Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / X86 / X86Subtarget.h
blob6e2e4708005c1131d5bec46842d624ed56b79af8
1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the X86 specific subclass of TargetSubtargetInfo.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
14 #define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
16 #include "X86FrameLowering.h"
17 #include "X86ISelLowering.h"
18 #include "X86InstrInfo.h"
19 #include "X86SelectionDAGInfo.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
24 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
25 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include <climits>
30 #include <memory>
32 #define GET_SUBTARGETINFO_HEADER
33 #include "X86GenSubtargetInfo.inc"
35 namespace llvm {
37 class GlobalValue;
39 /// The X86 backend supports a number of different styles of PIC.
40 ///
41 namespace PICStyles {
43 enum Style {
44 StubPIC, // Used on i386-darwin in pic mode.
45 GOT, // Used on 32 bit elf on when in pic mode.
46 RIPRel, // Used on X86-64 when in pic mode.
47 None // Set when not in pic mode.
50 } // end namespace PICStyles
52 class X86Subtarget final : public X86GenSubtargetInfo {
53 public:
54 // NOTE: Do not add anything new to this list. Coarse, CPU name based flags
55 // are not a good idea. We should be migrating away from these.
56 enum X86ProcFamilyEnum {
57 Others,
58 IntelAtom,
59 IntelSLM,
60 IntelGLM,
61 IntelGLP,
62 IntelTRM
65 protected:
66 enum X86SSEEnum {
67 NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
70 enum X863DNowEnum {
71 NoThreeDNow, MMX, ThreeDNow, ThreeDNowA
74 /// X86 processor family: Intel Atom, and others
75 X86ProcFamilyEnum X86ProcFamily = Others;
77 /// Which PIC style to use
78 PICStyles::Style PICStyle;
80 const TargetMachine &TM;
82 /// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported.
83 X86SSEEnum X86SSELevel = NoSSE;
85 /// MMX, 3DNow, 3DNow Athlon, or none supported.
86 X863DNowEnum X863DNowLevel = NoThreeDNow;
88 /// True if the processor supports X87 instructions.
89 bool HasX87 = false;
91 /// True if this processor has NOPL instruction
92 /// (generally pentium pro+).
93 bool HasNOPL = false;
95 /// True if this processor has conditional move instructions
96 /// (generally pentium pro+).
97 bool HasCMov = false;
99 /// True if the processor supports X86-64 instructions.
100 bool HasX86_64 = false;
102 /// True if the processor supports POPCNT.
103 bool HasPOPCNT = false;
105 /// True if the processor supports SSE4A instructions.
106 bool HasSSE4A = false;
108 /// Target has AES instructions
109 bool HasAES = false;
110 bool HasVAES = false;
112 /// Target has FXSAVE/FXRESTOR instructions
113 bool HasFXSR = false;
115 /// Target has XSAVE instructions
116 bool HasXSAVE = false;
118 /// Target has XSAVEOPT instructions
119 bool HasXSAVEOPT = false;
121 /// Target has XSAVEC instructions
122 bool HasXSAVEC = false;
124 /// Target has XSAVES instructions
125 bool HasXSAVES = false;
127 /// Target has carry-less multiplication
128 bool HasPCLMUL = false;
129 bool HasVPCLMULQDQ = false;
131 /// Target has Galois Field Arithmetic instructions
132 bool HasGFNI = false;
134 /// Target has 3-operand fused multiply-add
135 bool HasFMA = false;
137 /// Target has 4-operand fused multiply-add
138 bool HasFMA4 = false;
140 /// Target has XOP instructions
141 bool HasXOP = false;
143 /// Target has TBM instructions.
144 bool HasTBM = false;
146 /// Target has LWP instructions
147 bool HasLWP = false;
149 /// True if the processor has the MOVBE instruction.
150 bool HasMOVBE = false;
152 /// True if the processor has the RDRAND instruction.
153 bool HasRDRAND = false;
155 /// Processor has 16-bit floating point conversion instructions.
156 bool HasF16C = false;
158 /// Processor has FS/GS base insturctions.
159 bool HasFSGSBase = false;
161 /// Processor has LZCNT instruction.
162 bool HasLZCNT = false;
164 /// Processor has BMI1 instructions.
165 bool HasBMI = false;
167 /// Processor has BMI2 instructions.
