1 //===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file describes the X86 jump, return, call, and related instructions.
11 //===----------------------------------------------------------------------===//
13 //===----------------------------------------------------------------------===//
14 // Control Flow Instructions.
17 // Return instructions.
19 // The X86retflag return instructions are variadic because we may add ST0 and
20 // ST1 arguments when returning values on the x87 stack.
21 let isTerminator = 1, isReturn = 1, isBarrier = 1,
22 hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
23 def RETL : I <0xC3, RawFrm, (outs), (ins variable_ops),
24 "ret{l}", []>, OpSize32, Requires<[Not64BitMode]>;
25 def RETQ : I <0xC3, RawFrm, (outs), (ins variable_ops),
26 "ret{q}", []>, OpSize32, Requires<[In64BitMode]>;
27 def RETW : I <0xC3, RawFrm, (outs), (ins),
28 "ret{w}", []>, OpSize16;
29 def RETIL : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
30 "ret{l}\t$amt", []>, OpSize32, Requires<[Not64BitMode]>;
31 def RETIQ : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
32 "ret{q}\t$amt", []>, OpSize32, Requires<[In64BitMode]>;
33 def RETIW : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
34 "ret{w}\t$amt", []>, OpSize16;
35 def LRETL : I <0xCB, RawFrm, (outs), (ins),
36 "{l}ret{l|f}", []>, OpSize32;
37 def LRETQ : RI <0xCB, RawFrm, (outs), (ins),
38 "{l}ret{|f}q", []>, Requires<[In64BitMode]>;
39 def LRETW : I <0xCB, RawFrm, (outs), (ins),
40 "{l}ret{w|f}", []>, OpSize16;
41 def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
42 "{l}ret{l|f}\t$amt", []>, OpSize32;
43 def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
44 "{l}ret{|f}q\t$amt", []>, Requires<[In64BitMode]>;
45 def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
46 "{l}ret{w|f}\t$amt", []>, OpSize16;
48 // The machine return from interrupt instruction, but sometimes we need to
49 // perform a post-epilogue stack adjustment. Codegen emits the pseudo form
50 // which expands to include an SP adjustment if necessary.
51 def IRET16 : I <0xcf, RawFrm, (outs), (ins), "iret{w}", []>,
53 def IRET32 : I <0xcf, RawFrm, (outs), (ins), "iret{l|d}", []>, OpSize32;
54 def IRET64 : RI <0xcf, RawFrm, (outs), (ins), "iretq", []>, Requires<[In64BitMode]>;
55 let isCodeGenOnly = 1 in
56 def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>;
57 def RET : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retflag timm:$adj)]>;
60 // Unconditional branches.
61 let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
62 def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
63 "jmp\t$dst", [(br bb:$dst)]>;
64 let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
65 def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst),
66 "jmp\t$dst", []>, OpSize16;
67 def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst),
68 "jmp\t$dst", []>, OpSize32;
72 // Conditional Branches.
73 let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump] in {
74 multiclass ICBr<bits<8> opc1, bits<8> opc4, string asm, PatFrag Cond> {
75 def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm,
76 [(X86brcond bb:$dst, Cond, EFLAGS)]>;
77 let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
78 def _2 : Ii16PCRel<opc4, RawFrm, (outs), (ins brtarget16:$dst), asm,
80 def _4 : Ii32PCRel<opc4, RawFrm, (outs), (ins brtarget32:$dst), asm,
86 defm JO : ICBr<0x70, 0x80, "jo\t$dst" , X86_COND_O>;
87 defm JNO : ICBr<0x71, 0x81, "jno\t$dst", X86_COND_NO>;
88 defm JB : ICBr<0x72, 0x82, "jb\t$dst" , X86_COND_B>;
89 defm JAE : ICBr<0x73, 0x83, "jae\t$dst", X86_COND_AE>;
90 defm JE : ICBr<0x74, 0x84, "je\t$dst" , X86_COND_E>;
91 defm JNE : ICBr<0x75, 0x85, "jne\t$dst", X86_COND_NE>;
92 defm JBE : ICBr<0x76, 0x86, "jbe\t$dst", X86_COND_BE>;
93 defm JA : ICBr<0x77, 0x87, "ja\t$dst" , X86_COND_A>;
94 defm JS : ICBr<0x78, 0x88, "js\t$dst" , X86_COND_S>;
95 defm JNS : ICBr<0x79, 0x89, "jns\t$dst", X86_COND_NS>;
96 defm JP : ICBr<0x7A, 0x8A, "jp\t$dst" , X86_COND_P>;
97 defm JNP : ICBr<0x7B, 0x8B, "jnp\t$dst", X86_COND_NP>;
98 defm JL : ICBr<0x7C, 0x8C, "jl\t$dst" , X86_COND_L>;
99 defm JGE : ICBr<0x7D, 0x8D, "jge\t$dst", X86_COND_GE>;
100 defm JLE : ICBr<0x7E, 0x8E, "jle\t$dst", X86_COND_LE>;
101 defm JG : ICBr<0x7F, 0x8F, "jg\t$dst" , X86_COND_G>;
103 // jcx/jecx/jrcx instructions.
