Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / IPO / DeadArgumentElimination.cpp
blob968a13110b16d00605e4748bfdd4ff109401a240
1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass deletes dead arguments from internal functions. Dead argument
10 // elimination removes arguments which are directly dead, as well as arguments
11 // only passed into function calls as dead arguments of other functions. This
12 // pass also deletes dead return values in a similar way.
14 // This pass is often useful as a cleanup pass to run after aggressive
15 // interprocedural passes, which add possibly-dead arguments or return values.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PassManager.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Use.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/IPO.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <utility>
49 #include <vector>
51 using namespace llvm;
53 #define DEBUG_TYPE "deadargelim"
55 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
56 STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
57 STATISTIC(NumArgumentsReplacedWithUndef,
58 "Number of unread args replaced with undef");
60 namespace {
62 /// DAE - The dead argument elimination pass.
63 class DAE : public ModulePass {
64 protected:
65 // DAH uses this to specify a different ID.
66 explicit DAE(char &ID) : ModulePass(ID) {}
68 public:
69 static char ID; // Pass identification, replacement for typeid
71 DAE() : ModulePass(ID) {
72 initializeDAEPass(*PassRegistry::getPassRegistry());
75 bool runOnModule(Module &M) override {
76 if (skipModule(M))
77 return false;
78 DeadArgumentEliminationPass DAEP(ShouldHackArguments());
79 ModuleAnalysisManager DummyMAM;
80 PreservedAnalyses PA = DAEP.run(M, DummyMAM);
81 return !PA.areAllPreserved();
84 virtual bool ShouldHackArguments() const { return false; }
87 } // end anonymous namespace
89 char DAE::ID = 0;
91 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
93 namespace {
95 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
96 /// deletes arguments to functions which are external. This is only for use
97 /// by bugpoint.
98 struct DAH : public DAE {
99 static char ID;
101 DAH() : DAE(ID) {}
103 bool ShouldHackArguments() const override { return true; }
106 } // end anonymous namespace
108 char DAH::ID = 0;
110 INITIALIZE_PASS(DAH, "deadarghaX0r",
111 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
112 false, false)
114 /// createDeadArgEliminationPass - This pass removes arguments from functions
115 /// which are not used by the body of the function.
116 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
118 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
120 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
121 /// llvm.vastart is never called, the varargs list is dead for the function.
122 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) {
123 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
124 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
126 // Ensure that the function is only directly called.
127 if (Fn.hasAddressTaken())
128 return false;
130 // Don't touch naked functions. The assembly might be using an argument, or
131 // otherwise rely on the frame layout in a way that this analysis will not
132 // see.
133 if (Fn.hasFnAttribute(Attribute::Naked)) {
134 return false;
137 // Okay, we know we can transform this function if safe. Scan its body
138 // looking for calls marked musttail or calls to llvm.vastart.
139 for (BasicBlock &BB : Fn) {
140 for (Instruction &I : BB) {
141 CallInst *CI = dyn_cast<CallInst>(&I);
142 if (!CI)
143 continue;
144 if (CI->isMustTailCall())
145 return false;
146 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
147 if (II->getIntrinsicID() == Intrinsic::vastart)
148 return false;
153 // If we get here, there are no calls to llvm.vastart in the function body,
154 // remove the "..." and adjust all the calls.
156 // Start by computing a new prototype for the function, which is the same as
157 // the old function, but doesn't have isVarArg set.
158 FunctionType *FTy = Fn.getFunctionType();
160 std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
161 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
162 Params, false);
163 unsigned NumArgs = Params.size();
165 // Create the new function body and insert it into the module...
166 Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace());
167 NF->copyAttributesFrom(&Fn);
168 NF->setComdat(Fn.getComdat());
169 Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
170 NF->takeName(&Fn);
172 // Loop over all of the callers of the function, transforming the call sites
173 // to pass in a smaller number of arguments into the new function.
175 std::vector<Value *> Args;
176 for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
177 CallSite CS(*I++);
178 if (!CS)
179 continue;
180 Instruction *Call = CS.getInstruction();
182 // Pass all the same arguments.
183 Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
185 // Drop any attributes that were on the vararg arguments.