168 bool HasBMI2 = false;
170 /// Processor has VBMI instructions.
171 bool HasVBMI = false;
173 /// Processor has VBMI2 instructions.
174 bool HasVBMI2 = false;
176 /// Processor has Integer Fused Multiply Add
177 bool HasIFMA = false;
179 /// Processor has RTM instructions.
180 bool HasRTM = false;
182 /// Processor has ADX instructions.
183 bool HasADX = false;
185 /// Processor has SHA instructions.
186 bool HasSHA = false;
188 /// Processor has PRFCHW instructions.
189 bool HasPRFCHW = false;
191 /// Processor has RDSEED instructions.
192 bool HasRDSEED = false;
194 /// Processor has LAHF/SAHF instructions.
195 bool HasLAHFSAHF = false;
197 /// Processor has MONITORX/MWAITX instructions.
198 bool HasMWAITX = false;
200 /// Processor has Cache Line Zero instruction
201 bool HasCLZERO = false;
203 /// Processor has Cache Line Demote instruction
204 bool HasCLDEMOTE = false;
206 /// Processor has MOVDIRI instruction (direct store integer).
207 bool HasMOVDIRI = false;
209 /// Processor has MOVDIR64B instruction (direct store 64 bytes).
210 bool HasMOVDIR64B = false;
212 /// Processor has ptwrite instruction.
213 bool HasPTWRITE = false;
215 /// Processor has Prefetch with intent to Write instruction
216 bool HasPREFETCHWT1 = false;
218 /// True if SHLD instructions are slow.
219 bool IsSHLDSlow = false;
221 /// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and
222 // PMULUDQ.
223 bool IsPMULLDSlow = false;
225 /// True if the PMADDWD instruction is slow compared to PMULLD.
226 bool IsPMADDWDSlow = false;
228 /// True if unaligned memory accesses of 16-bytes are slow.
229 bool IsUAMem16Slow = false;
231 /// True if unaligned memory accesses of 32-bytes are slow.
232 bool IsUAMem32Slow = false;
234 /// True if SSE operations can have unaligned memory operands.
235 /// This may require setting a configuration bit in the processor.
236 bool HasSSEUnalignedMem = false;
238 /// True if this processor has the CMPXCHG16B instruction;
239 /// this is true for most x86-64 chips, but not the first AMD chips.
240 bool HasCmpxchg16b = false;
242 /// True if the LEA instruction should be used for adjusting
243 /// the stack pointer. This is an optimization for Intel Atom processors.
244 bool UseLeaForSP = false;
246 /// True if POPCNT instruction has a false dependency on the destination register.
247 bool HasPOPCNTFalseDeps = false;
249 /// True if LZCNT/TZCNT instructions have a false dependency on the destination register.
250 bool HasLZCNTFalseDeps = false;
252 /// True if its preferable to combine to a single shuffle using a variable
253 /// mask over multiple fixed shuffles.
254 bool HasFastVariableShuffle = false;
256 /// True if there is no performance penalty to writing only the lower parts
257 /// of a YMM or ZMM register without clearing the upper part.
258 bool HasFastPartialYMMorZMMWrite = false;
260 /// True if there is no performance penalty for writing NOPs with up to
261 /// 11 bytes.
262 bool HasFast11ByteNOP = false;
264 /// True if there is no performance penalty for writing NOPs with up to
265 /// 15 bytes.
266 bool HasFast15ByteNOP = false;
268 /// True if gather is reasonably fast. This is true for Skylake client and
269 /// all AVX-512 CPUs.
270 bool HasFastGather = false;
272 /// True if hardware SQRTSS instruction is at least as fast (latency) as
273 /// RSQRTSS followed by a Newton-Raphson iteration.
274 bool HasFastScalarFSQRT = false;
276 /// True if hardware SQRTPS/VSQRTPS instructions are at least as fast
277 /// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration.
278 bool HasFastVectorFSQRT = false;
280 /// True if 8-bit divisions are significantly faster than
281 /// 32-bit divisions and should be used when possible.
282 bool HasSlowDivide32 = false;
284 /// True if 32-bit divides are significantly faster than
285 /// 64-bit divisions and should be used when possible.
286 bool HasSlowDivide64 = false;
288 /// True if LZCNT instruction is fast.
