Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / IPO / HotColdSplitting.cpp
blobb8def7ad3ea986b7bd22faf66c45035d5af5f301
1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// The goal of hot/cold splitting is to improve the memory locality of code.
11 /// The splitting pass does this by identifying cold blocks and moving them into
12 /// separate functions.
13 ///
14 /// When the splitting pass finds a cold block (referred to as "the sink"), it
15 /// grows a maximal cold region around that block. The maximal region contains
16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
17 /// cold as the sink. Once a region is found, it's split out of the original
18 /// function provided it's profitable to do so.
19 ///
20 /// [*] In practice, there is some added complexity because some blocks are not
21 /// safe to extract.
22 ///
23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
24 /// TODO: Reorder outlined functions.
25 ///
26 //===----------------------------------------------------------------------===//
28 #include "llvm/ADT/PostOrderIterator.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/BlockFrequencyInfo.h"
33 #include "llvm/Analysis/BranchProbabilityInfo.h"
34 #include "llvm/Analysis/CFG.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/Analysis/PostDominators.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/TargetTransformInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CFG.h"
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/PassManager.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Use.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/BranchProbability.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/IPO.h"
62 #include "llvm/Transforms/IPO/HotColdSplitting.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 #include "llvm/Transforms/Utils/Cloning.h"
66 #include "llvm/Transforms/Utils/CodeExtractor.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/ValueMapper.h"
69 #include <algorithm>
70 #include <cassert>
72 #define DEBUG_TYPE "hotcoldsplit"
74 STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
75 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
77 using namespace llvm;
79 static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis",
80 cl::init(true), cl::Hidden);
82 static cl::opt<int>
83 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
84 cl::desc("Base penalty for splitting cold code (as a "
85 "multiple of TCC_Basic)"));
87 namespace {
89 /// A sequence of basic blocks.
90 ///
91 /// A 0-sized SmallVector is slightly cheaper to move than a std::vector.
92 using BlockSequence = SmallVector<BasicBlock *, 0>;
94 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
95 // this function unless you modify the MBB version as well.
97 /// A no successor, non-return block probably ends in unreachable and is cold.
98 /// Also consider a block that ends in an indirect branch to be a return block,
99 /// since many targets use plain indirect branches to return.
100 bool blockEndsInUnreachable(const BasicBlock &BB) {
101 if (!succ_empty(&BB))
102 return false;
103 if (BB.empty())
104 return true;
105 const Instruction *I = BB.getTerminator();
106 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
109 bool unlikelyExecuted(BasicBlock &BB) {
110 // Exception handling blocks are unlikely executed.
111 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
112 return true;
114 // The block is cold if it calls/invokes a cold function.
115 for (Instruction &I : BB)
116 if (auto CS = CallSite(&I))
117 if (CS.hasFnAttr(Attribute::Cold))
118 return true;
120 // The block is cold if it has an unreachable terminator, unless it's
121 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
122 if (blockEndsInUnreachable(BB)) {
123 if (auto *CI =
124 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
125 if (CI->hasFnAttr(Attribute::NoReturn))
126 return false;
127 return true;
130 return false;
133 /// Check whether it's safe to outline \p BB.
134 static bool mayExtractBlock(const BasicBlock &BB) {
135 // EH pads are unsafe to outline because doing so breaks EH type tables. It
136 // follows that invoke instructions cannot be extracted, because CodeExtractor
137 // requires unwind destinations to be within the extraction region.
139 // Resumes that are not reachable from a cleanup landing pad are considered to
140 // be unreachable. It’s not safe to split them out either.
141 auto Term = BB.getTerminator();
142 return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) &&
143 !isa<ResumeInst>(Term);
146 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
147 /// If \p UpdateEntryCount is true (set when this is a new split function and
148 /// module has profile data), set entry count to 0 to ensure treated as cold.
149 /// Return true if the function is changed.
