1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 /// SSE 3 - Pentium4 / Athlon64
25 /// AVX - Sandy Bridge
27 /// AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 /// divss sqrtss rsqrtss
31 /// Piledriver 9-24 13-15 5
33 /// Pentium II,III 18 30 2
34 /// Nehalem 7-14 7-18 3
35 /// Haswell 10-13 11 5
36 /// TODO: Develop and implement the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
51 #define DEBUG_TYPE "x86tti"
53 //===----------------------------------------------------------------------===//
57 //===----------------------------------------------------------------------===//
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth
) {
61 assert(isPowerOf2_32(TyWidth
) && "Ty width must be power of 2");
62 // TODO: Currently the __builtin_popcount() implementation using SSE3
63 // instructions is inefficient. Once the problem is fixed, we should
64 // call ST->hasSSE3() instead of ST->hasPOPCNT().
65 return ST
->hasPOPCNT() ? TTI::PSK_FastHardware
: TTI::PSK_Software
;
68 llvm::Optional
<unsigned> X86TTIImpl::getCacheSize(
69 TargetTransformInfo::CacheLevel Level
) const {
71 case TargetTransformInfo::CacheLevel::L1D
:
81 return 32 * 1024; // 32 KByte
82 case TargetTransformInfo::CacheLevel::L2D
:
92 return 256 * 1024; // 256 KByte
95 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
98 llvm::Optional
<unsigned> X86TTIImpl::getCacheAssociativity(
99 TargetTransformInfo::CacheLevel Level
) const {
110 case TargetTransformInfo::CacheLevel::L1D
:
112 case TargetTransformInfo::CacheLevel::L2D
:
116 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
119 unsigned X86TTIImpl::getNumberOfRegisters(bool Vector
) {
120 if (Vector
&& !ST
->hasSSE1())
124 if (Vector
&& ST
->hasAVX512())
131 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector
) const {
132 unsigned PreferVectorWidth
= ST
->getPreferVectorWidth();
134 if (ST
->hasAVX512() && PreferVectorWidth
>= 512)
136 if (ST
->hasAVX() && PreferVectorWidth
>= 256)
138 if (ST
->hasSSE1() && PreferVectorWidth
>= 128)
149 // Use horizontal 128-bit operations, which use low and high
150 // 64-bit parts of vector register. This also allows vectorizer
151 // to use partial vector operations.
152 unsigned X86TTIImpl::getMinVectorRegisterBitWidth() const {
156 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
157 return getRegisterBitWidth(true);
160 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF
) {
161 // If the loop will not be vectorized, don't interleave the loop.
162 // Let regular unroll to unroll the loop, which saves the overflow
163 // check and memory check cost.
170 // Sandybridge and Haswell have multiple execution ports and pipelined
178 int X86TTIImpl::getArithmeticInstrCost(
179 unsigned Opcode
, Type
*Ty
,
180 TTI::OperandValueKind Op1Info
, TTI::OperandValueKind Op2Info
,
181 TTI::OperandValueProperties Opd1PropInfo
,
182 TTI::OperandValueProperties Opd2PropInfo
,
183 ArrayRef
<const Value
*> Args
) {
184 // Legalize the type.
185 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Ty
);
187 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
188 assert(ISD
&& "Invalid opcode");
190 static const CostTblEntry GLMCostTable
[] = {
191 { ISD::FDIV
, MVT::f32
, 18 }, // divss
192 { ISD::FDIV
, MVT::v4f32
, 35 }, // divps
193 { ISD::FDIV
, MVT::f64
, 33 }, // divsd
194 { ISD::FDIV
, MVT::v2f64
, 65 }, // divpd
198 if (const auto *Entry
= CostTableLookup(GLMCostTable
, ISD
,
200 return LT
.first
* Entry
->Cost
;
202 static const CostTblEntry SLMCostTable
[] = {
203 { ISD::MUL
, MVT::v4i32
, 11 }, // pmulld
204 { ISD::MUL
, MVT::v8i16
, 2 }, // pmullw
205 { ISD::MUL
, MVT::v16i8
, 14 }, // extend/pmullw/trunc sequence.
206 { ISD::FMUL
, MVT::f64
, 2 }, // mulsd
207 { ISD::FMUL
, MVT::v2f64
, 4 }, // mulpd
208 { ISD::FMUL
, MVT::v4f32
, 2 }, // mulps
209 { ISD::FDIV
, MVT::f32
, 17 }, // divss
210 { ISD::FDIV
, MVT::v4f32
, 39 }, // divps
211 { ISD::FDIV
, MVT::f64
, 32 }, // divsd
212 { ISD::FDIV
, MVT::v2f64
, 69 }, // divpd
213 { ISD::FADD
, MVT::v2f64
, 2 }, // addpd
214 { ISD::FSUB
, MVT::v2f64
, 2 }, // subpd
215 // v2i64/v4i64 mul is custom lowered as a series of long:
216 // multiplies(3), shifts(3) and adds(2)
217 // slm muldq version throughput is 2 and addq throughput 4
218 // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
219 // 3X4 (addq throughput) = 17
220 { ISD::MUL
, MVT::v2i64
, 17 },
221 // slm addq\subq throughput is 4
222 { ISD::ADD
, MVT::v2i64
, 4 },
223 { ISD::SUB
, MVT::v2i64
, 4 },
227 if (Args
.size() == 2 && ISD
== ISD::MUL
&& LT
.second
== MVT::v4i32
) {
228 // Check if the operands can be shrinked into a smaller datatype.
229 bool Op1Signed
= false;
230 unsigned Op1MinSize
= BaseT::minRequiredElementSize(Args
[0], Op1Signed
);
231 bool Op2Signed
= false;
232 unsigned Op2MinSize
= BaseT::minRequiredElementSize(Args
[1], Op2Signed
);
234 bool signedMode
= Op1Signed
| Op2Signed
;
235 unsigned OpMinSize
= std::max(Op1MinSize
, Op2MinSize
);
238 return LT
.first
* 3; // pmullw/sext
239 if (!signedMode
&& OpMinSize
<= 8)
240 return LT
.first
* 3; // pmullw/zext
242 return LT
.first
* 5; // pmullw/pmulhw/pshuf
243 if (!signedMode
&& OpMinSize
<= 16)
244 return LT
.first
* 5; // pmullw/pmulhw/pshuf
247 if (const auto *Entry
= CostTableLookup(SLMCostTable
, ISD
,
249 return LT
.first
* Entry
->Cost
;
253 if ((ISD
== ISD::SDIV
|| ISD
== ISD::SREM
|| ISD
== ISD::UDIV
||
255 (Op2Info
== TargetTransformInfo::OK_UniformConstantValue
||
256 Op2Info
== TargetTransformInfo::OK_NonUniformConstantValue
) &&
257 Opd2PropInfo
== TargetTransformInfo::OP_PowerOf2
) {
258 if (ISD
== ISD::SDIV
|| ISD
== ISD::SREM
) {
259 // On X86, vector signed division by constants power-of-two are
260 // normally expanded to the sequence SRA + SRL + ADD + SRA.
261 // The OperandValue properties may not be the same as that of the previous
262 // operation; conservatively assume OP_None.
264 2 * getArithmeticInstrCost(Instruction::AShr
, Ty
, Op1Info
, Op2Info
,
265 TargetTransformInfo::OP_None
,
266 TargetTransformInfo::OP_None
);
267 Cost
+= getArithmeticInstrCost(Instruction::LShr
, Ty
, Op1Info
, Op2Info
,
268 TargetTransformInfo::OP_None
,
269 TargetTransformInfo::OP_None
);
270 Cost
+= getArithmeticInstrCost(Instruction::Add
, Ty
, Op1Info
, Op2Info
,
271 TargetTransformInfo::OP_None
,
272 TargetTransformInfo::OP_None
);
274 if (ISD
== ISD::SREM
) {
275 // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
276 Cost
+= getArithmeticInstrCost(Instruction::Mul
, Ty
, Op1Info
, Op2Info
);
277 Cost
+= getArithmeticInstrCost(Instruction::Sub
, Ty
, Op1Info
, Op2Info
);
283 // Vector unsigned division/remainder will be simplified to shifts/masks.
284 if (ISD
== ISD::UDIV
)
285 return getArithmeticInstrCost(Instruction::LShr
, Ty
, Op1Info
, Op2Info
,
286 TargetTransformInfo::OP_None
,
287 TargetTransformInfo::OP_None
);
289 if (ISD
== ISD::UREM
)
290 return getArithmeticInstrCost(Instruction::And
, Ty
, Op1Info
, Op2Info
,
291 TargetTransformInfo::OP_None
,
292 TargetTransformInfo::OP_None
);
295 static const CostTblEntry AVX512BWUniformConstCostTable
[] = {
296 { ISD::SHL
, MVT::v64i8
, 2 }, // psllw + pand.
297 { ISD::SRL
, MVT::v64i8
, 2 }, // psrlw + pand.
298 { ISD::SRA
, MVT::v64i8
, 4 }, // psrlw, pand, pxor, psubb.
301 if (Op2Info
== TargetTransformInfo::OK_UniformConstantValue
&&
303 if (const auto *Entry
= CostTableLookup(AVX512BWUniformConstCostTable
, ISD
,
305 return LT
.first
* Entry
->Cost
;
308 static const CostTblEntry AVX512UniformConstCostTable
[] = {
309 { ISD::SRA
, MVT::v2i64
, 1 },
310 { ISD::SRA
, MVT::v4i64
, 1 },
311 { ISD::SRA
, MVT::v8i64
, 1 },
314 if (Op2Info
== TargetTransformInfo::OK_UniformConstantValue
&&
316 if (const auto *Entry
= CostTableLookup(AVX512UniformConstCostTable
, ISD
,
318 return LT
.first
* Entry
->Cost
;
321 static const CostTblEntry AVX2UniformConstCostTable
[] = {
322 { ISD::SHL
, MVT::v32i8
, 2 }, // psllw + pand.
323 { ISD::SRL
, MVT::v32i8
, 2 }, // psrlw + pand.
324 { ISD::SRA
, MVT::v32i8
, 4 }, // psrlw, pand, pxor, psubb.
326 { ISD::SRA
, MVT::v4i64
, 4 }, // 2 x psrad + shuffle.
329 if (Op2Info
== TargetTransformInfo::OK_UniformConstantValue
&&
331 if (const auto *Entry
= CostTableLookup(AVX2UniformConstCostTable
, ISD
,
333 return LT
.first
* Entry
->Cost
;
336 static const CostTblEntry SSE2UniformConstCostTable
[] = {
337 { ISD::SHL
, MVT::v16i8
, 2 }, // psllw + pand.
338 { ISD::SRL
, MVT::v16i8
, 2 }, // psrlw + pand.
339 { ISD::SRA
, MVT::v16i8
, 4 }, // psrlw, pand, pxor, psubb.
341 { ISD::SHL
, MVT::v32i8
, 4+2 }, // 2*(psllw + pand) + split.
342 { ISD::SRL
, MVT::v32i8
, 4+2 }, // 2*(psrlw + pand) + split.
343 { ISD::SRA
, MVT::v32i8
, 8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
346 // XOP has faster vXi8 shifts.
347 if (Op2Info
== TargetTransformInfo::OK_UniformConstantValue
&&
348 ST
->hasSSE2() && !ST
->hasXOP()) {
349 if (const auto *Entry
=
350 CostTableLookup(SSE2UniformConstCostTable
, ISD
, LT
.second
))
351 return LT
.first
* Entry
->Cost
;
354 static const CostTblEntry AVX512BWConstCostTable
[] = {
355 { ISD::SDIV
, MVT::v64i8
, 14 }, // 2*ext+2*pmulhw sequence
356 { ISD::SREM
, MVT::v64i8
, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
357 { ISD::UDIV
, MVT::v64i8
, 14 }, // 2*ext+2*pmulhw sequence
358 { ISD::UREM
, MVT::v64i8
, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
359 { ISD::SDIV
, MVT::v32i16
, 6 }, // vpmulhw sequence
360 { ISD::SREM
, MVT::v32i16
, 8 }, // vpmulhw+mul+sub sequence
361 { ISD::UDIV
, MVT::v32i16
, 6 }, // vpmulhuw sequence
362 { ISD::UREM
, MVT::v32i16
, 8 }, // vpmulhuw+mul+sub sequence
365 if ((Op2Info
== TargetTransformInfo::OK_UniformConstantValue
||
366 Op2Info
== TargetTransformInfo::OK_NonUniformConstantValue
) &&
368 if (const auto *Entry
=
369 CostTableLookup(AVX512BWConstCostTable
, ISD
, LT
.second
))
370 return LT
.first
* Entry
->Cost
;
373 static const CostTblEntry AVX512ConstCostTable
[] = {
374 { ISD::SDIV
, MVT::v16i32
, 15 }, // vpmuldq sequence
375 { ISD::SREM
, MVT::v16i32
, 17 }, // vpmuldq+mul+sub sequence
376 { ISD::UDIV
, MVT::v16i32
, 15 }, // vpmuludq sequence
377 { ISD::UREM
, MVT::v16i32
, 17 }, // vpmuludq+mul+sub sequence
380 if ((Op2Info
== TargetTransformInfo::OK_UniformConstantValue
||
381 Op2Info
== TargetTransformInfo::OK_NonUniformConstantValue
) &&
383 if (const auto *Entry
=
384 CostTableLookup(AVX512ConstCostTable
, ISD
, LT
.second
))
385 return LT
.first
* Entry
->Cost
;
388 static const CostTblEntry AVX2ConstCostTable
[] = {
389 { ISD::SDIV
, MVT::v32i8
, 14 }, // 2*ext+2*pmulhw sequence
390 { ISD::SREM
, MVT::v32i8
, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
391 { ISD::UDIV
, MVT::v32i8
, 14 }, // 2*ext+2*pmulhw sequence
392 { ISD::UREM
, MVT::v32i8
, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
393 { ISD::SDIV
, MVT::v16i16
, 6 }, // vpmulhw sequence
394 { ISD::SREM
, MVT::v16i16
, 8 }, // vpmulhw+mul+sub sequence
395 { ISD::UDIV
, MVT::v16i16
, 6 }, // vpmulhuw sequence
396 { ISD::UREM
, MVT::v16i16
, 8 }, // vpmulhuw+mul+sub sequence
397 { ISD::SDIV
, MVT::v8i32
, 15 }, // vpmuldq sequence
398 { ISD::SREM
, MVT::v8i32
, 19 }, // vpmuldq+mul+sub sequence
399 { ISD::UDIV
, MVT::v8i32
, 15 }, // vpmuludq sequence
400 { ISD::UREM
, MVT::v8i32
, 19 }, // vpmuludq+mul+sub sequence
403 if ((Op2Info
== TargetTransformInfo::OK_UniformConstantValue
||
404 Op2Info
== TargetTransformInfo::OK_NonUniformConstantValue
) &&
406 if (const auto *Entry
= CostTableLookup(AVX2ConstCostTable
, ISD
, LT
.second
))
407 return LT
.first
* Entry
->Cost
;
410 static const CostTblEntry SSE2ConstCostTable
[] = {
411 { ISD::SDIV
, MVT::v32i8
, 28+2 }, // 4*ext+4*pmulhw sequence + split.
412 { ISD::SREM
, MVT::v32i8
, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
413 { ISD::SDIV
, MVT::v16i8
, 14 }, // 2*ext+2*pmulhw sequence
414 { ISD::SREM
, MVT::v16i8
, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
415 { ISD::UDIV
, MVT::v32i8
, 28+2 }, // 4*ext+4*pmulhw sequence + split.
416 { ISD::UREM
, MVT::v32i8
, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
417 { ISD::UDIV
, MVT::v16i8
, 14 }, // 2*ext+2*pmulhw sequence
418 { ISD::UREM
, MVT::v16i8
, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
419 { ISD::SDIV
, MVT::v16i16
, 12+2 }, // 2*pmulhw sequence + split.
420 { ISD::SREM
, MVT::v16i16
, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
421 { ISD::SDIV
, MVT::v8i16
, 6 }, // pmulhw sequence
422 { ISD::SREM
, MVT::v8i16
, 8 }, // pmulhw+mul+sub sequence
423 { ISD::UDIV
, MVT::v16i16
, 12+2 }, // 2*pmulhuw sequence + split.
424 { ISD::UREM
, MVT::v16i16
, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
425 { ISD::UDIV
, MVT::v8i16
, 6 }, // pmulhuw sequence
426 { ISD::UREM
, MVT::v8i16
, 8 }, // pmulhuw+mul+sub sequence
427 { ISD::SDIV
, MVT::v8i32
, 38+2 }, // 2*pmuludq sequence + split.
428 { ISD::SREM
, MVT::v8i32
, 48+2 }, // 2*pmuludq+mul+sub sequence + split.
429 { ISD::SDIV
, MVT::v4i32
, 19 }, // pmuludq sequence
430 { ISD::SREM
, MVT::v4i32
, 24 }, // pmuludq+mul+sub sequence
431 { ISD::UDIV
, MVT::v8i32
, 30+2 }, // 2*pmuludq sequence + split.
432 { ISD::UREM
, MVT::v8i32
, 40+2 }, // 2*pmuludq+mul+sub sequence + split.
433 { ISD::UDIV
, MVT::v4i32
, 15 }, // pmuludq sequence
434 { ISD::UREM
, MVT::v4i32
, 20 }, // pmuludq+mul+sub sequence
437 if ((Op2Info
== TargetTransformInfo::OK_UniformConstantValue
||
438 Op2Info
== TargetTransformInfo::OK_NonUniformConstantValue
) &&
441 if (ISD
== ISD::SDIV
&& LT
.second
== MVT::v8i32
&& ST
->hasAVX())
442 return LT
.first
* 32;
443 if (ISD
== ISD::SREM
&& LT
.second
== MVT::v8i32
&& ST
->hasAVX())
444 return LT
.first
* 38;
445 if (ISD
== ISD::SDIV
&& LT
.second
== MVT::v4i32
&& ST
->hasSSE41())
446 return LT
.first
* 15;
447 if (ISD
== ISD::SREM
&& LT
.second
== MVT::v4i32
&& ST
->hasSSE41())
448 return LT
.first
* 20;
450 if (const auto *Entry
= CostTableLookup(SSE2ConstCostTable
, ISD
, LT
.second
))
451 return LT
.first
* Entry
->Cost
;
454 static const CostTblEntry AVX2UniformCostTable
[] = {
455 // Uniform splats are cheaper for the following instructions.
456 { ISD::SHL
, MVT::v16i16
, 1 }, // psllw.
457 { ISD::SRL
, MVT::v16i16
, 1 }, // psrlw.
458 { ISD::SRA
, MVT::v16i16
, 1 }, // psraw.
462 ((Op2Info
== TargetTransformInfo::OK_UniformConstantValue
) ||
463 (Op2Info
== TargetTransformInfo::OK_UniformValue
))) {
464 if (const auto *Entry
=
465 CostTableLookup(AVX2UniformCostTable
, ISD
, LT
.second
))
466 return LT
.first
* Entry
->Cost
;
469 static const CostTblEntry SSE2UniformCostTable
[] = {
470 // Uniform splats are cheaper for the following instructions.
471 { ISD::SHL
, MVT::v8i16
, 1 }, // psllw.
472 { ISD::SHL
, MVT::v4i32
, 1 }, // pslld
473 { ISD::SHL
, MVT::v2i64
, 1 }, // psllq.
475 { ISD::SRL
, MVT::v8i16
, 1 }, // psrlw.
476 { ISD::SRL
, MVT::v4i32
, 1 }, // psrld.
477 { ISD::SRL
, MVT::v2i64
, 1 }, // psrlq.
479 { ISD::SRA
, MVT::v8i16
, 1 }, // psraw.
480 { ISD::SRA
, MVT::v4i32
, 1 }, // psrad.
484 ((Op2Info
== TargetTransformInfo::OK_UniformConstantValue
) ||
485 (Op2Info
== TargetTransformInfo::OK_UniformValue
))) {
486 if (const auto *Entry
=
487 CostTableLookup(SSE2UniformCostTable
, ISD
, LT
.second
))
488 return LT
.first
* Entry
->Cost
;
491 static const CostTblEntry AVX512DQCostTable
[] = {
492 { ISD::MUL
, MVT::v2i64
, 1 },
493 { ISD::MUL
, MVT::v4i64
, 1 },
494 { ISD::MUL
, MVT::v8i64
, 1 }
497 // Look for AVX512DQ lowering tricks for custom cases.
499 if (const auto *Entry
= CostTableLookup(AVX512DQCostTable
, ISD
, LT
.second
))
500 return LT
.first
* Entry
->Cost
;
502 static const CostTblEntry AVX512BWCostTable
[] = {
503 { ISD::SHL
, MVT::v8i16
, 1 }, // vpsllvw
504 { ISD::SRL
, MVT::v8i16
, 1 }, // vpsrlvw
505 { ISD::SRA
, MVT::v8i16
, 1 }, // vpsravw
507 { ISD::SHL
, MVT::v16i16
, 1 }, // vpsllvw
508 { ISD::SRL
, MVT::v16i16
, 1 }, // vpsrlvw
509 { ISD::SRA
, MVT::v16i16
, 1 }, // vpsravw
511 { ISD::SHL
, MVT::v32i16
, 1 }, // vpsllvw
512 { ISD::SRL
, MVT::v32i16
, 1 }, // vpsrlvw
513 { ISD::SRA
, MVT::v32i16
, 1 }, // vpsravw
515 { ISD::SHL
, MVT::v64i8
, 11 }, // vpblendvb sequence.
516 { ISD::SRL
, MVT::v64i8
, 11 }, // vpblendvb sequence.
517 { ISD::SRA
, MVT::v64i8
, 24 }, // vpblendvb sequence.
519 { ISD::MUL
, MVT::v64i8
, 11 }, // extend/pmullw/trunc sequence.
520 { ISD::MUL
, MVT::v32i8
, 4 }, // extend/pmullw/trunc sequence.
521 { ISD::MUL
, MVT::v16i8
, 4 }, // extend/pmullw/trunc sequence.
524 // Look for AVX512BW lowering tricks for custom cases.
526 if (const auto *Entry
= CostTableLookup(AVX512BWCostTable
, ISD
, LT
.second
))
527 return LT
.first
* Entry
->Cost
;
529 static const CostTblEntry AVX512CostTable
[] = {
530 { ISD::SHL
, MVT::v16i32
, 1 },
531 { ISD::SRL
, MVT::v16i32
, 1 },
532 { ISD::SRA
, MVT::v16i32
, 1 },
534 { ISD::SHL
, MVT::v8i64
, 1 },
535 { ISD::SRL
, MVT::v8i64
, 1 },
537 { ISD::SRA
, MVT::v2i64
, 1 },
538 { ISD::SRA
, MVT::v4i64
, 1 },
539 { ISD::SRA
, MVT::v8i64
, 1 },
541 { ISD::MUL
, MVT::v32i8
, 13 }, // extend/pmullw/trunc sequence.
