1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visitAnd, visitOr, and visitXor functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/CmpInstAnalysis.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Transforms/Utils/Local.h"
17 #include "llvm/IR/ConstantRange.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/PatternMatch.h"
21 using namespace PatternMatch
;
23 #define DEBUG_TYPE "instcombine"
25 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
27 static unsigned getFCmpCode(FCmpInst::Predicate CC
) {
28 assert(FCmpInst::FCMP_FALSE
<= CC
&& CC
<= FCmpInst::FCMP_TRUE
&&
29 "Unexpected FCmp predicate!");
30 // Take advantage of the bit pattern of FCmpInst::Predicate here.
32 static_assert(FCmpInst::FCMP_FALSE
== 0, ""); // 0 0 0 0
33 static_assert(FCmpInst::FCMP_OEQ
== 1, ""); // 0 0 0 1
34 static_assert(FCmpInst::FCMP_OGT
== 2, ""); // 0 0 1 0
35 static_assert(FCmpInst::FCMP_OGE
== 3, ""); // 0 0 1 1
36 static_assert(FCmpInst::FCMP_OLT
== 4, ""); // 0 1 0 0
37 static_assert(FCmpInst::FCMP_OLE
== 5, ""); // 0 1 0 1
38 static_assert(FCmpInst::FCMP_ONE
== 6, ""); // 0 1 1 0
39 static_assert(FCmpInst::FCMP_ORD
== 7, ""); // 0 1 1 1
40 static_assert(FCmpInst::FCMP_UNO
== 8, ""); // 1 0 0 0
41 static_assert(FCmpInst::FCMP_UEQ
== 9, ""); // 1 0 0 1
42 static_assert(FCmpInst::FCMP_UGT
== 10, ""); // 1 0 1 0
43 static_assert(FCmpInst::FCMP_UGE
== 11, ""); // 1 0 1 1
44 static_assert(FCmpInst::FCMP_ULT
== 12, ""); // 1 1 0 0
45 static_assert(FCmpInst::FCMP_ULE
== 13, ""); // 1 1 0 1
46 static_assert(FCmpInst::FCMP_UNE
== 14, ""); // 1 1 1 0
47 static_assert(FCmpInst::FCMP_TRUE
== 15, ""); // 1 1 1 1
51 /// This is the complement of getICmpCode, which turns an opcode and two
52 /// operands into either a constant true or false, or a brand new ICmp
53 /// instruction. The sign is passed in to determine which kind of predicate to
54 /// use in the new icmp instruction.
55 static Value
*getNewICmpValue(unsigned Code
, bool Sign
, Value
*LHS
, Value
*RHS
,
56 InstCombiner::BuilderTy
&Builder
) {
57 ICmpInst::Predicate NewPred
;
58 if (Constant
*TorF
= getPredForICmpCode(Code
, Sign
, LHS
->getType(), NewPred
))
60 return Builder
.CreateICmp(NewPred
, LHS
, RHS
);
63 /// This is the complement of getFCmpCode, which turns an opcode and two
64 /// operands into either a FCmp instruction, or a true/false constant.
65 static Value
*getFCmpValue(unsigned Code
, Value
*LHS
, Value
*RHS
,
66 InstCombiner::BuilderTy
&Builder
) {
67 const auto Pred
= static_cast<FCmpInst::Predicate
>(Code
);
68 assert(FCmpInst::FCMP_FALSE
<= Pred
&& Pred
<= FCmpInst::FCMP_TRUE
&&
69 "Unexpected FCmp predicate!");
70 if (Pred
== FCmpInst::FCMP_FALSE
)
71 return ConstantInt::get(CmpInst::makeCmpResultType(LHS
->getType()), 0);
72 if (Pred
== FCmpInst::FCMP_TRUE
)
73 return ConstantInt::get(CmpInst::makeCmpResultType(LHS
->getType()), 1);
74 return Builder
.CreateFCmp(Pred
, LHS
, RHS
);
77 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
78 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
79 /// \param I Binary operator to transform.
80 /// \return Pointer to node that must replace the original binary operator, or
81 /// null pointer if no transformation was made.
82 static Value
*SimplifyBSwap(BinaryOperator
&I
,
83 InstCombiner::BuilderTy
&Builder
) {
84 assert(I
.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
86 Value
*OldLHS
= I
.getOperand(0);
87 Value
*OldRHS
= I
.getOperand(1);
90 if (!match(OldLHS
, m_BSwap(m_Value(NewLHS
))))
96 if (match(OldRHS
, m_BSwap(m_Value(NewRHS
)))) {
97 // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
98 if (!OldLHS
->hasOneUse() && !OldRHS
->hasOneUse())
100 // NewRHS initialized by the matcher.
101 } else if (match(OldRHS
, m_APInt(C
))) {
102 // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
103 if (!OldLHS
->hasOneUse())
105 NewRHS
= ConstantInt::get(I
.getType(), C
->byteSwap());
109 Value
*BinOp
= Builder
.CreateBinOp(I
.getOpcode(), NewLHS
, NewRHS
);
110 Function
*F
= Intrinsic::getDeclaration(I
.getModule(), Intrinsic::bswap
,
112 return Builder
.CreateCall(F
, BinOp
);
115 /// This handles expressions of the form ((val OP C1) & C2). Where
116 /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.
117 Instruction
*InstCombiner::OptAndOp(BinaryOperator
*Op
,
120 BinaryOperator
&TheAnd
) {
121 Value
*X
= Op
->getOperand(0);
123 switch (Op
->getOpcode()) {
125 case Instruction::Add
:
126 if (Op
->hasOneUse()) {
127 // Adding a one to a single bit bit-field should be turned into an XOR
128 // of the bit. First thing to check is to see if this AND is with a
129 // single bit constant.
130 const APInt
&AndRHSV
= AndRHS
->getValue();
132 // If there is only one bit set.
133 if (AndRHSV
.isPowerOf2()) {
134 // Ok, at this point, we know that we are masking the result of the
135 // ADD down to exactly one bit. If the constant we are adding has
136 // no bits set below this bit, then we can eliminate the ADD.
137 const APInt
& AddRHS
= OpRHS
->getValue();
139 // Check to see if any bits below the one bit set in AndRHSV are set.
140 if ((AddRHS
& (AndRHSV
- 1)).isNullValue()) {
141 // If not, the only thing that can effect the output of the AND is
142 // the bit specified by AndRHSV. If that bit is set, the effect of
143 // the XOR is to toggle the bit. If it is clear, then the ADD has
145 if ((AddRHS
& AndRHSV
).isNullValue()) { // Bit is not set, noop
146 TheAnd
.setOperand(0, X
);
149 // Pull the XOR out of the AND.
150 Value
*NewAnd
= Builder
.CreateAnd(X
, AndRHS
);
151 NewAnd
->takeName(Op
);
152 return BinaryOperator::CreateXor(NewAnd
, AndRHS
);
162 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
163 /// (V < Lo || V >= Hi). This method expects that Lo <= Hi. IsSigned indicates
164 /// whether to treat V, Lo, and Hi as signed or not.
165 Value
*InstCombiner::insertRangeTest(Value
*V
, const APInt
&Lo
, const APInt
&Hi
,
166 bool isSigned
, bool Inside
) {
167 assert((isSigned
? Lo
.sle(Hi
) : Lo
.ule(Hi
)) &&
168 "Lo is not <= Hi in range emission code!");
170 Type
*Ty
= V
->getType();
172 return Inside
? ConstantInt::getFalse(Ty
) : ConstantInt::getTrue(Ty
);
174 // V >= Min && V < Hi --> V < Hi
175 // V < Min || V >= Hi --> V >= Hi
176 ICmpInst::Predicate Pred
= Inside
? ICmpInst::ICMP_ULT
: ICmpInst::ICMP_UGE
;
177 if (isSigned
? Lo
.isMinSignedValue() : Lo
.isMinValue()) {
178 Pred
= isSigned
? ICmpInst::getSignedPredicate(Pred
) : Pred
;
179 return Builder
.CreateICmp(Pred
, V
, ConstantInt::get(Ty
, Hi
));
182 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo
183 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo
185 Builder
.CreateSub(V
, ConstantInt::get(Ty
, Lo
), V
->getName() + ".off");
186 Constant
*HiMinusLo
= ConstantInt::get(Ty
, Hi
- Lo
);
187 return Builder
.CreateICmp(Pred
, VMinusLo
, HiMinusLo
);
190 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
191 /// that can be simplified.
192 /// One of A and B is considered the mask. The other is the value. This is
193 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
194 /// only "Mask", then both A and B can be considered masks. If A is the mask,
195 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
196 /// If both A and C are constants, this proof is also easy.
197 /// For the following explanations, we assume that A is the mask.
199 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
200 /// bits of A are set in B.
201 /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
203 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
204 /// bits of A are cleared in B.
205 /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
207 /// "Mixed" declares that (A & B) == C and C might or might not contain any
208 /// number of one bits and zero bits.
209 /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed
211 /// "Not" means that in above descriptions "==" should be replaced by "!=".