150 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
151 assert(!F.hasFnAttribute(Attribute::OptimizeNone) && "Can't mark this cold");
152 bool Changed = false;
153 if (!F.hasFnAttribute(Attribute::Cold)) {
154 F.addFnAttr(Attribute::Cold);
155 Changed = true;
157 if (!F.hasFnAttribute(Attribute::MinSize)) {
158 F.addFnAttr(Attribute::MinSize);
159 Changed = true;
161 if (UpdateEntryCount) {
162 // Set the entry count to 0 to ensure it is placed in the unlikely text
163 // section when function sections are enabled.
164 F.setEntryCount(0);
165 Changed = true;
168 return Changed;
171 class HotColdSplitting {
172 public:
173 HotColdSplitting(ProfileSummaryInfo *ProfSI,
174 function_ref<BlockFrequencyInfo *(Function &)> GBFI,
175 function_ref<TargetTransformInfo &(Function &)> GTTI,
176 std::function<OptimizationRemarkEmitter &(Function &)> *GORE,
177 function_ref<AssumptionCache *(Function &)> LAC)
178 : PSI(ProfSI), GetBFI(GBFI), GetTTI(GTTI), GetORE(GORE), LookupAC(LAC) {}
179 bool run(Module &M);
181 private:
182 bool isFunctionCold(const Function &F) const;
183 bool shouldOutlineFrom(const Function &F) const;
184 bool outlineColdRegions(Function &F, bool HasProfileSummary);
185 Function *extractColdRegion(const BlockSequence &Region, DominatorTree &DT,
186 BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
187 OptimizationRemarkEmitter &ORE,
188 AssumptionCache *AC, unsigned Count);
189 ProfileSummaryInfo *PSI;
190 function_ref<BlockFrequencyInfo *(Function &)> GetBFI;
191 function_ref<TargetTransformInfo &(Function &)> GetTTI;
192 std::function<OptimizationRemarkEmitter &(Function &)> *GetORE;
193 function_ref<AssumptionCache *(Function &)> LookupAC;
196 class HotColdSplittingLegacyPass : public ModulePass {
197 public:
198 static char ID;
199 HotColdSplittingLegacyPass() : ModulePass(ID) {
200 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
203 void getAnalysisUsage(AnalysisUsage &AU) const override {
204 AU.addRequired<BlockFrequencyInfoWrapperPass>();
205 AU.addRequired<ProfileSummaryInfoWrapperPass>();
206 AU.addRequired<TargetTransformInfoWrapperPass>();
207 AU.addUsedIfAvailable<AssumptionCacheTracker>();
210 bool runOnModule(Module &M) override;
213 } // end anonymous namespace
215 /// Check whether \p F is inherently cold.
216 bool HotColdSplitting::isFunctionCold(const Function &F) const {
217 if (F.hasFnAttribute(Attribute::Cold))
218 return true;
220 if (F.getCallingConv() == CallingConv::Cold)
221 return true;
223 if (PSI->isFunctionEntryCold(&F))
224 return true;
226 return false;
229 // Returns false if the function should not be considered for hot-cold split
230 // optimization.
231 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
232 if (F.hasFnAttribute(Attribute::AlwaysInline))
233 return false;
235 if (F.hasFnAttribute(Attribute::NoInline))
236 return false;
238 return true;
241 /// Get the benefit score of outlining \p Region.
242 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region,
243 TargetTransformInfo &TTI) {
244 // Sum up the code size costs of non-terminator instructions. Tight coupling
245 // with \ref getOutliningPenalty is needed to model the costs of terminators.
246 int Benefit = 0;
247 for (BasicBlock *BB : Region)
248 for (Instruction &I : BB->instructionsWithoutDebug())
249 if (&I != BB->getTerminator())
250 Benefit +=
251 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
253 return Benefit;
256 /// Get the penalty score for outlining \p Region.
257 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
258 unsigned NumInputs, unsigned NumOutputs) {
259 int Penalty = SplittingThreshold;
260 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
262 // If the splitting threshold is set at or below zero, skip the usual
263 // profitability check.