542 { ISD::MUL
, MVT::v16i8
, 5 }, // extend/pmullw/trunc sequence.
543 { ISD::MUL
, MVT::v16i32
, 1 }, // pmulld (Skylake from agner.org)
544 { ISD::MUL
, MVT::v8i32
, 1 }, // pmulld (Skylake from agner.org)
545 { ISD::MUL
, MVT::v4i32
, 1 }, // pmulld (Skylake from agner.org)
546 { ISD::MUL
, MVT::v8i64
, 8 }, // 3*pmuludq/3*shift/2*add
548 { ISD::FADD
, MVT::v8f64
, 1 }, // Skylake from http://www.agner.org/
549 { ISD::FSUB
, MVT::v8f64
, 1 }, // Skylake from http://www.agner.org/
550 { ISD::FMUL
, MVT::v8f64
, 1 }, // Skylake from http://www.agner.org/
552 { ISD::FADD
, MVT::v16f32
, 1 }, // Skylake from http://www.agner.org/
553 { ISD::FSUB
, MVT::v16f32
, 1 }, // Skylake from http://www.agner.org/
554 { ISD::FMUL
, MVT::v16f32
, 1 }, // Skylake from http://www.agner.org/
558 if (const auto *Entry
= CostTableLookup(AVX512CostTable
, ISD
, LT
.second
))
559 return LT
.first
* Entry
->Cost
;
561 static const CostTblEntry AVX2ShiftCostTable
[] = {
562 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
563 // customize them to detect the cases where shift amount is a scalar one.
564 { ISD::SHL
, MVT::v4i32
, 1 },
565 { ISD::SRL
, MVT::v4i32
, 1 },
566 { ISD::SRA
, MVT::v4i32
, 1 },
567 { ISD::SHL
, MVT::v8i32
, 1 },
568 { ISD::SRL
, MVT::v8i32
, 1 },
569 { ISD::SRA
, MVT::v8i32
, 1 },
570 { ISD::SHL
, MVT::v2i64
, 1 },
571 { ISD::SRL
, MVT::v2i64
, 1 },
572 { ISD::SHL
, MVT::v4i64
, 1 },
573 { ISD::SRL
, MVT::v4i64
, 1 },
576 // Look for AVX2 lowering tricks.
578 if (ISD
== ISD::SHL
&& LT
.second
== MVT::v16i16
&&
579 (Op2Info
== TargetTransformInfo::OK_UniformConstantValue
||
580 Op2Info
== TargetTransformInfo::OK_NonUniformConstantValue
))
581 // On AVX2, a packed v16i16 shift left by a constant build_vector
582 // is lowered into a vector multiply (vpmullw).
583 return getArithmeticInstrCost(Instruction::Mul
, Ty
, Op1Info
, Op2Info
,
584 TargetTransformInfo::OP_None
,
585 TargetTransformInfo::OP_None
);
587 if (const auto *Entry
= CostTableLookup(AVX2ShiftCostTable
, ISD
, LT
.second
))
588 return LT
.first
* Entry
->Cost
;
591 static const CostTblEntry XOPShiftCostTable
[] = {
592 // 128bit shifts take 1cy, but right shifts require negation beforehand.
593 { ISD::SHL
, MVT::v16i8
, 1 },
594 { ISD::SRL
, MVT::v16i8
, 2 },
595 { ISD::SRA
, MVT::v16i8
, 2 },
596 { ISD::SHL
, MVT::v8i16
, 1 },
597 { ISD::SRL
, MVT::v8i16
, 2 },
598 { ISD::SRA
, MVT::v8i16
, 2 },
599 { ISD::SHL
, MVT::v4i32
, 1 },
600 { ISD::SRL
, MVT::v4i32
, 2 },
601 { ISD::SRA
, MVT::v4i32
, 2 },
602 { ISD::SHL
, MVT::v2i64
, 1 },
603 { ISD::SRL
, MVT::v2i64
, 2 },
604 { ISD::SRA
, MVT::v2i64
, 2 },
605 // 256bit shifts require splitting if AVX2 didn't catch them above.
606 { ISD::SHL
, MVT::v32i8
, 2+2 },
607 { ISD::SRL
, MVT::v32i8
, 4+2 },
608 { ISD::SRA
, MVT::v32i8
, 4+2 },
609 { ISD::SHL
, MVT::v16i16
, 2+2 },
610 { ISD::SRL
, MVT::v16i16
, 4+2 },
611 { ISD::SRA
, MVT::v16i16
, 4+2 },
612 { ISD::SHL
, MVT::v8i32
, 2+2 },
613 { ISD::SRL
, MVT::v8i32
, 4+2 },
614 { ISD::SRA
, MVT::v8i32
, 4+2 },
615 { ISD::SHL
, MVT::v4i64
, 2+2 },
616 { ISD::SRL
, MVT::v4i64
, 4+2 },
617 { ISD::SRA
, MVT::v4i64
, 4+2 },
620 // Look for XOP lowering tricks.
622 // If the right shift is constant then we'll fold the negation so
623 // it's as cheap as a left shift.
625 if ((ShiftISD
== ISD::SRL
|| ShiftISD
== ISD::SRA
) &&
626 (Op2Info
== TargetTransformInfo::OK_UniformConstantValue
||
627 Op2Info
== TargetTransformInfo::OK_NonUniformConstantValue
))
629 if (const auto *Entry
=
630 CostTableLookup(XOPShiftCostTable
, ShiftISD
, LT
.second
))
631 return LT
.first
* Entry
->Cost
;
634 static const CostTblEntry SSE2UniformShiftCostTable
[] = {
635 // Uniform splats are cheaper for the following instructions.
636 { ISD::SHL
, MVT::v16i16
, 2+2 }, // 2*psllw + split.
637 { ISD::SHL
, MVT::v8i32
, 2+2 }, // 2*pslld + split.
638 { ISD::SHL
, MVT::v4i64
, 2+2 }, // 2*psllq + split.
640 { ISD::SRL
, MVT::v16i16
, 2+2 }, // 2*psrlw + split.
641 { ISD::SRL
, MVT::v8i32
, 2+2 }, // 2*psrld + split.
642 { ISD::SRL
, MVT::v4i64
, 2+2 }, // 2*psrlq + split.
644 { ISD::SRA
, MVT::v16i16
, 2+2 }, // 2*psraw + split.
645 { ISD::SRA
, MVT::v8i32
, 2+2 }, // 2*psrad + split.
646 { ISD::SRA
, MVT::v2i64
, 4 }, // 2*psrad + shuffle.
647 { ISD::SRA
, MVT::v4i64
, 8+2 }, // 2*(2*psrad + shuffle) + split.
651 ((Op2Info
== TargetTransformInfo::OK_UniformConstantValue
) ||
652 (Op2Info
== TargetTransformInfo::OK_UniformValue
))) {
654 // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
655 if (ISD
== ISD::SRA
&& LT
.second
== MVT::v4i64
&& ST
->hasAVX2())
656 return LT
.first
* 4; // 2*psrad + shuffle.
658 if (const auto *Entry
=
659 CostTableLookup(SSE2UniformShiftCostTable
, ISD
, LT
.second
))
660 return LT
.first
* Entry
->Cost
;
663 if (ISD
== ISD::SHL
&&
664 Op2Info
== TargetTransformInfo::OK_NonUniformConstantValue
) {
666 // Vector shift left by non uniform constant can be lowered
667 // into vector multiply.
668 if (((VT
== MVT::v8i16
|| VT
== MVT::v4i32
) && ST
->hasSSE2()) ||
669 ((VT
== MVT::v16i16
|| VT
== MVT::v8i32
) && ST
->hasAVX()))
673 static const CostTblEntry AVX2CostTable
[] = {
674 { ISD::SHL
, MVT::v32i8
, 11 }, // vpblendvb sequence.
675 { ISD::SHL
, MVT::v16i16
, 10 }, // extend/vpsrlvd/pack sequence.
677 { ISD::SRL
, MVT::v32i8
, 11 }, // vpblendvb sequence.
678 { ISD::SRL
, MVT::v16i16
, 10 }, // extend/vpsrlvd/pack sequence.
680 { ISD::SRA
, MVT::v32i8
, 24 }, // vpblendvb sequence.
681 { ISD::SRA
, MVT::v16i16
, 10 }, // extend/vpsravd/pack sequence.
682 { ISD::SRA
, MVT::v2i64
, 4 }, // srl/xor/sub sequence.
683 { ISD::SRA
, MVT::v4i64
, 4 }, // srl/xor/sub sequence.
685 { ISD::SUB
, MVT::v32i8
, 1 }, // psubb
686 { ISD::ADD
, MVT::v32i8
, 1 }, // paddb
687 { ISD::SUB
, MVT::v16i16
, 1 }, // psubw
688 { ISD::ADD
, MVT::v16i16
, 1 }, // paddw
689 { ISD::SUB
, MVT::v8i32
, 1 }, // psubd
690 { ISD::ADD
, MVT::v8i32
, 1 }, // paddd
691 { ISD::SUB
, MVT::v4i64
, 1 }, // psubq
692 { ISD::ADD
, MVT::v4i64
, 1 }, // paddq
694 { ISD::MUL
, MVT::v32i8
, 17 }, // extend/pmullw/trunc sequence.
695 { ISD::MUL
, MVT::v16i8
, 7 }, // extend/pmullw/trunc sequence.
696 { ISD::MUL
, MVT::v16i16
, 1 }, // pmullw
697 { ISD::MUL
, MVT::v8i32
, 2 }, // pmulld (Haswell from agner.org)
698 { ISD::MUL
, MVT::v4i64
, 8 }, // 3*pmuludq/3*shift/2*add
700 { ISD::FADD
, MVT::v4f64
, 1 }, // Haswell from http://www.agner.org/
701 { ISD::FADD
, MVT::v8f32
, 1 }, // Haswell from http://www.agner.org/
702 { ISD::FSUB
, MVT::v4f64
, 1 }, // Haswell from http://www.agner.org/
703 { ISD::FSUB
, MVT::v8f32
, 1 }, // Haswell from http://www.agner.org/
704 { ISD::FMUL
, MVT::v4f64
, 1 }, // Haswell from http://www.agner.org/
705 { ISD::FMUL
, MVT::v8f32
, 1 }, // Haswell from http://www.agner.org/
707 { ISD::FDIV
, MVT::f32
, 7 }, // Haswell from http://www.agner.org/
708 { ISD::FDIV
, MVT::v4f32
, 7 }, // Haswell from http://www.agner.org/
709 { ISD::FDIV
, MVT::v8f32
, 14 }, // Haswell from http://www.agner.org/
710 { ISD::FDIV
, MVT::f64
, 14 }, // Haswell from http://www.agner.org/
711 { ISD::FDIV
, MVT::v2f64
, 14 }, // Haswell from http://www.agner.org/
712 { ISD::FDIV
, MVT::v4f64
, 28 }, // Haswell from http://www.agner.org/
715 // Look for AVX2 lowering tricks for custom cases.
717 if (const auto *Entry
= CostTableLookup(AVX2CostTable
, ISD
, LT
.second
))
718 return LT
.first
* Entry
->Cost
;
720 static const CostTblEntry AVX1CostTable
[] = {
721 // We don't have to scalarize unsupported ops. We can issue two half-sized
722 // operations and we only need to extract the upper YMM half.
723 // Two ops + 1 extract + 1 insert = 4.
724 { ISD::MUL
, MVT::v16i16
, 4 },
725 { ISD::MUL
, MVT::v8i32
, 4 },
726 { ISD::SUB
, MVT::v32i8
, 4 },
727 { ISD::ADD
, MVT::v32i8
, 4 },
728 { ISD::SUB
, MVT::v16i16
, 4 },
729 { ISD::ADD
, MVT::v16i16
, 4 },
730 { ISD::SUB
, MVT::v8i32
, 4 },
731 { ISD::ADD
, MVT::v8i32
, 4 },
732 { ISD::SUB
, MVT::v4i64
, 4 },
733 { ISD::ADD
, MVT::v4i64
, 4 },
735 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
736 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
737 // Because we believe v4i64 to be a legal type, we must also include the
738 // extract+insert in the cost table. Therefore, the cost here is 18
740 { ISD::MUL
, MVT::v4i64
, 18 },
742 { ISD::MUL
, MVT::v32i8
, 26 }, // extend/pmullw/trunc sequence.
744 { ISD::FDIV
, MVT::f32
, 14 }, // SNB from http://www.agner.org/
745 { ISD::FDIV
, MVT::v4f32
, 14 }, // SNB from http://www.agner.org/
746 { ISD::FDIV
, MVT::v8f32
, 28 }, // SNB from http://www.agner.org/
747 { ISD::FDIV
, MVT::f64
, 22 }, // SNB from http://www.agner.org/
748 { ISD::FDIV
, MVT::v2f64
, 22 }, // SNB from http://www.agner.org/
749 { ISD::FDIV
, MVT::v4f64
, 44 }, // SNB from http://www.agner.org/
753 if (const auto *Entry
= CostTableLookup(AVX1CostTable
, ISD
, LT
.second
))
754 return LT
.first
* Entry
->Cost
;
756 static const CostTblEntry SSE42CostTable
[] = {
757 { ISD::FADD
, MVT::f64
, 1 }, // Nehalem from http://www.agner.org/
758 { ISD::FADD
, MVT::f32
, 1 }, // Nehalem from http://www.agner.org/
759 { ISD::FADD
, MVT::v2f64
, 1 }, // Nehalem from http://www.agner.org/
760 { ISD::FADD
, MVT::v4f32
, 1 }, // Nehalem from http://www.agner.org/
762 { ISD::FSUB
, MVT::f64
, 1 }, // Nehalem from http://www.agner.org/
763 { ISD::FSUB
, MVT::f32
, 1 }, // Nehalem from http://www.agner.org/
764 { ISD::FSUB
, MVT::v2f64
, 1 }, // Nehalem from http://www.agner.org/
765 { ISD::FSUB
, MVT::v4f32
, 1 }, // Nehalem from http://www.agner.org/
767 { ISD::FMUL
, MVT::f64
, 1 }, // Nehalem from http://www.agner.org/
768 { ISD::FMUL
, MVT::f32
, 1 }, // Nehalem from http://www.agner.org/
769 { ISD::FMUL
, MVT::v2f64
, 1 }, // Nehalem from http://www.agner.org/
770 { ISD::FMUL
, MVT::v4f32
, 1 }, // Nehalem from http://www.agner.org/
772 { ISD::FDIV
, MVT::f32
, 14 }, // Nehalem from http://www.agner.org/
773 { ISD::FDIV
, MVT::v4f32
, 14 }, // Nehalem from http://www.agner.org/
774 { ISD::FDIV
, MVT::f64
, 22 }, // Nehalem from http://www.agner.org/
775 { ISD::FDIV
, MVT::v2f64
, 22 }, // Nehalem from http://www.agner.org/
779 if (const auto *Entry
= CostTableLookup(SSE42CostTable
, ISD
, LT
.second
))
780 return LT
.first
* Entry
->Cost
;
782 static const CostTblEntry SSE41CostTable
[] = {
783 { ISD::SHL
, MVT::v16i8
, 11 }, // pblendvb sequence.
784 { ISD::SHL
, MVT::v32i8
, 2*11+2 }, // pblendvb sequence + split.
785 { ISD::SHL
, MVT::v8i16
, 14 }, // pblendvb sequence.
786 { ISD::SHL
, MVT::v16i16
, 2*14+2 }, // pblendvb sequence + split.
787 { ISD::SHL
, MVT::v4i32
, 4 }, // pslld/paddd/cvttps2dq/pmulld
788 { ISD::SHL
, MVT::v8i32
, 2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
790 { ISD::SRL
, MVT::v16i8
, 12 }, // pblendvb sequence.
791 { ISD::SRL
, MVT::v32i8
, 2*12+2 }, // pblendvb sequence + split.
792 { ISD::SRL
, MVT::v8i16
, 14 }, // pblendvb sequence.
793 { ISD::SRL
, MVT::v16i16
, 2*14+2 }, // pblendvb sequence + split.
794 { ISD::SRL
, MVT::v4i32
, 11 }, // Shift each lane + blend.
795 { ISD::SRL
, MVT::v8i32
, 2*11+2 }, // Shift each lane + blend + split.
797 { ISD::SRA
, MVT::v16i8
, 24 }, // pblendvb sequence.
798 { ISD::SRA
, MVT::v32i8
, 2*24+2 }, // pblendvb sequence + split.
799 { ISD::SRA
, MVT::v8i16
, 14 }, // pblendvb sequence.
800 { ISD::SRA
, MVT::v16i16
, 2*14+2 }, // pblendvb sequence + split.
801 { ISD::SRA
, MVT::v4i32
, 12 }, // Shift each lane + blend.
802 { ISD::SRA
, MVT::v8i32
, 2*12+2 }, // Shift each lane + blend + split.
804 { ISD::MUL
, MVT::v4i32
, 2 } // pmulld (Nehalem from agner.org)
808 if (const auto *Entry
= CostTableLookup(SSE41CostTable
, ISD
, LT
.second
))
809 return LT
.first
* Entry
->Cost
;
811 static const CostTblEntry SSE2CostTable
[] = {
812 // We don't correctly identify costs of casts because they are marked as
814 { ISD::SHL
, MVT::v16i8
, 26 }, // cmpgtb sequence.
815 { ISD::SHL
, MVT::v8i16
, 32 }, // cmpgtb sequence.
816 { ISD::SHL
, MVT::v4i32
, 2*5 }, // We optimized this using mul.
817 { ISD::SHL
, MVT::v2i64
, 4 }, // splat+shuffle sequence.
818 { ISD::SHL
, MVT::v4i64
, 2*4+2 }, // splat+shuffle sequence + split.
820 { ISD::SRL
, MVT::v16i8
, 26 }, // cmpgtb sequence.
821 { ISD::SRL
, MVT::v8i16
, 32 }, // cmpgtb sequence.
822 { ISD::SRL
, MVT::v4i32
, 16 }, // Shift each lane + blend.
823 { ISD::SRL
, MVT::v2i64
, 4 }, // splat+shuffle sequence.
824 { ISD::SRL
, MVT::v4i64
, 2*4+2 }, // splat+shuffle sequence + split.
826 { ISD::SRA
, MVT::v16i8
, 54 }, // unpacked cmpgtb sequence.
827 { ISD::SRA
, MVT::v8i16
, 32 }, // cmpgtb sequence.
828 { ISD::SRA
, MVT::v4i32
, 16 }, // Shift each lane + blend.
829 { ISD::SRA
, MVT::v2i64
, 12 }, // srl/xor/sub sequence.
830 { ISD::SRA
, MVT::v4i64
, 2*12+2 }, // srl/xor/sub sequence+split.
832 { ISD::MUL
, MVT::v16i8
, 12 }, // extend/pmullw/trunc sequence.
833 { ISD::MUL
, MVT::v8i16
, 1 }, // pmullw
834 { ISD::MUL
, MVT::v4i32
, 6 }, // 3*pmuludq/4*shuffle
835 { ISD::MUL
, MVT::v2i64
, 8 }, // 3*pmuludq/3*shift/2*add
837 { ISD::FDIV
, MVT::f32
, 23 }, // Pentium IV from http://www.agner.org/
838 { ISD::FDIV
, MVT::v4f32
, 39 }, // Pentium IV from http://www.agner.org/
839 { ISD::FDIV
, MVT::f64
, 38 }, // Pentium IV from http://www.agner.org/
840 { ISD::FDIV
, MVT::v2f64
, 69 }, // Pentium IV from http://www.agner.org/
842 { ISD::FADD
, MVT::f32
, 2 }, // Pentium IV from http://www.agner.org/
843 { ISD::FADD
, MVT::f64
, 2 }, // Pentium IV from http://www.agner.org/
845 { ISD::FSUB
, MVT::f32
, 2 }, // Pentium IV from http://www.agner.org/
846 { ISD::FSUB
, MVT::f64
, 2 }, // Pentium IV from http://www.agner.org/
850 if (const auto *Entry
= CostTableLookup(SSE2CostTable
, ISD
, LT
.second
))
851 return LT
.first
* Entry
->Cost
;
853 static const CostTblEntry SSE1CostTable
[] = {
854 { ISD::FDIV
, MVT::f32
, 17 }, // Pentium III from http://www.agner.org/
855 { ISD::FDIV
, MVT::v4f32
, 34 }, // Pentium III from http://www.agner.org/
857 { ISD::FADD
, MVT::f32
, 1 }, // Pentium III from http://www.agner.org/
858 { ISD::FADD
, MVT::v4f32
, 2 }, // Pentium III from http://www.agner.org/
860 { ISD::FSUB
, MVT::f32
, 1 }, // Pentium III from http://www.agner.org/
861 { ISD::FSUB
, MVT::v4f32
, 2 }, // Pentium III from http://www.agner.org/
863 { ISD::ADD
, MVT::i8
, 1 }, // Pentium III from http://www.agner.org/
864 { ISD::ADD
, MVT::i16
, 1 }, // Pentium III from http://www.agner.org/
865 { ISD::ADD
, MVT::i32
, 1 }, // Pentium III from http://www.agner.org/
867 { ISD::SUB
, MVT::i8
, 1 }, // Pentium III from http://www.agner.org/
868 { ISD::SUB
, MVT::i16
, 1 }, // Pentium III from http://www.agner.org/
869 { ISD::SUB
, MVT::i32
, 1 }, // Pentium III from http://www.agner.org/
873 if (const auto *Entry
= CostTableLookup(SSE1CostTable
, ISD
, LT
.second
))
874 return LT
.first
* Entry
->Cost
;
876 // It is not a good idea to vectorize division. We have to scalarize it and
877 // in the process we will often end up having to spilling regular
878 // registers. The overhead of division is going to dominate most kernels
879 // anyways so try hard to prevent vectorization of division - it is
880 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
881 // to hide "20 cycles" for each lane.
882 if (LT
.second
.isVector() && (ISD
== ISD::SDIV
|| ISD
== ISD::SREM
||
883 ISD
== ISD::UDIV
|| ISD
== ISD::UREM
)) {
884 int ScalarCost
= getArithmeticInstrCost(
885 Opcode
, Ty
->getScalarType(), Op1Info
, Op2Info
,
886 TargetTransformInfo::OP_None
, TargetTransformInfo::OP_None
);
887 return 20 * LT
.first
* LT
.second
.getVectorNumElements() * ScalarCost
;
890 // Fallback to the default implementation.
891 return BaseT::getArithmeticInstrCost(Opcode
, Ty
, Op1Info
, Op2Info
);
894 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind
, Type
*Tp
, int Index
,
896 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
897 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
898 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Tp
);
900 // Treat Transpose as 2-op shuffles - there's no difference in lowering.
901 if (Kind
== TTI::SK_Transpose
)
902 Kind
= TTI::SK_PermuteTwoSrc
;
904 // For Broadcasts we are splatting the first element from the first input
905 // register, so only need to reference that input and all the output
906 // registers are the same.