212 /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
214 /// If the mask A contains a single bit, then the following is equivalent:
215 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
216 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
217 enum MaskedICmpType
{
219 AMask_NotAllOnes
= 2,
221 BMask_NotAllOnes
= 8,
223 Mask_NotAllZeros
= 32,
225 AMask_NotMixed
= 128,
230 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
232 static unsigned getMaskedICmpType(Value
*A
, Value
*B
, Value
*C
,
233 ICmpInst::Predicate Pred
) {
234 ConstantInt
*ACst
= dyn_cast
<ConstantInt
>(A
);
235 ConstantInt
*BCst
= dyn_cast
<ConstantInt
>(B
);
236 ConstantInt
*CCst
= dyn_cast
<ConstantInt
>(C
);
237 bool IsEq
= (Pred
== ICmpInst::ICMP_EQ
);
238 bool IsAPow2
= (ACst
&& !ACst
->isZero() && ACst
->getValue().isPowerOf2());
239 bool IsBPow2
= (BCst
&& !BCst
->isZero() && BCst
->getValue().isPowerOf2());
240 unsigned MaskVal
= 0;
241 if (CCst
&& CCst
->isZero()) {
242 // if C is zero, then both A and B qualify as mask
243 MaskVal
|= (IsEq
? (Mask_AllZeros
| AMask_Mixed
| BMask_Mixed
)
244 : (Mask_NotAllZeros
| AMask_NotMixed
| BMask_NotMixed
));
246 MaskVal
|= (IsEq
? (AMask_NotAllOnes
| AMask_NotMixed
)
247 : (AMask_AllOnes
| AMask_Mixed
));
249 MaskVal
|= (IsEq
? (BMask_NotAllOnes
| BMask_NotMixed
)
250 : (BMask_AllOnes
| BMask_Mixed
));
255 MaskVal
|= (IsEq
? (AMask_AllOnes
| AMask_Mixed
)
256 : (AMask_NotAllOnes
| AMask_NotMixed
));
258 MaskVal
|= (IsEq
? (Mask_NotAllZeros
| AMask_NotMixed
)
259 : (Mask_AllZeros
| AMask_Mixed
));
260 } else if (ACst
&& CCst
&& ConstantExpr::getAnd(ACst
, CCst
) == CCst
) {
261 MaskVal
|= (IsEq
? AMask_Mixed
: AMask_NotMixed
);
265 MaskVal
|= (IsEq
? (BMask_AllOnes
| BMask_Mixed
)
266 : (BMask_NotAllOnes
| BMask_NotMixed
));
268 MaskVal
|= (IsEq
? (Mask_NotAllZeros
| BMask_NotMixed
)
269 : (Mask_AllZeros
| BMask_Mixed
));
270 } else if (BCst
&& CCst
&& ConstantExpr::getAnd(BCst
, CCst
) == CCst
) {
271 MaskVal
|= (IsEq
? BMask_Mixed
: BMask_NotMixed
);
277 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
278 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
279 /// is adjacent to the corresponding normal flag (recording ==), this just
280 /// involves swapping those bits over.
281 static unsigned conjugateICmpMask(unsigned Mask
) {
283 NewMask
= (Mask
& (AMask_AllOnes
| BMask_AllOnes
| Mask_AllZeros
|
284 AMask_Mixed
| BMask_Mixed
))
287 NewMask
|= (Mask
& (AMask_NotAllOnes
| BMask_NotAllOnes
| Mask_NotAllZeros
|
288 AMask_NotMixed
| BMask_NotMixed
))
294 // Adapts the external decomposeBitTestICmp for local use.
295 static bool decomposeBitTestICmp(Value
*LHS
, Value
*RHS
, CmpInst::Predicate
&Pred
,
296 Value
*&X
, Value
*&Y
, Value
*&Z
) {
298 if (!llvm::decomposeBitTestICmp(LHS
, RHS
, Pred
, X
, Mask
))
301 Y
= ConstantInt::get(X
->getType(), Mask
);
302 Z
= ConstantInt::get(X
->getType(), 0);
306 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
307 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
308 /// the right hand side as a pair.
309 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
310 /// and PredR are their predicates, respectively.
312 Optional
<std::pair
<unsigned, unsigned>>
313 getMaskedTypeForICmpPair(Value
*&A
, Value
*&B
, Value
*&C
,
314 Value
*&D
, Value
*&E
, ICmpInst
*LHS
,
316 ICmpInst::Predicate
&PredL
,
317 ICmpInst::Predicate
&PredR
) {
318 // vectors are not (yet?) supported. Don't support pointers either.
319 if (!LHS
->getOperand(0)->getType()->isIntegerTy() ||
320 !RHS
->getOperand(0)->getType()->isIntegerTy())
323 // Here comes the tricky part:
324 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
325 // and L11 & L12 == L21 & L22. The same goes for RHS.
326 // Now we must find those components L** and R**, that are equal, so
327 // that we can extract the parameters A, B, C, D, and E for the canonical
329 Value
*L1
= LHS
->getOperand(0);
330 Value
*L2
= LHS
->getOperand(1);
331 Value
*L11
, *L12
, *L21
, *L22
;
332 // Check whether the icmp can be decomposed into a bit test.
333 if (decomposeBitTestICmp(L1
, L2
, PredL
, L11
, L12
, L2
)) {
334 L21
= L22
= L1
= nullptr;
336 // Look for ANDs in the LHS icmp.
337 if (!match(L1
, m_And(m_Value(L11
), m_Value(L12
)))) {
338 // Any icmp can be viewed as being trivially masked; if it allows us to
339 // remove one, it's worth it.
341 L12
= Constant::getAllOnesValue(L1
->getType());
344 if (!match(L2
, m_And(m_Value(L21
), m_Value(L22
)))) {
346 L22
= Constant::getAllOnesValue(L2
->getType());
350 // Bail if LHS was a icmp that can't be decomposed into an equality.
351 if (!ICmpInst::isEquality(PredL
))
354 Value
*R1
= RHS
->getOperand(0);
355 Value
*R2
= RHS
->getOperand(1);
358 if (decomposeBitTestICmp(R1
, R2
, PredR
, R11
, R12
, R2
)) {
359 if (R11
== L11
|| R11
== L12
|| R11
== L21
|| R11
== L22
) {
362 } else if (R12
== L11
|| R12
== L12
|| R12
== L21
|| R12
== L22
) {
372 if (!match(R1
, m_And(m_Value(R11
), m_Value(R12
)))) {
373 // As before, model no mask as a trivial mask if it'll let us do an
376 R12
= Constant::getAllOnesValue(R1
->getType());
379 if (R11
== L11
|| R11
== L12
|| R11
== L21
|| R11
== L22
) {
384 } else if (R12
== L11
|| R12
== L12
|| R12
== L21
|| R12
== L22
) {
392 // Bail if RHS was a icmp that can't be decomposed into an equality.
393 if (!ICmpInst::isEquality(PredR
))
396 // Look for ANDs on the right side of the RHS icmp.
398 if (!match(R2
, m_And(m_Value(R11
), m_Value(R12
)))) {
400 R12
= Constant::getAllOnesValue(R2
->getType());
403 if (R11
== L11
|| R11
== L12
|| R11
== L21
|| R11
== L22
) {
408 } else if (R12
== L11
|| R12
== L12
|| R12
== L21
|| R12
== L22
) {
423 } else if (L12
== A
) {
426 } else if (L21
== A
) {
429 } else if (L22
== A
) {
434 unsigned LeftType
= getMaskedICmpType(A
, B
, C
, PredL
);
435 unsigned RightType
= getMaskedICmpType(A
, D
, E
, PredR
);
436 return Optional
<std::pair
<unsigned, unsigned>>(std::make_pair(LeftType
, RightType
));
439 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
440 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
441 /// and the right hand side is of type BMask_Mixed. For example,
442 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
443 static Value
* foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
444 ICmpInst
*LHS
, ICmpInst
*RHS
, bool IsAnd
,
445 Value
*A
, Value
*B
, Value
*C
, Value
*D
, Value
*E
,
446 ICmpInst::Predicate PredL
, ICmpInst::Predicate PredR
,
447 llvm::InstCombiner::BuilderTy
&Builder
) {
448 // We are given the canonical form:
449 // (icmp ne (A & B), 0) & (icmp eq (A & D), E).
452 // If IsAnd is false, we get it in negated form:
453 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
454 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
456 // We currently handle the case of B, C, D, E are constant.
458 ConstantInt
*BCst
= dyn_cast
<ConstantInt
>(B
);
461 ConstantInt
*CCst
= dyn_cast
<ConstantInt
>(C
);
464 ConstantInt
*DCst
= dyn_cast
<ConstantInt
>(D
);
467 ConstantInt
*ECst
= dyn_cast
<ConstantInt
>(E
);
471 ICmpInst::Predicate NewCC
= IsAnd
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
;
473 // Update E to the canonical form when D is a power of two and RHS is
475 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
476 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
478 ECst
= cast
<ConstantInt
>(ConstantExpr::getXor(DCst
, ECst
));
480 // If B or D is zero, skip because if LHS or RHS can be trivially folded by
481 // other folding rules and this pattern won't apply any more.
482 if (BCst
->getValue() == 0 || DCst
->getValue() == 0)
485 // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
486 // deduce anything from it.
488 // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
489 if ((BCst
->getValue() & DCst
->getValue()) == 0)
492 // If the following two conditions are met:
494 // 1. mask B covers only a single bit that's not covered by mask D, that is,
495 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
496 // B and D has only one bit set) and,
498 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
499 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
501 // then that single bit in B must be one and thus the whole expression can be
503 // (A & (B | D)) == (B & (B ^ D)) | E.
506 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
507 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
508 if ((((BCst
->getValue() & DCst
->getValue()) & ECst
->getValue()) == 0) &&
509 (BCst
->getValue() & (BCst
->getValue() ^ DCst
->getValue())).isPowerOf2()) {
510 APInt BorD
= BCst
->getValue() | DCst
->getValue();
511 APInt BandBxorDorE
= (BCst
->getValue() & (BCst
->getValue() ^ DCst
->getValue())) |
513 Value
*NewMask
= ConstantInt::get(BCst
->getType(), BorD
);
514 Value
*NewMaskedValue
= ConstantInt::get(BCst
->getType(), BandBxorDorE
);
515 Value
*NewAnd
= Builder
.CreateAnd(A
, NewMask
);
516 return Builder
.CreateICmp(NewCC
, NewAnd
, NewMaskedValue
);
519 auto IsSubSetOrEqual
= [](ConstantInt
*C1
, ConstantInt
*C2
) {
520 return (C1
->getValue() & C2
->getValue()) == C1
->getValue();
522 auto IsSuperSetOrEqual
= [](ConstantInt
*C1
, ConstantInt
*C2
) {
523 return (C1
->getValue() & C2
->getValue()) == C2
->getValue();
526 // In the following, we consider only the cases where B is a superset of D, B
527 // is a subset of D, or B == D because otherwise there's at least one bit
528 // covered by B but not D, in which case we can't deduce much from it, so
529 // no folding (aside from the single must-be-one bit case right above.)
531 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
532 if (!IsSubSetOrEqual(BCst
, DCst
) && !IsSuperSetOrEqual(BCst
, DCst
))
535 // At this point, either B is a superset of D, B is a subset of D or B == D.
537 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
538 // and the whole expression becomes false (or true if negated), otherwise, no
541 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
542 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
543 if (ECst
->isZero()) {
544 if (IsSubSetOrEqual(BCst
, DCst
))
545 return ConstantInt::get(LHS
->getType(), !IsAnd
);
549 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
550 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
551 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
553 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
554 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
555 if (IsSuperSetOrEqual(BCst
, DCst
))
557 // Otherwise, B is a subset of D. If B and E have a common bit set,
558 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
559 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
560 assert(IsSubSetOrEqual(BCst
, DCst
) && "Precondition due to above code");
561 if ((BCst
->getValue() & ECst
->getValue()) != 0)
563 // Otherwise, LHS and RHS contradict and the whole expression becomes false
564 // (or true if negated.) For example,
565 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
566 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
567 return ConstantInt::get(LHS
->getType(), !IsAnd
);
570 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
571 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
572 /// aren't of the common mask pattern type.