264 if (SplittingThreshold <= 0)
265 return Penalty;
267 // The typical code size cost for materializing an argument for the outlined
268 // call.
269 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n");
270 const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic;
271 Penalty += CostForArgMaterialization * NumInputs;
273 // The typical code size cost for an output alloca, its associated store, and
274 // its associated reload.
275 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n");
276 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
277 Penalty += CostForRegionOutput * NumOutputs;
279 // Find the number of distinct exit blocks for the region. Use a conservative
280 // check to determine whether control returns from the region.
281 bool NoBlocksReturn = true;
282 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
283 for (BasicBlock *BB : Region) {
284 // If a block has no successors, only assume it does not return if it's
285 // unreachable.
286 if (succ_empty(BB)) {
287 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
288 continue;
291 for (BasicBlock *SuccBB : successors(BB)) {
292 if (find(Region, SuccBB) == Region.end()) {
293 NoBlocksReturn = false;
294 SuccsOutsideRegion.insert(SuccBB);
299 // Apply a `noreturn` bonus.
300 if (NoBlocksReturn) {
301 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
302 << " non-returning terminators\n");
303 Penalty -= Region.size();
306 // Apply a penalty for having more than one successor outside of the region.
307 // This penalty accounts for the switch needed in the caller.
308 if (!SuccsOutsideRegion.empty()) {
309 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
310 << " non-region successors\n");
311 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
314 return Penalty;
317 Function *HotColdSplitting::extractColdRegion(const BlockSequence &Region,
318 DominatorTree &DT,
319 BlockFrequencyInfo *BFI,
320 TargetTransformInfo &TTI,
321 OptimizationRemarkEmitter &ORE,
322 AssumptionCache *AC,
323 unsigned Count) {
324 assert(!Region.empty());
326 // TODO: Pass BFI and BPI to update profile information.
327 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
328 /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
329 /* AllowAlloca */ false,
330 /* Suffix */ "cold." + std::to_string(Count));
332 // Perform a simple cost/benefit analysis to decide whether or not to permit
333 // splitting.
334 SetVector<Value *> Inputs, Outputs, Sinks;
335 CE.findInputsOutputs(Inputs, Outputs, Sinks);
336 int OutliningBenefit = getOutliningBenefit(Region, TTI);
337 int OutliningPenalty =
338 getOutliningPenalty(Region, Inputs.size(), Outputs.size());
339 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
340 << ", penalty = " << OutliningPenalty << "\n");
341 if (OutliningBenefit <= OutliningPenalty)
342 return nullptr;
344 Function *OrigF = Region[0]->getParent();
345 if (Function *OutF = CE.extractCodeRegion()) {
346 User *U = *OutF->user_begin();
347 CallInst *CI = cast<CallInst>(U);
348 CallSite CS(CI);
349 NumColdRegionsOutlined++;
350 if (TTI.useColdCCForColdCall(*OutF)) {
351 OutF->setCallingConv(CallingConv::Cold);
352 CS.setCallingConv(CallingConv::Cold);
354 CI->setIsNoInline();
356 markFunctionCold(*OutF, BFI != nullptr);
358 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
359 ORE.emit([&]() {
360 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
361 &*Region[0]->begin())
362 << ore::NV("Original", OrigF) << " split cold code into "
363 << ore::NV("Split", OutF);
365 return OutF;
368 ORE.emit([&]() {
369 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
370 &*Region[0]->begin())
371 << "Failed to extract region at block "
372 << ore::NV("Block", Region.front());
374 return nullptr;
377 /// A pair of (basic block, score).
378 using BlockTy = std::pair<BasicBlock *, unsigned>;
380 namespace {
381 /// A maximal outlining region. This contains all blocks post-dominated by a
382 /// sink block, the sink block itself, and all blocks dominated by the sink.
