1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the XCoreTargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "XCoreISelLowering.h"
15 #include "XCoreMachineFunctionInfo.h"
16 #include "XCoreSubtarget.h"
17 #include "XCoreTargetMachine.h"
18 #include "XCoreTargetObjectFile.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/raw_ostream.h"
42 #define DEBUG_TYPE "xcore-lower"
44 const char *XCoreTargetLowering::
45 getTargetNodeName(unsigned Opcode
) const
47 switch ((XCoreISD::NodeType
)Opcode
)
49 case XCoreISD::FIRST_NUMBER
: break;
50 case XCoreISD::BL
: return "XCoreISD::BL";
51 case XCoreISD::PCRelativeWrapper
: return "XCoreISD::PCRelativeWrapper";
52 case XCoreISD::DPRelativeWrapper
: return "XCoreISD::DPRelativeWrapper";
53 case XCoreISD::CPRelativeWrapper
: return "XCoreISD::CPRelativeWrapper";
54 case XCoreISD::LDWSP
: return "XCoreISD::LDWSP";
55 case XCoreISD::STWSP
: return "XCoreISD::STWSP";
56 case XCoreISD::RETSP
: return "XCoreISD::RETSP";
57 case XCoreISD::LADD
: return "XCoreISD::LADD";
58 case XCoreISD::LSUB
: return "XCoreISD::LSUB";
59 case XCoreISD::LMUL
: return "XCoreISD::LMUL";
60 case XCoreISD::MACCU
: return "XCoreISD::MACCU";
61 case XCoreISD::MACCS
: return "XCoreISD::MACCS";
62 case XCoreISD::CRC8
: return "XCoreISD::CRC8";
63 case XCoreISD::BR_JT
: return "XCoreISD::BR_JT";
64 case XCoreISD::BR_JT32
: return "XCoreISD::BR_JT32";
65 case XCoreISD::FRAME_TO_ARGS_OFFSET
: return "XCoreISD::FRAME_TO_ARGS_OFFSET";
66 case XCoreISD::EH_RETURN
: return "XCoreISD::EH_RETURN";
67 case XCoreISD::MEMBARRIER
: return "XCoreISD::MEMBARRIER";
72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine
&TM
,
73 const XCoreSubtarget
&Subtarget
)
74 : TargetLowering(TM
), TM(TM
), Subtarget(Subtarget
) {
76 // Set up the register classes.
77 addRegisterClass(MVT::i32
, &XCore::GRRegsRegClass
);
79 // Compute derived properties from the register classes
80 computeRegisterProperties(Subtarget
.getRegisterInfo());
82 setStackPointerRegisterToSaveRestore(XCore::SP
);
84 setSchedulingPreference(Sched::Source
);
86 // Use i32 for setcc operations results (slt, sgt, ...).
87 setBooleanContents(ZeroOrOneBooleanContent
);
88 setBooleanVectorContents(ZeroOrOneBooleanContent
); // FIXME: Is this correct?
90 // XCore does not have the NodeTypes below.
91 setOperationAction(ISD::BR_CC
, MVT::i32
, Expand
);
92 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Expand
);
95 setOperationAction(ISD::ADD
, MVT::i64
, Custom
);
96 setOperationAction(ISD::SUB
, MVT::i64
, Custom
);
97 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Custom
);
98 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Custom
);
99 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
100 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
101 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
102 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
103 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
106 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
107 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
108 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
110 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
113 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
115 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
116 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
118 // Conversion of i64 -> double produces constantpool nodes
119 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
122 for (MVT VT
: MVT::integer_valuetypes()) {
123 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
124 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
125 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
127 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i8
, Expand
);
128 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i16
, Expand
);
131 // Custom expand misaligned loads / stores.
132 setOperationAction(ISD::LOAD
, MVT::i32
, Custom
);
133 setOperationAction(ISD::STORE
, MVT::i32
, Custom
);
136 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
137 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
138 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
139 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
142 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
143 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
144 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
146 // Exception handling
147 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
148 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i32
, Custom
);
151 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
152 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
153 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
154 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
155 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
157 // TRAMPOLINE is custom lowered.
158 setOperationAction(ISD::INIT_TRAMPOLINE
, MVT::Other
, Custom
);
159 setOperationAction(ISD::ADJUST_TRAMPOLINE
, MVT::Other
, Custom
);
161 // We want to custom lower some of our intrinsics.
162 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
164 MaxStoresPerMemset
= MaxStoresPerMemsetOptSize
= 4;
165 MaxStoresPerMemmove
= MaxStoresPerMemmoveOptSize
166 = MaxStoresPerMemcpy
= MaxStoresPerMemcpyOptSize
= 2;
168 // We have target-specific dag combine patterns for the following nodes:
169 setTargetDAGCombine(ISD::STORE
);
170 setTargetDAGCombine(ISD::ADD
);
171 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
172 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
174 setMinFunctionAlignment(1);
175 setPrefFunctionAlignment(2);
178 bool XCoreTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
179 if (Val
.getOpcode() != ISD::LOAD
)
182 EVT VT1
= Val
.getValueType();
183 if (!VT1
.isSimple() || !VT1
.isInteger() ||
184 !VT2
.isSimple() || !VT2
.isInteger())
187 switch (VT1
.getSimpleVT().SimpleTy
) {
196 SDValue
XCoreTargetLowering::
197 LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
198 switch (Op
.getOpcode())
200 case ISD::EH_RETURN
: return LowerEH_RETURN(Op
, DAG
);
201 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
202 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
203 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
204 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
205 case ISD::LOAD
: return LowerLOAD(Op
, DAG
);
206 case ISD::STORE
: return LowerSTORE(Op
, DAG
);
207 case ISD::VAARG
: return LowerVAARG(Op
, DAG
);
208 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
209 case ISD::SMUL_LOHI
: return LowerSMUL_LOHI(Op
, DAG
);
210 case ISD::UMUL_LOHI
: return LowerUMUL_LOHI(Op
, DAG
);
211 // FIXME: Remove these when LegalizeDAGTypes lands.
213 case ISD::SUB
: return ExpandADDSUB(Op
.getNode(), DAG
);
214 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
215 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
216 case ISD::FRAME_TO_ARGS_OFFSET
: return LowerFRAME_TO_ARGS_OFFSET(Op
, DAG
);
217 case ISD::INIT_TRAMPOLINE
: return LowerINIT_TRAMPOLINE(Op
, DAG
);
218 case ISD::ADJUST_TRAMPOLINE
: return LowerADJUST_TRAMPOLINE(Op
, DAG
);
219 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
220 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
);
221 case ISD::ATOMIC_LOAD
: return LowerATOMIC_LOAD(Op
, DAG
);
222 case ISD::ATOMIC_STORE
: return LowerATOMIC_STORE(Op
, DAG
);
224 llvm_unreachable("unimplemented operand");
228 /// ReplaceNodeResults - Replace the results of node with an illegal result
229 /// type with new values built out of custom code.
230 void XCoreTargetLowering::ReplaceNodeResults(SDNode
*N
,
231 SmallVectorImpl
<SDValue
>&Results
,
232 SelectionDAG
&DAG
) const {
233 switch (N
->getOpcode()) {
235 llvm_unreachable("Don't know how to custom expand this!");
238 Results
.push_back(ExpandADDSUB(N
, DAG
));
243 //===----------------------------------------------------------------------===//
244 // Misc Lower Operation implementation
245 //===----------------------------------------------------------------------===//
247 SDValue
XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA
,
248 const GlobalValue
*GV
,
249 SelectionDAG
&DAG
) const {
250 // FIXME there is no actual debug info here
253 if (GV
->getValueType()->isFunctionTy())
254 return DAG
.getNode(XCoreISD::PCRelativeWrapper
, dl
, MVT::i32
, GA
);
256 const auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
257 if ((GV
->hasSection() && GV
->getSection().startswith(".cp.")) ||
258 (GVar
&& GVar
->isConstant() && GV
->hasLocalLinkage()))
259 return DAG
.getNode(XCoreISD::CPRelativeWrapper
, dl
, MVT::i32
, GA
);
261 return DAG
.getNode(XCoreISD::DPRelativeWrapper
, dl
, MVT::i32
, GA
);
264 static bool IsSmallObject(const GlobalValue
*GV
, const XCoreTargetLowering
&XTL
) {
265 if (XTL
.getTargetMachine().getCodeModel() == CodeModel::Small
)
268 Type
*ObjType
= GV
->getValueType();
269 if (!ObjType
->isSized())
272 auto &DL
= GV
->getParent()->getDataLayout();
273 unsigned ObjSize
= DL
.getTypeAllocSize(ObjType
);
274 return ObjSize
< CodeModelLargeSize
&& ObjSize
!= 0;
277 SDValue
XCoreTargetLowering::
278 LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const
280 const GlobalAddressSDNode
*GN
= cast
<GlobalAddressSDNode
>(Op
);
281 const GlobalValue
*GV
= GN
->getGlobal();
283 int64_t Offset
= GN
->getOffset();
284 if (IsSmallObject(GV
, *this)) {
285 // We can only fold positive offsets that are a multiple of the word size.
286 int64_t FoldedOffset
= std::max(Offset
& ~3, (int64_t)0);
287 SDValue GA
= DAG
.getTargetGlobalAddress(GV
, DL
, MVT::i32
, FoldedOffset
);
288 GA
= getGlobalAddressWrapper(GA
, GV
, DAG
);
289 // Handle the rest of the offset.