573 static Value
*foldLogOpOfMaskedICmpsAsymmetric(
574 ICmpInst
*LHS
, ICmpInst
*RHS
, bool IsAnd
,
575 Value
*A
, Value
*B
, Value
*C
, Value
*D
, Value
*E
,
576 ICmpInst::Predicate PredL
, ICmpInst::Predicate PredR
,
577 unsigned LHSMask
, unsigned RHSMask
,
578 llvm::InstCombiner::BuilderTy
&Builder
) {
579 assert(ICmpInst::isEquality(PredL
) && ICmpInst::isEquality(PredR
) &&
580 "Expected equality predicates for masked type of icmps.");
581 // Handle Mask_NotAllZeros-BMask_Mixed cases.
582 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
583 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
584 // which gets swapped to
585 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
587 LHSMask
= conjugateICmpMask(LHSMask
);
588 RHSMask
= conjugateICmpMask(RHSMask
);
590 if ((LHSMask
& Mask_NotAllZeros
) && (RHSMask
& BMask_Mixed
)) {
591 if (Value
*V
= foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
592 LHS
, RHS
, IsAnd
, A
, B
, C
, D
, E
,
593 PredL
, PredR
, Builder
)) {
596 } else if ((LHSMask
& BMask_Mixed
) && (RHSMask
& Mask_NotAllZeros
)) {
597 if (Value
*V
= foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
598 RHS
, LHS
, IsAnd
, A
, D
, E
, B
, C
,
599 PredR
, PredL
, Builder
)) {
606 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
607 /// into a single (icmp(A & X) ==/!= Y).
608 static Value
*foldLogOpOfMaskedICmps(ICmpInst
*LHS
, ICmpInst
*RHS
, bool IsAnd
,
609 llvm::InstCombiner::BuilderTy
&Builder
) {
610 Value
*A
= nullptr, *B
= nullptr, *C
= nullptr, *D
= nullptr, *E
= nullptr;
611 ICmpInst::Predicate PredL
= LHS
->getPredicate(), PredR
= RHS
->getPredicate();
612 Optional
<std::pair
<unsigned, unsigned>> MaskPair
=
613 getMaskedTypeForICmpPair(A
, B
, C
, D
, E
, LHS
, RHS
, PredL
, PredR
);
616 assert(ICmpInst::isEquality(PredL
) && ICmpInst::isEquality(PredR
) &&
617 "Expected equality predicates for masked type of icmps.");
618 unsigned LHSMask
= MaskPair
->first
;
619 unsigned RHSMask
= MaskPair
->second
;
620 unsigned Mask
= LHSMask
& RHSMask
;
622 // Even if the two sides don't share a common pattern, check if folding can
624 if (Value
*V
= foldLogOpOfMaskedICmpsAsymmetric(
625 LHS
, RHS
, IsAnd
, A
, B
, C
, D
, E
, PredL
, PredR
, LHSMask
, RHSMask
,
631 // In full generality:
632 // (icmp (A & B) Op C) | (icmp (A & D) Op E)
633 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
635 // If the latter can be converted into (icmp (A & X) Op Y) then the former is
636 // equivalent to (icmp (A & X) !Op Y).
638 // Therefore, we can pretend for the rest of this function that we're dealing
639 // with the conjunction, provided we flip the sense of any comparisons (both
640 // input and output).
642 // In most cases we're going to produce an EQ for the "&&" case.
643 ICmpInst::Predicate NewCC
= IsAnd
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
;
645 // Convert the masking analysis into its equivalent with negated
647 Mask
= conjugateICmpMask(Mask
);
650 if (Mask
& Mask_AllZeros
) {
651 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
652 // -> (icmp eq (A & (B|D)), 0)
653 Value
*NewOr
= Builder
.CreateOr(B
, D
);
654 Value
*NewAnd
= Builder
.CreateAnd(A
, NewOr
);
655 // We can't use C as zero because we might actually handle
656 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
657 // with B and D, having a single bit set.
658 Value
*Zero
= Constant::getNullValue(A
->getType());
659 return Builder
.CreateICmp(NewCC
, NewAnd
, Zero
);
661 if (Mask
& BMask_AllOnes
) {
662 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
663 // -> (icmp eq (A & (B|D)), (B|D))
664 Value
*NewOr
= Builder
.CreateOr(B
, D
);
665 Value
*NewAnd
= Builder
.CreateAnd(A
, NewOr
);
666 return Builder
.CreateICmp(NewCC
, NewAnd
, NewOr
);
668 if (Mask
& AMask_AllOnes
) {
669 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
670 // -> (icmp eq (A & (B&D)), A)
671 Value
*NewAnd1
= Builder
.CreateAnd(B
, D
);
672 Value
*NewAnd2
= Builder
.CreateAnd(A
, NewAnd1
);
673 return Builder
.CreateICmp(NewCC
, NewAnd2
, A
);
676 // Remaining cases assume at least that B and D are constant, and depend on
677 // their actual values. This isn't strictly necessary, just a "handle the
678 // easy cases for now" decision.
679 ConstantInt
*BCst
= dyn_cast
<ConstantInt
>(B
);
682 ConstantInt
*DCst
= dyn_cast
<ConstantInt
>(D
);
686 if (Mask
& (Mask_NotAllZeros
| BMask_NotAllOnes
)) {
687 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
688 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
689 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
690 // Only valid if one of the masks is a superset of the other (check "B&D" is
691 // the same as either B or D).
692 APInt NewMask
= BCst
->getValue() & DCst
->getValue();
694 if (NewMask
== BCst
->getValue())
696 else if (NewMask
== DCst
->getValue())
700 if (Mask
& AMask_NotAllOnes
) {
701 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
702 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
703 // Only valid if one of the masks is a superset of the other (check "B|D" is
704 // the same as either B or D).
705 APInt NewMask
= BCst
->getValue() | DCst
->getValue();
707 if (NewMask
== BCst
->getValue())
709 else if (NewMask
== DCst
->getValue())
713 if (Mask
& BMask_Mixed
) {
714 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
715 // We already know that B & C == C && D & E == E.
716 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
717 // C and E, which are shared by both the mask B and the mask D, don't
718 // contradict, then we can transform to
719 // -> (icmp eq (A & (B|D)), (C|E))
720 // Currently, we only handle the case of B, C, D, and E being constant.
721 // We can't simply use C and E because we might actually handle
722 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
723 // with B and D, having a single bit set.
724 ConstantInt
*CCst
= dyn_cast
<ConstantInt
>(C
);
727 ConstantInt
*ECst
= dyn_cast
<ConstantInt
>(E
);
731 CCst
= cast
<ConstantInt
>(ConstantExpr::getXor(BCst
, CCst
));
733 ECst
= cast
<ConstantInt
>(ConstantExpr::getXor(DCst
, ECst
));
735 // If there is a conflict, we should actually return a false for the
737 if (((BCst
->getValue() & DCst
->getValue()) &
738 (CCst
->getValue() ^ ECst
->getValue())).getBoolValue())
739 return ConstantInt::get(LHS
->getType(), !IsAnd
);
741 Value
*NewOr1
= Builder
.CreateOr(B
, D
);
742 Value
*NewOr2
= ConstantExpr::getOr(CCst
, ECst
);
743 Value
*NewAnd
= Builder
.CreateAnd(A
, NewOr1
);
744 return Builder
.CreateICmp(NewCC
, NewAnd
, NewOr2
);
750 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
751 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
752 /// If \p Inverted is true then the check is for the inverted range, e.g.
753 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
754 Value
*InstCombiner::simplifyRangeCheck(ICmpInst
*Cmp0
, ICmpInst
*Cmp1
,
756 // Check the lower range comparison, e.g. x >= 0
757 // InstCombine already ensured that if there is a constant it's on the RHS.
758 ConstantInt
*RangeStart
= dyn_cast
<ConstantInt
>(Cmp0
->getOperand(1));
762 ICmpInst::Predicate Pred0
= (Inverted
? Cmp0
->getInversePredicate() :
763 Cmp0
->getPredicate());
765 // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
766 if (!((Pred0
== ICmpInst::ICMP_SGT
&& RangeStart
->isMinusOne()) ||
767 (Pred0
== ICmpInst::ICMP_SGE
&& RangeStart
->isZero())))
770 ICmpInst::Predicate Pred1
= (Inverted
? Cmp1
->getInversePredicate() :
771 Cmp1
->getPredicate());
773 Value
*Input
= Cmp0
->getOperand(0);
775 if (Cmp1
->getOperand(0) == Input
) {
776 // For the upper range compare we have: icmp x, n
777 RangeEnd
= Cmp1
->getOperand(1);
778 } else if (Cmp1
->getOperand(1) == Input
) {
779 // For the upper range compare we have: icmp n, x
780 RangeEnd
= Cmp1
->getOperand(0);
781 Pred1
= ICmpInst::getSwappedPredicate(Pred1
);
786 // Check the upper range comparison, e.g. x < n
787 ICmpInst::Predicate NewPred
;
789 case ICmpInst::ICMP_SLT
: NewPred
= ICmpInst::ICMP_ULT
; break;
790 case ICmpInst::ICMP_SLE
: NewPred
= ICmpInst::ICMP_ULE
; break;
791 default: return nullptr;
794 // This simplification is only valid if the upper range is not negative.
795 KnownBits Known
= computeKnownBits(RangeEnd
, /*Depth=*/0, Cmp1
);
796 if (!Known
.isNonNegative())
800 NewPred
= ICmpInst::getInversePredicate(NewPred
);
802 return Builder
.CreateICmp(NewPred
, Input
, RangeEnd
);
806 foldAndOrOfEqualityCmpsWithConstants(ICmpInst
*LHS
, ICmpInst
*RHS
,
808 InstCombiner::BuilderTy
&Builder
) {
809 Value
*X
= LHS
->getOperand(0);
810 if (X
!= RHS
->getOperand(0))
813 const APInt
*C1
, *C2
;
814 if (!match(LHS
->getOperand(1), m_APInt(C1
)) ||
815 !match(RHS
->getOperand(1), m_APInt(C2
)))
818 // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
819 ICmpInst::Predicate Pred
= LHS
->getPredicate();
820 if (Pred
!= RHS
->getPredicate())
822 if (JoinedByAnd
&& Pred
!= ICmpInst::ICMP_NE
)
824 if (!JoinedByAnd
&& Pred
!= ICmpInst::ICMP_EQ
)
827 // The larger unsigned constant goes on the right.
