1 //===-- X86InstrFMA.td - FMA Instruction Set ---------------*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file describes FMA (Fused Multiply-Add) instructions.
11 //===----------------------------------------------------------------------===//
13 //===----------------------------------------------------------------------===//
14 // FMA3 - Intel 3 operand Fused Multiply-Add instructions
15 //===----------------------------------------------------------------------===//
17 // For all FMA opcodes declared in fma3p_rm_* and fma3s_rm_* multiclasses
18 // defined below, both the register and memory variants are commutable.
19 // For the register form the commutable operands are 1, 2 and 3.
20 // For the memory variant the folded operand must be in 3. Thus,
21 // in that case, only the operands 1 and 2 can be swapped.
22 // Commuting some of operands may require the opcode change.
24 // operands 1 and 2 (memory & register forms): *213* --> *213*(no changes);
25 // operands 1 and 3 (register forms only): *213* --> *231*;
26 // operands 2 and 3 (register forms only): *213* --> *132*.
28 // operands 1 and 2 (memory & register forms): *132* --> *231*;
29 // operands 1 and 3 (register forms only): *132* --> *132*(no changes);
30 // operands 2 and 3 (register forms only): *132* --> *213*.
32 // operands 1 and 2 (memory & register forms): *231* --> *132*;
33 // operands 1 and 3 (register forms only): *231* --> *213*;
34 // operands 2 and 3 (register forms only): *231* --> *231*(no changes).
36 multiclass fma3p_rm_213<bits<8> opc, string OpcodeStr, RegisterClass RC,
37 ValueType VT, X86MemOperand x86memop, PatFrag MemFrag,
38 SDNode Op, X86FoldableSchedWrite sched> {
39 def r : FMA3<opc, MRMSrcReg, (outs RC:$dst),
40 (ins RC:$src1, RC:$src2, RC:$src3),
42 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
43 [(set RC:$dst, (VT (Op RC:$src2, RC:$src1, RC:$src3)))]>,
47 def m : FMA3<opc, MRMSrcMem, (outs RC:$dst),
48 (ins RC:$src1, RC:$src2, x86memop:$src3),
50 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
51 [(set RC:$dst, (VT (Op RC:$src2, RC:$src1,
52 (MemFrag addr:$src3))))]>,
53 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
56 multiclass fma3p_rm_231<bits<8> opc, string OpcodeStr, RegisterClass RC,
57 ValueType VT, X86MemOperand x86memop, PatFrag MemFrag,
58 SDNode Op, X86FoldableSchedWrite sched> {
59 let hasSideEffects = 0 in
60 def r : FMA3<opc, MRMSrcReg, (outs RC:$dst),
61 (ins RC:$src1, RC:$src2, RC:$src3),
63 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
67 def m : FMA3<opc, MRMSrcMem, (outs RC:$dst),
68 (ins RC:$src1, RC:$src2, x86memop:$src3),
70 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
71 [(set RC:$dst, (VT (Op RC:$src2, (MemFrag addr:$src3),
73 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
76 multiclass fma3p_rm_132<bits<8> opc, string OpcodeStr, RegisterClass RC,
77 ValueType VT, X86MemOperand x86memop, PatFrag MemFrag,
78 SDNode Op, X86FoldableSchedWrite sched> {
79 let hasSideEffects = 0 in
80 def r : FMA3<opc, MRMSrcReg, (outs RC:$dst),
81 (ins RC:$src1, RC:$src2, RC:$src3),
83 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
86 // Pattern is 312 order so that the load is in a different place from the
87 // 213 and 231 patterns this helps tablegen's duplicate pattern detection.