186 AttributeList PAL = CS.getAttributes();
187 if (!PAL.isEmpty()) {
188 SmallVector<AttributeSet, 8> ArgAttrs;
189 for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
190 ArgAttrs.push_back(PAL.getParamAttributes(ArgNo));
191 PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttributes(),
192 PAL.getRetAttributes(), ArgAttrs);
195 SmallVector<OperandBundleDef, 1> OpBundles;
196 CS.getOperandBundlesAsDefs(OpBundles);
198 CallSite NewCS;
199 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
200 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
201 Args, OpBundles, "", Call);
202 } else {
203 NewCS = CallInst::Create(NF, Args, OpBundles, "", Call);
204 cast<CallInst>(NewCS.getInstruction())
205 ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
207 NewCS.setCallingConv(CS.getCallingConv());
208 NewCS.setAttributes(PAL);
209 NewCS->setDebugLoc(Call->getDebugLoc());
210 uint64_t W;
211 if (Call->extractProfTotalWeight(W))
212 NewCS->setProfWeight(W);
214 Args.clear();
216 if (!Call->use_empty())
217 Call->replaceAllUsesWith(NewCS.getInstruction());
219 NewCS->takeName(Call);
221 // Finally, remove the old call from the program, reducing the use-count of
222 // F.
223 Call->eraseFromParent();
226 // Since we have now created the new function, splice the body of the old
227 // function right into the new function, leaving the old rotting hulk of the
228 // function empty.
229 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
231 // Loop over the argument list, transferring uses of the old arguments over to
232 // the new arguments, also transferring over the names as well. While we're at
233 // it, remove the dead arguments from the DeadArguments list.
234 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
235 I2 = NF->arg_begin(); I != E; ++I, ++I2) {
236 // Move the name and users over to the new version.
237 I->replaceAllUsesWith(&*I2);
238 I2->takeName(&*I);
241 // Clone metadatas from the old function, including debug info descriptor.
242 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
243 Fn.getAllMetadata(MDs);
244 for (auto MD : MDs)
245 NF->addMetadata(MD.first, *MD.second);
247 // Fix up any BlockAddresses that refer to the function.
248 Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
249 // Delete the bitcast that we just created, so that NF does not
250 // appear to be address-taken.
251 NF->removeDeadConstantUsers();
252 // Finally, nuke the old function.
253 Fn.eraseFromParent();
254 return true;
257 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
258 /// arguments that are unused, and changes the caller parameters to be undefined
259 /// instead.
260 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) {
261 // We cannot change the arguments if this TU does not define the function or
262 // if the linker may choose a function body from another TU, even if the
263 // nominal linkage indicates that other copies of the function have the same
264 // semantics. In the below example, the dead load from %p may not have been
265 // eliminated from the linker-chosen copy of f, so replacing %p with undef
266 // in callers may introduce undefined behavior.
268 // define linkonce_odr void @f(i32* %p) {
269 // %v = load i32 %p
270 // ret void
271 // }
272 if (!Fn.hasExactDefinition())
273 return false;
275 // Functions with local linkage should already have been handled, except the
276 // fragile (variadic) ones which we can improve here.
277 if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
278 return false;
280 // Don't touch naked functions. The assembly might be using an argument, or
281 // otherwise rely on the frame layout in a way that this analysis will not
282 // see.
283 if (Fn.hasFnAttribute(Attribute::Naked))
284 return false;
286 if (Fn.use_empty())
287 return false;
289 SmallVector<unsigned, 8> UnusedArgs;
290 bool Changed = false;
292 for (Argument &Arg : Fn.args()) {
293 if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() && !Arg.hasByValOrInAllocaAttr()) {
294 if (Arg.isUsedByMetadata()) {
295 Arg.replaceAllUsesWith(UndefValue::get(Arg.getType()));
296 Changed = true;
298 UnusedArgs.push_back(Arg.getArgNo());
302 if (UnusedArgs.empty())
303 return false;
305 for (Use &U : Fn.uses()) {
306 CallSite CS(U.getUser());
307 if (!CS || !CS.isCallee(&U))
308 continue;
310 // Now go through all unused args and replace them with "undef".
311 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
312 unsigned ArgNo = UnusedArgs[I];
314 Value *Arg = CS.getArgument(ArgNo);
315 CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
316 ++NumArgumentsReplacedWithUndef;
317 Changed = true;
321 return Changed;
324 /// Convenience function that returns the number of return values. It returns 0
325 /// for void functions and 1 for functions not returning a struct. It returns
326 /// the number of struct elements for functions returning a struct.
