Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / X86 / X86TargetMachine.cpp
blobe49615f2c1a5250878498b7708173d85cf7214d7
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86 specific subclass of TargetMachine.
11 //===----------------------------------------------------------------------===//
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "X86.h"
16 #include "X86CallLowering.h"
17 #include "X86LegalizerInfo.h"
18 #include "X86MacroFusion.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetObjectFile.h"
21 #include "X86TargetTransformInfo.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/CodeGen/ExecutionDomainFix.h"
29 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
32 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
34 #include "llvm/CodeGen/MachineScheduler.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/CodeGen.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/TargetRegistry.h"
45 #include "llvm/Target/TargetLoweringObjectFile.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include <memory>
48 #include <string>
50 using namespace llvm;
52 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
53 cl::desc("Enable the machine combiner pass"),
54 cl::init(true), cl::Hidden);
56 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding",
57 cl::desc("Enable the conditional branch "
58 "folding pass"),
59 cl::init(false), cl::Hidden);
61 extern "C" void LLVMInitializeX86Target() {
62 // Register the target.
63 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
64 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
66 PassRegistry &PR = *PassRegistry::getPassRegistry();
67 initializeGlobalISel(PR);
68 initializeWinEHStatePassPass(PR);
69 initializeFixupBWInstPassPass(PR);
70 initializeEvexToVexInstPassPass(PR);
71 initializeFixupLEAPassPass(PR);
72 initializeShadowCallStackPass(PR);
73 initializeX86CallFrameOptimizationPass(PR);
74 initializeX86CmovConverterPassPass(PR);
75 initializeX86ExecutionDomainFixPass(PR);
76 initializeX86DomainReassignmentPass(PR);
77 initializeX86AvoidSFBPassPass(PR);
78 initializeX86SpeculativeLoadHardeningPassPass(PR);
79 initializeX86FlagsCopyLoweringPassPass(PR);
80 initializeX86CondBrFoldingPassPass(PR);
83 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
84 if (TT.isOSBinFormatMachO()) {
85 if (TT.getArch() == Triple::x86_64)
86 return llvm::make_unique<X86_64MachoTargetObjectFile>();
87 return llvm::make_unique<TargetLoweringObjectFileMachO>();
90 if (TT.isOSFreeBSD())
91 return llvm::make_unique<X86FreeBSDTargetObjectFile>();
92 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
93 return llvm::make_unique<X86LinuxNaClTargetObjectFile>();
94 if (TT.isOSSolaris())
95 return llvm::make_unique<X86SolarisTargetObjectFile>();
96 if (TT.isOSFuchsia())
97 return llvm::make_unique<X86FuchsiaTargetObjectFile>();
98 if (TT.isOSBinFormatELF())
99 return llvm::make_unique<X86ELFTargetObjectFile>();
100 if (TT.isOSBinFormatCOFF())
101 return llvm::make_unique<TargetLoweringObjectFileCOFF>();
102 llvm_unreachable("unknown subtarget type");
105 static std::string computeDataLayout(const Triple &TT) {
106 // X86 is little endian
107 std::string Ret = "e";
109 Ret += DataLayout::getManglingComponent(TT);
110 // X86 and x32 have 32 bit pointers.
111 if ((TT.isArch64Bit() &&
112 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
113 !TT.isArch64Bit())
114 Ret += "-p:32:32";
116 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
117 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
118 Ret += "-i64:64";
119 else if (TT.isOSIAMCU())
120 Ret += "-i64:32-f64:32";
121 else
122 Ret += "-f64:32:64";
124 // Some ABIs align long double to 128 bits, others to 32.
125 if (TT.isOSNaCl() || TT.isOSIAMCU())
126 ; // No f80
127 else if (TT.isArch64Bit() || TT.isOSDarwin())
128 Ret += "-f80:128";
129 else
130 Ret += "-f80:32";
132 if (TT.isOSIAMCU())
133 Ret += "-f128:32";
135 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
136 if (TT.isArch64Bit())
137 Ret += "-n8:16:32:64";
138 else
139 Ret += "-n8:16:32";
141 // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
142 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
143 Ret += "-a:0:32-S32";
144 else
145 Ret += "-S128";
147 return Ret;
150 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
151 bool JIT,
152 Optional<Reloc::Model> RM) {
153 bool is64Bit = TT.getArch() == Triple::x86_64;
154 if (!RM.hasValue()) {
155 // JIT codegen should use static relocations by default, since it's
156 // typically executed in process and not relocatable.