831 APInt Xor
= *C1
^ *C2
;
832 if (Xor
.isPowerOf2()) {
833 // If LHSC and RHSC differ by only one bit, then set that bit in X and
834 // compare against the larger constant:
835 // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
836 // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
837 // We choose an 'or' with a Pow2 constant rather than the inverse mask with
838 // 'and' because that may lead to smaller codegen from a smaller constant.
839 Value
*Or
= Builder
.CreateOr(X
, ConstantInt::get(X
->getType(), Xor
));
840 return Builder
.CreateICmp(Pred
, Or
, ConstantInt::get(X
->getType(), *C2
));
843 // Special case: get the ordering right when the values wrap around zero.
844 // Ie, we assumed the constants were unsigned when swapping earlier.
845 if (C1
->isNullValue() && C2
->isAllOnesValue())
848 if (*C1
== *C2
- 1) {
849 // (X == 13 || X == 14) --> X - 13 <=u 1
850 // (X != 13 && X != 14) --> X - 13 >u 1
851 // An 'add' is the canonical IR form, so favor that over a 'sub'.
852 Value
*Add
= Builder
.CreateAdd(X
, ConstantInt::get(X
->getType(), -(*C1
)));
853 auto NewPred
= JoinedByAnd
? ICmpInst::ICMP_UGT
: ICmpInst::ICMP_ULE
;
854 return Builder
.CreateICmp(NewPred
, Add
, ConstantInt::get(X
->getType(), 1));
860 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
861 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
862 Value
*InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst
*LHS
, ICmpInst
*RHS
,
865 ICmpInst::Predicate Pred
= LHS
->getPredicate();
866 if (Pred
!= RHS
->getPredicate())
868 if (JoinedByAnd
&& Pred
!= ICmpInst::ICMP_NE
)
870 if (!JoinedByAnd
&& Pred
!= ICmpInst::ICMP_EQ
)
873 // TODO support vector splats
874 ConstantInt
*LHSC
= dyn_cast
<ConstantInt
>(LHS
->getOperand(1));
875 ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
->getOperand(1));
876 if (!LHSC
|| !RHSC
|| !LHSC
->isZero() || !RHSC
->isZero())
879 Value
*A
, *B
, *C
, *D
;
880 if (match(LHS
->getOperand(0), m_And(m_Value(A
), m_Value(B
))) &&
881 match(RHS
->getOperand(0), m_And(m_Value(C
), m_Value(D
)))) {
882 if (A
== D
|| B
== D
)
888 isKnownToBeAPowerOfTwo(B
, false, 0, &CxtI
) &&
889 isKnownToBeAPowerOfTwo(D
, false, 0, &CxtI
)) {
890 Value
*Mask
= Builder
.CreateOr(B
, D
);
891 Value
*Masked
= Builder
.CreateAnd(A
, Mask
);
892 auto NewPred
= JoinedByAnd
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
;
893 return Builder
.CreateICmp(NewPred
, Masked
, Mask
);
903 /// Where Y is checking that all the high bits (covered by a mask 4294967168)
904 /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0
905 /// Pattern can be one of:
906 /// %t = add i32 %arg, 128
907 /// %r = icmp ult i32 %t, 256
909 /// %t0 = shl i32 %arg, 24
910 /// %t1 = ashr i32 %t0, 24
911 /// %r = icmp eq i32 %t1, %arg
913 /// %t0 = trunc i32 %arg to i8
914 /// %t1 = sext i8 %t0 to i32
915 /// %r = icmp eq i32 %t1, %arg
916 /// This pattern is a signed truncation check.
918 /// And X is checking that some bit in that same mask is zero.
919 /// I.e. can be one of:
920 /// %r = icmp sgt i32 %arg, -1
922 /// %t = and i32 %arg, 2147483648
923 /// %r = icmp eq i32 %t, 0
925 /// Since we are checking that all the bits in that mask are the same,
926 /// and a particular bit is zero, what we are really checking is that all the
927 /// masked bits are zero.
928 /// So this should be transformed to:
929 /// %r = icmp ult i32 %arg, 128
930 static Value
*foldSignedTruncationCheck(ICmpInst
*ICmp0
, ICmpInst
*ICmp1
,
932 InstCombiner::BuilderTy
&Builder
) {
933 assert(CxtI
.getOpcode() == Instruction::And
);
935 // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two)
936 auto tryToMatchSignedTruncationCheck
= [](ICmpInst
*ICmp
, Value
*&X
,
937 APInt
&SignBitMask
) -> bool {
938 CmpInst::Predicate Pred
;
939 const APInt
*I01
, *I1
; // powers of two; I1 == I01 << 1
941 m_ICmp(Pred
, m_Add(m_Value(X
), m_Power2(I01
)), m_Power2(I1
))) &&
942 Pred
== ICmpInst::ICMP_ULT
&& I1
->ugt(*I01
) && I01
->shl(1) == *I1
))
944 // Which bit is the new sign bit as per the 'signed truncation' pattern?
949 // One icmp needs to be 'signed truncation check'.
950 // We need to match this first, else we will mismatch commutative cases.
954 if (tryToMatchSignedTruncationCheck(ICmp1
, X1
, HighestBit
))
956 else if (tryToMatchSignedTruncationCheck(ICmp0
, X1
, HighestBit
))
961 assert(HighestBit
.isPowerOf2() && "expected to be power of two (non-zero)");
963 // Try to match/decompose into: icmp eq (X & Mask), 0
964 auto tryToDecompose
= [](ICmpInst
*ICmp
, Value
*&X
,
965 APInt
&UnsetBitsMask
) -> bool {
966 CmpInst::Predicate Pred
= ICmp
->getPredicate();
967 // Can it be decomposed into icmp eq (X & Mask), 0 ?
968 if (llvm::decomposeBitTestICmp(ICmp
->getOperand(0), ICmp
->getOperand(1),
969 Pred
, X
, UnsetBitsMask
,
970 /*LookThruTrunc=*/false) &&
971 Pred
== ICmpInst::ICMP_EQ
)
973 // Is it icmp eq (X & Mask), 0 already?
975 if (match(ICmp
, m_ICmp(Pred
, m_And(m_Value(X
), m_APInt(Mask
)), m_Zero())) &&
976 Pred
== ICmpInst::ICMP_EQ
) {
977 UnsetBitsMask
= *Mask
;
983 // And the other icmp needs to be decomposable into a bit test.
986 if (!tryToDecompose(OtherICmp
, X0
, UnsetBitsMask
))
989 assert(!UnsetBitsMask
.isNullValue() && "empty mask makes no sense.");
991 // Are they working on the same value?
996 } else if (match(X0
, m_Trunc(m_Specific(X1
)))) {
997 UnsetBitsMask
= UnsetBitsMask
.zext(X1
->getType()->getScalarSizeInBits());
1002 // So which bits should be uniform as per the 'signed truncation check'?
1003 // (all the bits starting with (i.e. including) HighestBit)
1004 APInt SignBitsMask
= ~(HighestBit
- 1U);
1006 // UnsetBitsMask must have some common bits with SignBitsMask,
1007 if (!UnsetBitsMask
.intersects(SignBitsMask
))
1010 // Does UnsetBitsMask contain any bits outside of SignBitsMask?
1011 if (!UnsetBitsMask
.isSubsetOf(SignBitsMask
)) {
1012 APInt OtherHighestBit
= (~UnsetBitsMask
) + 1U;
1013 if (!OtherHighestBit
.isPowerOf2())
1015 HighestBit
= APIntOps::umin(HighestBit
, OtherHighestBit
);
1017 // Else, if it does not, then all is ok as-is.
1019 // %r = icmp ult %X, SignBit
1020 return Builder
.CreateICmpULT(X
, ConstantInt::get(X
->getType(), HighestBit
),
1021 CxtI
.getName() + ".simplified");
1024 /// Fold (icmp)&(icmp) if possible.
1025 Value
*InstCombiner::foldAndOfICmps(ICmpInst
*LHS
, ICmpInst
*RHS
,
1026 Instruction
&CxtI
) {
1027 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
1028 // if K1 and K2 are a one-bit mask.
1029 if (Value
*V
= foldAndOrOfICmpsOfAndWithPow2(LHS
, RHS
, true, CxtI
))
1032 ICmpInst::Predicate PredL
= LHS
->getPredicate(), PredR
= RHS
->getPredicate();
1034 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
1035 if (predicatesFoldable(PredL
, PredR
)) {
1036 if (LHS
->getOperand(0) == RHS
->getOperand(1) &&
1037 LHS
->getOperand(1) == RHS
->getOperand(0))
1038 LHS
->swapOperands();
1039 if (LHS
->getOperand(0) == RHS
->getOperand(0) &&
1040 LHS
->getOperand(1) == RHS
->getOperand(1)) {
1041 Value
*Op0
= LHS
->getOperand(0), *Op1
= LHS
->getOperand(1);
1042 unsigned Code
= getICmpCode(LHS
) & getICmpCode(RHS
);
1043 bool IsSigned
= LHS
->isSigned() || RHS
->isSigned();
1044 return getNewICmpValue(Code
, IsSigned
, Op0
, Op1
, Builder
);
1048 // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
1049 if (Value
*V
= foldLogOpOfMaskedICmps(LHS
, RHS
, true, Builder
))
1052 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
1053 if (Value
*V
= simplifyRangeCheck(LHS
, RHS
, /*Inverted=*/false))
1056 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
1057 if (Value
*V
= simplifyRangeCheck(RHS
, LHS
, /*Inverted=*/false))
1060 if (Value
*V
= foldAndOrOfEqualityCmpsWithConstants(LHS
, RHS
, true, Builder
))
1063 if (Value
*V
= foldSignedTruncationCheck(LHS
, RHS
, CxtI
, Builder
))
1066 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
1067 Value
*LHS0
= LHS
->getOperand(0), *RHS0
= RHS
->getOperand(0);
1068 ConstantInt
*LHSC
= dyn_cast
<ConstantInt
>(LHS
->getOperand(1));
1069 ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
->getOperand(1));
1073 if (LHSC
== RHSC
&& PredL
== PredR
) {
1074 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
1075 // where C is a power of 2 or
1076 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
1077 if ((PredL
== ICmpInst::ICMP_ULT
&& LHSC
->getValue().isPowerOf2()) ||
1078 (PredL
== ICmpInst::ICMP_EQ
&& LHSC
->isZero())) {
1079 Value
*NewOr
= Builder
.CreateOr(LHS0
, RHS0
);
1080 return Builder
.CreateICmp(PredL
, NewOr
, LHSC
);
1084 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
1085 // where CMAX is the all ones value for the truncated type,
1086 // iff the lower bits of C2 and CA are zero.