104 let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in {
105 // These are the 32-bit versions of this instruction for the asmparser. In
106 // 32-bit mode, the address size prefix is jcxz and the unprefixed version is
109 def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
110 "jcxz\t$dst", []>, AdSize16, Requires<[Not64BitMode]>;
112 def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
113 "jecxz\t$dst", []>, AdSize32;
116 def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
117 "jrcxz\t$dst", []>, AdSize64, Requires<[In64BitMode]>;
121 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
122 def JMP16r : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst",
123 [(brind GR16:$dst)]>, Requires<[Not64BitMode]>,
124 OpSize16, Sched<[WriteJump]>;
125 def JMP16m : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst",
126 [(brind (loadi16 addr:$dst))]>, Requires<[Not64BitMode]>,
127 OpSize16, Sched<[WriteJumpLd]>;
129 def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
130 [(brind GR32:$dst)]>, Requires<[Not64BitMode]>,
131 OpSize32, Sched<[WriteJump]>;
132 def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
133 [(brind (loadi32 addr:$dst))]>, Requires<[Not64BitMode]>,
134 OpSize32, Sched<[WriteJumpLd]>;
136 def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
137 [(brind GR64:$dst)]>, Requires<[In64BitMode]>,
139 def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
140 [(brind (loadi64 addr:$dst))]>, Requires<[In64BitMode]>,
141 Sched<[WriteJumpLd]>;
143 // Non-tracking jumps for IBT, use with caution.
144 let isCodeGenOnly = 1 in {
145 def JMP16r_NT : I<0xFF, MRM4r, (outs), (ins GR16 : $dst), "jmp{w}\t{*}$dst",
146 [(X86NoTrackBrind GR16 : $dst)]>, Requires<[Not64BitMode]>,
147 OpSize16, Sched<[WriteJump]>, NOTRACK;
149 def JMP16m_NT : I<0xFF, MRM4m, (outs), (ins i16mem : $dst), "jmp{w}\t{*}$dst",
150 [(X86NoTrackBrind (loadi16 addr : $dst))]>,
151 Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>,
154 def JMP32r_NT : I<0xFF, MRM4r, (outs), (ins GR32 : $dst), "jmp{l}\t{*}$dst",
155 [(X86NoTrackBrind GR32 : $dst)]>, Requires<[Not64BitMode]>,
156 OpSize32, Sched<[WriteJump]>, NOTRACK;
157 def JMP32m_NT : I<0xFF, MRM4m, (outs), (ins i32mem : $dst), "jmp{l}\t{*}$dst",
158 [(X86NoTrackBrind (loadi32 addr : $dst))]>,
159 Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>,
162 def JMP64r_NT : I<0xFF, MRM4r, (outs), (ins GR64 : $dst), "jmp{q}\t{*}$dst",
163 [(X86NoTrackBrind GR64 : $dst)]>, Requires<[In64BitMode]>,
164 Sched<[WriteJump]>, NOTRACK;
165 def JMP64m_NT : I<0xFF, MRM4m, (outs), (ins i64mem : $dst), "jmp{q}\t{*}$dst",
166 [(X86NoTrackBrind(loadi64 addr : $dst))]>,
167 Requires<[In64BitMode]>, Sched<[WriteJumpLd]>, NOTRACK;
170 let Predicates = [Not64BitMode], AsmVariantName = "att" in {
171 def FARJMP16i : Iseg16<0xEA, RawFrmImm16, (outs),
172 (ins i16imm:$off, i16imm:$seg),
173 "ljmp{w}\t$seg, $off", []>,
174 OpSize16, Sched<[WriteJump]>;
175 def FARJMP32i : Iseg32<0xEA, RawFrmImm16, (outs),
176 (ins i32imm:$off, i16imm:$seg),
177 "ljmp{l}\t$seg, $off", []>,
178 OpSize32, Sched<[WriteJump]>;
180 def FARJMP64 : RI<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
181 "ljmp{q}\t{*}$dst", []>, Sched<[WriteJump]>, Requires<[In64BitMode]>;
183 let AsmVariantName = "att" in
184 def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
185 "ljmp{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
186 def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
187 "{l}jmp{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
191 let SchedRW = [WriteJump] in {
192 def LOOP : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>;
193 def LOOPE : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>;
194 def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>;
197 //===----------------------------------------------------------------------===//
198 // Call Instructions...
