Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / AggressiveInstCombine / AggressiveInstCombine.cpp
blob06222d7e7e44f8da21f8f81d9331bccd1dc33664
1 //===- AggressiveInstCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the aggressive expression pattern combiner classes.
10 // Currently, it handles expression patterns for:
11 // * Truncate instruction
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
16 #include "AggressiveInstCombineInternal.h"
17 #include "llvm-c/Initialization.h"
18 #include "llvm-c/Transforms/AggressiveInstCombine.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BasicAliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/LegacyPassManager.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 using namespace llvm;
31 using namespace PatternMatch;
33 #define DEBUG_TYPE "aggressive-instcombine"
35 namespace {
36 /// Contains expression pattern combiner logic.
37 /// This class provides both the logic to combine expression patterns and
38 /// combine them. It differs from InstCombiner class in that each pattern
39 /// combiner runs only once as opposed to InstCombine's multi-iteration,
40 /// which allows pattern combiner to have higher complexity than the O(1)
41 /// required by the instruction combiner.
42 class AggressiveInstCombinerLegacyPass : public FunctionPass {
43 public:
44 static char ID; // Pass identification, replacement for typeid
46 AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
47 initializeAggressiveInstCombinerLegacyPassPass(
48 *PassRegistry::getPassRegistry());
51 void getAnalysisUsage(AnalysisUsage &AU) const override;
53 /// Run all expression pattern optimizations on the given /p F function.
54 ///
55 /// \param F function to optimize.
56 /// \returns true if the IR is changed.
57 bool runOnFunction(Function &F) override;
59 } // namespace
61 /// Match a pattern for a bitwise rotate operation that partially guards
62 /// against undefined behavior by branching around the rotation when the shift
63 /// amount is 0.
64 static bool foldGuardedRotateToFunnelShift(Instruction &I) {
65 if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
66 return false;
68 // As with the one-use checks below, this is not strictly necessary, but we
69 // are being cautious to avoid potential perf regressions on targets that
70 // do not actually have a rotate instruction (where the funnel shift would be
71 // expanded back into math/shift/logic ops).
72 if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
73 return false;
75 // Match V to funnel shift left/right and capture the source operand and
76 // shift amount in X and Y.
77 auto matchRotate = [](Value *V, Value *&X, Value *&Y) {
78 Value *L0, *L1, *R0, *R1;
79 unsigned Width = V->getType()->getScalarSizeInBits();
80 auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1));
82 // rotate_left(X, Y) == (X << Y) | (X >> (Width - Y))
83 auto RotL = m_OneUse(
84 m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub)));
85 if (RotL.match(V) && L0 == R0 && L1 == R1) {
86 X = L0;
87 Y = L1;
88 return Intrinsic::fshl;
91 // rotate_right(X, Y) == (X >> Y) | (X << (Width - Y))
92 auto RotR = m_OneUse(
93 m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub)));
94 if (RotR.match(V) && L0 == R0 && L1 == R1) {
95 X = L0;
96 Y = L1;
97 return Intrinsic::fshr;
100 return Intrinsic::not_intrinsic;
103 // One phi operand must be a rotate operation, and the other phi operand must
104 // be the source value of that rotate operation:
105 // phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ]
106 PHINode &Phi = cast<PHINode>(I);
107 Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
108 Value *RotSrc, *RotAmt;
109 Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt);
110 if (IID == Intrinsic::not_intrinsic || RotSrc != P1) {
111 IID = matchRotate(P1, RotSrc, RotAmt);
112 if (IID == Intrinsic::not_intrinsic || RotSrc != P0)
113 return false;
114 assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
115 "Pattern must match funnel shift left or right");
118 // The incoming block with our source operand must be the "guard" block.
119 // That must contain a cmp+branch to avoid the rotate when the shift amount
120 // is equal to 0. The other incoming block is the block with the rotate.
121 BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1);
122 BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1);
123 Instruction *TermI = GuardBB->getTerminator();
124 BasicBlock *TrueBB, *FalseBB;
125 ICmpInst::Predicate Pred;
126 if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()), TrueBB,
127 FalseBB)))
128 return false;
130 BasicBlock *PhiBB = Phi.getParent();
131 if (Pred != CmpInst::ICMP_EQ || TrueBB != PhiBB || FalseBB != RotBB)
132 return false;
134 // We matched a variation of this IR pattern:
135 // GuardBB:
136 // %cmp = icmp eq i32 %RotAmt, 0
137 // br i1 %cmp, label %PhiBB, label %RotBB
138 // RotBB:
139 // %sub = sub i32 32, %RotAmt
140 // %shr = lshr i32 %X, %sub
141 // %shl = shl i32 %X, %RotAmt
142 // %rot = or i32 %shr, %shl
143 // br label %PhiBB
144 // PhiBB:
145 // %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ]
146 // -->
147 // llvm.fshl.i32(i32 %X, i32 %RotAmt)
148 IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
149 Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
150 Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt}));
151 return true;
154 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
155 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
156 /// of 'and' ops, then we also need to capture the fact that we saw an
157 /// "and X, 1", so that's an extra return value for that case.
158 struct MaskOps {
159 Value *Root;
160 APInt Mask;
161 bool MatchAndChain;
162 bool FoundAnd1;
164 MaskOps(unsigned BitWidth, bool MatchAnds)
165 : Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
166 MatchAndChain(MatchAnds), FoundAnd1(false) {}
169 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
170 /// chain of 'and' or 'or' instructions looking for shift ops of a common source
171 /// value. Examples:
172 /// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
173 /// returns { X, 0x129 }
174 /// and (and (X >> 1), 1), (X >> 4)
175 /// returns { X, 0x12 }
176 static bool matchAndOrChain(Value *V, MaskOps &MOps) {
177 Value *Op0, *Op1;
178 if (MOps.MatchAndChain) {
179 // Recurse through a chain of 'and' operands. This requires an extra check
180 // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
181 // in the chain to know that all of the high bits are cleared.