907 if (Kind
== TTI::SK_Broadcast
)
910 // Subvector extractions are free if they start at the beginning of a
911 // vector and cheap if the subvectors are aligned.
912 if (Kind
== TTI::SK_ExtractSubvector
&& LT
.second
.isVector()) {
913 int NumElts
= LT
.second
.getVectorNumElements();
914 if ((Index
% NumElts
) == 0)
916 std::pair
<int, MVT
> SubLT
= TLI
->getTypeLegalizationCost(DL
, SubTp
);
917 if (SubLT
.second
.isVector()) {
918 int NumSubElts
= SubLT
.second
.getVectorNumElements();
919 if ((Index
% NumSubElts
) == 0 && (NumElts
% NumSubElts
) == 0)
924 // We are going to permute multiple sources and the result will be in multiple
925 // destinations. Providing an accurate cost only for splits where the element
926 // type remains the same.
927 if (Kind
== TTI::SK_PermuteSingleSrc
&& LT
.first
!= 1) {
928 MVT LegalVT
= LT
.second
;
929 if (LegalVT
.isVector() &&
930 LegalVT
.getVectorElementType().getSizeInBits() ==
931 Tp
->getVectorElementType()->getPrimitiveSizeInBits() &&
932 LegalVT
.getVectorNumElements() < Tp
->getVectorNumElements()) {
934 unsigned VecTySize
= DL
.getTypeStoreSize(Tp
);
935 unsigned LegalVTSize
= LegalVT
.getStoreSize();
936 // Number of source vectors after legalization:
937 unsigned NumOfSrcs
= (VecTySize
+ LegalVTSize
- 1) / LegalVTSize
;
938 // Number of destination vectors after legalization:
939 unsigned NumOfDests
= LT
.first
;
941 Type
*SingleOpTy
= VectorType::get(Tp
->getVectorElementType(),
942 LegalVT
.getVectorNumElements());
944 unsigned NumOfShuffles
= (NumOfSrcs
- 1) * NumOfDests
;
945 return NumOfShuffles
*
946 getShuffleCost(TTI::SK_PermuteTwoSrc
, SingleOpTy
, 0, nullptr);
949 return BaseT::getShuffleCost(Kind
, Tp
, Index
, SubTp
);
952 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
953 if (Kind
== TTI::SK_PermuteTwoSrc
&& LT
.first
!= 1) {
954 // We assume that source and destination have the same vector type.
955 int NumOfDests
= LT
.first
;
956 int NumOfShufflesPerDest
= LT
.first
* 2 - 1;
957 LT
.first
= NumOfDests
* NumOfShufflesPerDest
;
960 static const CostTblEntry AVX512VBMIShuffleTbl
[] = {
961 {TTI::SK_Reverse
, MVT::v64i8
, 1}, // vpermb
962 {TTI::SK_Reverse
, MVT::v32i8
, 1}, // vpermb
964 {TTI::SK_PermuteSingleSrc
, MVT::v64i8
, 1}, // vpermb
965 {TTI::SK_PermuteSingleSrc
, MVT::v32i8
, 1}, // vpermb
967 {TTI::SK_PermuteTwoSrc
, MVT::v64i8
, 1}, // vpermt2b
968 {TTI::SK_PermuteTwoSrc
, MVT::v32i8
, 1}, // vpermt2b
969 {TTI::SK_PermuteTwoSrc
, MVT::v16i8
, 1} // vpermt2b
973 if (const auto *Entry
=
974 CostTableLookup(AVX512VBMIShuffleTbl
, Kind
, LT
.second
))
975 return LT
.first
* Entry
->Cost
;
977 static const CostTblEntry AVX512BWShuffleTbl
[] = {
978 {TTI::SK_Broadcast
, MVT::v32i16
, 1}, // vpbroadcastw
979 {TTI::SK_Broadcast
, MVT::v64i8
, 1}, // vpbroadcastb
981 {TTI::SK_Reverse
, MVT::v32i16
, 1}, // vpermw
982 {TTI::SK_Reverse
, MVT::v16i16
, 1}, // vpermw
983 {TTI::SK_Reverse
, MVT::v64i8
, 2}, // pshufb + vshufi64x2
985 {TTI::SK_PermuteSingleSrc
, MVT::v32i16
, 1}, // vpermw
986 {TTI::SK_PermuteSingleSrc
, MVT::v16i16
, 1}, // vpermw
987 {TTI::SK_PermuteSingleSrc
, MVT::v8i16
, 1}, // vpermw
988 {TTI::SK_PermuteSingleSrc
, MVT::v64i8
, 8}, // extend to v32i16
989 {TTI::SK_PermuteSingleSrc
, MVT::v32i8
, 3}, // vpermw + zext/trunc
991 {TTI::SK_PermuteTwoSrc
, MVT::v32i16
, 1}, // vpermt2w
992 {TTI::SK_PermuteTwoSrc
, MVT::v16i16
, 1}, // vpermt2w
993 {TTI::SK_PermuteTwoSrc
, MVT::v8i16
, 1}, // vpermt2w
994 {TTI::SK_PermuteTwoSrc
, MVT::v32i8
, 3}, // zext + vpermt2w + trunc
995 {TTI::SK_PermuteTwoSrc
, MVT::v64i8
, 19}, // 6 * v32i8 + 1
996 {TTI::SK_PermuteTwoSrc
, MVT::v16i8
, 3} // zext + vpermt2w + trunc
1000 if (const auto *Entry
=
1001 CostTableLookup(AVX512BWShuffleTbl
, Kind
, LT
.second
))
1002 return LT
.first
* Entry
->Cost
;
1004 static const CostTblEntry AVX512ShuffleTbl
[] = {
1005 {TTI::SK_Broadcast
, MVT::v8f64
, 1}, // vbroadcastpd
1006 {TTI::SK_Broadcast
, MVT::v16f32
, 1}, // vbroadcastps
1007 {TTI::SK_Broadcast
, MVT::v8i64
, 1}, // vpbroadcastq
1008 {TTI::SK_Broadcast
, MVT::v16i32
, 1}, // vpbroadcastd
1010 {TTI::SK_Reverse
, MVT::v8f64
, 1}, // vpermpd
1011 {TTI::SK_Reverse
, MVT::v16f32
, 1}, // vpermps
1012 {TTI::SK_Reverse
, MVT::v8i64
, 1}, // vpermq
1013 {TTI::SK_Reverse
, MVT::v16i32
, 1}, // vpermd
1015 {TTI::SK_PermuteSingleSrc
, MVT::v8f64
, 1}, // vpermpd
1016 {TTI::SK_PermuteSingleSrc
, MVT::v4f64
, 1}, // vpermpd
1017 {TTI::SK_PermuteSingleSrc
, MVT::v2f64
, 1}, // vpermpd
1018 {TTI::SK_PermuteSingleSrc
, MVT::v16f32
, 1}, // vpermps
1019 {TTI::SK_PermuteSingleSrc
, MVT::v8f32
, 1}, // vpermps
1020 {TTI::SK_PermuteSingleSrc
, MVT::v4f32
, 1}, // vpermps
1021 {TTI::SK_PermuteSingleSrc
, MVT::v8i64
, 1}, // vpermq
1022 {TTI::SK_PermuteSingleSrc
, MVT::v4i64
, 1}, // vpermq
1023 {TTI::SK_PermuteSingleSrc
, MVT::v2i64
, 1}, // vpermq
1024 {TTI::SK_PermuteSingleSrc
, MVT::v16i32
, 1}, // vpermd
1025 {TTI::SK_PermuteSingleSrc
, MVT::v8i32
, 1}, // vpermd
1026 {TTI::SK_PermuteSingleSrc
, MVT::v4i32
, 1}, // vpermd
1027 {TTI::SK_PermuteSingleSrc
, MVT::v16i8
, 1}, // pshufb
1029 {TTI::SK_PermuteTwoSrc
, MVT::v8f64
, 1}, // vpermt2pd
1030 {TTI::SK_PermuteTwoSrc
, MVT::v16f32
, 1}, // vpermt2ps
1031 {TTI::SK_PermuteTwoSrc
, MVT::v8i64
, 1}, // vpermt2q
1032 {TTI::SK_PermuteTwoSrc
, MVT::v16i32
, 1}, // vpermt2d
1033 {TTI::SK_PermuteTwoSrc
, MVT::v4f64
, 1}, // vpermt2pd
1034 {TTI::SK_PermuteTwoSrc
, MVT::v8f32
, 1}, // vpermt2ps
1035 {TTI::SK_PermuteTwoSrc
, MVT::v4i64
, 1}, // vpermt2q
1036 {TTI::SK_PermuteTwoSrc
, MVT::v8i32
, 1}, // vpermt2d
1037 {TTI::SK_PermuteTwoSrc
, MVT::v2f64
, 1}, // vpermt2pd
1038 {TTI::SK_PermuteTwoSrc
, MVT::v4f32
, 1}, // vpermt2ps
1039 {TTI::SK_PermuteTwoSrc
, MVT::v2i64
, 1}, // vpermt2q
1040 {TTI::SK_PermuteTwoSrc
, MVT::v4i32
, 1} // vpermt2d
1043 if (ST
->hasAVX512())
1044 if (const auto *Entry
= CostTableLookup(AVX512ShuffleTbl
, Kind
, LT
.second
))
1045 return LT
.first
* Entry
->Cost
;
1047 static const CostTblEntry AVX2ShuffleTbl
[] = {
1048 {TTI::SK_Broadcast
, MVT::v4f64
, 1}, // vbroadcastpd
1049 {TTI::SK_Broadcast
, MVT::v8f32
, 1}, // vbroadcastps
1050 {TTI::SK_Broadcast
, MVT::v4i64
, 1}, // vpbroadcastq
1051 {TTI::SK_Broadcast
, MVT::v8i32
, 1}, // vpbroadcastd
1052 {TTI::SK_Broadcast
, MVT::v16i16
, 1}, // vpbroadcastw
1053 {TTI::SK_Broadcast
, MVT::v32i8
, 1}, // vpbroadcastb
1055 {TTI::SK_Reverse
, MVT::v4f64
, 1}, // vpermpd
1056 {TTI::SK_Reverse
, MVT::v8f32
, 1}, // vpermps
1057 {TTI::SK_Reverse
, MVT::v4i64
, 1}, // vpermq
1058 {TTI::SK_Reverse
, MVT::v8i32
, 1}, // vpermd
1059 {TTI::SK_Reverse
, MVT::v16i16
, 2}, // vperm2i128 + pshufb
1060 {TTI::SK_Reverse
, MVT::v32i8
, 2}, // vperm2i128 + pshufb
1062 {TTI::SK_Select
, MVT::v16i16
, 1}, // vpblendvb
1063 {TTI::SK_Select
, MVT::v32i8
, 1}, // vpblendvb
1065 {TTI::SK_PermuteSingleSrc
, MVT::v4f64
, 1}, // vpermpd
1066 {TTI::SK_PermuteSingleSrc
, MVT::v8f32
, 1}, // vpermps
1067 {TTI::SK_PermuteSingleSrc
, MVT::v4i64
, 1}, // vpermq
1068 {TTI::SK_PermuteSingleSrc
, MVT::v8i32
, 1}, // vpermd
1069 {TTI::SK_PermuteSingleSrc
, MVT::v16i16
, 4}, // vperm2i128 + 2*vpshufb
1071 {TTI::SK_PermuteSingleSrc
, MVT::v32i8
, 4}, // vperm2i128 + 2*vpshufb
1074 {TTI::SK_PermuteTwoSrc
, MVT::v4f64
, 3}, // 2*vpermpd + vblendpd
1075 {TTI::SK_PermuteTwoSrc
, MVT::v8f32
, 3}, // 2*vpermps + vblendps
1076 {TTI::SK_PermuteTwoSrc
, MVT::v4i64
, 3}, // 2*vpermq + vpblendd
1077 {TTI::SK_PermuteTwoSrc
, MVT::v8i32
, 3}, // 2*vpermd + vpblendd
1078 {TTI::SK_PermuteTwoSrc
, MVT::v16i16
, 7}, // 2*vperm2i128 + 4*vpshufb
1080 {TTI::SK_PermuteTwoSrc
, MVT::v32i8
, 7}, // 2*vperm2i128 + 4*vpshufb
1085 if (const auto *Entry
= CostTableLookup(AVX2ShuffleTbl
, Kind
, LT
.second
))
1086 return LT
.first
* Entry
->Cost
;
1088 static const CostTblEntry XOPShuffleTbl
[] = {
1089 {TTI::SK_PermuteSingleSrc
, MVT::v4f64
, 2}, // vperm2f128 + vpermil2pd
1090 {TTI::SK_PermuteSingleSrc
, MVT::v8f32
, 2}, // vperm2f128 + vpermil2ps
1091 {TTI::SK_PermuteSingleSrc
, MVT::v4i64
, 2}, // vperm2f128 + vpermil2pd
1092 {TTI::SK_PermuteSingleSrc
, MVT::v8i32
, 2}, // vperm2f128 + vpermil2ps
1093 {TTI::SK_PermuteSingleSrc
, MVT::v16i16
, 4}, // vextractf128 + 2*vpperm
1095 {TTI::SK_PermuteSingleSrc
, MVT::v32i8
, 4}, // vextractf128 + 2*vpperm
1098 {TTI::SK_PermuteTwoSrc
, MVT::v16i16
, 9}, // 2*vextractf128 + 6*vpperm
1100 {TTI::SK_PermuteTwoSrc
, MVT::v8i16
, 1}, // vpperm
1101 {TTI::SK_PermuteTwoSrc
, MVT::v32i8
, 9}, // 2*vextractf128 + 6*vpperm
1103 {TTI::SK_PermuteTwoSrc
, MVT::v16i8
, 1}, // vpperm
1107 if (const auto *Entry
= CostTableLookup(XOPShuffleTbl
, Kind
, LT
.second
))
1108 return LT
.first
* Entry
->Cost
;
1110 static const CostTblEntry AVX1ShuffleTbl
[] = {
1111 {TTI::SK_Broadcast
, MVT::v4f64
, 2}, // vperm2f128 + vpermilpd
1112 {TTI::SK_Broadcast
, MVT::v8f32
, 2}, // vperm2f128 + vpermilps
1113 {TTI::SK_Broadcast
, MVT::v4i64
, 2}, // vperm2f128 + vpermilpd
1114 {TTI::SK_Broadcast
, MVT::v8i32
, 2}, // vperm2f128 + vpermilps
1115 {TTI::SK_Broadcast
, MVT::v16i16
, 3}, // vpshuflw + vpshufd + vinsertf128
1116 {TTI::SK_Broadcast
, MVT::v32i8
, 2}, // vpshufb + vinsertf128
1118 {TTI::SK_Reverse
, MVT::v4f64
, 2}, // vperm2f128 + vpermilpd
1119 {TTI::SK_Reverse
, MVT::v8f32
, 2}, // vperm2f128 + vpermilps
1120 {TTI::SK_Reverse
, MVT::v4i64
, 2}, // vperm2f128 + vpermilpd
1121 {TTI::SK_Reverse
, MVT::v8i32
, 2}, // vperm2f128 + vpermilps
1122 {TTI::SK_Reverse
, MVT::v16i16
, 4}, // vextractf128 + 2*pshufb
1124 {TTI::SK_Reverse
, MVT::v32i8
, 4}, // vextractf128 + 2*pshufb
1127 {TTI::SK_Select
, MVT::v4i64
, 1}, // vblendpd
1128 {TTI::SK_Select
, MVT::v4f64
, 1}, // vblendpd
1129 {TTI::SK_Select
, MVT::v8i32
, 1}, // vblendps
1130 {TTI::SK_Select
, MVT::v8f32
, 1}, // vblendps
1131 {TTI::SK_Select
, MVT::v16i16
, 3}, // vpand + vpandn + vpor
1132 {TTI::SK_Select
, MVT::v32i8
, 3}, // vpand + vpandn + vpor
1134 {TTI::SK_PermuteSingleSrc
, MVT::v4f64
, 2}, // vperm2f128 + vshufpd
1135 {TTI::SK_PermuteSingleSrc
, MVT::v4i64
, 2}, // vperm2f128 + vshufpd
1136 {TTI::SK_PermuteSingleSrc
, MVT::v8f32
, 4}, // 2*vperm2f128 + 2*vshufps
1137 {TTI::SK_PermuteSingleSrc
, MVT::v8i32
, 4}, // 2*vperm2f128 + 2*vshufps
1138 {TTI::SK_PermuteSingleSrc
, MVT::v16i16
, 8}, // vextractf128 + 4*pshufb
1139 // + 2*por + vinsertf128
1140 {TTI::SK_PermuteSingleSrc
, MVT::v32i8
, 8}, // vextractf128 + 4*pshufb
1141 // + 2*por + vinsertf128
1143 {TTI::SK_PermuteTwoSrc
, MVT::v4f64
, 3}, // 2*vperm2f128 + vshufpd
1144 {TTI::SK_PermuteTwoSrc
, MVT::v4i64
, 3}, // 2*vperm2f128 + vshufpd
1145 {TTI::SK_PermuteTwoSrc
, MVT::v8f32
, 4}, // 2*vperm2f128 + 2*vshufps
1146 {TTI::SK_PermuteTwoSrc
, MVT::v8i32
, 4}, // 2*vperm2f128 + 2*vshufps
1147 {TTI::SK_PermuteTwoSrc
, MVT::v16i16
, 15}, // 2*vextractf128 + 8*pshufb
1148 // + 4*por + vinsertf128
1149 {TTI::SK_PermuteTwoSrc
, MVT::v32i8
, 15}, // 2*vextractf128 + 8*pshufb
1150 // + 4*por + vinsertf128
1154 if (const auto *Entry
= CostTableLookup(AVX1ShuffleTbl
, Kind
, LT
.second
))
1155 return LT
.first
* Entry
->Cost
;
1157 static const CostTblEntry SSE41ShuffleTbl
[] = {
1158 {TTI::SK_Select
, MVT::v2i64
, 1}, // pblendw
1159 {TTI::SK_Select
, MVT::v2f64
, 1}, // movsd
1160 {TTI::SK_Select
, MVT::v4i32
, 1}, // pblendw
1161 {TTI::SK_Select
, MVT::v4f32
, 1}, // blendps
1162 {TTI::SK_Select
, MVT::v8i16
, 1}, // pblendw
1163 {TTI::SK_Select
, MVT::v16i8
, 1} // pblendvb
1167 if (const auto *Entry
= CostTableLookup(SSE41ShuffleTbl
, Kind
, LT
.second
))
1168 return LT
.first
* Entry
->Cost
;
1170 static const CostTblEntry SSSE3ShuffleTbl
[] = {
1171 {TTI::SK_Broadcast
, MVT::v8i16
, 1}, // pshufb
1172 {TTI::SK_Broadcast
, MVT::v16i8
, 1}, // pshufb
1174 {TTI::SK_Reverse
, MVT::v8i16
, 1}, // pshufb
1175 {TTI::SK_Reverse
, MVT::v16i8
, 1}, // pshufb
1177 {TTI::SK_Select
, MVT::v8i16
, 3}, // 2*pshufb + por
1178 {TTI::SK_Select
, MVT::v16i8
, 3}, // 2*pshufb + por
1180 {TTI::SK_PermuteSingleSrc
, MVT::v8i16
, 1}, // pshufb
1181 {TTI::SK_PermuteSingleSrc
, MVT::v16i8
, 1}, // pshufb
1183 {TTI::SK_PermuteTwoSrc
, MVT::v8i16
, 3}, // 2*pshufb + por
1184 {TTI::SK_PermuteTwoSrc
, MVT::v16i8
, 3}, // 2*pshufb + por
1188 if (const auto *Entry
= CostTableLookup(SSSE3ShuffleTbl
, Kind
, LT
.second
))
1189 return LT
.first
* Entry
->Cost
;
1191 static const CostTblEntry SSE2ShuffleTbl
[] = {
1192 {TTI::SK_Broadcast
, MVT::v2f64
, 1}, // shufpd
1193 {TTI::SK_Broadcast
, MVT::v2i64
, 1}, // pshufd
1194 {TTI::SK_Broadcast
, MVT::v4i32
, 1}, // pshufd
1195 {TTI::SK_Broadcast
, MVT::v8i16
, 2}, // pshuflw + pshufd
1196 {TTI::SK_Broadcast
, MVT::v16i8
, 3}, // unpck + pshuflw + pshufd
1198 {TTI::SK_Reverse
, MVT::v2f64
, 1}, // shufpd
1199 {TTI::SK_Reverse
, MVT::v2i64
, 1}, // pshufd
1200 {TTI::SK_Reverse
, MVT::v4i32
, 1}, // pshufd
1201 {TTI::SK_Reverse
, MVT::v8i16
, 3}, // pshuflw + pshufhw + pshufd
1202 {TTI::SK_Reverse
, MVT::v16i8
, 9}, // 2*pshuflw + 2*pshufhw
1203 // + 2*pshufd + 2*unpck + packus
1205 {TTI::SK_Select
, MVT::v2i64
, 1}, // movsd
1206 {TTI::SK_Select
, MVT::v2f64
, 1}, // movsd
1207 {TTI::SK_Select
, MVT::v4i32
, 2}, // 2*shufps
1208 {TTI::SK_Select
, MVT::v8i16
, 3}, // pand + pandn + por
1209 {TTI::SK_Select
, MVT::v16i8
, 3}, // pand + pandn + por
1211 {TTI::SK_PermuteSingleSrc
, MVT::v2f64
, 1}, // shufpd
1212 {TTI::SK_PermuteSingleSrc
, MVT::v2i64
, 1}, // pshufd
1213 {TTI::SK_PermuteSingleSrc
, MVT::v4i32
, 1}, // pshufd
1214 {TTI::SK_PermuteSingleSrc
, MVT::v8i16
, 5}, // 2*pshuflw + 2*pshufhw
1216 { TTI::SK_PermuteSingleSrc
, MVT::v16i8
, 10 }, // 2*pshuflw + 2*pshufhw
1217 // + 2*pshufd + 2*unpck + 2*packus
1219 { TTI::SK_PermuteTwoSrc
, MVT::v2f64
, 1 }, // shufpd
1220 { TTI::SK_PermuteTwoSrc
, MVT::v2i64
, 1 }, // shufpd
1221 { TTI::SK_PermuteTwoSrc
, MVT::v4i32
, 2 }, // 2*{unpck,movsd,pshufd}
1222 { TTI::SK_PermuteTwoSrc
, MVT::v8i16
, 8 }, // blend+permute
1223 { TTI::SK_PermuteTwoSrc
, MVT::v16i8
, 13 }, // blend+permute
1227 if (const auto *Entry
= CostTableLookup(SSE2ShuffleTbl
, Kind
, LT
.second
))
1228 return LT
.first
* Entry
->Cost
;
1230 static const CostTblEntry SSE1ShuffleTbl
[] = {
1231 { TTI::SK_Broadcast
, MVT::v4f32
, 1 }, // shufps
1232 { TTI::SK_Reverse
, MVT::v4f32
, 1 }, // shufps
1233 { TTI::SK_Select
, MVT::v4f32
, 2 }, // 2*shufps
1234 { TTI::SK_PermuteSingleSrc
, MVT::v4f32
, 1 }, // shufps
1235 { TTI::SK_PermuteTwoSrc
, MVT::v4f32
, 2 }, // 2*shufps
1239 if (const auto *Entry
= CostTableLookup(SSE1ShuffleTbl
, Kind
, LT
.second
))
1240 return LT
.first
* Entry
->Cost
;
1242 return BaseT::getShuffleCost(Kind
, Tp
, Index
, SubTp
);
1245 int X86TTIImpl::getCastInstrCost(unsigned Opcode
, Type
*Dst
, Type
*Src
,
1246 const Instruction
*I
) {
1247 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
1248 assert(ISD
&& "Invalid opcode");
1250 // FIXME: Need a better design of the cost table to handle non-simple types of
1251 // potential massive combinations (elem_num x src_type x dst_type).