290 if (Offset
!= FoldedOffset
) {
291 SDValue Remaining
= DAG
.getConstant(Offset
- FoldedOffset
, DL
, MVT::i32
);
292 GA
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, GA
, Remaining
);
296 // Ideally we would not fold in offset with an index <= 11.
297 Type
*Ty
= Type::getInt8PtrTy(*DAG
.getContext());
298 Constant
*GA
= ConstantExpr::getBitCast(const_cast<GlobalValue
*>(GV
), Ty
);
299 Ty
= Type::getInt32Ty(*DAG
.getContext());
300 Constant
*Idx
= ConstantInt::get(Ty
, Offset
);
301 Constant
*GAI
= ConstantExpr::getGetElementPtr(
302 Type::getInt8Ty(*DAG
.getContext()), GA
, Idx
);
303 SDValue CP
= DAG
.getConstantPool(GAI
, MVT::i32
);
304 return DAG
.getLoad(getPointerTy(DAG
.getDataLayout()), DL
,
305 DAG
.getEntryNode(), CP
, MachinePointerInfo());
309 SDValue
XCoreTargetLowering::
310 LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const
313 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
314 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
315 SDValue Result
= DAG
.getTargetBlockAddress(BA
, PtrVT
);
317 return DAG
.getNode(XCoreISD::PCRelativeWrapper
, DL
, PtrVT
, Result
);
320 SDValue
XCoreTargetLowering::
321 LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const
323 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
324 // FIXME there isn't really debug info here
326 EVT PtrVT
= Op
.getValueType();
328 if (CP
->isMachineConstantPoolEntry()) {
329 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
330 CP
->getAlignment(), CP
->getOffset());
332 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
333 CP
->getAlignment(), CP
->getOffset());
335 return DAG
.getNode(XCoreISD::CPRelativeWrapper
, dl
, MVT::i32
, Res
);
338 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
339 return MachineJumpTableInfo::EK_Inline
;
342 SDValue
XCoreTargetLowering::
343 LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const
345 SDValue Chain
= Op
.getOperand(0);
346 SDValue Table
= Op
.getOperand(1);
347 SDValue Index
= Op
.getOperand(2);
349 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
350 unsigned JTI
= JT
->getIndex();
351 MachineFunction
&MF
= DAG
.getMachineFunction();
352 const MachineJumpTableInfo
*MJTI
= MF
.getJumpTableInfo();
353 SDValue TargetJT
= DAG
.getTargetJumpTable(JT
->getIndex(), MVT::i32
);
355 unsigned NumEntries
= MJTI
->getJumpTables()[JTI
].MBBs
.size();
356 if (NumEntries
<= 32) {
357 return DAG
.getNode(XCoreISD::BR_JT
, dl
, MVT::Other
, Chain
, TargetJT
, Index
);
359 assert((NumEntries
>> 31) == 0);
360 SDValue ScaledIndex
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, Index
,
361 DAG
.getConstant(1, dl
, MVT::i32
));
362 return DAG
.getNode(XCoreISD::BR_JT32
, dl
, MVT::Other
, Chain
, TargetJT
,
366 SDValue
XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
367 const SDLoc
&DL
, SDValue Chain
, SDValue Base
, int64_t Offset
,
368 SelectionDAG
&DAG
) const {
369 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
370 if ((Offset
& 0x3) == 0) {
371 return DAG
.getLoad(PtrVT
, DL
, Chain
, Base
, MachinePointerInfo());
373 // Lower to pair of consecutive word aligned loads plus some bit shifting.
374 int32_t HighOffset
= alignTo(Offset
, 4);
375 int32_t LowOffset
= HighOffset
- 4;
376 SDValue LowAddr
, HighAddr
;
377 if (GlobalAddressSDNode
*GASD
=
378 dyn_cast
<GlobalAddressSDNode
>(Base
.getNode())) {
379 LowAddr
= DAG
.getGlobalAddress(GASD
->getGlobal(), DL
, Base
.getValueType(),
381 HighAddr
= DAG
.getGlobalAddress(GASD
->getGlobal(), DL
, Base
.getValueType(),
384 LowAddr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, Base
,
385 DAG
.getConstant(LowOffset
, DL
, MVT::i32
));
386 HighAddr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, Base
,
387 DAG
.getConstant(HighOffset
, DL
, MVT::i32
));
389 SDValue LowShift
= DAG
.getConstant((Offset
- LowOffset
) * 8, DL
, MVT::i32
);
390 SDValue HighShift
= DAG
.getConstant((HighOffset
- Offset
) * 8, DL
, MVT::i32
);
392 SDValue Low
= DAG
.getLoad(PtrVT
, DL
, Chain
, LowAddr
, MachinePointerInfo());
393 SDValue High
= DAG
.getLoad(PtrVT
, DL
, Chain
, HighAddr
, MachinePointerInfo());
394 SDValue LowShifted
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Low
, LowShift
);
395 SDValue HighShifted
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, High
, HighShift
);
396 SDValue Result
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, LowShifted
, HighShifted
);
397 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Low
.getValue(1),
399 SDValue Ops
[] = { Result
, Chain
};
400 return DAG
.getMergeValues(Ops
, DL
);
403 static bool isWordAligned(SDValue Value
, SelectionDAG
&DAG
)
405 KnownBits Known
= DAG
.computeKnownBits(Value
);
406 return Known
.countMinTrailingZeros() >= 2;
409 SDValue
XCoreTargetLowering::
410 LowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
411 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
412 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
413 assert(LD
->getExtensionType() == ISD::NON_EXTLOAD
&&
414 "Unexpected extension type");
415 assert(LD
->getMemoryVT() == MVT::i32
&& "Unexpected load EVT");
416 if (allowsMisalignedMemoryAccesses(LD
->getMemoryVT(),
417 LD
->getAddressSpace(),
421 auto &TD
= DAG
.getDataLayout();
422 unsigned ABIAlignment
= TD
.getABITypeAlignment(
423 LD
->getMemoryVT().getTypeForEVT(*DAG
.getContext()));
424 // Leave aligned load alone.
425 if (LD
->getAlignment() >= ABIAlignment
)
428 SDValue Chain
= LD
->getChain();
429 SDValue BasePtr
= LD
->getBasePtr();
432 if (!LD
->isVolatile()) {
433 const GlobalValue
*GV
;
435 if (DAG
.isBaseWithConstantOffset(BasePtr
) &&
436 isWordAligned(BasePtr
->getOperand(0), DAG
)) {
437 SDValue NewBasePtr
= BasePtr
->getOperand(0);
438 Offset
= cast
<ConstantSDNode
>(BasePtr
->getOperand(1))->getSExtValue();
439 return lowerLoadWordFromAlignedBasePlusOffset(DL
, Chain
, NewBasePtr
,
442 if (TLI
.isGAPlusOffset(BasePtr
.getNode(), GV
, Offset
) &&
443 MinAlign(GV
->getAlignment(), 4) == 4) {
444 SDValue NewBasePtr
= DAG
.getGlobalAddress(GV
, DL
,
445 BasePtr
->getValueType(0));
446 return lowerLoadWordFromAlignedBasePlusOffset(DL
, Chain
, NewBasePtr
,
451 if (LD
->getAlignment() == 2) {
453 DAG
.getExtLoad(ISD::ZEXTLOAD
, DL
, MVT::i32
, Chain
, BasePtr
,
454 LD
->getPointerInfo(), MVT::i16
,
455 /* Alignment = */ 2, LD
->getMemOperand()->getFlags());
456 SDValue HighAddr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
457 DAG
.getConstant(2, DL
, MVT::i32
));
459 DAG
.getExtLoad(ISD::EXTLOAD
, DL
, MVT::i32
, Chain
, HighAddr
,
460 LD
->getPointerInfo().getWithOffset(2), MVT::i16
,
461 /* Alignment = */ 2, LD
->getMemOperand()->getFlags());
462 SDValue HighShifted
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, High
,
463 DAG
.getConstant(16, DL
, MVT::i32
));
464 SDValue Result
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Low
, HighShifted
);
465 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Low
.getValue(1),
467 SDValue Ops
[] = { Result
, Chain
};
468 return DAG
.getMergeValues(Ops
, DL
);
471 // Lower to a call to __misaligned_load(BasePtr).
472 Type
*IntPtrTy
= TD
.getIntPtrType(*DAG
.getContext());
473 TargetLowering::ArgListTy Args
;
474 TargetLowering::ArgListEntry Entry
;
477 Entry
.Node
= BasePtr
;
478 Args
.push_back(Entry
);
480 TargetLowering::CallLoweringInfo
CLI(DAG
);
481 CLI
.setDebugLoc(DL
).setChain(Chain
).setLibCallee(
482 CallingConv::C
, IntPtrTy
,
483 DAG
.getExternalSymbol("__misaligned_load",
484 getPointerTy(DAG
.getDataLayout())),
487 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
488 SDValue Ops
[] = { CallResult
.first
, CallResult
.second
};
489 return DAG
.getMergeValues(Ops
, DL
);
492 SDValue
XCoreTargetLowering::
493 LowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const
495 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
);
496 assert(!ST
->isTruncatingStore() && "Unexpected store type");
497 assert(ST
->getMemoryVT() == MVT::i32
&& "Unexpected store EVT");
498 if (allowsMisalignedMemoryAccesses(ST
->getMemoryVT(),
499 ST
->getAddressSpace(),
500 ST
->getAlignment())) {
503 unsigned ABIAlignment
= DAG
.getDataLayout().getABITypeAlignment(
504 ST
->getMemoryVT().getTypeForEVT(*DAG
.getContext()));
505 // Leave aligned store alone.