327 static unsigned NumRetVals(const Function *F) {
328 Type *RetTy = F->getReturnType();
329 if (RetTy->isVoidTy())
330 return 0;
331 else if (StructType *STy = dyn_cast<StructType>(RetTy))
332 return STy->getNumElements();
333 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
334 return ATy->getNumElements();
335 else
336 return 1;
339 /// Returns the sub-type a function will return at a given Idx. Should
340 /// correspond to the result type of an ExtractValue instruction executed with
341 /// just that one Idx (i.e. only top-level structure is considered).
342 static Type *getRetComponentType(const Function *F, unsigned Idx) {
343 Type *RetTy = F->getReturnType();
344 assert(!RetTy->isVoidTy() && "void type has no subtype");
346 if (StructType *STy = dyn_cast<StructType>(RetTy))
347 return STy->getElementType(Idx);
348 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
349 return ATy->getElementType();
350 else
351 return RetTy;
354 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
355 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
356 /// liveness of Use.
357 DeadArgumentEliminationPass::Liveness
358 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use,
359 UseVector &MaybeLiveUses) {
360 // We're live if our use or its Function is already marked as live.
361 if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
362 return Live;
364 // We're maybe live otherwise, but remember that we must become live if
365 // Use becomes live.
366 MaybeLiveUses.push_back(Use);
367 return MaybeLive;
370 /// SurveyUse - This looks at a single use of an argument or return value
371 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
372 /// if it causes the used value to become MaybeLive.
374 /// RetValNum is the return value number to use when this use is used in a
375 /// return instruction. This is used in the recursion, you should always leave
376 /// it at 0.
377 DeadArgumentEliminationPass::Liveness
378 DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses,
379 unsigned RetValNum) {
380 const User *V = U->getUser();
381 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
382 // The value is returned from a function. It's only live when the
383 // function's return value is live. We use RetValNum here, for the case
384 // that U is really a use of an insertvalue instruction that uses the
385 // original Use.
386 const Function *F = RI->getParent()->getParent();
387 if (RetValNum != -1U) {
388 RetOrArg Use = CreateRet(F, RetValNum);
389 // We might be live, depending on the liveness of Use.
390 return MarkIfNotLive(Use, MaybeLiveUses);
391 } else {
392 DeadArgumentEliminationPass::Liveness Result = MaybeLive;
393 for (unsigned i = 0; i < NumRetVals(F); ++i) {
394 RetOrArg Use = CreateRet(F, i);
395 // We might be live, depending on the liveness of Use. If any
396 // sub-value is live, then the entire value is considered live. This
397 // is a conservative choice, and better tracking is possible.
398 DeadArgumentEliminationPass::Liveness SubResult =
399 MarkIfNotLive(Use, MaybeLiveUses);
400 if (Result != Live)
401 Result = SubResult;
403 return Result;
406 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
407 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
408 && IV->hasIndices())
409 // The use we are examining is inserted into an aggregate. Our liveness
410 // depends on all uses of that aggregate, but if it is used as a return
411 // value, only index at which we were inserted counts.
412 RetValNum = *IV->idx_begin();
414 // Note that if we are used as the aggregate operand to the insertvalue,
415 // we don't change RetValNum, but do survey all our uses.
417 Liveness Result = MaybeLive;
418 for (const Use &UU : IV->uses()) {
419 Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
420 if (Result == Live)
421 break;
423 return Result;
426 if (auto CS = ImmutableCallSite(V)) {
427 const Function *F = CS.getCalledFunction();
428 if (F) {
429 // Used in a direct call.
431 // The function argument is live if it is used as a bundle operand.
432 if (CS.isBundleOperand(U))
433 return Live;
435 // Find the argument number. We know for sure that this use is an
436 // argument, since if it was the function argument this would be an
437 // indirect call and the we know can't be looking at a value of the
438 // label type (for the invoke instruction).
439 unsigned ArgNo = CS.getArgumentNo(U);
441 if (ArgNo >= F->getFunctionType()->getNumParams())
442 // The value is passed in through a vararg! Must be live.
443 return Live;
445 assert(CS.getArgument(ArgNo)
446 == CS->getOperand(U->getOperandNo())
447 && "Argument is not where we expected it");
449 // Value passed to a normal call. It's only live when the corresponding
450 // argument to the called function turns out live.
451 RetOrArg Use = CreateArg(F, ArgNo);
452 return MarkIfNotLive(Use, MaybeLiveUses);
455 // Used in any other way? Value must be live.
456 return Live;
459 /// SurveyUses - This looks at all the uses of the given value
460 /// Returns the Liveness deduced from the uses of this value.
462 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
463 /// the result is Live, MaybeLiveUses might be modified but its content should
464 /// be ignored (since it might not be complete).