383 /// If sink-predecessors and sink-successors cannot be extracted in one region,
384 /// the static constructor returns a list of suitable extraction regions.
385 class OutliningRegion {
386 /// A list of (block, score) pairs. A block's score is non-zero iff it's a
387 /// viable sub-region entry point. Blocks with higher scores are better entry
388 /// points (i.e. they are more distant ancestors of the sink block).
389 SmallVector<BlockTy, 0> Blocks = {};
391 /// The suggested entry point into the region. If the region has multiple
392 /// entry points, all blocks within the region may not be reachable from this
393 /// entry point.
394 BasicBlock *SuggestedEntryPoint = nullptr;
396 /// Whether the entire function is cold.
397 bool EntireFunctionCold = false;
399 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
400 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
401 return mayExtractBlock(BB) ? Score : 0;
404 /// These scores should be lower than the score for predecessor blocks,
405 /// because regions starting at predecessor blocks are typically larger.
406 static constexpr unsigned ScoreForSuccBlock = 1;
407 static constexpr unsigned ScoreForSinkBlock = 1;
409 OutliningRegion(const OutliningRegion &) = delete;
410 OutliningRegion &operator=(const OutliningRegion &) = delete;
412 public:
413 OutliningRegion() = default;
414 OutliningRegion(OutliningRegion &&) = default;
415 OutliningRegion &operator=(OutliningRegion &&) = default;
417 static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
418 const DominatorTree &DT,
419 const PostDominatorTree &PDT) {
420 std::vector<OutliningRegion> Regions;
421 SmallPtrSet<BasicBlock *, 4> RegionBlocks;
423 Regions.emplace_back();
424 OutliningRegion *ColdRegion = &Regions.back();
426 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
427 RegionBlocks.insert(BB);
428 ColdRegion->Blocks.emplace_back(BB, Score);
431 // The ancestor farthest-away from SinkBB, and also post-dominated by it.
432 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
433 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
434 unsigned BestScore = SinkScore;
436 // Visit SinkBB's ancestors using inverse DFS.
437 auto PredIt = ++idf_begin(&SinkBB);
438 auto PredEnd = idf_end(&SinkBB);
439 while (PredIt != PredEnd) {
440 BasicBlock &PredBB = **PredIt;
441 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
443 // If the predecessor is cold and has no predecessors, the entire
444 // function must be cold.
445 if (SinkPostDom && pred_empty(&PredBB)) {
446 ColdRegion->EntireFunctionCold = true;
447 return Regions;
450 // If SinkBB does not post-dominate a predecessor, do not mark the
451 // predecessor (or any of its predecessors) cold.
452 if (!SinkPostDom || !mayExtractBlock(PredBB)) {
453 PredIt.skipChildren();
454 continue;
457 // Keep track of the post-dominated ancestor farthest away from the sink.
458 // The path length is always >= 2, ensuring that predecessor blocks are
459 // considered as entry points before the sink block.
460 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
461 if (PredScore > BestScore) {
462 ColdRegion->SuggestedEntryPoint = &PredBB;
463 BestScore = PredScore;
466 addBlockToRegion(&PredBB, PredScore);
467 ++PredIt;
470 // If the sink can be added to the cold region, do so. It's considered as
471 // an entry point before any sink-successor blocks.
473 // Otherwise, split cold sink-successor blocks using a separate region.
474 // This satisfies the requirement that all extraction blocks other than the
475 // first have predecessors within the extraction region.
476 if (mayExtractBlock(SinkBB)) {
477 addBlockToRegion(&SinkBB, SinkScore);
478 } else {
479 Regions.emplace_back();
480 ColdRegion = &Regions.back();
481 BestScore = 0;
484 // Find all successors of SinkBB dominated by SinkBB using DFS.
485 auto SuccIt = ++df_begin(&SinkBB);
486 auto SuccEnd = df_end(&SinkBB);
487 while (SuccIt != SuccEnd) {
488 BasicBlock &SuccBB = **SuccIt;
489 bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
491 // Don't allow the backwards & forwards DFSes to mark the same block.