89 def m : FMA3<opc, MRMSrcMem, (outs RC:$dst),
90 (ins RC:$src1, RC:$src2, x86memop:$src3),
92 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
93 [(set RC:$dst, (VT (Op (MemFrag addr:$src3), RC:$src1,
95 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
98 let Constraints = "$src1 = $dst", hasSideEffects = 0, isCommutable = 1 in
99 multiclass fma3p_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
100 string OpcodeStr, string PackTy, string Suff,
101 PatFrag MemFrag128, PatFrag MemFrag256,
102 SDNode Op, ValueType OpTy128, ValueType OpTy256,
103 X86SchedWriteWidths sched> {
104 defm NAME#213#Suff : fma3p_rm_213<opc213, !strconcat(OpcodeStr, "213", PackTy),
105 VR128, OpTy128, f128mem, MemFrag128, Op, sched.XMM>;
106 defm NAME#231#Suff : fma3p_rm_231<opc231, !strconcat(OpcodeStr, "231", PackTy),
107 VR128, OpTy128, f128mem, MemFrag128, Op, sched.XMM>;
108 defm NAME#132#Suff : fma3p_rm_132<opc132, !strconcat(OpcodeStr, "132", PackTy),
109 VR128, OpTy128, f128mem, MemFrag128, Op, sched.XMM>;
111 defm NAME#213#Suff#Y : fma3p_rm_213<opc213, !strconcat(OpcodeStr, "213", PackTy),
112 VR256, OpTy256, f256mem, MemFrag256, Op, sched.YMM>,
114 defm NAME#231#Suff#Y : fma3p_rm_231<opc231, !strconcat(OpcodeStr, "231", PackTy),
115 VR256, OpTy256, f256mem, MemFrag256, Op, sched.YMM>,
117 defm NAME#132#Suff#Y : fma3p_rm_132<opc132, !strconcat(OpcodeStr, "132", PackTy),
118 VR256, OpTy256, f256mem, MemFrag256, Op, sched.YMM>,
122 // Fused Multiply-Add
123 let ExeDomain = SSEPackedSingle in {
124 defm VFMADD : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "ps", "PS",
125 loadv4f32, loadv8f32, X86Fmadd, v4f32, v8f32,
127 defm VFMSUB : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "ps", "PS",
128 loadv4f32, loadv8f32, X86Fmsub, v4f32, v8f32,
130 defm VFMADDSUB : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "ps", "PS",
131 loadv4f32, loadv8f32, X86Fmaddsub, v4f32, v8f32,
133 defm VFMSUBADD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "ps", "PS",
134 loadv4f32, loadv8f32, X86Fmsubadd, v4f32, v8f32,
138 let ExeDomain = SSEPackedDouble in {
139 defm VFMADD : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "pd", "PD",
140 loadv2f64, loadv4f64, X86Fmadd, v2f64,
141 v4f64, SchedWriteFMA>, VEX_W;
142 defm VFMSUB : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "pd", "PD",
143 loadv2f64, loadv4f64, X86Fmsub, v2f64,
144 v4f64, SchedWriteFMA>, VEX_W;
145 defm VFMADDSUB : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "pd", "PD",
146 loadv2f64, loadv4f64, X86Fmaddsub,
147 v2f64, v4f64, SchedWriteFMA>, VEX_W;
148 defm VFMSUBADD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "pd", "PD",
149 loadv2f64, loadv4f64, X86Fmsubadd,
150 v2f64, v4f64, SchedWriteFMA>, VEX_W;
153 // Fused Negative Multiply-Add
154 let ExeDomain = SSEPackedSingle in {
155 defm VFNMADD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "ps", "PS", loadv4f32,
156 loadv8f32, X86Fnmadd, v4f32, v8f32, SchedWriteFMA>;
157 defm VFNMSUB : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "ps", "PS", loadv4f32,
158 loadv8f32, X86Fnmsub, v4f32, v8f32, SchedWriteFMA>;
160 let ExeDomain = SSEPackedDouble in {
161 defm VFNMADD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "pd", "PD", loadv2f64,
162 loadv4f64, X86Fnmadd, v2f64, v4f64, SchedWriteFMA>, VEX_W;
163 defm VFNMSUB : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "pd", "PD", loadv2f64,
164 loadv4f64, X86Fnmsub, v2f64, v4f64, SchedWriteFMA>, VEX_W;
167 // All source register operands of FMA opcodes defined in fma3s_rm multiclass
168 // can be commuted. In many cases such commute transformation requres an opcode
169 // adjustment, for example, commuting the operands 1 and 2 in FMA*132 form
170 // would require an opcode change to FMA*231:
171 // FMA*132* reg1, reg2, reg3; // reg1 * reg3 + reg2;
173 // FMA*231* reg2, reg1, reg3; // reg1 * reg3 + reg2;
174 // Please see more detailed comment at the very beginning of the section
175 // defining FMA3 opcodes above.