506 if (ST
->getAlignment() >= ABIAlignment
) {
509 SDValue Chain
= ST
->getChain();
510 SDValue BasePtr
= ST
->getBasePtr();
511 SDValue Value
= ST
->getValue();
514 if (ST
->getAlignment() == 2) {
516 SDValue High
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Value
,
517 DAG
.getConstant(16, dl
, MVT::i32
));
518 SDValue StoreLow
= DAG
.getTruncStore(
519 Chain
, dl
, Low
, BasePtr
, ST
->getPointerInfo(), MVT::i16
,
520 /* Alignment = */ 2, ST
->getMemOperand()->getFlags());
521 SDValue HighAddr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, BasePtr
,
522 DAG
.getConstant(2, dl
, MVT::i32
));
523 SDValue StoreHigh
= DAG
.getTruncStore(
524 Chain
, dl
, High
, HighAddr
, ST
->getPointerInfo().getWithOffset(2),
525 MVT::i16
, /* Alignment = */ 2, ST
->getMemOperand()->getFlags());
526 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, StoreLow
, StoreHigh
);
529 // Lower to a call to __misaligned_store(BasePtr, Value).
530 Type
*IntPtrTy
= DAG
.getDataLayout().getIntPtrType(*DAG
.getContext());
531 TargetLowering::ArgListTy Args
;
532 TargetLowering::ArgListEntry Entry
;
535 Entry
.Node
= BasePtr
;
536 Args
.push_back(Entry
);
539 Args
.push_back(Entry
);
541 TargetLowering::CallLoweringInfo
CLI(DAG
);
542 CLI
.setDebugLoc(dl
).setChain(Chain
).setCallee(
543 CallingConv::C
, Type::getVoidTy(*DAG
.getContext()),
544 DAG
.getExternalSymbol("__misaligned_store",
545 getPointerTy(DAG
.getDataLayout())),
548 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
549 return CallResult
.second
;
552 SDValue
XCoreTargetLowering::
553 LowerSMUL_LOHI(SDValue Op
, SelectionDAG
&DAG
) const
555 assert(Op
.getValueType() == MVT::i32
&& Op
.getOpcode() == ISD::SMUL_LOHI
&&
556 "Unexpected operand to lower!");
558 SDValue LHS
= Op
.getOperand(0);
559 SDValue RHS
= Op
.getOperand(1);
560 SDValue Zero
= DAG
.getConstant(0, dl
, MVT::i32
);
561 SDValue Hi
= DAG
.getNode(XCoreISD::MACCS
, dl
,
562 DAG
.getVTList(MVT::i32
, MVT::i32
), Zero
, Zero
,
564 SDValue
Lo(Hi
.getNode(), 1);
565 SDValue Ops
[] = { Lo
, Hi
};
566 return DAG
.getMergeValues(Ops
, dl
);
569 SDValue
XCoreTargetLowering::
570 LowerUMUL_LOHI(SDValue Op
, SelectionDAG
&DAG
) const
572 assert(Op
.getValueType() == MVT::i32
&& Op
.getOpcode() == ISD::UMUL_LOHI
&&
573 "Unexpected operand to lower!");
575 SDValue LHS
= Op
.getOperand(0);
576 SDValue RHS
= Op
.getOperand(1);
577 SDValue Zero
= DAG
.getConstant(0, dl
, MVT::i32
);
578 SDValue Hi
= DAG
.getNode(XCoreISD::LMUL
, dl
,
579 DAG
.getVTList(MVT::i32
, MVT::i32
), LHS
, RHS
,
581 SDValue
Lo(Hi
.getNode(), 1);
582 SDValue Ops
[] = { Lo
, Hi
};
583 return DAG
.getMergeValues(Ops
, dl
);
586 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
587 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
588 /// each intermediate result in the calculation must also have a single use.
589 /// If the Op is in the correct form the constituent parts are written to Mul0,
590 /// Mul1, Addend0 and Addend1.
592 isADDADDMUL(SDValue Op
, SDValue
&Mul0
, SDValue
&Mul1
, SDValue
&Addend0
,
593 SDValue
&Addend1
, bool requireIntermediatesHaveOneUse
)
595 if (Op
.getOpcode() != ISD::ADD
)
597 SDValue N0
= Op
.getOperand(0);
598 SDValue N1
= Op
.getOperand(1);
601 if (N0
.getOpcode() == ISD::ADD
) {
604 } else if (N1
.getOpcode() == ISD::ADD
) {
610 if (requireIntermediatesHaveOneUse
&& !AddOp
.hasOneUse())
612 if (OtherOp
.getOpcode() == ISD::MUL
) {
613 // add(add(a,b),mul(x,y))
614 if (requireIntermediatesHaveOneUse
&& !OtherOp
.hasOneUse())
616 Mul0
= OtherOp
.getOperand(0);
617 Mul1
= OtherOp
.getOperand(1);
618 Addend0
= AddOp
.getOperand(0);
619 Addend1
= AddOp
.getOperand(1);
622 if (AddOp
.getOperand(0).getOpcode() == ISD::MUL
) {
623 // add(add(mul(x,y),a),b)
624 if (requireIntermediatesHaveOneUse
&& !AddOp
.getOperand(0).hasOneUse())
626 Mul0
= AddOp
.getOperand(0).getOperand(0);
627 Mul1
= AddOp
.getOperand(0).getOperand(1);
628 Addend0
= AddOp
.getOperand(1);
632 if (AddOp
.getOperand(1).getOpcode() == ISD::MUL
) {
633 // add(add(a,mul(x,y)),b)
634 if (requireIntermediatesHaveOneUse
&& !AddOp
.getOperand(1).hasOneUse())
636 Mul0
= AddOp
.getOperand(1).getOperand(0);
637 Mul1
= AddOp
.getOperand(1).getOperand(1);
638 Addend0
= AddOp
.getOperand(0);
645 SDValue
XCoreTargetLowering::
646 TryExpandADDWithMul(SDNode
*N
, SelectionDAG
&DAG
) const
650 if (N
->getOperand(0).getOpcode() == ISD::MUL
) {
651 Mul
= N
->getOperand(0);
652 Other
= N
->getOperand(1);
653 } else if (N
->getOperand(1).getOpcode() == ISD::MUL
) {
654 Mul
= N
->getOperand(1);
655 Other
= N
->getOperand(0);
660 SDValue LL
, RL
, AddendL
, AddendH
;
661 LL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
662 Mul
.getOperand(0), DAG
.getConstant(0, dl
, MVT::i32
));
663 RL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
664 Mul
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
665 AddendL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
666 Other
, DAG
.getConstant(0, dl
, MVT::i32
));
667 AddendH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
668 Other
, DAG
.getConstant(1, dl
, MVT::i32
));
669 APInt HighMask
= APInt::getHighBitsSet(64, 32);
670 unsigned LHSSB
= DAG
.ComputeNumSignBits(Mul
.getOperand(0));
671 unsigned RHSSB
= DAG
.ComputeNumSignBits(Mul
.getOperand(1));
672 if (DAG
.MaskedValueIsZero(Mul
.getOperand(0), HighMask
) &&
673 DAG
.MaskedValueIsZero(Mul
.getOperand(1), HighMask
)) {
674 // The inputs are both zero-extended.
675 SDValue Hi
= DAG
.getNode(XCoreISD::MACCU
, dl
,
676 DAG
.getVTList(MVT::i32
, MVT::i32
), AddendH
,
678 SDValue
Lo(Hi
.getNode(), 1);
679 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
681 if (LHSSB
> 32 && RHSSB
> 32) {
682 // The inputs are both sign-extended.
683 SDValue Hi
= DAG
.getNode(XCoreISD::MACCS
, dl
,
684 DAG
.getVTList(MVT::i32
, MVT::i32
), AddendH
,
686 SDValue
Lo(Hi
.getNode(), 1);
687 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
690 LH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
691 Mul
.getOperand(0), DAG
.getConstant(1, dl
, MVT::i32
));
692 RH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
693 Mul
.getOperand(1), DAG
.getConstant(1, dl
, MVT::i32
));
694 SDValue Hi
= DAG
.getNode(XCoreISD::MACCU
, dl
,
695 DAG
.getVTList(MVT::i32
, MVT::i32
), AddendH
,
697 SDValue
Lo(Hi
.getNode(), 1);
698 RH
= DAG
.getNode(ISD::MUL
, dl
, MVT::i32
, LL
, RH
);
699 LH
= DAG
.getNode(ISD::MUL
, dl
, MVT::i32
, LH
, RL
);
700 Hi
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Hi
, RH
);
701 Hi
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Hi
, LH
);
702 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
705 SDValue
XCoreTargetLowering::
706 ExpandADDSUB(SDNode
*N
, SelectionDAG
&DAG
) const
708 assert(N
->getValueType(0) == MVT::i64
&&
709 (N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
710 "Unknown operand to lower!");
712 if (N
->getOpcode() == ISD::ADD
)
713 if (SDValue Result
= TryExpandADDWithMul(N
, DAG
))
718 // Extract components
719 SDValue LHSL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
721 DAG
.getConstant(0, dl
, MVT::i32
));
722 SDValue LHSH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
724 DAG
.getConstant(1, dl
, MVT::i32
));
725 SDValue RHSL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
727 DAG
.getConstant(0, dl
, MVT::i32
));
728 SDValue RHSH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
730 DAG
.getConstant(1, dl
, MVT::i32
));
733 unsigned Opcode
= (N
->getOpcode() == ISD::ADD
) ? XCoreISD::LADD
:
735 SDValue Zero
= DAG
.getConstant(0, dl
, MVT::i32
);
736 SDValue Lo
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
738 SDValue
Carry(Lo
.getNode(), 1);
740 SDValue Hi
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
742 SDValue
Ignored(Hi
.getNode(), 1);
744 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
747 SDValue
XCoreTargetLowering::
748 LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const
750 // Whist llvm does not support aggregate varargs we can ignore
751 // the possibility of the ValueType being an implicit byVal vararg.
