Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Target / XCore / XCoreISelLowering.cpp
blob8979ee727d0bb9e123e99ba6fd36ca1c51c911c5
1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the XCoreTargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "XCoreISelLowering.h"
14 #include "XCore.h"
15 #include "XCoreMachineFunctionInfo.h"
16 #include "XCoreSubtarget.h"
17 #include "XCoreTargetMachine.h"
18 #include "XCoreTargetObjectFile.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
40 using namespace llvm;
42 #define DEBUG_TYPE "xcore-lower"
44 const char *XCoreTargetLowering::
45 getTargetNodeName(unsigned Opcode) const
47 switch ((XCoreISD::NodeType)Opcode)
49 case XCoreISD::FIRST_NUMBER : break;
50 case XCoreISD::BL : return "XCoreISD::BL";
51 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
52 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
53 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
54 case XCoreISD::LDWSP : return "XCoreISD::LDWSP";
55 case XCoreISD::STWSP : return "XCoreISD::STWSP";
56 case XCoreISD::RETSP : return "XCoreISD::RETSP";
57 case XCoreISD::LADD : return "XCoreISD::LADD";
58 case XCoreISD::LSUB : return "XCoreISD::LSUB";
59 case XCoreISD::LMUL : return "XCoreISD::LMUL";
60 case XCoreISD::MACCU : return "XCoreISD::MACCU";
61 case XCoreISD::MACCS : return "XCoreISD::MACCS";
62 case XCoreISD::CRC8 : return "XCoreISD::CRC8";
63 case XCoreISD::BR_JT : return "XCoreISD::BR_JT";
64 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32";
65 case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
66 case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN";
67 case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER";
69 return nullptr;
72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
73 const XCoreSubtarget &Subtarget)
74 : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
76 // Set up the register classes.
77 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
79 // Compute derived properties from the register classes
80 computeRegisterProperties(Subtarget.getRegisterInfo());
82 setStackPointerRegisterToSaveRestore(XCore::SP);
84 setSchedulingPreference(Sched::Source);
86 // Use i32 for setcc operations results (slt, sgt, ...).
87 setBooleanContents(ZeroOrOneBooleanContent);
88 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
90 // XCore does not have the NodeTypes below.
91 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
92 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
94 // 64bit
95 setOperationAction(ISD::ADD, MVT::i64, Custom);
96 setOperationAction(ISD::SUB, MVT::i64, Custom);
97 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
98 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
99 setOperationAction(ISD::MULHS, MVT::i32, Expand);
100 setOperationAction(ISD::MULHU, MVT::i32, Expand);
101 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
102 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
103 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
105 // Bit Manipulation
106 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
107 setOperationAction(ISD::ROTL , MVT::i32, Expand);
108 setOperationAction(ISD::ROTR , MVT::i32, Expand);
110 setOperationAction(ISD::TRAP, MVT::Other, Legal);
112 // Jump tables.
113 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
115 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
116 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
118 // Conversion of i64 -> double produces constantpool nodes
119 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
121 // Loads
122 for (MVT VT : MVT::integer_valuetypes()) {
123 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
124 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
125 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
127 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
128 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
131 // Custom expand misaligned loads / stores.
132 setOperationAction(ISD::LOAD, MVT::i32, Custom);
133 setOperationAction(ISD::STORE, MVT::i32, Custom);
135 // Varargs
136 setOperationAction(ISD::VAEND, MVT::Other, Expand);
137 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
138 setOperationAction(ISD::VAARG, MVT::Other, Custom);
139 setOperationAction(ISD::VASTART, MVT::Other, Custom);
141 // Dynamic stack
142 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
143 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
144 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
146 // Exception handling
147 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
148 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
150 // Atomic operations
151 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
152 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
153 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
154 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
155 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
157 // TRAMPOLINE is custom lowered.
158 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
159 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
161 // We want to custom lower some of our intrinsics.
162 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
164 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
165 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
166 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
168 // We have target-specific dag combine patterns for the following nodes:
169 setTargetDAGCombine(ISD::STORE);
170 setTargetDAGCombine(ISD::ADD);
171 setTargetDAGCombine(ISD::INTRINSIC_VOID);
172 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
174 setMinFunctionAlignment(1);
175 setPrefFunctionAlignment(2);
178 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
179 if (Val.getOpcode() != ISD::LOAD)
180 return false;
182 EVT VT1 = Val.getValueType();
183 if (!VT1.isSimple() || !VT1.isInteger() ||
184 !VT2.isSimple() || !VT2.isInteger())
185 return false;
187 switch (VT1.getSimpleVT().SimpleTy) {
188 default: break;
189 case MVT::i8:
190 return true;
193 return false;
196 SDValue XCoreTargetLowering::
197 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
198 switch (Op.getOpcode())
200 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
201 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
202 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
203 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
204 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
205 case ISD::LOAD: return LowerLOAD(Op, DAG);
206 case ISD::STORE: return LowerSTORE(Op, DAG);
207 case ISD::VAARG: return LowerVAARG(Op, DAG);
208 case ISD::VASTART: return LowerVASTART(Op, DAG);
209 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG);
210 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG);
211 // FIXME: Remove these when LegalizeDAGTypes lands.
212 case ISD::ADD:
213 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG);
214 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
215 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
216 case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
217 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
218 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
219 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
220 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
221 case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG);
222 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG);
223 default:
224 llvm_unreachable("unimplemented operand");
228 /// ReplaceNodeResults - Replace the results of node with an illegal result
229 /// type with new values built out of custom code.
230 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
231 SmallVectorImpl<SDValue>&Results,
232 SelectionDAG &DAG) const {
233 switch (N->getOpcode()) {
234 default:
235 llvm_unreachable("Don't know how to custom expand this!");
236 case ISD::ADD:
237 case ISD::SUB:
238 Results.push_back(ExpandADDSUB(N, DAG));
239 return;
243 //===----------------------------------------------------------------------===//
244 // Misc Lower Operation implementation
245 //===----------------------------------------------------------------------===//
247 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
248 const GlobalValue *GV,
249 SelectionDAG &DAG) const {
250 // FIXME there is no actual debug info here
251 SDLoc dl(GA);
253 if (GV->getValueType()->isFunctionTy())
254 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
256 const auto *GVar = dyn_cast<GlobalVariable>(GV);
257 if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
258 (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
259 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
261 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
264 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
265 if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
266 return true;
268 Type *ObjType = GV->getValueType();
269 if (!ObjType->isSized())
270 return false;
272 auto &DL = GV->getParent()->getDataLayout();
273 unsigned ObjSize = DL.getTypeAllocSize(ObjType);
274 return ObjSize < CodeModelLargeSize && ObjSize != 0;
277 SDValue XCoreTargetLowering::
278 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
280 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
281 const GlobalValue *GV = GN->getGlobal();
282 SDLoc DL(GN);
283 int64_t Offset = GN->getOffset();
284 if (IsSmallObject(GV, *this)) {
285 // We can only fold positive offsets that are a multiple of the word size.
286 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
287 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
288 GA = getGlobalAddressWrapper(GA, GV, DAG);
289 // Handle the rest of the offset.