289 bool HasFastLZCNT = false;
291 /// True if SHLD based rotate is fast.
292 bool HasFastSHLDRotate = false;
294 /// True if the processor supports macrofusion.
295 bool HasMacroFusion = false;
297 /// True if the processor has enhanced REP MOVSB/STOSB.
298 bool HasERMSB = false;
300 /// True if the short functions should be padded to prevent
301 /// a stall when returning too early.
302 bool PadShortFunctions = false;
304 /// True if two memory operand instructions should use a temporary register
305 /// instead.
306 bool SlowTwoMemOps = false;
308 /// True if the LEA instruction inputs have to be ready at address generation
309 /// (AG) time.
310 bool LEAUsesAG = false;
312 /// True if the LEA instruction with certain arguments is slow
313 bool SlowLEA = false;
315 /// True if the LEA instruction has all three source operands: base, index,
316 /// and offset or if the LEA instruction uses base and index registers where
317 /// the base is EBP, RBP,or R13
318 bool Slow3OpsLEA = false;
320 /// True if INC and DEC instructions are slow when writing to flags
321 bool SlowIncDec = false;
323 /// Processor has AVX-512 PreFetch Instructions
324 bool HasPFI = false;
326 /// Processor has AVX-512 Exponential and Reciprocal Instructions
327 bool HasERI = false;
329 /// Processor has AVX-512 Conflict Detection Instructions
330 bool HasCDI = false;
332 /// Processor has AVX-512 population count Instructions
333 bool HasVPOPCNTDQ = false;
335 /// Processor has AVX-512 Doubleword and Quadword instructions
336 bool HasDQI = false;
338 /// Processor has AVX-512 Byte and Word instructions
339 bool HasBWI = false;
341 /// Processor has AVX-512 Vector Length eXtenstions
342 bool HasVLX = false;
344 /// Processor has PKU extenstions
345 bool HasPKU = false;
347 /// Processor has AVX-512 Vector Neural Network Instructions
348 bool HasVNNI = false;
350 /// Processor has AVX-512 Bit Algorithms instructions
351 bool HasBITALG = false;
353 /// Processor supports MPX - Memory Protection Extensions
354 bool HasMPX = false;
356 /// Processor supports CET SHSTK - Control-Flow Enforcement Technology
357 /// using Shadow Stack
358 bool HasSHSTK = false;
360 /// Processor supports Invalidate Process-Context Identifier
361 bool HasINVPCID = false;
363 /// Processor has Software Guard Extensions
364 bool HasSGX = false;
366 /// Processor supports Flush Cache Line instruction
367 bool HasCLFLUSHOPT = false;
369 /// Processor supports Cache Line Write Back instruction
370 bool HasCLWB = false;
372 /// Processor supports Write Back No Invalidate instruction
373 bool HasWBNOINVD = false;
375 /// Processor support RDPID instruction
376 bool HasRDPID = false;
378 /// Processor supports WaitPKG instructions
379 bool HasWAITPKG = false;
381 /// Processor supports PCONFIG instruction
382 bool HasPCONFIG = false;
384 /// Processor has a single uop BEXTR implementation.
385 bool HasFastBEXTR = false;
387 /// Try harder to combine to horizontal vector ops if they are fast.
388 bool HasFastHorizontalOps = false;
390 /// Use a retpoline thunk rather than indirect calls to block speculative
391 /// execution.
392 bool UseRetpolineIndirectCalls = false;
394 /// Use a retpoline thunk or remove any indirect branch to block speculative
395 /// execution.
396 bool UseRetpolineIndirectBranches = false;
398 /// Deprecated flag, query `UseRetpolineIndirectCalls` and
399 /// `UseRetpolineIndirectBranches` instead.
400 bool DeprecatedUseRetpoline = false;
402 /// When using a retpoline thunk, call an externally provided thunk rather
403 /// than emitting one inside the compiler.
404 bool UseRetpolineExternalThunk = false;
406 /// Use software floating point for code generation.
407 bool UseSoftFloat = false;
409 /// The minimum alignment known to hold of the stack frame on
410 /// entry to the function and which must be maintained by every function.
411 unsigned stackAlignment = 4;
413 /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
415 // FIXME: this is a known good value for Yonah. How about others?
