1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that X86 uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
15 #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/CodeGen/TargetLowering.h"
20 #include "llvm/Target/TargetOptions.h"
24 class X86TargetMachine
;
27 // X86 Specific DAG Nodes
28 enum NodeType
: unsigned {
29 // Start the numbering where the builtin ops leave off.
30 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
37 /// Double shift instructions. These correspond to
38 /// X86::SHLDxx and X86::SHRDxx instructions.
42 /// Bitwise logical AND of floating point values. This corresponds
43 /// to X86::ANDPS or X86::ANDPD.
46 /// Bitwise logical OR of floating point values. This corresponds
47 /// to X86::ORPS or X86::ORPD.
50 /// Bitwise logical XOR of floating point values. This corresponds
51 /// to X86::XORPS or X86::XORPD.
54 /// Bitwise logical ANDNOT of floating point values. This
55 /// corresponds to X86::ANDNPS or X86::ANDNPD.
58 /// These operations represent an abstract X86 call
59 /// instruction, which includes a bunch of information. In particular the
60 /// operands of these node are:
62 /// #0 - The incoming token chain
64 /// #2 - The number of arg bytes the caller pushes on the stack.
65 /// #3 - The number of arg bytes the callee pops off the stack.
66 /// #4 - The value to pass in AL/AX/EAX (optional)
67 /// #5 - The value to pass in DL/DX/EDX (optional)
69 /// The result values of these nodes are:
71 /// #0 - The outgoing token chain
72 /// #1 - The first register result value (optional)
73 /// #2 - The second register result value (optional)
77 /// Same as call except it adds the NoTrack prefix.
80 /// This operation implements the lowering for readcyclecounter.
83 /// X86 Read Time-Stamp Counter and Processor ID.
86 /// X86 Read Performance Monitoring Counters.
89 /// X86 compare and logical compare instructions.
92 /// X86 bit-test instructions.
95 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
96 /// operand, usually produced by a CMP instruction.
102 // Same as SETCC except it's materialized with a sbb and the value is all
103 // one's or all zero's.
104 SETCC_CARRY
, // R = carry_bit ? ~0 : 0
106 /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
107 /// Operands are two FP values to compare; result is a mask of
108 /// 0s or 1s. Generally DTRT for C/C++ with NaNs.
111 /// X86 FP SETCC, similar to above, but with output as an i1 mask and
112 /// with optional rounding mode.
113 FSETCCM
, FSETCCM_RND
,
115 /// X86 conditional moves. Operand 0 and operand 1 are the two values
116 /// to select from. Operand 2 is the condition code, and operand 3 is the
117 /// flag operand produced by a CMP or TEST instruction. It also writes a
121 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
122 /// is the block to branch if condition is true, operand 2 is the
123 /// condition code, and operand 3 is the flag operand produced by a CMP
124 /// or TEST instruction.
127 /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
128 /// operand 1 is the target address.
131 /// Return with a flag operand. Operand 0 is the chain operand, operand
132 /// 1 is the number of bytes of stack to pop.
135 /// Return from interrupt. Operand 0 is the number of bytes to pop.
138 /// Repeat fill, corresponds to X86::REP_STOSx.
141 /// Repeat move, corresponds to X86::REP_MOVSx.
144 /// On Darwin, this node represents the result of the popl
145 /// at function entry, used for PIC code.
148 /// A wrapper node for TargetConstantPool, TargetJumpTable,
149 /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
150 /// MCSymbol and TargetBlockAddress.
153 /// Special wrapper used under X86-64 PIC mode for RIP
154 /// relative displacements.
157 /// Copies a 64-bit value from the low word of an XMM vector
158 /// to an MMX vector.
161 /// Copies a 32-bit value from the low word of a MMX
165 /// Copies a GPR into the low 32-bit word of a MMX vector
166 /// and zero out the high word.
169 /// Extract an 8-bit value from a vector and zero extend it to
170 /// i32, corresponds to X86::PEXTRB.
173 /// Extract a 16-bit value from a vector and zero extend it to
174 /// i32, corresponds to X86::PEXTRW.
177 /// Insert any element of a 4 x float vector into any element
178 /// of a destination 4 x floatvector.
181 /// Insert the lower 8-bits of a 32-bit value to a vector,
182 /// corresponds to X86::PINSRB.
185 /// Insert the lower 16-bits of a 32-bit value to a vector,
186 /// corresponds to X86::PINSRW.
189 /// Shuffle 16 8-bit values within a vector.
192 /// Compute Sum of Absolute Differences.
194 /// Compute Double Block Packed Sum-Absolute-Differences
197 /// Bitwise Logical AND NOT of Packed FP values.
200 /// Blend where the selector is an immediate.
203 /// Dynamic (non-constant condition) vector blend where only the sign bits
204 /// of the condition elements are used. This is used to enforce that the
205 /// condition mask is not valid for generic VSELECT optimizations. This
206 /// is also used to implement the intrinsics.
207 /// Operands are in VSELECT order: MASK, TRUE, FALSE
210 /// Combined add and sub on an FP vector.
213 // FP vector ops with rounding mode.
220 FSQRT_RND
, FSQRTS_RND
,
222 // FP vector get exponent.
223 FGETEXP_RND
, FGETEXPS_RND
,
224 // Extract Normalized Mantissas.
225 VGETMANT
, VGETMANT_RND
, VGETMANTS
, VGETMANTS_RND
,
230 // Unsigned Integer average.
233 /// Integer horizontal add/sub.
237 /// Floating point horizontal add/sub.
241 // Detect Conflicts Within a Vector
244 /// Floating point max and min.
247 /// Commutative FMIN and FMAX.
250 /// Scalar intrinsic floating point max and min.
253 /// Floating point reciprocal-sqrt and reciprocal approximation.
254 /// Note that these typically require refinement
255 /// in order to obtain suitable precision.
258 // AVX-512 reciprocal approximations with a little more precision.
259 RSQRT14
, RSQRT14S
, RCP14
, RCP14S
,
261 // Thread Local Storage.
264 // Thread Local Storage. A call to get the start address
265 // of the TLS block for the current module.
268 // Thread Local Storage. When calling to an OS provided
269 // thunk at the address from an earlier relocation.
272 // Exception Handling helpers.
275 // SjLj exception handling setjmp.
278 // SjLj exception handling longjmp.
281 // SjLj exception handling dispatch.
282 EH_SJLJ_SETUP_DISPATCH
,
284 /// Tail call return. See X86TargetLowering::LowerCall for
285 /// the list of operands.
288 // Vector move to low scalar and zero higher vector elements.
291 // Vector integer truncate.
293 // Vector integer truncate with unsigned/signed saturation.
296 // Masked version of the above. Used when less than a 128-bit result is
297 // produced since the mask only applies to the lower elements and can't
298 // be represented by a select.