176 multiclass fma3s_rm_213<bits<8> opc, string OpcodeStr,
177 X86MemOperand x86memop, RegisterClass RC,
178 SDPatternOperator OpNode,
179 X86FoldableSchedWrite sched> {
180 def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst),
181 (ins RC:$src1, RC:$src2, RC:$src3),
182 !strconcat(OpcodeStr,
183 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
184 [(set RC:$dst, (OpNode RC:$src2, RC:$src1, RC:$src3))]>,
188 def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst),
189 (ins RC:$src1, RC:$src2, x86memop:$src3),
190 !strconcat(OpcodeStr,
191 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
193 (OpNode RC:$src2, RC:$src1, (load addr:$src3)))]>,
194 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
197 multiclass fma3s_rm_231<bits<8> opc, string OpcodeStr,
198 X86MemOperand x86memop, RegisterClass RC,
199 SDPatternOperator OpNode, X86FoldableSchedWrite sched> {
200 let hasSideEffects = 0 in
201 def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst),
202 (ins RC:$src1, RC:$src2, RC:$src3),
203 !strconcat(OpcodeStr,
204 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
208 def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst),
209 (ins RC:$src1, RC:$src2, x86memop:$src3),
210 !strconcat(OpcodeStr,
211 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
213 (OpNode RC:$src2, (load addr:$src3), RC:$src1))]>,
214 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
217 multiclass fma3s_rm_132<bits<8> opc, string OpcodeStr,
218 X86MemOperand x86memop, RegisterClass RC,
219 SDPatternOperator OpNode, X86FoldableSchedWrite sched> {
220 let hasSideEffects = 0 in
221 def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst),
222 (ins RC:$src1, RC:$src2, RC:$src3),
223 !strconcat(OpcodeStr,
224 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
227 // Pattern is 312 order so that the load is in a different place from the
228 // 213 and 231 patterns this helps tablegen's duplicate pattern detection.
230 def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst),
231 (ins RC:$src1, RC:$src2, x86memop:$src3),
232 !strconcat(OpcodeStr,
233 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
235 (OpNode (load addr:$src3), RC:$src1, RC:$src2))]>,
236 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
239 let Constraints = "$src1 = $dst", isCommutable = 1, hasSideEffects = 0 in
240 multiclass fma3s_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
241 string OpStr, string PackTy, string Suff,
242 SDNode OpNode, RegisterClass RC,
243 X86MemOperand x86memop, X86FoldableSchedWrite sched> {
244 defm NAME#213#Suff : fma3s_rm_213<opc213, !strconcat(OpStr, "213", PackTy),
245 x86memop, RC, OpNode, sched>;
246 defm NAME#231#Suff : fma3s_rm_231<opc231, !strconcat(OpStr, "231", PackTy),
247 x86memop, RC, OpNode, sched>;
248 defm NAME#132#Suff : fma3s_rm_132<opc132, !strconcat(OpStr, "132", PackTy),
249 x86memop, RC, OpNode, sched>;
252 // These FMA*_Int instructions are defined specially for being used when
253 // the scalar FMA intrinsics are lowered to machine instructions, and in that
254 // sense, they are similar to existing ADD*_Int, SUB*_Int, MUL*_Int, etc.
257 // All of the FMA*_Int opcodes are defined as commutable here.
258 // Commuting the 2nd and 3rd source register operands of FMAs is quite trivial
259 // and the corresponding optimizations have been developed.
260 // Commuting the 1st operand of FMA*_Int requires some additional analysis,
261 // the commute optimization is legal only if all users of FMA*_Int use only
262 // the lowest element of the FMA*_Int instruction. Even though such analysis
263 // may be not implemented yet we allow the routines doing the actual commute
264 // transformation to decide if one or another instruction is commutable or not.