492 bool DuplicateBlock = RegionBlocks.count(&SuccBB);
494 // If SinkBB does not dominate a successor, do not mark the successor (or
495 // any of its successors) cold.
496 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
497 SuccIt.skipChildren();
498 continue;
501 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
502 if (SuccScore > BestScore) {
503 ColdRegion->SuggestedEntryPoint = &SuccBB;
504 BestScore = SuccScore;
507 addBlockToRegion(&SuccBB, SuccScore);
508 ++SuccIt;
511 return Regions;
514 /// Whether this region has nothing to extract.
515 bool empty() const { return !SuggestedEntryPoint; }
517 /// The blocks in this region.
518 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
520 /// Whether the entire function containing this region is cold.
521 bool isEntireFunctionCold() const { return EntireFunctionCold; }
523 /// Remove a sub-region from this region and return it as a block sequence.
524 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
525 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
527 // Remove blocks dominated by the suggested entry point from this region.
528 // During the removal, identify the next best entry point into the region.
529 // Ensure that the first extracted block is the suggested entry point.
530 BlockSequence SubRegion = {SuggestedEntryPoint};
531 BasicBlock *NextEntryPoint = nullptr;
532 unsigned NextScore = 0;
533 auto RegionEndIt = Blocks.end();
534 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
535 BasicBlock *BB = Block.first;
536 unsigned Score = Block.second;
537 bool InSubRegion =
538 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
539 if (!InSubRegion && Score > NextScore) {
540 NextEntryPoint = BB;
541 NextScore = Score;
543 if (InSubRegion && BB != SuggestedEntryPoint)
544 SubRegion.push_back(BB);
545 return InSubRegion;
547 Blocks.erase(RegionStartIt, RegionEndIt);
549 // Update the suggested entry point.
550 SuggestedEntryPoint = NextEntryPoint;
552 return SubRegion;
555 } // namespace
557 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
558 bool Changed = false;
560 // The set of cold blocks.
561 SmallPtrSet<BasicBlock *, 4> ColdBlocks;
563 // The worklist of non-intersecting regions left to outline.
564 SmallVector<OutliningRegion, 2> OutliningWorklist;
566 // Set up an RPO traversal. Experimentally, this performs better (outlines
567 // more) than a PO traversal, because we prevent region overlap by keeping
568 // the first region to contain a block.
569 ReversePostOrderTraversal<Function *> RPOT(&F);
571 // Calculate domtrees lazily. This reduces compile-time significantly.
572 std::unique_ptr<DominatorTree> DT;
573 std::unique_ptr<PostDominatorTree> PDT;
575 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
576 // reduces compile-time significantly. TODO: When we *do* use BFI, we should
577 // be able to salvage its domtrees instead of recomputing them.
578 BlockFrequencyInfo *BFI = nullptr;
579 if (HasProfileSummary)
580 BFI = GetBFI(F);
582 TargetTransformInfo &TTI = GetTTI(F);
583 OptimizationRemarkEmitter &ORE = (*GetORE)(F);
584 AssumptionCache *AC = LookupAC(F);
586 // Find all cold regions.
587 for (BasicBlock *BB : RPOT) {
588 // This block is already part of some outlining region.
589 if (ColdBlocks.count(BB))
590 continue;
592 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
593 (EnableStaticAnalyis && unlikelyExecuted(*BB));
594 if (!Cold)
595 continue;
597 LLVM_DEBUG({
598 dbgs() << "Found a cold block:\n";
599 BB->dump();
602 if (!DT)
603 DT = make_unique<DominatorTree>(F);
604 if (!PDT)
605 PDT = make_unique<PostDominatorTree>(F);
607 auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
608 for (OutliningRegion &Region : Regions) {
609 if (Region.empty())
610 continue;
612 if (Region.isEntireFunctionCold()) {
613 LLVM_DEBUG(dbgs() << "Entire function is cold\n");
614 return markFunctionCold(F);
617 // If this outlining region intersects with another, drop the new region.