465 DeadArgumentEliminationPass::Liveness
466 DeadArgumentEliminationPass::SurveyUses(const Value *V,
467 UseVector &MaybeLiveUses) {
468 // Assume it's dead (which will only hold if there are no uses at all..).
469 Liveness Result = MaybeLive;
470 // Check each use.
471 for (const Use &U : V->uses()) {
472 Result = SurveyUse(&U, MaybeLiveUses);
473 if (Result == Live)
474 break;
476 return Result;
479 // SurveyFunction - This performs the initial survey of the specified function,
480 // checking out whether or not it uses any of its incoming arguments or whether
481 // any callers use the return value. This fills in the LiveValues set and Uses
482 // map.
484 // We consider arguments of non-internal functions to be intrinsically alive as
485 // well as arguments to functions which have their "address taken".
486 void DeadArgumentEliminationPass::SurveyFunction(const Function &F) {
487 // Functions with inalloca parameters are expecting args in a particular
488 // register and memory layout.
489 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
490 MarkLive(F);
491 return;
494 // Don't touch naked functions. The assembly might be using an argument, or
495 // otherwise rely on the frame layout in a way that this analysis will not
496 // see.
497 if (F.hasFnAttribute(Attribute::Naked)) {
498 MarkLive(F);
499 return;
502 unsigned RetCount = NumRetVals(&F);
504 // Assume all return values are dead
505 using RetVals = SmallVector<Liveness, 5>;
507 RetVals RetValLiveness(RetCount, MaybeLive);
509 using RetUses = SmallVector<UseVector, 5>;
511 // These vectors map each return value to the uses that make it MaybeLive, so
512 // we can add those to the Uses map if the return value really turns out to be
513 // MaybeLive. Initialized to a list of RetCount empty lists.
514 RetUses MaybeLiveRetUses(RetCount);
516 bool HasMustTailCalls = false;
518 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
519 if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
520 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
521 != F.getFunctionType()->getReturnType()) {
522 // We don't support old style multiple return values.
523 MarkLive(F);
524 return;
528 // If we have any returns of `musttail` results - the signature can't
529 // change
530 if (BB->getTerminatingMustTailCall() != nullptr)
531 HasMustTailCalls = true;
534 if (HasMustTailCalls) {
535 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
536 << " has musttail calls\n");
539 if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
540 MarkLive(F);
541 return;
544 LLVM_DEBUG(
545 dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
546 << F.getName() << "\n");
547 // Keep track of the number of live retvals, so we can skip checks once all
548 // of them turn out to be live.
549 unsigned NumLiveRetVals = 0;
551 bool HasMustTailCallers = false;
553 // Loop all uses of the function.
554 for (const Use &U : F.uses()) {
555 // If the function is PASSED IN as an argument, its address has been
556 // taken.
557 ImmutableCallSite CS(U.getUser());
558 if (!CS || !CS.isCallee(&U)) {
559 MarkLive(F);
560 return;
563 // The number of arguments for `musttail` call must match the number of
564 // arguments of the caller
565 if (CS.isMustTailCall())
566 HasMustTailCallers = true;
568 // If this use is anything other than a call site, the function is alive.
569 const Instruction *TheCall = CS.getInstruction();
570 if (!TheCall) { // Not a direct call site?
571 MarkLive(F);
572 return;
575 // If we end up here, we are looking at a direct call to our function.
577 // Now, check how our return value(s) is/are used in this caller. Don't
578 // bother checking return values if all of them are live already.
579 if (NumLiveRetVals == RetCount)
580 continue;
582 // Check all uses of the return value.
583 for (const Use &U : TheCall->uses()) {
584 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
585 // This use uses a part of our return value, survey the uses of
586 // that part and store the results for this index only.
587 unsigned Idx = *Ext->idx_begin();
588 if (RetValLiveness[Idx] != Live) {
589 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
590 if (RetValLiveness[Idx] == Live)
591 NumLiveRetVals++;
593 } else {
594 // Used by something else than extractvalue. Survey, but assume that the
595 // result applies to all sub-values.
596 UseVector MaybeLiveAggregateUses;
597 if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
598 NumLiveRetVals = RetCount;
599 RetValLiveness.assign(RetCount, Live);
600 break;
601 } else {
602 for (unsigned i = 0; i != RetCount; ++i) {
603 if (RetValLiveness[i] != Live)
604 MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(),
605 MaybeLiveAggregateUses.end());
612 if (HasMustTailCallers) {
613 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
614 << " has musttail callers\n");
617 // Now we've inspected all callers, record the liveness of our return values.