1253 static const TypeConversionCostTblEntry AVX512BWConversionTbl
[] {
1254 { ISD::SIGN_EXTEND
, MVT::v32i16
, MVT::v32i8
, 1 },
1255 { ISD::ZERO_EXTEND
, MVT::v32i16
, MVT::v32i8
, 1 },
1257 // Mask sign extend has an instruction.
1258 { ISD::SIGN_EXTEND
, MVT::v8i16
, MVT::v8i1
, 1 },
1259 { ISD::SIGN_EXTEND
, MVT::v16i8
, MVT::v16i1
, 1 },
1260 { ISD::SIGN_EXTEND
, MVT::v16i16
, MVT::v16i1
, 1 },
1261 { ISD::SIGN_EXTEND
, MVT::v32i8
, MVT::v32i1
, 1 },
1262 { ISD::SIGN_EXTEND
, MVT::v32i16
, MVT::v32i1
, 1 },
1263 { ISD::SIGN_EXTEND
, MVT::v64i8
, MVT::v64i1
, 1 },
1265 // Mask zero extend is a load + broadcast.
1266 { ISD::ZERO_EXTEND
, MVT::v8i16
, MVT::v8i1
, 2 },
1267 { ISD::ZERO_EXTEND
, MVT::v16i8
, MVT::v16i1
, 2 },
1268 { ISD::ZERO_EXTEND
, MVT::v16i16
, MVT::v16i1
, 2 },
1269 { ISD::ZERO_EXTEND
, MVT::v32i8
, MVT::v32i1
, 2 },
1270 { ISD::ZERO_EXTEND
, MVT::v32i16
, MVT::v32i1
, 2 },
1271 { ISD::ZERO_EXTEND
, MVT::v64i8
, MVT::v64i1
, 2 },
1274 static const TypeConversionCostTblEntry AVX512DQConversionTbl
[] = {
1275 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i64
, 1 },
1276 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i64
, 1 },
1277 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i64
, 1 },
1278 { ISD::SINT_TO_FP
, MVT::v4f64
, MVT::v4i64
, 1 },
1279 { ISD::SINT_TO_FP
, MVT::v8f32
, MVT::v8i64
, 1 },
1280 { ISD::SINT_TO_FP
, MVT::v8f64
, MVT::v8i64
, 1 },
1282 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i64
, 1 },
1283 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i64
, 1 },
1284 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i64
, 1 },
1285 { ISD::UINT_TO_FP
, MVT::v4f64
, MVT::v4i64
, 1 },
1286 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i64
, 1 },
1287 { ISD::UINT_TO_FP
, MVT::v8f64
, MVT::v8i64
, 1 },
1289 { ISD::FP_TO_SINT
, MVT::v2i64
, MVT::v2f32
, 1 },
1290 { ISD::FP_TO_SINT
, MVT::v4i64
, MVT::v4f32
, 1 },
1291 { ISD::FP_TO_SINT
, MVT::v8i64
, MVT::v8f32
, 1 },
1292 { ISD::FP_TO_SINT
, MVT::v2i64
, MVT::v2f64
, 1 },
1293 { ISD::FP_TO_SINT
, MVT::v4i64
, MVT::v4f64
, 1 },
1294 { ISD::FP_TO_SINT
, MVT::v8i64
, MVT::v8f64
, 1 },
1296 { ISD::FP_TO_UINT
, MVT::v2i64
, MVT::v2f32
, 1 },
1297 { ISD::FP_TO_UINT
, MVT::v4i64
, MVT::v4f32
, 1 },
1298 { ISD::FP_TO_UINT
, MVT::v8i64
, MVT::v8f32
, 1 },
1299 { ISD::FP_TO_UINT
, MVT::v2i64
, MVT::v2f64
, 1 },
1300 { ISD::FP_TO_UINT
, MVT::v4i64
, MVT::v4f64
, 1 },
1301 { ISD::FP_TO_UINT
, MVT::v8i64
, MVT::v8f64
, 1 },
1304 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1305 // 256-bit wide vectors.
1307 static const TypeConversionCostTblEntry AVX512FConversionTbl
[] = {
1308 { ISD::FP_EXTEND
, MVT::v8f64
, MVT::v8f32
, 1 },
1309 { ISD::FP_EXTEND
, MVT::v8f64
, MVT::v16f32
, 3 },
1310 { ISD::FP_ROUND
, MVT::v8f32
, MVT::v8f64
, 1 },
1312 { ISD::TRUNCATE
, MVT::v16i8
, MVT::v16i32
, 1 },
1313 { ISD::TRUNCATE
, MVT::v16i16
, MVT::v16i32
, 1 },
1314 { ISD::TRUNCATE
, MVT::v8i16
, MVT::v8i64
, 1 },
1315 { ISD::TRUNCATE
, MVT::v8i32
, MVT::v8i64
, 1 },
1317 // v16i1 -> v16i32 - load + broadcast
1318 { ISD::SIGN_EXTEND
, MVT::v16i32
, MVT::v16i1
, 2 },
1319 { ISD::ZERO_EXTEND
, MVT::v16i32
, MVT::v16i1
, 2 },
1320 { ISD::SIGN_EXTEND
, MVT::v16i32
, MVT::v16i8
, 1 },
1321 { ISD::ZERO_EXTEND
, MVT::v16i32
, MVT::v16i8
, 1 },
1322 { ISD::SIGN_EXTEND
, MVT::v16i32
, MVT::v16i16
, 1 },
1323 { ISD::ZERO_EXTEND
, MVT::v16i32
, MVT::v16i16
, 1 },
1324 { ISD::ZERO_EXTEND
, MVT::v8i64
, MVT::v8i16
, 1 },
1325 { ISD::SIGN_EXTEND
, MVT::v8i64
, MVT::v8i16
, 1 },
1326 { ISD::SIGN_EXTEND
, MVT::v8i64
, MVT::v8i32
, 1 },
1327 { ISD::ZERO_EXTEND
, MVT::v8i64
, MVT::v8i32
, 1 },
1329 { ISD::SINT_TO_FP
, MVT::v8f64
, MVT::v8i1
, 4 },
1330 { ISD::SINT_TO_FP
, MVT::v16f32
, MVT::v16i1
, 3 },
1331 { ISD::SINT_TO_FP
, MVT::v8f64
, MVT::v8i8
, 2 },
1332 { ISD::SINT_TO_FP
, MVT::v16f32
, MVT::v16i8
, 2 },
1333 { ISD::SINT_TO_FP
, MVT::v8f64
, MVT::v8i16
, 2 },
1334 { ISD::SINT_TO_FP
, MVT::v16f32
, MVT::v16i16
, 2 },
1335 { ISD::SINT_TO_FP
, MVT::v16f32
, MVT::v16i32
, 1 },
1336 { ISD::SINT_TO_FP
, MVT::v8f64
, MVT::v8i32
, 1 },
1338 { ISD::UINT_TO_FP
, MVT::v8f64
, MVT::v8i1
, 4 },
1339 { ISD::UINT_TO_FP
, MVT::v16f32
, MVT::v16i1
, 3 },
1340 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i8
, 2 },
1341 { ISD::UINT_TO_FP
, MVT::v4f64
, MVT::v4i8
, 2 },
1342 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i8
, 2 },
1343 { ISD::UINT_TO_FP
, MVT::v8f64
, MVT::v8i8
, 2 },
1344 { ISD::UINT_TO_FP
, MVT::v16f32
, MVT::v16i8
, 2 },
1345 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i16
, 5 },
1346 { ISD::UINT_TO_FP
, MVT::v4f64
, MVT::v4i16
, 2 },
1347 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i16
, 2 },
1348 { ISD::UINT_TO_FP
, MVT::v8f64
, MVT::v8i16
, 2 },
1349 { ISD::UINT_TO_FP
, MVT::v16f32
, MVT::v16i16
, 2 },
1350 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i32
, 2 },
1351 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i32
, 1 },
1352 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i32
, 1 },
1353 { ISD::UINT_TO_FP
, MVT::v4f64
, MVT::v4i32
, 1 },
1354 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i32
, 1 },
1355 { ISD::UINT_TO_FP
, MVT::v8f64
, MVT::v8i32
, 1 },
1356 { ISD::UINT_TO_FP
, MVT::v16f32
, MVT::v16i32
, 1 },
1357 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i64
, 5 },
1358 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i64
, 26 },
1359 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i64
, 5 },
1360 { ISD::UINT_TO_FP
, MVT::v4f64
, MVT::v4i64
, 5 },
1361 { ISD::UINT_TO_FP
, MVT::v8f64
, MVT::v8i64
, 5 },
1363 { ISD::UINT_TO_FP
, MVT::f64
, MVT::i64
, 1 },
1365 { ISD::FP_TO_UINT
, MVT::v2i32
, MVT::v2f32
, 1 },
1366 { ISD::FP_TO_UINT
, MVT::v4i32
, MVT::v4f32
, 1 },
1367 { ISD::FP_TO_UINT
, MVT::v4i32
, MVT::v4f64
, 1 },
1368 { ISD::FP_TO_UINT
, MVT::v8i32
, MVT::v8f32
, 1 },
1369 { ISD::FP_TO_UINT
, MVT::v8i16
, MVT::v8f64
, 2 },
1370 { ISD::FP_TO_UINT
, MVT::v8i8
, MVT::v8f64
, 2 },
1371 { ISD::FP_TO_UINT
, MVT::v16i32
, MVT::v16f32
, 1 },
1372 { ISD::FP_TO_UINT
, MVT::v16i16
, MVT::v16f32
, 2 },
1373 { ISD::FP_TO_UINT
, MVT::v16i8
, MVT::v16f32
, 2 },
1376 static const TypeConversionCostTblEntry AVX2ConversionTbl
[] = {
1377 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i1
, 3 },
1378 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i1
, 3 },
1379 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i1
, 3 },
1380 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i1
, 3 },
1381 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i8
, 3 },
1382 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i8
, 3 },
1383 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i8
, 3 },
1384 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i8
, 3 },
1385 { ISD::SIGN_EXTEND
, MVT::v16i16
, MVT::v16i8
, 1 },
1386 { ISD::ZERO_EXTEND
, MVT::v16i16
, MVT::v16i8
, 1 },
1387 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i16
, 3 },
1388 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i16
, 3 },
1389 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i16
, 1 },
1390 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i16
, 1 },
1391 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i32
, 1 },
1392 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i32
, 1 },
1394 { ISD::TRUNCATE
, MVT::v4i8
, MVT::v4i64
, 2 },
1395 { ISD::TRUNCATE
, MVT::v4i16
, MVT::v4i64
, 2 },
1396 { ISD::TRUNCATE
, MVT::v4i32
, MVT::v4i64
, 2 },
1397 { ISD::TRUNCATE
, MVT::v8i8
, MVT::v8i32
, 2 },
1398 { ISD::TRUNCATE
, MVT::v8i16
, MVT::v8i32
, 2 },
1399 { ISD::TRUNCATE
, MVT::v8i32
, MVT::v8i64
, 4 },
1401 { ISD::FP_EXTEND
, MVT::v8f64
, MVT::v8f32
, 3 },
1402 { ISD::FP_ROUND
, MVT::v8f32
, MVT::v8f64
, 3 },
1404 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i32
, 8 },
1407 static const TypeConversionCostTblEntry AVXConversionTbl
[] = {
1408 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i1
, 6 },
1409 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i1
, 4 },
1410 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i1
, 7 },
1411 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i1
, 4 },
1412 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i8
, 6 },
1413 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i8
, 4 },
1414 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i8
, 7 },
1415 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i8
, 4 },
1416 { ISD::SIGN_EXTEND
, MVT::v16i16
, MVT::v16i8
, 4 },
1417 { ISD::ZERO_EXTEND
, MVT::v16i16
, MVT::v16i8
, 4 },
1418 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i16
, 6 },
1419 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i16
, 3 },
1420 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i16
, 4 },
1421 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i16
, 4 },
1422 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i32
, 4 },
1423 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i32
, 4 },
1425 { ISD::TRUNCATE
, MVT::v16i8
, MVT::v16i16
, 4 },
1426 { ISD::TRUNCATE
, MVT::v8i8
, MVT::v8i32
, 4 },
1427 { ISD::TRUNCATE
, MVT::v8i16
, MVT::v8i32
, 5 },
1428 { ISD::TRUNCATE
, MVT::v4i8
, MVT::v4i64
, 4 },
1429 { ISD::TRUNCATE
, MVT::v4i16
, MVT::v4i64
, 4 },
1430 { ISD::TRUNCATE
, MVT::v4i32
, MVT::v4i64
, 4 },
1431 { ISD::TRUNCATE
, MVT::v8i32
, MVT::v8i64
, 9 },
1433 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i1
, 3 },
1434 { ISD::SINT_TO_FP
, MVT::v4f64
, MVT::v4i1
, 3 },
1435 { ISD::SINT_TO_FP
, MVT::v8f32
, MVT::v8i1
, 8 },
1436 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i8
, 3 },
1437 { ISD::SINT_TO_FP
, MVT::v4f64
, MVT::v4i8
, 3 },
1438 { ISD::SINT_TO_FP
, MVT::v8f32
, MVT::v8i8
, 8 },
1439 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i16
, 3 },
1440 { ISD::SINT_TO_FP
, MVT::v4f64
, MVT::v4i16
, 3 },
1441 { ISD::SINT_TO_FP
, MVT::v8f32
, MVT::v8i16
, 5 },
1442 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i32
, 1 },
1443 { ISD::SINT_TO_FP
, MVT::v4f64
, MVT::v4i32
, 1 },
1444 { ISD::SINT_TO_FP
, MVT::v8f32
, MVT::v8i32
, 1 },
1446 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i1
, 7 },
1447 { ISD::UINT_TO_FP
, MVT::v4f64
, MVT::v4i1
, 7 },
1448 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i1
, 6 },
1449 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i8
, 2 },
1450 { ISD::UINT_TO_FP
, MVT::v4f64
, MVT::v4i8
, 2 },
1451 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i8
, 5 },
1452 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i16
, 2 },
1453 { ISD::UINT_TO_FP
, MVT::v4f64
, MVT::v4i16
, 2 },
1454 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i16
, 5 },
1455 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i32
, 6 },
1456 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i32
, 6 },
1457 { ISD::UINT_TO_FP
, MVT::v4f64
, MVT::v4i32
, 6 },
1458 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i32
, 9 },
1459 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i64
, 5 },
1460 { ISD::UINT_TO_FP
, MVT::v4f64
, MVT::v4i64
, 6 },
1461 // The generic code to compute the scalar overhead is currently broken.
1462 // Workaround this limitation by estimating the scalarization overhead
1463 // here. We have roughly 10 instructions per scalar element.
1464 // Multiply that by the vector width.
1465 // FIXME: remove that when PR19268 is fixed.
1466 { ISD::SINT_TO_FP
, MVT::v4f64
, MVT::v4i64
, 13 },
1467 { ISD::SINT_TO_FP
, MVT::v4f64
, MVT::v4i64
, 13 },
1469 { ISD::FP_TO_SINT
, MVT::v4i8
, MVT::v4f32
, 1 },
1470 { ISD::FP_TO_SINT
, MVT::v8i8
, MVT::v8f32
, 7 },
1471 // This node is expanded into scalarized operations but BasicTTI is overly
1472 // optimistic estimating its cost. It computes 3 per element (one
1473 // vector-extract, one scalar conversion and one vector-insert). The
1474 // problem is that the inserts form a read-modify-write chain so latency
1475 // should be factored in too. Inflating the cost per element by 1.
1476 { ISD::FP_TO_UINT
, MVT::v8i32
, MVT::v8f32
, 8*4 },
1477 { ISD::FP_TO_UINT
, MVT::v4i32
, MVT::v4f64
, 4*4 },
1479 { ISD::FP_EXTEND
, MVT::v4f64
, MVT::v4f32
, 1 },
1480 { ISD::FP_ROUND
, MVT::v4f32
, MVT::v4f64
, 1 },
1483 static const TypeConversionCostTblEntry SSE41ConversionTbl
[] = {
1484 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i8
, 2 },
1485 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i8
, 2 },
1486 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i16
, 2 },
1487 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i16
, 2 },
1488 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i32
, 2 },
1489 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i32
, 2 },
1491 { ISD::ZERO_EXTEND
, MVT::v4i16
, MVT::v4i8
, 1 },
1492 { ISD::SIGN_EXTEND
, MVT::v4i16
, MVT::v4i8
, 2 },
1493 { ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i8
, 1 },
1494 { ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i8
, 1 },
1495 { ISD::ZERO_EXTEND
, MVT::v8i16
, MVT::v8i8
, 1 },
1496 { ISD::SIGN_EXTEND
, MVT::v8i16
, MVT::v8i8
, 1 },
1497 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i8
, 2 },
1498 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i8
, 2 },
1499 { ISD::ZERO_EXTEND
, MVT::v16i16
, MVT::v16i8
, 2 },
1500 { ISD::SIGN_EXTEND
, MVT::v16i16
, MVT::v16i8
, 2 },
1501 { ISD::ZERO_EXTEND
, MVT::v16i32
, MVT::v16i8
, 4 },
1502 { ISD::SIGN_EXTEND
, MVT::v16i32
, MVT::v16i8
, 4 },
1503 { ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i16
, 1 },
1504 { ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i16
, 1 },
1505 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i16
, 2 },
1506 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i16
, 2 },
1507 { ISD::ZERO_EXTEND
, MVT::v16i32
, MVT::v16i16
, 4 },
1508 { ISD::SIGN_EXTEND
, MVT::v16i32
, MVT::v16i16
, 4 },
1510 { ISD::TRUNCATE
, MVT::v4i8
, MVT::v4i16
, 2 },
1511 { ISD::TRUNCATE
, MVT::v8i8
, MVT::v8i16
, 1 },
1512 { ISD::TRUNCATE
, MVT::v4i8
, MVT::v4i32
, 1 },
1513 { ISD::TRUNCATE
, MVT::v4i16
, MVT::v4i32
, 1 },
1514 { ISD::TRUNCATE
, MVT::v8i8
, MVT::v8i32
, 3 },
1515 { ISD::TRUNCATE
, MVT::v8i16
, MVT::v8i32
, 3 },
1516 { ISD::TRUNCATE
, MVT::v16i16
, MVT::v16i32
, 6 },
1518 { ISD::UINT_TO_FP
, MVT::f64
, MVT::i64
, 4 },
1521 static const TypeConversionCostTblEntry SSE2ConversionTbl
[] = {
1522 // These are somewhat magic numbers justified by looking at the output of
1523 // Intel's IACA, running some kernels and making sure when we take
1524 // legalization into account the throughput will be overestimated.
1525 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v16i8
, 8 },
1526 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v16i8
, 16*10 },
1527 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v8i16
, 15 },
1528 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v8i16
, 8*10 },
1529 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i32
, 5 },
1530 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v4i32
, 4*10 },
1531 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v2i64
, 15 },
1532 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i64
, 2*10 },
1534 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v16i8
, 16*10 },
1535 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v16i8
, 8 },
1536 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v8i16
, 15 },
1537 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v8i16
, 8*10 },
1538 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v4i32
, 4*10 },
1539 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i32
, 8 },
1540 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i64
, 6 },
1541 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v2i64
, 15 },
1543 { ISD::FP_TO_SINT
, MVT::v2i32
, MVT::v2f64
, 3 },
1545 { ISD::UINT_TO_FP
, MVT::f64
, MVT::i64
, 6 },
1547 { ISD::ZERO_EXTEND
, MVT::v4i16
, MVT::v4i8
, 1 },
1548 { ISD::SIGN_EXTEND
, MVT::v4i16
, MVT::v4i8
, 6 },
1549 { ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i8
, 2 },
1550 { ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i8
, 3 },
1551 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i8
, 4 },
1552 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i8
, 8 },
1553 { ISD::ZERO_EXTEND
, MVT::v8i16
, MVT::v8i8
, 1 },
1554 { ISD::SIGN_EXTEND
, MVT::v8i16
, MVT::v8i8
, 2 },
1555 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i8
, 6 },
1556 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i8
, 6 },
1557 { ISD::ZERO_EXTEND
, MVT::v16i16
, MVT::v16i8
, 3 },
1558 { ISD::SIGN_EXTEND
, MVT::v16i16
, MVT::v16i8
, 4 },
1559 { ISD::ZERO_EXTEND
, MVT::v16i32
, MVT::v16i8
, 9 },
1560 { ISD::SIGN_EXTEND
, MVT::v16i32
, MVT::v16i8
, 12 },
1561 { ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i16
, 1 },
1562 { ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i16
, 2 },
1563 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i16
, 3 },
1564 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i16
, 10 },
1565 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i16
, 3 },
1566 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i16
, 4 },
1567 { ISD::ZERO_EXTEND
, MVT::v16i32
, MVT::v16i16
, 6 },
1568 { ISD::SIGN_EXTEND
, MVT::v16i32
, MVT::v16i16
, 8 },
1569 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i32
, 3 },
1570 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i32
, 5 },
1572 { ISD::TRUNCATE
, MVT::v4i8
, MVT::v4i16
, 4 },
1573 { ISD::TRUNCATE
, MVT::v8i8
, MVT::v8i16
, 2 },
1574 { ISD::TRUNCATE
, MVT::v16i8
, MVT::v16i16
, 3 },
1575 { ISD::TRUNCATE
, MVT::v4i8
, MVT::v4i32
, 3 },
1576 { ISD::TRUNCATE
, MVT::v4i16
, MVT::v4i32
, 3 },
1577 { ISD::TRUNCATE
, MVT::v8i8
, MVT::v8i32
, 4 },
1578 { ISD::TRUNCATE
, MVT::v16i8
, MVT::v16i32
, 7 },
1579 { ISD::TRUNCATE
, MVT::v8i16
, MVT::v8i32
, 5 },
1580 { ISD::TRUNCATE
, MVT::v16i16
, MVT::v16i32
, 10 },
1583 std::pair
<int, MVT
> LTSrc
= TLI
->getTypeLegalizationCost(DL
, Src
);
1584 std::pair
<int, MVT
> LTDest
= TLI
->getTypeLegalizationCost(DL
, Dst
);
1586 if (ST
->hasSSE2() && !ST
->hasAVX()) {
1587 if (const auto *Entry
= ConvertCostTableLookup(SSE2ConversionTbl
, ISD
,
1588 LTDest
.second
, LTSrc
.second
))
1589 return LTSrc
.first
* Entry
->Cost
;
1592 EVT SrcTy
= TLI
->getValueType(DL
, Src
);
1593 EVT DstTy
= TLI
->getValueType(DL
, Dst
);
1595 // The function getSimpleVT only handles simple value types.