265 let Constraints = "$src1 = $dst", isCommutable = 1, isCodeGenOnly = 1,
266 hasSideEffects = 0 in
267 multiclass fma3s_rm_int<bits<8> opc, string OpcodeStr,
268 Operand memopr, RegisterClass RC,
269 X86FoldableSchedWrite sched> {
270 def r_Int : FMA3S_Int<opc, MRMSrcReg, (outs RC:$dst),
271 (ins RC:$src1, RC:$src2, RC:$src3),
272 !strconcat(OpcodeStr,
273 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
277 def m_Int : FMA3S_Int<opc, MRMSrcMem, (outs RC:$dst),
278 (ins RC:$src1, RC:$src2, memopr:$src3),
279 !strconcat(OpcodeStr,
280 "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
281 []>, Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
284 // The FMA 213 form is created for lowering of scalar FMA intrinscis
285 // to machine instructions.
286 // The FMA 132 form can trivially be get by commuting the 2nd and 3rd operands
288 // The FMA 231 form can be get only by commuting the 1st operand of 213 or 132
289 // forms and is possible only after special analysis of all uses of the initial
290 // instruction. Such analysis do not exist yet and thus introducing the 231
291 // form of FMA*_Int instructions is done using an optimistic assumption that
292 // such analysis will be implemented eventually.
293 multiclass fma3s_int_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
294 string OpStr, string PackTy, string Suff,
295 RegisterClass RC, Operand memop,
296 X86FoldableSchedWrite sched> {
297 defm NAME#132#Suff : fma3s_rm_int<opc132, !strconcat(OpStr, "132", PackTy),
299 defm NAME#213#Suff : fma3s_rm_int<opc213, !strconcat(OpStr, "213", PackTy),
301 defm NAME#231#Suff : fma3s_rm_int<opc231, !strconcat(OpStr, "231", PackTy),
305 multiclass fma3s<bits<8> opc132, bits<8> opc213, bits<8> opc231,
306 string OpStr, SDNode OpNode, X86FoldableSchedWrite sched> {
307 let ExeDomain = SSEPackedSingle in
308 defm NAME : fma3s_forms<opc132, opc213, opc231, OpStr, "ss", "SS", OpNode,
309 FR32, f32mem, sched>,
310 fma3s_int_forms<opc132, opc213, opc231, OpStr, "ss", "SS",
311 VR128, ssmem, sched>;
313 let ExeDomain = SSEPackedDouble in
314 defm NAME : fma3s_forms<opc132, opc213, opc231, OpStr, "sd", "SD", OpNode,
315 FR64, f64mem, sched>,
316 fma3s_int_forms<opc132, opc213, opc231, OpStr, "sd", "SD",
317 VR128, sdmem, sched>, VEX_W;
320 defm VFMADD : fma3s<0x99, 0xA9, 0xB9, "vfmadd", X86Fmadd,
321 SchedWriteFMA.Scl>, VEX_LIG;
322 defm VFMSUB : fma3s<0x9B, 0xAB, 0xBB, "vfmsub", X86Fmsub,
323 SchedWriteFMA.Scl>, VEX_LIG;
325 defm VFNMADD : fma3s<0x9D, 0xAD, 0xBD, "vfnmadd", X86Fnmadd,
326 SchedWriteFMA.Scl>, VEX_LIG;
327 defm VFNMSUB : fma3s<0x9F, 0xAF, 0xBF, "vfnmsub", X86Fnmsub,
328 SchedWriteFMA.Scl>, VEX_LIG;
330 multiclass scalar_fma_patterns<SDNode Op, string Prefix, string Suffix,
331 SDNode Move, ValueType VT, ValueType EltVT,
332 RegisterClass RC, PatFrag mem_frag> {
333 let Predicates = [HasFMA, NoAVX512] in {
334 def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
336 (EltVT (extractelt (VT VR128:$src1), (iPTR 0))),
338 (!cast<Instruction>(Prefix#"213"#Suffix#"r_Int")
339 VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