618 for (unsigned i = 0; i != RetCount; ++i)
619 MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
621 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
622 << F.getName() << "\n");
624 // Now, check all of our arguments.
625 unsigned i = 0;
626 UseVector MaybeLiveArgUses;
627 for (Function::const_arg_iterator AI = F.arg_begin(),
628 E = F.arg_end(); AI != E; ++AI, ++i) {
629 Liveness Result;
630 if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
631 HasMustTailCalls) {
632 // Variadic functions will already have a va_arg function expanded inside
633 // them, making them potentially very sensitive to ABI changes resulting
634 // from removing arguments entirely, so don't. For example AArch64 handles
635 // register and stack HFAs very differently, and this is reflected in the
636 // IR which has already been generated.
638 // `musttail` calls to this function restrict argument removal attempts.
639 // The signature of the caller must match the signature of the function.
641 // `musttail` calls in this function prevents us from changing its
642 // signature
643 Result = Live;
644 } else {
645 // See what the effect of this use is (recording any uses that cause
646 // MaybeLive in MaybeLiveArgUses).
647 Result = SurveyUses(&*AI, MaybeLiveArgUses);
650 // Mark the result.
651 MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
652 // Clear the vector again for the next iteration.
653 MaybeLiveArgUses.clear();
657 /// MarkValue - This function marks the liveness of RA depending on L. If L is
658 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
659 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
660 /// live later on.
661 void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L,
662 const UseVector &MaybeLiveUses) {
663 switch (L) {
664 case Live:
665 MarkLive(RA);
666 break;
667 case MaybeLive:
668 // Note any uses of this value, so this return value can be
669 // marked live whenever one of the uses becomes live.
670 for (const auto &MaybeLiveUse : MaybeLiveUses)
671 Uses.insert(std::make_pair(MaybeLiveUse, RA));
672 break;
676 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
677 /// changed in any way. Additionally,
678 /// mark any values that are used as this function's parameters or by its return
679 /// values (according to Uses) live as well.
680 void DeadArgumentEliminationPass::MarkLive(const Function &F) {
681 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
682 << F.getName() << "\n");
683 // Mark the function as live.
684 LiveFunctions.insert(&F);
685 // Mark all arguments as live.
686 for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
687 PropagateLiveness(CreateArg(&F, i));
688 // Mark all return values as live.
689 for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
690 PropagateLiveness(CreateRet(&F, i));
693 /// MarkLive - Mark the given return value or argument as live. Additionally,
694 /// mark any values that are used by this value (according to Uses) live as
695 /// well.
696 void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) {
697 if (LiveFunctions.count(RA.F))
698 return; // Function was already marked Live.
700 if (!LiveValues.insert(RA).second)
701 return; // We were already marked Live.
703 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
704 << RA.getDescription() << " live\n");
705 PropagateLiveness(RA);
708 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
709 /// to any other values it uses (according to Uses).
710 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) {
711 // We don't use upper_bound (or equal_range) here, because our recursive call
712 // to ourselves is likely to cause the upper_bound (which is the first value
713 // not belonging to RA) to become erased and the iterator invalidated.
714 UseMap::iterator Begin = Uses.lower_bound(RA);
715 UseMap::iterator E = Uses.end();
716 UseMap::iterator I;
717 for (I = Begin; I != E && I->first == RA; ++I)
718 MarkLive(I->second);
720 // Erase RA from the Uses map (from the lower bound to wherever we ended up
721 // after the loop).
722 Uses.erase(Begin, I);
725 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
726 // that are not in LiveValues. Transform the function and all of the callees of
727 // the function to not have these arguments and return values.
729 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) {
730 // Don't modify fully live functions
731 if (LiveFunctions.count(F))
732 return false;
734 // Start by computing a new prototype for the function, which is the same as
735 // the old function, but has fewer arguments and a different return type.
736 FunctionType *FTy = F->getFunctionType();
737 std::vector<Type*> Params;
739 // Keep track of if we have a live 'returned' argument
740 bool HasLiveReturnedArg = false;
742 // Set up to build a new list of parameter attributes.
743 SmallVector<AttributeSet, 8> ArgAttrVec;
744 const AttributeList &PAL = F->getAttributes();
746 // Remember which arguments are still alive.
747 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
748 // Construct the new parameter list from non-dead arguments. Also construct
749 // a new set of parameter attributes to correspond. Skip the first parameter
750 // attribute, since that belongs to the return value.