1596 if (!SrcTy
.isSimple() || !DstTy
.isSimple())
1597 return BaseT::getCastInstrCost(Opcode
, Dst
, Src
);
1599 MVT SimpleSrcTy
= SrcTy
.getSimpleVT();
1600 MVT SimpleDstTy
= DstTy
.getSimpleVT();
1602 // Make sure that neither type is going to be split before using the
1603 // AVX512 tables. This handles -mprefer-vector-width=256
1604 // with -min-legal-vector-width<=256
1605 if (TLI
->getTypeAction(SimpleSrcTy
) != TargetLowering::TypeSplitVector
&&
1606 TLI
->getTypeAction(SimpleDstTy
) != TargetLowering::TypeSplitVector
) {
1608 if (const auto *Entry
= ConvertCostTableLookup(AVX512BWConversionTbl
, ISD
,
1609 SimpleDstTy
, SimpleSrcTy
))
1613 if (const auto *Entry
= ConvertCostTableLookup(AVX512DQConversionTbl
, ISD
,
1614 SimpleDstTy
, SimpleSrcTy
))
1617 if (ST
->hasAVX512())
1618 if (const auto *Entry
= ConvertCostTableLookup(AVX512FConversionTbl
, ISD
,
1619 SimpleDstTy
, SimpleSrcTy
))
1623 if (ST
->hasAVX2()) {
1624 if (const auto *Entry
= ConvertCostTableLookup(AVX2ConversionTbl
, ISD
,
1625 SimpleDstTy
, SimpleSrcTy
))
1630 if (const auto *Entry
= ConvertCostTableLookup(AVXConversionTbl
, ISD
,
1631 SimpleDstTy
, SimpleSrcTy
))
1635 if (ST
->hasSSE41()) {
1636 if (const auto *Entry
= ConvertCostTableLookup(SSE41ConversionTbl
, ISD
,
1637 SimpleDstTy
, SimpleSrcTy
))
1641 if (ST
->hasSSE2()) {
1642 if (const auto *Entry
= ConvertCostTableLookup(SSE2ConversionTbl
, ISD
,
1643 SimpleDstTy
, SimpleSrcTy
))
1647 return BaseT::getCastInstrCost(Opcode
, Dst
, Src
, I
);
1650 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode
, Type
*ValTy
, Type
*CondTy
,
1651 const Instruction
*I
) {
1652 // Legalize the type.
1653 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, ValTy
);
1655 MVT MTy
= LT
.second
;
1657 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
1658 assert(ISD
&& "Invalid opcode");
1660 unsigned ExtraCost
= 0;
1661 if (I
&& (Opcode
== Instruction::ICmp
|| Opcode
== Instruction::FCmp
)) {
1662 // Some vector comparison predicates cost extra instructions.
1663 if (MTy
.isVector() &&
1664 !((ST
->hasXOP() && (!ST
->hasAVX2() || MTy
.is128BitVector())) ||
1665 (ST
->hasAVX512() && 32 <= MTy
.getScalarSizeInBits()) ||
1667 switch (cast
<CmpInst
>(I
)->getPredicate()) {
1668 case CmpInst::Predicate::ICMP_NE
:
1669 // xor(cmpeq(x,y),-1)
1672 case CmpInst::Predicate::ICMP_SGE
:
1673 case CmpInst::Predicate::ICMP_SLE
:
1674 // xor(cmpgt(x,y),-1)
1677 case CmpInst::Predicate::ICMP_ULT
:
1678 case CmpInst::Predicate::ICMP_UGT
:
1679 // cmpgt(xor(x,signbit),xor(y,signbit))
1680 // xor(cmpeq(pmaxu(x,y),x),-1)
1683 case CmpInst::Predicate::ICMP_ULE
:
1684 case CmpInst::Predicate::ICMP_UGE
:
1685 if ((ST
->hasSSE41() && MTy
.getScalarSizeInBits() == 32) ||
1686 (ST
->hasSSE2() && MTy
.getScalarSizeInBits() < 32)) {
1687 // cmpeq(psubus(x,y),0)
1688 // cmpeq(pminu(x,y),x)
1691 // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
1701 static const CostTblEntry AVX512BWCostTbl
[] = {
1702 { ISD::SETCC
, MVT::v32i16
, 1 },
1703 { ISD::SETCC
, MVT::v64i8
, 1 },
1705 { ISD::SELECT
, MVT::v32i16
, 1 },
1706 { ISD::SELECT
, MVT::v64i8
, 1 },
1709 static const CostTblEntry AVX512CostTbl
[] = {
1710 { ISD::SETCC
, MVT::v8i64
, 1 },
1711 { ISD::SETCC
, MVT::v16i32
, 1 },
1712 { ISD::SETCC
, MVT::v8f64
, 1 },
1713 { ISD::SETCC
, MVT::v16f32
, 1 },
1715 { ISD::SELECT
, MVT::v8i64
, 1 },
1716 { ISD::SELECT
, MVT::v16i32
, 1 },
1717 { ISD::SELECT
, MVT::v8f64
, 1 },
1718 { ISD::SELECT
, MVT::v16f32
, 1 },
1721 static const CostTblEntry AVX2CostTbl
[] = {
1722 { ISD::SETCC
, MVT::v4i64
, 1 },
1723 { ISD::SETCC
, MVT::v8i32
, 1 },
1724 { ISD::SETCC
, MVT::v16i16
, 1 },
1725 { ISD::SETCC
, MVT::v32i8
, 1 },
1727 { ISD::SELECT
, MVT::v4i64
, 1 }, // pblendvb
1728 { ISD::SELECT
, MVT::v8i32
, 1 }, // pblendvb
1729 { ISD::SELECT
, MVT::v16i16
, 1 }, // pblendvb
1730 { ISD::SELECT
, MVT::v32i8
, 1 }, // pblendvb
1733 static const CostTblEntry AVX1CostTbl
[] = {
1734 { ISD::SETCC
, MVT::v4f64
, 1 },
1735 { ISD::SETCC
, MVT::v8f32
, 1 },
1736 // AVX1 does not support 8-wide integer compare.
1737 { ISD::SETCC
, MVT::v4i64
, 4 },
1738 { ISD::SETCC
, MVT::v8i32
, 4 },
1739 { ISD::SETCC
, MVT::v16i16
, 4 },
1740 { ISD::SETCC
, MVT::v32i8
, 4 },
1742 { ISD::SELECT
, MVT::v4f64
, 1 }, // vblendvpd
1743 { ISD::SELECT
, MVT::v8f32
, 1 }, // vblendvps
1744 { ISD::SELECT
, MVT::v4i64
, 1 }, // vblendvpd
1745 { ISD::SELECT
, MVT::v8i32
, 1 }, // vblendvps
1746 { ISD::SELECT
, MVT::v16i16
, 3 }, // vandps + vandnps + vorps
1747 { ISD::SELECT
, MVT::v32i8
, 3 }, // vandps + vandnps + vorps
1750 static const CostTblEntry SSE42CostTbl
[] = {
1751 { ISD::SETCC
, MVT::v2f64
, 1 },
1752 { ISD::SETCC
, MVT::v4f32
, 1 },
1753 { ISD::SETCC
, MVT::v2i64
, 1 },
1756 static const CostTblEntry SSE41CostTbl
[] = {
1757 { ISD::SELECT
, MVT::v2f64
, 1 }, // blendvpd
1758 { ISD::SELECT
, MVT::v4f32
, 1 }, // blendvps
1759 { ISD::SELECT
, MVT::v2i64
, 1 }, // pblendvb
1760 { ISD::SELECT
, MVT::v4i32
, 1 }, // pblendvb
1761 { ISD::SELECT
, MVT::v8i16
, 1 }, // pblendvb
1762 { ISD::SELECT
, MVT::v16i8
, 1 }, // pblendvb
1765 static const CostTblEntry SSE2CostTbl
[] = {
1766 { ISD::SETCC
, MVT::v2f64
, 2 },
1767 { ISD::SETCC
, MVT::f64
, 1 },
1768 { ISD::SETCC
, MVT::v2i64
, 8 },
1769 { ISD::SETCC
, MVT::v4i32
, 1 },
1770 { ISD::SETCC
, MVT::v8i16
, 1 },
1771 { ISD::SETCC
, MVT::v16i8
, 1 },
1773 { ISD::SELECT
, MVT::v2f64
, 3 }, // andpd + andnpd + orpd
1774 { ISD::SELECT
, MVT::v2i64
, 3 }, // pand + pandn + por
1775 { ISD::SELECT
, MVT::v4i32
, 3 }, // pand + pandn + por
1776 { ISD::SELECT
, MVT::v8i16
, 3 }, // pand + pandn + por
1777 { ISD::SELECT
, MVT::v16i8
, 3 }, // pand + pandn + por
1780 static const CostTblEntry SSE1CostTbl
[] = {
1781 { ISD::SETCC
, MVT::v4f32
, 2 },
1782 { ISD::SETCC
, MVT::f32
, 1 },
1784 { ISD::SELECT
, MVT::v4f32
, 3 }, // andps + andnps + orps
1788 if (const auto *Entry
= CostTableLookup(AVX512BWCostTbl
, ISD
, MTy
))
1789 return LT
.first
* (ExtraCost
+ Entry
->Cost
);
1791 if (ST
->hasAVX512())
1792 if (const auto *Entry
= CostTableLookup(AVX512CostTbl
, ISD
, MTy
))
1793 return LT
.first
* (ExtraCost
+ Entry
->Cost
);
1796 if (const auto *Entry
= CostTableLookup(AVX2CostTbl
, ISD
, MTy
))
1797 return LT
.first
* (ExtraCost
+ Entry
->Cost
);
1800 if (const auto *Entry
= CostTableLookup(AVX1CostTbl
, ISD
, MTy
))
1801 return LT
.first
* (ExtraCost
+ Entry
->Cost
);
1804 if (const auto *Entry
= CostTableLookup(SSE42CostTbl
, ISD
, MTy
))
1805 return LT
.first
* (ExtraCost
+ Entry
->Cost
);
1808 if (const auto *Entry
= CostTableLookup(SSE41CostTbl
, ISD
, MTy
))
1809 return LT
.first
* (ExtraCost
+ Entry
->Cost
);
1812 if (const auto *Entry
= CostTableLookup(SSE2CostTbl
, ISD
, MTy
))
1813 return LT
.first
* (ExtraCost
+ Entry
->Cost
);
1816 if (const auto *Entry
= CostTableLookup(SSE1CostTbl
, ISD
, MTy
))
1817 return LT
.first
* (ExtraCost
+ Entry
->Cost
);
1819 return BaseT::getCmpSelInstrCost(Opcode
, ValTy
, CondTy
, I
);
1822 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
1824 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID
, Type
*RetTy
,
1825 ArrayRef
<Type
*> Tys
, FastMathFlags FMF
,
1826 unsigned ScalarizationCostPassed
) {
1827 // Costs should match the codegen from:
1828 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1829 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
1830 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
1831 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
1832 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
1833 static const CostTblEntry AVX512CDCostTbl
[] = {
1834 { ISD::CTLZ
, MVT::v8i64
, 1 },
1835 { ISD::CTLZ
, MVT::v16i32
, 1 },
1836 { ISD::CTLZ
, MVT::v32i16
, 8 },
1837 { ISD::CTLZ
, MVT::v64i8
, 20 },
1838 { ISD::CTLZ
, MVT::v4i64
, 1 },
1839 { ISD::CTLZ
, MVT::v8i32
, 1 },
1840 { ISD::CTLZ
, MVT::v16i16
, 4 },
1841 { ISD::CTLZ
, MVT::v32i8
, 10 },
1842 { ISD::CTLZ
, MVT::v2i64
, 1 },
1843 { ISD::CTLZ
, MVT::v4i32
, 1 },
1844 { ISD::CTLZ
, MVT::v8i16
, 4 },
1845 { ISD::CTLZ
, MVT::v16i8
, 4 },
1847 static const CostTblEntry AVX512BWCostTbl
[] = {
1848 { ISD::BITREVERSE
, MVT::v8i64
, 5 },
1849 { ISD::BITREVERSE
, MVT::v16i32
, 5 },
1850 { ISD::BITREVERSE
, MVT::v32i16
, 5 },
1851 { ISD::BITREVERSE
, MVT::v64i8
, 5 },
1852 { ISD::CTLZ
, MVT::v8i64
, 23 },
1853 { ISD::CTLZ
, MVT::v16i32
, 22 },
1854 { ISD::CTLZ
, MVT::v32i16
, 18 },
1855 { ISD::CTLZ
, MVT::v64i8
, 17 },
1856 { ISD::CTPOP
, MVT::v8i64
, 7 },
1857 { ISD::CTPOP
, MVT::v16i32
, 11 },
1858 { ISD::CTPOP
, MVT::v32i16
, 9 },
1859 { ISD::CTPOP
, MVT::v64i8
, 6 },
1860 { ISD::CTTZ
, MVT::v8i64
, 10 },
1861 { ISD::CTTZ
, MVT::v16i32
, 14 },
1862 { ISD::CTTZ
, MVT::v32i16
, 12 },
1863 { ISD::CTTZ
, MVT::v64i8
, 9 },
1864 { ISD::SADDSAT
, MVT::v32i16
, 1 },
1865 { ISD::SADDSAT
, MVT::v64i8
, 1 },
1866 { ISD::SSUBSAT
, MVT::v32i16
, 1 },
1867 { ISD::SSUBSAT
, MVT::v64i8
, 1 },
1868 { ISD::UADDSAT
, MVT::v32i16
, 1 },
1869 { ISD::UADDSAT
, MVT::v64i8
, 1 },
1870 { ISD::USUBSAT
, MVT::v32i16
, 1 },
1871 { ISD::USUBSAT
, MVT::v64i8
, 1 },
1873 static const CostTblEntry AVX512CostTbl
[] = {
1874 { ISD::BITREVERSE
, MVT::v8i64
, 36 },
1875 { ISD::BITREVERSE
, MVT::v16i32
, 24 },
1876 { ISD::CTLZ
, MVT::v8i64
, 29 },
1877 { ISD::CTLZ
, MVT::v16i32
, 35 },
1878 { ISD::CTPOP
, MVT::v8i64
, 16 },
1879 { ISD::CTPOP
, MVT::v16i32
, 24 },
1880 { ISD::CTTZ
, MVT::v8i64
, 20 },
1881 { ISD::CTTZ
, MVT::v16i32
, 28 },
1882 { ISD::USUBSAT
, MVT::v16i32
, 2 }, // pmaxud + psubd
1883 { ISD::USUBSAT
, MVT::v2i64
, 2 }, // pmaxuq + psubq
1884 { ISD::USUBSAT
, MVT::v4i64
, 2 }, // pmaxuq + psubq
1885 { ISD::USUBSAT
, MVT::v8i64
, 2 }, // pmaxuq + psubq
1886 { ISD::UADDSAT
, MVT::v16i32
, 3 }, // not + pminud + paddd
1887 { ISD::UADDSAT
, MVT::v2i64
, 3 }, // not + pminuq + paddq
1888 { ISD::UADDSAT
, MVT::v4i64
, 3 }, // not + pminuq + paddq
1889 { ISD::UADDSAT
, MVT::v8i64
, 3 }, // not + pminuq + paddq
1891 static const CostTblEntry XOPCostTbl
[] = {
1892 { ISD::BITREVERSE
, MVT::v4i64
, 4 },
1893 { ISD::BITREVERSE
, MVT::v8i32
, 4 },
1894 { ISD::BITREVERSE
, MVT::v16i16
, 4 },
1895 { ISD::BITREVERSE
, MVT::v32i8
, 4 },
1896 { ISD::BITREVERSE
, MVT::v2i64
, 1 },
1897 { ISD::BITREVERSE
, MVT::v4i32
, 1 },
1898 { ISD::BITREVERSE
, MVT::v8i16
, 1 },
1899 { ISD::BITREVERSE
, MVT::v16i8
, 1 },
1900 { ISD::BITREVERSE
, MVT::i64
, 3 },
1901 { ISD::BITREVERSE
, MVT::i32
, 3 },
1902 { ISD::BITREVERSE
, MVT::i16
, 3 },
1903 { ISD::BITREVERSE
, MVT::i8
, 3 }
1905 static const CostTblEntry AVX2CostTbl
[] = {
1906 { ISD::BITREVERSE
, MVT::v4i64
, 5 },
1907 { ISD::BITREVERSE
, MVT::v8i32
, 5 },
1908 { ISD::BITREVERSE
, MVT::v16i16
, 5 },
1909 { ISD::BITREVERSE
, MVT::v32i8
, 5 },
1910 { ISD::BSWAP
, MVT::v4i64
, 1 },
1911 { ISD::BSWAP
, MVT::v8i32
, 1 },
1912 { ISD::BSWAP
, MVT::v16i16
, 1 },
1913 { ISD::CTLZ
, MVT::v4i64
, 23 },
1914 { ISD::CTLZ
, MVT::v8i32
, 18 },
1915 { ISD::CTLZ
, MVT::v16i16
, 14 },
1916 { ISD::CTLZ
, MVT::v32i8
, 9 },
1917 { ISD::CTPOP
, MVT::v4i64
, 7 },
1918 { ISD::CTPOP
, MVT::v8i32
, 11 },
1919 { ISD::CTPOP
, MVT::v16i16
, 9 },
1920 { ISD::CTPOP
, MVT::v32i8
, 6 },
1921 { ISD::CTTZ
, MVT::v4i64
, 10 },
1922 { ISD::CTTZ
, MVT::v8i32
, 14 },
1923 { ISD::CTTZ
, MVT::v16i16
, 12 },
1924 { ISD::CTTZ
, MVT::v32i8
, 9 },
1925 { ISD::SADDSAT
, MVT::v16i16
, 1 },
1926 { ISD::SADDSAT
, MVT::v32i8
, 1 },
1927 { ISD::SSUBSAT
, MVT::v16i16
, 1 },
1928 { ISD::SSUBSAT
, MVT::v32i8
, 1 },
1929 { ISD::UADDSAT
, MVT::v16i16
, 1 },
1930 { ISD::UADDSAT
, MVT::v32i8
, 1 },
1931 { ISD::UADDSAT
, MVT::v8i32
, 3 }, // not + pminud + paddd
1932 { ISD::USUBSAT
, MVT::v16i16
, 1 },
1933 { ISD::USUBSAT
, MVT::v32i8
, 1 },
1934 { ISD::USUBSAT
, MVT::v8i32
, 2 }, // pmaxud + psubd
1935 { ISD::FSQRT
, MVT::f32
, 7 }, // Haswell from http://www.agner.org/
1936 { ISD::FSQRT
, MVT::v4f32
, 7 }, // Haswell from http://www.agner.org/
1937 { ISD::FSQRT
, MVT::v8f32
, 14 }, // Haswell from http://www.agner.org/
1938 { ISD::FSQRT
, MVT::f64
, 14 }, // Haswell from http://www.agner.org/
1939 { ISD::FSQRT
, MVT::v2f64
, 14 }, // Haswell from http://www.agner.org/
1940 { ISD::FSQRT
, MVT::v4f64
, 28 }, // Haswell from http://www.agner.org/
1942 static const CostTblEntry AVX1CostTbl
[] = {
1943 { ISD::BITREVERSE
, MVT::v4i64
, 12 }, // 2 x 128-bit Op + extract/insert
1944 { ISD::BITREVERSE
, MVT::v8i32
, 12 }, // 2 x 128-bit Op + extract/insert
1945 { ISD::BITREVERSE
, MVT::v16i16
, 12 }, // 2 x 128-bit Op + extract/insert
1946 { ISD::BITREVERSE
, MVT::v32i8
, 12 }, // 2 x 128-bit Op + extract/insert
1947 { ISD::BSWAP
, MVT::v4i64
, 4 },
1948 { ISD::BSWAP
, MVT::v8i32
, 4 },
1949 { ISD::BSWAP
, MVT::v16i16
, 4 },
1950 { ISD::CTLZ
, MVT::v4i64
, 48 }, // 2 x 128-bit Op + extract/insert
1951 { ISD::CTLZ
, MVT::v8i32
, 38 }, // 2 x 128-bit Op + extract/insert
1952 { ISD::CTLZ
, MVT::v16i16
, 30 }, // 2 x 128-bit Op + extract/insert
1953 { ISD::CTLZ
, MVT::v32i8
, 20 }, // 2 x 128-bit Op + extract/insert
1954 { ISD::CTPOP
, MVT::v4i64
, 16 }, // 2 x 128-bit Op + extract/insert
1955 { ISD::CTPOP
, MVT::v8i32
, 24 }, // 2 x 128-bit Op + extract/insert
1956 { ISD::CTPOP
, MVT::v16i16
, 20 }, // 2 x 128-bit Op + extract/insert
1957 { ISD::CTPOP
, MVT::v32i8
, 14 }, // 2 x 128-bit Op + extract/insert
1958 { ISD::CTTZ
, MVT::v4i64
, 22 }, // 2 x 128-bit Op + extract/insert
1959 { ISD::CTTZ
, MVT::v8i32
, 30 }, // 2 x 128-bit Op + extract/insert
1960 { ISD::CTTZ
, MVT::v16i16
, 26 }, // 2 x 128-bit Op + extract/insert
1961 { ISD::CTTZ
, MVT::v32i8
, 20 }, // 2 x 128-bit Op + extract/insert
1962 { ISD::SADDSAT
, MVT::v16i16
, 4 }, // 2 x 128-bit Op + extract/insert
1963 { ISD::SADDSAT
, MVT::v32i8
, 4 }, // 2 x 128-bit Op + extract/insert
1964 { ISD::SSUBSAT
, MVT::v16i16
, 4 }, // 2 x 128-bit Op + extract/insert
1965 { ISD::SSUBSAT
, MVT::v32i8
, 4 }, // 2 x 128-bit Op + extract/insert
1966 { ISD::UADDSAT
, MVT::v16i16
, 4 }, // 2 x 128-bit Op + extract/insert
1967 { ISD::UADDSAT
, MVT::v32i8
, 4 }, // 2 x 128-bit Op + extract/insert
1968 { ISD::UADDSAT
, MVT::v8i32
, 8 }, // 2 x 128-bit Op + extract/insert
1969 { ISD::USUBSAT
, MVT::v16i16
, 4 }, // 2 x 128-bit Op + extract/insert
1970 { ISD::USUBSAT
, MVT::v32i8
, 4 }, // 2 x 128-bit Op + extract/insert
1971 { ISD::USUBSAT
, MVT::v8i32
, 6 }, // 2 x 128-bit Op + extract/insert
1972 { ISD::FSQRT
, MVT::f32
, 14 }, // SNB from http://www.agner.org/
1973 { ISD::FSQRT
, MVT::v4f32
, 14 }, // SNB from http://www.agner.org/
1974 { ISD::FSQRT
, MVT::v8f32
, 28 }, // SNB from http://www.agner.org/
1975 { ISD::FSQRT
, MVT::f64
, 21 }, // SNB from http://www.agner.org/
1976 { ISD::FSQRT
, MVT::v2f64
, 21 }, // SNB from http://www.agner.org/
1977 { ISD::FSQRT
, MVT::v4f64
, 43 }, // SNB from http://www.agner.org/
1979 static const CostTblEntry GLMCostTbl
[] = {
1980 { ISD::FSQRT
, MVT::f32
, 19 }, // sqrtss
1981 { ISD::FSQRT
, MVT::v4f32
, 37 }, // sqrtps
1982 { ISD::FSQRT
, MVT::f64
, 34 }, // sqrtsd
1983 { ISD::FSQRT
, MVT::v2f64
, 67 }, // sqrtpd
1985 static const CostTblEntry SLMCostTbl
[] = {
1986 { ISD::FSQRT
, MVT::f32
, 20 }, // sqrtss