299 // SRC, PASSTHRU, MASK
300 VMTRUNC
, VMTRUNCUS
, VMTRUNCS
,
303 VFPEXT
, VFPEXT_RND
, VFPEXTS_RND
,
306 VFPROUND
, VFPROUND_RND
, VFPROUNDS_RND
,
308 // Masked version of above. Used for v2f64->v4f32.
309 // SRC, PASSTHRU, MASK
312 // 128-bit vector logical left / right shift
315 // Vector shift elements
318 // Vector variable shift
321 // Vector shift elements by immediate
324 // Shifts of mask registers.
327 // Bit rotate by immediate
330 // Vector packed double/float comparison.
333 // Vector integer comparisons.
336 // v8i16 Horizontal minimum and position.
341 /// Vector comparison generating mask bits for fp and
342 /// integer signed and unsigned data types.
344 // Vector comparison with rounding mode for FP values
347 // Arithmetic operations with FLAGS results.
348 ADD
, SUB
, ADC
, SBB
, SMUL
, UMUL
,
351 // Bit field extract.
354 // Zero High Bits Starting with Specified Bit Position.
357 // X86-specific multiply by immediate.
360 // Vector sign bit extraction.
363 // Vector bitwise comparisons.
366 // Vector packed fp sign bitwise comparisons.
369 // OR/AND test for masks.
376 // Several flavors of instructions with vector shuffle behaviors.
377 // Saturated signed/unnsigned packing.
380 // Intra-lane alignr.
382 // AVX512 inter-lane alignr.
388 // VBMI2 Concat & Shift.
393 //Shuffle Packed Values at 128-bit granularity.
409 // Variable Permute (VPERM).
410 // Res = VPERMV MaskV, V0
413 // 3-op Variable Permute (VPERMT2).
414 // Res = VPERMV3 V0, MaskV, V1
417 // Bitwise ternary logic.
419 // Fix Up Special Packed Float32/64 values.
422 // Range Restriction Calculation For Packed Pairs of Float32/64 values.
423 VRANGE
, VRANGE_RND
, VRANGES
, VRANGES_RND
,
424 // Reduce - Perform Reduction Transformation on scalar\packed FP.
425 VREDUCE
, VREDUCE_RND
, VREDUCES
, VREDUCES_RND
,
426 // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
427 // Also used by the legacy (V)ROUND intrinsics where we mask out the
428 // scaling part of the immediate.
429 VRNDSCALE
, VRNDSCALE_RND
, VRNDSCALES
, VRNDSCALES_RND
,
430 // Tests Types Of a FP Values for packed types.
432 // Tests Types Of a FP Values for scalar types.
435 // Broadcast scalar to vector.
437 // Broadcast mask to vector.
439 // Broadcast subvector to vector.
442 /// SSE4A Extraction and Insertion.
445 // XOP arithmetic/logical shifts.
447 // XOP signed/unsigned integer comparisons.
449 // XOP packed permute bytes.
451 // XOP two source permutation.
454 // Vector multiply packed unsigned doubleword integers.
456 // Vector multiply packed signed doubleword integers.
458 // Vector Multiply Packed UnsignedIntegers with Round and Scale.
461 // Multiply and Add Packed Integers.
462 VPMADDUBSW
, VPMADDWD
,
464 // AVX512IFMA multiply and add.
465 // NOTE: These are different than the instruction and perform
467 VPMADD52L
, VPMADD52H
,
476 // We use the target independent ISD::FMA for the non-inverted case.
483 // FMA with rounding mode.
491 // Compress and expand.
498 // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
499 SINT_TO_FP_RND
, UINT_TO_FP_RND
,
500 SCALAR_SINT_TO_FP_RND
, SCALAR_UINT_TO_FP_RND
,
502 // Vector float/double to signed/unsigned integer.
503 CVTP2SI
, CVTP2UI
, CVTP2SI_RND
, CVTP2UI_RND
,
504 // Scalar float/double to signed/unsigned integer.
505 CVTS2SI
, CVTS2UI
, CVTS2SI_RND
, CVTS2UI_RND
,
507 // Vector float/double to signed/unsigned integer with truncation.
508 CVTTP2SI
, CVTTP2UI
, CVTTP2SI_RND
, CVTTP2UI_RND
,
509 // Scalar float/double to signed/unsigned integer with truncation.
510 CVTTS2SI
, CVTTS2UI
, CVTTS2SI_RND
, CVTTS2UI_RND
,
512 // Vector signed/unsigned integer to float/double.
515 // Masked versions of above. Used for v2f64->v4f32.
516 // SRC, PASSTHRU, MASK
517 MCVTP2SI
, MCVTP2UI
, MCVTTP2SI
, MCVTTP2UI
,
520 // Save xmm argument registers to the stack, according to %al. An operator
521 // is needed so that this can be expanded with control flow.
522 VASTART_SAVE_XMM_REGS
,
524 // Windows's _chkstk call to do stack probing.
527 // For allocating variable amounts of stack space when using
528 // segmented stacks. Check if the current stacklet has enough space, and
529 // falls back to heap allocation if not.
536 // Store FP status word into i16 register.
539 // Store contents of %ah into %eflags.
542 // Get a random integer and indicate whether it is valid in CF.
545 // Get a NIST SP800-90B & C compliant random integer and
546 // indicate whether it is valid in CF.
549 // SSE42 string comparisons.
550 // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
551 // will emit one or two instructions based on which results are used. If
552 // flags and index/mask this allows us to use a single instruction since
553 // we won't have to pick and opcode for flags. Instead we can rely on the
554 // DAG to CSE everything and decide at isel.
558 // Test if in transactional execution.
562 RSQRT28
, RSQRT28S
, RCP28
, RCP28S
, EXP2
,
564 // Conversions between float and half-float.
565 CVTPS2PH
, CVTPH2PS
, CVTPH2PS_RND
,
567 // Masked version of above.
568 // SRC, RND, PASSTHRU, MASK
571 // Galois Field Arithmetic Instructions
572 GF2P8AFFINEINVQB
, GF2P8AFFINEQB
, GF2P8MULB
,
574 // LWP insert record.
581 LCMPXCHG_DAG
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
584 LCMPXCHG8_SAVE_EBX_DAG
,
585 LCMPXCHG16_SAVE_RBX_DAG
,
587 /// LOCK-prefixed arithmetic read-modify-write instructions.
588 /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
589 LADD
, LSUB
, LOR
, LXOR
, LAND
,
591 // Load, scalar_to_vector, and zero extend.
594 // Store FP control world into i16 memory.
597 /// This instruction implements FP_TO_SINT with the
598 /// integer destination in memory and a FP reg source. This corresponds
599 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
600 /// has two inputs (token chain and address) and two outputs (int value
601 /// and token chain). Memory VT specifies the type to store to.
604 /// This instruction implements SINT_TO_FP with the
605 /// integer source in memory and FP reg result. This corresponds to the
606 /// X86::FILD*m instructions. It has two inputs (token chain and address)
607 /// and two outputs (FP value and token chain). FILD_FLAG also produces a
608 /// flag). The integer source type is specified by the memory VT.