1087 if (PredL
== ICmpInst::ICMP_EQ
&& PredL
== PredR
&& LHS
->hasOneUse() &&
1090 ConstantInt
*AndC
, *SmallC
= nullptr, *BigC
= nullptr;
1092 // (trunc x) == C1 & (and x, CA) == C2
1093 // (and x, CA) == C2 & (trunc x) == C1
1094 if (match(RHS0
, m_Trunc(m_Value(V
))) &&
1095 match(LHS0
, m_And(m_Specific(V
), m_ConstantInt(AndC
)))) {
1098 } else if (match(LHS0
, m_Trunc(m_Value(V
))) &&
1099 match(RHS0
, m_And(m_Specific(V
), m_ConstantInt(AndC
)))) {
1104 if (SmallC
&& BigC
) {
1105 unsigned BigBitSize
= BigC
->getType()->getBitWidth();
1106 unsigned SmallBitSize
= SmallC
->getType()->getBitWidth();
1108 // Check that the low bits are zero.
1109 APInt Low
= APInt::getLowBitsSet(BigBitSize
, SmallBitSize
);
1110 if ((Low
& AndC
->getValue()).isNullValue() &&
1111 (Low
& BigC
->getValue()).isNullValue()) {
1112 Value
*NewAnd
= Builder
.CreateAnd(V
, Low
| AndC
->getValue());
1113 APInt N
= SmallC
->getValue().zext(BigBitSize
) | BigC
->getValue();
1114 Value
*NewVal
= ConstantInt::get(AndC
->getType()->getContext(), N
);
1115 return Builder
.CreateICmp(PredL
, NewAnd
, NewVal
);
1120 // From here on, we only handle:
1121 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
1125 // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
1126 if (PredL
== ICmpInst::ICMP_UGE
|| PredL
== ICmpInst::ICMP_ULE
||
1127 PredR
== ICmpInst::ICMP_UGE
|| PredR
== ICmpInst::ICMP_ULE
||
1128 PredL
== ICmpInst::ICMP_SGE
|| PredL
== ICmpInst::ICMP_SLE
||
1129 PredR
== ICmpInst::ICMP_SGE
|| PredR
== ICmpInst::ICMP_SLE
)
1132 // We can't fold (ugt x, C) & (sgt x, C2).
1133 if (!predicatesFoldable(PredL
, PredR
))
1136 // Ensure that the larger constant is on the RHS.
1138 if (CmpInst::isSigned(PredL
) ||
1139 (ICmpInst::isEquality(PredL
) && CmpInst::isSigned(PredR
)))
1140 ShouldSwap
= LHSC
->getValue().sgt(RHSC
->getValue());
1142 ShouldSwap
= LHSC
->getValue().ugt(RHSC
->getValue());
1145 std::swap(LHS
, RHS
);
1146 std::swap(LHSC
, RHSC
);
1147 std::swap(PredL
, PredR
);
1150 // At this point, we know we have two icmp instructions
1151 // comparing a value against two constants and and'ing the result
1152 // together. Because of the above check, we know that we only have
1153 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
1154 // (from the icmp folding check above), that the two constants
1155 // are not equal and that the larger constant is on the RHS
1156 assert(LHSC
!= RHSC
&& "Compares not folded above?");
1160 llvm_unreachable("Unknown integer condition code!");
1161 case ICmpInst::ICMP_NE
:
1164 llvm_unreachable("Unknown integer condition code!");
1165 case ICmpInst::ICMP_ULT
:
1166 if (LHSC
== SubOne(RHSC
)) // (X != 13 & X u< 14) -> X < 13
1167 return Builder
.CreateICmpULT(LHS0
, LHSC
);
1168 if (LHSC
->isZero()) // (X != 0 & X u< 14) -> X-1 u< 13
1169 return insertRangeTest(LHS0
, LHSC
->getValue() + 1, RHSC
->getValue(),
1171 break; // (X != 13 & X u< 15) -> no change
1172 case ICmpInst::ICMP_SLT
:
1173 if (LHSC
== SubOne(RHSC
)) // (X != 13 & X s< 14) -> X < 13
1174 return Builder
.CreateICmpSLT(LHS0
, LHSC
);
1175 break; // (X != 13 & X s< 15) -> no change
1176 case ICmpInst::ICMP_NE
:
1177 // Potential folds for this case should already be handled.
1181 case ICmpInst::ICMP_UGT
:
1184 llvm_unreachable("Unknown integer condition code!");
1185 case ICmpInst::ICMP_NE
:
1186 if (RHSC
== AddOne(LHSC
)) // (X u> 13 & X != 14) -> X u> 14
1187 return Builder
.CreateICmp(PredL
, LHS0
, RHSC
);
1188 break; // (X u> 13 & X != 15) -> no change
1189 case ICmpInst::ICMP_ULT
: // (X u> 13 & X u< 15) -> (X-14) <u 1
1190 return insertRangeTest(LHS0
, LHSC
->getValue() + 1, RHSC
->getValue(),
1194 case ICmpInst::ICMP_SGT
:
1197 llvm_unreachable("Unknown integer condition code!");
1198 case ICmpInst::ICMP_NE
:
1199 if (RHSC
== AddOne(LHSC
)) // (X s> 13 & X != 14) -> X s> 14
1200 return Builder
.CreateICmp(PredL
, LHS0
, RHSC
);
1201 break; // (X s> 13 & X != 15) -> no change
1202 case ICmpInst::ICMP_SLT
: // (X s> 13 & X s< 15) -> (X-14) s< 1
1203 return insertRangeTest(LHS0
, LHSC
->getValue() + 1, RHSC
->getValue(), true,
1212 Value
*InstCombiner::foldLogicOfFCmps(FCmpInst
*LHS
, FCmpInst
*RHS
, bool IsAnd
) {
1213 Value
*LHS0
= LHS
->getOperand(0), *LHS1
= LHS
->getOperand(1);
1214 Value
*RHS0
= RHS
->getOperand(0), *RHS1
= RHS
->getOperand(1);
1215 FCmpInst::Predicate PredL
= LHS
->getPredicate(), PredR
= RHS
->getPredicate();
1217 if (LHS0
== RHS1
&& RHS0
== LHS1
) {
1218 // Swap RHS operands to match LHS.
1219 PredR
= FCmpInst::getSwappedPredicate(PredR
);
1220 std::swap(RHS0
, RHS1
);
1223 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1224 // Suppose the relation between x and y is R, where R is one of
1225 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1226 // testing the desired relations.
1228 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1229 // bool(R & CC0) && bool(R & CC1)
1230 // = bool((R & CC0) & (R & CC1))
1231 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1233 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1234 // bool(R & CC0) || bool(R & CC1)
1235 // = bool((R & CC0) | (R & CC1))
1236 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1237 if (LHS0
== RHS0
&& LHS1
== RHS1
) {
1238 unsigned FCmpCodeL
= getFCmpCode(PredL
);
1239 unsigned FCmpCodeR
= getFCmpCode(PredR
);
1240 unsigned NewPred
= IsAnd
? FCmpCodeL
& FCmpCodeR
: FCmpCodeL
| FCmpCodeR
;
1241 return getFCmpValue(NewPred
, LHS0
, LHS1
, Builder
);
1244 if ((PredL
== FCmpInst::FCMP_ORD
&& PredR
== FCmpInst::FCMP_ORD
&& IsAnd
) ||
1245 (PredL
== FCmpInst::FCMP_UNO
&& PredR
== FCmpInst::FCMP_UNO
&& !IsAnd
)) {
1246 if (LHS0
->getType() != RHS0
->getType())
1249 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1250 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1251 if (match(LHS1
, m_PosZeroFP()) && match(RHS1
, m_PosZeroFP()))
1252 // Ignore the constants because they are obviously not NANs:
1253 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y)
1254 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y)
1255 return Builder
.CreateFCmp(PredL
, LHS0
, RHS0
);
1261 /// Match De Morgan's Laws:
1262 /// (~A & ~B) == (~(A | B))
1263 /// (~A | ~B) == (~(A & B))
1264 static Instruction
*matchDeMorgansLaws(BinaryOperator
&I
,
1265 InstCombiner::BuilderTy
&Builder
) {
1266 auto Opcode
= I
.getOpcode();
1267 assert((Opcode
== Instruction::And
|| Opcode
== Instruction::Or
) &&
1268 "Trying to match De Morgan's Laws with something other than and/or");
1270 // Flip the logic operation.
1271 Opcode
= (Opcode
== Instruction::And
) ? Instruction::Or
: Instruction::And
;
1274 if (match(I
.getOperand(0), m_OneUse(m_Not(m_Value(A
)))) &&
1275 match(I
.getOperand(1), m_OneUse(m_Not(m_Value(B
)))) &&
1276 !IsFreeToInvert(A
, A
->hasOneUse()) &&
1277 !IsFreeToInvert(B
, B
->hasOneUse())) {
1278 Value
*AndOr
= Builder
.CreateBinOp(Opcode
, A
, B
, I
.getName() + ".demorgan");
1279 return BinaryOperator::CreateNot(AndOr
);
1285 bool InstCombiner::shouldOptimizeCast(CastInst
*CI
) {
1286 Value
*CastSrc
= CI
->getOperand(0);
1288 // Noop casts and casts of constants should be eliminated trivially.
1289 if (CI
->getSrcTy() == CI
->getDestTy() || isa
<Constant
>(CastSrc
))
1292 // If this cast is paired with another cast that can be eliminated, we prefer
1293 // to have it eliminated.
1294 if (const auto *PrecedingCI
= dyn_cast
<CastInst
>(CastSrc
))
1295 if (isEliminableCastPair(PrecedingCI
, CI
))
1301 /// Fold {and,or,xor} (cast X), C.