1987 { ISD::FSQRT
, MVT::v4f32
, 40 }, // sqrtps
1988 { ISD::FSQRT
, MVT::f64
, 35 }, // sqrtsd
1989 { ISD::FSQRT
, MVT::v2f64
, 70 }, // sqrtpd
1991 static const CostTblEntry SSE42CostTbl
[] = {
1992 { ISD::USUBSAT
, MVT::v4i32
, 2 }, // pmaxud + psubd
1993 { ISD::UADDSAT
, MVT::v4i32
, 3 }, // not + pminud + paddd
1994 { ISD::FSQRT
, MVT::f32
, 18 }, // Nehalem from http://www.agner.org/
1995 { ISD::FSQRT
, MVT::v4f32
, 18 }, // Nehalem from http://www.agner.org/
1997 static const CostTblEntry SSSE3CostTbl
[] = {
1998 { ISD::BITREVERSE
, MVT::v2i64
, 5 },
1999 { ISD::BITREVERSE
, MVT::v4i32
, 5 },
2000 { ISD::BITREVERSE
, MVT::v8i16
, 5 },
2001 { ISD::BITREVERSE
, MVT::v16i8
, 5 },
2002 { ISD::BSWAP
, MVT::v2i64
, 1 },
2003 { ISD::BSWAP
, MVT::v4i32
, 1 },
2004 { ISD::BSWAP
, MVT::v8i16
, 1 },
2005 { ISD::CTLZ
, MVT::v2i64
, 23 },
2006 { ISD::CTLZ
, MVT::v4i32
, 18 },
2007 { ISD::CTLZ
, MVT::v8i16
, 14 },
2008 { ISD::CTLZ
, MVT::v16i8
, 9 },
2009 { ISD::CTPOP
, MVT::v2i64
, 7 },
2010 { ISD::CTPOP
, MVT::v4i32
, 11 },
2011 { ISD::CTPOP
, MVT::v8i16
, 9 },
2012 { ISD::CTPOP
, MVT::v16i8
, 6 },
2013 { ISD::CTTZ
, MVT::v2i64
, 10 },
2014 { ISD::CTTZ
, MVT::v4i32
, 14 },
2015 { ISD::CTTZ
, MVT::v8i16
, 12 },
2016 { ISD::CTTZ
, MVT::v16i8
, 9 }
2018 static const CostTblEntry SSE2CostTbl
[] = {
2019 { ISD::BITREVERSE
, MVT::v2i64
, 29 },
2020 { ISD::BITREVERSE
, MVT::v4i32
, 27 },
2021 { ISD::BITREVERSE
, MVT::v8i16
, 27 },
2022 { ISD::BITREVERSE
, MVT::v16i8
, 20 },
2023 { ISD::BSWAP
, MVT::v2i64
, 7 },
2024 { ISD::BSWAP
, MVT::v4i32
, 7 },
2025 { ISD::BSWAP
, MVT::v8i16
, 7 },
2026 { ISD::CTLZ
, MVT::v2i64
, 25 },
2027 { ISD::CTLZ
, MVT::v4i32
, 26 },
2028 { ISD::CTLZ
, MVT::v8i16
, 20 },
2029 { ISD::CTLZ
, MVT::v16i8
, 17 },
2030 { ISD::CTPOP
, MVT::v2i64
, 12 },
2031 { ISD::CTPOP
, MVT::v4i32
, 15 },
2032 { ISD::CTPOP
, MVT::v8i16
, 13 },
2033 { ISD::CTPOP
, MVT::v16i8
, 10 },
2034 { ISD::CTTZ
, MVT::v2i64
, 14 },
2035 { ISD::CTTZ
, MVT::v4i32
, 18 },
2036 { ISD::CTTZ
, MVT::v8i16
, 16 },
2037 { ISD::CTTZ
, MVT::v16i8
, 13 },
2038 { ISD::SADDSAT
, MVT::v8i16
, 1 },
2039 { ISD::SADDSAT
, MVT::v16i8
, 1 },
2040 { ISD::SSUBSAT
, MVT::v8i16
, 1 },
2041 { ISD::SSUBSAT
, MVT::v16i8
, 1 },
2042 { ISD::UADDSAT
, MVT::v8i16
, 1 },
2043 { ISD::UADDSAT
, MVT::v16i8
, 1 },
2044 { ISD::USUBSAT
, MVT::v8i16
, 1 },
2045 { ISD::USUBSAT
, MVT::v16i8
, 1 },
2046 { ISD::FSQRT
, MVT::f64
, 32 }, // Nehalem from http://www.agner.org/
2047 { ISD::FSQRT
, MVT::v2f64
, 32 }, // Nehalem from http://www.agner.org/
2049 static const CostTblEntry SSE1CostTbl
[] = {
2050 { ISD::FSQRT
, MVT::f32
, 28 }, // Pentium III from http://www.agner.org/
2051 { ISD::FSQRT
, MVT::v4f32
, 56 }, // Pentium III from http://www.agner.org/
2053 static const CostTblEntry X64CostTbl
[] = { // 64-bit targets
2054 { ISD::BITREVERSE
, MVT::i64
, 14 },
2055 { ISD::SADDO
, MVT::i64
, 1 },
2056 { ISD::UADDO
, MVT::i64
, 1 },
2058 static const CostTblEntry X86CostTbl
[] = { // 32 or 64-bit targets
2059 { ISD::BITREVERSE
, MVT::i32
, 14 },
2060 { ISD::BITREVERSE
, MVT::i16
, 14 },
2061 { ISD::BITREVERSE
, MVT::i8
, 11 },
2062 { ISD::SADDO
, MVT::i32
, 1 },
2063 { ISD::SADDO
, MVT::i16
, 1 },
2064 { ISD::SADDO
, MVT::i8
, 1 },
2065 { ISD::UADDO
, MVT::i32
, 1 },
2066 { ISD::UADDO
, MVT::i16
, 1 },
2067 { ISD::UADDO
, MVT::i8
, 1 },
2071 unsigned ISD
= ISD::DELETED_NODE
;
2075 case Intrinsic::bitreverse
:
2076 ISD
= ISD::BITREVERSE
;
2078 case Intrinsic::bswap
:
2081 case Intrinsic::ctlz
:
2084 case Intrinsic::ctpop
:
2087 case Intrinsic::cttz
:
2090 case Intrinsic::sadd_sat
:
2093 case Intrinsic::ssub_sat
:
2096 case Intrinsic::uadd_sat
:
2099 case Intrinsic::usub_sat
:
2102 case Intrinsic::sqrt
:
2105 case Intrinsic::sadd_with_overflow
:
2106 case Intrinsic::ssub_with_overflow
:
2107 // SSUBO has same costs so don't duplicate.
2109 OpTy
= RetTy
->getContainedType(0);
2111 case Intrinsic::uadd_with_overflow
:
2112 case Intrinsic::usub_with_overflow
:
2113 // USUBO has same costs so don't duplicate.
2115 OpTy
= RetTy
->getContainedType(0);
2119 if (ISD
!= ISD::DELETED_NODE
) {
2120 // Legalize the type.
2121 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, OpTy
);
2122 MVT MTy
= LT
.second
;
2124 // Attempt to lookup cost.
2126 if (const auto *Entry
= CostTableLookup(GLMCostTbl
, ISD
, MTy
))
2127 return LT
.first
* Entry
->Cost
;
2130 if (const auto *Entry
= CostTableLookup(SLMCostTbl
, ISD
, MTy
))
2131 return LT
.first
* Entry
->Cost
;
2134 if (const auto *Entry
= CostTableLookup(AVX512CDCostTbl
, ISD
, MTy
))
2135 return LT
.first
* Entry
->Cost
;
2138 if (const auto *Entry
= CostTableLookup(AVX512BWCostTbl
, ISD
, MTy
))
2139 return LT
.first
* Entry
->Cost
;
2141 if (ST
->hasAVX512())
2142 if (const auto *Entry
= CostTableLookup(AVX512CostTbl
, ISD
, MTy
))
2143 return LT
.first
* Entry
->Cost
;
2146 if (const auto *Entry
= CostTableLookup(XOPCostTbl
, ISD
, MTy
))
2147 return LT
.first
* Entry
->Cost
;
2150 if (const auto *Entry
= CostTableLookup(AVX2CostTbl
, ISD
, MTy
))
2151 return LT
.first
* Entry
->Cost
;
2154 if (const auto *Entry
= CostTableLookup(AVX1CostTbl
, ISD
, MTy
))
2155 return LT
.first
* Entry
->Cost
;
2158 if (const auto *Entry
= CostTableLookup(SSE42CostTbl
, ISD
, MTy
))
2159 return LT
.first
* Entry
->Cost
;
2162 if (const auto *Entry
= CostTableLookup(SSSE3CostTbl
, ISD
, MTy
))
2163 return LT
.first
* Entry
->Cost
;
2166 if (const auto *Entry
= CostTableLookup(SSE2CostTbl
, ISD
, MTy
))
2167 return LT
.first
* Entry
->Cost
;
2170 if (const auto *Entry
= CostTableLookup(SSE1CostTbl
, ISD
, MTy
))
2171 return LT
.first
* Entry
->Cost
;
2174 if (const auto *Entry
= CostTableLookup(X64CostTbl
, ISD
, MTy
))
2175 return LT
.first
* Entry
->Cost
;
2177 if (const auto *Entry
= CostTableLookup(X86CostTbl
, ISD
, MTy
))
2178 return LT
.first
* Entry
->Cost
;
2181 return BaseT::getIntrinsicInstrCost(IID
, RetTy
, Tys
, FMF
, ScalarizationCostPassed
);
2184 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID
, Type
*RetTy
,
2185 ArrayRef
<Value
*> Args
, FastMathFlags FMF
,
2187 static const CostTblEntry AVX512CostTbl
[] = {
2188 { ISD::ROTL
, MVT::v8i64
, 1 },
2189 { ISD::ROTL
, MVT::v4i64
, 1 },
2190 { ISD::ROTL
, MVT::v2i64
, 1 },
2191 { ISD::ROTL
, MVT::v16i32
, 1 },
2192 { ISD::ROTL
, MVT::v8i32
, 1 },
2193 { ISD::ROTL
, MVT::v4i32
, 1 },
2194 { ISD::ROTR
, MVT::v8i64
, 1 },
2195 { ISD::ROTR
, MVT::v4i64
, 1 },
2196 { ISD::ROTR
, MVT::v2i64
, 1 },
2197 { ISD::ROTR
, MVT::v16i32
, 1 },
2198 { ISD::ROTR
, MVT::v8i32
, 1 },
2199 { ISD::ROTR
, MVT::v4i32
, 1 }
2201 // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2202 static const CostTblEntry XOPCostTbl
[] = {
2203 { ISD::ROTL
, MVT::v4i64
, 4 },
2204 { ISD::ROTL
, MVT::v8i32
, 4 },
2205 { ISD::ROTL
, MVT::v16i16
, 4 },
2206 { ISD::ROTL
, MVT::v32i8
, 4 },
2207 { ISD::ROTL
, MVT::v2i64
, 1 },
2208 { ISD::ROTL
, MVT::v4i32
, 1 },
2209 { ISD::ROTL
, MVT::v8i16
, 1 },
2210 { ISD::ROTL
, MVT::v16i8
, 1 },
2211 { ISD::ROTR
, MVT::v4i64
, 6 },
2212 { ISD::ROTR
, MVT::v8i32
, 6 },
2213 { ISD::ROTR
, MVT::v16i16
, 6 },
2214 { ISD::ROTR
, MVT::v32i8
, 6 },
2215 { ISD::ROTR
, MVT::v2i64
, 2 },
2216 { ISD::ROTR
, MVT::v4i32
, 2 },
2217 { ISD::ROTR
, MVT::v8i16
, 2 },
2218 { ISD::ROTR
, MVT::v16i8
, 2 }
2220 static const CostTblEntry X64CostTbl
[] = { // 64-bit targets
2221 { ISD::ROTL
, MVT::i64
, 1 },
2222 { ISD::ROTR
, MVT::i64
, 1 },
2223 { ISD::FSHL
, MVT::i64
, 4 }
2225 static const CostTblEntry X86CostTbl
[] = { // 32 or 64-bit targets
2226 { ISD::ROTL
, MVT::i32
, 1 },
2227 { ISD::ROTL
, MVT::i16
, 1 },
2228 { ISD::ROTL
, MVT::i8
, 1 },
2229 { ISD::ROTR
, MVT::i32
, 1 },
2230 { ISD::ROTR
, MVT::i16
, 1 },
2231 { ISD::ROTR
, MVT::i8
, 1 },
2232 { ISD::FSHL
, MVT::i32
, 4 },
2233 { ISD::FSHL
, MVT::i16
, 4 },
2234 { ISD::FSHL
, MVT::i8
, 4 }
2237 unsigned ISD
= ISD::DELETED_NODE
;
2241 case Intrinsic::fshl
:
2243 if (Args
[0] == Args
[1])
2246 case Intrinsic::fshr
:
2247 // FSHR has same costs so don't duplicate.
2249 if (Args
[0] == Args
[1])
2254 if (ISD
!= ISD::DELETED_NODE
) {
2255 // Legalize the type.
2256 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, RetTy
);
2257 MVT MTy
= LT
.second
;
2259 // Attempt to lookup cost.
2260 if (ST
->hasAVX512())
2261 if (const auto *Entry
= CostTableLookup(AVX512CostTbl
, ISD
, MTy
))
2262 return LT
.first
* Entry
->Cost
;
2265 if (const auto *Entry
= CostTableLookup(XOPCostTbl
, ISD
, MTy
))
2266 return LT
.first
* Entry
->Cost
;
2269 if (const auto *Entry
= CostTableLookup(X64CostTbl
, ISD
, MTy
))
2270 return LT
.first
* Entry
->Cost
;
2272 if (const auto *Entry
= CostTableLookup(X86CostTbl
, ISD
, MTy
))
2273 return LT
.first
* Entry
->Cost
;
2276 return BaseT::getIntrinsicInstrCost(IID
, RetTy
, Args
, FMF
, VF
);
2279 int X86TTIImpl::getVectorInstrCost(unsigned Opcode
, Type
*Val
, unsigned Index
) {
2280 assert(Val
->isVectorTy() && "This must be a vector type");
2282 Type
*ScalarType
= Val
->getScalarType();
2285 // Legalize the type.
2286 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Val
);
2288 // This type is legalized to a scalar type.
2289 if (!LT
.second
.isVector())
2292 // The type may be split. Normalize the index to the new type.
2293 unsigned Width
= LT
.second
.getVectorNumElements();
2294 Index
= Index
% Width
;
2296 // Floating point scalars are already located in index #0.
2297 if (ScalarType
->isFloatingPointTy() && Index
== 0)
2301 // Add to the base cost if we know that the extracted element of a vector is
2302 // destined to be moved to and used in the integer register file.
2303 int RegisterFileMoveCost
= 0;
2304 if (Opcode
== Instruction::ExtractElement
&& ScalarType
->isPointerTy())
2305 RegisterFileMoveCost
= 1;
2307 return BaseT::getVectorInstrCost(Opcode
, Val
, Index
) + RegisterFileMoveCost
;
2310 int X86TTIImpl::getMemoryOpCost(unsigned Opcode
, Type
*Src
, unsigned Alignment
,
2311 unsigned AddressSpace
, const Instruction
*I
) {
2312 // Handle non-power-of-two vectors such as <3 x float>
2313 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Src
)) {
2314 unsigned NumElem
= VTy
->getVectorNumElements();
2316 // Handle a few common cases:
2318 if (NumElem
== 3 && VTy
->getScalarSizeInBits() == 32)
2319 // Cost = 64 bit store + extract + 32 bit store.
2323 if (NumElem
== 3 && VTy
->getScalarSizeInBits() == 64)
2324 // Cost = 128 bit store + unpack + 64 bit store.
2327 // Assume that all other non-power-of-two numbers are scalarized.
2328 if (!isPowerOf2_32(NumElem
)) {
2329 int Cost
= BaseT::getMemoryOpCost(Opcode
, VTy
->getScalarType(), Alignment
,
2331 int SplitCost
= getScalarizationOverhead(Src
, Opcode
== Instruction::Load
,
2332 Opcode
== Instruction::Store
);
2333 return NumElem
* Cost
+ SplitCost
;
2337 // Legalize the type.
2338 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Src
);
2339 assert((Opcode
== Instruction::Load
|| Opcode
== Instruction::Store
) &&
2342 // Each load/store unit costs 1.
2343 int Cost
= LT
.first
* 1;
2345 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
2346 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
2347 if (LT
.second
.getStoreSize() == 32 && ST
->isUnalignedMem32Slow())
2353 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode
, Type
*SrcTy
,
2355 unsigned AddressSpace
) {
2356 VectorType
*SrcVTy
= dyn_cast
<VectorType
>(SrcTy
);
2358 // To calculate scalar take the regular cost, without mask
2359 return getMemoryOpCost(Opcode
, SrcTy
, Alignment
, AddressSpace
);
2361 unsigned NumElem
= SrcVTy
->getVectorNumElements();
2362 VectorType
*MaskTy
=
2363 VectorType::get(Type::getInt8Ty(SrcVTy
->getContext()), NumElem
);
2364 if ((Opcode
== Instruction::Load
&& !isLegalMaskedLoad(SrcVTy
)) ||
2365 (Opcode
== Instruction::Store
&& !isLegalMaskedStore(SrcVTy
)) ||
2366 !isPowerOf2_32(NumElem
)) {
2368 int MaskSplitCost
= getScalarizationOverhead(MaskTy
, false, true);
2369 int ScalarCompareCost
= getCmpSelInstrCost(
2370 Instruction::ICmp
, Type::getInt8Ty(SrcVTy
->getContext()), nullptr);
2371 int BranchCost
= getCFInstrCost(Instruction::Br
);
2372 int MaskCmpCost
= NumElem
* (BranchCost
+ ScalarCompareCost
);
2374 int ValueSplitCost
= getScalarizationOverhead(
2375 SrcVTy
, Opcode
== Instruction::Load
, Opcode
== Instruction::Store
);
2377 NumElem
* BaseT::getMemoryOpCost(Opcode
, SrcVTy
->getScalarType(),
2378 Alignment
, AddressSpace
);
2379 return MemopCost
+ ValueSplitCost
+ MaskSplitCost
+ MaskCmpCost
;
2382 // Legalize the type.
2383 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, SrcVTy
);
2384 auto VT
= TLI
->getValueType(DL
, SrcVTy
);
2386 if (VT
.isSimple() && LT
.second
!= VT
.getSimpleVT() &&
2387 LT
.second
.getVectorNumElements() == NumElem
)
2388 // Promotion requires expand/truncate for data and a shuffle for mask.
2389 Cost
+= getShuffleCost(TTI::SK_Select
, SrcVTy
, 0, nullptr) +
2390 getShuffleCost(TTI::SK_Select
, MaskTy
, 0, nullptr);
2392 else if (LT
.second
.getVectorNumElements() > NumElem
) {
2393 VectorType
*NewMaskTy
= VectorType::get(MaskTy
->getVectorElementType(),
2394 LT
.second
.getVectorNumElements());
2395 // Expanding requires fill mask with zeroes
2396 Cost
+= getShuffleCost(TTI::SK_InsertSubvector
, NewMaskTy
, 0, MaskTy
);
2398 if (!ST
->hasAVX512())
2399 return Cost
+ LT
.first
*4; // Each maskmov costs 4
2401 // AVX-512 masked load/store is cheapper
2402 return Cost
+LT
.first
;
2405 int X86TTIImpl::getAddressComputationCost(Type
*Ty
, ScalarEvolution
*SE
,
2407 // Address computations in vectorized code with non-consecutive addresses will
2408 // likely result in more instructions compared to scalar code where the
2409 // computation can more often be merged into the index mode. The resulting
2410 // extra micro-ops can significantly decrease throughput.
2411 unsigned NumVectorInstToHideOverhead
= 10;
2413 // Cost modeling of Strided Access Computation is hidden by the indexing
2414 // modes of X86 regardless of the stride value. We dont believe that there
2415 // is a difference between constant strided access in gerenal and constant
2416 // strided value which is less than or equal to 64.
2417 // Even in the case of (loop invariant) stride whose value is not known at
2418 // compile time, the address computation will not incur more than one extra
2420 if (Ty
->isVectorTy() && SE
) {
2421 if (!BaseT::isStridedAccess(Ptr
))
2422 return NumVectorInstToHideOverhead
;
2423 if (!BaseT::getConstantStrideStep(SE
, Ptr
))
2427 return BaseT::getAddressComputationCost(Ty
, SE
, Ptr
);
2430 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode
, Type
*ValTy
,
2433 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, ValTy
);
2435 MVT MTy
= LT
.second
;
2437 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
2438 assert(ISD
&& "Invalid opcode");
2440 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2441 // and make it as the cost.
2443 static const CostTblEntry SSE42CostTblPairWise
[] = {
2444 { ISD::FADD
, MVT::v2f64
, 2 },
2445 { ISD::FADD
, MVT::v4f32
, 4 },
2446 { ISD::ADD
, MVT::v2i64
, 2 }, // The data reported by the IACA tool is "1.6".