752 SDNode
*Node
= Op
.getNode();
753 EVT VT
= Node
->getValueType(0); // not an aggregate
754 SDValue InChain
= Node
->getOperand(0);
755 SDValue VAListPtr
= Node
->getOperand(1);
756 EVT PtrVT
= VAListPtr
.getValueType();
757 const Value
*SV
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
760 DAG
.getLoad(PtrVT
, dl
, InChain
, VAListPtr
, MachinePointerInfo(SV
));
761 // Increment the pointer, VAList, to the next vararg
762 SDValue nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, VAList
,
763 DAG
.getIntPtrConstant(VT
.getSizeInBits() / 8,
765 // Store the incremented VAList to the legalized pointer
766 InChain
= DAG
.getStore(VAList
.getValue(1), dl
, nextPtr
, VAListPtr
,
767 MachinePointerInfo(SV
));
768 // Load the actual argument out of the pointer VAList
769 return DAG
.getLoad(VT
, dl
, InChain
, VAList
, MachinePointerInfo());
772 SDValue
XCoreTargetLowering::
773 LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const
776 // vastart stores the address of the VarArgsFrameIndex slot into the
777 // memory location argument
778 MachineFunction
&MF
= DAG
.getMachineFunction();
779 XCoreFunctionInfo
*XFI
= MF
.getInfo
<XCoreFunctionInfo
>();
780 SDValue Addr
= DAG
.getFrameIndex(XFI
->getVarArgsFrameIndex(), MVT::i32
);
781 return DAG
.getStore(Op
.getOperand(0), dl
, Addr
, Op
.getOperand(1),
782 MachinePointerInfo());
785 SDValue
XCoreTargetLowering::LowerFRAMEADDR(SDValue Op
,
786 SelectionDAG
&DAG
) const {
787 // This nodes represent llvm.frameaddress on the DAG.
788 // It takes one operand, the index of the frame address to return.
789 // An index of zero corresponds to the current function's frame address.
790 // An index of one to the parent's frame address, and so on.
791 // Depths > 0 not supported yet!
792 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() > 0)
795 MachineFunction
&MF
= DAG
.getMachineFunction();
796 const TargetRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
797 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SDLoc(Op
),
798 RegInfo
->getFrameRegister(MF
), MVT::i32
);
801 SDValue
XCoreTargetLowering::
802 LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const {
803 // This nodes represent llvm.returnaddress on the DAG.
804 // It takes one operand, the index of the return address to return.
805 // An index of zero corresponds to the current function's return address.
806 // An index of one to the parent's return address, and so on.
807 // Depths > 0 not supported yet!
808 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() > 0)
811 MachineFunction
&MF
= DAG
.getMachineFunction();
812 XCoreFunctionInfo
*XFI
= MF
.getInfo
<XCoreFunctionInfo
>();
813 int FI
= XFI
->createLRSpillSlot(MF
);
814 SDValue FIN
= DAG
.getFrameIndex(FI
, MVT::i32
);
815 return DAG
.getLoad(getPointerTy(DAG
.getDataLayout()), SDLoc(Op
),
816 DAG
.getEntryNode(), FIN
,
817 MachinePointerInfo::getFixedStack(MF
, FI
));
820 SDValue
XCoreTargetLowering::
821 LowerFRAME_TO_ARGS_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const {
822 // This node represents offset from frame pointer to first on-stack argument.
823 // This is needed for correct stack adjustment during unwind.
824 // However, we don't know the offset until after the frame has be finalised.
825 // This is done during the XCoreFTAOElim pass.
826 return DAG
.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET
, SDLoc(Op
), MVT::i32
);
829 SDValue
XCoreTargetLowering::
830 LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
) const {
831 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
832 // This node represents 'eh_return' gcc dwarf builtin, which is used to
833 // return from exception. The general meaning is: adjust stack by OFFSET and
834 // pass execution to HANDLER.
835 MachineFunction
&MF
= DAG
.getMachineFunction();
836 SDValue Chain
= Op
.getOperand(0);
837 SDValue Offset
= Op
.getOperand(1);
838 SDValue Handler
= Op
.getOperand(2);
841 // Absolute SP = (FP + FrameToArgs) + Offset
842 const TargetRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
843 SDValue Stack
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
844 RegInfo
->getFrameRegister(MF
), MVT::i32
);
845 SDValue FrameToArgs
= DAG
.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET
, dl
,
847 Stack
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Stack
, FrameToArgs
);
848 Stack
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Stack
, Offset
);
850 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
851 // which leaves 2 caller saved registers, R2 & R3 for us to use.
852 unsigned StackReg
= XCore::R2
;
853 unsigned HandlerReg
= XCore::R3
;
855 SDValue OutChains
[] = {
856 DAG
.getCopyToReg(Chain
, dl
, StackReg
, Stack
),
857 DAG
.getCopyToReg(Chain
, dl
, HandlerReg
, Handler
)
860 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
);
862 return DAG
.getNode(XCoreISD::EH_RETURN
, dl
, MVT::Other
, Chain
,
863 DAG
.getRegister(StackReg
, MVT::i32
),
864 DAG
.getRegister(HandlerReg
, MVT::i32
));
868 SDValue
XCoreTargetLowering::
869 LowerADJUST_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const {
870 return Op
.getOperand(0);
873 SDValue
XCoreTargetLowering::
874 LowerINIT_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const {
875 SDValue Chain
= Op
.getOperand(0);
876 SDValue Trmp
= Op
.getOperand(1); // trampoline
877 SDValue FPtr
= Op
.getOperand(2); // nested function
878 SDValue Nest
= Op
.getOperand(3); // 'nest' parameter value
880 const Value
*TrmpAddr
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
883 // LDAPF_u10 r11, nest
884 // LDW_2rus r11, r11[0]
885 // STWSP_ru6 r11, sp[0]
886 // LDAPF_u10 r11, fptr
887 // LDW_2rus r11, r11[0]
893 SDValue OutChains
[5];
899 DAG
.getStore(Chain
, dl
, DAG
.getConstant(0x0a3cd805, dl
, MVT::i32
), Addr
,
900 MachinePointerInfo(TrmpAddr
));
902 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
903 DAG
.getConstant(4, dl
, MVT::i32
));
905 DAG
.getStore(Chain
, dl
, DAG
.getConstant(0xd80456c0, dl
, MVT::i32
), Addr
,
906 MachinePointerInfo(TrmpAddr
, 4));
908 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
909 DAG
.getConstant(8, dl
, MVT::i32
));
911 DAG
.getStore(Chain
, dl
, DAG
.getConstant(0x27fb0a3c, dl
, MVT::i32
), Addr
,
912 MachinePointerInfo(TrmpAddr
, 8));
914 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
915 DAG
.getConstant(12, dl
, MVT::i32
));
917 DAG
.getStore(Chain
, dl
, Nest
, Addr
, MachinePointerInfo(TrmpAddr
, 12));
919 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
920 DAG
.getConstant(16, dl
, MVT::i32
));
922 DAG
.getStore(Chain
, dl
, FPtr
, Addr
, MachinePointerInfo(TrmpAddr
, 16));
924 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
);
927 SDValue
XCoreTargetLowering::
928 LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const {
930 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
932 case Intrinsic::xcore_crc8
:
933 EVT VT
= Op
.getValueType();
935 DAG
.getNode(XCoreISD::CRC8
, DL
, DAG
.getVTList(VT
, VT
),
936 Op
.getOperand(1), Op
.getOperand(2) , Op
.getOperand(3));
937 SDValue
Crc(Data
.getNode(), 1);
938 SDValue Results
[] = { Crc
, Data
};
939 return DAG
.getMergeValues(Results
, DL
);
944 SDValue
XCoreTargetLowering::
945 LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
) const {
947 return DAG
.getNode(XCoreISD::MEMBARRIER
, DL
, MVT::Other
, Op
.getOperand(0));
950 SDValue
XCoreTargetLowering::
951 LowerATOMIC_LOAD(SDValue Op
, SelectionDAG
&DAG
) const {
952 AtomicSDNode
*N
= cast
<AtomicSDNode
>(Op
);
953 assert(N
->getOpcode() == ISD::ATOMIC_LOAD
&& "Bad Atomic OP");
954 assert((N
->getOrdering() == AtomicOrdering::Unordered
||
955 N
->getOrdering() == AtomicOrdering::Monotonic
) &&
956 "setInsertFencesForAtomic(true) expects unordered / monotonic");
957 if (N
->getMemoryVT() == MVT::i32
) {
958 if (N
->getAlignment() < 4)
959 report_fatal_error("atomic load must be aligned");
960 return DAG
.getLoad(getPointerTy(DAG
.getDataLayout()), SDLoc(Op
),
961 N
->getChain(), N
->getBasePtr(), N
->getPointerInfo(),
962 N
->getAlignment(), N
->getMemOperand()->getFlags(),
963 N
->getAAInfo(), N
->getRanges());
965 if (N
->getMemoryVT() == MVT::i16
) {
966 if (N
->getAlignment() < 2)
967 report_fatal_error("atomic load must be aligned");
968 return DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(Op
), MVT::i32
, N
->getChain(),
969 N
->getBasePtr(), N
->getPointerInfo(), MVT::i16
,
970 N
->getAlignment(), N
->getMemOperand()->getFlags(),
973 if (N
->getMemoryVT() == MVT::i8
)
974 return DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(Op
), MVT::i32
, N
->getChain(),