340 (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>;
342 def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
343 (Op RC:$src2, RC:$src3,
344 (EltVT (extractelt (VT VR128:$src1), (iPTR 0)))))))),
345 (!cast<Instruction>(Prefix#"231"#Suffix#"r_Int")
346 VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
347 (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>;
349 def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
351 (EltVT (extractelt (VT VR128:$src1), (iPTR 0))),
352 (mem_frag addr:$src3)))))),
353 (!cast<Instruction>(Prefix#"213"#Suffix#"m_Int")
354 VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
357 def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
358 (Op (EltVT (extractelt (VT VR128:$src1), (iPTR 0))),
359 (mem_frag addr:$src3), RC:$src2))))),
360 (!cast<Instruction>(Prefix#"132"#Suffix#"m_Int")
361 VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
364 def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector
365 (Op RC:$src2, (mem_frag addr:$src3),
366 (EltVT (extractelt (VT VR128:$src1), (iPTR 0)))))))),
367 (!cast<Instruction>(Prefix#"231"#Suffix#"m_Int")
368 VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
373 defm : scalar_fma_patterns<X86Fmadd, "VFMADD", "SS", X86Movss, v4f32, f32, FR32, loadf32>;
374 defm : scalar_fma_patterns<X86Fmsub, "VFMSUB", "SS", X86Movss, v4f32, f32, FR32, loadf32>;
375 defm : scalar_fma_patterns<X86Fnmadd, "VFNMADD", "SS", X86Movss, v4f32, f32, FR32, loadf32>;
376 defm : scalar_fma_patterns<X86Fnmsub, "VFNMSUB", "SS", X86Movss, v4f32, f32, FR32, loadf32>;
378 defm : scalar_fma_patterns<X86Fmadd, "VFMADD", "SD", X86Movsd, v2f64, f64, FR64, loadf64>;
379 defm : scalar_fma_patterns<X86Fmsub, "VFMSUB", "SD", X86Movsd, v2f64, f64, FR64, loadf64>;
380 defm : scalar_fma_patterns<X86Fnmadd, "VFNMADD", "SD", X86Movsd, v2f64, f64, FR64, loadf64>;
381 defm : scalar_fma_patterns<X86Fnmsub, "VFNMSUB", "SD", X86Movsd, v2f64, f64, FR64, loadf64>;
383 //===----------------------------------------------------------------------===//
384 // FMA4 - AMD 4 operand Fused Multiply-Add instructions
385 //===----------------------------------------------------------------------===//
387 multiclass fma4s<bits<8> opc, string OpcodeStr, RegisterClass RC,
388 X86MemOperand x86memop, ValueType OpVT, SDNode OpNode,
389 PatFrag mem_frag, X86FoldableSchedWrite sched> {
390 let isCommutable = 1 in
391 def rr : FMA4S<opc, MRMSrcRegOp4, (outs RC:$dst),
392 (ins RC:$src1, RC:$src2, RC:$src3),
393 !strconcat(OpcodeStr,
394 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
396 (OpVT (OpNode RC:$src1, RC:$src2, RC:$src3)))]>, VEX_W, VEX_LIG,
398 def rm : FMA4S<opc, MRMSrcMemOp4, (outs RC:$dst),
399 (ins RC:$src1, RC:$src2, x86memop:$src3),
400 !strconcat(OpcodeStr,
401 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
402 [(set RC:$dst, (OpNode RC:$src1, RC:$src2,
403 (mem_frag addr:$src3)))]>, VEX_W, VEX_LIG,
404 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
405 def mr : FMA4S<opc, MRMSrcMem, (outs RC:$dst),