416 unsigned MaxInlineSizeThreshold = 128;
418 /// Indicates target prefers 256 bit instructions.
419 bool Prefer256Bit = false;
421 /// Threeway branch is profitable in this subtarget.
422 bool ThreewayBranchProfitable = false;
424 /// What processor and OS we're targeting.
425 Triple TargetTriple;
427 /// GlobalISel related APIs.
428 std::unique_ptr<CallLowering> CallLoweringInfo;
429 std::unique_ptr<LegalizerInfo> Legalizer;
430 std::unique_ptr<RegisterBankInfo> RegBankInfo;
431 std::unique_ptr<InstructionSelector> InstSelector;
433 private:
434 /// Override the stack alignment.
435 unsigned StackAlignOverride;
437 /// Preferred vector width from function attribute.
438 unsigned PreferVectorWidthOverride;
440 /// Resolved preferred vector width from function attribute and subtarget
441 /// features.
442 unsigned PreferVectorWidth = UINT32_MAX;
444 /// Required vector width from function attribute.
445 unsigned RequiredVectorWidth;
447 /// True if compiling for 64-bit, false for 16-bit or 32-bit.
448 bool In64BitMode;
450 /// True if compiling for 32-bit, false for 16-bit or 64-bit.
451 bool In32BitMode;
453 /// True if compiling for 16-bit, false for 32-bit or 64-bit.
454 bool In16BitMode;
456 /// Contains the Overhead of gather\scatter instructions
457 int GatherOverhead = 1024;
458 int ScatterOverhead = 1024;
460 X86SelectionDAGInfo TSInfo;
461 // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
462 // X86TargetLowering needs.
463 X86InstrInfo InstrInfo;
464 X86TargetLowering TLInfo;
465 X86FrameLowering FrameLowering;
467 public:
468 /// This constructor initializes the data members to match that
469 /// of the specified triple.
471 X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
472 const X86TargetMachine &TM, unsigned StackAlignOverride,
473 unsigned PreferVectorWidthOverride,
474 unsigned RequiredVectorWidth);
476 const X86TargetLowering *getTargetLowering() const override {
477 return &TLInfo;
480 const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; }
482 const X86FrameLowering *getFrameLowering() const override {
483 return &FrameLowering;
486 const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
487 return &TSInfo;
490 const X86RegisterInfo *getRegisterInfo() const override {
491 return &getInstrInfo()->getRegisterInfo();
494 /// Returns the minimum alignment known to hold of the
495 /// stack frame on entry to the function and which must be maintained by every
496 /// function for this subtarget.
497 unsigned getStackAlignment() const { return stackAlignment; }
499 /// Returns the maximum memset / memcpy size
500 /// that still makes it profitable to inline the call.
501 unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
503 /// ParseSubtargetFeatures - Parses features string setting specified
504 /// subtarget options. Definition of function is auto generated by tblgen.
505 void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
507 /// Methods used by Global ISel
508 const CallLowering *getCallLowering() const override;
509 const InstructionSelector *getInstructionSelector() const override;
510 const LegalizerInfo *getLegalizerInfo() const override;
511 const RegisterBankInfo *getRegBankInfo() const override;
513 private:
514 /// Initialize the full set of dependencies so we can use an initializer
515 /// list for X86Subtarget.
516 X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
517 void initSubtargetFeatures(StringRef CPU, StringRef FS);
519 public:
520 /// Is this x86_64? (disregarding specific ABI / programming model)
521 bool is64Bit() const {
522 return In64BitMode;
525 bool is32Bit() const {
526 return In32BitMode;
529 bool is16Bit() const {
530 return In16BitMode;
533 /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
534 bool isTarget64BitILP32() const {
535 return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 ||
536 TargetTriple.isOSNaCl());
539 /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
540 bool isTarget64BitLP64() const {
541 return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 &&
542 !TargetTriple.isOSNaCl());
545 PICStyles::Style getPICStyle() const { return PICStyle; }
546 void setPICStyle(PICStyles::Style Style) { PICStyle = Style; }
548 bool hasX87() const { return HasX87; }
549 bool hasNOPL() const { return HasNOPL; }
550 // SSE codegen depends on cmovs, and all SSE1+ processors support them.
551 // All 64-bit processors support cmov.