157 if (JIT)
158 return Reloc::Static;
160 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
161 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
162 // use static relocation model by default.
163 if (TT.isOSDarwin()) {
164 if (is64Bit)
165 return Reloc::PIC_;
166 return Reloc::DynamicNoPIC;
168 if (TT.isOSWindows() && is64Bit)
169 return Reloc::PIC_;
170 return Reloc::Static;
173 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
174 // is defined as a model for code which may be used in static or dynamic
175 // executables but not necessarily a shared library. On X86-32 we just
176 // compile in -static mode, in x86-64 we use PIC.
177 if (*RM == Reloc::DynamicNoPIC) {
178 if (is64Bit)
179 return Reloc::PIC_;
180 if (!TT.isOSDarwin())
181 return Reloc::Static;
184 // If we are on Darwin, disallow static relocation model in X86-64 mode, since
185 // the Mach-O file format doesn't support it.
186 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
187 return Reloc::PIC_;
189 return *RM;
192 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
193 bool JIT, bool Is64Bit) {
194 if (CM) {
195 if (*CM == CodeModel::Tiny)
196 report_fatal_error("Target does not support the tiny CodeModel");
197 return *CM;
199 if (JIT)
200 return Is64Bit ? CodeModel::Large : CodeModel::Small;
201 return CodeModel::Small;
204 /// Create an X86 target.
206 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
207 StringRef CPU, StringRef FS,
208 const TargetOptions &Options,
209 Optional<Reloc::Model> RM,
210 Optional<CodeModel::Model> CM,
211 CodeGenOpt::Level OL, bool JIT)
212 : LLVMTargetMachine(
213 T, computeDataLayout(TT), TT, CPU, FS, Options,
214 getEffectiveRelocModel(TT, JIT, RM),
215 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
216 OL),
217 TLOF(createTLOF(getTargetTriple())) {
218 // Windows stack unwinder gets confused when execution flow "falls through"
219 // after a call to 'noreturn' function.
220 // To prevent that, we emit a trap for 'unreachable' IR instructions.
221 // (which on X86, happens to be the 'ud2' instruction)
222 // On PS4, the "return address" of a 'noreturn' call must still be within
223 // the calling function, and TrapUnreachable is an easy way to get that.
224 // The check here for 64-bit windows is a bit icky, but as we're unlikely
225 // to ever want to mix 32 and 64-bit windows code in a single module
226 // this should be fine.
227 if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() ||
228 TT.isOSBinFormatMachO()) {
229 this->Options.TrapUnreachable = true;
230 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
233 // Outlining is available for x86-64.
234 if (TT.getArch() == Triple::x86_64)
235 setMachineOutliner(true);
237 initAsmInfo();
240 X86TargetMachine::~X86TargetMachine() = default;
242 const X86Subtarget *
243 X86TargetMachine::getSubtargetImpl(const Function &F) const {
244 Attribute CPUAttr = F.getFnAttribute("target-cpu");
245 Attribute FSAttr = F.getFnAttribute("target-features");
247 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
248 ? CPUAttr.getValueAsString()
249 : (StringRef)TargetCPU;
250 StringRef FS = !FSAttr.hasAttribute(Attribute::None)
251 ? FSAttr.getValueAsString()
252 : (StringRef)TargetFS;
254 SmallString<512> Key;
255 Key.reserve(CPU.size() + FS.size());
256 Key += CPU;
257 Key += FS;
259 // FIXME: This is related to the code below to reset the target options,
260 // we need to know whether or not the soft float flag is set on the
261 // function before we can generate a subtarget. We also need to use
262 // it as a key for the subtarget since that can be the only difference
263 // between two functions.
