRef ChkStkStubSymbol = "__chkstk_stub";
503 MachineInstr *ChkStkStub = nullptr;
505 for (MachineInstr &MI : PrologMBB) {
506 if (MI.isCall() && MI.getOperand(0).isSymbol() &&
507 ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
508 ChkStkStub = &MI;
509 break;
513 if (ChkStkStub != nullptr) {
514 assert(!ChkStkStub->isBundled() &&
515 "Not expecting bundled instructions here");
516 MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
517 assert(std::prev(MBBI) == ChkStkStub &&
518 "MBBI expected after __chkstk_stub.");
519 DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
520 emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
521 ChkStkStub->eraseFromParent();
525 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
526 MachineBasicBlock &MBB,
527 MachineBasicBlock::iterator MBBI,
528 const DebugLoc &DL,
529 bool InProlog) const {
530 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
531 assert(STI.is64Bit() && "different expansion needed for 32 bit");
532 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
533 const TargetInstrInfo &TII = *STI.getInstrInfo();
534 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
536 // RAX contains the number of bytes of desired stack adjustment.
537 // The handling here assumes this value has already been updated so as to
538 // maintain stack alignment.
540 // We need to exit with RSP modified by this amount and execute suitable
541 // page touches to notify the OS that we're growing the stack responsibly.
542 // All stack probing must be done without modifying RSP.
544 // MBB:
545 // SizeReg = RAX;
546 // ZeroReg = 0
547 // CopyReg = RSP
548 // Flags, TestReg = CopyReg - SizeReg
549 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg
550 // LimitReg = gs magic thread env access
551 // if FinalReg >= LimitReg goto ContinueMBB
552 // RoundBB:
553 // RoundReg = page address of FinalReg
554 // LoopMBB:
555 // LoopReg = PHI(LimitReg,ProbeReg)
556 // ProbeReg = LoopReg - PageSize
557 // [ProbeReg] = 0
558 // if (ProbeReg > RoundReg) goto LoopMBB
559 // ContinueMBB:
560 // RSP = RSP - RAX
561 // [rest of original MBB]
563 // Set up the new basic blocks
564 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
565 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
566 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
568 MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
569 MF.insert(MBBIter, RoundMBB);
570 MF.insert(MBBIter, LoopMBB);
571 MF.insert(MBBIter, ContinueMBB);
573 // Split MBB and move the tail portion down to ContinueMBB.
574 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
575 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
576 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
578 // Some useful constants
579 const int64_t ThreadEnvironmentStackLimit = 0x10;
580 const int64_t PageSize = 0x1000;
581 const int64_t PageMask = ~(PageSize - 1);
583 // Registers we need. For the normal case we use virtual
584 // registers. For the prolog expansion we use RAX, RCX and RDX.
585 MachineRegisterInfo &MRI = MF.getRegInfo();
586 const TargetRegisterClass *RegClass = &X86::GR64RegClass;
587 const unsigned SizeReg = InProlog ? (unsigned)X86::RAX
588 : MRI.createVirtualRegister(RegClass),
589 ZeroReg = InProlog ? (unsigned)X86::RCX
590 : MRI.createVirtualRegister(RegClass),
591 CopyReg = InProlog ? (unsigned)X86::RDX
592 : MRI.createVirtualRegister(RegClass),
593 TestReg = InProlog ? (unsigned)X86::RDX
594 : MRI.createVirtualRegister(RegClass),
595 FinalReg = InProlog ? (unsigned)X86::RDX
596 : MRI.createVirtualRegister(RegClass),
597 RoundedReg = InProlog ? (unsigned)X86::RDX
598 : MRI.createVirtualRegister(RegClass),
599 LimitReg = InProlog ? (unsigned)X86::RCX
600 : MRI.createVirtualRegister(RegClass),
601 JoinReg = InProlog ? (unsigned)X86::RCX
602 : MRI.createVirtualRegister(RegClass),
603 ProbeReg = InProlog ? (unsigned)X86::RCX
604 : MRI.createVirtualRegister(RegClass);
606 // SP-relative offsets where we can save RCX and RDX.
607 int64_t RCXShadowSlot = 0;
608 int64_t RDXShadowSlot = 0;
610 // If inlining in the prolog, save RCX and RDX.
611 if (InProlog) {
612 // Compute the offsets. We need to account for things already
613 // pushed onto the stack at this point: return address, frame
614 // pointer (if used), and callee saves.
615 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
616 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
617 const bool HasFP = hasFP(MF);
619 // Check if we need to spill RCX and/or RDX.
620 // Here we assume that no earlier prologue instruction changes RCX and/or
621 // RDX, so checking the block live-ins is enough.
622 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
623 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
624 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
625 // Assign the initial slot to both registers, then change RDX's slot if both
626 // need to be spilled.
627 if (IsRCXLiveIn)
628 RCXShadowSlot = InitSlot;
629 if (IsRDXLiveIn)
630 RDXShadowSlot = InitSlot;
631 if (IsRDXLiveIn && IsRCXLiveIn)
632 RDXShadowSlot += 8;
633 // Emit the saves if needed.
634 if (IsRCXLiveIn)
635 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
636 RCXShadowSlot)
637 .addReg(X86::RCX);
638 if (IsRDXLiveIn)
639 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
640 RDXShadowSlot)
641 .addReg(X86::RDX);
642 } else {
643 // Not in the prolog. Copy RAX to a virtual reg.
644 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
647 // Add code to MBB to check for overflow and set the new target stack pointer
648 // to zero if so.
649 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
650 .addReg(ZeroReg, RegState::Undef)
651 .addReg(ZeroReg, RegState::Undef);
652 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
653 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
654 .addReg(CopyReg)
655 .addReg(SizeReg);
656 BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg)
657 .addReg(TestReg)
658 .addReg(ZeroReg);
660 // FinalReg now holds final stack pointer value, or zero if
661 // allocation would overflow. Compare against the current stack
662 // limit from the thread environment block. Note this limit is the
663 // lowest touched page on the stack, not the point at which the OS
664 // will cause an overflow exception, so this is just an optimization
665 // to avoid unnecessarily touching pages that are below the current
666 // SP but already committed to the stack by the OS.
667 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
668 .addReg(0)
669 .addImm(1)
670 .addReg(0)
671 .addImm(ThreadEnvironmentStackLimit)
672 .addReg(X86::GS);
673 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
674 // Jump if the desired stack pointer is at or above the stack limit.
675 BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB);
677 // Add code to roundMBB to round the final stack pointer to a page boundary.
678 RoundMBB->addLiveIn(FinalReg);
679 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
680 .addReg(FinalReg)
681 .addImm(PageMask);
682 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
684 // LimitReg now holds the current stack limit, RoundedReg page-rounded
685 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
686 // and probe until we reach RoundedReg.
687 if (!InProlog) {
688 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
689 .addReg(LimitReg)
690 .addMBB(RoundMBB)
691 .addReg(ProbeReg)
692 .addMBB(LoopMBB);
695 LoopMBB->addLiveIn(JoinReg);
696 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
697 false, -PageSize);
699 // Probe by storing a byte onto the stack.
700 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
701 .addReg(ProbeReg)
702 .addImm(1)
703 .addReg(0)
704 .addImm(0)
705 .addReg(0)
706 .addImm(0);
708 LoopMBB->addLiveIn(RoundedReg);
709 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
710 .addReg(RoundedReg)
711 .addReg(ProbeReg);
712 BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB);
714 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
716 // If in prolog, restore RDX and RCX.
717 if (InProlog) {
718 if (RCXShadowSlot) // It means we spilled RCX in the prologue.
719 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
720 TII.get(X86::MOV64rm), X86::RCX),
721 X86::RSP, false, RCXShadowSlot);
722 if (RDXShadowSlot) // It means we spilled RDX in the prologue.
723 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
724 TII.get(X86::MOV64rm), X86::RDX),
725 X86::RSP, false, RDXShadowSlot);
728 // Now that the probing is done, add code to continueMBB to update
729 // the stack pointer for real.
730 ContinueMBB->addLiveIn(SizeReg);
731 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
732 .addReg(X86::RSP)
733 .addReg(SizeReg);
735 // Add the control flow edges we need.
736 MBB.addSuccessor(ContinueMBB);
737 MBB.addSuccessor(RoundMBB);
738 RoundMBB->addSuccessor(LoopMBB);
739 LoopMBB->addSuccessor(ContinueMBB);
740 LoopMBB->addSuccessor(LoopMBB);
742 // Mark all the instructions added to the prolog as frame setup.
743 if (InProlog) {
744 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
745 BeforeMBBI->setFlag(MachineInstr::FrameSetup);
747 for (MachineInstr &MI : *RoundMBB) {
748 MI.setFlag(MachineInstr::FrameSetup);
750 for (MachineInstr &MI : *LoopMBB) {
751 MI.setFlag(MachineInstr::FrameSetup);
753 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
754 CMBBI != ContinueMBBI; ++CMBBI) {
755 CMBBI->setFlag(MachineInstr::FrameSetup);
760 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
761 MachineBasicBlock &MBB,
762 MachineBasicBlock::iterator MBBI,
763 const DebugLoc &DL,
764 bool InProlog) const {
765 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
767 // FIXME: Add retpoline support and remove this.
768 if (Is64Bit && IsLargeCodeModel && STI.useRetpolineIndirectCalls())
769 report_fatal_error("Emitting stack probe calls on 64-bit with the large "
770 "code model and retpoline not yet implemented.");
772 unsigned CallOp;
773 if (Is64Bit)
774 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
775 else
776 CallOp = X86::CALLpcrel32;
778 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
780 MachineInstrBuilder CI;
781 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
783 // All current stack probes take AX and SP as input, clobber flags, and
784 // preserve all registers. x86_64 probes leave RSP unmodified.
785 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
786 // For the large code model, we have to call through a register. Use R11,
787 // as it is scratch in all supported calling conventions.
788 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
789 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
790 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
791 } else {
792 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
793 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
796 unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
797 unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
798 CI.addReg(AX, RegState::Implicit)
799 .addReg(SP, RegState::Implicit)
800 .addReg(AX, RegState::Define | RegState::Implicit)
801 .addReg(SP, RegState::Define | RegState::Implicit)
802 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
804 if (STI.isTargetWin64() || !STI.isOSWindows()) {
805 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
806 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
807 // themselves. They also does not clobber %rax so we can reuse it when
808 // adjusting %rsp.
809 // All other platforms do not specify a particular ABI for the stack probe
810 // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
811 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Is64Bit)), SP)
812 .addReg(SP)
813 .addReg(AX);
816 if (InProlog) {
817 // Apply the frame setup flag to all inserted instrs.
818 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
819 ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
823 void X86FrameLowering::emitStackProbeInlineStub(
824 MachineFunction &MF, MachineBasicBlock &MBB,
825 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
827 assert(InProlog && "ChkStkStub called outside prolog!");
829 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
830 .addExternalSymbol("__chkstk_stub");
833 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
834 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
835 // and might require smaller successive adjustments.