612 /// This instruction implements an extending load to FP stack slots.
613 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
614 /// operand, and ptr to load from. The memory VT specifies the type to
618 /// This instruction implements a truncating store to FP stack
619 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
620 /// chain operand, value to store, and address. The memory VT specifies
621 /// the type to store as.
624 /// This instruction grabs the address of the next argument
625 /// from a va_list. (reads and modifies the va_list in memory)
628 // Vector truncating store with unsigned/signed saturation
629 VTRUNCSTOREUS
, VTRUNCSTORES
,
630 // Vector truncating masked store with unsigned/signed saturation
631 VMTRUNCSTOREUS
, VMTRUNCSTORES
,
633 // X86 specific gather and scatter
636 // WARNING: Do not add anything in the end unless you want the node to
637 // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
638 // opcodes will be thought as target memory ops!
640 } // end namespace X86ISD
642 /// Define some predicates that are used for node matching.
644 /// Returns true if Elt is a constant zero or floating point constant +0.0.
645 bool isZeroNode(SDValue Elt
);
647 /// Returns true of the given offset can be
648 /// fit into displacement field of the instruction.
649 bool isOffsetSuitableForCodeModel(int64_t Offset
, CodeModel::Model M
,
650 bool hasSymbolicDisplacement
= true);
652 /// Determines whether the callee is required to pop its
653 /// own arguments. Callee pop is necessary to support tail calls.
654 bool isCalleePop(CallingConv::ID CallingConv
,
655 bool is64Bit
, bool IsVarArg
, bool GuaranteeTCO
);
657 } // end namespace X86
659 //===--------------------------------------------------------------------===//
660 // X86 Implementation of the TargetLowering interface
661 class X86TargetLowering final
: public TargetLowering
{
663 explicit X86TargetLowering(const X86TargetMachine
&TM
,
664 const X86Subtarget
&STI
);
666 unsigned getJumpTableEncoding() const override
;
667 bool useSoftFloat() const override
;
669 void markLibCallAttributes(MachineFunction
*MF
, unsigned CC
,
670 ArgListTy
&Args
) const override
;
672 MVT
getScalarShiftAmountTy(const DataLayout
&, EVT VT
) const override
{
677 LowerCustomJumpTableEntry(const MachineJumpTableInfo
*MJTI
,
678 const MachineBasicBlock
*MBB
, unsigned uid
,
679 MCContext
&Ctx
) const override
;
681 /// Returns relocation base for the given PIC jumptable.
682 SDValue
getPICJumpTableRelocBase(SDValue Table
,
683 SelectionDAG
&DAG
) const override
;
685 getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
686 unsigned JTI
, MCContext
&Ctx
) const override
;
688 /// Return the desired alignment for ByVal aggregate
689 /// function arguments in the caller parameter area. For X86, aggregates
690 /// that contains are placed at 16-byte boundaries while the rest are at
691 /// 4-byte boundaries.
692 unsigned getByValTypeAlignment(Type
*Ty
,
693 const DataLayout
&DL
) const override
;
695 /// Returns the target specific optimal type for load
696 /// and store operations as a result of memset, memcpy, and memmove
697 /// lowering. If DstAlign is zero that means it's safe to destination
698 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
699 /// means there isn't a need to check it against alignment requirement,
700 /// probably because the source does not need to be loaded. If 'IsMemset' is
701 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
702 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
703 /// source is constant so it does not need to be loaded.
704 /// It returns EVT::Other if the type should be determined using generic
705 /// target-independent logic.
706 EVT
getOptimalMemOpType(uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
,
707 bool IsMemset
, bool ZeroMemset
, bool MemcpyStrSrc
,
708 MachineFunction
&MF
) const override
;
710 /// Returns true if it's safe to use load / store of the
711 /// specified type to expand memcpy / memset inline. This is mostly true
712 /// for all types except for some special cases. For example, on X86
713 /// targets without SSE2 f64 load / store are done with fldl / fstpl which
714 /// also does type conversion. Note the specified type doesn't have to be
715 /// legal as the hook is used before type legalization.
716 bool isSafeMemOpType(MVT VT
) const override
;
718 /// Returns true if the target allows unaligned memory accesses of the
719 /// specified type. Returns whether it is "fast" in the last argument.
720 bool allowsMisalignedMemoryAccesses(EVT VT
, unsigned AS
, unsigned Align
,
721 bool *Fast
) const override
;
723 /// Provide custom lowering hooks for some operations.
725 SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const override
;
727 /// Places new result values for the node in Results (their number
728 /// and types must exactly match those of the original return values of
729 /// the node), or leaves Results empty, which indicates that the node is not
730 /// to be custom lowered after all.
731 void LowerOperationWrapper(SDNode
*N
,
732 SmallVectorImpl
<SDValue
> &Results
,
733 SelectionDAG
&DAG
) const override
;
735 /// Replace the results of node with an illegal result
736 /// type with new values built out of custom code.
738 void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
739 SelectionDAG
&DAG
) const override
;
741 SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const override
;
743 // Return true if it is profitable to combine a BUILD_VECTOR with a
744 // stride-pattern to a shuffle and a truncate.
745 // Example of such a combine:
746 // v4i32 build_vector((extract_elt V, 1),
747 // (extract_elt V, 3),
748 // (extract_elt V, 5),
749 // (extract_elt V, 7))
751 // v4i32 truncate (bitcast (shuffle<1,u,3,u,4,u,5,u,6,u,7,u> V, u) to
753 bool isDesirableToCombineBuildVectorToShuffleTruncate(
754 ArrayRef
<int> ShuffleMask
, EVT SrcVT
, EVT TruncVT
) const override
;
756 /// Return true if the target has native support for
757 /// the specified value type and it is 'desirable' to use the type for the
758 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
759 /// instruction encodings are longer and some i16 instructions are slow.
760 bool isTypeDesirableForOp(unsigned Opc
, EVT VT
) const override
;
762 /// Return true if the target has native support for the
763 /// specified value type and it is 'desirable' to use the type. e.g. On x86
764 /// i16 is legal, but undesirable since i16 instruction encodings are longer
765 /// and some i16 instructions are slow.
766 bool IsDesirableToPromoteOp(SDValue Op
, EVT
&PVT
) const override
;
769 EmitInstrWithCustomInserter(MachineInstr
&MI
,
770 MachineBasicBlock
*MBB
) const override
;
772 /// This method returns the name of a target specific DAG node.