201 // All calls clobber the non-callee saved registers. ESP is marked as
202 // a use to prevent stack-pointer assignments that appear immediately
203 // before calls from potentially appearing dead. Uses for argument
204 // registers are added manually.
205 let Uses = [ESP, SSP] in {
206 def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
207 (outs), (ins i32imm_pcrel:$dst),
208 "call{l}\t$dst", []>, OpSize32,
209 Requires<[Not64BitMode]>, Sched<[WriteJump]>;
210 let hasSideEffects = 0 in
211 def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
212 (outs), (ins i16imm_pcrel:$dst),
213 "call{w}\t$dst", []>, OpSize16,
215 def CALL16r : I<0xFF, MRM2r, (outs), (ins GR16:$dst),
216 "call{w}\t{*}$dst", [(X86call GR16:$dst)]>,
217 OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
218 def CALL16m : I<0xFF, MRM2m, (outs), (ins i16mem:$dst),
219 "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))]>,
220 OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
221 Sched<[WriteJumpLd]>;
222 def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
223 "call{l}\t{*}$dst", [(X86call GR32:$dst)]>, OpSize32,
224 Requires<[Not64BitMode,NotUseRetpolineIndirectCalls]>,
226 def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
227 "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))]>,
229 Requires<[Not64BitMode,FavorMemIndirectCall,
230 NotUseRetpolineIndirectCalls]>,
231 Sched<[WriteJumpLd]>;
233 // Non-tracking calls for IBT, use with caution.
234 let isCodeGenOnly = 1 in {
235 def CALL16r_NT : I<0xFF, MRM2r, (outs), (ins GR16 : $dst),
236 "call{w}\t{*}$dst",[(X86NoTrackCall GR16 : $dst)]>,
237 OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
238 def CALL16m_NT : I<0xFF, MRM2m, (outs), (ins i16mem : $dst),
239 "call{w}\t{*}$dst",[(X86NoTrackCall(loadi16 addr : $dst))]>,
240 OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
241 Sched<[WriteJumpLd]>, NOTRACK;
242 def CALL32r_NT : I<0xFF, MRM2r, (outs), (ins GR32 : $dst),
243 "call{l}\t{*}$dst",[(X86NoTrackCall GR32 : $dst)]>,
244 OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
245 def CALL32m_NT : I<0xFF, MRM2m, (outs), (ins i32mem : $dst),
246 "call{l}\t{*}$dst",[(X86NoTrackCall(loadi32 addr : $dst))]>,
247 OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall]>,
248 Sched<[WriteJumpLd]>, NOTRACK;
251 let Predicates = [Not64BitMode], AsmVariantName = "att" in {
252 def FARCALL16i : Iseg16<0x9A, RawFrmImm16, (outs),
253 (ins i16imm:$off, i16imm:$seg),
254 "lcall{w}\t$seg, $off", []>,
255 OpSize16, Sched<[WriteJump]>;
256 def FARCALL32i : Iseg32<0x9A, RawFrmImm16, (outs),
257 (ins i32imm:$off, i16imm:$seg),
258 "lcall{l}\t$seg, $off", []>,
259 OpSize32, Sched<[WriteJump]>;
262 def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
263 "lcall{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
264 def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
265 "{l}call{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
270 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
271 isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
272 let Uses = [ESP, SSP] in {
273 def TCRETURNdi : PseudoI<(outs),
274 (ins i32imm_pcrel:$dst, i32imm:$offset), []>, NotMemoryFoldable;
275 def TCRETURNri : PseudoI<(outs),
276 (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>, NotMemoryFoldable;
278 def TCRETURNmi : PseudoI<(outs),
279 (ins i32mem_TC:$dst, i32imm:$offset), []>;
281 // FIXME: The should be pseudo instructions that are lowered when going to
283 def TAILJMPd : Ii32PCRel<0xE9, RawFrm, (outs),
284 (ins i32imm_pcrel:$dst), "jmp\t$dst", []>;
286 def TAILJMPr : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
287 "", []>; // FIXME: Remove encoding when JIT is dead.
289 def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst),
290 "jmp{l}\t{*}$dst", []>;
293 // Conditional tail calls are similar to the above, but they are branches
294 // rather than barriers, and they use EFLAGS.
295 let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
296 isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
297 let Uses = [ESP, EFLAGS, SSP] in {
298 def TCRETURNdicc : PseudoI<(outs),
299 (ins i32imm_pcrel:$dst, i32imm:$offset, i32imm:$cond), []>;
301 // This gets substituted to a conditional jump instruction in MC lowering.