836 const uint64_t Win64MaxSEHOffset = 128;
837 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
838 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
839 return SEHFrameOffset & -16;
842 // If we're forcing a stack realignment we can't rely on just the frame
843 // info, we need to know the ABI stack alignment as well in case we
844 // have a call out. Otherwise just make sure we have some alignment - we'll
845 // go with the minimum SlotSize.
846 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
847 const MachineFrameInfo &MFI = MF.getFrameInfo();
848 uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment.
849 unsigned StackAlign = getStackAlignment();
850 if (MF.getFunction().hasFnAttribute("stackrealign")) {
851 if (MFI.hasCalls())
852 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
853 else if (MaxAlign < SlotSize)
854 MaxAlign = SlotSize;
856 return MaxAlign;
859 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
860 MachineBasicBlock::iterator MBBI,
861 const DebugLoc &DL, unsigned Reg,
862 uint64_t MaxAlign) const {
863 uint64_t Val = -MaxAlign;
864 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
865 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
866 .addReg(Reg)
867 .addImm(Val)
868 .setMIFlag(MachineInstr::FrameSetup);
870 // The EFLAGS implicit def is dead.
871 MI->getOperand(3).setIsDead();
874 /// emitPrologue - Push callee-saved registers onto the stack, which
875 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
876 /// space for local variables. Also emit labels used by the exception handler to
877 /// generate the exception handling frames.
880 Here's a gist of what gets emitted:
882 ; Establish frame pointer, if needed
883 [if needs FP]
884 push %rbp
885 .cfi_def_cfa_offset 16
886 .cfi_offset %rbp, -16
887 .seh_pushreg %rpb
888 mov %rsp, %rbp
889 .cfi_def_cfa_register %rbp
891 ; Spill general-purpose registers
892 [for all callee-saved GPRs]
893 pushq %<reg>
894 [if not needs FP]
895 .cfi_def_cfa_offset (offset from RETADDR)
896 .seh_pushreg %<reg>
898 ; If the required stack alignment > default stack alignment
899 ; rsp needs to be re-aligned. This creates a "re-alignment gap"
900 ; of unknown size in the stack frame.
901 [if stack needs re-alignment]
902 and $MASK, %rsp
904 ; Allocate space for locals
905 [if target is Windows and allocated space > 4096 bytes]
906 ; Windows needs special care for allocations larger
907 ; than one page.
908 mov $NNN, %rax
909 call ___chkstk_ms/___chkstk
910 sub %rax, %rsp
911 [else]
912 sub $NNN, %rsp
914 [if needs FP]
915 .seh_stackalloc (size of XMM spill slots)
916 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
917 [else]
918 .seh_stackalloc NNN
920 ; Spill XMMs
921 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
922 ; they may get spilled on any platform, if the current function
923 ; calls @llvm.eh.unwind.init
924 [if needs FP]
925 [for all callee-saved XMM registers]
926 movaps %<xmm reg>, -MMM(%rbp)
927 [for all callee-saved XMM registers]
928 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
929 ; i.e. the offset relative to (%rbp - SEHFrameOffset)
930 [else]
931 [for all callee-saved XMM registers]
932 movaps %<xmm reg>, KKK(%rsp)
933 [for all callee-saved XMM registers]
934 .seh_savexmm %<xmm reg>, KKK
936 .seh_endprologue
938 [if needs base pointer]
939 mov %rsp, %rbx
940 [if needs to restore base pointer]
941 mov %rsp, -MMM(%rbp)
943 ; Emit CFI info
944 [if needs FP]
945 [for all callee-saved registers]
946 .cfi_offset %<reg>, (offset from %rbp)
947 [else]
948 .cfi_def_cfa_offset (offset from RETADDR)
949 [for all callee-saved registers]
950 .cfi_offset %<reg>, (offset from %rsp)
952 Notes:
953 - .seh directives are emitted only for Windows 64 ABI
954 - .cv_fpo directives are emitted on win32 when emitting CodeView
955 - .cfi directives are emitted for all other ABIs
956 - for 32-bit code, substitute %e?? registers for %r??
959 void X86FrameLowering::emitPrologue(MachineFunction &MF,
960 MachineBasicBlock &MBB) const {
961 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
962 "MF used frame lowering for wrong subtarget");
963 MachineBasicBlock::iterator MBBI = MBB.begin();
964 MachineFrameInfo &MFI = MF.getFrameInfo();
965 const Function &Fn = MF.getFunction();
966 MachineModuleInfo &MMI = MF.getMMI();
967 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
968 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
969 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate.
970 bool IsFunclet = MBB.isEHFuncletEntry();
971 EHPersonality Personality = EHPersonality::Unknown;
972 if (Fn.hasPersonalityFn())
973 Personality = classifyEHPersonality(Fn.getPersonalityFn());
974 bool FnHasClrFunclet =
975 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
976 bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
977 bool HasFP = hasFP(MF);
978 bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
979 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
980 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
981 // FIXME: Emit FPO data for EH funclets.
982 bool NeedsWinFPO =
983 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
984 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
985 bool NeedsDwarfCFI =
986 !IsWin64Prologue && (MMI.hasDebugInfo() || Fn.needsUnwindTableEntry());
987 unsigned FramePtr = TRI->getFrameRegister(MF);
988 const unsigned MachineFramePtr =
989 STI.isTarget64BitILP32()
990 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
991 unsigned BasePtr = TRI->getBaseRegister();
992 bool HasWinCFI = false;
994 // Debug location must be unknown since the first debug location is used
995 // to determine the end of the prologue.
996 DebugLoc DL;
998 // Add RETADDR move area to callee saved frame size.
999 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1000 if (TailCallReturnAddrDelta && IsWin64Prologue)
1001 report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1003 if (TailCallReturnAddrDelta < 0)
1004 X86FI->setCalleeSavedFrameSize(
1005 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
1007 bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty();
1009 // The default stack probe size is 4096 if the function has no stackprobesize
1010 // attribute.
1011 unsigned StackProbeSize = 4096;
1012 if (Fn.hasFnAttribute("stack-probe-size"))
1013 Fn.getFnAttribute("stack-probe-size")
1014 .getValueAsString()
1015 .getAsInteger(0, StackProbeSize);
1017 // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1018 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1019 // stack alignment.
1020 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1021 Fn.arg_size() == 2) {
1022 StackSize += 8;
1023 MFI.setStackSize(StackSize);
1024 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1027 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1028 // function, and use up to 128 bytes of stack space, don't have a frame
1029 // pointer, calls, or dynamic alloca then we do not need to adjust the
1030 // stack pointer (we fit in the Red Zone). We also check that we don't
1031 // push and pop from the stack.
1032 if (Is64Bit && !Fn.hasFnAttribute(Attribute::NoRedZone) &&
1033 !TRI->needsStackRealignment(MF) &&
1034 !MFI.hasVarSizedObjects() && // No dynamic alloca.
1035 !MFI.adjustsStack() && // No calls.
1036 !UseStackProbe && // No stack probes.
1037 !IsWin64CC && // Win64 has no Red Zone
1038 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1039 !MF.shouldSplitStack()) { // Regular stack
1040 uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1041 if (HasFP) MinSize += SlotSize;
1042 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1043 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1044 MFI.setStackSize(StackSize);
1047 // Insert stack pointer adjustment for later moving of return addr. Only
1048 // applies to tail call optimized functions where the callee argument stack
1049 // size is bigger than the callers.
1050 if (TailCallReturnAddrDelta < 0) {
1051 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1052 /*InEpilogue=*/false)
1053 .setMIFlag(MachineInstr::FrameSetup);
1056 // Mapping for machine moves:
1058 // DST: VirtualFP AND
1059 // SRC: VirtualFP => DW_CFA_def_cfa_offset
1060 // ELSE => DW_CFA_def_cfa
1062 // SRC: VirtualFP AND
1063 // DST: Register => DW_CFA_def_cfa_register
1065 // ELSE
1066 // OFFSET < 0 => DW_CFA_offset_extended_sf
1067 // REG < 64 => DW_CFA_offset + Reg
1068 // ELSE => DW_CFA_offset_extended
1070 uint64_t NumBytes = 0;
1071 int stackGrowth = -SlotSize;
1073 // Find the funclet establisher parameter
1074 unsigned Establisher = X86::NoRegister;
1075 if (IsClrFunclet)
1076 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1077 else if (IsFunclet)
1078 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1080 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1081 // Immediately spill establisher into the home slot.
1082 // The runtime cares about this.
1083 // MOV64mr %rdx, 16(%rsp)
1084 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1085 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1086 .addReg(Establisher)
1087 .setMIFlag(MachineInstr::FrameSetup);
1088 MBB.addLiveIn(Establisher);
1091 if (HasFP) {
1092 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1094 // Calculate required stack adjustment.
1095 uint64_t FrameSize = StackSize - SlotSize;
1096 // If required, include space for extra hidden slot for stashing base pointer.
1097 if (X86FI->getRestoreBasePointer())
1098 FrameSize += SlotSize;
1100 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1102 // Callee-saved registers are pushed on stack before the stack is realigned.
1103 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1104 NumBytes = alignTo(NumBytes, MaxAlign);
1106 // Save EBP/RBP into the appropriate stack slot.
1107 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1108 .addReg(MachineFramePtr, RegState::Kill)
1109 .setMIFlag(MachineInstr::FrameSetup);
1111 if (NeedsDwarfCFI) {
1112 // Mark the place where EBP/RBP was saved.
1113 // Define the current CFA rule to use the provided offset.
1114 assert(StackSize);
1115 BuildCFI(MBB, MBBI, DL,
1116 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1118 // Change the rule for the FramePtr to be an "offset" rule.
1119 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1120 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1121 nullptr, DwarfFramePtr, 2 * stackGrowth));
1124 if (NeedsWinCFI) {
1125 HasWinCFI = true;
1126 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1127 .addImm(FramePtr)
1128 .setMIFlag(MachineInstr::FrameSetup);
1131 if (!IsWin64Prologue && !IsFunclet) {
1132 // Update EBP with the new base value.
1133 BuildMI(MBB, MBBI, DL,
1134 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1135 FramePtr)
1136 .addReg(StackPtr)
1137 .setMIFlag(MachineInstr::FrameSetup);
1139 if (NeedsDwarfCFI) {
1140 // Mark effective beginning of when frame pointer becomes valid.
1141 // Define the current CFA to use the EBP/RBP register.
1142 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1143 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1144 nullptr, DwarfFramePtr));
1147 if (NeedsWinFPO) {
1148 // .cv_fpo_setframe $FramePtr
1149 HasWinCFI = true;
1150 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1151 .addImm(FramePtr)
1152 .addImm(0)
1153 .setMIFlag(MachineInstr::FrameSetup);
1156 } else {
1157 assert(!IsFunclet && "funclets without FPs not yet implemented");
1158 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1161 // Update the offset adjustment, which is mainly used by codeview to translate
1162 // from ESP to VFRAME relative local variable offsets.