975 N
->getBasePtr(), N
->getPointerInfo(), MVT::i8
,
976 N
->getAlignment(), N
->getMemOperand()->getFlags(),
981 SDValue
XCoreTargetLowering::
982 LowerATOMIC_STORE(SDValue Op
, SelectionDAG
&DAG
) const {
983 AtomicSDNode
*N
= cast
<AtomicSDNode
>(Op
);
984 assert(N
->getOpcode() == ISD::ATOMIC_STORE
&& "Bad Atomic OP");
985 assert((N
->getOrdering() == AtomicOrdering::Unordered
||
986 N
->getOrdering() == AtomicOrdering::Monotonic
) &&
987 "setInsertFencesForAtomic(true) expects unordered / monotonic");
988 if (N
->getMemoryVT() == MVT::i32
) {
989 if (N
->getAlignment() < 4)
990 report_fatal_error("atomic store must be aligned");
991 return DAG
.getStore(N
->getChain(), SDLoc(Op
), N
->getVal(), N
->getBasePtr(),
992 N
->getPointerInfo(), N
->getAlignment(),
993 N
->getMemOperand()->getFlags(), N
->getAAInfo());
995 if (N
->getMemoryVT() == MVT::i16
) {
996 if (N
->getAlignment() < 2)
997 report_fatal_error("atomic store must be aligned");
998 return DAG
.getTruncStore(N
->getChain(), SDLoc(Op
), N
->getVal(),
999 N
->getBasePtr(), N
->getPointerInfo(), MVT::i16
,
1000 N
->getAlignment(), N
->getMemOperand()->getFlags(),
1003 if (N
->getMemoryVT() == MVT::i8
)
1004 return DAG
.getTruncStore(N
->getChain(), SDLoc(Op
), N
->getVal(),
1005 N
->getBasePtr(), N
->getPointerInfo(), MVT::i8
,
1006 N
->getAlignment(), N
->getMemOperand()->getFlags(),
1011 //===----------------------------------------------------------------------===//
1012 // Calling Convention Implementation
1013 //===----------------------------------------------------------------------===//
1015 #include "XCoreGenCallingConv.inc"
1017 //===----------------------------------------------------------------------===//
1018 // Call Calling Convention Implementation
1019 //===----------------------------------------------------------------------===//
1021 /// XCore call implementation
1023 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
1024 SmallVectorImpl
<SDValue
> &InVals
) const {
1025 SelectionDAG
&DAG
= CLI
.DAG
;
1027 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
1028 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
1029 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
1030 SDValue Chain
= CLI
.Chain
;
1031 SDValue Callee
= CLI
.Callee
;
1032 bool &isTailCall
= CLI
.IsTailCall
;
1033 CallingConv::ID CallConv
= CLI
.CallConv
;
1034 bool isVarArg
= CLI
.IsVarArg
;
1036 // XCore target does not yet support tail call optimization.
1039 // For now, only CallingConv::C implemented
1043 report_fatal_error("Unsupported calling convention");
1044 case CallingConv::Fast
:
1045 case CallingConv::C
:
1046 return LowerCCCCallTo(Chain
, Callee
, CallConv
, isVarArg
, isTailCall
,
1047 Outs
, OutVals
, Ins
, dl
, DAG
, InVals
);
1051 /// LowerCallResult - Lower the result values of a call into the
1052 /// appropriate copies out of appropriate physical registers / memory locations.
1053 static SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
1054 const SmallVectorImpl
<CCValAssign
> &RVLocs
,
1055 const SDLoc
&dl
, SelectionDAG
&DAG
,
1056 SmallVectorImpl
<SDValue
> &InVals
) {
1057 SmallVector
<std::pair
<int, unsigned>, 4> ResultMemLocs
;
1058 // Copy results out of physical registers.
1059 for (unsigned i
= 0, e
= RVLocs
.size(); i
!= e
; ++i
) {
1060 const CCValAssign
&VA
= RVLocs
[i
];
1061 if (VA
.isRegLoc()) {
1062 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getValVT(),
1063 InFlag
).getValue(1);
1064 InFlag
= Chain
.getValue(2);
1065 InVals
.push_back(Chain
.getValue(0));
1067 assert(VA
.isMemLoc());
1068 ResultMemLocs
.push_back(std::make_pair(VA
.getLocMemOffset(),
1070 // Reserve space for this result.
1071 InVals
.push_back(SDValue());
1075 // Copy results out of memory.
1076 SmallVector
<SDValue
, 4> MemOpChains
;
1077 for (unsigned i
= 0, e
= ResultMemLocs
.size(); i
!= e
; ++i
) {
1078 int offset
= ResultMemLocs
[i
].first
;
1079 unsigned index
= ResultMemLocs
[i
].second
;
1080 SDVTList VTs
= DAG
.getVTList(MVT::i32
, MVT::Other
);
1081 SDValue Ops
[] = { Chain
, DAG
.getConstant(offset
/ 4, dl
, MVT::i32
) };
1082 SDValue load
= DAG
.getNode(XCoreISD::LDWSP
, dl
, VTs
, Ops
);
1083 InVals
[index
] = load
;
1084 MemOpChains
.push_back(load
.getValue(1));
1087 // Transform all loads nodes into one single node because
1088 // all load nodes are independent of each other.
1089 if (!MemOpChains
.empty())
1090 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
1095 /// LowerCCCCallTo - functions arguments are copied from virtual
1096 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1097 /// CALLSEQ_END are emitted.
1098 /// TODO: isTailCall, sret.
1099 SDValue
XCoreTargetLowering::LowerCCCCallTo(
1100 SDValue Chain
, SDValue Callee
, CallingConv::ID CallConv
, bool isVarArg
,
1101 bool isTailCall
, const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1102 const SmallVectorImpl
<SDValue
> &OutVals
,
1103 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1104 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
1106 // Analyze operands of the call, assigning locations to each operand.
1107 SmallVector
<CCValAssign
, 16> ArgLocs
;
1108 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
1111 // The ABI dictates there should be one stack slot available to the callee
1112 // on function entry (for saving lr).
1113 CCInfo
.AllocateStack(4, 4);
1115 CCInfo
.AnalyzeCallOperands(Outs
, CC_XCore
);
1117 SmallVector
<CCValAssign
, 16> RVLocs
;
1118 // Analyze return values to determine the number of bytes of stack required.
1119 CCState
RetCCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1121 RetCCInfo
.AllocateStack(CCInfo
.getNextStackOffset(), 4);
1122 RetCCInfo
.AnalyzeCallResult(Ins
, RetCC_XCore
);
1124 // Get a count of how many bytes are to be pushed on the stack.
1125 unsigned NumBytes
= RetCCInfo
.getNextStackOffset();
1126 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
1128 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
1130 SmallVector
<std::pair
<unsigned, SDValue
>, 4> RegsToPass
;
1131 SmallVector
<SDValue
, 12> MemOpChains
;
1133 // Walk the register/memloc assignments, inserting copies/loads.
1134 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1135 CCValAssign
&VA
= ArgLocs
[i
];
1136 SDValue Arg
= OutVals
[i
];
1138 // Promote the value if needed.
1139 switch (VA
.getLocInfo()) {
1140 default: llvm_unreachable("Unknown loc info!");
1141 case CCValAssign::Full
: break;
1142 case CCValAssign::SExt
:
1143 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1145 case CCValAssign::ZExt
:
1146 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1148 case CCValAssign::AExt
:
1149 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1153 // Arguments that can be passed on register must be kept at
1154 // RegsToPass vector
1155 if (VA
.isRegLoc()) {
1156 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
1158 assert(VA
.isMemLoc());
1160 int Offset
= VA
.getLocMemOffset();
1162 MemOpChains
.push_back(DAG
.getNode(XCoreISD::STWSP
, dl
, MVT::Other
,
1164 DAG
.getConstant(Offset
/4, dl
,
1169 // Transform all store nodes into one single node because
1170 // all store nodes are independent of each other.
1171 if (!MemOpChains
.empty())
1172 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
1174 // Build a sequence of copy-to-reg nodes chained together with token
1175 // chain and flag operands which copy the outgoing args into registers.
1176 // The InFlag in necessary since all emitted instructions must be
1179 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1180 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1181 RegsToPass
[i
].second
, InFlag
);
1182 InFlag
= Chain
.getValue(1);
1185 // If the callee is a GlobalAddress node (quite common, every direct call is)
1186 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1187 // Likewise ExternalSymbol -> TargetExternalSymbol.
1188 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
1189 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), dl
, MVT::i32
);
1190 else if (ExternalSymbolSDNode
*E
= dyn_cast
<ExternalSymbolSDNode
>(Callee
))
1191 Callee
= DAG
.getTargetExternalSymbol(E
->getSymbol(), MVT::i32
);
1193 // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1194 // = Chain, Callee, Reg#1, Reg#2, ...
1196 // Returns a chain & a flag for retval copy to use.
1197 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
1198 SmallVector
<SDValue
, 8> Ops
;
1199 Ops
.push_back(Chain
);
1200 Ops
.push_back(Callee
);
1202 // Add argument registers to the end of the list so that they are
1203 // known live into the call.
