Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / X86 / X86Subtarget.cpp
blobd6ffad0137f0e3088e806ca6c38dd81e3c418b04
1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86 specific subclass of TargetSubtargetInfo.
11 //===----------------------------------------------------------------------===//
13 #include "X86.h"
15 #include "X86CallLowering.h"
16 #include "X86LegalizerInfo.h"
17 #include "X86RegisterBankInfo.h"
18 #include "X86Subtarget.h"
19 #include "MCTargetDesc/X86BaseInfo.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/CodeGen.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
36 #if defined(_MSC_VER)
37 #include <intrin.h>
38 #endif
40 using namespace llvm;
42 #define DEBUG_TYPE "subtarget"
44 #define GET_SUBTARGETINFO_TARGET_DESC
45 #define GET_SUBTARGETINFO_CTOR
46 #include "X86GenSubtargetInfo.inc"
48 // Temporary option to control early if-conversion for x86 while adding machine
49 // models.
50 static cl::opt<bool>
51 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
52 cl::desc("Enable early if-conversion on X86"));
55 /// Classify a blockaddress reference for the current subtarget according to how
56 /// we should reference it in a non-pcrel context.
57 unsigned char X86Subtarget::classifyBlockAddressReference() const {
58 return classifyLocalReference(nullptr);
61 /// Classify a global variable reference for the current subtarget according to
62 /// how we should reference it in a non-pcrel context.
63 unsigned char
64 X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
65 return classifyGlobalReference(GV, *GV->getParent());
68 unsigned char
69 X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
70 // If we're not PIC, it's not very interesting.
71 if (!isPositionIndependent())
72 return X86II::MO_NO_FLAG;
74 if (is64Bit()) {
75 // 64-bit ELF PIC local references may use GOTOFF relocations.
76 if (isTargetELF()) {
77 switch (TM.getCodeModel()) {
78 // 64-bit small code model is simple: All rip-relative.
79 case CodeModel::Tiny:
80 llvm_unreachable("Tiny codesize model not supported on X86");
81 case CodeModel::Small:
82 case CodeModel::Kernel:
83 return X86II::MO_NO_FLAG;
85 // The large PIC code model uses GOTOFF.
86 case CodeModel::Large:
87 return X86II::MO_GOTOFF;
89 // Medium is a hybrid: RIP-rel for code, GOTOFF for DSO local data.
90 case CodeModel::Medium:
91 if (isa<Function>(GV))
92 return X86II::MO_NO_FLAG; // All code is RIP-relative
93 return X86II::MO_GOTOFF; // Local symbols use GOTOFF.
95 llvm_unreachable("invalid code model");
98 // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
99 // both of which use MO_NO_FLAG.
100 return X86II::MO_NO_FLAG;
103 // The COFF dynamic linker just patches the executable sections.
104 if (isTargetCOFF())
105 return X86II::MO_NO_FLAG;
107 if (isTargetDarwin()) {
108 // 32 bit macho has no relocation for a-b if a is undefined, even if
109 // b is in the section that is being relocated.
110 // This means we have to use o load even for GVs that are known to be
111 // local to the dso.
112 if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
113 return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
115 return X86II::MO_PIC_BASE_OFFSET;
118 return X86II::MO_GOTOFF;
121 unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
122 const Module &M) const {
123 // The static large model never uses stubs.
124 if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent())
125 return X86II::MO_NO_FLAG;
127 // Absolute symbols can be referenced directly.
128 if (GV) {
129 if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
130 // See if we can use the 8-bit immediate form. Note that some instructions
131 // will sign extend the immediate operand, so to be conservative we only
132 // accept the range [0,128).
133 if (CR->getUnsignedMax().ult(128))
134 return X86II::MO_ABS8;
135 else
136 return X86II::MO_NO_FLAG;
140 if (TM.shouldAssumeDSOLocal(M, GV))
141 return classifyLocalReference(GV);
143 if (isTargetCOFF()) {
144 if (GV->hasDLLImportStorageClass())
145 return X86II::MO_DLLIMPORT;
146 return X86II::MO_COFFSTUB;
149 if (is64Bit()) {
150 // ELF supports a large, truly PIC code model with non-PC relative GOT
151 // references. Other object file formats do not. Use the no-flag, 64-bit
152 // reference for them.
153 if (TM.getCodeModel() == CodeModel::Large)
154 return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG;
155 return X86II::MO_GOTPCREL;
158 if (isTargetDarwin()) {
159 if (!isPositionIndependent())
160 return X86II::MO_DARWIN_NONLAZY;
161 return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
164 return X86II::MO_GOT;
167 unsigned char
168 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
169 return classifyGlobalFunctionReference(GV, *GV->getParent());
172 unsigned char
173 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
174 const Module &M) const {
175 if (TM.shouldAssumeDSOLocal(M, GV))
176 return X86II::MO_NO_FLAG;
178 if (isTargetCOFF()) {
179 assert(GV->hasDLLImportStorageClass() &&
180 "shouldAssumeDSOLocal gave inconsistent answer");
181 return X86II::MO_DLLIMPORT;
184 const Function *F = dyn_cast_or_null<Function>(GV);
186 if (isTargetELF()) {
187 if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
188 // According to psABI, PLT stub clobbers XMM8-XMM15.
189 // In Regcall calling convention those registers are used for passing
190 // parameters. Thus we need to prevent lazy binding in Regcall.
191 return X86II::MO_GOTPCREL;
192 // If PLT must be avoided then the call should be via GOTPCREL.
193 if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) ||
194 (!F && M.getRtLibUseGOT())) &&
195 is64Bit())
196 return X86II::MO_GOTPCREL;
197 return X86II::MO_PLT;
200 if (is64Bit()) {
201 if (F && F->hasFnAttribute(Attribute::NonLazyBind))
202 // If the function is marked as non-lazy, generate an indirect call
203 // which loads from the GOT directly. This avoids runtime overhead
204 // at the cost of eager binding (and one extra byte of encoding).