1163 if (!IsFunclet) {
1164 if (HasFP && TRI->needsStackRealignment(MF))
1165 MFI.setOffsetAdjustment(-NumBytes);
1166 else
1167 MFI.setOffsetAdjustment(-StackSize);
1170 // For EH funclets, only allocate enough space for outgoing calls. Save the
1171 // NumBytes value that we would've used for the parent frame.
1172 unsigned ParentFrameNumBytes = NumBytes;
1173 if (IsFunclet)
1174 NumBytes = getWinEHFuncletFrameSize(MF);
1176 // Skip the callee-saved push instructions.
1177 bool PushedRegs = false;
1178 int StackOffset = 2 * stackGrowth;
1180 while (MBBI != MBB.end() &&
1181 MBBI->getFlag(MachineInstr::FrameSetup) &&
1182 (MBBI->getOpcode() == X86::PUSH32r ||
1183 MBBI->getOpcode() == X86::PUSH64r)) {
1184 PushedRegs = true;
1185 unsigned Reg = MBBI->getOperand(0).getReg();
1186 ++MBBI;
1188 if (!HasFP && NeedsDwarfCFI) {
1189 // Mark callee-saved push instruction.
1190 // Define the current CFA rule to use the provided offset.
1191 assert(StackSize);
1192 BuildCFI(MBB, MBBI, DL,
1193 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1194 StackOffset += stackGrowth;
1197 if (NeedsWinCFI) {
1198 HasWinCFI = true;
1199 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1200 .addImm(Reg)
1201 .setMIFlag(MachineInstr::FrameSetup);
1205 // Realign stack after we pushed callee-saved registers (so that we'll be
1206 // able to calculate their offsets from the frame pointer).
1207 // Don't do this for Win64, it needs to realign the stack after the prologue.
1208 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1209 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1210 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1212 if (NeedsWinCFI) {
1213 HasWinCFI = true;
1214 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1215 .addImm(MaxAlign)
1216 .setMIFlag(MachineInstr::FrameSetup);
1220 // If there is an SUB32ri of ESP immediately before this instruction, merge
1221 // the two. This can be the case when tail call elimination is enabled and
1222 // the callee has more arguments then the caller.
1223 NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1225 // Adjust stack pointer: ESP -= numbytes.
1227 // Windows and cygwin/mingw require a prologue helper routine when allocating
1228 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
1229 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
1230 // stack and adjust the stack pointer in one go. The 64-bit version of
1231 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
1232 // responsible for adjusting the stack pointer. Touching the stack at 4K
1233 // increments is necessary to ensure that the guard pages used by the OS
1234 // virtual memory manager are allocated in correct sequence.
1235 uint64_t AlignedNumBytes = NumBytes;
1236 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1237 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1238 if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1239 assert(!X86FI->getUsesRedZone() &&
1240 "The Red Zone is not accounted for in stack probes");
1242 // Check whether EAX is livein for this block.
1243 bool isEAXAlive = isEAXLiveIn(MBB);
1245 if (isEAXAlive) {
1246 if (Is64Bit) {
1247 // Save RAX
1248 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1249 .addReg(X86::RAX, RegState::Kill)
1250 .setMIFlag(MachineInstr::FrameSetup);
1251 } else {
1252 // Save EAX
1253 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1254 .addReg(X86::EAX, RegState::Kill)
1255 .setMIFlag(MachineInstr::FrameSetup);
1259 if (Is64Bit) {
1260 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1261 // Function prologue is responsible for adjusting the stack pointer.
1262 int Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1263 if (isUInt<32>(Alloc)) {
1264 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1265 .addImm(Alloc)
1266 .setMIFlag(MachineInstr::FrameSetup);
1267 } else if (isInt<32>(Alloc)) {
1268 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1269 .addImm(Alloc)
1270 .setMIFlag(MachineInstr::FrameSetup);
1271 } else {
1272 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1273 .addImm(Alloc)
1274 .setMIFlag(MachineInstr::FrameSetup);
1276 } else {
1277 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1278 // We'll also use 4 already allocated bytes for EAX.
1279 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1280 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1281 .setMIFlag(MachineInstr::FrameSetup);
1284 // Call __chkstk, __chkstk_ms, or __alloca.
1285 emitStackProbe(MF, MBB, MBBI, DL, true);
1287 if (isEAXAlive) {
1288 // Restore RAX/EAX
1289 MachineInstr *MI;
1290 if (Is64Bit)
1291 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1292 StackPtr, false, NumBytes - 8);
1293 else
1294 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1295 StackPtr, false, NumBytes - 4);
1296 MI->setFlag(MachineInstr::FrameSetup);
1297 MBB.insert(MBBI, MI);
1299 } else if (NumBytes) {
1300 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1303 if (NeedsWinCFI && NumBytes) {
1304 HasWinCFI = true;
1305 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1306 .addImm(NumBytes)
1307 .setMIFlag(MachineInstr::FrameSetup);
1310 int SEHFrameOffset = 0;
1311 unsigned SPOrEstablisher;
1312 if (IsFunclet) {
1313 if (IsClrFunclet) {
1314 // The establisher parameter passed to a CLR funclet is actually a pointer
1315 // to the (mostly empty) frame of its nearest enclosing funclet; we have
1316 // to find the root function establisher frame by loading the PSPSym from
1317 // the intermediate frame.
1318 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1319 MachinePointerInfo NoInfo;
1320 MBB.addLiveIn(Establisher);
1321 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1322 Establisher, false, PSPSlotOffset)
1323 .addMemOperand(MF.getMachineMemOperand(
1324 NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1326 // Save the root establisher back into the current funclet's (mostly
1327 // empty) frame, in case a sub-funclet or the GC needs it.
1328 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1329 false, PSPSlotOffset)
1330 .addReg(Establisher)
1331 .addMemOperand(
1332 MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1333 MachineMemOperand::MOVolatile,
1334 SlotSize, SlotSize));
1336 SPOrEstablisher = Establisher;
1337 } else {
1338 SPOrEstablisher = StackPtr;
1341 if (IsWin64Prologue && HasFP) {
1342 // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1343 // this calculation on the incoming establisher, which holds the value of
1344 // RSP from the parent frame at the end of the prologue.
1345 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1346 if (SEHFrameOffset)
1347 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1348 SPOrEstablisher, false, SEHFrameOffset);
1349 else
1350 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1351 .addReg(SPOrEstablisher);
1353 // If this is not a funclet, emit the CFI describing our frame pointer.
1354 if (NeedsWinCFI && !IsFunclet) {
1355 assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1356 HasWinCFI = true;
1357 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1358 .addImm(FramePtr)
1359 .addImm(SEHFrameOffset)
1360 .setMIFlag(MachineInstr::FrameSetup);
1361 if (isAsynchronousEHPersonality(Personality))
1362 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1364 } else if (IsFunclet && STI.is32Bit()) {
1365 // Reset EBP / ESI to something good for funclets.
1366 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1367 // If we're a catch funclet, we can be returned to via catchret. Save ESP
1368 // into the registration node so that the runtime will restore it for us.
1369 if (!MBB.isCleanupFuncletEntry()) {
1370 assert(Personality == EHPersonality::MSVC_CXX);
1371 unsigned FrameReg;
1372 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1373 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1374 // ESP is the first field, so no extra displacement is needed.
1375 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1376 false, EHRegOffset)
1377 .addReg(X86::ESP);
1381 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1382 const MachineInstr &FrameInstr = *MBBI;
1383 ++MBBI;
1385 if (NeedsWinCFI) {
1386 int FI;
1387 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1388 if (X86::FR64RegClass.contains(Reg)) {
1389 unsigned IgnoredFrameReg;
1390 int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
1391 Offset += SEHFrameOffset;
1393 HasWinCFI = true;
1394 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1395 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1396 .addImm(Reg)
1397 .addImm(Offset)
1398 .setMIFlag(MachineInstr::FrameSetup);
1404 if (NeedsWinCFI && HasWinCFI)
1405 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1406 .setMIFlag(MachineInstr::FrameSetup);
1408 if (FnHasClrFunclet && !IsFunclet) {
1409 // Save the so-called Initial-SP (i.e. the value of the stack pointer
1410 // immediately after the prolog) into the PSPSlot so that funclets
1411 // and the GC can recover it.
1412 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1413 auto PSPInfo = MachinePointerInfo::getFixedStack(
1414 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1415 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1416 PSPSlotOffset)
1417 .addReg(StackPtr)
1418 .addMemOperand(MF.getMachineMemOperand(
1419 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1420 SlotSize, SlotSize));
1423 // Realign stack after we spilled callee-saved registers (so that we'll be
1424 // able to calculate their offsets from the frame pointer).
1425 // Win64 requires aligning the stack after the prologue.
1426 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1427 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1428 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1431 // We already dealt with stack realignment and funclets above.
1432 if (IsFunclet && STI.is32Bit())
1433 return;
1435 // If we need a base pointer, set it up here. It's whatever the value
1436 // of the stack pointer is at this point. Any variable size objects
1437 // will be allocated after this, so we can still use the base pointer
1438 // to reference locals.
1439 if (TRI->hasBasePointer(MF)) {
1440 // Update the base pointer with the current stack pointer.
1441 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1442 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1443 .addReg(SPOrEstablisher)
1444 .setMIFlag(MachineInstr::FrameSetup);
1445 if (X86FI->getRestoreBasePointer()) {
1446 // Stash value of base pointer. Saving RSP instead of EBP shortens
1447 // dependence chain. Used by SjLj EH.
1448 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1449 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1450 FramePtr, true, X86FI->getRestoreBasePointerOffset())
1451 .addReg(SPOrEstablisher)
1452 .setMIFlag(MachineInstr::FrameSetup);
1455 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1456 // Stash the value of the frame pointer relative to the base pointer for
1457 // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1458 // it recovers the frame pointer from the base pointer rather than the
1459 // other way around.
1460 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1461 unsigned UsedReg;
1462 int Offset =
1463 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1464 assert(UsedReg == BasePtr);
1465 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1466 .addReg(FramePtr)
1467 .setMIFlag(MachineInstr::FrameSetup);
1471 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1472 // Mark end of stack pointer adjustment.
1473 if (!HasFP && NumBytes) {
1474 // Define the current CFA rule to use the provided offset.
1475 assert(StackSize);
1476 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1477 nullptr, -StackSize + stackGrowth));
1480 // Emit DWARF info specifying the offsets of the callee-saved registers.
1481 emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1484 // X86 Interrupt handling function cannot assume anything about the direction
1485 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1486 // in each prologue of interrupt handler function.
1488 // FIXME: Create "cld" instruction only in these cases:
1489 // 1. The interrupt handling function uses any of the "rep" instructions.
1490 // 2. Interrupt handling function calls another function.
1492 if (Fn.getCallingConv() == CallingConv::X86_INTR)
1493 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1494 .setMIFlag(MachineInstr::FrameSetup);
1496 // At this point we know if the function has WinCFI or not.