302 def TAILJMPd_CC : Ii32PCRel<0x80, RawFrm, (outs),
303 (ins i32imm_pcrel:$dst, i32imm:$cond), "", []>;
307 //===----------------------------------------------------------------------===//
308 // Call Instructions...
311 // RSP is marked as a use to prevent stack-pointer assignments that appear
312 // immediately before calls from potentially appearing dead. Uses for argument
313 // registers are added manually.
314 let isCall = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in {
315 // NOTE: this pattern doesn't match "X86call imm", because we do not know
316 // that the offset between an arbitrary immediate and the call will fit in
317 // the 32-bit pcrel field that we have.
318 def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
319 (outs), (ins i64i32imm_pcrel:$dst),
320 "call{q}\t$dst", []>, OpSize32,
321 Requires<[In64BitMode]>;
322 def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
323 "call{q}\t{*}$dst", [(X86call GR64:$dst)]>,
324 Requires<[In64BitMode,NotUseRetpolineIndirectCalls]>;
325 def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
326 "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>,
327 Requires<[In64BitMode,FavorMemIndirectCall,
328 NotUseRetpolineIndirectCalls]>;
330 // Non-tracking calls for IBT, use with caution.
331 let isCodeGenOnly = 1 in {
332 def CALL64r_NT : I<0xFF, MRM2r, (outs), (ins GR64 : $dst),
333 "call{q}\t{*}$dst",[(X86NoTrackCall GR64 : $dst)]>,
334 Requires<[In64BitMode]>, NOTRACK;
335 def CALL64m_NT : I<0xFF, MRM2m, (outs), (ins i64mem : $dst),
337 [(X86NoTrackCall(loadi64 addr : $dst))]>,
338 Requires<[In64BitMode,FavorMemIndirectCall]>, NOTRACK;
341 def FARCALL64 : RI<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
342 "lcall{q}\t{*}$dst", []>;
345 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
346 isCodeGenOnly = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in {
347 def TCRETURNdi64 : PseudoI<(outs),
348 (ins i64i32imm_pcrel:$dst, i32imm:$offset),
350 def TCRETURNri64 : PseudoI<(outs),
351 (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>, NotMemoryFoldable;
353 def TCRETURNmi64 : PseudoI<(outs),
354 (ins i64mem_TC:$dst, i32imm:$offset), []>, NotMemoryFoldable;
356 def TAILJMPd64 : Ii32PCRel<0xE9, RawFrm, (outs), (ins i64i32imm_pcrel:$dst),
359 def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
360 "jmp{q}\t{*}$dst", []>;
363 def TAILJMPm64 : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
364 "jmp{q}\t{*}$dst", []>;
366 // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
367 let hasREX_WPrefix = 1 in {
368 def TAILJMPr64_REX : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
369 "rex64 jmp{q}\t{*}$dst", []>;
372 def TAILJMPm64_REX : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
373 "rex64 jmp{q}\t{*}$dst", []>;
377 let isPseudo = 1, isCall = 1, isCodeGenOnly = 1,
379 usesCustomInserter = 1,
380 SchedRW = [WriteJump] in {
381 def RETPOLINE_CALL32 :
382 PseudoI<(outs), (ins GR32:$dst), [(X86call GR32:$dst)]>,
383 Requires<[Not64BitMode,UseRetpolineIndirectCalls]>;
385 def RETPOLINE_CALL64 :
386 PseudoI<(outs), (ins GR64:$dst), [(X86call GR64:$dst)]>,
387 Requires<[In64BitMode,UseRetpolineIndirectCalls]>;
389 // Retpoline variant of indirect tail calls.
390 let isTerminator = 1, isReturn = 1, isBarrier = 1 in {
391 def RETPOLINE_TCRETURN64 :
392 PseudoI<(outs), (ins GR64:$dst, i32imm:$offset), []>;
393 def RETPOLINE_TCRETURN32 :
394 PseudoI<(outs), (ins GR32:$dst, i32imm:$offset), []>;
398 // Conditional tail calls are similar to the above, but they are branches
399 // rather than barriers, and they use EFLAGS.
400 let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
401 isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
402 let Uses = [RSP, EFLAGS, SSP] in {
403 def TCRETURNdi64cc : PseudoI<(outs),
404 (ins i64i32imm_pcrel:$dst, i32imm:$offset,
407 // This gets substituted to a conditional jump instruction in MC lowering.
408 def TAILJMPd64_CC : Ii32PCRel<0x80, RawFrm, (outs),
409 (ins i64i32imm_pcrel:$dst, i32imm:$cond), "", []>;