773 const char *getTargetNodeName(unsigned Opcode
) const override
;
775 bool mergeStoresAfterLegalization() const override
{ return true; }
777 bool canMergeStoresTo(unsigned AddressSpace
, EVT MemVT
,
778 const SelectionDAG
&DAG
) const override
;
780 bool isCheapToSpeculateCttz() const override
;
782 bool isCheapToSpeculateCtlz() const override
;
784 bool isCtlzFast() const override
;
786 bool hasBitPreservingFPLogic(EVT VT
) const override
{
787 return VT
== MVT::f32
|| VT
== MVT::f64
|| VT
.isVector();
790 bool isMultiStoresCheaperThanBitsMerge(EVT LTy
, EVT HTy
) const override
{
791 // If the pair to store is a mixture of float and int values, we will
792 // save two bitwise instructions and one float-to-int instruction and
793 // increase one store instruction. There is potentially a more
794 // significant benefit because it avoids the float->int domain switch
795 // for input value. So It is more likely a win.
796 if ((LTy
.isFloatingPoint() && HTy
.isInteger()) ||
797 (LTy
.isInteger() && HTy
.isFloatingPoint()))
799 // If the pair only contains int values, we will save two bitwise
800 // instructions and increase one store instruction (costing one more
801 // store buffer). Since the benefit is more blurred so we leave
802 // such pair out until we get testcase to prove it is a win.
806 bool isMaskAndCmp0FoldingBeneficial(const Instruction
&AndI
) const override
;
808 bool hasAndNotCompare(SDValue Y
) const override
;
810 bool hasAndNot(SDValue Y
) const override
;
812 bool preferShiftsToClearExtremeBits(SDValue Y
) const override
;
815 shouldTransformSignedTruncationCheck(EVT XVT
,
816 unsigned KeptBits
) const override
{
817 // For vectors, we don't have a preference..
821 auto VTIsOk
= [](EVT VT
) -> bool {
822 return VT
== MVT::i8
|| VT
== MVT::i16
|| VT
== MVT::i32
||
826 // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
827 // XVT will be larger than KeptBitsVT.
828 MVT KeptBitsVT
= MVT::getIntegerVT(KeptBits
);
829 return VTIsOk(XVT
) && VTIsOk(KeptBitsVT
);
832 bool shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const override
{
833 if (DAG
.getMachineFunction().getFunction().optForMinSize())
838 bool shouldSplatInsEltVarIndex(EVT VT
) const override
;
840 bool convertSetCCLogicToBitwiseLogic(EVT VT
) const override
{
841 return VT
.isScalarInteger();
844 /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
845 MVT
hasFastEqualityCompare(unsigned NumBits
) const override
;
847 /// Allow multiple load pairs per block for smaller and faster code.
848 unsigned getMemcmpEqZeroLoadsPerBlock() const override
{
852 /// Return the value type to use for ISD::SETCC.
853 EVT
getSetCCResultType(const DataLayout
&DL
, LLVMContext
&Context
,
854 EVT VT
) const override
;
856 bool targetShrinkDemandedConstant(SDValue Op
, const APInt
&Demanded
,
857 TargetLoweringOpt
&TLO
) const override
;
859 /// Determine which of the bits specified in Mask are known to be either
860 /// zero or one and return them in the KnownZero/KnownOne bitsets.
861 void computeKnownBitsForTargetNode(const SDValue Op
,
863 const APInt
&DemandedElts
,
864 const SelectionDAG
&DAG
,
865 unsigned Depth
= 0) const override
;
867 /// Determine the number of bits in the operation that are sign bits.
868 unsigned ComputeNumSignBitsForTargetNode(SDValue Op
,
869 const APInt
&DemandedElts
,
870 const SelectionDAG
&DAG
,
871 unsigned Depth
) const override
;
873 bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op
,
874 const APInt
&DemandedElts
,
877 TargetLoweringOpt
&TLO
,
878 unsigned Depth
) const override
;
880 bool SimplifyDemandedBitsForTargetNode(SDValue Op
,
881 const APInt
&DemandedBits
,
882 const APInt
&DemandedElts
,
884 TargetLoweringOpt
&TLO
,
885 unsigned Depth
) const override
;
887 SDValue
unwrapAddress(SDValue N
) const override
;
889 SDValue
getReturnAddressFrameIndex(SelectionDAG
&DAG
) const;
891 bool ExpandInlineAsm(CallInst
*CI
) const override
;
893 ConstraintType
getConstraintType(StringRef Constraint
) const override
;
895 /// Examine constraint string and operand type and determine a weight value.
896 /// The operand object must already have been set up with the operand type.
898 getSingleConstraintMatchWeight(AsmOperandInfo
&info
,
899 const char *constraint
) const override
;
901 const char *LowerXConstraint(EVT ConstraintVT
) const override
;
903 /// Lower the specified operand into the Ops vector. If it is invalid, don't
904 /// add anything to Ops. If hasMemory is true it means one of the asm
905 /// constraint of the inline asm instruction being processed is 'm'.
906 void LowerAsmOperandForConstraint(SDValue Op
,
907 std::string
&Constraint
,
908 std::vector
<SDValue
> &Ops
,
909 SelectionDAG
&DAG
) const override
;
912 getInlineAsmMemConstraint(StringRef ConstraintCode
) const override
{
913 if (ConstraintCode
== "i")
914 return InlineAsm::Constraint_i
;
915 else if (ConstraintCode
== "o")
916 return InlineAsm::Constraint_o
;
917 else if (ConstraintCode
== "v")
918 return InlineAsm::Constraint_v
;
919 else if (ConstraintCode
== "X")
920 return InlineAsm::Constraint_X
;
921 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode
);
924 /// Handle Lowering flag assembly outputs.
925 SDValue
LowerAsmOutputForConstraint(SDValue
&Chain
, SDValue
&Flag
, SDLoc DL
,
926 const AsmOperandInfo
&Constraint
,
927 SelectionDAG
&DAG
) const override
;
929 /// Given a physical register constraint
930 /// (e.g. {edx}), return the register number and the register class for the
931 /// register. This should only be used for C_Register constraints. On
932 /// error, this returns a register number of 0.
933 std::pair
<unsigned, const TargetRegisterClass
*>
934 getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
935 StringRef Constraint
, MVT VT
) const override
;
937 /// Return true if the addressing mode represented
938 /// by AM is legal for this target, for a load/store of the specified type.
939 bool isLegalAddressingMode(const DataLayout
&DL
, const AddrMode
&AM
,
940 Type
*Ty
, unsigned AS
,
941 Instruction
*I
= nullptr) const override
;
943 /// Return true if the specified immediate is legal
944 /// icmp immediate, that is the target has icmp instructions which can
945 /// compare a register against the immediate without having to materialize
946 /// the immediate into a register.
947 bool isLegalICmpImmediate(int64_t Imm
) const override
;
949 /// Return true if the specified immediate is legal
950 /// add immediate, that is the target has add instructions which can
951 /// add a register and the immediate without having to materialize
952 /// the immediate into a register.
953 bool isLegalAddImmediate(int64_t Imm
) const override
;
955 bool isLegalStoreImmediate(int64_t Imm
) const override
;
957 /// Return the cost of the scaling factor used in the addressing
958 /// mode represented by AM for this target, for a load/store
959 /// of the specified type.