290 if (Offset != FoldedOffset) {
291 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
292 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
294 return GA;
295 } else {
296 // Ideally we would not fold in offset with an index <= 11.
297 Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
298 Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
299 Ty = Type::getInt32Ty(*DAG.getContext());
300 Constant *Idx = ConstantInt::get(Ty, Offset);
301 Constant *GAI = ConstantExpr::getGetElementPtr(
302 Type::getInt8Ty(*DAG.getContext()), GA, Idx);
303 SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
304 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
305 DAG.getEntryNode(), CP, MachinePointerInfo());
309 SDValue XCoreTargetLowering::
310 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
312 SDLoc DL(Op);
313 auto PtrVT = getPointerTy(DAG.getDataLayout());
314 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
315 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
317 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
320 SDValue XCoreTargetLowering::
321 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
323 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
324 // FIXME there isn't really debug info here
325 SDLoc dl(CP);
326 EVT PtrVT = Op.getValueType();
327 SDValue Res;
328 if (CP->isMachineConstantPoolEntry()) {
329 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
330 CP->getAlignment(), CP->getOffset());
331 } else {
332 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
333 CP->getAlignment(), CP->getOffset());
335 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
338 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
339 return MachineJumpTableInfo::EK_Inline;
342 SDValue XCoreTargetLowering::
343 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
345 SDValue Chain = Op.getOperand(0);
346 SDValue Table = Op.getOperand(1);
347 SDValue Index = Op.getOperand(2);
348 SDLoc dl(Op);
349 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
350 unsigned JTI = JT->getIndex();
351 MachineFunction &MF = DAG.getMachineFunction();
352 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
353 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
355 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
356 if (NumEntries <= 32) {
357 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
359 assert((NumEntries >> 31) == 0);
360 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
361 DAG.getConstant(1, dl, MVT::i32));
362 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
363 ScaledIndex);
366 SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
367 const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
368 SelectionDAG &DAG) const {
369 auto PtrVT = getPointerTy(DAG.getDataLayout());
370 if ((Offset & 0x3) == 0) {
371 return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo());
373 // Lower to pair of consecutive word aligned loads plus some bit shifting.
374 int32_t HighOffset = alignTo(Offset, 4);
375 int32_t LowOffset = HighOffset - 4;
376 SDValue LowAddr, HighAddr;
377 if (GlobalAddressSDNode *GASD =
378 dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
379 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
380 LowOffset);
381 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
382 HighOffset);
383 } else {
384 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
385 DAG.getConstant(LowOffset, DL, MVT::i32));
386 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
387 DAG.getConstant(HighOffset, DL, MVT::i32));
389 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
390 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
392 SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo());
393 SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo());
394 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
395 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
396 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
397 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
398 High.getValue(1));
399 SDValue Ops[] = { Result, Chain };
400 return DAG.getMergeValues(Ops, DL);
403 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
405 KnownBits Known = DAG.computeKnownBits(Value);
406 return Known.countMinTrailingZeros() >= 2;
409 SDValue XCoreTargetLowering::
410 LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
411 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
412 LoadSDNode *LD = cast<LoadSDNode>(Op);
413 assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
414 "Unexpected extension type");
415 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
416 if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(),
417 LD->getAddressSpace(),
418 LD->getAlignment()))
419 return SDValue();
421 auto &TD = DAG.getDataLayout();
422 unsigned ABIAlignment = TD.getABITypeAlignment(
423 LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
424 // Leave aligned load alone.
425 if (LD->getAlignment() >= ABIAlignment)
426 return SDValue();
428 SDValue Chain = LD->getChain();
429 SDValue BasePtr = LD->getBasePtr();
430 SDLoc DL(Op);
432 if (!LD->isVolatile()) {
433 const GlobalValue *GV;
434 int64_t Offset = 0;
435 if (DAG.isBaseWithConstantOffset(BasePtr) &&
436 isWordAligned(BasePtr->getOperand(0), DAG)) {
437 SDValue NewBasePtr = BasePtr->getOperand(0);
438 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
439 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
440 Offset, DAG);
442 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
443 MinAlign(GV->getAlignment(), 4) == 4) {
444 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
445 BasePtr->getValueType(0));
446 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
447 Offset, DAG);
451 if (LD->getAlignment() == 2) {
452 SDValue Low =
453 DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr,
454 LD->getPointerInfo(), MVT::i16,
455 /* Alignment = */ 2, LD->getMemOperand()->getFlags());
456 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
457 DAG.getConstant(2, DL, MVT::i32));
458 SDValue High =
459 DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr,
460 LD->getPointerInfo().getWithOffset(2), MVT::i16,
461 /* Alignment = */ 2, LD->getMemOperand()->getFlags());
462 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
463 DAG.getConstant(16, DL, MVT::i32));
464 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
465 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
466 High.getValue(1));
467 SDValue Ops[] = { Result, Chain };
468 return DAG.getMergeValues(Ops, DL);
471 // Lower to a call to __misaligned_load(BasePtr).
472 Type *IntPtrTy = TD.getIntPtrType(*DAG.getContext());
473 TargetLowering::ArgListTy Args;
474 TargetLowering::ArgListEntry Entry;
476 Entry.Ty = IntPtrTy;
477 Entry.Node = BasePtr;
478 Args.push_back(Entry);
480 TargetLowering::CallLoweringInfo CLI(DAG);
481 CLI.setDebugLoc(DL).setChain(Chain).setLibCallee(
482 CallingConv::C, IntPtrTy,
483 DAG.getExternalSymbol("__misaligned_load",
484 getPointerTy(DAG.getDataLayout())),
485 std::move(Args));
487 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
488 SDValue Ops[] = { CallResult.first, CallResult.second };
489 return DAG.getMergeValues(Ops, DL);
492 SDValue XCoreTargetLowering::
493 LowerSTORE(SDValue Op, SelectionDAG &DAG) const
495 StoreSDNode *ST = cast<StoreSDNode>(Op);
496 assert(!ST->isTruncatingStore() && "Unexpected store type");
497 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
498 if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
499 ST->getAddressSpace(),
500 ST->getAlignment())) {
501 return SDValue();
503 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
504 ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
505 // Leave aligned store alone.
506 if (ST->getAlignment() >= ABIAlignment) {
507 return SDValue();
509 SDValue Chain = ST->getChain();
510 SDValue BasePtr = ST->getBasePtr();
511 SDValue Value = ST->getValue();
512 SDLoc dl(Op);
514 if (ST->getAlignment() == 2) {
515 SDValue Low = Value;
516 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
517 DAG.getConstant(16, dl, MVT::i32));
518 SDValue StoreLow = DAG.getTruncStore(
519 Chain, dl, Low, BasePtr, ST->getPointerInfo(), MVT::i16,
520 /* Alignment = */ 2, ST->getMemOperand()->getFlags());
521 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
522 DAG.getConstant(2, dl, MVT::i32));
523 SDValue StoreHigh = DAG.getTruncStore(
524 Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2),
525 MVT::i16, /* Alignment = */ 2, ST->getMemOperand()->getFlags());
526 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
529 // Lower to a call to __misaligned_store(BasePtr, Value).