1497 MF.setHasWinCFI(HasWinCFI);
1500 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1501 const MachineFunction &MF) const {
1502 // We can't use LEA instructions for adjusting the stack pointer if we don't
1503 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used
1504 // to deallocate the stack.
1505 // This means that we can use LEA for SP in two situations:
1506 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1507 // 2. We *have* a frame pointer which means we are permitted to use LEA.
1508 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1511 static bool isFuncletReturnInstr(MachineInstr &MI) {
1512 switch (MI.getOpcode()) {
1513 case X86::CATCHRET:
1514 case X86::CLEANUPRET:
1515 return true;
1516 default:
1517 return false;
1519 llvm_unreachable("impossible");
1522 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1523 // stack. It holds a pointer to the bottom of the root function frame. The
1524 // establisher frame pointer passed to a nested funclet may point to the
1525 // (mostly empty) frame of its parent funclet, but it will need to find
1526 // the frame of the root function to access locals. To facilitate this,
1527 // every funclet copies the pointer to the bottom of the root function
1528 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1529 // same offset for the PSPSym in the root function frame that's used in the
1530 // funclets' frames allows each funclet to dynamically accept any ancestor
1531 // frame as its establisher argument (the runtime doesn't guarantee the
1532 // immediate parent for some reason lost to history), and also allows the GC,
1533 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1534 // frame with only a single offset reported for the entire method.
1535 unsigned
1536 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1537 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1538 unsigned SPReg;
1539 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1540 /*IgnoreSPUpdates*/ true);
1541 assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1542 return static_cast<unsigned>(Offset);
1545 unsigned
1546 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1547 // This is the size of the pushed CSRs.
1548 unsigned CSSize =
1549 MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
1550 // This is the amount of stack a funclet needs to allocate.
1551 unsigned UsedSize;
1552 EHPersonality Personality =
1553 classifyEHPersonality(MF.getFunction().getPersonalityFn());
1554 if (Personality == EHPersonality::CoreCLR) {
1555 // CLR funclets need to hold enough space to include the PSPSym, at the
1556 // same offset from the stack pointer (immediately after the prolog) as it
1557 // resides at in the main function.
1558 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1559 } else {
1560 // Other funclets just need enough stack for outgoing call arguments.
1561 UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1563 // RBP is not included in the callee saved register block. After pushing RBP,
1564 // everything is 16 byte aligned. Everything we allocate before an outgoing
1565 // call must also be 16 byte aligned.
1566 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
1567 // Subtract out the size of the callee saved registers. This is how much stack
1568 // each funclet will allocate.
1569 return FrameSizeMinusRBP - CSSize;
1572 static bool isTailCallOpcode(unsigned Opc) {
1573 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1574 Opc == X86::TCRETURNmi ||
1575 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1576 Opc == X86::TCRETURNmi64;
1579 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1580 MachineBasicBlock &MBB) const {
1581 const MachineFrameInfo &MFI = MF.getFrameInfo();
1582 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1583 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
1584 MachineBasicBlock::iterator MBBI = Terminator;
1585 DebugLoc DL;
1586 if (MBBI != MBB.end())
1587 DL = MBBI->getDebugLoc();
1588 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1589 const bool Is64BitILP32 = STI.isTarget64BitILP32();
1590 unsigned FramePtr = TRI->getFrameRegister(MF);
1591 unsigned MachineFramePtr =
1592 Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
1594 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1595 bool NeedsWin64CFI =
1596 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
1597 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
1599 // Get the number of bytes to allocate from the FrameInfo.
1600 uint64_t StackSize = MFI.getStackSize();
1601 uint64_t MaxAlign = calculateMaxStackAlign(MF);
1602 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1603 bool HasFP = hasFP(MF);
1604 uint64_t NumBytes = 0;
1606 bool NeedsDwarfCFI =
1607 (!MF.getTarget().getTargetTriple().isOSDarwin() &&
1608 !MF.getTarget().getTargetTriple().isOSWindows()) &&
1609 (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
1611 if (IsFunclet) {
1612 assert(HasFP && "EH funclets without FP not yet implemented");
1613 NumBytes = getWinEHFuncletFrameSize(MF);
1614 } else if (HasFP) {
1615 // Calculate required stack adjustment.
1616 uint64_t FrameSize = StackSize - SlotSize;
1617 NumBytes = FrameSize - CSSize;
1619 // Callee-saved registers were pushed on stack before the stack was
1620 // realigned.
1621 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1622 NumBytes = alignTo(FrameSize, MaxAlign);
1623 } else {
1624 NumBytes = StackSize - CSSize;
1626 uint64_t SEHStackAllocAmt = NumBytes;
1628 if (HasFP) {
1629 // Pop EBP.
1630 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1631 MachineFramePtr)
1632 .setMIFlag(MachineInstr::FrameDestroy);
1633 if (NeedsDwarfCFI) {
1634 unsigned DwarfStackPtr =
1635 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
1636 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa(
1637 nullptr, DwarfStackPtr, -SlotSize));
1638 --MBBI;
1642 MachineBasicBlock::iterator FirstCSPop = MBBI;
1643 // Skip the callee-saved pop instructions.
1644 while (MBBI != MBB.begin()) {
1645 MachineBasicBlock::iterator PI = std::prev(MBBI);
1646 unsigned Opc = PI->getOpcode();
1648 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
1649 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1650 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
1651 break;
1652 FirstCSPop = PI;
1655 --MBBI;
1657 MBBI = FirstCSPop;
1659 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
1660 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
1662 if (MBBI != MBB.end())
1663 DL = MBBI->getDebugLoc();
1665 // If there is an ADD32ri or SUB32ri of ESP immediately before this
1666 // instruction, merge the two instructions.
1667 if (NumBytes || MFI.hasVarSizedObjects())
1668 NumBytes += mergeSPUpdates(MBB, MBBI, true);
1670 // If dynamic alloca is used, then reset esp to point to the last callee-saved
1671 // slot before popping them off! Same applies for the case, when stack was
1672 // realigned. Don't do this if this was a funclet epilogue, since the funclets
1673 // will not do realignment or dynamic stack allocation.
1674 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
1675 !IsFunclet) {
1676 if (TRI->needsStackRealignment(MF))
1677 MBBI = FirstCSPop;
1678 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1679 uint64_t LEAAmount =
1680 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1682 // There are only two legal forms of epilogue:
1683 // - add SEHAllocationSize, %rsp
1684 // - lea SEHAllocationSize(%FramePtr), %rsp
1686 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1687 // However, we may use this sequence if we have a frame pointer because the
1688 // effects of the prologue can safely be undone.
1689 if (LEAAmount != 0) {
1690 unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1691 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1692 FramePtr, false, LEAAmount);
1693 --MBBI;
1694 } else {
1695 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1696 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1697 .addReg(FramePtr);
1698 --MBBI;
1700 } else if (NumBytes) {
1701 // Adjust stack pointer back: ESP += numbytes.
1702 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
1703 if (!hasFP(MF) && NeedsDwarfCFI) {
1704 // Define the current CFA rule to use the provided offset.
1705 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1706 nullptr, -CSSize - SlotSize));
1708 --MBBI;
1711 // Windows unwinder will not invoke function's exception handler if IP is
1712 // either in prologue or in epilogue. This behavior causes a problem when a
1713 // call immediately precedes an epilogue, because the return address points
1714 // into the epilogue. To cope with that, we insert an epilogue marker here,
1715 // then replace it with a 'nop' if it ends up immediately after a CALL in the
1716 // final emitted code.
1717 if (NeedsWin64CFI && MF.hasWinCFI())
1718 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1720 if (!hasFP(MF) && NeedsDwarfCFI) {
1721 MBBI = FirstCSPop;
1722 int64_t Offset = -CSSize - SlotSize;
1723 // Mark callee-saved pop instruction.
1724 // Define the current CFA rule to use the provided offset.
1725 while (MBBI != MBB.end()) {
1726 MachineBasicBlock::iterator PI = MBBI;
1727 unsigned Opc = PI->getOpcode();
1728 ++MBBI;
1729 if (Opc == X86::POP32r || Opc == X86::POP64r) {
1730 Offset += SlotSize;
1731 BuildCFI(MBB, MBBI, DL,
1732 MCCFIInstruction::createDefCfaOffset(nullptr, Offset));
1737 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
1738 // Add the return addr area delta back since we are not tail calling.
1739 int Offset = -1 * X86FI->getTCReturnAddrDelta();
1740 assert(Offset >= 0 && "TCDelta should never be positive");
1741 if (Offset) {
1742 // Check for possible merge with preceding ADD instruction.
1743 Offset += mergeSPUpdates(MBB, Terminator, true);
1744 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
1749 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1750 unsigned &FrameReg) const {
1751 const MachineFrameInfo &MFI = MF.getFrameInfo();
1753 bool IsFixed = MFI.isFixedObjectIndex(FI);
1754 // We can't calculate offset from frame pointer if the stack is realigned,
1755 // so enforce usage of stack/base pointer. The base pointer is used when we
1756 // have dynamic allocas in addition to dynamic realignment.
1757 if (TRI->hasBasePointer(MF))
1758 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
1759 else if (TRI->needsStackRealignment(MF))
1760 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
1761 else
1762 FrameReg = TRI->getFrameRegister(MF);
1764 // Offset will hold the offset from the stack pointer at function entry to the
1765 // object.
1766 // We need to factor in additional offsets applied during the prologue to the
1767 // frame, base, and stack pointer depending on which is used.
1768 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
1769 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1770 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1771 uint64_t StackSize = MFI.getStackSize();
1772 bool HasFP = hasFP(MF);
1773 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1774 int64_t FPDelta = 0;
1776 if (IsWin64Prologue) {
1777 assert(!MFI.hasCalls() || (StackSize % 16) == 8);
1779 // Calculate required stack adjustment.
1780 uint64_t FrameSize = StackSize - SlotSize;
1781 // If required, include space for extra hidden slot for stashing base pointer.
1782 if (X86FI->getRestoreBasePointer())
1783 FrameSize += SlotSize;
1784 uint64_t NumBytes = FrameSize - CSSize;
1786 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1787 if (FI && FI == X86FI->getFAIndex())
1788 return -SEHFrameOffset;
1790 // FPDelta is the offset from the "traditional" FP location of the old base
1791 // pointer followed by return address and the location required by the
1792 // restricted Win64 prologue.
1793 // Add FPDelta to all offsets below that go through the frame pointer.
1794 FPDelta = FrameSize - SEHFrameOffset;
1795 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
1796 "FPDelta isn't aligned per the Win64 ABI!");
1800 if (TRI->hasBasePointer(MF)) {
1801 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1802 if (FI < 0) {
1803 // Skip the saved EBP.
1804 return Offset + SlotSize + FPDelta;
1805 } else {
1806 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1807 return Offset + StackSize;
1809 } else if (TRI->needsStackRealignment(MF)) {
1810 if (FI < 0) {
1811 // Skip the saved EBP.