960 /// If the AM is supported, the return value must be >= 0.
961 /// If the AM is not supported, it returns a negative value.
962 int getScalingFactorCost(const DataLayout
&DL
, const AddrMode
&AM
, Type
*Ty
,
963 unsigned AS
) const override
;
965 bool isVectorShiftByScalarCheap(Type
*Ty
) const override
;
967 /// Return true if it's free to truncate a value of
968 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
969 /// register EAX to i16 by referencing its sub-register AX.
970 bool isTruncateFree(Type
*Ty1
, Type
*Ty2
) const override
;
971 bool isTruncateFree(EVT VT1
, EVT VT2
) const override
;
973 bool allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const override
;
975 /// Return true if any actual instruction that defines a
976 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
977 /// register. This does not necessarily include registers defined in
978 /// unknown ways, such as incoming arguments, or copies from unknown
979 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
980 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
981 /// all instructions that define 32-bit values implicit zero-extend the
982 /// result out to 64 bits.
983 bool isZExtFree(Type
*Ty1
, Type
*Ty2
) const override
;
984 bool isZExtFree(EVT VT1
, EVT VT2
) const override
;
985 bool isZExtFree(SDValue Val
, EVT VT2
) const override
;
987 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
988 /// extend node) is profitable.
989 bool isVectorLoadExtDesirable(SDValue
) const override
;
991 /// Return true if an FMA operation is faster than a pair of fmul and fadd
992 /// instructions. fmuladd intrinsics will be expanded to FMAs when this
993 /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
994 bool isFMAFasterThanFMulAndFAdd(EVT VT
) const override
;
996 /// Return true if it's profitable to narrow
997 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
998 /// from i32 to i8 but not from i32 to i16.
999 bool isNarrowingProfitable(EVT VT1
, EVT VT2
) const override
;
1001 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1002 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1003 /// true and stores the intrinsic information into the IntrinsicInfo that was
1004 /// passed to the function.
1005 bool getTgtMemIntrinsic(IntrinsicInfo
&Info
, const CallInst
&I
,
1006 MachineFunction
&MF
,
1007 unsigned Intrinsic
) const override
;
1009 /// Returns true if the target can instruction select the
1010 /// specified FP immediate natively. If false, the legalizer will
1011 /// materialize the FP immediate as a load from a constant pool.
1012 bool isFPImmLegal(const APFloat
&Imm
, EVT VT
) const override
;
1014 /// Targets can use this to indicate that they only support *some*
1015 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
1016 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
1018 bool isShuffleMaskLegal(ArrayRef
<int> Mask
, EVT VT
) const override
;
1020 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1021 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1022 /// constant pool entry.
1023 bool isVectorClearMaskLegal(ArrayRef
<int> Mask
, EVT VT
) const override
;
1025 /// Returns true if lowering to a jump table is allowed.
1026 bool areJTsAllowed(const Function
*Fn
) const override
;
1028 /// If true, then instruction selection should
1029 /// seek to shrink the FP constant of the specified type to a smaller type
1030 /// in order to save space and / or reduce runtime.
1031 bool ShouldShrinkFPConstant(EVT VT
) const override
{
1032 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
1033 // expensive than a straight movsd. On the other hand, it's important to
1034 // shrink long double fp constant since fldt is very slow.
1035 return !X86ScalarSSEf64
|| VT
== MVT::f80
;
1038 /// Return true if we believe it is correct and profitable to reduce the
1039 /// load node to a smaller type.
1040 bool shouldReduceLoadWidth(SDNode
*Load
, ISD::LoadExtType ExtTy
,
1041 EVT NewVT
) const override
;
1043 /// Return true if the specified scalar FP type is computed in an SSE
1044 /// register, not on the X87 floating point stack.
1045 bool isScalarFPTypeInSSEReg(EVT VT
) const {
1046 return (VT
== MVT::f64
&& X86ScalarSSEf64
) || // f64 is when SSE2
1047 (VT
== MVT::f32
&& X86ScalarSSEf32
); // f32 is when SSE1
1050 /// Returns true if it is beneficial to convert a load of a constant
1051 /// to just the constant itself.
1052 bool shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
1053 Type
*Ty
) const override
;
1055 bool reduceSelectOfFPConstantLoads(bool IsFPSetCC
) const override
;
1057 bool convertSelectOfConstantsToMath(EVT VT
) const override
;
1059 bool decomposeMulByConstant(EVT VT
, SDValue C
) const override
;
1061 bool shouldUseStrictFP_TO_INT(EVT FpVT
, EVT IntVT
,
1062 bool IsSigned
) const override
;
1064 /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
1065 /// with this index.
1066 bool isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
1067 unsigned Index
) const override
;
1069 /// Scalar ops always have equal or better analysis/performance/power than
1070 /// the vector equivalent, so this always makes sense if the scalar op is
1072 bool shouldScalarizeBinop(SDValue
) const override
;
1074 bool storeOfVectorConstantIsCheap(EVT MemVT
, unsigned NumElem
,
1075 unsigned AddrSpace
) const override
{
1076 // If we can replace more than 2 scalar stores, there will be a reduction
1077 // in instructions even after we add a vector constant load.
1081 bool isLoadBitCastBeneficial(EVT LoadVT
, EVT BitcastVT
) const override
;
1083 /// Intel processors have a unified instruction and data cache
1084 const char * getClearCacheBuiltinName() const override
{
1085 return nullptr; // nothing to do, move along.
1088 unsigned getRegisterByName(const char* RegName
, EVT VT
,
1089 SelectionDAG
&DAG
) const override
;
1091 /// If a physical register, this returns the register that receives the
1092 /// exception address on entry to an EH pad.
1094 getExceptionPointerRegister(const Constant
*PersonalityFn
) const override
;
1096 /// If a physical register, this returns the register that receives the
1097 /// exception typeid on entry to a landing pad.
1099 getExceptionSelectorRegister(const Constant
*PersonalityFn
) const override
;
1101 virtual bool needsFixedCatchObjects() const override
;
1103 /// This method returns a target specific FastISel object,
1104 /// or null if the target does not support "fast" ISel.
1105 FastISel
*createFastISel(FunctionLoweringInfo
&funcInfo
,
1106 const TargetLibraryInfo
*libInfo
) const override
;
1108 /// If the target has a standard location for the stack protector cookie,
1109 /// returns the address of that location. Otherwise, returns nullptr.
1110 Value
*getIRStackGuard(IRBuilder
<> &IRB
) const override
;
1112 bool useLoadStackGuardNode() const override
;
1113 bool useStackGuardXorFP() const override
;
1114 void insertSSPDeclarations(Module
&M
) const override
;
1115 Value
*getSDagStackGuard(const Module
&M
) const override
;
1116 Function
*getSSPStackGuardCheck(const Module
&M
) const override
;
1117 SDValue
emitStackGuardXorFP(SelectionDAG
&DAG
, SDValue Val
,
1118 const SDLoc
&DL
) const override
;
1121 /// Return true if the target stores SafeStack pointer at a fixed offset in
1122 /// some non-standard address space, and populates the address space and
1123 /// offset as appropriate.