530 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
531 TargetLowering::ArgListTy Args;
532 TargetLowering::ArgListEntry Entry;
534 Entry.Ty = IntPtrTy;
535 Entry.Node = BasePtr;
536 Args.push_back(Entry);
538 Entry.Node = Value;
539 Args.push_back(Entry);
541 TargetLowering::CallLoweringInfo CLI(DAG);
542 CLI.setDebugLoc(dl).setChain(Chain).setCallee(
543 CallingConv::C, Type::getVoidTy(*DAG.getContext()),
544 DAG.getExternalSymbol("__misaligned_store",
545 getPointerTy(DAG.getDataLayout())),
546 std::move(Args));
548 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
549 return CallResult.second;
552 SDValue XCoreTargetLowering::
553 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
555 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
556 "Unexpected operand to lower!");
557 SDLoc dl(Op);
558 SDValue LHS = Op.getOperand(0);
559 SDValue RHS = Op.getOperand(1);
560 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
561 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
562 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
563 LHS, RHS);
564 SDValue Lo(Hi.getNode(), 1);
565 SDValue Ops[] = { Lo, Hi };
566 return DAG.getMergeValues(Ops, dl);
569 SDValue XCoreTargetLowering::
570 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
572 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
573 "Unexpected operand to lower!");
574 SDLoc dl(Op);
575 SDValue LHS = Op.getOperand(0);
576 SDValue RHS = Op.getOperand(1);
577 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
578 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
579 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
580 Zero, Zero);
581 SDValue Lo(Hi.getNode(), 1);
582 SDValue Ops[] = { Lo, Hi };
583 return DAG.getMergeValues(Ops, dl);
586 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
587 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
588 /// each intermediate result in the calculation must also have a single use.
589 /// If the Op is in the correct form the constituent parts are written to Mul0,
590 /// Mul1, Addend0 and Addend1.
591 static bool
592 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
593 SDValue &Addend1, bool requireIntermediatesHaveOneUse)
595 if (Op.getOpcode() != ISD::ADD)
596 return false;
597 SDValue N0 = Op.getOperand(0);
598 SDValue N1 = Op.getOperand(1);
599 SDValue AddOp;
600 SDValue OtherOp;
601 if (N0.getOpcode() == ISD::ADD) {
602 AddOp = N0;
603 OtherOp = N1;
604 } else if (N1.getOpcode() == ISD::ADD) {
605 AddOp = N1;
606 OtherOp = N0;
607 } else {
608 return false;
610 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
611 return false;
612 if (OtherOp.getOpcode() == ISD::MUL) {
613 // add(add(a,b),mul(x,y))
614 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
615 return false;
616 Mul0 = OtherOp.getOperand(0);
617 Mul1 = OtherOp.getOperand(1);
618 Addend0 = AddOp.getOperand(0);
619 Addend1 = AddOp.getOperand(1);
620 return true;
622 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
623 // add(add(mul(x,y),a),b)
624 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
625 return false;
626 Mul0 = AddOp.getOperand(0).getOperand(0);
627 Mul1 = AddOp.getOperand(0).getOperand(1);
628 Addend0 = AddOp.getOperand(1);
629 Addend1 = OtherOp;
630 return true;
632 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
633 // add(add(a,mul(x,y)),b)
634 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
635 return false;
636 Mul0 = AddOp.getOperand(1).getOperand(0);
637 Mul1 = AddOp.getOperand(1).getOperand(1);
638 Addend0 = AddOp.getOperand(0);
639 Addend1 = OtherOp;
640 return true;
642 return false;
645 SDValue XCoreTargetLowering::
646 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
648 SDValue Mul;
649 SDValue Other;
650 if (N->getOperand(0).getOpcode() == ISD::MUL) {
651 Mul = N->getOperand(0);
652 Other = N->getOperand(1);
653 } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
654 Mul = N->getOperand(1);
655 Other = N->getOperand(0);
656 } else {
657 return SDValue();
659 SDLoc dl(N);
660 SDValue LL, RL, AddendL, AddendH;
661 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
662 Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
663 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
664 Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
665 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
666 Other, DAG.getConstant(0, dl, MVT::i32));
667 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
668 Other, DAG.getConstant(1, dl, MVT::i32));
669 APInt HighMask = APInt::getHighBitsSet(64, 32);
670 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
671 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
672 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
673 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
674 // The inputs are both zero-extended.
675 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
676 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
677 AddendL, LL, RL);
678 SDValue Lo(Hi.getNode(), 1);
679 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
681 if (LHSSB > 32 && RHSSB > 32) {
682 // The inputs are both sign-extended.
683 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
684 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
685 AddendL, LL, RL);
686 SDValue Lo(Hi.getNode(), 1);
687 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
689 SDValue LH, RH;
690 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
691 Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
692 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
693 Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
694 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
695 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
696 AddendL, LL, RL);
697 SDValue Lo(Hi.getNode(), 1);
698 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
699 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
700 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
701 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
702 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
705 SDValue XCoreTargetLowering::
706 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
708 assert(N->getValueType(0) == MVT::i64 &&
709 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
710 "Unknown operand to lower!");
712 if (N->getOpcode() == ISD::ADD)
713 if (SDValue Result = TryExpandADDWithMul(N, DAG))
714 return Result;
716 SDLoc dl(N);
718 // Extract components
719 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
720 N->getOperand(0),
721 DAG.getConstant(0, dl, MVT::i32));
722 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
723 N->getOperand(0),
724 DAG.getConstant(1, dl, MVT::i32));
725 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
726 N->getOperand(1),
727 DAG.getConstant(0, dl, MVT::i32));
728 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
729 N->getOperand(1),
730 DAG.getConstant(1, dl, MVT::i32));
732 // Expand
733 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
734 XCoreISD::LSUB;
735 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
736 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
737 LHSL, RHSL, Zero);
738 SDValue Carry(Lo.getNode(), 1);
740 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
741 LHSH, RHSH, Carry);
742 SDValue Ignored(Hi.getNode(), 1);
743 // Merge the pieces
744 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
747 SDValue XCoreTargetLowering::
748 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
750 // Whist llvm does not support aggregate varargs we can ignore
751 // the possibility of the ValueType being an implicit byVal vararg.
752 SDNode *Node = Op.getNode();
753 EVT VT = Node->getValueType(0); // not an aggregate
754 SDValue InChain = Node->getOperand(0);
755 SDValue VAListPtr = Node->getOperand(1);
756 EVT PtrVT = VAListPtr.getValueType();
757 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
758 SDLoc dl(Node);
759 SDValue VAList =
760 DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV));
761 // Increment the pointer, VAList, to the next vararg
762 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
763 DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
764 dl));
765 // Store the incremented VAList to the legalized pointer
766 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
767 MachinePointerInfo(SV));
768 // Load the actual argument out of the pointer VAList
769 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo());
772 SDValue XCoreTargetLowering::
773 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
775 SDLoc dl(Op);
776 // vastart stores the address of the VarArgsFrameIndex slot into the
777 // memory location argument
778 MachineFunction &MF = DAG.getMachineFunction();
779 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
780 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
781 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
782 MachinePointerInfo());
785 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
786 SelectionDAG &DAG) const {
787 // This nodes represent llvm.frameaddress on the DAG.