751 unsigned i = 0;
752 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
753 I != E; ++I, ++i) {
754 RetOrArg Arg = CreateArg(F, i);
755 if (LiveValues.erase(Arg)) {
756 Params.push_back(I->getType());
757 ArgAlive[i] = true;
758 ArgAttrVec.push_back(PAL.getParamAttributes(i));
759 HasLiveReturnedArg |= PAL.hasParamAttribute(i, Attribute::Returned);
760 } else {
761 ++NumArgumentsEliminated;
762 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
763 << i << " (" << I->getName() << ") from "
764 << F->getName() << "\n");
768 // Find out the new return value.
769 Type *RetTy = FTy->getReturnType();
770 Type *NRetTy = nullptr;
771 unsigned RetCount = NumRetVals(F);
773 // -1 means unused, other numbers are the new index
774 SmallVector<int, 5> NewRetIdxs(RetCount, -1);
775 std::vector<Type*> RetTypes;
777 // If there is a function with a live 'returned' argument but a dead return
778 // value, then there are two possible actions:
779 // 1) Eliminate the return value and take off the 'returned' attribute on the
780 // argument.
781 // 2) Retain the 'returned' attribute and treat the return value (but not the
782 // entire function) as live so that it is not eliminated.
784 // It's not clear in the general case which option is more profitable because,
785 // even in the absence of explicit uses of the return value, code generation
786 // is free to use the 'returned' attribute to do things like eliding
787 // save/restores of registers across calls. Whether or not this happens is
788 // target and ABI-specific as well as depending on the amount of register
789 // pressure, so there's no good way for an IR-level pass to figure this out.
791 // Fortunately, the only places where 'returned' is currently generated by
792 // the FE are places where 'returned' is basically free and almost always a
793 // performance win, so the second option can just be used always for now.
795 // This should be revisited if 'returned' is ever applied more liberally.
796 if (RetTy->isVoidTy() || HasLiveReturnedArg) {
797 NRetTy = RetTy;
798 } else {
799 // Look at each of the original return values individually.
800 for (unsigned i = 0; i != RetCount; ++i) {
801 RetOrArg Ret = CreateRet(F, i);
802 if (LiveValues.erase(Ret)) {
803 RetTypes.push_back(getRetComponentType(F, i));
804 NewRetIdxs[i] = RetTypes.size() - 1;
805 } else {
806 ++NumRetValsEliminated;
807 LLVM_DEBUG(
808 dbgs() << "DeadArgumentEliminationPass - Removing return value "
809 << i << " from " << F->getName() << "\n");
812 if (RetTypes.size() > 1) {
813 // More than one return type? Reduce it down to size.
814 if (StructType *STy = dyn_cast<StructType>(RetTy)) {
815 // Make the new struct packed if we used to return a packed struct
816 // already.
817 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
818 } else {
819 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
820 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
822 } else if (RetTypes.size() == 1)
823 // One return type? Just a simple value then, but only if we didn't use to
824 // return a struct with that simple value before.
825 NRetTy = RetTypes.front();
826 else if (RetTypes.empty())
827 // No return types? Make it void, but only if we didn't use to return {}.
828 NRetTy = Type::getVoidTy(F->getContext());
831 assert(NRetTy && "No new return type found?");
833 // The existing function return attributes.
834 AttrBuilder RAttrs(PAL.getRetAttributes());
836 // Remove any incompatible attributes, but only if we removed all return
837 // values. Otherwise, ensure that we don't have any conflicting attributes
838 // here. Currently, this should not be possible, but special handling might be
839 // required when new return value attributes are added.
840 if (NRetTy->isVoidTy())
841 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
842 else
843 assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
844 "Return attributes no longer compatible?");
846 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
848 // Strip allocsize attributes. They might refer to the deleted arguments.
849 AttributeSet FnAttrs = PAL.getFnAttributes().removeAttribute(
850 F->getContext(), Attribute::AllocSize);
852 // Reconstruct the AttributesList based on the vector we constructed.
853 assert(ArgAttrVec.size() == Params.size());
854 AttributeList NewPAL =
855 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
857 // Create the new function type based on the recomputed parameters.
858 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
860 // No change?
861 if (NFTy == FTy)
862 return false;
864 // Create the new function body and insert it into the module...
865 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
866 NF->copyAttributesFrom(F);
867 NF->setComdat(F->getComdat());
868 NF->setAttributes(NewPAL);
869 // Insert the new function before the old function, so we won't be processing
870 // it again.