1124 Value
*getSafeStackPointerLocation(IRBuilder
<> &IRB
) const override
;
1126 SDValue
BuildFILD(SDValue Op
, EVT SrcVT
, SDValue Chain
, SDValue StackSlot
,
1127 SelectionDAG
&DAG
) const;
1129 bool isNoopAddrSpaceCast(unsigned SrcAS
, unsigned DestAS
) const override
;
1131 /// Customize the preferred legalization strategy for certain types.
1132 LegalizeTypeAction
getPreferredVectorAction(MVT VT
) const override
;
1134 MVT
getRegisterTypeForCallingConv(LLVMContext
&Context
, CallingConv::ID CC
,
1135 EVT VT
) const override
;
1137 unsigned getNumRegistersForCallingConv(LLVMContext
&Context
,
1139 EVT VT
) const override
;
1141 bool isIntDivCheap(EVT VT
, AttributeList Attr
) const override
;
1143 bool supportSwiftError() const override
;
1145 StringRef
getStackProbeSymbolName(MachineFunction
&MF
) const override
;
1147 bool hasVectorBlend() const override
{ return true; }
1149 unsigned getMaxSupportedInterleaveFactor() const override
{ return 4; }
1151 /// Lower interleaved load(s) into target specific
1152 /// instructions/intrinsics.
1153 bool lowerInterleavedLoad(LoadInst
*LI
,
1154 ArrayRef
<ShuffleVectorInst
*> Shuffles
,
1155 ArrayRef
<unsigned> Indices
,
1156 unsigned Factor
) const override
;
1158 /// Lower interleaved store(s) into target specific
1159 /// instructions/intrinsics.
1160 bool lowerInterleavedStore(StoreInst
*SI
, ShuffleVectorInst
*SVI
,
1161 unsigned Factor
) const override
;
1163 SDValue
expandIndirectJTBranch(const SDLoc
& dl
, SDValue Value
,
1164 SDValue Addr
, SelectionDAG
&DAG
)
1168 std::pair
<const TargetRegisterClass
*, uint8_t>
1169 findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1170 MVT VT
) const override
;
1173 /// Keep a reference to the X86Subtarget around so that we can
1174 /// make the right decision when generating code for different targets.
1175 const X86Subtarget
&Subtarget
;
1177 /// Select between SSE or x87 floating point ops.
1178 /// When SSE is available, use it for f32 operations.
1179 /// When SSE2 is available, use it for f64 operations.
1180 bool X86ScalarSSEf32
;
1181 bool X86ScalarSSEf64
;
1183 /// A list of legal FP immediates.
1184 std::vector
<APFloat
> LegalFPImmediates
;
1186 /// Indicate that this x86 target can instruction
1187 /// select the specified FP immediate natively.
1188 void addLegalFPImmediate(const APFloat
& Imm
) {
1189 LegalFPImmediates
.push_back(Imm
);
1192 SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
1193 CallingConv::ID CallConv
, bool isVarArg
,
1194 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1195 const SDLoc
&dl
, SelectionDAG
&DAG
,
1196 SmallVectorImpl
<SDValue
> &InVals
,
1197 uint32_t *RegMask
) const;
1198 SDValue
LowerMemArgument(SDValue Chain
, CallingConv::ID CallConv
,
1199 const SmallVectorImpl
<ISD::InputArg
> &ArgInfo
,
1200 const SDLoc
&dl
, SelectionDAG
&DAG
,
1201 const CCValAssign
&VA
, MachineFrameInfo
&MFI
,
1203 SDValue
LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
, SDValue Arg
,
1204 const SDLoc
&dl
, SelectionDAG
&DAG
,
1205 const CCValAssign
&VA
,
1206 ISD::ArgFlagsTy Flags
) const;
1208 // Call lowering helpers.
1210 /// Check whether the call is eligible for tail call optimization. Targets
1211 /// that want to do tail call optimization should implement this function.
1212 bool IsEligibleForTailCallOptimization(SDValue Callee
,
1213 CallingConv::ID CalleeCC
,
1215 bool isCalleeStructRet
,
1216 bool isCallerStructRet
,
1218 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1219 const SmallVectorImpl
<SDValue
> &OutVals
,
1220 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1221 SelectionDAG
& DAG
) const;
1222 SDValue
EmitTailCallLoadRetAddr(SelectionDAG
&DAG
, SDValue
&OutRetAddr
,
1223 SDValue Chain
, bool IsTailCall
,
1224 bool Is64Bit
, int FPDiff
,
1225 const SDLoc
&dl
) const;
1227 unsigned GetAlignedArgumentStackSize(unsigned StackSize
,
1228 SelectionDAG
&DAG
) const;
1230 unsigned getAddressSpace(void) const;
1232 SDValue
FP_TO_INTHelper(SDValue Op
, SelectionDAG
&DAG
, bool isSigned
) const;
1234 SDValue
LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
1235 SDValue
LowerVSELECT(SDValue Op
, SelectionDAG
&DAG
) const;
1236 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
1237 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
1239 unsigned getGlobalWrapperKind(const GlobalValue
*GV
= nullptr,
1240 const unsigned char OpFlags
= 0) const;
1241 SDValue
LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const;
1242 SDValue
LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1243 SDValue
LowerGlobalAddress(const GlobalValue
*GV
, const SDLoc
&dl
,
1244 int64_t Offset
, SelectionDAG
&DAG
) const;
1245 SDValue
LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1246 SDValue
LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const;
1247 SDValue
LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
) const;
1249 SDValue
LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
1250 SDValue
LowerUINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
1251 SDValue
LowerTRUNCATE(SDValue Op
, SelectionDAG
&DAG
) const;
1252 SDValue
LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const;
1253 SDValue
LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
1254 SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) const;
1255 SDValue
LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const;
1256 SDValue
LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const;
1257 SDValue
LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const;
1258 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const;
1259 SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const;
1260 SDValue
LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const;
1261 SDValue
LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
1262 SDValue
LowerADDROFRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
1263 SDValue
LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
1264 SDValue
LowerFRAME_TO_ARGS_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const;
1265 SDValue
LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
) const;
1266 SDValue
lowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1267 SDValue
lowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1268 SDValue
lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
, SelectionDAG
&DAG
) const;
1269 SDValue
LowerINIT_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