788 // It takes one operand, the index of the frame address to return.
789 // An index of zero corresponds to the current function's frame address.
790 // An index of one to the parent's frame address, and so on.
791 // Depths > 0 not supported yet!
792 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
793 return SDValue();
795 MachineFunction &MF = DAG.getMachineFunction();
796 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
797 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
798 RegInfo->getFrameRegister(MF), MVT::i32);
801 SDValue XCoreTargetLowering::
802 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
803 // This nodes represent llvm.returnaddress on the DAG.
804 // It takes one operand, the index of the return address to return.
805 // An index of zero corresponds to the current function's return address.
806 // An index of one to the parent's return address, and so on.
807 // Depths > 0 not supported yet!
808 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
809 return SDValue();
811 MachineFunction &MF = DAG.getMachineFunction();
812 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
813 int FI = XFI->createLRSpillSlot(MF);
814 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
815 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
816 DAG.getEntryNode(), FIN,
817 MachinePointerInfo::getFixedStack(MF, FI));
820 SDValue XCoreTargetLowering::
821 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
822 // This node represents offset from frame pointer to first on-stack argument.
823 // This is needed for correct stack adjustment during unwind.
824 // However, we don't know the offset until after the frame has be finalised.
825 // This is done during the XCoreFTAOElim pass.
826 return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
829 SDValue XCoreTargetLowering::
830 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
831 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
832 // This node represents 'eh_return' gcc dwarf builtin, which is used to
833 // return from exception. The general meaning is: adjust stack by OFFSET and
834 // pass execution to HANDLER.
835 MachineFunction &MF = DAG.getMachineFunction();
836 SDValue Chain = Op.getOperand(0);
837 SDValue Offset = Op.getOperand(1);
838 SDValue Handler = Op.getOperand(2);
839 SDLoc dl(Op);
841 // Absolute SP = (FP + FrameToArgs) + Offset
842 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
843 SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
844 RegInfo->getFrameRegister(MF), MVT::i32);
845 SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
846 MVT::i32);
847 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
848 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
850 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
851 // which leaves 2 caller saved registers, R2 & R3 for us to use.
852 unsigned StackReg = XCore::R2;
853 unsigned HandlerReg = XCore::R3;
855 SDValue OutChains[] = {
856 DAG.getCopyToReg(Chain, dl, StackReg, Stack),
857 DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
860 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
862 return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
863 DAG.getRegister(StackReg, MVT::i32),
864 DAG.getRegister(HandlerReg, MVT::i32));
868 SDValue XCoreTargetLowering::
869 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
870 return Op.getOperand(0);
873 SDValue XCoreTargetLowering::
874 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
875 SDValue Chain = Op.getOperand(0);
876 SDValue Trmp = Op.getOperand(1); // trampoline
877 SDValue FPtr = Op.getOperand(2); // nested function
878 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
880 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
882 // .align 4
883 // LDAPF_u10 r11, nest
884 // LDW_2rus r11, r11[0]
885 // STWSP_ru6 r11, sp[0]
886 // LDAPF_u10 r11, fptr
887 // LDW_2rus r11, r11[0]
888 // BAU_1r r11
889 // nest:
890 // .word nest
891 // fptr:
892 // .word fptr
893 SDValue OutChains[5];
895 SDValue Addr = Trmp;
897 SDLoc dl(Op);
898 OutChains[0] =
899 DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
900 MachinePointerInfo(TrmpAddr));
902 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
903 DAG.getConstant(4, dl, MVT::i32));
904 OutChains[1] =
905 DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
906 MachinePointerInfo(TrmpAddr, 4));
908 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
909 DAG.getConstant(8, dl, MVT::i32));
910 OutChains[2] =
911 DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
912 MachinePointerInfo(TrmpAddr, 8));
914 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
915 DAG.getConstant(12, dl, MVT::i32));
916 OutChains[3] =
917 DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12));
919 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
920 DAG.getConstant(16, dl, MVT::i32));
921 OutChains[4] =
922 DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16));
924 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
927 SDValue XCoreTargetLowering::
928 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
929 SDLoc DL(Op);
930 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
931 switch (IntNo) {
932 case Intrinsic::xcore_crc8:
933 EVT VT = Op.getValueType();
934 SDValue Data =
935 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
936 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
937 SDValue Crc(Data.getNode(), 1);
938 SDValue Results[] = { Crc, Data };
939 return DAG.getMergeValues(Results, DL);
941 return SDValue();
944 SDValue XCoreTargetLowering::
945 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
946 SDLoc DL(Op);
947 return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
950 SDValue XCoreTargetLowering::
951 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
952 AtomicSDNode *N = cast<AtomicSDNode>(Op);
953 assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
954 assert((N->getOrdering() == AtomicOrdering::Unordered ||
955 N->getOrdering() == AtomicOrdering::Monotonic) &&
956 "setInsertFencesForAtomic(true) expects unordered / monotonic");
957 if (N->getMemoryVT() == MVT::i32) {
958 if (N->getAlignment() < 4)
959 report_fatal_error("atomic load must be aligned");
960 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
961 N->getChain(), N->getBasePtr(), N->getPointerInfo(),
962 N->getAlignment(), N->getMemOperand()->getFlags(),
963 N->getAAInfo(), N->getRanges());
965 if (N->getMemoryVT() == MVT::i16) {
966 if (N->getAlignment() < 2)
967 report_fatal_error("atomic load must be aligned");
968 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
969 N->getBasePtr(), N->getPointerInfo(), MVT::i16,
970 N->getAlignment(), N->getMemOperand()->getFlags(),
971 N->getAAInfo());
973 if (N->getMemoryVT() == MVT::i8)
974 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
975 N->getBasePtr(), N->getPointerInfo(), MVT::i8,
976 N->getAlignment(), N->getMemOperand()->getFlags(),
977 N->getAAInfo());
978 return SDValue();
981 SDValue XCoreTargetLowering::
982 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
983 AtomicSDNode *N = cast<AtomicSDNode>(Op);
984 assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
985 assert((N->getOrdering() == AtomicOrdering::Unordered ||
986 N->getOrdering() == AtomicOrdering::Monotonic) &&
987 "setInsertFencesForAtomic(true) expects unordered / monotonic");
988 if (N->getMemoryVT() == MVT::i32) {
989 if (N->getAlignment() < 4)
990 report_fatal_error("atomic store must be aligned");
991 return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(),
992 N->getPointerInfo(), N->getAlignment(),
993 N->getMemOperand()->getFlags(), N->getAAInfo());
995 if (N->getMemoryVT() == MVT::i16) {
996 if (N->getAlignment() < 2)
997 report_fatal_error("atomic store must be aligned");
998 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
999 N->getBasePtr(), N->getPointerInfo(), MVT::i16,
1000 N->getAlignment(), N->getMemOperand()->getFlags(),
1001 N->getAAInfo());
1003 if (N->getMemoryVT() == MVT::i8)
1004 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1005 N->getBasePtr(), N->getPointerInfo(), MVT::i8,
1006 N->getAlignment(), N->getMemOperand()->getFlags(),
1007 N->getAAInfo());
1008 return SDValue();
1011 //===----------------------------------------------------------------------===//
1012 // Calling Convention Implementation
1013 //===----------------------------------------------------------------------===//
1015 #include "XCoreGenCallingConv.inc"
1017 //===----------------------------------------------------------------------===//
1018 // Call Calling Convention Implementation
1019 //===----------------------------------------------------------------------===//
1021 /// XCore call implementation
1022 SDValue
1023 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1024 SmallVectorImpl<SDValue> &InVals) const {
1025 SelectionDAG &DAG = CLI.DAG;
1026 SDLoc &dl = CLI.DL;
1027 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1028 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1029 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1030 SDValue Chain = CLI.Chain;
1031 SDValue Callee = CLI.Callee;
1032 bool &isTailCall = CLI.IsTailCall;
1033 CallingConv::ID CallConv = CLI.CallConv;
1034 bool isVarArg = CLI.IsVarArg;
1036 // XCore target does not yet support tail call optimization.