406 (ins RC:$src1, x86memop:$src2, RC:$src3),
407 !strconcat(OpcodeStr,
408 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
410 (OpNode RC:$src1, (mem_frag addr:$src2), RC:$src3))]>, VEX_LIG,
411 Sched<[sched.Folded, sched.ReadAfterFold,
413 ReadDefault, ReadDefault, ReadDefault, ReadDefault,
416 sched.ReadAfterFold]>;
418 let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
419 def rr_REV : FMA4S<opc, MRMSrcReg, (outs RC:$dst),
420 (ins RC:$src1, RC:$src2, RC:$src3),
421 !strconcat(OpcodeStr,
422 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
423 VEX_LIG, FoldGenData<NAME#rr>, Sched<[sched]>;
426 multiclass fma4s_int<bits<8> opc, string OpcodeStr, Operand memop,
427 ValueType VT, X86FoldableSchedWrite sched> {
428 let isCodeGenOnly = 1, hasSideEffects = 0 in {
429 def rr_Int : FMA4S_Int<opc, MRMSrcRegOp4, (outs VR128:$dst),
430 (ins VR128:$src1, VR128:$src2, VR128:$src3),
431 !strconcat(OpcodeStr,
432 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
433 []>, VEX_W, VEX_LIG, Sched<[sched]>;
435 def rm_Int : FMA4S_Int<opc, MRMSrcMemOp4, (outs VR128:$dst),
436 (ins VR128:$src1, VR128:$src2, memop:$src3),
437 !strconcat(OpcodeStr,
438 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
440 Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>;
442 def mr_Int : FMA4S_Int<opc, MRMSrcMem, (outs VR128:$dst),
443 (ins VR128:$src1, memop:$src2, VR128:$src3),
444 !strconcat(OpcodeStr,
445 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
447 VEX_LIG, Sched<[sched.Folded, sched.ReadAfterFold,
449 ReadDefault, ReadDefault, ReadDefault,
450 ReadDefault, ReadDefault,
452 sched.ReadAfterFold]>;
453 def rr_Int_REV : FMA4S_Int<opc, MRMSrcReg, (outs VR128:$dst),
454 (ins VR128:$src1, VR128:$src2, VR128:$src3),
455 !strconcat(OpcodeStr,
456 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
457 []>, VEX_LIG, FoldGenData<NAME#rr_Int>, Sched<[sched]>;
458 } // isCodeGenOnly = 1
461 multiclass fma4p<bits<8> opc, string OpcodeStr, SDNode OpNode,
462 ValueType OpVT128, ValueType OpVT256,
463 PatFrag ld_frag128, PatFrag ld_frag256,
464 X86SchedWriteWidths sched> {
465 let isCommutable = 1 in
466 def rr : FMA4<opc, MRMSrcRegOp4, (outs VR128:$dst),
467 (ins VR128:$src1, VR128:$src2, VR128:$src3),
468 !strconcat(OpcodeStr,
469 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
471 (OpVT128 (OpNode VR128:$src1, VR128:$src2, VR128:$src3)))]>,
472 VEX_W, Sched<[sched.XMM]>;
473 def rm : FMA4<opc, MRMSrcMemOp4, (outs VR128:$dst),
474 (ins VR128:$src1, VR128:$src2, f128mem:$src3),
475 !strconcat(OpcodeStr,
476 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
477 [(set VR128:$dst, (OpNode VR128:$src1, VR128:$src2,
478 (ld_frag128 addr:$src3)))]>, VEX_W,
479 Sched<[sched.XMM.Folded, sched.XMM.ReadAfterFold, sched.XMM.ReadAfterFold]>;
480 def mr : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
481 (ins VR128:$src1, f128mem:$src2, VR128:$src3),
482 !strconcat(OpcodeStr,
483 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
485 (OpNode VR128:$src1, (ld_frag128 addr:$src2), VR128:$src3))]>,
486 Sched<[sched.XMM.Folded, sched.XMM.ReadAfterFold,