1812 return Offset + SlotSize + FPDelta;
1813 } else {
1814 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1815 return Offset + StackSize;
1817 // FIXME: Support tail calls
1818 } else {
1819 if (!HasFP)
1820 return Offset + StackSize;
1822 // Skip the saved EBP.
1823 Offset += SlotSize;
1825 // Skip the RETADDR move area
1826 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1827 if (TailCallReturnAddrDelta < 0)
1828 Offset -= TailCallReturnAddrDelta;
1831 return Offset + FPDelta;
1834 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF,
1835 int FI, unsigned &FrameReg,
1836 int Adjustment) const {
1837 const MachineFrameInfo &MFI = MF.getFrameInfo();
1838 FrameReg = TRI->getStackRegister();
1839 return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment;
1843 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
1844 int FI, unsigned &FrameReg,
1845 bool IgnoreSPUpdates) const {
1847 const MachineFrameInfo &MFI = MF.getFrameInfo();
1848 // Does not include any dynamic realign.
1849 const uint64_t StackSize = MFI.getStackSize();
1850 // LLVM arranges the stack as follows:
1851 // ...
1852 // ARG2
1853 // ARG1
1854 // RETADDR
1855 // PUSH RBP <-- RBP points here
1856 // PUSH CSRs
1857 // ~~~~~~~ <-- possible stack realignment (non-win64)
1858 // ...
1859 // STACK OBJECTS
1860 // ... <-- RSP after prologue points here
1861 // ~~~~~~~ <-- possible stack realignment (win64)
1863 // if (hasVarSizedObjects()):
1864 // ... <-- "base pointer" (ESI/RBX) points here
1865 // DYNAMIC ALLOCAS
1866 // ... <-- RSP points here
1868 // Case 1: In the simple case of no stack realignment and no dynamic
1869 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1870 // with fixed offsets from RSP.
1872 // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1873 // stack objects are addressed with RBP and regular stack objects with RSP.
1875 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1876 // to address stack arguments for outgoing calls and nothing else. The "base
1877 // pointer" points to local variables, and RBP points to fixed objects.
1879 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1880 // answer we give is relative to the SP after the prologue, and not the
1881 // SP in the middle of the function.
1883 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
1884 !STI.isTargetWin64())
1885 return getFrameIndexReference(MF, FI, FrameReg);
1887 // If !hasReservedCallFrame the function might have SP adjustement in the
1888 // body. So, even though the offset is statically known, it depends on where
1889 // we are in the function.
1890 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
1891 if (!IgnoreSPUpdates && !TFI->hasReservedCallFrame(MF))
1892 return getFrameIndexReference(MF, FI, FrameReg);
1894 // We don't handle tail calls, and shouldn't be seeing them either.
1895 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
1896 "we don't handle this case!");
1898 // This is how the math works out:
1900 // %rsp grows (i.e. gets lower) left to right. Each box below is
1901 // one word (eight bytes). Obj0 is the stack slot we're trying to
1902 // get to.
1904 // ----------------------------------
1905 // | BP | Obj0 | Obj1 | ... | ObjN |
1906 // ----------------------------------
1907 // ^ ^ ^ ^
1908 // A B C E
1910 // A is the incoming stack pointer.
1911 // (B - A) is the local area offset (-8 for x86-64) [1]
1912 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
1914 // |(E - B)| is the StackSize (absolute value, positive). For a
1915 // stack that grown down, this works out to be (B - E). [3]
1917 // E is also the value of %rsp after stack has been set up, and we
1918 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
1919 // (C - E) == (C - A) - (B - A) + (B - E)
1920 // { Using [1], [2] and [3] above }
1921 // == getObjectOffset - LocalAreaOffset + StackSize
1923 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
1926 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1927 MachineFunction &MF, const TargetRegisterInfo *TRI,
1928 std::vector<CalleeSavedInfo> &CSI) const {
1929 MachineFrameInfo &MFI = MF.getFrameInfo();
1930 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1932 unsigned CalleeSavedFrameSize = 0;
1933 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1935 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1937 if (TailCallReturnAddrDelta < 0) {
1938 // create RETURNADDR area
1939 // arg
1940 // arg
1941 // RETADDR
1942 // { ...
1943 // RETADDR area
1944 // ...
1945 // }
1946 // [EBP]
1947 MFI.CreateFixedObject(-TailCallReturnAddrDelta,
1948 TailCallReturnAddrDelta - SlotSize, true);
1951 // Spill the BasePtr if it's used.
1952 if (this->TRI->hasBasePointer(MF)) {
1953 // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
1954 if (MF.hasEHFunclets()) {
1955 int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize);
1956 X86FI->setHasSEHFramePtrSave(true);
1957 X86FI->setSEHFramePtrSaveIndex(FI);
1961 if (hasFP(MF)) {
1962 // emitPrologue always spills frame register the first thing.
1963 SpillSlotOffset -= SlotSize;
1964 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1966 // Since emitPrologue and emitEpilogue will handle spilling and restoring of
1967 // the frame register, we can delete it from CSI list and not have to worry
1968 // about avoiding it later.
1969 unsigned FPReg = TRI->getFrameRegister(MF);
1970 for (unsigned i = 0; i < CSI.size(); ++i) {
1971 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
1972 CSI.erase(CSI.begin() + i);
1973 break;
1978 // Assign slots for GPRs. It increases frame size.
1979 for (unsigned i = CSI.size(); i != 0; --i) {
1980 unsigned Reg = CSI[i - 1].getReg();
1982 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1983 continue;
1985 SpillSlotOffset -= SlotSize;
1986 CalleeSavedFrameSize += SlotSize;
1988 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1989 CSI[i - 1].setFrameIdx(SlotIndex);
1992 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
1993 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
1995 // Assign slots for XMMs.
1996 for (unsigned i = CSI.size(); i != 0; --i) {
1997 unsigned Reg = CSI[i - 1].getReg();
1998 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1999 continue;
2001 // If this is k-register make sure we lookup via the largest legal type.
2002 MVT VT = MVT::Other;
2003 if (X86::VK16RegClass.contains(Reg))
2004 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2006 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2007 unsigned Size = TRI->getSpillSize(*RC);
2008 unsigned Align = TRI->getSpillAlignment(*RC);
2009 // ensure alignment
2010 SpillSlotOffset -= std::abs(SpillSlotOffset) % Align;
2011 // spill into slot
2012 SpillSlotOffset -= Size;
2013 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2014 CSI[i - 1].setFrameIdx(SlotIndex);
2015 MFI.ensureMaxAlignment(Align);
2018 return true;
2021 bool X86FrameLowering::spillCalleeSavedRegisters(
2022 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2023 const std::vector<CalleeSavedInfo> &CSI,
2024 const TargetRegisterInfo *TRI) const {
2025 DebugLoc DL = MBB.findDebugLoc(MI);
2027 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2028 // for us, and there are no XMM CSRs on Win32.
2029 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2030 return true;
2032 // Push GPRs. It increases frame size.
2033 const MachineFunction &MF = *MBB.getParent();
2034 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2035 for (unsigned i = CSI.size(); i != 0; --i) {
2036 unsigned Reg = CSI[i - 1].getReg();
2038 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2039 continue;
2041 const MachineRegisterInfo &MRI = MF.getRegInfo();
2042 bool isLiveIn = MRI.isLiveIn(Reg);
2043 if (!isLiveIn)
2044 MBB.addLiveIn(Reg);
2046 // Decide whether we can add a kill flag to the use.
2047 bool CanKill = !isLiveIn;
2048 // Check if any subregister is live-in
2049 if (CanKill) {
2050 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2051 if (MRI.isLiveIn(*AReg)) {
2052 CanKill = false;
2053 break;
2058 // Do not set a kill flag on values that are also marked as live-in. This
2059 // happens with the @llvm-returnaddress intrinsic and with arguments
2060 // passed in callee saved registers.
2061 // Omitting the kill flags is conservatively correct even if the live-in
2062 // is not used after all.
2063 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2064 .setMIFlag(MachineInstr::FrameSetup);
2067 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2068 // It can be done by spilling XMMs to stack frame.
2069 for (unsigned i = CSI.size(); i != 0; --i) {
2070 unsigned Reg = CSI[i-1].getReg();
2071 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2072 continue;
2074 // If this is k-register make sure we lookup via the largest legal type.
2075 MVT VT = MVT::Other;
2076 if (X86::VK16RegClass.contains(Reg))
2077 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2079 // Add the callee-saved register as live-in. It's killed at the spill.
2080 MBB.addLiveIn(Reg);
2081 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2083 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2084 TRI);
2085 --MI;
2086 MI->setFlag(MachineInstr::FrameSetup);
2087 ++MI;
2090 return true;
2093 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2094 MachineBasicBlock::iterator MBBI,
2095 MachineInstr *CatchRet) const {
2096 // SEH shouldn't use catchret.
2097 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2098 MBB.getParent()->getFunction().getPersonalityFn())) &&
2099 "SEH should not use CATCHRET");
2100 DebugLoc DL = CatchRet->getDebugLoc();
2101 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2103 // Fill EAX/RAX with the address of the target block.
2104 if (STI.is64Bit()) {
2105 // LEA64r CatchRetTarget(%rip), %rax
2106 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2107 .addReg(X86::RIP)
2108 .addImm(0)
2109 .addReg(0)
2110 .addMBB(CatchRetTarget)
2111 .addReg(0);
2112 } else {
2113 // MOV32ri $CatchRetTarget, %eax
2114 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2115 .addMBB(CatchRetTarget);
2118 // Record that we've taken the address of CatchRetTarget and no longer just
2119 // reference it in a terminator.
2120 CatchRetTarget->setHasAddressTaken();
2123 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2124 MachineBasicBlock::iterator MI,
2125 std::vector<CalleeSavedInfo> &CSI,
2126 const TargetRegisterInfo *TRI) const {
2127 if (CSI.empty())
2128 return false;
2130 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2131 // Don't restore CSRs in 32-bit EH funclets. Matches
2132 // spillCalleeSavedRegisters.
2133 if (STI.is32Bit())
2134 return true;
2135 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2136 // funclets. emitEpilogue transforms these to normal jumps.
2137 if (MI->getOpcode() == X86::CATCHRET) {
2138 const Function &F = MBB.getParent()->getFunction();
2139 bool IsSEH = isAsynchronousEHPersonality(
2140 classifyEHPersonality(F.getPersonalityFn()));
2141 if (IsSEH)
2142 return true;
2146 DebugLoc DL = MBB.findDebugLoc(MI);
2148 // Reload XMMs from stack frame.
2149 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2150 unsigned Reg = CSI[i].getReg();
2151 if (X86::GR64RegClass.contains(Reg) ||
2152 X86::GR32RegClass.contains(Reg))
2153 continue;
2155 // If this is k-register make sure we lookup via the largest legal type.
2156 MVT VT = MVT::Other;
2157 if (X86::VK16RegClass.contains(Reg))
2158 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2160 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2161 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2164 // POP GPRs.