619 // TODO: It's theoretically possible to outline more by only keeping the
620 // largest region which contains a block, but the extra bookkeeping to do
621 // this is tricky/expensive.
622 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
623 return !ColdBlocks.insert(Block.first).second;
625 if (RegionsOverlap)
626 continue;
628 OutliningWorklist.emplace_back(std::move(Region));
629 ++NumColdRegionsFound;
633 // Outline single-entry cold regions, splitting up larger regions as needed.
634 unsigned OutlinedFunctionID = 1;
635 while (!OutliningWorklist.empty()) {
636 OutliningRegion Region = OutliningWorklist.pop_back_val();
637 assert(!Region.empty() && "Empty outlining region in worklist");
638 do {
639 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
640 LLVM_DEBUG({
641 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
642 for (BasicBlock *BB : SubRegion)
643 BB->dump();
646 Function *Outlined = extractColdRegion(SubRegion, *DT, BFI, TTI, ORE, AC,
647 OutlinedFunctionID);
648 if (Outlined) {
649 ++OutlinedFunctionID;
650 Changed = true;
652 } while (!Region.empty());
655 return Changed;
658 bool HotColdSplitting::run(Module &M) {
659 bool Changed = false;
660 bool HasProfileSummary = M.getProfileSummary();
661 for (auto It = M.begin(), End = M.end(); It != End; ++It) {
662 Function &F = *It;
664 // Do not touch declarations.
665 if (F.isDeclaration())
666 continue;
668 // Do not modify `optnone` functions.
669 if (F.hasFnAttribute(Attribute::OptimizeNone))
670 continue;
672 // Detect inherently cold functions and mark them as such.
673 if (isFunctionCold(F)) {
674 Changed |= markFunctionCold(F);
675 continue;
678 if (!shouldOutlineFrom(F)) {
679 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
680 continue;
683 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
684 Changed |= outlineColdRegions(F, HasProfileSummary);
686 return Changed;
689 bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
690 if (skipModule(M))
691 return false;
692 ProfileSummaryInfo *PSI =
693 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
694 auto GTTI = [this](Function &F) -> TargetTransformInfo & {
695 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
697 auto GBFI = [this](Function &F) {
698 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
700 std::unique_ptr<OptimizationRemarkEmitter> ORE;
701 std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
702 [&ORE](Function &F) -> OptimizationRemarkEmitter & {
703 ORE.reset(new OptimizationRemarkEmitter(&F));
704 return *ORE.get();
706 auto LookupAC = [this](Function &F) -> AssumptionCache * {
707 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
708 return ACT->lookupAssumptionCache(F);
709 return nullptr;
712 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
715 PreservedAnalyses
716 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
717 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
719 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
720 return FAM.getCachedResult<AssumptionAnalysis>(F);
723 auto GBFI = [&FAM](Function &F) {
724 return &FAM.getResult<BlockFrequencyAnalysis>(F);
727 std::function<TargetTransformInfo &(Function &)> GTTI =
728 [&FAM](Function &F) -> TargetTransformInfo & {
729 return FAM.getResult<TargetIRAnalysis>(F);
732 std::unique_ptr<OptimizationRemarkEmitter> ORE;
733 std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
734 [&ORE](Function &F) -> OptimizationRemarkEmitter & {
735 ORE.reset(new OptimizationRemarkEmitter(&F));
736 return *ORE.get();
739 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
741 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
742 return PreservedAnalyses::none();
743 return PreservedAnalyses::all();
746 char HotColdSplittingLegacyPass::ID = 0;
747 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
748 "Hot Cold Splitting", false, false)
749 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
750 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
751 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
752 "Hot Cold Splitting", false, false)
754 ModulePass *llvm::createHotColdSplittingPass() {
755 return new HotColdSplittingLegacyPass();