488 ReadDefault, ReadDefault, ReadDefault, ReadDefault,
491 sched.XMM.ReadAfterFold]>;
492 let isCommutable = 1 in
493 def Yrr : FMA4<opc, MRMSrcRegOp4, (outs VR256:$dst),
494 (ins VR256:$src1, VR256:$src2, VR256:$src3),
495 !strconcat(OpcodeStr,
496 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
498 (OpVT256 (OpNode VR256:$src1, VR256:$src2, VR256:$src3)))]>,
499 VEX_W, VEX_L, Sched<[sched.YMM]>;
500 def Yrm : FMA4<opc, MRMSrcMemOp4, (outs VR256:$dst),
501 (ins VR256:$src1, VR256:$src2, f256mem:$src3),
502 !strconcat(OpcodeStr,
503 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
504 [(set VR256:$dst, (OpNode VR256:$src1, VR256:$src2,
505 (ld_frag256 addr:$src3)))]>, VEX_W, VEX_L,
506 Sched<[sched.YMM.Folded, sched.YMM.ReadAfterFold, sched.YMM.ReadAfterFold]>;
507 def Ymr : FMA4<opc, MRMSrcMem, (outs VR256:$dst),
508 (ins VR256:$src1, f256mem:$src2, VR256:$src3),
509 !strconcat(OpcodeStr,
510 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
511 [(set VR256:$dst, (OpNode VR256:$src1,
512 (ld_frag256 addr:$src2), VR256:$src3))]>, VEX_L,
513 Sched<[sched.YMM.Folded, sched.YMM.ReadAfterFold,
515 ReadDefault, ReadDefault, ReadDefault, ReadDefault,
518 sched.YMM.ReadAfterFold]>;
520 let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
521 def rr_REV : FMA4<opc, MRMSrcReg, (outs VR128:$dst),
522 (ins VR128:$src1, VR128:$src2, VR128:$src3),
523 !strconcat(OpcodeStr,
524 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
525 Sched<[sched.XMM]>, FoldGenData<NAME#rr>;
526 def Yrr_REV : FMA4<opc, MRMSrcReg, (outs VR256:$dst),
527 (ins VR256:$src1, VR256:$src2, VR256:$src3),
528 !strconcat(OpcodeStr,
529 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
530 VEX_L, Sched<[sched.YMM]>, FoldGenData<NAME#Yrr>;
531 } // isCodeGenOnly = 1
534 let ExeDomain = SSEPackedSingle in {
535 // Scalar Instructions
536 defm VFMADDSS4 : fma4s<0x6A, "vfmaddss", FR32, f32mem, f32, X86Fmadd, loadf32,
538 fma4s_int<0x6A, "vfmaddss", ssmem, v4f32,
540 defm VFMSUBSS4 : fma4s<0x6E, "vfmsubss", FR32, f32mem, f32, X86Fmsub, loadf32,
542 fma4s_int<0x6E, "vfmsubss", ssmem, v4f32,
544 defm VFNMADDSS4 : fma4s<0x7A, "vfnmaddss", FR32, f32mem, f32,
545 X86Fnmadd, loadf32, SchedWriteFMA.Scl>,
546 fma4s_int<0x7A, "vfnmaddss", ssmem, v4f32,
548 defm VFNMSUBSS4 : fma4s<0x7E, "vfnmsubss", FR32, f32mem, f32,
549 X86Fnmsub, loadf32, SchedWriteFMA.Scl>,
550 fma4s_int<0x7E, "vfnmsubss", ssmem, v4f32,
552 // Packed Instructions
553 defm VFMADDPS4 : fma4p<0x68, "vfmaddps", X86Fmadd, v4f32, v8f32,
554 loadv4f32, loadv8f32, SchedWriteFMA>;
555 defm VFMSUBPS4 : fma4p<0x6C, "vfmsubps", X86Fmsub, v4f32, v8f32,
556 loadv4f32, loadv8f32, SchedWriteFMA>;
557 defm VFNMADDPS4 : fma4p<0x78, "vfnmaddps", X86Fnmadd, v4f32, v8f32,
558 loadv4f32, loadv8f32, SchedWriteFMA>;
559 defm VFNMSUBPS4 : fma4p<0x7C, "vfnmsubps", X86Fnmsub, v4f32, v8f32,
560 loadv4f32, loadv8f32, SchedWriteFMA>;
561 defm VFMADDSUBPS4 : fma4p<0x5C, "vfmaddsubps", X86Fmaddsub, v4f32, v8f32,
562 loadv4f32, loadv8f32, SchedWriteFMA>;