2165 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2166 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2167 unsigned Reg = CSI[i].getReg();
2168 if (!X86::GR64RegClass.contains(Reg) &&
2169 !X86::GR32RegClass.contains(Reg))
2170 continue;
2172 BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2173 .setMIFlag(MachineInstr::FrameDestroy);
2175 return true;
2178 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2179 BitVector &SavedRegs,
2180 RegScavenger *RS) const {
2181 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2183 // Spill the BasePtr if it's used.
2184 if (TRI->hasBasePointer(MF)){
2185 unsigned BasePtr = TRI->getBaseRegister();
2186 if (STI.isTarget64BitILP32())
2187 BasePtr = getX86SubSuperRegister(BasePtr, 64);
2188 SavedRegs.set(BasePtr);
2192 static bool
2193 HasNestArgument(const MachineFunction *MF) {
2194 const Function &F = MF->getFunction();
2195 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2196 I != E; I++) {
2197 if (I->hasNestAttr())
2198 return true;
2200 return false;
2203 /// GetScratchRegister - Get a temp register for performing work in the
2204 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2205 /// and the properties of the function either one or two registers will be
2206 /// needed. Set primary to true for the first register, false for the second.
2207 static unsigned
2208 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2209 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2211 // Erlang stuff.
2212 if (CallingConvention == CallingConv::HiPE) {
2213 if (Is64Bit)
2214 return Primary ? X86::R14 : X86::R13;
2215 else
2216 return Primary ? X86::EBX : X86::EDI;
2219 if (Is64Bit) {
2220 if (IsLP64)
2221 return Primary ? X86::R11 : X86::R12;
2222 else
2223 return Primary ? X86::R11D : X86::R12D;
2226 bool IsNested = HasNestArgument(&MF);
2228 if (CallingConvention == CallingConv::X86_FastCall ||
2229 CallingConvention == CallingConv::Fast) {
2230 if (IsNested)
2231 report_fatal_error("Segmented stacks does not support fastcall with "
2232 "nested function.");
2233 return Primary ? X86::EAX : X86::ECX;
2235 if (IsNested)
2236 return Primary ? X86::EDX : X86::EAX;
2237 return Primary ? X86::ECX : X86::EAX;
2240 // The stack limit in the TCB is set to this many bytes above the actual stack
2241 // limit.
2242 static const uint64_t kSplitStackAvailable = 256;
2244 void X86FrameLowering::adjustForSegmentedStacks(
2245 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2246 MachineFrameInfo &MFI = MF.getFrameInfo();
2247 uint64_t StackSize;
2248 unsigned TlsReg, TlsOffset;
2249 DebugLoc DL;
2251 // To support shrink-wrapping we would need to insert the new blocks
2252 // at the right place and update the branches to PrologueMBB.
2253 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2255 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2256 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2257 "Scratch register is live-in");
2259 if (MF.getFunction().isVarArg())
2260 report_fatal_error("Segmented stacks do not support vararg functions.");
2261 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2262 !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2263 !STI.isTargetDragonFly())
2264 report_fatal_error("Segmented stacks not supported on this platform.");
2266 // Eventually StackSize will be calculated by a link-time pass; which will
2267 // also decide whether checking code needs to be injected into this particular
2268 // prologue.
2269 StackSize = MFI.getStackSize();
2271 // Do not generate a prologue for leaf functions with a stack of size zero.
2272 // For non-leaf functions we have to allow for the possibility that the
2273 // callis to a non-split function, as in PR37807. This function could also
2274 // take the address of a non-split function. When the linker tries to adjust
2275 // its non-existent prologue, it would fail with an error. Mark the object
2276 // file so that such failures are not errors. See this Go language bug-report
2277 // https://go-review.googlesource.com/c/go/+/148819/
2278 if (StackSize == 0 && !MFI.hasTailCall()) {
2279 MF.getMMI().setHasNosplitStack(true);
2280 return;
2283 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2284 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2285 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2286 bool IsNested = false;
2288 // We need to know if the function has a nest argument only in 64 bit mode.
2289 if (Is64Bit)
2290 IsNested = HasNestArgument(&MF);
2292 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2293 // allocMBB needs to be last (terminating) instruction.
2295 for (const auto &LI : PrologueMBB.liveins()) {
2296 allocMBB->addLiveIn(LI);
2297 checkMBB->addLiveIn(LI);
2300 if (IsNested)
2301 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2303 MF.push_front(allocMBB);
2304 MF.push_front(checkMBB);
2306 // When the frame size is less than 256 we just compare the stack
2307 // boundary directly to the value of the stack pointer, per gcc.
2308 bool CompareStackPointer = StackSize < kSplitStackAvailable;
2310 // Read the limit off the current stacklet off the stack_guard location.
2311 if (Is64Bit) {
2312 if (STI.isTargetLinux()) {
2313 TlsReg = X86::FS;
2314 TlsOffset = IsLP64 ? 0x70 : 0x40;
2315 } else if (STI.isTargetDarwin()) {
2316 TlsReg = X86::GS;
2317 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2318 } else if (STI.isTargetWin64()) {
2319 TlsReg = X86::GS;
2320 TlsOffset = 0x28; // pvArbitrary, reserved for application use
2321 } else if (STI.isTargetFreeBSD()) {
2322 TlsReg = X86::FS;
2323 TlsOffset = 0x18;
2324 } else if (STI.isTargetDragonFly()) {
2325 TlsReg = X86::FS;
2326 TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2327 } else {
2328 report_fatal_error("Segmented stacks not supported on this platform.");
2331 if (CompareStackPointer)
2332 ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2333 else
2334 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2335 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2337 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2338 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2339 } else {
2340 if (STI.isTargetLinux()) {
2341 TlsReg = X86::GS;
2342 TlsOffset = 0x30;
2343 } else if (STI.isTargetDarwin()) {
2344 TlsReg = X86::GS;
2345 TlsOffset = 0x48 + 90*4;
2346 } else if (STI.isTargetWin32()) {
2347 TlsReg = X86::FS;
2348 TlsOffset = 0x14; // pvArbitrary, reserved for application use
2349 } else if (STI.isTargetDragonFly()) {
2350 TlsReg = X86::FS;
2351 TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2352 } else if (STI.isTargetFreeBSD()) {
2353 report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2354 } else {
2355 report_fatal_error("Segmented stacks not supported on this platform.");
2358 if (CompareStackPointer)
2359 ScratchReg = X86::ESP;
2360 else
2361 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2362 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2364 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2365 STI.isTargetDragonFly()) {
2366 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2367 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2368 } else if (STI.isTargetDarwin()) {
2370 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2371 unsigned ScratchReg2;
2372 bool SaveScratch2;
2373 if (CompareStackPointer) {
2374 // The primary scratch register is available for holding the TLS offset.
2375 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2376 SaveScratch2 = false;
2377 } else {
2378 // Need to use a second register to hold the TLS offset
2379 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2381 // Unfortunately, with fastcc the second scratch register may hold an
2382 // argument.
2383 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2386 // If Scratch2 is live-in then it needs to be saved.
2387 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2388 "Scratch register is live-in and not saved");
2390 if (SaveScratch2)
2391 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2392 .addReg(ScratchReg2, RegState::Kill);
2394 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2395 .addImm(TlsOffset);
2396 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2397 .addReg(ScratchReg)
2398 .addReg(ScratchReg2).addImm(1).addReg(0)
2399 .addImm(0)
2400 .addReg(TlsReg);
2402 if (SaveScratch2)
2403 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2407 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2408 // It jumps to normal execution of the function body.
2409 BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB);
2411 // On 32 bit we first push the arguments size and then the frame size. On 64
2412 // bit, we pass the stack frame size in r10 and the argument size in r11.
2413 if (Is64Bit) {
2414 // Functions with nested arguments use R10, so it needs to be saved across
2415 // the call to _morestack
2417 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2418 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2419 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2420 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2421 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2423 if (IsNested)
2424 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2426 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2427 .addImm(StackSize);
2428 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2429 .addImm(X86FI->getArgumentStackSize());
2430 } else {
2431 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2432 .addImm(X86FI->getArgumentStackSize());
2433 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2434 .addImm(StackSize);
2437 // __morestack is in libgcc
2438 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2439 // Under the large code model, we cannot assume that __morestack lives
2440 // within 2^31 bytes of the call site, so we cannot use pc-relative
2441 // addressing. We cannot perform the call via a temporary register,
2442 // as the rax register may be used to store the static chain, and all
2443 // other suitable registers may be either callee-save or used for
2444 // parameter passing. We cannot use the stack at this point either
2445 // because __morestack manipulates the stack directly.
2447 // To avoid these issues, perform an indirect call via a read-only memory
2448 // location containing the address.
2450 // This solution is not perfect, as it assumes that the .rodata section
2451 // is laid out within 2^31 bytes of each function body, but this seems
2452 // to be sufficient for JIT.
2453 // FIXME: Add retpoline support and remove the error here..
2454 if (STI.useRetpolineIndirectCalls())
2455 report_fatal_error("Emitting morestack calls on 64-bit with the large "
2456 "code model and retpoline not yet implemented.");
2457 BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2458 .addReg(X86::RIP)
2459 .addImm(0)
2460 .addReg(0)
2461 .addExternalSymbol("__morestack_addr")
2462 .addReg(0);
2463 MF.getMMI().setUsesMorestackAddr(true);
2464 } else {
2465 if (Is64Bit)
2466 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2467 .addExternalSymbol("__morestack");
2468 else
2469 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2470 .addExternalSymbol("__morestack");
2473 if (IsNested)
2474 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2475 else
2476 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2478 allocMBB->addSuccessor(&PrologueMBB);
2480 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
2481 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
2483 #ifdef EXPENSIVE_CHECKS
2484 MF.verify();
2485 #endif
2488 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2489 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2490 /// to fields it needs, through a named metadata node "hipe.literals" containing
2491 /// name-value pairs.
2492 static unsigned getHiPELiteral(
2493 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2494 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2495 MDNode *Node = HiPELiteralsMD->getOperand(i);
2496 if (Node->getNumOperands() != 2) continue;
2497 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2498 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2499 if (!NodeName || !NodeVal) continue;
2500 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2501 if (ValConst && NodeName->getString() == LiteralName) {
2502 return ValConst->getZExtValue();
2506 report_fatal_error("HiPE literal " + LiteralName
2507 + " required but not provided");
2510 /// Erlang programs may need a special prologue to handle the stack size they
2511 /// might need at runtime. That is because Erlang/OTP does not implement a C
2512 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2513 /// (for more information see Eric Stenman's Ph.D. thesis:
2514 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2516 /// CheckStack:
2517 /// temp0 = sp - MaxStack
2518 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2519 /// OldStart:
2520 /// ...