1270 SDValue
LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) const;
1271 SDValue
LowerWin64_i128OP(SDValue Op
, SelectionDAG
&DAG
) const;
1272 SDValue
LowerGC_TRANSITION_START(SDValue Op
, SelectionDAG
&DAG
) const;
1273 SDValue
LowerGC_TRANSITION_END(SDValue Op
, SelectionDAG
&DAG
) const;
1274 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
1277 LowerFormalArguments(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1278 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1279 const SDLoc
&dl
, SelectionDAG
&DAG
,
1280 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1281 SDValue
LowerCall(CallLoweringInfo
&CLI
,
1282 SmallVectorImpl
<SDValue
> &InVals
) const override
;
1284 SDValue
LowerReturn(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1285 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1286 const SmallVectorImpl
<SDValue
> &OutVals
,
1287 const SDLoc
&dl
, SelectionDAG
&DAG
) const override
;
1289 bool supportSplitCSR(MachineFunction
*MF
) const override
{
1290 return MF
->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS
&&
1291 MF
->getFunction().hasFnAttribute(Attribute::NoUnwind
);
1293 void initializeSplitCSR(MachineBasicBlock
*Entry
) const override
;
1294 void insertCopiesSplitCSR(
1295 MachineBasicBlock
*Entry
,
1296 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const override
;
1298 bool isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const override
;
1300 bool mayBeEmittedAsTailCall(const CallInst
*CI
) const override
;
1302 EVT
getTypeForExtReturn(LLVMContext
&Context
, EVT VT
,
1303 ISD::NodeType ExtendKind
) const override
;
1305 bool CanLowerReturn(CallingConv::ID CallConv
, MachineFunction
&MF
,
1307 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1308 LLVMContext
&Context
) const override
;
1310 const MCPhysReg
*getScratchRegisters(CallingConv::ID CC
) const override
;
1312 TargetLoweringBase::AtomicExpansionKind
1313 shouldExpandAtomicLoadInIR(LoadInst
*SI
) const override
;
1314 bool shouldExpandAtomicStoreInIR(StoreInst
*SI
) const override
;
1315 TargetLoweringBase::AtomicExpansionKind
1316 shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const override
;
1319 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst
*AI
) const override
;
1321 bool needsCmpXchgNb(Type
*MemType
) const;
1323 void SetupEntryBlockForSjLj(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
1324 MachineBasicBlock
*DispatchBB
, int FI
) const;
1326 // Utility function to emit the low-level va_arg code for X86-64.
1328 EmitVAARG64WithCustomInserter(MachineInstr
&MI
,
1329 MachineBasicBlock
*MBB
) const;
1331 /// Utility function to emit the xmm reg save portion of va_start.
1333 EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr
&BInstr
,
1334 MachineBasicBlock
*BB
) const;
1336 MachineBasicBlock
*EmitLoweredCascadedSelect(MachineInstr
&MI1
,
1338 MachineBasicBlock
*BB
) const;
1340 MachineBasicBlock
*EmitLoweredSelect(MachineInstr
&I
,
1341 MachineBasicBlock
*BB
) const;
1343 MachineBasicBlock
*EmitLoweredAtomicFP(MachineInstr
&I
,
1344 MachineBasicBlock
*BB
) const;
1346 MachineBasicBlock
*EmitLoweredCatchRet(MachineInstr
&MI
,
1347 MachineBasicBlock
*BB
) const;
1349 MachineBasicBlock
*EmitLoweredCatchPad(MachineInstr
&MI
,
1350 MachineBasicBlock
*BB
) const;
1352 MachineBasicBlock
*EmitLoweredSegAlloca(MachineInstr
&MI
,
1353 MachineBasicBlock
*BB
) const;
1355 MachineBasicBlock
*EmitLoweredTLSAddr(MachineInstr
&MI
,
1356 MachineBasicBlock
*BB
) const;
1358 MachineBasicBlock
*EmitLoweredTLSCall(MachineInstr
&MI
,
1359 MachineBasicBlock
*BB
) const;
1361 MachineBasicBlock
*EmitLoweredRetpoline(MachineInstr
&MI
,
1362 MachineBasicBlock
*BB
) const;
1364 MachineBasicBlock
*emitEHSjLjSetJmp(MachineInstr
&MI
,
1365 MachineBasicBlock
*MBB
) const;
1367 void emitSetJmpShadowStackFix(MachineInstr
&MI
,
1368 MachineBasicBlock
*MBB
) const;
1370 MachineBasicBlock
*emitEHSjLjLongJmp(MachineInstr
&MI
,
1371 MachineBasicBlock
*MBB
) const;
1373 MachineBasicBlock
*emitLongJmpShadowStackFix(MachineInstr
&MI
,
1374 MachineBasicBlock
*MBB
) const;
1376 MachineBasicBlock
*emitFMA3Instr(MachineInstr
&MI
,
1377 MachineBasicBlock
*MBB
) const;
1379 MachineBasicBlock
*EmitSjLjDispatchBlock(MachineInstr
&MI
,
1380 MachineBasicBlock
*MBB
) const;
1382 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
1383 /// equivalent, for use with the given x86 condition code.
1384 SDValue
EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
, const SDLoc
&dl
,
1385 SelectionDAG
&DAG
) const;
1387 /// Convert a comparison if required by the subtarget.
1388 SDValue
ConvertCmpIfNecessary(SDValue Cmp
, SelectionDAG
&DAG
) const;
1390 /// Emit flags for the given setcc condition and operands. Also returns the
1391 /// corresponding X86 condition code constant in X86CC.
1392 SDValue
emitFlagsForSetcc(SDValue Op0
, SDValue Op1
,
1393 ISD::CondCode CC
, const SDLoc
&dl
,
1395 SDValue
&X86CC
) const;
1397 /// Check if replacement of SQRT with RSQRT should be disabled.
1398 bool isFsqrtCheap(SDValue Operand
, SelectionDAG
&DAG
) const override
;
1400 /// Use rsqrt* to speed up sqrt calculations.
1401 SDValue
getSqrtEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1402 int &RefinementSteps
, bool &UseOneConstNR
,
1403 bool Reciprocal
) const override
;
1405 /// Use rcp* to speed up fdiv calculations.
1406 SDValue
getRecipEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1407 int &RefinementSteps
) const override
;
1409 /// Reassociate floating point divisions into multiply by reciprocal.
1410 unsigned combineRepeatedFPDivisors() const override
;
1414 FastISel
*createFastISel(FunctionLoweringInfo
&funcInfo
,
1415 const TargetLibraryInfo
*libInfo
);
1416 } // end namespace X86
1418 // Base class for all X86 non-masked store operations.
1419 class X86StoreSDNode
: public MemSDNode
{
1421 X86StoreSDNode(unsigned Opcode
, unsigned Order
, const DebugLoc
&dl
,
1422 SDVTList VTs
, EVT MemVT
,
1423 MachineMemOperand
*MMO
)
1424 :MemSDNode(Opcode
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1425 const SDValue
&getValue() const { return getOperand(1); }
1426 const SDValue
&getBasePtr() const { return getOperand(2); }
1428 static bool classof(const SDNode
*N
) {
1429 return N
->getOpcode() == X86ISD::VTRUNCSTORES
||
1430 N
->getOpcode() == X86ISD::VTRUNCSTOREUS
;
1434 // Base class for all X86 masked store operations.