1302 static Instruction
*foldLogicCastConstant(BinaryOperator
&Logic
, CastInst
*Cast
,
1303 InstCombiner::BuilderTy
&Builder
) {
1304 Constant
*C
= dyn_cast
<Constant
>(Logic
.getOperand(1));
1308 auto LogicOpc
= Logic
.getOpcode();
1309 Type
*DestTy
= Logic
.getType();
1310 Type
*SrcTy
= Cast
->getSrcTy();
1312 // Move the logic operation ahead of a zext or sext if the constant is
1313 // unchanged in the smaller source type. Performing the logic in a smaller
1314 // type may provide more information to later folds, and the smaller logic
1315 // instruction may be cheaper (particularly in the case of vectors).
1317 if (match(Cast
, m_OneUse(m_ZExt(m_Value(X
))))) {
1318 Constant
*TruncC
= ConstantExpr::getTrunc(C
, SrcTy
);
1319 Constant
*ZextTruncC
= ConstantExpr::getZExt(TruncC
, DestTy
);
1320 if (ZextTruncC
== C
) {
1321 // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1322 Value
*NewOp
= Builder
.CreateBinOp(LogicOpc
, X
, TruncC
);
1323 return new ZExtInst(NewOp
, DestTy
);
1327 if (match(Cast
, m_OneUse(m_SExt(m_Value(X
))))) {
1328 Constant
*TruncC
= ConstantExpr::getTrunc(C
, SrcTy
);
1329 Constant
*SextTruncC
= ConstantExpr::getSExt(TruncC
, DestTy
);
1330 if (SextTruncC
== C
) {
1331 // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1332 Value
*NewOp
= Builder
.CreateBinOp(LogicOpc
, X
, TruncC
);
1333 return new SExtInst(NewOp
, DestTy
);
1340 /// Fold {and,or,xor} (cast X), Y.
1341 Instruction
*InstCombiner::foldCastedBitwiseLogic(BinaryOperator
&I
) {
1342 auto LogicOpc
= I
.getOpcode();
1343 assert(I
.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1345 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1346 CastInst
*Cast0
= dyn_cast
<CastInst
>(Op0
);
1350 // This must be a cast from an integer or integer vector source type to allow
1351 // transformation of the logic operation to the source type.
1352 Type
*DestTy
= I
.getType();
1353 Type
*SrcTy
= Cast0
->getSrcTy();
1354 if (!SrcTy
->isIntOrIntVectorTy())
1357 if (Instruction
*Ret
= foldLogicCastConstant(I
, Cast0
, Builder
))
1360 CastInst
*Cast1
= dyn_cast
<CastInst
>(Op1
);
1364 // Both operands of the logic operation are casts. The casts must be of the
1365 // same type for reduction.
1366 auto CastOpcode
= Cast0
->getOpcode();
1367 if (CastOpcode
!= Cast1
->getOpcode() || SrcTy
!= Cast1
->getSrcTy())
1370 Value
*Cast0Src
= Cast0
->getOperand(0);
1371 Value
*Cast1Src
= Cast1
->getOperand(0);
1373 // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1374 if (shouldOptimizeCast(Cast0
) && shouldOptimizeCast(Cast1
)) {
1375 Value
*NewOp
= Builder
.CreateBinOp(LogicOpc
, Cast0Src
, Cast1Src
,
1377 return CastInst::Create(CastOpcode
, NewOp
, DestTy
);
1380 // For now, only 'and'/'or' have optimizations after this.
1381 if (LogicOpc
== Instruction::Xor
)
1384 // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1385 // cast is otherwise not optimizable. This happens for vector sexts.
1386 ICmpInst
*ICmp0
= dyn_cast
<ICmpInst
>(Cast0Src
);
1387 ICmpInst
*ICmp1
= dyn_cast
<ICmpInst
>(Cast1Src
);
1388 if (ICmp0
&& ICmp1
) {
1389 Value
*Res
= LogicOpc
== Instruction::And
? foldAndOfICmps(ICmp0
, ICmp1
, I
)
1390 : foldOrOfICmps(ICmp0
, ICmp1
, I
);
1392 return CastInst::Create(CastOpcode
, Res
, DestTy
);
1396 // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1397 // cast is otherwise not optimizable. This happens for vector sexts.
1398 FCmpInst
*FCmp0
= dyn_cast
<FCmpInst
>(Cast0Src
);
1399 FCmpInst
*FCmp1
= dyn_cast
<FCmpInst
>(Cast1Src
);
1401 if (Value
*R
= foldLogicOfFCmps(FCmp0
, FCmp1
, LogicOpc
== Instruction::And
))
1402 return CastInst::Create(CastOpcode
, R
, DestTy
);
1407 static Instruction
*foldAndToXor(BinaryOperator
&I
,
1408 InstCombiner::BuilderTy
&Builder
) {
1409 assert(I
.getOpcode() == Instruction::And
);
1410 Value
*Op0
= I
.getOperand(0);
1411 Value
*Op1
= I
.getOperand(1);
1414 // Operand complexity canonicalization guarantees that the 'or' is Op0.
1415 // (A | B) & ~(A & B) --> A ^ B
1416 // (A | B) & ~(B & A) --> A ^ B
1417 if (match(&I
, m_BinOp(m_Or(m_Value(A
), m_Value(B
)),
1418 m_Not(m_c_And(m_Deferred(A
), m_Deferred(B
))))))
1419 return BinaryOperator::CreateXor(A
, B
);
1421 // (A | ~B) & (~A | B) --> ~(A ^ B)
1422 // (A | ~B) & (B | ~A) --> ~(A ^ B)
1423 // (~B | A) & (~A | B) --> ~(A ^ B)
1424 // (~B | A) & (B | ~A) --> ~(A ^ B)
1425 if (Op0
->hasOneUse() || Op1
->hasOneUse())
1426 if (match(&I
, m_BinOp(m_c_Or(m_Value(A
), m_Not(m_Value(B
))),
1427 m_c_Or(m_Not(m_Deferred(A
)), m_Deferred(B
)))))
1428 return BinaryOperator::CreateNot(Builder
.CreateXor(A
, B
));
1433 static Instruction
*foldOrToXor(BinaryOperator
&I
,
1434 InstCombiner::BuilderTy
&Builder
) {
1435 assert(I
.getOpcode() == Instruction::Or
);
1436 Value
*Op0
= I
.getOperand(0);
1437 Value
*Op1
= I
.getOperand(1);
1440 // Operand complexity canonicalization guarantees that the 'and' is Op0.
1441 // (A & B) | ~(A | B) --> ~(A ^ B)
1442 // (A & B) | ~(B | A) --> ~(A ^ B)
1443 if (Op0
->hasOneUse() || Op1
->hasOneUse())
1444 if (match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
1445 match(Op1
, m_Not(m_c_Or(m_Specific(A
), m_Specific(B
)))))
1446 return BinaryOperator::CreateNot(Builder
.CreateXor(A
, B
));
1448 // (A & ~B) | (~A & B) --> A ^ B
1449 // (A & ~B) | (B & ~A) --> A ^ B
1450 // (~B & A) | (~A & B) --> A ^ B
1451 // (~B & A) | (B & ~A) --> A ^ B
1452 if (match(Op0
, m_c_And(m_Value(A
), m_Not(m_Value(B
)))) &&
1453 match(Op1
, m_c_And(m_Not(m_Specific(A
)), m_Specific(B
))))
1454 return BinaryOperator::CreateXor(A
, B
);
1459 /// Return true if a constant shift amount is always less than the specified
1460 /// bit-width. If not, the shift could create poison in the narrower type.
1461 static bool canNarrowShiftAmt(Constant
*C
, unsigned BitWidth
) {
1462 if (auto *ScalarC
= dyn_cast
<ConstantInt
>(C
))
1463 return ScalarC
->getZExtValue() < BitWidth
;
1465 if (C
->getType()->isVectorTy()) {
1466 // Check each element of a constant vector.
1467 unsigned NumElts
= C
->getType()->getVectorNumElements();
1468 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1469 Constant
*Elt
= C
->getAggregateElement(i
);
1472 if (isa
<UndefValue
>(Elt
))
1474 auto *CI
= dyn_cast
<ConstantInt
>(Elt
);
1475 if (!CI
|| CI
->getZExtValue() >= BitWidth
)
1481 // The constant is a constant expression or unknown.
1485 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1486 /// a common zext operand: and (binop (zext X), C), (zext X).
1487 Instruction
*InstCombiner::narrowMaskedBinOp(BinaryOperator
&And
) {
1488 // This transform could also apply to {or, and, xor}, but there are better
1489 // folds for those cases, so we don't expect those patterns here. AShr is not
1490 // handled because it should always be transformed to LShr in this sequence.
1491 // The subtract transform is different because it has a constant on the left.
1492 // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1493 Value
*Op0
= And
.getOperand(0), *Op1
= And
.getOperand(1);
1495 if (!match(Op0
, m_OneUse(m_Add(m_Specific(Op1
), m_Constant(C
)))) &&
1496 !match(Op0
, m_OneUse(m_Mul(m_Specific(Op1
), m_Constant(C
)))) &&
1497 !match(Op0
, m_OneUse(m_LShr(m_Specific(Op1
), m_Constant(C
)))) &&
1498 !match(Op0
, m_OneUse(m_Shl(m_Specific(Op1
), m_Constant(C
)))) &&
1499 !match(Op0
, m_OneUse(m_Sub(m_Constant(C
), m_Specific(Op1
)))))
1503 if (!match(Op1
, m_ZExt(m_Value(X
))) || Op1
->hasNUsesOrMore(3))
1506 Type
*Ty
= And
.getType();
1507 if (!isa
<VectorType
>(Ty
) && !shouldChangeType(Ty
, X
->getType()))
1510 // If we're narrowing a shift, the shift amount must be safe (less than the
1511 // width) in the narrower type. If the shift amount is greater, instsimplify
1512 // usually handles that case, but we can't guarantee/assert it.
1513 Instruction::BinaryOps Opc
= cast
<BinaryOperator
>(Op0
)->getOpcode();
1514 if (Opc
== Instruction::LShr
|| Opc
== Instruction::Shl
)
1515 if (!canNarrowShiftAmt(C
, X
->getType()->getScalarSizeInBits()))
1518 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1519 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1520 Value
*NewC
= ConstantExpr::getTrunc(C
, X
->getType());
1521 Value
*NewBO
= Opc
== Instruction::Sub
? Builder
.CreateBinOp(Opc
, NewC
, X
)
1522 : Builder
.CreateBinOp(Opc
, X
, NewC
);
1523 return new ZExtInst(Builder
.CreateAnd(NewBO
, X
), Ty
);
1526 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
1527 // here. We should standardize that construct where it is needed or choose some
1528 // other way to ensure that commutated variants of patterns are not missed.