2521 /// IncStack:
2522 /// call inc_stack # doubles the stack space
2523 /// temp0 = sp - MaxStack
2524 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2525 void X86FrameLowering::adjustForHiPEPrologue(
2526 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2527 MachineFrameInfo &MFI = MF.getFrameInfo();
2528 DebugLoc DL;
2530 // To support shrink-wrapping we would need to insert the new blocks
2531 // at the right place and update the branches to PrologueMBB.
2532 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2534 // HiPE-specific values
2535 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2536 ->getNamedMetadata("hipe.literals");
2537 if (!HiPELiteralsMD)
2538 report_fatal_error(
2539 "Can't generate HiPE prologue without runtime parameters");
2540 const unsigned HipeLeafWords
2541 = getHiPELiteral(HiPELiteralsMD,
2542 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2543 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2544 const unsigned Guaranteed = HipeLeafWords * SlotSize;
2545 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
2546 MF.getFunction().arg_size() - CCRegisteredArgs : 0;
2547 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
2549 assert(STI.isTargetLinux() &&
2550 "HiPE prologue is only supported on Linux operating systems.");
2552 // Compute the largest caller's frame that is needed to fit the callees'
2553 // frames. This 'MaxStack' is computed from:
2555 // a) the fixed frame size, which is the space needed for all spilled temps,
2556 // b) outgoing on-stack parameter areas, and
2557 // c) the minimum stack space this function needs to make available for the
2558 // functions it calls (a tunable ABI property).
2559 if (MFI.hasCalls()) {
2560 unsigned MoreStackForCalls = 0;
2562 for (auto &MBB : MF) {
2563 for (auto &MI : MBB) {
2564 if (!MI.isCall())
2565 continue;
2567 // Get callee operand.
2568 const MachineOperand &MO = MI.getOperand(0);
2570 // Only take account of global function calls (no closures etc.).
2571 if (!MO.isGlobal())
2572 continue;
2574 const Function *F = dyn_cast<Function>(MO.getGlobal());
2575 if (!F)
2576 continue;
2578 // Do not update 'MaxStack' for primitive and built-in functions
2579 // (encoded with names either starting with "erlang."/"bif_" or not
2580 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2581 // "_", such as the BIF "suspend_0") as they are executed on another
2582 // stack.
2583 if (F->getName().find("erlang.") != StringRef::npos ||
2584 F->getName().find("bif_") != StringRef::npos ||
2585 F->getName().find_first_of("._") == StringRef::npos)
2586 continue;
2588 unsigned CalleeStkArity =
2589 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2590 if (HipeLeafWords - 1 > CalleeStkArity)
2591 MoreStackForCalls = std::max(MoreStackForCalls,
2592 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2595 MaxStack += MoreStackForCalls;
2598 // If the stack frame needed is larger than the guaranteed then runtime checks
2599 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2600 if (MaxStack > Guaranteed) {
2601 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2602 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2604 for (const auto &LI : PrologueMBB.liveins()) {
2605 stackCheckMBB->addLiveIn(LI);
2606 incStackMBB->addLiveIn(LI);
2609 MF.push_front(incStackMBB);
2610 MF.push_front(stackCheckMBB);
2612 unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2613 unsigned LEAop, CMPop, CALLop;
2614 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
2615 if (Is64Bit) {
2616 SPReg = X86::RSP;
2617 PReg = X86::RBP;
2618 LEAop = X86::LEA64r;
2619 CMPop = X86::CMP64rm;
2620 CALLop = X86::CALL64pcrel32;
2621 } else {
2622 SPReg = X86::ESP;
2623 PReg = X86::EBP;
2624 LEAop = X86::LEA32r;
2625 CMPop = X86::CMP32rm;
2626 CALLop = X86::CALLpcrel32;
2629 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2630 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2631 "HiPE prologue scratch register is live-in");
2633 // Create new MBB for StackCheck:
2634 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2635 SPReg, false, -MaxStack);
2636 // SPLimitOffset is in a fixed heap location (pointed by BP).
2637 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2638 .addReg(ScratchReg), PReg, false, SPLimitOffset);
2639 BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB);
2641 // Create new MBB for IncStack:
2642 BuildMI(incStackMBB, DL, TII.get(CALLop)).
2643 addExternalSymbol("inc_stack_0");
2644 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2645 SPReg, false, -MaxStack);
2646 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2647 .addReg(ScratchReg), PReg, false, SPLimitOffset);
2648 BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
2650 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2651 stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2652 incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2653 incStackMBB->addSuccessor(incStackMBB, {1, 100});
2655 #ifdef EXPENSIVE_CHECKS
2656 MF.verify();
2657 #endif
2660 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2661 MachineBasicBlock::iterator MBBI,
2662 const DebugLoc &DL,
2663 int Offset) const {
2665 if (Offset <= 0)
2666 return false;
2668 if (Offset % SlotSize)
2669 return false;
2671 int NumPops = Offset / SlotSize;
2672 // This is only worth it if we have at most 2 pops.
2673 if (NumPops != 1 && NumPops != 2)
2674 return false;
2676 // Handle only the trivial case where the adjustment directly follows
2677 // a call. This is the most common one, anyway.
2678 if (MBBI == MBB.begin())
2679 return false;
2680 MachineBasicBlock::iterator Prev = std::prev(MBBI);
2681 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2682 return false;
2684 unsigned Regs[2];
2685 unsigned FoundRegs = 0;
2687 auto &MRI = MBB.getParent()->getRegInfo();
2688 auto RegMask = Prev->getOperand(1);
2690 auto &RegClass =
2691 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2692 // Try to find up to NumPops free registers.
2693 for (auto Candidate : RegClass) {
2695 // Poor man's liveness:
2696 // Since we're immediately after a call, any register that is clobbered
2697 // by the call and not defined by it can be considered dead.
2698 if (!RegMask.clobbersPhysReg(Candidate))
2699 continue;
2701 // Don't clobber reserved registers
2702 if (MRI.isReserved(Candidate))
2703 continue;
2705 bool IsDef = false;
2706 for (const MachineOperand &MO : Prev->implicit_operands()) {
2707 if (MO.isReg() && MO.isDef() &&
2708 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
2709 IsDef = true;
2710 break;
2714 if (IsDef)
2715 continue;
2717 Regs[FoundRegs++] = Candidate;
2718 if (FoundRegs == (unsigned)NumPops)
2719 break;
2722 if (FoundRegs == 0)
2723 return false;
2725 // If we found only one free register, but need two, reuse the same one twice.
2726 while (FoundRegs < (unsigned)NumPops)
2727 Regs[FoundRegs++] = Regs[0];
2729 for (int i = 0; i < NumPops; ++i)
2730 BuildMI(MBB, MBBI, DL,
2731 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2733 return true;
2736 MachineBasicBlock::iterator X86FrameLowering::
2737 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2738 MachineBasicBlock::iterator I) const {
2739 bool reserveCallFrame = hasReservedCallFrame(MF);
2740 unsigned Opcode = I->getOpcode();
2741 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2742 DebugLoc DL = I->getDebugLoc();
2743 uint64_t Amount = !reserveCallFrame ? TII.getFrameSize(*I) : 0;
2744 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
2745 I = MBB.erase(I);
2746 auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
2748 if (!reserveCallFrame) {
2749 // If the stack pointer can be changed after prologue, turn the
2750 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2751 // adjcallstackdown instruction into 'add ESP, <amt>'
2753 // We need to keep the stack aligned properly. To do this, we round the
2754 // amount of space needed for the outgoing arguments up to the next
2755 // alignment boundary.
2756 unsigned StackAlign = getStackAlignment();
2757 Amount = alignTo(Amount, StackAlign);
2759 MachineModuleInfo &MMI = MF.getMMI();
2760 const Function &F = MF.getFunction();
2761 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2762 bool DwarfCFI = !WindowsCFI &&
2763 (MMI.hasDebugInfo() || F.needsUnwindTableEntry());
2765 // If we have any exception handlers in this function, and we adjust
2766 // the SP before calls, we may need to indicate this to the unwinder
2767 // using GNU_ARGS_SIZE. Note that this may be necessary even when
2768 // Amount == 0, because the preceding function may have set a non-0
2769 // GNU_ARGS_SIZE.
2770 // TODO: We don't need to reset this between subsequent functions,
2771 // if it didn't change.
2772 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
2774 if (HasDwarfEHHandlers && !isDestroy &&
2775 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2776 BuildCFI(MBB, InsertPos, DL,
2777 MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2779 if (Amount == 0)
2780 return I;
2782 // Factor out the amount that gets handled inside the sequence
2783 // (Pushes of argument for frame setup, callee pops for frame destroy)
2784 Amount -= InternalAmt;
2786 // TODO: This is needed only if we require precise CFA.
2787 // If this is a callee-pop calling convention, emit a CFA adjust for
2788 // the amount the callee popped.
2789 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2790 BuildCFI(MBB, InsertPos, DL,
2791 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2793 // Add Amount to SP to destroy a frame, or subtract to setup.
2794 int64_t StackAdjustment = isDestroy ? Amount : -Amount;
2796 if (StackAdjustment) {
2797 // Merge with any previous or following adjustment instruction. Note: the
2798 // instructions merged with here do not have CFI, so their stack
2799 // adjustments do not feed into CfaAdjustment.
2800 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
2801 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
2803 if (StackAdjustment) {
2804 if (!(F.optForMinSize() &&
2805 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
2806 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
2807 /*InEpilogue=*/false);
2811 if (DwarfCFI && !hasFP(MF)) {
2812 // If we don't have FP, but need to generate unwind information,
2813 // we need to set the correct CFA offset after the stack adjustment.
2814 // How much we adjust the CFA offset depends on whether we're emitting
2815 // CFI only for EH purposes or for debugging. EH only requires the CFA
2816 // offset to be correct at each call site, while for debugging we want
2817 // it to be more precise.
2819 int64_t CfaAdjustment = -StackAdjustment;
2820 // TODO: When not using precise CFA, we also need to adjust for the
2821 // InternalAmt here.
2822 if (CfaAdjustment) {
2823 BuildCFI(MBB, InsertPos, DL,
2824 MCCFIInstruction::createAdjustCfaOffset(nullptr,
2825 CfaAdjustment));
2829 return I;
2832 if (isDestroy && InternalAmt) {
2833 // If we are performing frame pointer elimination and if the callee pops
2834 // something off the stack pointer, add it back. We do this until we have
2835 // more advanced stack pointer tracking ability.
2836 // We are not tracking the stack pointer adjustment by the callee, so make
2837 // sure we restore the stack pointer immediately after the call, there may
2838 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2839 MachineBasicBlock::iterator CI = I;
2840 MachineBasicBlock::iterator B = MBB.begin();
2841 while (CI != B && !std::prev(CI)->isCall())
2842 --CI;
2843 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
2846 return I;
2849 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
2850 assert(MBB.getParent() && "Block is not attached to a function!");
2851 const MachineFunction &MF = *MBB.getParent();
2852 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
2855 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2856 assert(MBB.getParent() && "Block is not attached to a function!");
2858 // Win64 has strict requirements in terms of epilogue and we are
2859 // not taking a chance at messing with them.