563 defm VFMSUBADDPS4 : fma4p<0x5E, "vfmsubaddps", X86Fmsubadd, v4f32, v8f32,
564 loadv4f32, loadv8f32, SchedWriteFMA>;
567 let ExeDomain = SSEPackedDouble in {
568 // Scalar Instructions
569 defm VFMADDSD4 : fma4s<0x6B, "vfmaddsd", FR64, f64mem, f64, X86Fmadd, loadf64,
571 fma4s_int<0x6B, "vfmaddsd", sdmem, v2f64,
573 defm VFMSUBSD4 : fma4s<0x6F, "vfmsubsd", FR64, f64mem, f64, X86Fmsub, loadf64,
575 fma4s_int<0x6F, "vfmsubsd", sdmem, v2f64,
577 defm VFNMADDSD4 : fma4s<0x7B, "vfnmaddsd", FR64, f64mem, f64,
578 X86Fnmadd, loadf64, SchedWriteFMA.Scl>,
579 fma4s_int<0x7B, "vfnmaddsd", sdmem, v2f64,
581 defm VFNMSUBSD4 : fma4s<0x7F, "vfnmsubsd", FR64, f64mem, f64,
582 X86Fnmsub, loadf64, SchedWriteFMA.Scl>,
583 fma4s_int<0x7F, "vfnmsubsd", sdmem, v2f64,
585 // Packed Instructions
586 defm VFMADDPD4 : fma4p<0x69, "vfmaddpd", X86Fmadd, v2f64, v4f64,
587 loadv2f64, loadv4f64, SchedWriteFMA>;
588 defm VFMSUBPD4 : fma4p<0x6D, "vfmsubpd", X86Fmsub, v2f64, v4f64,
589 loadv2f64, loadv4f64, SchedWriteFMA>;
590 defm VFNMADDPD4 : fma4p<0x79, "vfnmaddpd", X86Fnmadd, v2f64, v4f64,
591 loadv2f64, loadv4f64, SchedWriteFMA>;
592 defm VFNMSUBPD4 : fma4p<0x7D, "vfnmsubpd", X86Fnmsub, v2f64, v4f64,
593 loadv2f64, loadv4f64, SchedWriteFMA>;
594 defm VFMADDSUBPD4 : fma4p<0x5D, "vfmaddsubpd", X86Fmaddsub, v2f64, v4f64,
595 loadv2f64, loadv4f64, SchedWriteFMA>;
596 defm VFMSUBADDPD4 : fma4p<0x5F, "vfmsubaddpd", X86Fmsubadd, v2f64, v4f64,
597 loadv2f64, loadv4f64, SchedWriteFMA>;
600 multiclass scalar_fma4_patterns<SDNode Op, string Name,
601 ValueType VT, ValueType EltVT,
602 RegisterClass RC, PatFrag mem_frag> {
603 let Predicates = [HasFMA4] in {
604 def : Pat<(VT (X86vzmovl (VT (scalar_to_vector
605 (Op RC:$src1, RC:$src2, RC:$src3))))),
606 (!cast<Instruction>(Name#"rr_Int")
607 (VT (COPY_TO_REGCLASS RC:$src1, VR128)),
608 (VT (COPY_TO_REGCLASS RC:$src2, VR128)),
609 (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>;
611 def : Pat<(VT (X86vzmovl (VT (scalar_to_vector
612 (Op RC:$src1, RC:$src2,
613 (mem_frag addr:$src3)))))),
614 (!cast<Instruction>(Name#"rm_Int")
615 (VT (COPY_TO_REGCLASS RC:$src1, VR128)),
616 (VT (COPY_TO_REGCLASS RC:$src2, VR128)), addr:$src3)>;
618 def : Pat<(VT (X86vzmovl (VT (scalar_to_vector
619 (Op RC:$src1, (mem_frag addr:$src2),
621 (!cast<Instruction>(Name#"mr_Int")
622 (VT (COPY_TO_REGCLASS RC:$src1, VR128)), addr:$src2,
623 (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>;
627 defm : scalar_fma4_patterns<X86Fmadd, "VFMADDSS4", v4f32, f32, FR32, loadf32>;
628 defm : scalar_fma4_patterns<X86Fmsub, "VFMSUBSS4", v4f32, f32, FR32, loadf32>;
629 defm : scalar_fma4_patterns<X86Fnmadd, "VFNMADDSS4", v4f32, f32, FR32, loadf32>;
630 defm : scalar_fma4_patterns<X86Fnmsub, "VFNMSUBSS4", v4f32, f32, FR32, loadf32>;
632 defm : scalar_fma4_patterns<X86Fmadd, "VFMADDSD4", v2f64, f64, FR64, loadf64>;
633 defm : scalar_fma4_patterns<X86Fmsub, "VFMSUBSD4", v2f64, f64, FR64, loadf64>;
634 defm : scalar_fma4_patterns<X86Fnmadd, "VFNMADDSD4", v2f64, f64, FR64, loadf64>;
635 defm : scalar_fma4_patterns<X86Fnmsub, "VFNMSUBSD4", v2f64, f64, FR64, loadf64>;