1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the X86 specific subclass of TargetSubtargetInfo.
11 //===----------------------------------------------------------------------===//
15 #include "X86CallLowering.h"
16 #include "X86LegalizerInfo.h"
17 #include "X86RegisterBankInfo.h"
18 #include "X86Subtarget.h"
19 #include "MCTargetDesc/X86BaseInfo.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/CodeGen.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
42 #define DEBUG_TYPE "subtarget"
44 #define GET_SUBTARGETINFO_TARGET_DESC
45 #define GET_SUBTARGETINFO_CTOR
46 #include "X86GenSubtargetInfo.inc"
48 // Temporary option to control early if-conversion for x86 while adding machine
51 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden
,
52 cl::desc("Enable early if-conversion on X86"));
55 /// Classify a blockaddress reference for the current subtarget according to how
56 /// we should reference it in a non-pcrel context.
57 unsigned char X86Subtarget::classifyBlockAddressReference() const {
58 return classifyLocalReference(nullptr);
61 /// Classify a global variable reference for the current subtarget according to
62 /// how we should reference it in a non-pcrel context.
64 X86Subtarget::classifyGlobalReference(const GlobalValue
*GV
) const {
65 return classifyGlobalReference(GV
, *GV
->getParent());
69 X86Subtarget::classifyLocalReference(const GlobalValue
*GV
) const {
70 // If we're not PIC, it's not very interesting.
71 if (!isPositionIndependent())
72 return X86II::MO_NO_FLAG
;
75 // 64-bit ELF PIC local references may use GOTOFF relocations.
77 switch (TM
.getCodeModel()) {
78 // 64-bit small code model is simple: All rip-relative.
80 llvm_unreachable("Tiny codesize model not supported on X86");
81 case CodeModel::Small
:
82 case CodeModel::Kernel
:
83 return X86II::MO_NO_FLAG
;
85 // The large PIC code model uses GOTOFF.
86 case CodeModel::Large
:
87 return X86II::MO_GOTOFF
;
89 // Medium is a hybrid: RIP-rel for code, GOTOFF for DSO local data.
90 case CodeModel::Medium
:
91 if (isa
<Function
>(GV
))
92 return X86II::MO_NO_FLAG
; // All code is RIP-relative
93 return X86II::MO_GOTOFF
; // Local symbols use GOTOFF.
95 llvm_unreachable("invalid code model");
98 // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
99 // both of which use MO_NO_FLAG.
100 return X86II::MO_NO_FLAG
;
103 // The COFF dynamic linker just patches the executable sections.
105 return X86II::MO_NO_FLAG
;
107 if (isTargetDarwin()) {
108 // 32 bit macho has no relocation for a-b if a is undefined, even if
109 // b is in the section that is being relocated.
110 // This means we have to use o load even for GVs that are known to be
112 if (GV
&& (GV
->isDeclarationForLinker() || GV
->hasCommonLinkage()))
113 return X86II::MO_DARWIN_NONLAZY_PIC_BASE
;
115 return X86II::MO_PIC_BASE_OFFSET
;
118 return X86II::MO_GOTOFF
;
121 unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue
*GV
,
122 const Module
&M
) const {
123 // The static large model never uses stubs.
124 if (TM
.getCodeModel() == CodeModel::Large
&& !isPositionIndependent())
125 return X86II::MO_NO_FLAG
;
127 // Absolute symbols can be referenced directly.
129 if (Optional
<ConstantRange
> CR
= GV
->getAbsoluteSymbolRange()) {
130 // See if we can use the 8-bit immediate form. Note that some instructions
131 // will sign extend the immediate operand, so to be conservative we only
132 // accept the range [0,128).
133 if (CR
->getUnsignedMax().ult(128))
134 return X86II::MO_ABS8
;
136 return X86II::MO_NO_FLAG
;
140 if (TM
.shouldAssumeDSOLocal(M
, GV
))
141 return classifyLocalReference(GV
);
143 if (isTargetCOFF()) {
144 if (GV
->hasDLLImportStorageClass())
145 return X86II::MO_DLLIMPORT
;
146 return X86II::MO_COFFSTUB
;
150 // ELF supports a large, truly PIC code model with non-PC relative GOT
151 // references. Other object file formats do not. Use the no-flag, 64-bit
152 // reference for them.