552 bool hasCMov() const { return HasCMov || X86SSELevel >= SSE1 || is64Bit(); }
553 bool hasSSE1() const { return X86SSELevel >= SSE1; }
554 bool hasSSE2() const { return X86SSELevel >= SSE2; }
555 bool hasSSE3() const { return X86SSELevel >= SSE3; }
556 bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
557 bool hasSSE41() const { return X86SSELevel >= SSE41; }
558 bool hasSSE42() const { return X86SSELevel >= SSE42; }
559 bool hasAVX() const { return X86SSELevel >= AVX; }
560 bool hasAVX2() const { return X86SSELevel >= AVX2; }
561 bool hasAVX512() const { return X86SSELevel >= AVX512F; }
562 bool hasInt256() const { return hasAVX2(); }
563 bool hasSSE4A() const { return HasSSE4A; }
564 bool hasMMX() const { return X863DNowLevel >= MMX; }
565 bool has3DNow() const { return X863DNowLevel >= ThreeDNow; }
566 bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; }
567 bool hasPOPCNT() const { return HasPOPCNT; }
568 bool hasAES() const { return HasAES; }
569 bool hasVAES() const { return HasVAES; }
570 bool hasFXSR() const { return HasFXSR; }
571 bool hasXSAVE() const { return HasXSAVE; }
572 bool hasXSAVEOPT() const { return HasXSAVEOPT; }
573 bool hasXSAVEC() const { return HasXSAVEC; }
574 bool hasXSAVES() const { return HasXSAVES; }
575 bool hasPCLMUL() const { return HasPCLMUL; }
576 bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ; }
577 bool hasGFNI() const { return HasGFNI; }
578 // Prefer FMA4 to FMA - its better for commutation/memory folding and
579 // has equal or better performance on all supported targets.
580 bool hasFMA() const { return HasFMA; }
581 bool hasFMA4() const { return HasFMA4; }
582 bool hasAnyFMA() const { return hasFMA() || hasFMA4(); }
583 bool hasXOP() const { return HasXOP; }
584 bool hasTBM() const { return HasTBM; }
585 bool hasLWP() const { return HasLWP; }
586 bool hasMOVBE() const { return HasMOVBE; }
587 bool hasRDRAND() const { return HasRDRAND; }
588 bool hasF16C() const { return HasF16C; }
589 bool hasFSGSBase() const { return HasFSGSBase; }
590 bool hasLZCNT() const { return HasLZCNT; }
591 bool hasBMI() const { return HasBMI; }
592 bool hasBMI2() const { return HasBMI2; }
593 bool hasVBMI() const { return HasVBMI; }
594 bool hasVBMI2() const { return HasVBMI2; }
595 bool hasIFMA() const { return HasIFMA; }
596 bool hasRTM() const { return HasRTM; }
597 bool hasADX() const { return HasADX; }
598 bool hasSHA() const { return HasSHA; }
599 bool hasPRFCHW() const { return HasPRFCHW || HasPREFETCHWT1; }
600 bool hasPREFETCHWT1() const { return HasPREFETCHWT1; }
601 bool hasSSEPrefetch() const {
602 // We implicitly enable these when we have a write prefix supporting cache
603 // level OR if we have prfchw, but don't already have a read prefetch from
604 // 3dnow.