1204 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
1205 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
1206 RegsToPass
[i
].second
.getValueType()));
1208 if (InFlag
.getNode())
1209 Ops
.push_back(InFlag
);
1211 Chain
= DAG
.getNode(XCoreISD::BL
, dl
, NodeTys
, Ops
);
1212 InFlag
= Chain
.getValue(1);
1214 // Create the CALLSEQ_END node.
1215 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getConstant(NumBytes
, dl
, PtrVT
, true),
1216 DAG
.getConstant(0, dl
, PtrVT
, true), InFlag
, dl
);
1217 InFlag
= Chain
.getValue(1);
1219 // Handle result values, copying them out of physregs into vregs that we
1221 return LowerCallResult(Chain
, InFlag
, RVLocs
, dl
, DAG
, InVals
);
1224 //===----------------------------------------------------------------------===//
1225 // Formal Arguments Calling Convention Implementation
1226 //===----------------------------------------------------------------------===//
1229 struct ArgDataPair
{ SDValue SDV
; ISD::ArgFlagsTy Flags
; };
1232 /// XCore formal arguments implementation
1233 SDValue
XCoreTargetLowering::LowerFormalArguments(
1234 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1235 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1236 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
1240 report_fatal_error("Unsupported calling convention");
1241 case CallingConv::C
:
1242 case CallingConv::Fast
:
1243 return LowerCCCArguments(Chain
, CallConv
, isVarArg
,
1244 Ins
, dl
, DAG
, InVals
);
1248 /// LowerCCCArguments - transform physical registers into
1249 /// virtual registers and generate load operations for
1250 /// arguments places on the stack.
1252 SDValue
XCoreTargetLowering::LowerCCCArguments(
1253 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1254 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1255 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
1256 MachineFunction
&MF
= DAG
.getMachineFunction();
1257 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1258 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
1259 XCoreFunctionInfo
*XFI
= MF
.getInfo
<XCoreFunctionInfo
>();
1261 // Assign locations to all of the incoming arguments.
1262 SmallVector
<CCValAssign
, 16> ArgLocs
;
1263 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
1266 CCInfo
.AnalyzeFormalArguments(Ins
, CC_XCore
);
1268 unsigned StackSlotSize
= XCoreFrameLowering::stackSlotSize();
1270 unsigned LRSaveSize
= StackSlotSize
;
1273 XFI
->setReturnStackOffset(CCInfo
.getNextStackOffset() + LRSaveSize
);
1275 // All getCopyFromReg ops must precede any getMemcpys to prevent the
1276 // scheduler clobbering a register before it has been copied.
1278 // 1. CopyFromReg (and load) arg & vararg registers.
1279 // 2. Chain CopyFromReg nodes into a TokenFactor.
1280 // 3. Memcpy 'byVal' args & push final InVals.
1281 // 4. Chain mem ops nodes into a TokenFactor.
1282 SmallVector
<SDValue
, 4> CFRegNode
;
1283 SmallVector
<ArgDataPair
, 4> ArgData
;
1284 SmallVector
<SDValue
, 4> MemOps
;
1286 // 1a. CopyFromReg (and load) arg registers.
1287 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1289 CCValAssign
&VA
= ArgLocs
[i
];
1292 if (VA
.isRegLoc()) {
1293 // Arguments passed in registers
1294 EVT RegVT
= VA
.getLocVT();
1295 switch (RegVT
.getSimpleVT().SimpleTy
) {
1299 errs() << "LowerFormalArguments Unhandled argument type: "
1300 << RegVT
.getEVTString() << "\n";
1302 llvm_unreachable(nullptr);
1305 unsigned VReg
= RegInfo
.createVirtualRegister(&XCore::GRRegsRegClass
);
1306 RegInfo
.addLiveIn(VA
.getLocReg(), VReg
);
1307 ArgIn
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, RegVT
);
1308 CFRegNode
.push_back(ArgIn
.getValue(ArgIn
->getNumValues() - 1));
1312 assert(VA
.isMemLoc());
1313 // Load the argument to a virtual register
1314 unsigned ObjSize
= VA
.getLocVT().getSizeInBits()/8;
1315 if (ObjSize
> StackSlotSize
) {
1316 errs() << "LowerFormalArguments Unhandled argument type: "
1317 << EVT(VA
.getLocVT()).getEVTString()
1320 // Create the frame index object for this incoming parameter...
1321 int FI
= MFI
.CreateFixedObject(ObjSize
,
1322 LRSaveSize
+ VA
.getLocMemOffset(),
1325 // Create the SelectionDAG nodes corresponding to a load
1326 //from this parameter
1327 SDValue FIN
= DAG
.getFrameIndex(FI
, MVT::i32
);
1328 ArgIn
= DAG
.getLoad(VA
.getLocVT(), dl
, Chain
, FIN
,
1329 MachinePointerInfo::getFixedStack(MF
, FI
));
1331 const ArgDataPair ADP
= { ArgIn
, Ins
[i
].Flags
};
1332 ArgData
.push_back(ADP
);
1335 // 1b. CopyFromReg vararg registers.
1337 // Argument registers
1338 static const MCPhysReg ArgRegs
[] = {
1339 XCore::R0
, XCore::R1
, XCore::R2
, XCore::R3
1341 XCoreFunctionInfo
*XFI
= MF
.getInfo
<XCoreFunctionInfo
>();
1342 unsigned FirstVAReg
= CCInfo
.getFirstUnallocated(ArgRegs
);
1343 if (FirstVAReg
< array_lengthof(ArgRegs
)) {
1345 // Save remaining registers, storing higher register numbers at a higher
1347 for (int i
= array_lengthof(ArgRegs
) - 1; i
>= (int)FirstVAReg
; --i
) {
1348 // Create a stack slot
1349 int FI
= MFI
.CreateFixedObject(4, offset
, true);
1350 if (i
== (int)FirstVAReg
) {
1351 XFI
->setVarArgsFrameIndex(FI
);
1353 offset
-= StackSlotSize
;
1354 SDValue FIN
= DAG
.getFrameIndex(FI
, MVT::i32
);
1355 // Move argument from phys reg -> virt reg
1356 unsigned VReg
= RegInfo
.createVirtualRegister(&XCore::GRRegsRegClass
);
1357 RegInfo
.addLiveIn(ArgRegs
[i
], VReg
);
1358 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
1359 CFRegNode
.push_back(Val
.getValue(Val
->getNumValues() - 1));
1360 // Move argument from virt reg -> stack
1362 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
, MachinePointerInfo());
1363 MemOps
.push_back(Store
);
1366 // This will point to the next argument passed via stack.
1367 XFI
->setVarArgsFrameIndex(
1368 MFI
.CreateFixedObject(4, LRSaveSize
+ CCInfo
.getNextStackOffset(),
1373 // 2. chain CopyFromReg nodes into a TokenFactor.
1374 if (!CFRegNode
.empty())
1375 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, CFRegNode
);
1377 // 3. Memcpy 'byVal' args & push final InVals.
1378 // Aggregates passed "byVal" need to be copied by the callee.
1379 // The callee will use a pointer to this copy, rather than the original
1381 for (SmallVectorImpl
<ArgDataPair
>::const_iterator ArgDI
= ArgData
.begin(),
1382 ArgDE
= ArgData
.end();
1383 ArgDI
!= ArgDE
; ++ArgDI
) {
1384 if (ArgDI
->Flags
.isByVal() && ArgDI
->Flags
.getByValSize()) {
1385 unsigned Size
= ArgDI
->Flags
.getByValSize();
1386 unsigned Align
= std::max(StackSlotSize
, ArgDI
->Flags
.getByValAlign());
1387 // Create a new object on the stack and copy the pointee into it.
1388 int FI
= MFI
.CreateStackObject(Size
, Align
, false);
1389 SDValue FIN
= DAG
.getFrameIndex(FI
, MVT::i32
);
1390 InVals
.push_back(FIN
);
1391 MemOps
.push_back(DAG
.getMemcpy(Chain
, dl
, FIN
, ArgDI
->SDV
,
1392 DAG
.getConstant(Size
, dl
, MVT::i32
),
1393 Align
, false, false, false,
1394 MachinePointerInfo(),
1395 MachinePointerInfo()));
1397 InVals
.push_back(ArgDI
->SDV
);
1401 // 4, chain mem ops nodes into a TokenFactor.
1402 if (!MemOps
.empty()) {
1403 MemOps
.push_back(Chain
);
1404 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
1410 //===----------------------------------------------------------------------===//
1411 // Return Value Calling Convention Implementation
1412 //===----------------------------------------------------------------------===//
1414 bool XCoreTargetLowering::
1415 CanLowerReturn(CallingConv::ID CallConv
, MachineFunction
&MF
,
1417 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1418 LLVMContext
&Context
) const {
1419 SmallVector
<CCValAssign
, 16> RVLocs
;
1420 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
1421 if (!CCInfo
.CheckReturn(Outs
, RetCC_XCore
))
1423 if (CCInfo
.getNextStackOffset() != 0 && isVarArg
)
1429 XCoreTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
1431 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1432 const SmallVectorImpl
<SDValue
> &OutVals
,
1433 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
1435 XCoreFunctionInfo
*XFI
=
1436 DAG
.getMachineFunction().getInfo
<XCoreFunctionInfo
>();
1437 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
1439 // CCValAssign - represent the assignment of
1440 // the return value to a location
1441 SmallVector
<CCValAssign
, 16> RVLocs
;
1443 // CCState - Info about the registers and stack slot.