153 if (TM
.getCodeModel() == CodeModel::Large
)
154 return isTargetELF() ? X86II::MO_GOT
: X86II::MO_NO_FLAG
;
155 return X86II::MO_GOTPCREL
;
158 if (isTargetDarwin()) {
159 if (!isPositionIndependent())
160 return X86II::MO_DARWIN_NONLAZY
;
161 return X86II::MO_DARWIN_NONLAZY_PIC_BASE
;
164 return X86II::MO_GOT
;
168 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue
*GV
) const {
169 return classifyGlobalFunctionReference(GV
, *GV
->getParent());
173 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue
*GV
,
174 const Module
&M
) const {
175 if (TM
.shouldAssumeDSOLocal(M
, GV
))
176 return X86II::MO_NO_FLAG
;
178 if (isTargetCOFF()) {
179 assert(GV
->hasDLLImportStorageClass() &&
180 "shouldAssumeDSOLocal gave inconsistent answer");
181 return X86II::MO_DLLIMPORT
;
184 const Function
*F
= dyn_cast_or_null
<Function
>(GV
);
187 if (is64Bit() && F
&& (CallingConv::X86_RegCall
== F
->getCallingConv()))
188 // According to psABI, PLT stub clobbers XMM8-XMM15.
189 // In Regcall calling convention those registers are used for passing
190 // parameters. Thus we need to prevent lazy binding in Regcall.
191 return X86II::MO_GOTPCREL
;
192 // If PLT must be avoided then the call should be via GOTPCREL.
193 if (((F
&& F
->hasFnAttribute(Attribute::NonLazyBind
)) ||
194 (!F
&& M
.getRtLibUseGOT())) &&
196 return X86II::MO_GOTPCREL
;
197 return X86II::MO_PLT
;
201 if (F
&& F
->hasFnAttribute(Attribute::NonLazyBind
))
202 // If the function is marked as non-lazy, generate an indirect call
203 // which loads from the GOT directly. This avoids runtime overhead
204 // at the cost of eager binding (and one extra byte of encoding).
205 return X86II::MO_GOTPCREL
;
206 return X86II::MO_NO_FLAG
;
209 return X86II::MO_NO_FLAG
;
212 /// Return true if the subtarget allows calls to immediate address.
213 bool X86Subtarget::isLegalToCallImmediateAddr() const {
214 // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
215 // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
216 // the following check for Win32 should be removed.
217 if (In64BitMode
|| isTargetWin32())
219 return isTargetELF() || TM
.getRelocationModel() == Reloc::Static
;
222 void X86Subtarget::initSubtargetFeatures(StringRef CPU
, StringRef FS
) {
223 std::string CPUName
= CPU
;
227 std::string FullFS
= FS
;
229 // SSE2 should default to enabled in 64-bit mode, but can be turned off
232 FullFS
= "+sse2," + FullFS
;
236 // If no CPU was specified, enable 64bit feature to satisy later check.
237 if (CPUName
== "generic") {
239 FullFS
= "+64bit," + FullFS
;
245 // LAHF/SAHF are always supported in non-64-bit mode.
248 FullFS
= "+sahf," + FullFS
;
253 // Parse features string and set the CPU.
254 ParseSubtargetFeatures(CPUName
, FullFS
);
256 // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
257 // 16-bytes and under that are reasonably fast. These features were
258 // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
259 // micro-architectures respectively.
260 if (hasSSE42() || hasSSE4A())
261 IsUAMem16Slow
= false;
263 // It's important to keep the MCSubtargetInfo feature bits in sync with
264 // target data structure which is shared with MC code emitter, etc.