182 if (match(V, m_And(m_Value(Op0), m_One()))) {
183 MOps.FoundAnd1 = true;
184 return matchAndOrChain(Op0, MOps);
186 if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
187 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
188 } else {
189 // Recurse through a chain of 'or' operands.
190 if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
191 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
194 // We need a shift-right or a bare value representing a compare of bit 0 of
195 // the original source operand.
196 Value *Candidate;
197 uint64_t BitIndex = 0;
198 if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex))))
199 Candidate = V;
201 // Initialize result source operand.
202 if (!MOps.Root)
203 MOps.Root = Candidate;
205 // The shift constant is out-of-range? This code hasn't been simplified.
206 if (BitIndex >= MOps.Mask.getBitWidth())
207 return false;
209 // Fill in the mask bit derived from the shift constant.
210 MOps.Mask.setBit(BitIndex);
211 return MOps.Root == Candidate;
214 /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
215 /// These will include a chain of 'or' or 'and'-shifted bits from a
216 /// common source value:
217 /// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0
218 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
219 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
220 /// that differ only with a final 'not' of the result. We expect that final
221 /// 'not' to be folded with the compare that we create here (invert predicate).
222 static bool foldAnyOrAllBitsSet(Instruction &I) {
223 // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
224 // final "and X, 1" instruction must be the final op in the sequence.
225 bool MatchAllBitsSet;
226 if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
227 MatchAllBitsSet = true;
228 else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
229 MatchAllBitsSet = false;
230 else
231 return false;
233 MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
234 if (MatchAllBitsSet) {
235 if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
236 return false;
237 } else {
238 if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
239 return false;
242 // The pattern was found. Create a masked compare that replaces all of the
243 // shift and logic ops.
244 IRBuilder<> Builder(&I);
245 Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
246 Value *And = Builder.CreateAnd(MOps.Root, Mask);
247 Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
248 : Builder.CreateIsNotNull(And);
249 Value *Zext = Builder.CreateZExt(Cmp, I.getType());
250 I.replaceAllUsesWith(Zext);
251 return true;
254 /// This is the entry point for folds that could be implemented in regular
255 /// InstCombine, but they are separated because they are not expected to
256 /// occur frequently and/or have more than a constant-length pattern match.
257 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
258 bool MadeChange = false;
259 for (BasicBlock &BB : F) {
260 // Ignore unreachable basic blocks.
261 if (!DT.isReachableFromEntry(&BB))
262 continue;
263 // Do not delete instructions under here and invalidate the iterator.
264 // Walk the block backwards for efficiency. We're matching a chain of
265 // use->defs, so we're more likely to succeed by starting from the bottom.
266 // Also, we want to avoid matching partial patterns.
267 // TODO: It would be more efficient if we removed dead instructions
268 // iteratively in this loop rather than waiting until the end.
269 for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
270 MadeChange |= foldAnyOrAllBitsSet(I);
271 MadeChange |= foldGuardedRotateToFunnelShift(I);
275 // We're done with transforms, so remove dead instructions.
276 if (MadeChange)
277 for (BasicBlock &BB : F)
278 SimplifyInstructionsInBlock(&BB);
280 return MadeChange;
283 /// This is the entry point for all transforms. Pass manager differences are
284 /// handled in the callers of this function.
285 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
286 bool MadeChange = false;
287 const DataLayout &DL = F.getParent()->getDataLayout();
288 TruncInstCombine TIC(TLI, DL, DT);
289 MadeChange |= TIC.run(F);
290 MadeChange |= foldUnusualPatterns(F, DT);
291 return MadeChange;
294 void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
295 AnalysisUsage &AU) const {
296 AU.setPreservesCFG();
297 AU.addRequired<DominatorTreeWrapperPass>();
298 AU.addRequired<TargetLibraryInfoWrapperPass>();
299 AU.addPreserved<AAResultsWrapperPass>();
300 AU.addPreserved<BasicAAWrapperPass>();
301 AU.addPreserved<DominatorTreeWrapperPass>();
302 AU.addPreserved<GlobalsAAWrapperPass>();
305 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
306 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
307 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
308 return runImpl(F, TLI, DT);
311 PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
312 FunctionAnalysisManager &AM) {
313 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
314 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
315 if (!runImpl(F, TLI, DT)) {
316 // No changes, all analyses are preserved.
317 return PreservedAnalyses::all();
319 // Mark all the analyses that instcombine updates as preserved.
320 PreservedAnalyses PA;
321 PA.preserveSet<CFGAnalyses>();
322 PA.preserve<AAManager>();
323 PA.preserve<GlobalsAA>();
324 return PA;
327 char AggressiveInstCombinerLegacyPass::ID = 0;
328 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
329 "aggressive-instcombine",
330 "Combine pattern based expressions", false, false)
331 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
332 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
333 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
334 "Combine pattern based expressions", false, false)
336 // Initialization Routines
337 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
338 initializeAggressiveInstCombinerLegacyPassPass(Registry);
341 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
342 initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
345 FunctionPass *llvm::createAggressiveInstCombinerPass() {
346 return new AggressiveInstCombinerLegacyPass();
349 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
350 unwrap(PM)->add(createAggressiveInstCombinerPass());