1037 isTailCall = false;
1039 // For now, only CallingConv::C implemented
1040 switch (CallConv)
1042 default:
1043 report_fatal_error("Unsupported calling convention");
1044 case CallingConv::Fast:
1045 case CallingConv::C:
1046 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1047 Outs, OutVals, Ins, dl, DAG, InVals);
1051 /// LowerCallResult - Lower the result values of a call into the
1052 /// appropriate copies out of appropriate physical registers / memory locations.
1053 static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1054 const SmallVectorImpl<CCValAssign> &RVLocs,
1055 const SDLoc &dl, SelectionDAG &DAG,
1056 SmallVectorImpl<SDValue> &InVals) {
1057 SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1058 // Copy results out of physical registers.
1059 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1060 const CCValAssign &VA = RVLocs[i];
1061 if (VA.isRegLoc()) {
1062 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1063 InFlag).getValue(1);
1064 InFlag = Chain.getValue(2);
1065 InVals.push_back(Chain.getValue(0));
1066 } else {
1067 assert(VA.isMemLoc());
1068 ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1069 InVals.size()));
1070 // Reserve space for this result.
1071 InVals.push_back(SDValue());
1075 // Copy results out of memory.
1076 SmallVector<SDValue, 4> MemOpChains;
1077 for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1078 int offset = ResultMemLocs[i].first;
1079 unsigned index = ResultMemLocs[i].second;
1080 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1081 SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1082 SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1083 InVals[index] = load;
1084 MemOpChains.push_back(load.getValue(1));
1087 // Transform all loads nodes into one single node because
1088 // all load nodes are independent of each other.
1089 if (!MemOpChains.empty())
1090 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1092 return Chain;
1095 /// LowerCCCCallTo - functions arguments are copied from virtual
1096 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1097 /// CALLSEQ_END are emitted.
1098 /// TODO: isTailCall, sret.
1099 SDValue XCoreTargetLowering::LowerCCCCallTo(
1100 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
1101 bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
1102 const SmallVectorImpl<SDValue> &OutVals,
1103 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1104 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1106 // Analyze operands of the call, assigning locations to each operand.
1107 SmallVector<CCValAssign, 16> ArgLocs;
1108 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1109 *DAG.getContext());
1111 // The ABI dictates there should be one stack slot available to the callee
1112 // on function entry (for saving lr).
1113 CCInfo.AllocateStack(4, 4);
1115 CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1117 SmallVector<CCValAssign, 16> RVLocs;
1118 // Analyze return values to determine the number of bytes of stack required.
1119 CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1120 *DAG.getContext());
1121 RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
1122 RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1124 // Get a count of how many bytes are to be pushed on the stack.
1125 unsigned NumBytes = RetCCInfo.getNextStackOffset();
1126 auto PtrVT = getPointerTy(DAG.getDataLayout());
1128 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1130 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1131 SmallVector<SDValue, 12> MemOpChains;
1133 // Walk the register/memloc assignments, inserting copies/loads.
1134 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1135 CCValAssign &VA = ArgLocs[i];
1136 SDValue Arg = OutVals[i];
1138 // Promote the value if needed.
1139 switch (VA.getLocInfo()) {
1140 default: llvm_unreachable("Unknown loc info!");
1141 case CCValAssign::Full: break;
1142 case CCValAssign::SExt:
1143 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1144 break;
1145 case CCValAssign::ZExt:
1146 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1147 break;
1148 case CCValAssign::AExt:
1149 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1150 break;
1153 // Arguments that can be passed on register must be kept at
1154 // RegsToPass vector
1155 if (VA.isRegLoc()) {
1156 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1157 } else {
1158 assert(VA.isMemLoc());
1160 int Offset = VA.getLocMemOffset();
1162 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1163 Chain, Arg,
1164 DAG.getConstant(Offset/4, dl,
1165 MVT::i32)));
1169 // Transform all store nodes into one single node because
1170 // all store nodes are independent of each other.
1171 if (!MemOpChains.empty())
1172 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1174 // Build a sequence of copy-to-reg nodes chained together with token
1175 // chain and flag operands which copy the outgoing args into registers.
1176 // The InFlag in necessary since all emitted instructions must be
1177 // stuck together.
1178 SDValue InFlag;
1179 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1180 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1181 RegsToPass[i].second, InFlag);
1182 InFlag = Chain.getValue(1);
1185 // If the callee is a GlobalAddress node (quite common, every direct call is)
1186 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1187 // Likewise ExternalSymbol -> TargetExternalSymbol.
1188 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1189 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1190 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1191 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1193 // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1194 // = Chain, Callee, Reg#1, Reg#2, ...
1196 // Returns a chain & a flag for retval copy to use.
1197 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1198 SmallVector<SDValue, 8> Ops;
1199 Ops.push_back(Chain);
1200 Ops.push_back(Callee);
1202 // Add argument registers to the end of the list so that they are
1203 // known live into the call.
1204 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1205 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1206 RegsToPass[i].second.getValueType()));
1208 if (InFlag.getNode())
1209 Ops.push_back(InFlag);
1211 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1212 InFlag = Chain.getValue(1);
1214 // Create the CALLSEQ_END node.
1215 Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
1216 DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
1217 InFlag = Chain.getValue(1);
1219 // Handle result values, copying them out of physregs into vregs that we
1220 // return.
1221 return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1224 //===----------------------------------------------------------------------===//
1225 // Formal Arguments Calling Convention Implementation
1226 //===----------------------------------------------------------------------===//
1228 namespace {
1229 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1232 /// XCore formal arguments implementation
1233 SDValue XCoreTargetLowering::LowerFormalArguments(
1234 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1235 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1236 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1237 switch (CallConv)
1239 default:
1240 report_fatal_error("Unsupported calling convention");
1241 case CallingConv::C:
1242 case CallingConv::Fast:
1243 return LowerCCCArguments(Chain, CallConv, isVarArg,
1244 Ins, dl, DAG, InVals);
1248 /// LowerCCCArguments - transform physical registers into
1249 /// virtual registers and generate load operations for
1250 /// arguments places on the stack.