1444 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1447 // Analyze return values.
1449 CCInfo
.AllocateStack(XFI
->getReturnStackOffset(), 4);
1451 CCInfo
.AnalyzeReturn(Outs
, RetCC_XCore
);
1454 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
1456 // Return on XCore is always a "retsp 0"
1457 RetOps
.push_back(DAG
.getConstant(0, dl
, MVT::i32
));
1459 SmallVector
<SDValue
, 4> MemOpChains
;
1460 // Handle return values that must be copied to memory.
1461 for (unsigned i
= 0, e
= RVLocs
.size(); i
!= e
; ++i
) {
1462 CCValAssign
&VA
= RVLocs
[i
];
1465 assert(VA
.isMemLoc());
1467 report_fatal_error("Can't return value from vararg function in memory");
1470 int Offset
= VA
.getLocMemOffset();
1471 unsigned ObjSize
= VA
.getLocVT().getSizeInBits() / 8;
1472 // Create the frame index object for the memory location.
1473 int FI
= MFI
.CreateFixedObject(ObjSize
, Offset
, false);
1475 // Create a SelectionDAG node corresponding to a store
1476 // to this memory location.
1477 SDValue FIN
= DAG
.getFrameIndex(FI
, MVT::i32
);
1478 MemOpChains
.push_back(DAG
.getStore(
1479 Chain
, dl
, OutVals
[i
], FIN
,
1480 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
)));
1483 // Transform all store nodes into one single node because
1484 // all stores are independent of each other.
1485 if (!MemOpChains
.empty())
1486 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
1488 // Now handle return values copied to registers.
1489 for (unsigned i
= 0, e
= RVLocs
.size(); i
!= e
; ++i
) {
1490 CCValAssign
&VA
= RVLocs
[i
];
1493 // Copy the result values into the output registers.
1494 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), OutVals
[i
], Flag
);
1496 // guarantee that all emitted copies are
1497 // stuck together, avoiding something bad
1498 Flag
= Chain
.getValue(1);
1499 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
1502 RetOps
[0] = Chain
; // Update chain.
1504 // Add the flag if we have it.
1506 RetOps
.push_back(Flag
);
1508 return DAG
.getNode(XCoreISD::RETSP
, dl
, MVT::Other
, RetOps
);
1511 //===----------------------------------------------------------------------===//
1512 // Other Lowering Code
1513 //===----------------------------------------------------------------------===//
1516 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
1517 MachineBasicBlock
*BB
) const {
1518 const TargetInstrInfo
&TII
= *Subtarget
.getInstrInfo();
1519 DebugLoc dl
= MI
.getDebugLoc();
1520 assert((MI
.getOpcode() == XCore::SELECT_CC
) &&
1521 "Unexpected instr type to insert");
1523 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1524 // control-flow pattern. The incoming instruction knows the destination vreg
1525 // to set, the condition code register to branch on, the true/false values to
1526 // select between, and a branch opcode to use.
1527 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1528 MachineFunction::iterator It
= ++BB
->getIterator();
1533 // cmpTY ccX, r1, r2
1535 // fallthrough --> copy0MBB
1536 MachineBasicBlock
*thisMBB
= BB
;
1537 MachineFunction
*F
= BB
->getParent();
1538 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
1539 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
1540 F
->insert(It
, copy0MBB
);
1541 F
->insert(It
, sinkMBB
);
1543 // Transfer the remainder of BB and its successor edges to sinkMBB.
1544 sinkMBB
->splice(sinkMBB
->begin(), BB
,
1545 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1546 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1548 // Next, add the true and fallthrough blocks as its successors.
1549 BB
->addSuccessor(copy0MBB
);
1550 BB
->addSuccessor(sinkMBB
);
1552 BuildMI(BB
, dl
, TII
.get(XCore::BRFT_lru6
))
1553 .addReg(MI
.getOperand(1).getReg())
1557 // %FalseValue = ...
1558 // # fallthrough to sinkMBB
1561 // Update machine-CFG edges
1562 BB
->addSuccessor(sinkMBB
);
1565 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1568 BuildMI(*BB
, BB
->begin(), dl
, TII
.get(XCore::PHI
), MI
.getOperand(0).getReg())
1569 .addReg(MI
.getOperand(3).getReg())
1571 .addReg(MI
.getOperand(2).getReg())
1574 MI
.eraseFromParent(); // The pseudo instruction is gone now.
1578 //===----------------------------------------------------------------------===//
1579 // Target Optimization Hooks
1580 //===----------------------------------------------------------------------===//
1582 SDValue
XCoreTargetLowering::PerformDAGCombine(SDNode
*N
,
1583 DAGCombinerInfo
&DCI
) const {
1584 SelectionDAG
&DAG
= DCI
.DAG
;
1586 switch (N
->getOpcode()) {
1588 case ISD::INTRINSIC_VOID
:
1589 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
1590 case Intrinsic::xcore_outt
:
1591 case Intrinsic::xcore_outct
:
1592 case Intrinsic::xcore_chkct
: {
1593 SDValue OutVal
= N
->getOperand(3);
1594 // These instructions ignore the high bits.
1595 if (OutVal
.hasOneUse()) {
1596 unsigned BitWidth
= OutVal
.getValueSizeInBits();
1597 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 8);
1599 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
1600 !DCI
.isBeforeLegalizeOps());
1601 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1602 if (TLI
.ShrinkDemandedConstant(OutVal
, DemandedMask
, TLO
) ||
1603 TLI
.SimplifyDemandedBits(OutVal
, DemandedMask
, Known
, TLO
))
1604 DCI
.CommitTargetLoweringOpt(TLO
);
1608 case Intrinsic::xcore_setpt
: {
1609 SDValue Time
= N
->getOperand(3);
1610 // This instruction ignores the high bits.
1611 if (Time
.hasOneUse()) {
1612 unsigned BitWidth
= Time
.getValueSizeInBits();
1613 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
1615 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
1616 !DCI
.isBeforeLegalizeOps());
1617 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1618 if (TLI
.ShrinkDemandedConstant(Time
, DemandedMask
, TLO
) ||
1619 TLI
.SimplifyDemandedBits(Time
, DemandedMask
, Known
, TLO
))
1620 DCI
.CommitTargetLoweringOpt(TLO
);
1626 case XCoreISD::LADD
: {
1627 SDValue N0
= N
->getOperand(0);
1628 SDValue N1
= N
->getOperand(1);
1629 SDValue N2
= N
->getOperand(2);
1630 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1631 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1632 EVT VT
= N0
.getValueType();
1634 // canonicalize constant to RHS
1636 return DAG
.getNode(XCoreISD::LADD
, dl
, DAG
.getVTList(VT
, VT
), N1
, N0
, N2
);
1638 // fold (ladd 0, 0, x) -> 0, x & 1
1639 if (N0C
&& N0C
->isNullValue() && N1C
&& N1C
->isNullValue()) {
1640 SDValue Carry
= DAG
.getConstant(0, dl
, VT
);
1641 SDValue Result
= DAG
.getNode(ISD::AND
, dl
, VT
, N2
,
1642 DAG
.getConstant(1, dl
, VT
));
1643 SDValue Ops
[] = { Result
, Carry
};
1644 return DAG
.getMergeValues(Ops
, dl
);
1647 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1649 if (N1C
&& N1C
->isNullValue() && N
->hasNUsesOfValue(0, 1)) {
1650 APInt Mask
= APInt::getHighBitsSet(VT
.getSizeInBits(),
1651 VT
.getSizeInBits() - 1);
1652 KnownBits Known
= DAG
.computeKnownBits(N2
);
1653 if ((Known
.Zero
& Mask
) == Mask
) {
1654 SDValue Carry
= DAG
.getConstant(0, dl
, VT
);
1655 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, VT
, N0
, N2
);
1656 SDValue Ops
[] = { Result
, Carry
};
1657 return DAG
.getMergeValues(Ops
, dl
);
1662 case XCoreISD::LSUB
: {
1663 SDValue N0
= N
->getOperand(0);
1664 SDValue N1
= N
->getOperand(1);
1665 SDValue N2
= N
->getOperand(2);
1666 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1667 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1668 EVT VT
= N0
.getValueType();
1670 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1671 if (N0C
&& N0C
->isNullValue() && N1C
&& N1C
->isNullValue()) {
1672 APInt Mask
= APInt::getHighBitsSet(VT
.getSizeInBits(),
1673 VT
.getSizeInBits() - 1);
1674 KnownBits Known
= DAG
.computeKnownBits(N2
);
1675 if ((Known
.Zero
& Mask
) == Mask
) {
1676 SDValue Borrow
= N2
;
1677 SDValue Result
= DAG
.getNode(ISD::SUB
, dl
, VT
,
1678 DAG
.getConstant(0, dl
, VT
), N2
);
1679 SDValue Ops
[] = { Result
, Borrow
};
1680 return DAG
.getMergeValues(Ops
, dl
);
1684 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1686 if (N1C
&& N1C
->isNullValue() && N
->hasNUsesOfValue(0, 1)) {
1687 APInt Mask
= APInt::getHighBitsSet(VT
.getSizeInBits(),
1688 VT
.getSizeInBits() - 1);
1689 KnownBits Known
= DAG
.computeKnownBits(N2
);
1690 if ((Known
.Zero
& Mask
) == Mask
) {
1691 SDValue Borrow
= DAG
.getConstant(0, dl
, VT
);
1692 SDValue Result
= DAG
.getNode(ISD::SUB
, dl
, VT
, N0
, N2
);
1693 SDValue Ops
[] = { Result
, Borrow
};
1694 return DAG
.getMergeValues(Ops
, dl
);
1699 case XCoreISD::LMUL
: {
1700 SDValue N0
= N
->getOperand(0);
1701 SDValue N1
= N
->getOperand(1);
1702 SDValue N2
= N
->getOperand(2);
1703 SDValue N3
= N
->getOperand(3);
1704 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1705 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1706 EVT VT
= N0
.getValueType();
1707 // Canonicalize multiplicative constant to RHS. If both multiplicative
1708 // operands are constant canonicalize smallest to RHS.