205 return X86II::MO_GOTPCREL;
206 return X86II::MO_NO_FLAG;
209 return X86II::MO_NO_FLAG;
212 /// Return true if the subtarget allows calls to immediate address.
213 bool X86Subtarget::isLegalToCallImmediateAddr() const {
214 // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
215 // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
216 // the following check for Win32 should be removed.
217 if (In64BitMode || isTargetWin32())
218 return false;
219 return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
222 void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
223 std::string CPUName = CPU;
224 if (CPUName.empty())
225 CPUName = "generic";
227 std::string FullFS = FS;
228 if (In64BitMode) {
229 // SSE2 should default to enabled in 64-bit mode, but can be turned off
230 // explicitly.
231 if (!FullFS.empty())
232 FullFS = "+sse2," + FullFS;
233 else
234 FullFS = "+sse2";
236 // If no CPU was specified, enable 64bit feature to satisy later check.
237 if (CPUName == "generic") {
238 if (!FullFS.empty())
239 FullFS = "+64bit," + FullFS;
240 else
241 FullFS = "+64bit";
245 // LAHF/SAHF are always supported in non-64-bit mode.
246 if (!In64BitMode) {
247 if (!FullFS.empty())
248 FullFS = "+sahf," + FullFS;
249 else
250 FullFS = "+sahf";
253 // Parse features string and set the CPU.
254 ParseSubtargetFeatures(CPUName, FullFS);
256 // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
257 // 16-bytes and under that are reasonably fast. These features were
258 // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
259 // micro-architectures respectively.
260 if (hasSSE42() || hasSSE4A())
261 IsUAMem16Slow = false;
263 // It's important to keep the MCSubtargetInfo feature bits in sync with
264 // target data structure which is shared with MC code emitter, etc.
265 if (In64BitMode)
266 ToggleFeature(X86::Mode64Bit);
267 else if (In32BitMode)
268 ToggleFeature(X86::Mode32Bit);
269 else if (In16BitMode)
270 ToggleFeature(X86::Mode16Bit);
271 else
272 llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
274 LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
275 << ", 3DNowLevel " << X863DNowLevel << ", 64bit "
276 << HasX86_64 << "\n");
277 if (In64BitMode && !HasX86_64)
278 report_fatal_error("64-bit code requested on a subtarget that doesn't "
279 "support it!");
281 // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD and Solaris (both
282 // 32 and 64 bit) and for all 64-bit targets.
283 if (StackAlignOverride)
284 stackAlignment = StackAlignOverride;
285 else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
286 isTargetKFreeBSD() || In64BitMode)
287 stackAlignment = 16;
289 // Some CPUs have more overhead for gather. The specified overhead is relative
290 // to the Load operation. "2" is the number provided by Intel architects. This
291 // parameter is used for cost estimation of Gather Op and comparison with
292 // other alternatives.
293 // TODO: Remove the explicit hasAVX512()?, That would mean we would only
294 // enable gather with a -march.
295 if (hasAVX512() || (hasAVX2() && hasFastGather()))
296 GatherOverhead = 2;
297 if (hasAVX512())
298 ScatterOverhead = 2;
300 // Consume the vector width attribute or apply any target specific limit.
301 if (PreferVectorWidthOverride)
302 PreferVectorWidth = PreferVectorWidthOverride;
303 else if (Prefer256Bit)
304 PreferVectorWidth = 256;
307 X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
308 StringRef FS) {
309 initSubtargetFeatures(CPU, FS);
310 return *this;
313 X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
314 const X86TargetMachine &TM,
315 unsigned StackAlignOverride,
316 unsigned PreferVectorWidthOverride,
317 unsigned RequiredVectorWidth)
318 : X86GenSubtargetInfo(TT, CPU, FS),
319 PICStyle(PICStyles::None), TM(TM), TargetTriple(TT),
320 StackAlignOverride(StackAlignOverride),
321 PreferVectorWidthOverride(PreferVectorWidthOverride),
322 RequiredVectorWidth(RequiredVectorWidth),
323 In64BitMode(TargetTriple.getArch() == Triple::x86_64),
324 In32BitMode(TargetTriple.getArch() == Triple::x86 &&
325 TargetTriple.getEnvironment() != Triple::CODE16),
326 In16BitMode(TargetTriple.getArch() == Triple::x86 &&
327 TargetTriple.getEnvironment() == Triple::CODE16),
328 InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this),
329 FrameLowering(*this, getStackAlignment()) {
330 // Determine the PICStyle based on the target selected.
331 if (!isPositionIndependent())
332 setPICStyle(PICStyles::None);
333 else if (is64Bit())
334 setPICStyle(PICStyles::RIPRel);
335 else if (isTargetCOFF())
336 setPICStyle(PICStyles::None);
337 else if (isTargetDarwin())
338 setPICStyle(PICStyles::StubPIC);
339 else if (isTargetELF())
340 setPICStyle(PICStyles::GOT);
342 CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
343 Legalizer.reset(new X86LegalizerInfo(*this, TM));
345 auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
346 RegBankInfo.reset(RBI);
347 InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
350 const CallLowering *X86Subtarget::getCallLowering() const {
351 return CallLoweringInfo.get();
354 const InstructionSelector *X86Subtarget::getInstructionSelector() const {
355 return InstSelector.get();
358 const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
359 return Legalizer.get();
362 const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
363 return RegBankInfo.get();
366 bool X86Subtarget::enableEarlyIfConversion() const {
367 return hasCMov() && X86EarlyIfConv;