2447 { ISD::ADD
, MVT::v4i32
, 3 }, // The data reported by the IACA tool is "3.5".
2448 { ISD::ADD
, MVT::v8i16
, 5 },
2451 static const CostTblEntry AVX1CostTblPairWise
[] = {
2452 { ISD::FADD
, MVT::v4f32
, 4 },
2453 { ISD::FADD
, MVT::v4f64
, 5 },
2454 { ISD::FADD
, MVT::v8f32
, 7 },
2455 { ISD::ADD
, MVT::v2i64
, 1 }, // The data reported by the IACA tool is "1.5".
2456 { ISD::ADD
, MVT::v4i32
, 3 }, // The data reported by the IACA tool is "3.5".
2457 { ISD::ADD
, MVT::v4i64
, 5 }, // The data reported by the IACA tool is "4.8".
2458 { ISD::ADD
, MVT::v8i16
, 5 },
2459 { ISD::ADD
, MVT::v8i32
, 5 },
2462 static const CostTblEntry SSE42CostTblNoPairWise
[] = {
2463 { ISD::FADD
, MVT::v2f64
, 2 },
2464 { ISD::FADD
, MVT::v4f32
, 4 },
2465 { ISD::ADD
, MVT::v2i64
, 2 }, // The data reported by the IACA tool is "1.6".
2466 { ISD::ADD
, MVT::v4i32
, 3 }, // The data reported by the IACA tool is "3.3".
2467 { ISD::ADD
, MVT::v8i16
, 4 }, // The data reported by the IACA tool is "4.3".
2470 static const CostTblEntry AVX1CostTblNoPairWise
[] = {
2471 { ISD::FADD
, MVT::v4f32
, 3 },
2472 { ISD::FADD
, MVT::v4f64
, 3 },
2473 { ISD::FADD
, MVT::v8f32
, 4 },
2474 { ISD::ADD
, MVT::v2i64
, 1 }, // The data reported by the IACA tool is "1.5".
2475 { ISD::ADD
, MVT::v4i32
, 3 }, // The data reported by the IACA tool is "2.8".
2476 { ISD::ADD
, MVT::v4i64
, 3 },
2477 { ISD::ADD
, MVT::v8i16
, 4 },
2478 { ISD::ADD
, MVT::v8i32
, 5 },
2483 if (const auto *Entry
= CostTableLookup(AVX1CostTblPairWise
, ISD
, MTy
))
2484 return LT
.first
* Entry
->Cost
;
2487 if (const auto *Entry
= CostTableLookup(SSE42CostTblPairWise
, ISD
, MTy
))
2488 return LT
.first
* Entry
->Cost
;
2491 if (const auto *Entry
= CostTableLookup(AVX1CostTblNoPairWise
, ISD
, MTy
))
2492 return LT
.first
* Entry
->Cost
;
2495 if (const auto *Entry
= CostTableLookup(SSE42CostTblNoPairWise
, ISD
, MTy
))
2496 return LT
.first
* Entry
->Cost
;
2499 return BaseT::getArithmeticReductionCost(Opcode
, ValTy
, IsPairwise
);
2502 int X86TTIImpl::getMinMaxReductionCost(Type
*ValTy
, Type
*CondTy
,
2503 bool IsPairwise
, bool IsUnsigned
) {
2504 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, ValTy
);
2506 MVT MTy
= LT
.second
;
2509 if (ValTy
->isIntOrIntVectorTy()) {
2510 ISD
= IsUnsigned
? ISD::UMIN
: ISD::SMIN
;
2512 assert(ValTy
->isFPOrFPVectorTy() &&
2513 "Expected float point or integer vector type.");
2517 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2518 // and make it as the cost.
2520 static const CostTblEntry SSE42CostTblPairWise
[] = {
2521 {ISD::FMINNUM
, MVT::v2f64
, 3},
2522 {ISD::FMINNUM
, MVT::v4f32
, 2},
2523 {ISD::SMIN
, MVT::v2i64
, 7}, // The data reported by the IACA is "6.8"
2524 {ISD::UMIN
, MVT::v2i64
, 8}, // The data reported by the IACA is "8.6"
2525 {ISD::SMIN
, MVT::v4i32
, 1}, // The data reported by the IACA is "1.5"
2526 {ISD::UMIN
, MVT::v4i32
, 2}, // The data reported by the IACA is "1.8"
2527 {ISD::SMIN
, MVT::v8i16
, 2},
2528 {ISD::UMIN
, MVT::v8i16
, 2},
2531 static const CostTblEntry AVX1CostTblPairWise
[] = {
2532 {ISD::FMINNUM
, MVT::v4f32
, 1},
2533 {ISD::FMINNUM
, MVT::v4f64
, 1},
2534 {ISD::FMINNUM
, MVT::v8f32
, 2},
2535 {ISD::SMIN
, MVT::v2i64
, 3},
2536 {ISD::UMIN
, MVT::v2i64
, 3},
2537 {ISD::SMIN
, MVT::v4i32
, 1},
2538 {ISD::UMIN
, MVT::v4i32
, 1},
2539 {ISD::SMIN
, MVT::v8i16
, 1},
2540 {ISD::UMIN
, MVT::v8i16
, 1},
2541 {ISD::SMIN
, MVT::v8i32
, 3},
2542 {ISD::UMIN
, MVT::v8i32
, 3},
2545 static const CostTblEntry AVX2CostTblPairWise
[] = {
2546 {ISD::SMIN
, MVT::v4i64
, 2},
2547 {ISD::UMIN
, MVT::v4i64
, 2},
2548 {ISD::SMIN
, MVT::v8i32
, 1},
2549 {ISD::UMIN
, MVT::v8i32
, 1},
2550 {ISD::SMIN
, MVT::v16i16
, 1},
2551 {ISD::UMIN
, MVT::v16i16
, 1},
2552 {ISD::SMIN
, MVT::v32i8
, 2},
2553 {ISD::UMIN
, MVT::v32i8
, 2},
2556 static const CostTblEntry AVX512CostTblPairWise
[] = {
2557 {ISD::FMINNUM
, MVT::v8f64
, 1},
2558 {ISD::FMINNUM
, MVT::v16f32
, 2},
2559 {ISD::SMIN
, MVT::v8i64
, 2},
2560 {ISD::UMIN
, MVT::v8i64
, 2},
2561 {ISD::SMIN
, MVT::v16i32
, 1},
2562 {ISD::UMIN
, MVT::v16i32
, 1},
2565 static const CostTblEntry SSE42CostTblNoPairWise
[] = {
2566 {ISD::FMINNUM
, MVT::v2f64
, 3},
2567 {ISD::FMINNUM
, MVT::v4f32
, 3},
2568 {ISD::SMIN
, MVT::v2i64
, 7}, // The data reported by the IACA is "6.8"
2569 {ISD::UMIN
, MVT::v2i64
, 9}, // The data reported by the IACA is "8.6"
2570 {ISD::SMIN
, MVT::v4i32
, 1}, // The data reported by the IACA is "1.5"
2571 {ISD::UMIN
, MVT::v4i32
, 2}, // The data reported by the IACA is "1.8"
2572 {ISD::SMIN
, MVT::v8i16
, 1}, // The data reported by the IACA is "1.5"
2573 {ISD::UMIN
, MVT::v8i16
, 2}, // The data reported by the IACA is "1.8"
2576 static const CostTblEntry AVX1CostTblNoPairWise
[] = {
2577 {ISD::FMINNUM
, MVT::v4f32
, 1},
2578 {ISD::FMINNUM
, MVT::v4f64
, 1},
2579 {ISD::FMINNUM
, MVT::v8f32
, 1},
2580 {ISD::SMIN
, MVT::v2i64
, 3},
2581 {ISD::UMIN
, MVT::v2i64
, 3},
2582 {ISD::SMIN
, MVT::v4i32
, 1},
2583 {ISD::UMIN
, MVT::v4i32
, 1},
2584 {ISD::SMIN
, MVT::v8i16
, 1},
2585 {ISD::UMIN
, MVT::v8i16
, 1},
2586 {ISD::SMIN
, MVT::v8i32
, 2},
2587 {ISD::UMIN
, MVT::v8i32
, 2},
2590 static const CostTblEntry AVX2CostTblNoPairWise
[] = {
2591 {ISD::SMIN
, MVT::v4i64
, 1},
2592 {ISD::UMIN
, MVT::v4i64
, 1},
2593 {ISD::SMIN
, MVT::v8i32
, 1},
2594 {ISD::UMIN
, MVT::v8i32
, 1},
2595 {ISD::SMIN
, MVT::v16i16
, 1},
2596 {ISD::UMIN
, MVT::v16i16
, 1},
2597 {ISD::SMIN
, MVT::v32i8
, 1},
2598 {ISD::UMIN
, MVT::v32i8
, 1},
2601 static const CostTblEntry AVX512CostTblNoPairWise
[] = {
2602 {ISD::FMINNUM
, MVT::v8f64
, 1},
2603 {ISD::FMINNUM
, MVT::v16f32
, 2},
2604 {ISD::SMIN
, MVT::v8i64
, 1},
2605 {ISD::UMIN
, MVT::v8i64
, 1},
2606 {ISD::SMIN
, MVT::v16i32
, 1},
2607 {ISD::UMIN
, MVT::v16i32
, 1},
2611 if (ST
->hasAVX512())
2612 if (const auto *Entry
= CostTableLookup(AVX512CostTblPairWise
, ISD
, MTy
))
2613 return LT
.first
* Entry
->Cost
;
2616 if (const auto *Entry
= CostTableLookup(AVX2CostTblPairWise
, ISD
, MTy
))
2617 return LT
.first
* Entry
->Cost
;
2620 if (const auto *Entry
= CostTableLookup(AVX1CostTblPairWise
, ISD
, MTy
))
2621 return LT
.first
* Entry
->Cost
;
2624 if (const auto *Entry
= CostTableLookup(SSE42CostTblPairWise
, ISD
, MTy
))
2625 return LT
.first
* Entry
->Cost
;
2627 if (ST
->hasAVX512())
2628 if (const auto *Entry
=
2629 CostTableLookup(AVX512CostTblNoPairWise
, ISD
, MTy
))
2630 return LT
.first
* Entry
->Cost
;
2633 if (const auto *Entry
= CostTableLookup(AVX2CostTblNoPairWise
, ISD
, MTy
))
2634 return LT
.first
* Entry
->Cost
;
2637 if (const auto *Entry
= CostTableLookup(AVX1CostTblNoPairWise
, ISD
, MTy
))
2638 return LT
.first
* Entry
->Cost
;
2641 if (const auto *Entry
= CostTableLookup(SSE42CostTblNoPairWise
, ISD
, MTy
))
2642 return LT
.first
* Entry
->Cost
;
2645 return BaseT::getMinMaxReductionCost(ValTy
, CondTy
, IsPairwise
, IsUnsigned
);
2648 /// Calculate the cost of materializing a 64-bit value. This helper
2649 /// method might only calculate a fraction of a larger immediate. Therefore it
2650 /// is valid to return a cost of ZERO.
2651 int X86TTIImpl::getIntImmCost(int64_t Val
) {
2653 return TTI::TCC_Free
;
2656 return TTI::TCC_Basic
;
2658 return 2 * TTI::TCC_Basic
;
2661 int X86TTIImpl::getIntImmCost(const APInt
&Imm
, Type
*Ty
) {
2662 assert(Ty
->isIntegerTy());
2664 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
2668 // Never hoist constants larger than 128bit, because this might lead to
2669 // incorrect code generation or assertions in codegen.
2670 // Fixme: Create a cost model for types larger than i128 once the codegen
2671 // issues have been fixed.
2673 return TTI::TCC_Free
;
2676 return TTI::TCC_Free
;
2678 // Sign-extend all constants to a multiple of 64-bit.
2680 if (BitSize
% 64 != 0)
2681 ImmVal
= Imm
.sext(alignTo(BitSize
, 64));
2683 // Split the constant into 64-bit chunks and calculate the cost for each
2686 for (unsigned ShiftVal
= 0; ShiftVal
< BitSize
; ShiftVal
+= 64) {
2687 APInt Tmp
= ImmVal
.ashr(ShiftVal
).sextOrTrunc(64);
2688 int64_t Val
= Tmp
.getSExtValue();
2689 Cost
+= getIntImmCost(Val
);
2691 // We need at least one instruction to materialize the constant.
2692 return std::max(1, Cost
);
2695 int X86TTIImpl::getIntImmCost(unsigned Opcode
, unsigned Idx
, const APInt
&Imm
,
2697 assert(Ty
->isIntegerTy());
2699 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
2700 // There is no cost model for constants with a bit size of 0. Return TCC_Free
2701 // here, so that constant hoisting will ignore this constant.
2703 return TTI::TCC_Free
;
2705 unsigned ImmIdx
= ~0U;
2708 return TTI::TCC_Free
;
2709 case Instruction::GetElementPtr
:
2710 // Always hoist the base address of a GetElementPtr. This prevents the
2711 // creation of new constants for every base constant that gets constant
2712 // folded with the offset.
2714 return 2 * TTI::TCC_Basic
;
2715 return TTI::TCC_Free
;
2716 case Instruction::Store
:
2719 case Instruction::ICmp
:
2720 // This is an imperfect hack to prevent constant hoisting of
2721 // compares that might be trying to check if a 64-bit value fits in
2722 // 32-bits. The backend can optimize these cases using a right shift by 32.
2723 // Ideally we would check the compare predicate here. There also other
2724 // similar immediates the backend can use shifts for.
2725 if (Idx
== 1 && Imm
.getBitWidth() == 64) {
2726 uint64_t ImmVal
= Imm
.getZExtValue();
2727 if (ImmVal
== 0x100000000ULL
|| ImmVal
== 0xffffffff)
2728 return TTI::TCC_Free
;
2732 case Instruction::And
:
2733 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
2734 // by using a 32-bit operation with implicit zero extension. Detect such
2735 // immediates here as the normal path expects bit 31 to be sign extended.
2736 if (Idx
== 1 && Imm
.getBitWidth() == 64 && isUInt
<32>(Imm
.getZExtValue()))
2737 return TTI::TCC_Free
;
2740 case Instruction::Add
:
2741 case Instruction::Sub
:
2742 // For add/sub, we can use the opposite instruction for INT32_MIN.
2743 if (Idx
== 1 && Imm
.getBitWidth() == 64 && Imm
.getZExtValue() == 0x80000000)
2744 return TTI::TCC_Free
;
2747 case Instruction::UDiv
:
2748 case Instruction::SDiv
:
2749 case Instruction::URem
:
2750 case Instruction::SRem
:
2751 // Division by constant is typically expanded later into a different
2752 // instruction sequence. This completely changes the constants.
2753 // Report them as "free" to stop ConstantHoist from marking them as opaque.
2754 return TTI::TCC_Free
;
2755 case Instruction::Mul
:
2756 case Instruction::Or
:
2757 case Instruction::Xor
:
2760 // Always return TCC_Free for the shift value of a shift instruction.
2761 case Instruction::Shl
:
2762 case Instruction::LShr
:
2763 case Instruction::AShr
:
2765 return TTI::TCC_Free
;
2767 case Instruction::Trunc
:
2768 case Instruction::ZExt
:
2769 case Instruction::SExt
:
2770 case Instruction::IntToPtr
:
2771 case Instruction::PtrToInt
:
2772 case Instruction::BitCast
:
2773 case Instruction::PHI
:
2774 case Instruction::Call
:
2775 case Instruction::Select
:
2776 case Instruction::Ret
:
2777 case Instruction::Load
:
2781 if (Idx
== ImmIdx
) {
2782 int NumConstants
= divideCeil(BitSize
, 64);
2783 int Cost
= X86TTIImpl::getIntImmCost(Imm
, Ty
);
2784 return (Cost
<= NumConstants
* TTI::TCC_Basic
)
2785 ? static_cast<int>(TTI::TCC_Free
)
2789 return X86TTIImpl::getIntImmCost(Imm
, Ty
);
2792 int X86TTIImpl::getIntImmCost(Intrinsic::ID IID
, unsigned Idx
, const APInt
&Imm
,
2794 assert(Ty
->isIntegerTy());
2796 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
2797 // There is no cost model for constants with a bit size of 0. Return TCC_Free
2798 // here, so that constant hoisting will ignore this constant.
2800 return TTI::TCC_Free
;
2804 return TTI::TCC_Free
;
2805 case Intrinsic::sadd_with_overflow
:
2806 case Intrinsic::uadd_with_overflow
:
2807 case Intrinsic::ssub_with_overflow
:
2808 case Intrinsic::usub_with_overflow
:
2809 case Intrinsic::smul_with_overflow
:
2810 case Intrinsic::umul_with_overflow
:
2811 if ((Idx
== 1) && Imm
.getBitWidth() <= 64 && isInt
<32>(Imm
.getSExtValue()))
2812 return TTI::TCC_Free
;
2814 case Intrinsic::experimental_stackmap
:
2815 if ((Idx
< 2) || (Imm
.getBitWidth() <= 64 && isInt
<64>(Imm
.getSExtValue())))
2816 return TTI::TCC_Free
;
2818 case Intrinsic::experimental_patchpoint_void
:
2819 case Intrinsic::experimental_patchpoint_i64
:
2820 if ((Idx
< 4) || (Imm
.getBitWidth() <= 64 && isInt
<64>(Imm
.getSExtValue())))
2821 return TTI::TCC_Free
;
2824 return X86TTIImpl::getIntImmCost(Imm
, Ty
);
2827 unsigned X86TTIImpl::getUserCost(const User
*U
,
2828 ArrayRef
<const Value
*> Operands
) {
2829 if (isa
<StoreInst
>(U
)) {
2830 Value
*Ptr
= U
->getOperand(1);
2831 // Store instruction with index and scale costs 2 Uops.
2832 // Check the preceding GEP to identify non-const indices.
2833 if (auto GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
)) {
2834 if (!all_of(GEP
->indices(), [](Value
*V
) { return isa
<Constant
>(V
); }))
2835 return TTI::TCC_Basic
* 2;
2837 return TTI::TCC_Basic
;
2839 return BaseT::getUserCost(U
, Operands
);
2842 // Return an average cost of Gather / Scatter instruction, maybe improved later
2843 int X86TTIImpl::getGSVectorCost(unsigned Opcode
, Type
*SrcVTy
, Value
*Ptr
,
2844 unsigned Alignment
, unsigned AddressSpace
) {
2846 assert(isa
<VectorType
>(SrcVTy
) && "Unexpected type in getGSVectorCost");
2847 unsigned VF
= SrcVTy
->getVectorNumElements();
2849 // Try to reduce index size from 64 bit (default for GEP)
2850 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
2851 // operation will use 16 x 64 indices which do not fit in a zmm and needs
2852 // to split. Also check that the base pointer is the same for all lanes,
2853 // and that there's at most one variable index.
2854 auto getIndexSizeInBits
= [](Value
*Ptr
, const DataLayout
& DL
) {
2855 unsigned IndexSize
= DL
.getPointerSizeInBits();
2856 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
2857 if (IndexSize
< 64 || !GEP
)
2860 unsigned NumOfVarIndices
= 0;
2861 Value
*Ptrs
= GEP
->getPointerOperand();
2862 if (Ptrs
->getType()->isVectorTy() && !getSplatValue(Ptrs
))
2864 for (unsigned i
= 1; i
< GEP
->getNumOperands(); ++i
) {
2865 if (isa
<Constant
>(GEP
->getOperand(i
)))
2867 Type
*IndxTy
= GEP
->getOperand(i
)->getType();
2868 if (IndxTy
->isVectorTy())
2869 IndxTy
= IndxTy
->getVectorElementType();
2870 if ((IndxTy
->getPrimitiveSizeInBits() == 64 &&
2871 !isa
<SExtInst
>(GEP
->getOperand(i
))) ||
2872 ++NumOfVarIndices
> 1)
2873 return IndexSize
; // 64
2875 return (unsigned)32;
2879 // Trying to reduce IndexSize to 32 bits for vector 16.
2880 // By default the IndexSize is equal to pointer size.
2881 unsigned IndexSize
= (ST
->hasAVX512() && VF
>= 16)
2882 ? getIndexSizeInBits(Ptr
, DL
)
2883 : DL
.getPointerSizeInBits();
2885 Type
*IndexVTy
= VectorType::get(IntegerType::get(SrcVTy
->getContext(),
2887 std::pair
<int, MVT
> IdxsLT
= TLI
->getTypeLegalizationCost(DL
, IndexVTy
);
2888 std::pair
<int, MVT
> SrcLT
= TLI
->getTypeLegalizationCost(DL
, SrcVTy
);
2889 int SplitFactor
= std::max(IdxsLT
.first
, SrcLT
.first
);
2890 if (SplitFactor
> 1) {
2891 // Handle splitting of vector of pointers
2892 Type
*SplitSrcTy
= VectorType::get(SrcVTy
->getScalarType(), VF
/ SplitFactor
);
2893 return SplitFactor
* getGSVectorCost(Opcode
, SplitSrcTy
, Ptr
, Alignment
,
2897 // The gather / scatter cost is given by Intel architects. It is a rough
2898 // number since we are looking at one instruction in a time.
2899 const int GSOverhead
= (Opcode
== Instruction::Load
)
2900 ? ST
->getGatherOverhead()
2901 : ST
->getScatterOverhead();
2902 return GSOverhead
+ VF
* getMemoryOpCost(Opcode
, SrcVTy
->getScalarType(),
2903 Alignment
, AddressSpace
);
2906 /// Return the cost of full scalarization of gather / scatter operation.
2908 /// Opcode - Load or Store instruction.
2909 /// SrcVTy - The type of the data vector that should be gathered or scattered.
2910 /// VariableMask - The mask is non-constant at compile time.
2911 /// Alignment - Alignment for one element.
2912 /// AddressSpace - pointer[s] address space.
2914 int X86TTIImpl::getGSScalarCost(unsigned Opcode
, Type
*SrcVTy
,
2915 bool VariableMask
, unsigned Alignment
,
2916 unsigned AddressSpace
) {
2917 unsigned VF
= SrcVTy
->getVectorNumElements();
2919 int MaskUnpackCost
= 0;
2921 VectorType
*MaskTy
=
2922 VectorType::get(Type::getInt1Ty(SrcVTy
->getContext()), VF
);
2923 MaskUnpackCost
= getScalarizationOverhead(MaskTy
, false, true);
2924 int ScalarCompareCost
=
2925 getCmpSelInstrCost(Instruction::ICmp
, Type::getInt1Ty(SrcVTy
->getContext()),
2927 int BranchCost
= getCFInstrCost(Instruction::Br
);
2928 MaskUnpackCost
+= VF
* (BranchCost
+ ScalarCompareCost
);
2931 // The cost of the scalar loads/stores.