266 ToggleFeature(X86::Mode64Bit
);
267 else if (In32BitMode
)
268 ToggleFeature(X86::Mode32Bit
);
269 else if (In16BitMode
)
270 ToggleFeature(X86::Mode16Bit
);
272 llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
274 LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
275 << ", 3DNowLevel " << X863DNowLevel
<< ", 64bit "
276 << HasX86_64
<< "\n");
277 if (In64BitMode
&& !HasX86_64
)
278 report_fatal_error("64-bit code requested on a subtarget that doesn't "
281 // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD and Solaris (both
282 // 32 and 64 bit) and for all 64-bit targets.
283 if (StackAlignOverride
)
284 stackAlignment
= StackAlignOverride
;
285 else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
286 isTargetKFreeBSD() || In64BitMode
)
289 // Some CPUs have more overhead for gather. The specified overhead is relative
290 // to the Load operation. "2" is the number provided by Intel architects. This
291 // parameter is used for cost estimation of Gather Op and comparison with
292 // other alternatives.
293 // TODO: Remove the explicit hasAVX512()?, That would mean we would only
294 // enable gather with a -march.
295 if (hasAVX512() || (hasAVX2() && hasFastGather()))
300 // Consume the vector width attribute or apply any target specific limit.
301 if (PreferVectorWidthOverride
)
302 PreferVectorWidth
= PreferVectorWidthOverride
;
303 else if (Prefer256Bit
)
304 PreferVectorWidth
= 256;
307 X86Subtarget
&X86Subtarget::initializeSubtargetDependencies(StringRef CPU
,
309 initSubtargetFeatures(CPU
, FS
);
313 X86Subtarget::X86Subtarget(const Triple
&TT
, StringRef CPU
, StringRef FS
,
314 const X86TargetMachine
&TM
,
315 unsigned StackAlignOverride
,
316 unsigned PreferVectorWidthOverride
,
317 unsigned RequiredVectorWidth
)
318 : X86GenSubtargetInfo(TT
, CPU
, FS
),
319 PICStyle(PICStyles::None
), TM(TM
), TargetTriple(TT
),
320 StackAlignOverride(StackAlignOverride
),
321 PreferVectorWidthOverride(PreferVectorWidthOverride
),
322 RequiredVectorWidth(RequiredVectorWidth
),
323 In64BitMode(TargetTriple
.getArch() == Triple::x86_64
),
324 In32BitMode(TargetTriple
.getArch() == Triple::x86
&&
325 TargetTriple
.getEnvironment() != Triple::CODE16
),
326 In16BitMode(TargetTriple
.getArch() == Triple::x86
&&
327 TargetTriple
.getEnvironment() == Triple::CODE16
),
328 InstrInfo(initializeSubtargetDependencies(CPU
, FS
)), TLInfo(TM
, *this),
329 FrameLowering(*this, getStackAlignment()) {
330 // Determine the PICStyle based on the target selected.
331 if (!isPositionIndependent())
332 setPICStyle(PICStyles::None
);
334 setPICStyle(PICStyles::RIPRel
);
335 else if (isTargetCOFF())
336 setPICStyle(PICStyles::None
);
337 else if (isTargetDarwin())
338 setPICStyle(PICStyles::StubPIC
);
339 else if (isTargetELF())
340 setPICStyle(PICStyles::GOT
);
342 CallLoweringInfo
.reset(new X86CallLowering(*getTargetLowering()));
343 Legalizer
.reset(new X86LegalizerInfo(*this, TM
));
345 auto *RBI
= new X86RegisterBankInfo(*getRegisterInfo());
346 RegBankInfo
.reset(RBI
);
347 InstSelector
.reset(createX86InstructionSelector(TM
, *this, *RBI
));
350 const CallLowering
*X86Subtarget::getCallLowering() const {
351 return CallLoweringInfo
.get();
354 const InstructionSelector
*X86Subtarget::getInstructionSelector() const {
355 return InstSelector
.get();
358 const LegalizerInfo
*X86Subtarget::getLegalizerInfo() const {
359 return Legalizer
.get();
362 const RegisterBankInfo
*X86Subtarget::getRegBankInfo() const {
363 return RegBankInfo
.get();
366 bool X86Subtarget::enableEarlyIfConversion() const {
367 return hasCMov() && X86EarlyIfConv
;