1709 if ((N0C
&& !N1C
) ||
1710 (N0C
&& N1C
&& N0C
->getZExtValue() < N1C
->getZExtValue()))
1711 return DAG
.getNode(XCoreISD::LMUL
, dl
, DAG
.getVTList(VT
, VT
),
1715 if (N1C
&& N1C
->isNullValue()) {
1716 // If the high result is unused fold to add(a, b)
1717 if (N
->hasNUsesOfValue(0, 0)) {
1718 SDValue Lo
= DAG
.getNode(ISD::ADD
, dl
, VT
, N2
, N3
);
1719 SDValue Ops
[] = { Lo
, Lo
};
1720 return DAG
.getMergeValues(Ops
, dl
);
1722 // Otherwise fold to ladd(a, b, 0)
1724 DAG
.getNode(XCoreISD::LADD
, dl
, DAG
.getVTList(VT
, VT
), N2
, N3
, N1
);
1725 SDValue
Carry(Result
.getNode(), 1);
1726 SDValue Ops
[] = { Carry
, Result
};
1727 return DAG
.getMergeValues(Ops
, dl
);
1732 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1733 // lmul(x, y, a, b). The high result of lmul will be ignored.
1734 // This is only profitable if the intermediate results are unused
1736 SDValue Mul0
, Mul1
, Addend0
, Addend1
;
1737 if (N
->getValueType(0) == MVT::i32
&&
1738 isADDADDMUL(SDValue(N
, 0), Mul0
, Mul1
, Addend0
, Addend1
, true)) {
1739 SDValue Ignored
= DAG
.getNode(XCoreISD::LMUL
, dl
,
1740 DAG
.getVTList(MVT::i32
, MVT::i32
), Mul0
,
1741 Mul1
, Addend0
, Addend1
);
1742 SDValue
Result(Ignored
.getNode(), 1);
1745 APInt HighMask
= APInt::getHighBitsSet(64, 32);
1746 // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1747 // lmul(x, y, a, b) if all operands are zero-extended. We do this
1748 // before type legalization as it is messy to match the operands after
1750 if (N
->getValueType(0) == MVT::i64
&&
1751 isADDADDMUL(SDValue(N
, 0), Mul0
, Mul1
, Addend0
, Addend1
, false) &&
1752 DAG
.MaskedValueIsZero(Mul0
, HighMask
) &&
1753 DAG
.MaskedValueIsZero(Mul1
, HighMask
) &&
1754 DAG
.MaskedValueIsZero(Addend0
, HighMask
) &&
1755 DAG
.MaskedValueIsZero(Addend1
, HighMask
)) {
1756 SDValue Mul0L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
1757 Mul0
, DAG
.getConstant(0, dl
, MVT::i32
));
1758 SDValue Mul1L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
1759 Mul1
, DAG
.getConstant(0, dl
, MVT::i32
));
1760 SDValue Addend0L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
1761 Addend0
, DAG
.getConstant(0, dl
, MVT::i32
));
1762 SDValue Addend1L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
1763 Addend1
, DAG
.getConstant(0, dl
, MVT::i32
));
1764 SDValue Hi
= DAG
.getNode(XCoreISD::LMUL
, dl
,
1765 DAG
.getVTList(MVT::i32
, MVT::i32
), Mul0L
, Mul1L
,
1766 Addend0L
, Addend1L
);
1767 SDValue
Lo(Hi
.getNode(), 1);
1768 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
1773 // Replace unaligned store of unaligned load with memmove.
1774 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
1775 if (!DCI
.isBeforeLegalize() ||
1776 allowsMisalignedMemoryAccesses(ST
->getMemoryVT(),
1777 ST
->getAddressSpace(),
1778 ST
->getAlignment()) ||
1779 ST
->isVolatile() || ST
->isIndexed()) {
1782 SDValue Chain
= ST
->getChain();
1784 unsigned StoreBits
= ST
->getMemoryVT().getStoreSizeInBits();
1785 assert((StoreBits
% 8) == 0 &&
1786 "Store size in bits must be a multiple of 8");
1787 unsigned ABIAlignment
= DAG
.getDataLayout().getABITypeAlignment(
1788 ST
->getMemoryVT().getTypeForEVT(*DCI
.DAG
.getContext()));
1789 unsigned Alignment
= ST
->getAlignment();
1790 if (Alignment
>= ABIAlignment
) {
1794 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(ST
->getValue())) {
1795 if (LD
->hasNUsesOfValue(1, 0) && ST
->getMemoryVT() == LD
->getMemoryVT() &&
1796 LD
->getAlignment() == Alignment
&&
1797 !LD
->isVolatile() && !LD
->isIndexed() &&
1798 Chain
.reachesChainWithoutSideEffects(SDValue(LD
, 1))) {
1799 bool isTail
= isInTailCallPosition(DAG
, ST
, Chain
);
1800 return DAG
.getMemmove(Chain
, dl
, ST
->getBasePtr(),
1802 DAG
.getConstant(StoreBits
/8, dl
, MVT::i32
),
1803 Alignment
, false, isTail
, ST
->getPointerInfo(),
1804 LD
->getPointerInfo());
1813 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
1815 const APInt
&DemandedElts
,
1816 const SelectionDAG
&DAG
,
1817 unsigned Depth
) const {
1819 switch (Op
.getOpcode()) {
1821 case XCoreISD::LADD
:
1822 case XCoreISD::LSUB
:
1823 if (Op
.getResNo() == 1) {
1824 // Top bits of carry / borrow are clear.
1825 Known
.Zero
= APInt::getHighBitsSet(Known
.getBitWidth(),
1826 Known
.getBitWidth() - 1);
1829 case ISD::INTRINSIC_W_CHAIN
:
1831 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
1833 case Intrinsic::xcore_getts
:
1834 // High bits are known to be zero.
1835 Known
.Zero
= APInt::getHighBitsSet(Known
.getBitWidth(),
1836 Known
.getBitWidth() - 16);
1838 case Intrinsic::xcore_int
:
1839 case Intrinsic::xcore_inct
:
1840 // High bits are known to be zero.
1841 Known
.Zero
= APInt::getHighBitsSet(Known
.getBitWidth(),
1842 Known
.getBitWidth() - 8);
1844 case Intrinsic::xcore_testct
:
1845 // Result is either 0 or 1.
1846 Known
.Zero
= APInt::getHighBitsSet(Known
.getBitWidth(),
1847 Known
.getBitWidth() - 1);
1849 case Intrinsic::xcore_testwct
:
1850 // Result is in the range 0 - 4.
1851 Known
.Zero
= APInt::getHighBitsSet(Known
.getBitWidth(),
1852 Known
.getBitWidth() - 3);
1860 //===----------------------------------------------------------------------===//
1861 // Addressing mode description hooks
1862 //===----------------------------------------------------------------------===//
1864 static inline bool isImmUs(int64_t val
)
1866 return (val
>= 0 && val
<= 11);
1869 static inline bool isImmUs2(int64_t val
)
1871 return (val
%2 == 0 && isImmUs(val
/2));
1874 static inline bool isImmUs4(int64_t val
)
1876 return (val
%4 == 0 && isImmUs(val
/4));
1879 /// isLegalAddressingMode - Return true if the addressing mode represented
1880 /// by AM is legal for this target, for a load/store of the specified type.
1881 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
1882 const AddrMode
&AM
, Type
*Ty
,
1884 Instruction
*I
) const {
1885 if (Ty
->getTypeID() == Type::VoidTyID
)
1886 return AM
.Scale
== 0 && isImmUs(AM
.BaseOffs
) && isImmUs4(AM
.BaseOffs
);
1888 unsigned Size
= DL
.getTypeAllocSize(Ty
);
1890 return Size
>= 4 && !AM
.HasBaseReg
&& AM
.Scale
== 0 &&
1897 if (AM
.Scale
== 0) {
1898 return isImmUs(AM
.BaseOffs
);
1901 return AM
.Scale
== 1 && AM
.BaseOffs
== 0;
1905 if (AM
.Scale
== 0) {
1906 return isImmUs2(AM
.BaseOffs
);
1909 return AM
.Scale
== 2 && AM
.BaseOffs
== 0;
1912 if (AM
.Scale
== 0) {
1913 return isImmUs4(AM
.BaseOffs
);
1916 return AM
.Scale
== 4 && AM
.BaseOffs
== 0;
1920 //===----------------------------------------------------------------------===//
1921 // XCore Inline Assembly Support
1922 //===----------------------------------------------------------------------===//
1924 std::pair
<unsigned, const TargetRegisterClass
*>
1925 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
1926 StringRef Constraint
,
1928 if (Constraint
.size() == 1) {
1929 switch (Constraint
[0]) {
1932 return std::make_pair(0U, &XCore::GRRegsRegClass
);
1935 // Use the default implementation in TargetLowering to convert the register
1936 // constraint into a member of a register class.
1937 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);