2932 int MemoryOpCost
= VF
* getMemoryOpCost(Opcode
, SrcVTy
->getScalarType(),
2933 Alignment
, AddressSpace
);
2935 int InsertExtractCost
= 0;
2936 if (Opcode
== Instruction::Load
)
2937 for (unsigned i
= 0; i
< VF
; ++i
)
2938 // Add the cost of inserting each scalar load into the vector
2939 InsertExtractCost
+=
2940 getVectorInstrCost(Instruction::InsertElement
, SrcVTy
, i
);
2942 for (unsigned i
= 0; i
< VF
; ++i
)
2943 // Add the cost of extracting each element out of the data vector
2944 InsertExtractCost
+=
2945 getVectorInstrCost(Instruction::ExtractElement
, SrcVTy
, i
);
2947 return MemoryOpCost
+ MaskUnpackCost
+ InsertExtractCost
;
2950 /// Calculate the cost of Gather / Scatter operation
2951 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode
, Type
*SrcVTy
,
2952 Value
*Ptr
, bool VariableMask
,
2953 unsigned Alignment
) {
2954 assert(SrcVTy
->isVectorTy() && "Unexpected data type for Gather/Scatter");
2955 unsigned VF
= SrcVTy
->getVectorNumElements();
2956 PointerType
*PtrTy
= dyn_cast
<PointerType
>(Ptr
->getType());
2957 if (!PtrTy
&& Ptr
->getType()->isVectorTy())
2958 PtrTy
= dyn_cast
<PointerType
>(Ptr
->getType()->getVectorElementType());
2959 assert(PtrTy
&& "Unexpected type for Ptr argument");
2960 unsigned AddressSpace
= PtrTy
->getAddressSpace();
2962 bool Scalarize
= false;
2963 if ((Opcode
== Instruction::Load
&& !isLegalMaskedGather(SrcVTy
)) ||
2964 (Opcode
== Instruction::Store
&& !isLegalMaskedScatter(SrcVTy
)))
2966 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2967 // Vector-4 of gather/scatter instruction does not exist on KNL.
2968 // We can extend it to 8 elements, but zeroing upper bits of
2969 // the mask vector will add more instructions. Right now we give the scalar
2970 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2971 // is better in the VariableMask case.
2972 if (ST
->hasAVX512() && (VF
== 2 || (VF
== 4 && !ST
->hasVLX())))
2976 return getGSScalarCost(Opcode
, SrcVTy
, VariableMask
, Alignment
,
2979 return getGSVectorCost(Opcode
, SrcVTy
, Ptr
, Alignment
, AddressSpace
);
2982 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost
&C1
,
2983 TargetTransformInfo::LSRCost
&C2
) {
2984 // X86 specific here are "instruction number 1st priority".
2985 return std::tie(C1
.Insns
, C1
.NumRegs
, C1
.AddRecCost
,
2986 C1
.NumIVMuls
, C1
.NumBaseAdds
,
2987 C1
.ScaleCost
, C1
.ImmCost
, C1
.SetupCost
) <
2988 std::tie(C2
.Insns
, C2
.NumRegs
, C2
.AddRecCost
,
2989 C2
.NumIVMuls
, C2
.NumBaseAdds
,
2990 C2
.ScaleCost
, C2
.ImmCost
, C2
.SetupCost
);
2993 bool X86TTIImpl::canMacroFuseCmp() {
2994 return ST
->hasMacroFusion();
2997 bool X86TTIImpl::isLegalMaskedLoad(Type
*DataTy
) {
2998 // The backend can't handle a single element vector.
2999 if (isa
<VectorType
>(DataTy
) && DataTy
->getVectorNumElements() == 1)
3001 Type
*ScalarTy
= DataTy
->getScalarType();
3002 int DataWidth
= isa
<PointerType
>(ScalarTy
) ?
3003 DL
.getPointerSizeInBits() : ScalarTy
->getPrimitiveSizeInBits();
3005 return ((DataWidth
== 32 || DataWidth
== 64) && ST
->hasAVX()) ||
3006 ((DataWidth
== 8 || DataWidth
== 16) && ST
->hasBWI());
3009 bool X86TTIImpl::isLegalMaskedStore(Type
*DataType
) {
3010 return isLegalMaskedLoad(DataType
);
3013 bool X86TTIImpl::isLegalMaskedGather(Type
*DataTy
) {
3014 // This function is called now in two cases: from the Loop Vectorizer
3015 // and from the Scalarizer.
3016 // When the Loop Vectorizer asks about legality of the feature,
3017 // the vectorization factor is not calculated yet. The Loop Vectorizer
3018 // sends a scalar type and the decision is based on the width of the
3020 // Later on, the cost model will estimate usage this intrinsic based on
3022 // The Scalarizer asks again about legality. It sends a vector type.
3023 // In this case we can reject non-power-of-2 vectors.
3024 // We also reject single element vectors as the type legalizer can't
3026 if (isa
<VectorType
>(DataTy
)) {
3027 unsigned NumElts
= DataTy
->getVectorNumElements();
3028 if (NumElts
== 1 || !isPowerOf2_32(NumElts
))
3031 Type
*ScalarTy
= DataTy
->getScalarType();
3032 int DataWidth
= isa
<PointerType
>(ScalarTy
) ?
3033 DL
.getPointerSizeInBits() : ScalarTy
->getPrimitiveSizeInBits();
3035 // Some CPUs have better gather performance than others.
3036 // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
3037 // enable gather with a -march.
3038 return (DataWidth
== 32 || DataWidth
== 64) &&
3039 (ST
->hasAVX512() || (ST
->hasFastGather() && ST
->hasAVX2()));
3042 bool X86TTIImpl::isLegalMaskedScatter(Type
*DataType
) {
3043 // AVX2 doesn't support scatter
3044 if (!ST
->hasAVX512())
3046 return isLegalMaskedGather(DataType
);
3049 bool X86TTIImpl::hasDivRemOp(Type
*DataType
, bool IsSigned
) {
3050 EVT VT
= TLI
->getValueType(DL
, DataType
);
3051 return TLI
->isOperationLegal(IsSigned
? ISD::SDIVREM
: ISD::UDIVREM
, VT
);
3054 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type
*Ty
) {
3058 bool X86TTIImpl::areInlineCompatible(const Function
*Caller
,
3059 const Function
*Callee
) const {
3060 const TargetMachine
&TM
= getTLI()->getTargetMachine();
3062 // Work this as a subsetting of subtarget features.
3063 const FeatureBitset
&CallerBits
=
3064 TM
.getSubtargetImpl(*Caller
)->getFeatureBits();
3065 const FeatureBitset
&CalleeBits
=
3066 TM
.getSubtargetImpl(*Callee
)->getFeatureBits();
3068 // FIXME: This is likely too limiting as it will include subtarget features
3069 // that we might not care about for inlining, but it is conservatively
3071 return (CallerBits
& CalleeBits
) == CalleeBits
;
3074 const X86TTIImpl::TTI::MemCmpExpansionOptions
*
3075 X86TTIImpl::enableMemCmpExpansion(bool IsZeroCmp
) const {
3076 // Only enable vector loads for equality comparison.
3077 // Right now the vector version is not as fast, see #33329.
3078 static const auto ThreeWayOptions
= [this]() {
3079 TTI::MemCmpExpansionOptions Options
;
3080 if (ST
->is64Bit()) {
3081 Options
.LoadSizes
.push_back(8);
3083 Options
.LoadSizes
.push_back(4);
3084 Options
.LoadSizes
.push_back(2);
3085 Options
.LoadSizes
.push_back(1);
3088 static const auto EqZeroOptions
= [this]() {
3089 TTI::MemCmpExpansionOptions Options
;
3090 // TODO: enable AVX512 when the DAG is ready.
3091 // if (ST->hasAVX512()) Options.LoadSizes.push_back(64);
3092 if (ST
->hasAVX2()) Options
.LoadSizes
.push_back(32);
3093 if (ST
->hasSSE2()) Options
.LoadSizes
.push_back(16);
3094 if (ST
->is64Bit()) {
3095 Options
.LoadSizes
.push_back(8);
3097 Options
.LoadSizes
.push_back(4);
3098 Options
.LoadSizes
.push_back(2);
3099 Options
.LoadSizes
.push_back(1);
3100 // All GPR and vector loads can be unaligned. SIMD compare requires integer
3101 // vectors (SSE2/AVX2).
3102 Options
.AllowOverlappingLoads
= true;
3105 return IsZeroCmp
? &EqZeroOptions
: &ThreeWayOptions
;
3108 bool X86TTIImpl::enableInterleavedAccessVectorization() {
3109 // TODO: We expect this to be beneficial regardless of arch,
3110 // but there are currently some unexplained performance artifacts on Atom.
3111 // As a temporary solution, disable on Atom.
3112 return !(ST
->isAtom());
3115 // Get estimation for interleaved load/store operations for AVX2.
3116 // \p Factor is the interleaved-access factor (stride) - number of
3117 // (interleaved) elements in the group.
3118 // \p Indices contains the indices for a strided load: when the
3119 // interleaved load has gaps they indicate which elements are used.
3120 // If Indices is empty (or if the number of indices is equal to the size
3121 // of the interleaved-access as given in \p Factor) the access has no gaps.
3123 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
3124 // computing the cost using a generic formula as a function of generic
3125 // shuffles. We therefore use a lookup table instead, filled according to
3126 // the instruction sequences that codegen currently generates.
3127 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(unsigned Opcode
, Type
*VecTy
,
3129 ArrayRef
<unsigned> Indices
,
3131 unsigned AddressSpace
,
3132 bool UseMaskForCond
,
3133 bool UseMaskForGaps
) {
3135 if (UseMaskForCond
|| UseMaskForGaps
)
3136 return BaseT::getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
3137 Alignment
, AddressSpace
,
3138 UseMaskForCond
, UseMaskForGaps
);
3140 // We currently Support only fully-interleaved groups, with no gaps.
3141 // TODO: Support also strided loads (interleaved-groups with gaps).
3142 if (Indices
.size() && Indices
.size() != Factor
)
3143 return BaseT::getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
3144 Alignment
, AddressSpace
);
3146 // VecTy for interleave memop is <VF*Factor x Elt>.
3147 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3148 // VecTy = <12 x i32>.
3149 MVT LegalVT
= getTLI()->getTypeLegalizationCost(DL
, VecTy
).second
;
3151 // This function can be called with VecTy=<6xi128>, Factor=3, in which case
3152 // the VF=2, while v2i128 is an unsupported MVT vector type
3153 // (see MachineValueType.h::getVectorVT()).
3154 if (!LegalVT
.isVector())
3155 return BaseT::getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
3156 Alignment
, AddressSpace
);
3158 unsigned VF
= VecTy
->getVectorNumElements() / Factor
;
3159 Type
*ScalarTy
= VecTy
->getVectorElementType();
3161 // Calculate the number of memory operations (NumOfMemOps), required
3162 // for load/store the VecTy.
3163 unsigned VecTySize
= DL
.getTypeStoreSize(VecTy
);
3164 unsigned LegalVTSize
= LegalVT
.getStoreSize();
3165 unsigned NumOfMemOps
= (VecTySize
+ LegalVTSize
- 1) / LegalVTSize
;
3167 // Get the cost of one memory operation.
3168 Type
*SingleMemOpTy
= VectorType::get(VecTy
->getVectorElementType(),
3169 LegalVT
.getVectorNumElements());
3170 unsigned MemOpCost
=
3171 getMemoryOpCost(Opcode
, SingleMemOpTy
, Alignment
, AddressSpace
);
3173 VectorType
*VT
= VectorType::get(ScalarTy
, VF
);
3174 EVT ETy
= TLI
->getValueType(DL
, VT
);
3175 if (!ETy
.isSimple())
3176 return BaseT::getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
3177 Alignment
, AddressSpace
);
3179 // TODO: Complete for other data-types and strides.
3180 // Each combination of Stride, ElementTy and VF results in a different
3181 // sequence; The cost tables are therefore accessed with:
3182 // Factor (stride) and VectorType=VFxElemType.
3183 // The Cost accounts only for the shuffle sequence;
3184 // The cost of the loads/stores is accounted for separately.
3186 static const CostTblEntry AVX2InterleavedLoadTbl
[] = {
3187 { 2, MVT::v4i64
, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
3188 { 2, MVT::v4f64
, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
3190 { 3, MVT::v2i8
, 10 }, //(load 6i8 and) deinterleave into 3 x 2i8
3191 { 3, MVT::v4i8
, 4 }, //(load 12i8 and) deinterleave into 3 x 4i8
3192 { 3, MVT::v8i8
, 9 }, //(load 24i8 and) deinterleave into 3 x 8i8
3193 { 3, MVT::v16i8
, 11}, //(load 48i8 and) deinterleave into 3 x 16i8
3194 { 3, MVT::v32i8
, 13}, //(load 96i8 and) deinterleave into 3 x 32i8
3195 { 3, MVT::v8f32
, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
3197 { 4, MVT::v2i8
, 12 }, //(load 8i8 and) deinterleave into 4 x 2i8
3198 { 4, MVT::v4i8
, 4 }, //(load 16i8 and) deinterleave into 4 x 4i8
3199 { 4, MVT::v8i8
, 20 }, //(load 32i8 and) deinterleave into 4 x 8i8
3200 { 4, MVT::v16i8
, 39 }, //(load 64i8 and) deinterleave into 4 x 16i8
3201 { 4, MVT::v32i8
, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
3203 { 8, MVT::v8f32
, 40 } //(load 64f32 and)deinterleave into 8 x 8f32
3206 static const CostTblEntry AVX2InterleavedStoreTbl
[] = {
3207 { 2, MVT::v4i64
, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
3208 { 2, MVT::v4f64
, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
3210 { 3, MVT::v2i8
, 7 }, //interleave 3 x 2i8 into 6i8 (and store)
3211 { 3, MVT::v4i8
, 8 }, //interleave 3 x 4i8 into 12i8 (and store)
3212 { 3, MVT::v8i8
, 11 }, //interleave 3 x 8i8 into 24i8 (and store)
3213 { 3, MVT::v16i8
, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
3214 { 3, MVT::v32i8
, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
3216 { 4, MVT::v2i8
, 12 }, //interleave 4 x 2i8 into 8i8 (and store)
3217 { 4, MVT::v4i8
, 9 }, //interleave 4 x 4i8 into 16i8 (and store)
3218 { 4, MVT::v8i8
, 10 }, //interleave 4 x 8i8 into 32i8 (and store)
3219 { 4, MVT::v16i8
, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
3220 { 4, MVT::v32i8
, 12 } //interleave 4 x 32i8 into 128i8 (and store)
3223 if (Opcode
== Instruction::Load
) {
3224 if (const auto *Entry
=
3225 CostTableLookup(AVX2InterleavedLoadTbl
, Factor
, ETy
.getSimpleVT()))
3226 return NumOfMemOps
* MemOpCost
+ Entry
->Cost
;
3228 assert(Opcode
== Instruction::Store
&&
3229 "Expected Store Instruction at this point");
3230 if (const auto *Entry
=
3231 CostTableLookup(AVX2InterleavedStoreTbl
, Factor
, ETy
.getSimpleVT()))
3232 return NumOfMemOps
* MemOpCost
+ Entry
->Cost
;
3235 return BaseT::getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
3236 Alignment
, AddressSpace
);
3239 // Get estimation for interleaved load/store operations and strided load.
3240 // \p Indices contains indices for strided load.
3241 // \p Factor - the factor of interleaving.
3242 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
3243 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode
, Type
*VecTy
,
3245 ArrayRef
<unsigned> Indices
,
3247 unsigned AddressSpace
,
3248 bool UseMaskForCond
,
3249 bool UseMaskForGaps
) {
3251 if (UseMaskForCond
|| UseMaskForGaps
)
3252 return BaseT::getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
3253 Alignment
, AddressSpace
,
3254 UseMaskForCond
, UseMaskForGaps
);
3256 // VecTy for interleave memop is <VF*Factor x Elt>.
3257 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3258 // VecTy = <12 x i32>.
3260 // Calculate the number of memory operations (NumOfMemOps), required
3261 // for load/store the VecTy.
3262 MVT LegalVT
= getTLI()->getTypeLegalizationCost(DL
, VecTy
).second
;
3263 unsigned VecTySize
= DL
.getTypeStoreSize(VecTy
);
3264 unsigned LegalVTSize
= LegalVT
.getStoreSize();
3265 unsigned NumOfMemOps
= (VecTySize
+ LegalVTSize
- 1) / LegalVTSize
;
3267 // Get the cost of one memory operation.
3268 Type
*SingleMemOpTy
= VectorType::get(VecTy
->getVectorElementType(),
3269 LegalVT
.getVectorNumElements());
3270 unsigned MemOpCost
=
3271 getMemoryOpCost(Opcode
, SingleMemOpTy
, Alignment
, AddressSpace
);
3273 unsigned VF
= VecTy
->getVectorNumElements() / Factor
;
3274 MVT VT
= MVT::getVectorVT(MVT::getVT(VecTy
->getScalarType()), VF
);
3276 if (Opcode
== Instruction::Load
) {
3277 // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
3278 // contain the cost of the optimized shuffle sequence that the
3279 // X86InterleavedAccess pass will generate.
3280 // The cost of loads and stores are computed separately from the table.
3282 // X86InterleavedAccess support only the following interleaved-access group.
3283 static const CostTblEntry AVX512InterleavedLoadTbl
[] = {
3284 {3, MVT::v16i8
, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
3285 {3, MVT::v32i8
, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
3286 {3, MVT::v64i8
, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
3289 if (const auto *Entry
=
3290 CostTableLookup(AVX512InterleavedLoadTbl
, Factor
, VT
))
3291 return NumOfMemOps
* MemOpCost
+ Entry
->Cost
;
3292 //If an entry does not exist, fallback to the default implementation.
3294 // Kind of shuffle depends on number of loaded values.
3295 // If we load the entire data in one register, we can use a 1-src shuffle.
3296 // Otherwise, we'll merge 2 sources in each operation.
3297 TTI::ShuffleKind ShuffleKind
=
3298 (NumOfMemOps
> 1) ? TTI::SK_PermuteTwoSrc
: TTI::SK_PermuteSingleSrc
;
3300 unsigned ShuffleCost
=
3301 getShuffleCost(ShuffleKind
, SingleMemOpTy
, 0, nullptr);
3303 unsigned NumOfLoadsInInterleaveGrp
=
3304 Indices
.size() ? Indices
.size() : Factor
;
3305 Type
*ResultTy
= VectorType::get(VecTy
->getVectorElementType(),
3306 VecTy
->getVectorNumElements() / Factor
);
3307 unsigned NumOfResults
=
3308 getTLI()->getTypeLegalizationCost(DL
, ResultTy
).first
*
3309 NumOfLoadsInInterleaveGrp
;
3311 // About a half of the loads may be folded in shuffles when we have only
3312 // one result. If we have more than one result, we do not fold loads at all.
3313 unsigned NumOfUnfoldedLoads
=
3314 NumOfResults
> 1 ? NumOfMemOps
: NumOfMemOps
/ 2;
3316 // Get a number of shuffle operations per result.
3317 unsigned NumOfShufflesPerResult
=
3318 std::max((unsigned)1, (unsigned)(NumOfMemOps
- 1));
3320 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3321 // When we have more than one destination, we need additional instructions
3323 unsigned NumOfMoves
= 0;
3324 if (NumOfResults
> 1 && ShuffleKind
== TTI::SK_PermuteTwoSrc
)
3325 NumOfMoves
= NumOfResults
* NumOfShufflesPerResult
/ 2;
3327 int Cost
= NumOfResults
* NumOfShufflesPerResult
* ShuffleCost
+
3328 NumOfUnfoldedLoads
* MemOpCost
+ NumOfMoves
;
3334 assert(Opcode
== Instruction::Store
&&
3335 "Expected Store Instruction at this point");
3336 // X86InterleavedAccess support only the following interleaved-access group.
3337 static const CostTblEntry AVX512InterleavedStoreTbl
[] = {
3338 {3, MVT::v16i8
, 12}, // interleave 3 x 16i8 into 48i8 (and store)
3339 {3, MVT::v32i8
, 14}, // interleave 3 x 32i8 into 96i8 (and store)
3340 {3, MVT::v64i8
, 26}, // interleave 3 x 64i8 into 96i8 (and store)
3342 {4, MVT::v8i8
, 10}, // interleave 4 x 8i8 into 32i8 (and store)
3343 {4, MVT::v16i8
, 11}, // interleave 4 x 16i8 into 64i8 (and store)
3344 {4, MVT::v32i8
, 14}, // interleave 4 x 32i8 into 128i8 (and store)
3345 {4, MVT::v64i8
, 24} // interleave 4 x 32i8 into 256i8 (and store)
3348 if (const auto *Entry
=
3349 CostTableLookup(AVX512InterleavedStoreTbl
, Factor
, VT
))
3350 return NumOfMemOps
* MemOpCost
+ Entry
->Cost
;
3351 //If an entry does not exist, fallback to the default implementation.
3353 // There is no strided stores meanwhile. And store can't be folded in
3355 unsigned NumOfSources
= Factor
; // The number of values to be merged.
3356 unsigned ShuffleCost
=
3357 getShuffleCost(TTI::SK_PermuteTwoSrc
, SingleMemOpTy
, 0, nullptr);
3358 unsigned NumOfShufflesPerStore
= NumOfSources
- 1;
3360 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3361 // We need additional instructions to keep sources.
3362 unsigned NumOfMoves
= NumOfMemOps
* NumOfShufflesPerStore
/ 2;
3363 int Cost
= NumOfMemOps
* (MemOpCost
+ NumOfShufflesPerStore
* ShuffleCost
) +
3368 int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode
, Type
*VecTy
,
3370 ArrayRef
<unsigned> Indices
,
3372 unsigned AddressSpace
,
3373 bool UseMaskForCond
,
3374 bool UseMaskForGaps
) {
3375 auto isSupportedOnAVX512
= [](Type
*VecTy
, bool HasBW
) {
3376 Type
*EltTy
= VecTy
->getVectorElementType();
3377 if (EltTy
->isFloatTy() || EltTy
->isDoubleTy() || EltTy
->isIntegerTy(64) ||
3378 EltTy
->isIntegerTy(32) || EltTy
->isPointerTy())
3380 if (EltTy
->isIntegerTy(16) || EltTy
->isIntegerTy(8))
3384 if (ST
->hasAVX512() && isSupportedOnAVX512(VecTy
, ST
->hasBWI()))
3385 return getInterleavedMemoryOpCostAVX512(Opcode
, VecTy
, Factor
, Indices
,
3386 Alignment
, AddressSpace
,
3387 UseMaskForCond
, UseMaskForGaps
);
3389 return getInterleavedMemoryOpCostAVX2(Opcode
, VecTy
, Factor
, Indices
,
3390 Alignment
, AddressSpace
,
3391 UseMaskForCond
, UseMaskForGaps
);
3393 return BaseT::getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
3394 Alignment
, AddressSpace
,
3395 UseMaskForCond
, UseMaskForGaps
);