871 F->getParent()->getFunctionList().insert(F->getIterator(), NF);
872 NF->takeName(F);
874 // Loop over all of the callers of the function, transforming the call sites
875 // to pass in a smaller number of arguments into the new function.
876 std::vector<Value*> Args;
877 while (!F->use_empty()) {
878 CallSite CS(F->user_back());
879 Instruction *Call = CS.getInstruction();
881 ArgAttrVec.clear();
882 const AttributeList &CallPAL = CS.getAttributes();
884 // Adjust the call return attributes in case the function was changed to
885 // return void.
886 AttrBuilder RAttrs(CallPAL.getRetAttributes());
887 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
888 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
890 // Declare these outside of the loops, so we can reuse them for the second
891 // loop, which loops the varargs.
892 CallSite::arg_iterator I = CS.arg_begin();
893 unsigned i = 0;
894 // Loop over those operands, corresponding to the normal arguments to the
895 // original function, and add those that are still alive.
896 for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
897 if (ArgAlive[i]) {
898 Args.push_back(*I);
899 // Get original parameter attributes, but skip return attributes.
900 AttributeSet Attrs = CallPAL.getParamAttributes(i);
901 if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
902 // If the return type has changed, then get rid of 'returned' on the
903 // call site. The alternative is to make all 'returned' attributes on
904 // call sites keep the return value alive just like 'returned'
905 // attributes on function declaration but it's less clearly a win and
906 // this is not an expected case anyway
907 ArgAttrVec.push_back(AttributeSet::get(
908 F->getContext(),
909 AttrBuilder(Attrs).removeAttribute(Attribute::Returned)));
910 } else {
911 // Otherwise, use the original attributes.
912 ArgAttrVec.push_back(Attrs);
916 // Push any varargs arguments on the list. Don't forget their attributes.
917 for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
918 Args.push_back(*I);
919 ArgAttrVec.push_back(CallPAL.getParamAttributes(i));
922 // Reconstruct the AttributesList based on the vector we constructed.
923 assert(ArgAttrVec.size() == Args.size());
925 // Again, be sure to remove any allocsize attributes, since their indices
926 // may now be incorrect.
927 AttributeSet FnAttrs = CallPAL.getFnAttributes().removeAttribute(
928 F->getContext(), Attribute::AllocSize);
930 AttributeList NewCallPAL = AttributeList::get(
931 F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
933 SmallVector<OperandBundleDef, 1> OpBundles;
934 CS.getOperandBundlesAsDefs(OpBundles);
936 CallSite NewCS;
937 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
938 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
939 Args, OpBundles, "", Call->getParent());
940 } else {
941 NewCS = CallInst::Create(NFTy, NF, Args, OpBundles, "", Call);
942 cast<CallInst>(NewCS.getInstruction())
943 ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
945 NewCS.setCallingConv(CS.getCallingConv());
946 NewCS.setAttributes(NewCallPAL);
947 NewCS->setDebugLoc(Call->getDebugLoc());
948 uint64_t W;
949 if (Call->extractProfTotalWeight(W))
950 NewCS->setProfWeight(W);
951 Args.clear();
952 ArgAttrVec.clear();
954 Instruction *New = NewCS.getInstruction();
955 if (!Call->use_empty() || Call->isUsedByMetadata()) {
956 if (New->getType() == Call->getType()) {
957 // Return type not changed? Just replace users then.
958 Call->replaceAllUsesWith(New);
959 New->takeName(Call);
960 } else if (New->getType()->isVoidTy()) {
961 // If the return value is dead, replace any uses of it with undef
962 // (any non-debug value uses will get removed later on).
963 if (!Call->getType()->isX86_MMXTy())
964 Call->replaceAllUsesWith(UndefValue::get(Call->getType()));
965 } else {
966 assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
967 "Return type changed, but not into a void. The old return type"
968 " must have been a struct or an array!");
969 Instruction *InsertPt = Call;
970 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
971 BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest());
972 InsertPt = &*NewEdge->getFirstInsertionPt();
975 // We used to return a struct or array. Instead of doing smart stuff
976 // with all the uses, we will just rebuild it using extract/insertvalue
977 // chaining and let instcombine clean that up.