1251 /// TODO: sret
1252 SDValue XCoreTargetLowering::LowerCCCArguments(
1253 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1254 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1255 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1256 MachineFunction &MF = DAG.getMachineFunction();
1257 MachineFrameInfo &MFI = MF.getFrameInfo();
1258 MachineRegisterInfo &RegInfo = MF.getRegInfo();
1259 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1261 // Assign locations to all of the incoming arguments.
1262 SmallVector<CCValAssign, 16> ArgLocs;
1263 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1264 *DAG.getContext());
1266 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1268 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1270 unsigned LRSaveSize = StackSlotSize;
1272 if (!isVarArg)
1273 XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1275 // All getCopyFromReg ops must precede any getMemcpys to prevent the
1276 // scheduler clobbering a register before it has been copied.
1277 // The stages are:
1278 // 1. CopyFromReg (and load) arg & vararg registers.
1279 // 2. Chain CopyFromReg nodes into a TokenFactor.
1280 // 3. Memcpy 'byVal' args & push final InVals.
1281 // 4. Chain mem ops nodes into a TokenFactor.
1282 SmallVector<SDValue, 4> CFRegNode;
1283 SmallVector<ArgDataPair, 4> ArgData;
1284 SmallVector<SDValue, 4> MemOps;
1286 // 1a. CopyFromReg (and load) arg registers.
1287 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1289 CCValAssign &VA = ArgLocs[i];
1290 SDValue ArgIn;
1292 if (VA.isRegLoc()) {
1293 // Arguments passed in registers
1294 EVT RegVT = VA.getLocVT();
1295 switch (RegVT.getSimpleVT().SimpleTy) {
1296 default:
1298 #ifndef NDEBUG
1299 errs() << "LowerFormalArguments Unhandled argument type: "
1300 << RegVT.getEVTString() << "\n";
1301 #endif
1302 llvm_unreachable(nullptr);
1304 case MVT::i32:
1305 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1306 RegInfo.addLiveIn(VA.getLocReg(), VReg);
1307 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1308 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1310 } else {
1311 // sanity check
1312 assert(VA.isMemLoc());
1313 // Load the argument to a virtual register
1314 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1315 if (ObjSize > StackSlotSize) {
1316 errs() << "LowerFormalArguments Unhandled argument type: "
1317 << EVT(VA.getLocVT()).getEVTString()
1318 << "\n";
1320 // Create the frame index object for this incoming parameter...
1321 int FI = MFI.CreateFixedObject(ObjSize,
1322 LRSaveSize + VA.getLocMemOffset(),
1323 true);
1325 // Create the SelectionDAG nodes corresponding to a load
1326 //from this parameter
1327 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1328 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1329 MachinePointerInfo::getFixedStack(MF, FI));
1331 const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1332 ArgData.push_back(ADP);
1335 // 1b. CopyFromReg vararg registers.
1336 if (isVarArg) {
1337 // Argument registers
1338 static const MCPhysReg ArgRegs[] = {
1339 XCore::R0, XCore::R1, XCore::R2, XCore::R3
1341 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1342 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1343 if (FirstVAReg < array_lengthof(ArgRegs)) {
1344 int offset = 0;
1345 // Save remaining registers, storing higher register numbers at a higher
1346 // address
1347 for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1348 // Create a stack slot
1349 int FI = MFI.CreateFixedObject(4, offset, true);
1350 if (i == (int)FirstVAReg) {
1351 XFI->setVarArgsFrameIndex(FI);
1353 offset -= StackSlotSize;
1354 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1355 // Move argument from phys reg -> virt reg
1356 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1357 RegInfo.addLiveIn(ArgRegs[i], VReg);
1358 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1359 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1360 // Move argument from virt reg -> stack
1361 SDValue Store =
1362 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
1363 MemOps.push_back(Store);
1365 } else {
1366 // This will point to the next argument passed via stack.
1367 XFI->setVarArgsFrameIndex(
1368 MFI.CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1369 true));
1373 // 2. chain CopyFromReg nodes into a TokenFactor.
1374 if (!CFRegNode.empty())
1375 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1377 // 3. Memcpy 'byVal' args & push final InVals.
1378 // Aggregates passed "byVal" need to be copied by the callee.
1379 // The callee will use a pointer to this copy, rather than the original
1380 // pointer.
1381 for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1382 ArgDE = ArgData.end();
1383 ArgDI != ArgDE; ++ArgDI) {
1384 if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1385 unsigned Size = ArgDI->Flags.getByValSize();
1386 unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
1387 // Create a new object on the stack and copy the pointee into it.
1388 int FI = MFI.CreateStackObject(Size, Align, false);
1389 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1390 InVals.push_back(FIN);
1391 MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1392 DAG.getConstant(Size, dl, MVT::i32),
1393 Align, false, false, false,
1394 MachinePointerInfo(),
1395 MachinePointerInfo()));
1396 } else {
1397 InVals.push_back(ArgDI->SDV);
1401 // 4, chain mem ops nodes into a TokenFactor.
1402 if (!MemOps.empty()) {
1403 MemOps.push_back(Chain);
1404 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1407 return Chain;
1410 //===----------------------------------------------------------------------===//
1411 // Return Value Calling Convention Implementation
1412 //===----------------------------------------------------------------------===//
1414 bool XCoreTargetLowering::
1415 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1416 bool isVarArg,
1417 const SmallVectorImpl<ISD::OutputArg> &Outs,
1418 LLVMContext &Context) const {
1419 SmallVector<CCValAssign, 16> RVLocs;
1420 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1421 if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1422 return false;
1423 if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1424 return false;
1425 return true;
1428 SDValue
1429 XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1430 bool isVarArg,
1431 const SmallVectorImpl<ISD::OutputArg> &Outs,
1432 const SmallVectorImpl<SDValue> &OutVals,
1433 const SDLoc &dl, SelectionDAG &DAG) const {
1435 XCoreFunctionInfo *XFI =
1436 DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1437 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1439 // CCValAssign - represent the assignment of
1440 // the return value to a location
1441 SmallVector<CCValAssign, 16> RVLocs;
1443 // CCState - Info about the registers and stack slot.
1444 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1445 *DAG.getContext());
1447 // Analyze return values.
1448 if (!isVarArg)
1449 CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
1451 CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1453 SDValue Flag;
1454 SmallVector<SDValue, 4> RetOps(1, Chain);
1456 // Return on XCore is always a "retsp 0"
1457 RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1459 SmallVector<SDValue, 4> MemOpChains;
1460 // Handle return values that must be copied to memory.
1461 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1462 CCValAssign &VA = RVLocs[i];
1463 if (VA.isRegLoc())
1464 continue;
1465 assert(VA.isMemLoc());
1466 if (isVarArg) {
1467 report_fatal_error("Can't return value from vararg function in memory");
1470 int Offset = VA.getLocMemOffset();
1471 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1472 // Create the frame index object for the memory location.
1473 int FI = MFI.CreateFixedObject(ObjSize, Offset, false);
1475 // Create a SelectionDAG node corresponding to a store
1476 // to this memory location.
1477 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1478 MemOpChains.push_back(DAG.getStore(
1479 Chain, dl, OutVals[i], FIN,
1480 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
1483 // Transform all store nodes into one single node because
1484 // all stores are independent of each other.