264 bool SoftFloat =
265 F.getFnAttribute("use-soft-float").getValueAsString() == "true";
266 // If the soft float attribute is set on the function turn on the soft float
267 // subtarget feature.
268 if (SoftFloat)
269 Key += FS.empty() ? "+soft-float" : ",+soft-float";
271 // Keep track of the key width after all features are added so we can extract
272 // the feature string out later.
273 unsigned CPUFSWidth = Key.size();
275 // Extract prefer-vector-width attribute.
276 unsigned PreferVectorWidthOverride = 0;
277 if (F.hasFnAttribute("prefer-vector-width")) {
278 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
279 unsigned Width;
280 if (!Val.getAsInteger(0, Width)) {
281 Key += ",prefer-vector-width=";
282 Key += Val;
283 PreferVectorWidthOverride = Width;
287 // Extract min-legal-vector-width attribute.
288 unsigned RequiredVectorWidth = UINT32_MAX;
289 if (F.hasFnAttribute("min-legal-vector-width")) {
290 StringRef Val =
291 F.getFnAttribute("min-legal-vector-width").getValueAsString();
292 unsigned Width;
293 if (!Val.getAsInteger(0, Width)) {
294 Key += ",min-legal-vector-width=";
295 Key += Val;
296 RequiredVectorWidth = Width;
300 // Extracted here so that we make sure there is backing for the StringRef. If
301 // we assigned earlier, its possible the SmallString reallocated leaving a
302 // dangling StringRef.
303 FS = Key.slice(CPU.size(), CPUFSWidth);
305 auto &I = SubtargetMap[Key];
306 if (!I) {
307 // This needs to be done before we create a new subtarget since any
308 // creation will depend on the TM and the code generation flags on the
309 // function that reside in TargetOptions.
310 resetTargetOptions(F);
311 I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
312 Options.StackAlignmentOverride,
313 PreferVectorWidthOverride,
314 RequiredVectorWidth);
316 return I.get();
319 //===----------------------------------------------------------------------===//
320 // Command line options for x86
321 //===----------------------------------------------------------------------===//
322 static cl::opt<bool>
323 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
324 cl::desc("Minimize AVX to SSE transition penalty"),
325 cl::init(true));
327 //===----------------------------------------------------------------------===//
328 // X86 TTI query.
329 //===----------------------------------------------------------------------===//
331 TargetTransformInfo
332 X86TargetMachine::getTargetTransformInfo(const Function &F) {
333 return TargetTransformInfo(X86TTIImpl(this, F));
336 //===----------------------------------------------------------------------===//
337 // Pass Pipeline Configuration
338 //===----------------------------------------------------------------------===//
340 namespace {
342 /// X86 Code Generator Pass Configuration Options.
343 class X86PassConfig : public TargetPassConfig {
344 public:
345 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
346 : TargetPassConfig(TM, PM) {}
348 X86TargetMachine &getX86TargetMachine() const {
349 return getTM<X86TargetMachine>();
352 ScheduleDAGInstrs *
353 createMachineScheduler(MachineSchedContext *C) const override {
354 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
355 DAG->addMutation(createX86MacroFusionDAGMutation());
356 return DAG;
359 void addIRPasses() override;
360 bool addInstSelector() override;
361 bool addIRTranslator() override;
362 bool addLegalizeMachineIR() override;
363 bool addRegBankSelect() override;
364 bool addGlobalInstructionSelect() override;
365 bool addILPOpts() override;
366 bool addPreISel() override;
367 void addMachineSSAOptimization() override;
368 void addPreRegAlloc() override;
369 void addPostRegAlloc() override;
370 void addPreEmitPass() override;
371 void addPreEmitPass2() override;
372 void addPreSched2() override;
375 class X86ExecutionDomainFix : public ExecutionDomainFix {
376 public:
377 static char ID;
378 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
379 StringRef getPassName() const override {
380 return "X86 Execution Dependency Fix";
383 char X86ExecutionDomainFix::ID;
385 } // end anonymous namespace
387 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
388 "X86 Execution Domain Fix", false, false)
389 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
390 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
391 "X86 Execution Domain Fix", false, false)
393 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
394 return new X86PassConfig(*this, PM);
397 void X86PassConfig::addIRPasses() {
398 addPass(createAtomicExpandPass());
400 TargetPassConfig::addIRPasses();
402 if (TM->getOptLevel() != CodeGenOpt::None)
403 addPass(createInterleavedAccessPass());
405 // Add passes that handle indirect branch removal and insertion of a retpoline
406 // thunk. These will be a no-op unless a function subtarget has the retpoline
407 // feature enabled.