1529 Instruction
*InstCombiner::visitAnd(BinaryOperator
&I
) {
1530 if (Value
*V
= SimplifyAndInst(I
.getOperand(0), I
.getOperand(1),
1531 SQ
.getWithInstruction(&I
)))
1532 return replaceInstUsesWith(I
, V
);
1534 if (SimplifyAssociativeOrCommutative(I
))
1537 if (Instruction
*X
= foldVectorBinop(I
))
1540 // See if we can simplify any instructions used by the instruction whose sole
1541 // purpose is to compute bits we don't care about.
1542 if (SimplifyDemandedInstructionBits(I
))
1545 // Do this before using distributive laws to catch simple and/or/not patterns.
1546 if (Instruction
*Xor
= foldAndToXor(I
, Builder
))
1549 // (A|B)&(A|C) -> A|(B&C) etc
1550 if (Value
*V
= SimplifyUsingDistributiveLaws(I
))
1551 return replaceInstUsesWith(I
, V
);
1553 if (Value
*V
= SimplifyBSwap(I
, Builder
))
1554 return replaceInstUsesWith(I
, V
);
1556 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1558 if (match(Op1
, m_APInt(C
))) {
1560 if (match(Op0
, m_OneUse(m_LogicalShift(m_One(), m_Value(X
)))) &&
1562 // (1 << X) & 1 --> zext(X == 0)
1563 // (1 >> X) & 1 --> zext(X == 0)
1564 Value
*IsZero
= Builder
.CreateICmpEQ(X
, ConstantInt::get(I
.getType(), 0));
1565 return new ZExtInst(IsZero
, I
.getType());
1569 if (match(Op0
, m_OneUse(m_Xor(m_Value(X
), m_APInt(XorC
))))) {
1570 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
1571 Constant
*NewC
= ConstantInt::get(I
.getType(), *C
& *XorC
);
1572 Value
*And
= Builder
.CreateAnd(X
, Op1
);
1574 return BinaryOperator::CreateXor(And
, NewC
);
1578 if (match(Op0
, m_OneUse(m_Or(m_Value(X
), m_APInt(OrC
))))) {
1579 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
1580 // NOTE: This reduces the number of bits set in the & mask, which
1581 // can expose opportunities for store narrowing for scalars.
1582 // NOTE: SimplifyDemandedBits should have already removed bits from C1
1583 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
1584 // above, but this feels safer.
1585 APInt Together
= *C
& *OrC
;
1586 Value
*And
= Builder
.CreateAnd(X
, ConstantInt::get(I
.getType(),
1589 return BinaryOperator::CreateOr(And
, ConstantInt::get(I
.getType(),
1593 // If the mask is only needed on one incoming arm, push the 'and' op up.
1594 if (match(Op0
, m_OneUse(m_Xor(m_Value(X
), m_Value(Y
)))) ||
1595 match(Op0
, m_OneUse(m_Or(m_Value(X
), m_Value(Y
))))) {
1596 APInt
NotAndMask(~(*C
));
1597 BinaryOperator::BinaryOps BinOp
= cast
<BinaryOperator
>(Op0
)->getOpcode();
1598 if (MaskedValueIsZero(X
, NotAndMask
, 0, &I
)) {
1599 // Not masking anything out for the LHS, move mask to RHS.
1600 // and ({x}or X, Y), C --> {x}or X, (and Y, C)
1601 Value
*NewRHS
= Builder
.CreateAnd(Y
, Op1
, Y
->getName() + ".masked");
1602 return BinaryOperator::Create(BinOp
, X
, NewRHS
);
1604 if (!isa
<Constant
>(Y
) && MaskedValueIsZero(Y
, NotAndMask
, 0, &I
)) {
1605 // Not masking anything out for the RHS, move mask to LHS.
1606 // and ({x}or X, Y), C --> {x}or (and X, C), Y
1607 Value
*NewLHS
= Builder
.CreateAnd(X
, Op1
, X
->getName() + ".masked");
1608 return BinaryOperator::Create(BinOp
, NewLHS
, Y
);
1614 if (ConstantInt
*AndRHS
= dyn_cast
<ConstantInt
>(Op1
)) {
1615 const APInt
&AndRHSMask
= AndRHS
->getValue();
1617 // Optimize a variety of ((val OP C1) & C2) combinations...
1618 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
)) {
1619 // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth
1620 // of X and OP behaves well when given trunc(C1) and X.
1621 switch (Op0I
->getOpcode()) {
1624 case Instruction::Xor
:
1625 case Instruction::Or
:
1626 case Instruction::Mul
:
1627 case Instruction::Add
:
1628 case Instruction::Sub
:
1631 if (match(Op0I
, m_c_BinOp(m_ZExt(m_Value(X
)), m_ConstantInt(C1
)))) {
1632 if (AndRHSMask
.isIntN(X
->getType()->getScalarSizeInBits())) {
1633 auto *TruncC1
= ConstantExpr::getTrunc(C1
, X
->getType());
1635 Value
*Op0LHS
= Op0I
->getOperand(0);
1636 if (isa
<ZExtInst
>(Op0LHS
))
1637 BinOp
= Builder
.CreateBinOp(Op0I
->getOpcode(), X
, TruncC1
);
1639 BinOp
= Builder
.CreateBinOp(Op0I
->getOpcode(), TruncC1
, X
);
1640 auto *TruncC2
= ConstantExpr::getTrunc(AndRHS
, X
->getType());
1641 auto *And
= Builder
.CreateAnd(BinOp
, TruncC2
);
1642 return new ZExtInst(And
, I
.getType());
1647 if (ConstantInt
*Op0CI
= dyn_cast
<ConstantInt
>(Op0I
->getOperand(1)))
1648 if (Instruction
*Res
= OptAndOp(Op0I
, Op0CI
, AndRHS
, I
))
1652 // If this is an integer truncation, and if the source is an 'and' with
1653 // immediate, transform it. This frequently occurs for bitfield accesses.
1655 Value
*X
= nullptr; ConstantInt
*YC
= nullptr;
1656 if (match(Op0
, m_Trunc(m_And(m_Value(X
), m_ConstantInt(YC
))))) {
1657 // Change: and (trunc (and X, YC) to T), C2
1658 // into : and (trunc X to T), trunc(YC) & C2
1659 // This will fold the two constants together, which may allow
1660 // other simplifications.
1661 Value
*NewCast
= Builder
.CreateTrunc(X
, I
.getType(), "and.shrunk");
1662 Constant
*C3
= ConstantExpr::getTrunc(YC
, I
.getType());
1663 C3
= ConstantExpr::getAnd(C3
, AndRHS
);
1664 return BinaryOperator::CreateAnd(NewCast
, C3
);
1669 if (Instruction
*Z
= narrowMaskedBinOp(I
))
1672 if (Instruction
*FoldedLogic
= foldBinOpIntoSelectOrPhi(I
))
1675 if (Instruction
*DeMorgan
= matchDeMorgansLaws(I
, Builder
))
1680 // A & (A ^ B) --> A & ~B
1681 if (match(Op1
, m_OneUse(m_c_Xor(m_Specific(Op0
), m_Value(B
)))))
1682 return BinaryOperator::CreateAnd(Op0
, Builder
.CreateNot(B
));
1683 // (A ^ B) & A --> A & ~B
1684 if (match(Op0
, m_OneUse(m_c_Xor(m_Specific(Op1
), m_Value(B
)))))
1685 return BinaryOperator::CreateAnd(Op1
, Builder
.CreateNot(B
));
1687 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
1688 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
))))
1689 if (match(Op1
, m_Xor(m_Xor(m_Specific(B
), m_Value(C
)), m_Specific(A
))))
1690 if (Op1
->hasOneUse() || IsFreeToInvert(C
, C
->hasOneUse()))
1691 return BinaryOperator::CreateAnd(Op0
, Builder
.CreateNot(C
));
1693 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
1694 if (match(Op0
, m_Xor(m_Xor(m_Value(A
), m_Value(C
)), m_Value(B
))))
1695 if (match(Op1
, m_Xor(m_Specific(B
), m_Specific(A
))))
1696 if (Op0
->hasOneUse() || IsFreeToInvert(C
, C
->hasOneUse()))
1697 return BinaryOperator::CreateAnd(Op1
, Builder
.CreateNot(C
));
1699 // (A | B) & ((~A) ^ B) -> (A & B)
1700 // (A | B) & (B ^ (~A)) -> (A & B)
1701 // (B | A) & ((~A) ^ B) -> (A & B)
1702 // (B | A) & (B ^ (~A)) -> (A & B)
1703 if (match(Op1
, m_c_Xor(m_Not(m_Value(A
)), m_Value(B
))) &&
1704 match(Op0
, m_c_Or(m_Specific(A
), m_Specific(B
))))
1705 return BinaryOperator::CreateAnd(A
, B
);
1707 // ((~A) ^ B) & (A | B) -> (A & B)
1708 // ((~A) ^ B) & (B | A) -> (A & B)
1709 // (B ^ (~A)) & (A | B) -> (A & B)
1710 // (B ^ (~A)) & (B | A) -> (A & B)
1711 if (match(Op0
, m_c_Xor(m_Not(m_Value(A
)), m_Value(B
))) &&
1712 match(Op1
, m_c_Or(m_Specific(A
), m_Specific(B
))))
1713 return BinaryOperator::CreateAnd(A
, B
);
1717 ICmpInst
*LHS
= dyn_cast
<ICmpInst
>(Op0
);
1718 ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(Op1
);
1720 if (Value
*Res
= foldAndOfICmps(LHS
, RHS
, I
))
1721 return replaceInstUsesWith(I
, Res
);
1723 // TODO: Make this recursive; it's a little tricky because an arbitrary
1724 // number of 'and' instructions might have to be created.