1435 // The class has the same order of operands as MaskedStoreSDNode for
1437 class X86MaskedStoreSDNode
: public MemSDNode
{
1439 X86MaskedStoreSDNode(unsigned Opcode
, unsigned Order
,
1440 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1441 MachineMemOperand
*MMO
)
1442 : MemSDNode(Opcode
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1444 const SDValue
&getValue() const { return getOperand(1); }
1445 const SDValue
&getBasePtr() const { return getOperand(2); }
1446 const SDValue
&getMask() const { return getOperand(3); }
1448 static bool classof(const SDNode
*N
) {
1449 return N
->getOpcode() == X86ISD::VMTRUNCSTORES
||
1450 N
->getOpcode() == X86ISD::VMTRUNCSTOREUS
;
1454 // X86 Truncating Store with Signed saturation.
1455 class TruncSStoreSDNode
: public X86StoreSDNode
{
1457 TruncSStoreSDNode(unsigned Order
, const DebugLoc
&dl
,
1458 SDVTList VTs
, EVT MemVT
, MachineMemOperand
*MMO
)
1459 : X86StoreSDNode(X86ISD::VTRUNCSTORES
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1461 static bool classof(const SDNode
*N
) {
1462 return N
->getOpcode() == X86ISD::VTRUNCSTORES
;
1466 // X86 Truncating Store with Unsigned saturation.
1467 class TruncUSStoreSDNode
: public X86StoreSDNode
{
1469 TruncUSStoreSDNode(unsigned Order
, const DebugLoc
&dl
,
1470 SDVTList VTs
, EVT MemVT
, MachineMemOperand
*MMO
)
1471 : X86StoreSDNode(X86ISD::VTRUNCSTOREUS
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1473 static bool classof(const SDNode
*N
) {
1474 return N
->getOpcode() == X86ISD::VTRUNCSTOREUS
;
1478 // X86 Truncating Masked Store with Signed saturation.
1479 class MaskedTruncSStoreSDNode
: public X86MaskedStoreSDNode
{
1481 MaskedTruncSStoreSDNode(unsigned Order
,
1482 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1483 MachineMemOperand
*MMO
)
1484 : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTORES
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1486 static bool classof(const SDNode
*N
) {
1487 return N
->getOpcode() == X86ISD::VMTRUNCSTORES
;
1491 // X86 Truncating Masked Store with Unsigned saturation.
1492 class MaskedTruncUSStoreSDNode
: public X86MaskedStoreSDNode
{
1494 MaskedTruncUSStoreSDNode(unsigned Order
,
1495 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1496 MachineMemOperand
*MMO
)
1497 : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTOREUS
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1499 static bool classof(const SDNode
*N
) {
1500 return N
->getOpcode() == X86ISD::VMTRUNCSTOREUS
;
1504 // X86 specific Gather/Scatter nodes.
1505 // The class has the same order of operands as MaskedGatherScatterSDNode for
1507 class X86MaskedGatherScatterSDNode
: public MemSDNode
{
1509 X86MaskedGatherScatterSDNode(unsigned Opc
, unsigned Order
,
1510 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
1511 MachineMemOperand
*MMO
)
1512 : MemSDNode(Opc
, Order
, dl
, VTs
, MemVT
, MMO
) {}
1514 const SDValue
&getBasePtr() const { return getOperand(3); }
1515 const SDValue
&getIndex() const { return getOperand(4); }
1516 const SDValue
&getMask() const { return getOperand(2); }
1517 const SDValue
&getScale() const { return getOperand(5); }
1519 static bool classof(const SDNode
*N
) {
1520 return N
->getOpcode() == X86ISD::MGATHER
||
1521 N
->getOpcode() == X86ISD::MSCATTER
;
1525 class X86MaskedGatherSDNode
: public X86MaskedGatherScatterSDNode
{
1527 X86MaskedGatherSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
1528 EVT MemVT
, MachineMemOperand
*MMO
)
1529 : X86MaskedGatherScatterSDNode(X86ISD::MGATHER
, Order
, dl
, VTs
, MemVT
,
1532 const SDValue
&getPassThru() const { return getOperand(1); }
1534 static bool classof(const SDNode
*N
) {
1535 return N
->getOpcode() == X86ISD::MGATHER
;
1539 class X86MaskedScatterSDNode
: public X86MaskedGatherScatterSDNode
{
1541 X86MaskedScatterSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
1542 EVT MemVT
, MachineMemOperand
*MMO
)
1543 : X86MaskedGatherScatterSDNode(X86ISD::MSCATTER
, Order
, dl
, VTs
, MemVT
,
1546 const SDValue
&getValue() const { return getOperand(1); }
1548 static bool classof(const SDNode
*N
) {
1549 return N
->getOpcode() == X86ISD::MSCATTER
;
1553 /// Generate unpacklo/unpackhi shuffle mask.
1554 template <typename T
= int>
1555 void createUnpackShuffleMask(MVT VT
, SmallVectorImpl
<T
> &Mask
, bool Lo
,
1557 assert(Mask
.empty() && "Expected an empty shuffle mask vector");
1558 int NumElts
= VT
.getVectorNumElements();
1559 int NumEltsInLane
= 128 / VT
.getScalarSizeInBits();
1560 for (int i
= 0; i
< NumElts
; ++i
) {
1561 unsigned LaneStart
= (i
/ NumEltsInLane
) * NumEltsInLane
;
1562 int Pos
= (i
% NumEltsInLane
) / 2 + LaneStart
;
1563 Pos
+= (Unary
? 0 : NumElts
* (i
% 2));
1564 Pos
+= (Lo
? 0 : NumEltsInLane
/ 2);
1565 Mask
.push_back(Pos
);
1569 /// Helper function to scale a shuffle or target shuffle mask, replacing each
1570 /// mask index with the scaled sequential indices for an equivalent narrowed
1571 /// mask. This is the reverse process to canWidenShuffleElements, but can
1573 template <typename T
>
1574 void scaleShuffleMask(int Scale
, ArrayRef
<T
> Mask
,
1575 SmallVectorImpl
<T
> &ScaledMask
) {
1576 assert(0 < Scale
&& "Unexpected scaling factor");
1577 int NumElts
= Mask
.size();
1578 ScaledMask
.assign(static_cast<size_t>(NumElts
* Scale
), -1);
1580 for (int i
= 0; i
!= NumElts
; ++i
) {
1583 // Repeat sentinel values in every mask element.
1585 for (int s
= 0; s
!= Scale
; ++s
)
1586 ScaledMask
[(Scale
* i
) + s
] = M
;
1590 // Scale mask element and increment across each mask element.
1591 for (int s
= 0; s
!= Scale
; ++s
)
1592 ScaledMask
[(Scale
* i
) + s
] = (Scale
* M
) + s
;
1595 } // end namespace llvm
1597 #endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H