408 addPass(createIndirectBrExpandPass());
411 bool X86PassConfig::addInstSelector() {
412 // Install an instruction selector.
413 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
415 // For ELF, cleanup any local-dynamic TLS accesses.
416 if (TM->getTargetTriple().isOSBinFormatELF() &&
417 getOptLevel() != CodeGenOpt::None)
418 addPass(createCleanupLocalDynamicTLSPass());
420 addPass(createX86GlobalBaseRegPass());
421 return false;
424 bool X86PassConfig::addIRTranslator() {
425 addPass(new IRTranslator());
426 return false;
429 bool X86PassConfig::addLegalizeMachineIR() {
430 addPass(new Legalizer());
431 return false;
434 bool X86PassConfig::addRegBankSelect() {
435 addPass(new RegBankSelect());
436 return false;
439 bool X86PassConfig::addGlobalInstructionSelect() {
440 addPass(new InstructionSelect());
441 return false;
444 bool X86PassConfig::addILPOpts() {
445 if (EnableCondBrFoldingPass)
446 addPass(createX86CondBrFolding());
447 addPass(&EarlyIfConverterID);
448 if (EnableMachineCombinerPass)
449 addPass(&MachineCombinerID);
450 addPass(createX86CmovConverterPass());
451 return true;
454 bool X86PassConfig::addPreISel() {
455 // Only add this pass for 32-bit x86 Windows.
456 const Triple &TT = TM->getTargetTriple();
457 if (TT.isOSWindows() && TT.getArch() == Triple::x86)
458 addPass(createX86WinEHStatePass());
459 return true;
462 void X86PassConfig::addPreRegAlloc() {
463 if (getOptLevel() != CodeGenOpt::None) {
464 addPass(&LiveRangeShrinkID);
465 addPass(createX86FixupSetCC());
466 addPass(createX86OptimizeLEAs());
467 addPass(createX86CallFrameOptimization());
468 addPass(createX86AvoidStoreForwardingBlocks());
471 addPass(createX86SpeculativeLoadHardeningPass());
472 addPass(createX86FlagsCopyLoweringPass());
473 addPass(createX86WinAllocaExpander());
475 void X86PassConfig::addMachineSSAOptimization() {
476 addPass(createX86DomainReassignmentPass());
477 TargetPassConfig::addMachineSSAOptimization();
480 void X86PassConfig::addPostRegAlloc() {
481 addPass(createX86FloatingPointStackifierPass());
484 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
486 void X86PassConfig::addPreEmitPass() {
487 if (getOptLevel() != CodeGenOpt::None) {
488 addPass(new X86ExecutionDomainFix());
489 addPass(createBreakFalseDeps());
492 addPass(createShadowCallStackPass());
493 addPass(createX86IndirectBranchTrackingPass());
495 if (UseVZeroUpper)
496 addPass(createX86IssueVZeroUpperPass());
498 if (getOptLevel() != CodeGenOpt::None) {
499 addPass(createX86FixupBWInsts());
500 addPass(createX86PadShortFunctions());
501 addPass(createX86FixupLEAs());
502 addPass(createX86EvexToVexInsts());
504 addPass(createX86DiscriminateMemOpsPass());
505 addPass(createX86InsertPrefetchPass());
508 void X86PassConfig::addPreEmitPass2() {
509 addPass(createX86RetpolineThunksPass());
510 // Verify basic block incoming and outgoing cfa offset and register values and
511 // correct CFA calculation rule where needed by inserting appropriate CFI
512 // instructions.
513 const Triple &TT = TM->getTargetTriple();
514 if (!TT.isOSDarwin() && !TT.isOSWindows())
515 addPass(createCFIInstrInserter());