605 return hasSSE1() || (hasPRFCHW() && !has3DNow()) || hasPREFETCHWT1();
607 bool hasRDSEED() const { return HasRDSEED; }
608 bool hasLAHFSAHF() const { return HasLAHFSAHF; }
609 bool hasMWAITX() const { return HasMWAITX; }
610 bool hasCLZERO() const { return HasCLZERO; }
611 bool hasCLDEMOTE() const { return HasCLDEMOTE; }
612 bool hasMOVDIRI() const { return HasMOVDIRI; }
613 bool hasMOVDIR64B() const { return HasMOVDIR64B; }
614 bool hasPTWRITE() const { return HasPTWRITE; }
615 bool isSHLDSlow() const { return IsSHLDSlow; }
616 bool isPMULLDSlow() const { return IsPMULLDSlow; }
617 bool isPMADDWDSlow() const { return IsPMADDWDSlow; }
618 bool isUnalignedMem16Slow() const { return IsUAMem16Slow; }
619 bool isUnalignedMem32Slow() const { return IsUAMem32Slow; }
620 int getGatherOverhead() const { return GatherOverhead; }
621 int getScatterOverhead() const { return ScatterOverhead; }
622 bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; }
623 bool hasCmpxchg16b() const { return HasCmpxchg16b; }
624 bool useLeaForSP() const { return UseLeaForSP; }
625 bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps; }
626 bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps; }
627 bool hasFastVariableShuffle() const {
628 return HasFastVariableShuffle;
630 bool hasFastPartialYMMorZMMWrite() const {
631 return HasFastPartialYMMorZMMWrite;
633 bool hasFastGather() const { return HasFastGather; }
634 bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT; }
635 bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT; }
636 bool hasFastLZCNT() const { return HasFastLZCNT; }
637 bool hasFastSHLDRotate() const { return HasFastSHLDRotate; }
638 bool hasFastBEXTR() const { return HasFastBEXTR; }
639 bool hasFastHorizontalOps() const { return HasFastHorizontalOps; }
640 bool hasMacroFusion() const { return HasMacroFusion; }
641 bool hasERMSB() const { return HasERMSB; }
642 bool hasSlowDivide32() const { return HasSlowDivide32; }
643 bool hasSlowDivide64() const { return HasSlowDivide64; }
644 bool padShortFunctions() const { return PadShortFunctions; }
645 bool slowTwoMemOps() const { return SlowTwoMemOps; }
646 bool LEAusesAG() const { return LEAUsesAG; }
647 bool slowLEA() const { return SlowLEA; }
648 bool slow3OpsLEA() const { return Slow3OpsLEA; }
649 bool slowIncDec() const { return SlowIncDec; }
650 bool hasCDI() const { return HasCDI; }
651 bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ; }
652 bool hasPFI() const { return HasPFI; }
653 bool hasERI() const { return HasERI; }
654 bool hasDQI() const { return HasDQI; }
655 bool hasBWI() const { return HasBWI; }
656 bool hasVLX() const { return HasVLX; }
657 bool hasPKU() const { return HasPKU; }
658 bool hasVNNI() const { return HasVNNI; }
659 bool hasBITALG() const { return HasBITALG; }
660 bool hasMPX() const { return HasMPX; }
661 bool hasSHSTK() const { return HasSHSTK; }
662 bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT; }
663 bool hasCLWB() const { return HasCLWB; }
664 bool hasWBNOINVD() const { return HasWBNOINVD; }
665 bool hasRDPID() const { return HasRDPID; }
666 bool hasWAITPKG() const { return HasWAITPKG; }
667 bool hasPCONFIG() const { return HasPCONFIG; }
668 bool hasSGX() const { return HasSGX; }
669 bool threewayBranchProfitable() const { return ThreewayBranchProfitable; }
670 bool hasINVPCID() const { return HasINVPCID; }
671 bool useRetpolineIndirectCalls() const { return UseRetpolineIndirectCalls; }
672 bool useRetpolineIndirectBranches() const {
673 return UseRetpolineIndirectBranches;
675 bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk; }
677 unsigned getPreferVectorWidth() const { return PreferVectorWidth; }
678 unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; }
680 // Helper functions to determine when we should allow widening to 512-bit
681 // during codegen.
682 // TODO: Currently we're always allowing widening on CPUs without VLX,
683 // because for many cases we don't have a better option.
684 bool canExtendTo512DQ() const {
685 return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512);
687 bool canExtendTo512BW() const {
688 return hasBWI() && canExtendTo512DQ();
691 // If there are no 512-bit vectors and we prefer not to use 512-bit registers,
692 // disable them in the legalizer.
693 bool useAVX512Regs() const {
694 return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth > 256);
697 bool useBWIRegs() const {
698 return hasBWI() && useAVX512Regs();
701 bool isXRaySupported() const override { return is64Bit(); }
703 X86ProcFamilyEnum getProcFamily() const { return X86ProcFamily; }
705 /// TODO: to be removed later and replaced with suitable properties
706 bool isAtom() const { return X86ProcFamily == IntelAtom; }
707 bool isSLM() const { return X86ProcFamily == IntelSLM; }
708 bool isGLM() const {
709 return X86ProcFamily == IntelGLM ||
710 X86ProcFamily == IntelGLP ||
711 X86ProcFamily == IntelTRM;
713 bool useSoftFloat() const { return UseSoftFloat; }
715 /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
716 /// no-sse2). There isn't any reason to disable it if the target processor
717 /// supports it.