979 // Start out building up our return value from undef
980 Value *RetVal = UndefValue::get(RetTy);
981 for (unsigned i = 0; i != RetCount; ++i)
982 if (NewRetIdxs[i] != -1) {
983 Value *V;
984 if (RetTypes.size() > 1)
985 // We are still returning a struct, so extract the value from our
986 // return value
987 V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
988 InsertPt);
989 else
990 // We are now returning a single element, so just insert that
991 V = New;
992 // Insert the value at the old position
993 RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
995 // Now, replace all uses of the old call instruction with the return
996 // struct we built
997 Call->replaceAllUsesWith(RetVal);
998 New->takeName(Call);
1002 // Finally, remove the old call from the program, reducing the use-count of
1003 // F.
1004 Call->eraseFromParent();
1007 // Since we have now created the new function, splice the body of the old
1008 // function right into the new function, leaving the old rotting hulk of the
1009 // function empty.
1010 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1012 // Loop over the argument list, transferring uses of the old arguments over to
1013 // the new arguments, also transferring over the names as well.
1014 i = 0;
1015 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1016 I2 = NF->arg_begin(); I != E; ++I, ++i)
1017 if (ArgAlive[i]) {
1018 // If this is a live argument, move the name and users over to the new
1019 // version.
1020 I->replaceAllUsesWith(&*I2);
1021 I2->takeName(&*I);
1022 ++I2;
1023 } else {
1024 // If this argument is dead, replace any uses of it with undef
1025 // (any non-debug value uses will get removed later on).
1026 if (!I->getType()->isX86_MMXTy())
1027 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1030 // If we change the return value of the function we must rewrite any return
1031 // instructions. Check this now.
1032 if (F->getReturnType() != NF->getReturnType())
1033 for (BasicBlock &BB : *NF)
1034 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1035 Value *RetVal;
1037 if (NFTy->getReturnType()->isVoidTy()) {
1038 RetVal = nullptr;
1039 } else {
1040 assert(RetTy->isStructTy() || RetTy->isArrayTy());
1041 // The original return value was a struct or array, insert
1042 // extractvalue/insertvalue chains to extract only the values we need
1043 // to return and insert them into our new result.
1044 // This does generate messy code, but we'll let it to instcombine to
1045 // clean that up.
1046 Value *OldRet = RI->getOperand(0);
1047 // Start out building up our return value from undef
1048 RetVal = UndefValue::get(NRetTy);
1049 for (unsigned i = 0; i != RetCount; ++i)
1050 if (NewRetIdxs[i] != -1) {
1051 ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
1052 "oldret", RI);
1053 if (RetTypes.size() > 1) {
1054 // We're still returning a struct, so reinsert the value into
1055 // our new return value at the new index
1057 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
1058 "newret", RI);
1059 } else {
1060 // We are now only returning a simple value, so just return the
1061 // extracted value.
1062 RetVal = EV;
1066 // Replace the return instruction with one returning the new return
1067 // value (possibly 0 if we became void).
1068 ReturnInst::Create(F->getContext(), RetVal, RI);
1069 BB.getInstList().erase(RI);
1072 // Clone metadatas from the old function, including debug info descriptor.
1073 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1074 F->getAllMetadata(MDs);
1075 for (auto MD : MDs)
1076 NF->addMetadata(MD.first, *MD.second);
1078 // Now that the old function is dead, delete it.
1079 F->eraseFromParent();
1081 return true;
1084 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1085 ModuleAnalysisManager &) {
1086 bool Changed = false;
1088 // First pass: Do a simple check to see if any functions can have their "..."
1089 // removed. We can do this if they never call va_start. This loop cannot be
1090 // fused with the next loop, because deleting a function invalidates
1091 // information computed while surveying other functions.
1092 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1093 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1094 Function &F = *I++;
1095 if (F.getFunctionType()->isVarArg())
1096 Changed |= DeleteDeadVarargs(F);
1099 // Second phase:loop through the module, determining which arguments are live.
1100 // We assume all arguments are dead unless proven otherwise (allowing us to
1101 // determine that dead arguments passed into recursive functions are dead).
1103 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1104 for (auto &F : M)
1105 SurveyFunction(F);
1107 // Now, remove all dead arguments and return values from each function in
1108 // turn.
1109 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1110 // Increment now, because the function will probably get removed (ie.
1111 // replaced by a new one).
1112 Function *F = &*I++;
1113 Changed |= RemoveDeadStuffFromFunction(F);
1116 // Finally, look for any unused parameters in functions with non-local
1117 // linkage and replace the passed in parameters with undef.
1118 for (auto &F : M)
1119 Changed |= RemoveDeadArgumentsFromCallers(F);
1121 if (!Changed)
1122 return PreservedAnalyses::all();
1123 return PreservedAnalyses::none();