1485 if (!MemOpChains.empty())
1486 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1488 // Now handle return values copied to registers.
1489 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1490 CCValAssign &VA = RVLocs[i];
1491 if (!VA.isRegLoc())
1492 continue;
1493 // Copy the result values into the output registers.
1494 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1496 // guarantee that all emitted copies are
1497 // stuck together, avoiding something bad
1498 Flag = Chain.getValue(1);
1499 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1502 RetOps[0] = Chain; // Update chain.
1504 // Add the flag if we have it.
1505 if (Flag.getNode())
1506 RetOps.push_back(Flag);
1508 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1511 //===----------------------------------------------------------------------===//
1512 // Other Lowering Code
1513 //===----------------------------------------------------------------------===//
1515 MachineBasicBlock *
1516 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1517 MachineBasicBlock *BB) const {
1518 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1519 DebugLoc dl = MI.getDebugLoc();
1520 assert((MI.getOpcode() == XCore::SELECT_CC) &&
1521 "Unexpected instr type to insert");
1523 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1524 // control-flow pattern. The incoming instruction knows the destination vreg
1525 // to set, the condition code register to branch on, the true/false values to
1526 // select between, and a branch opcode to use.
1527 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1528 MachineFunction::iterator It = ++BB->getIterator();
1530 // thisMBB:
1531 // ...
1532 // TrueVal = ...
1533 // cmpTY ccX, r1, r2
1534 // bCC copy1MBB
1535 // fallthrough --> copy0MBB
1536 MachineBasicBlock *thisMBB = BB;
1537 MachineFunction *F = BB->getParent();
1538 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1539 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1540 F->insert(It, copy0MBB);
1541 F->insert(It, sinkMBB);
1543 // Transfer the remainder of BB and its successor edges to sinkMBB.
1544 sinkMBB->splice(sinkMBB->begin(), BB,
1545 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1546 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1548 // Next, add the true and fallthrough blocks as its successors.
1549 BB->addSuccessor(copy0MBB);
1550 BB->addSuccessor(sinkMBB);
1552 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1553 .addReg(MI.getOperand(1).getReg())
1554 .addMBB(sinkMBB);
1556 // copy0MBB:
1557 // %FalseValue = ...
1558 // # fallthrough to sinkMBB
1559 BB = copy0MBB;
1561 // Update machine-CFG edges
1562 BB->addSuccessor(sinkMBB);
1564 // sinkMBB:
1565 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1566 // ...
1567 BB = sinkMBB;
1568 BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
1569 .addReg(MI.getOperand(3).getReg())
1570 .addMBB(copy0MBB)
1571 .addReg(MI.getOperand(2).getReg())
1572 .addMBB(thisMBB);
1574 MI.eraseFromParent(); // The pseudo instruction is gone now.
1575 return BB;
1578 //===----------------------------------------------------------------------===//
1579 // Target Optimization Hooks
1580 //===----------------------------------------------------------------------===//
1582 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1583 DAGCombinerInfo &DCI) const {
1584 SelectionDAG &DAG = DCI.DAG;
1585 SDLoc dl(N);
1586 switch (N->getOpcode()) {
1587 default: break;
1588 case ISD::INTRINSIC_VOID:
1589 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1590 case Intrinsic::xcore_outt:
1591 case Intrinsic::xcore_outct:
1592 case Intrinsic::xcore_chkct: {
1593 SDValue OutVal = N->getOperand(3);
1594 // These instructions ignore the high bits.
1595 if (OutVal.hasOneUse()) {
1596 unsigned BitWidth = OutVal.getValueSizeInBits();
1597 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1598 KnownBits Known;
1599 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1600 !DCI.isBeforeLegalizeOps());
1601 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1602 if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) ||
1603 TLI.SimplifyDemandedBits(OutVal, DemandedMask, Known, TLO))
1604 DCI.CommitTargetLoweringOpt(TLO);
1606 break;
1608 case Intrinsic::xcore_setpt: {
1609 SDValue Time = N->getOperand(3);
1610 // This instruction ignores the high bits.
1611 if (Time.hasOneUse()) {
1612 unsigned BitWidth = Time.getValueSizeInBits();
1613 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1614 KnownBits Known;
1615 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1616 !DCI.isBeforeLegalizeOps());
1617 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1618 if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) ||
1619 TLI.SimplifyDemandedBits(Time, DemandedMask, Known, TLO))
1620 DCI.CommitTargetLoweringOpt(TLO);
1622 break;
1625 break;
1626 case XCoreISD::LADD: {
1627 SDValue N0 = N->getOperand(0);
1628 SDValue N1 = N->getOperand(1);
1629 SDValue N2 = N->getOperand(2);
1630 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1631 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1632 EVT VT = N0.getValueType();
1634 // canonicalize constant to RHS
1635 if (N0C && !N1C)
1636 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1638 // fold (ladd 0, 0, x) -> 0, x & 1
1639 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1640 SDValue Carry = DAG.getConstant(0, dl, VT);
1641 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1642 DAG.getConstant(1, dl, VT));
1643 SDValue Ops[] = { Result, Carry };
1644 return DAG.getMergeValues(Ops, dl);
1647 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1648 // low bit set
1649 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1650 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1651 VT.getSizeInBits() - 1);
1652 KnownBits Known = DAG.computeKnownBits(N2);
1653 if ((Known.Zero & Mask) == Mask) {
1654 SDValue Carry = DAG.getConstant(0, dl, VT);
1655 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1656 SDValue Ops[] = { Result, Carry };
1657 return DAG.getMergeValues(Ops, dl);
1661 break;
1662 case XCoreISD::LSUB: {
1663 SDValue N0 = N->getOperand(0);
1664 SDValue N1 = N->getOperand(1);
1665 SDValue N2 = N->getOperand(2);
1666 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1667 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1668 EVT VT = N0.getValueType();
1670 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1671 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1672 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1673 VT.getSizeInBits() - 1);
1674 KnownBits Known = DAG.computeKnownBits(N2);
1675 if ((Known.Zero & Mask) == Mask) {
1676 SDValue Borrow = N2;
1677 SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1678 DAG.getConstant(0, dl, VT), N2);
1679 SDValue Ops[] = { Result, Borrow };
1680 return DAG.getMergeValues(Ops, dl);
1684 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1685 // low bit set
1686 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1687 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1688 VT.getSizeInBits() - 1);
1689 KnownBits Known = DAG.computeKnownBits(N2);
1690 if ((Known.Zero & Mask) == Mask) {
1691 SDValue Borrow = DAG.getConstant(0, dl, VT);
1692 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1693 SDValue Ops[] = { Result, Borrow };
1694 return DAG.getMergeValues(Ops, dl);
1698 break;
1699 case XCoreISD::LMUL: {
1700 SDValue N0 = N->getOperand(0);
1701 SDValue N1 = N->getOperand(1);
1702 SDValue N2 = N->getOperand(2);
1703 SDValue N3 = N->getOperand(3);
1704 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1705 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1706 EVT VT = N0.getValueType();
1707 // Canonicalize multiplicative constant to RHS. If both multiplicative
1708 // operands are constant canonicalize smallest to RHS.