718 bool hasMFence() const { return hasSSE2() || is64Bit(); }
720 const Triple &getTargetTriple() const { return TargetTriple; }
722 bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
723 bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); }
724 bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); }
725 bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); }
726 bool isTargetPS4() const { return TargetTriple.isPS4CPU(); }
728 bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
729 bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
730 bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
732 bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
733 bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); }
734 bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); }
735 bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
736 bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
737 bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
738 bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
739 bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); }
740 bool isTargetFuchsia() const { return TargetTriple.isOSFuchsia(); }
742 bool isTargetWindowsMSVC() const {
743 return TargetTriple.isWindowsMSVCEnvironment();
746 bool isTargetKnownWindowsMSVC() const {
747 return TargetTriple.isKnownWindowsMSVCEnvironment();
750 bool isTargetWindowsCoreCLR() const {
751 return TargetTriple.isWindowsCoreCLREnvironment();
754 bool isTargetWindowsCygwin() const {
755 return TargetTriple.isWindowsCygwinEnvironment();
758 bool isTargetWindowsGNU() const {
759 return TargetTriple.isWindowsGNUEnvironment();
762 bool isTargetWindowsItanium() const {
763 return TargetTriple.isWindowsItaniumEnvironment();
766 bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
768 bool isOSWindows() const { return TargetTriple.isOSWindows(); }
770 bool isTargetWin64() const { return In64BitMode && isOSWindows(); }
772 bool isTargetWin32() const { return !In64BitMode && isOSWindows(); }
774 bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; }
775 bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; }
777 bool isPICStyleStubPIC() const {
778 return PICStyle == PICStyles::StubPIC;
781 bool isPositionIndependent() const { return TM.isPositionIndependent(); }
783 bool isCallingConvWin64(CallingConv::ID CC) const {
784 switch (CC) {
785 // On Win64, all these conventions just use the default convention.
786 case CallingConv::C:
787 case CallingConv::Fast:
788 case CallingConv::Swift:
789 case CallingConv::X86_FastCall:
790 case CallingConv::X86_StdCall:
791 case CallingConv::X86_ThisCall:
792 case CallingConv::X86_VectorCall:
793 case CallingConv::Intel_OCL_BI:
794 return isTargetWin64();
795 // This convention allows using the Win64 convention on other targets.
796 case CallingConv::Win64:
797 return true;
798 // This convention allows using the SysV convention on Windows targets.
799 case CallingConv::X86_64_SysV:
800 return false;
801 // Otherwise, who knows what this is.
802 default:
803 return false;
807 /// Classify a global variable reference for the current subtarget according
808 /// to how we should reference it in a non-pcrel context.
809 unsigned char classifyLocalReference(const GlobalValue *GV) const;
811 unsigned char classifyGlobalReference(const GlobalValue *GV,
812 const Module &M) const;
813 unsigned char classifyGlobalReference(const GlobalValue *GV) const;
815 /// Classify a global function reference for the current subtarget.
816 unsigned char classifyGlobalFunctionReference(const GlobalValue *GV,
817 const Module &M) const;
818 unsigned char classifyGlobalFunctionReference(const GlobalValue *GV) const;
820 /// Classify a blockaddress reference for the current subtarget according to
821 /// how we should reference it in a non-pcrel context.
822 unsigned char classifyBlockAddressReference() const;
824 /// Return true if the subtarget allows calls to immediate address.
825 bool isLegalToCallImmediateAddr() const;
827 /// If we are using retpolines, we need to expand indirectbr to avoid it
828 /// lowering to an actual indirect jump.
829 bool enableIndirectBrExpand() const override {
830 return useRetpolineIndirectBranches();
833 /// Enable the MachineScheduler pass for all X86 subtargets.
834 bool enableMachineScheduler() const override { return true; }
836 bool enableEarlyIfConversion() const override;
838 AntiDepBreakMode getAntiDepBreakMode() const override {
839 return TargetSubtargetInfo::ANTIDEP_CRITICAL;
842 bool enableAdvancedRASplitCost() const override { return true; }
845 } // end namespace llvm
847 #endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H