2860 // I.e., unless this block is already an exit block, we can't use
2861 // it as an epilogue.
2862 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2863 return false;
2865 if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2866 return true;
2868 // If we cannot use LEA to adjust SP, we may need to use ADD, which
2869 // clobbers the EFLAGS. Check that we do not need to preserve it,
2870 // otherwise, conservatively assume this is not
2871 // safe to insert the epilogue here.
2872 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2875 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2876 // If we may need to emit frameless compact unwind information, give
2877 // up as this is currently broken: PR25614.
2878 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
2879 // The lowering of segmented stack and HiPE only support entry blocks
2880 // as prologue blocks: PR26107.
2881 // This limitation may be lifted if we fix:
2882 // - adjustForSegmentedStacks
2883 // - adjustForHiPEPrologue
2884 MF.getFunction().getCallingConv() != CallingConv::HiPE &&
2885 !MF.shouldSplitStack();
2888 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2889 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2890 const DebugLoc &DL, bool RestoreSP) const {
2891 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2892 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2893 assert(STI.is32Bit() && !Uses64BitFramePtr &&
2894 "restoring EBP/ESI on non-32-bit target");
2896 MachineFunction &MF = *MBB.getParent();
2897 unsigned FramePtr = TRI->getFrameRegister(MF);
2898 unsigned BasePtr = TRI->getBaseRegister();
2899 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2900 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2901 MachineFrameInfo &MFI = MF.getFrameInfo();
2903 // FIXME: Don't set FrameSetup flag in catchret case.
2905 int FI = FuncInfo.EHRegNodeFrameIndex;
2906 int EHRegSize = MFI.getObjectSize(FI);
2908 if (RestoreSP) {
2909 // MOV32rm -EHRegSize(%ebp), %esp
2910 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
2911 X86::EBP, true, -EHRegSize)
2912 .setMIFlag(MachineInstr::FrameSetup);
2915 unsigned UsedReg;
2916 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
2917 int EndOffset = -EHRegOffset - EHRegSize;
2918 FuncInfo.EHRegNodeEndOffset = EndOffset;
2920 if (UsedReg == FramePtr) {
2921 // ADD $offset, %ebp
2922 unsigned ADDri = getADDriOpcode(false, EndOffset);
2923 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
2924 .addReg(FramePtr)
2925 .addImm(EndOffset)
2926 .setMIFlag(MachineInstr::FrameSetup)
2927 ->getOperand(3)
2928 .setIsDead();
2929 assert(EndOffset >= 0 &&
2930 "end of registration object above normal EBP position!");
2931 } else if (UsedReg == BasePtr) {
2932 // LEA offset(%ebp), %esi
2933 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
2934 FramePtr, false, EndOffset)
2935 .setMIFlag(MachineInstr::FrameSetup);
2936 // MOV32rm SavedEBPOffset(%esi), %ebp
2937 assert(X86FI->getHasSEHFramePtrSave());
2938 int Offset =
2939 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
2940 assert(UsedReg == BasePtr);
2941 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
2942 UsedReg, true, Offset)
2943 .setMIFlag(MachineInstr::FrameSetup);
2944 } else {
2945 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
2947 return MBBI;
2950 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
2951 return TRI->getSlotSize();
2954 unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF)
2955 const {
2956 return TRI->getDwarfRegNum(StackPtr, true);
2959 namespace {
2960 // Struct used by orderFrameObjects to help sort the stack objects.
2961 struct X86FrameSortingObject {
2962 bool IsValid = false; // true if we care about this Object.
2963 unsigned ObjectIndex = 0; // Index of Object into MFI list.
2964 unsigned ObjectSize = 0; // Size of Object in bytes.
2965 unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
2966 unsigned ObjectNumUses = 0; // Object static number of uses.
2969 // The comparison function we use for std::sort to order our local
2970 // stack symbols. The current algorithm is to use an estimated
2971 // "density". This takes into consideration the size and number of
2972 // uses each object has in order to roughly minimize code size.
2973 // So, for example, an object of size 16B that is referenced 5 times
2974 // will get higher priority than 4 4B objects referenced 1 time each.
2975 // It's not perfect and we may be able to squeeze a few more bytes out of
2976 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
2977 // fringe end can have special consideration, given their size is less
2978 // important, etc.), but the algorithmic complexity grows too much to be
2979 // worth the extra gains we get. This gets us pretty close.
2980 // The final order leaves us with objects with highest priority going
2981 // at the end of our list.
2982 struct X86FrameSortingComparator {
2983 inline bool operator()(const X86FrameSortingObject &A,
2984 const X86FrameSortingObject &B) {
2985 uint64_t DensityAScaled, DensityBScaled;
2987 // For consistency in our comparison, all invalid objects are placed
2988 // at the end. This also allows us to stop walking when we hit the
2989 // first invalid item after it's all sorted.
2990 if (!A.IsValid)
2991 return false;
2992 if (!B.IsValid)
2993 return true;
2995 // The density is calculated by doing :
2996 // (double)DensityA = A.ObjectNumUses / A.ObjectSize
2997 // (double)DensityB = B.ObjectNumUses / B.ObjectSize
2998 // Since this approach may cause inconsistencies in
2999 // the floating point <, >, == comparisons, depending on the floating
3000 // point model with which the compiler was built, we're going
3001 // to scale both sides by multiplying with
3002 // A.ObjectSize * B.ObjectSize. This ends up factoring away
3003 // the division and, with it, the need for any floating point
3004 // arithmetic.
3005 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3006 static_cast<uint64_t>(B.ObjectSize);
3007 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3008 static_cast<uint64_t>(A.ObjectSize);
3010 // If the two densities are equal, prioritize highest alignment
3011 // objects. This allows for similar alignment objects
3012 // to be packed together (given the same density).
3013 // There's room for improvement here, also, since we can pack
3014 // similar alignment (different density) objects next to each
3015 // other to save padding. This will also require further
3016 // complexity/iterations, and the overall gain isn't worth it,
3017 // in general. Something to keep in mind, though.
3018 if (DensityAScaled == DensityBScaled)
3019 return A.ObjectAlignment < B.ObjectAlignment;
3021 return DensityAScaled < DensityBScaled;
3024 } // namespace
3026 // Order the symbols in the local stack.
3027 // We want to place the local stack objects in some sort of sensible order.
3028 // The heuristic we use is to try and pack them according to static number
3029 // of uses and size of object in order to minimize code size.
3030 void X86FrameLowering::orderFrameObjects(
3031 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3032 const MachineFrameInfo &MFI = MF.getFrameInfo();
3034 // Don't waste time if there's nothing to do.
3035 if (ObjectsToAllocate.empty())
3036 return;
3038 // Create an array of all MFI objects. We won't need all of these
3039 // objects, but we're going to create a full array of them to make
3040 // it easier to index into when we're counting "uses" down below.
3041 // We want to be able to easily/cheaply access an object by simply
3042 // indexing into it, instead of having to search for it every time.
3043 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3045 // Walk the objects we care about and mark them as such in our working
3046 // struct.
3047 for (auto &Obj : ObjectsToAllocate) {
3048 SortingObjects[Obj].IsValid = true;
3049 SortingObjects[Obj].ObjectIndex = Obj;
3050 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj);
3051 // Set the size.
3052 int ObjectSize = MFI.getObjectSize(Obj);
3053 if (ObjectSize == 0)
3054 // Variable size. Just use 4.
3055 SortingObjects[Obj].ObjectSize = 4;
3056 else
3057 SortingObjects[Obj].ObjectSize = ObjectSize;
3060 // Count the number of uses for each object.
3061 for (auto &MBB : MF) {
3062 for (auto &MI : MBB) {
3063 if (MI.isDebugInstr())
3064 continue;
3065 for (const MachineOperand &MO : MI.operands()) {
3066 // Check to see if it's a local stack symbol.
3067 if (!MO.isFI())
3068 continue;
3069 int Index = MO.getIndex();
3070 // Check to see if it falls within our range, and is tagged
3071 // to require ordering.
3072 if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3073 SortingObjects[Index].IsValid)
3074 SortingObjects[Index].ObjectNumUses++;
3079 // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3080 // info).
3081 std::stable_sort(SortingObjects.begin(), SortingObjects.end(),
3082 X86FrameSortingComparator());
3084 // Now modify the original list to represent the final order that
3085 // we want. The order will depend on whether we're going to access them
3086 // from the stack pointer or the frame pointer. For SP, the list should
3087 // end up with the END containing objects that we want with smaller offsets.
3088 // For FP, it should be flipped.
3089 int i = 0;
3090 for (auto &Obj : SortingObjects) {
3091 // All invalid items are sorted at the end, so it's safe to stop.
3092 if (!Obj.IsValid)
3093 break;
3094 ObjectsToAllocate[i++] = Obj.ObjectIndex;
3097 // Flip it if we're accessing off of the FP.
3098 if (!TRI->needsStackRealignment(MF) && hasFP(MF))
3099 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3103 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3104 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3105 unsigned Offset = 16;
3106 // RBP is immediately pushed.
3107 Offset += SlotSize;
3108 // All callee-saved registers are then pushed.
3109 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3110 // Every funclet allocates enough stack space for the largest outgoing call.
3111 Offset += getWinEHFuncletFrameSize(MF);
3112 return Offset;
3115 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3116 MachineFunction &MF, RegScavenger *RS) const {
3117 // Mark the function as not having WinCFI. We will set it back to true in
3118 // emitPrologue if it gets called and emits CFI.
3119 MF.setHasWinCFI(false);
3121 // If this function isn't doing Win64-style C++ EH, we don't need to do
3122 // anything.
3123 const Function &F = MF.getFunction();
3124 if (!STI.is64Bit() || !MF.hasEHFunclets() ||
3125 classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX)
3126 return;
3128 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3129 // relative to RSP after the prologue. Find the offset of the last fixed
3130 // object, so that we can allocate a slot immediately following it. If there
3131 // were no fixed objects, use offset -SlotSize, which is immediately after the
3132 // return address. Fixed objects have negative frame indices.
3133 MachineFrameInfo &MFI = MF.getFrameInfo();
3134 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3135 int64_t MinFixedObjOffset = -SlotSize;
3136 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3137 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3139 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3140 for (WinEHHandlerType &H : TBME.HandlerArray) {
3141 int FrameIndex = H.CatchObj.FrameIndex;
3142 if (FrameIndex != INT_MAX) {
3143 // Ensure alignment.
3144 unsigned Align = MFI.getObjectAlignment(FrameIndex);
3145 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3146 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3147 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3152 // Ensure alignment.
3153 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3154 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3155 int UnwindHelpFI =
3156 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
3157 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3159 // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3160 // other frame setup instructions.
3161 MachineBasicBlock &MBB = MF.front();
3162 auto MBBI = MBB.begin();
3163 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3164 ++MBBI;
3166 DebugLoc DL = MBB.findDebugLoc(MBBI);
3167 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3168 UnwindHelpFI)
3169 .addImm(-2);