1709 if ((N0C && !N1C) ||
1710 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1711 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1712 N1, N0, N2, N3);
1714 // lmul(x, 0, a, b)
1715 if (N1C && N1C->isNullValue()) {
1716 // If the high result is unused fold to add(a, b)
1717 if (N->hasNUsesOfValue(0, 0)) {
1718 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1719 SDValue Ops[] = { Lo, Lo };
1720 return DAG.getMergeValues(Ops, dl);
1722 // Otherwise fold to ladd(a, b, 0)
1723 SDValue Result =
1724 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1725 SDValue Carry(Result.getNode(), 1);
1726 SDValue Ops[] = { Carry, Result };
1727 return DAG.getMergeValues(Ops, dl);
1730 break;
1731 case ISD::ADD: {
1732 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1733 // lmul(x, y, a, b). The high result of lmul will be ignored.
1734 // This is only profitable if the intermediate results are unused
1735 // elsewhere.
1736 SDValue Mul0, Mul1, Addend0, Addend1;
1737 if (N->getValueType(0) == MVT::i32 &&
1738 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1739 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1740 DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1741 Mul1, Addend0, Addend1);
1742 SDValue Result(Ignored.getNode(), 1);
1743 return Result;
1745 APInt HighMask = APInt::getHighBitsSet(64, 32);
1746 // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1747 // lmul(x, y, a, b) if all operands are zero-extended. We do this
1748 // before type legalization as it is messy to match the operands after
1749 // that.
1750 if (N->getValueType(0) == MVT::i64 &&
1751 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1752 DAG.MaskedValueIsZero(Mul0, HighMask) &&
1753 DAG.MaskedValueIsZero(Mul1, HighMask) &&
1754 DAG.MaskedValueIsZero(Addend0, HighMask) &&
1755 DAG.MaskedValueIsZero(Addend1, HighMask)) {
1756 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1757 Mul0, DAG.getConstant(0, dl, MVT::i32));
1758 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1759 Mul1, DAG.getConstant(0, dl, MVT::i32));
1760 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1761 Addend0, DAG.getConstant(0, dl, MVT::i32));
1762 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1763 Addend1, DAG.getConstant(0, dl, MVT::i32));
1764 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1765 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1766 Addend0L, Addend1L);
1767 SDValue Lo(Hi.getNode(), 1);
1768 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1771 break;
1772 case ISD::STORE: {
1773 // Replace unaligned store of unaligned load with memmove.
1774 StoreSDNode *ST = cast<StoreSDNode>(N);
1775 if (!DCI.isBeforeLegalize() ||
1776 allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
1777 ST->getAddressSpace(),
1778 ST->getAlignment()) ||
1779 ST->isVolatile() || ST->isIndexed()) {
1780 break;
1782 SDValue Chain = ST->getChain();
1784 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1785 assert((StoreBits % 8) == 0 &&
1786 "Store size in bits must be a multiple of 8");
1787 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
1788 ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
1789 unsigned Alignment = ST->getAlignment();
1790 if (Alignment >= ABIAlignment) {
1791 break;
1794 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1795 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1796 LD->getAlignment() == Alignment &&
1797 !LD->isVolatile() && !LD->isIndexed() &&
1798 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1799 bool isTail = isInTailCallPosition(DAG, ST, Chain);
1800 return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1801 LD->getBasePtr(),
1802 DAG.getConstant(StoreBits/8, dl, MVT::i32),
1803 Alignment, false, isTail, ST->getPointerInfo(),
1804 LD->getPointerInfo());
1807 break;
1810 return SDValue();
1813 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1814 KnownBits &Known,
1815 const APInt &DemandedElts,
1816 const SelectionDAG &DAG,
1817 unsigned Depth) const {
1818 Known.resetAll();
1819 switch (Op.getOpcode()) {
1820 default: break;
1821 case XCoreISD::LADD:
1822 case XCoreISD::LSUB:
1823 if (Op.getResNo() == 1) {
1824 // Top bits of carry / borrow are clear.
1825 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1826 Known.getBitWidth() - 1);
1828 break;
1829 case ISD::INTRINSIC_W_CHAIN:
1831 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1832 switch (IntNo) {
1833 case Intrinsic::xcore_getts:
1834 // High bits are known to be zero.
1835 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1836 Known.getBitWidth() - 16);
1837 break;
1838 case Intrinsic::xcore_int:
1839 case Intrinsic::xcore_inct:
1840 // High bits are known to be zero.
1841 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1842 Known.getBitWidth() - 8);
1843 break;
1844 case Intrinsic::xcore_testct:
1845 // Result is either 0 or 1.
1846 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1847 Known.getBitWidth() - 1);
1848 break;
1849 case Intrinsic::xcore_testwct:
1850 // Result is in the range 0 - 4.
1851 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1852 Known.getBitWidth() - 3);
1853 break;
1856 break;
1860 //===----------------------------------------------------------------------===//
1861 // Addressing mode description hooks
1862 //===----------------------------------------------------------------------===//
1864 static inline bool isImmUs(int64_t val)
1866 return (val >= 0 && val <= 11);
1869 static inline bool isImmUs2(int64_t val)
1871 return (val%2 == 0 && isImmUs(val/2));
1874 static inline bool isImmUs4(int64_t val)
1876 return (val%4 == 0 && isImmUs(val/4));
1879 /// isLegalAddressingMode - Return true if the addressing mode represented
1880 /// by AM is legal for this target, for a load/store of the specified type.
1881 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1882 const AddrMode &AM, Type *Ty,
1883 unsigned AS,
1884 Instruction *I) const {
1885 if (Ty->getTypeID() == Type::VoidTyID)
1886 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1888 unsigned Size = DL.getTypeAllocSize(Ty);
1889 if (AM.BaseGV) {
1890 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1891 AM.BaseOffs%4 == 0;
1894 switch (Size) {
1895 case 1:
1896 // reg + imm
1897 if (AM.Scale == 0) {
1898 return isImmUs(AM.BaseOffs);
1900 // reg + reg
1901 return AM.Scale == 1 && AM.BaseOffs == 0;
1902 case 2:
1903 case 3:
1904 // reg + imm
1905 if (AM.Scale == 0) {
1906 return isImmUs2(AM.BaseOffs);
1908 // reg + reg<<1
1909 return AM.Scale == 2 && AM.BaseOffs == 0;
1910 default:
1911 // reg + imm
1912 if (AM.Scale == 0) {
1913 return isImmUs4(AM.BaseOffs);
1915 // reg + reg<<2
1916 return AM.Scale == 4 && AM.BaseOffs == 0;
1920 //===----------------------------------------------------------------------===//
1921 // XCore Inline Assembly Support
1922 //===----------------------------------------------------------------------===//
1924 std::pair<unsigned, const TargetRegisterClass *>
1925 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1926 StringRef Constraint,
1927 MVT VT) const {
1928 if (Constraint.size() == 1) {
1929 switch (Constraint[0]) {
1930 default : break;
1931 case 'r':
1932 return std::make_pair(0U, &XCore::GRRegsRegClass);
1935 // Use the default implementation in TargetLowering to convert the register
1936 // constraint into a member of a register class.
1937 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);