1726 if (LHS
&& match(Op1
, m_OneUse(m_And(m_Value(X
), m_Value(Y
))))) {
1727 if (auto *Cmp
= dyn_cast
<ICmpInst
>(X
))
1728 if (Value
*Res
= foldAndOfICmps(LHS
, Cmp
, I
))
1729 return replaceInstUsesWith(I
, Builder
.CreateAnd(Res
, Y
));
1730 if (auto *Cmp
= dyn_cast
<ICmpInst
>(Y
))
1731 if (Value
*Res
= foldAndOfICmps(LHS
, Cmp
, I
))
1732 return replaceInstUsesWith(I
, Builder
.CreateAnd(Res
, X
));
1734 if (RHS
&& match(Op0
, m_OneUse(m_And(m_Value(X
), m_Value(Y
))))) {
1735 if (auto *Cmp
= dyn_cast
<ICmpInst
>(X
))
1736 if (Value
*Res
= foldAndOfICmps(Cmp
, RHS
, I
))
1737 return replaceInstUsesWith(I
, Builder
.CreateAnd(Res
, Y
));
1738 if (auto *Cmp
= dyn_cast
<ICmpInst
>(Y
))
1739 if (Value
*Res
= foldAndOfICmps(Cmp
, RHS
, I
))
1740 return replaceInstUsesWith(I
, Builder
.CreateAnd(Res
, X
));
1744 if (FCmpInst
*LHS
= dyn_cast
<FCmpInst
>(I
.getOperand(0)))
1745 if (FCmpInst
*RHS
= dyn_cast
<FCmpInst
>(I
.getOperand(1)))
1746 if (Value
*Res
= foldLogicOfFCmps(LHS
, RHS
, true))
1747 return replaceInstUsesWith(I
, Res
);
1749 if (Instruction
*CastedAnd
= foldCastedBitwiseLogic(I
))
1752 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
1754 if (match(Op0
, m_OneUse(m_SExt(m_Value(A
)))) &&
1755 A
->getType()->isIntOrIntVectorTy(1))
1756 return SelectInst::Create(A
, Op1
, Constant::getNullValue(I
.getType()));
1757 if (match(Op1
, m_OneUse(m_SExt(m_Value(A
)))) &&
1758 A
->getType()->isIntOrIntVectorTy(1))
1759 return SelectInst::Create(A
, Op0
, Constant::getNullValue(I
.getType()));
1764 Instruction
*InstCombiner::matchBSwap(BinaryOperator
&Or
) {
1765 assert(Or
.getOpcode() == Instruction::Or
&& "bswap requires an 'or'");
1766 Value
*Op0
= Or
.getOperand(0), *Op1
= Or
.getOperand(1);
1768 // Look through zero extends.
1769 if (Instruction
*Ext
= dyn_cast
<ZExtInst
>(Op0
))
1770 Op0
= Ext
->getOperand(0);
1772 if (Instruction
*Ext
= dyn_cast
<ZExtInst
>(Op1
))
1773 Op1
= Ext
->getOperand(0);
1775 // (A | B) | C and A | (B | C) -> bswap if possible.
1776 bool OrOfOrs
= match(Op0
, m_Or(m_Value(), m_Value())) ||
1777 match(Op1
, m_Or(m_Value(), m_Value()));
1779 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
1780 bool OrOfShifts
= match(Op0
, m_LogicalShift(m_Value(), m_Value())) &&
1781 match(Op1
, m_LogicalShift(m_Value(), m_Value()));
1783 // (A & B) | (C & D) -> bswap if possible.
1784 bool OrOfAnds
= match(Op0
, m_And(m_Value(), m_Value())) &&
1785 match(Op1
, m_And(m_Value(), m_Value()));
1787 // (A << B) | (C & D) -> bswap if possible.
1788 // The bigger pattern here is ((A & C1) << C2) | ((B >> C2) & C1), which is a
1789 // part of the bswap idiom for specific values of C1, C2 (e.g. C1 = 16711935,
1791 // This pattern can occur when the operands of the 'or' are not canonicalized
1792 // for some reason (not having only one use, for example).
1793 bool OrOfAndAndSh
= (match(Op0
, m_LogicalShift(m_Value(), m_Value())) &&
1794 match(Op1
, m_And(m_Value(), m_Value()))) ||
1795 (match(Op0
, m_And(m_Value(), m_Value())) &&
1796 match(Op1
, m_LogicalShift(m_Value(), m_Value())));
1798 if (!OrOfOrs
&& !OrOfShifts
&& !OrOfAnds
&& !OrOfAndAndSh
)
1801 SmallVector
<Instruction
*, 4> Insts
;
1802 if (!recognizeBSwapOrBitReverseIdiom(&Or
, true, false, Insts
))
1804 Instruction
*LastInst
= Insts
.pop_back_val();
1805 LastInst
->removeFromParent();
1807 for (auto *Inst
: Insts
)
1812 /// Transform UB-safe variants of bitwise rotate to the funnel shift intrinsic.
1813 static Instruction
*matchRotate(Instruction
&Or
) {
1814 // TODO: Can we reduce the code duplication between this and the related
1815 // rotate matching code under visitSelect and visitTrunc?
1816 unsigned Width
= Or
.getType()->getScalarSizeInBits();
1817 if (!isPowerOf2_32(Width
))
1820 // First, find an or'd pair of opposite shifts with the same shifted operand:
1821 // or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)
1822 BinaryOperator
*Or0
, *Or1
;
1823 if (!match(Or
.getOperand(0), m_BinOp(Or0
)) ||
1824 !match(Or
.getOperand(1), m_BinOp(Or1
)))
1827 Value
*ShVal
, *ShAmt0
, *ShAmt1
;
1828 if (!match(Or0
, m_OneUse(m_LogicalShift(m_Value(ShVal
), m_Value(ShAmt0
)))) ||
1829 !match(Or1
, m_OneUse(m_LogicalShift(m_Specific(ShVal
), m_Value(ShAmt1
)))))
1832 BinaryOperator::BinaryOps ShiftOpcode0
= Or0
->getOpcode();
1833 BinaryOperator::BinaryOps ShiftOpcode1
= Or1
->getOpcode();
1834 if (ShiftOpcode0
== ShiftOpcode1
)
1837 // Match the shift amount operands for a rotate pattern. This always matches
1838 // a subtraction on the R operand.
1839 auto matchShiftAmount
= [](Value
*L
, Value
*R
, unsigned Width
) -> Value
* {
1840 // The shift amount may be masked with negation:
1841 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
1843 unsigned Mask
= Width
- 1;
1844 if (match(L
, m_And(m_Value(X
), m_SpecificInt(Mask
))) &&
1845 match(R
, m_And(m_Neg(m_Specific(X
)), m_SpecificInt(Mask
))))
1851 Value
*ShAmt
= matchShiftAmount(ShAmt0
, ShAmt1
, Width
);
1852 bool SubIsOnLHS
= false;
1854 ShAmt
= matchShiftAmount(ShAmt1
, ShAmt0
, Width
);
1860 bool IsFshl
= (!SubIsOnLHS
&& ShiftOpcode0
== BinaryOperator::Shl
) ||
1861 (SubIsOnLHS
&& ShiftOpcode1
== BinaryOperator::Shl
);
1862 Intrinsic::ID IID
= IsFshl
? Intrinsic::fshl
: Intrinsic::fshr
;
1863 Function
*F
= Intrinsic::getDeclaration(Or
.getModule(), IID
, Or
.getType());
1864 return IntrinsicInst::Create(F
, { ShVal
, ShVal
, ShAmt
});
1867 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
1868 static bool areInverseVectorBitmasks(Constant
*C1
, Constant
*C2
) {
1869 unsigned NumElts
= C1
->getType()->getVectorNumElements();
1870 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1871 Constant
*EltC1
= C1
->getAggregateElement(i
);
1872 Constant
*EltC2
= C2
->getAggregateElement(i
);
1873 if (!EltC1
|| !EltC2
)
1876 // One element must be all ones, and the other must be all zeros.
1877 if (!((match(EltC1
, m_Zero()) && match(EltC2
, m_AllOnes())) ||
1878 (match(EltC2
, m_Zero()) && match(EltC1
, m_AllOnes()))))
1884 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
1885 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
1886 /// B, it can be used as the condition operand of a select instruction.
1887 Value
*InstCombiner::getSelectCondition(Value
*A
, Value
*B
) {
1888 // Step 1: We may have peeked through bitcasts in the caller.
1889 // Exit immediately if we don't have (vector) integer types.
1890 Type
*Ty
= A
->getType();
1891 if (!Ty
->isIntOrIntVectorTy() || !B
->getType()->isIntOrIntVectorTy())
1894 // Step 2: We need 0 or all-1's bitmasks.
1895 if (ComputeNumSignBits(A
) != Ty
->getScalarSizeInBits())
1898 // Step 3: If B is the 'not' value of A, we have our answer.
1899 if (match(A
, m_Not(m_Specific(B
)))) {
1900 // If these are scalars or vectors of i1, A can be used directly.
1901 if (Ty
->isIntOrIntVectorTy(1))
1903 return Builder
.CreateTrunc(A
, CmpInst::makeCmpResultType(Ty
));
1906 // If both operands are constants, see if the constants are inverse bitmasks.
1907 Constant
*AConst
, *BConst
;
1908 if (match(A
, m_Constant(AConst
)) && match(B
, m_Constant(BConst
)))
1909 if (AConst
== ConstantExpr::getNot(BConst
))
1910 return Builder
.CreateZExtOrTrunc(A
, CmpInst::makeCmpResultType(Ty
));
1912 // Look for more complex patterns. The 'not' op may be hidden behind various
1913 // casts. Look through sexts and bitcasts to find the booleans.
1916 if (match(A
, m_SExt(m_Value(Cond
))) &&
1917 Cond
->getType()->isIntOrIntVectorTy(1) &&
1918 match(B
, m_OneUse(m_Not(m_Value(NotB
))))) {
1919 NotB
= peekThroughBitcast(NotB
, true);
1920 if (match(NotB
, m_SExt(m_Specific(Cond
))))
1924 // All scalar (and most vector) possibilities should be handled now.
1925 // Try more matches that only apply to non-splat constant vectors.
1926 if (!Ty
->isVectorTy())
1929 // If both operands are xor'd with constants using the same sexted boolean
1930 // operand, see if the constants are inverse bitmasks.
1931 // TODO: Use ConstantExpr::getNot()?
1932 if (match(A
, (m_Xor(m_SExt(m_Value(Cond
)), m_Constant(AConst
)))) &&
1933 match(B
, (m_Xor(m_SExt(m_Specific(Cond
)), m_Constant(BConst
)))) &&
1934 Cond
->getType()->isIntOrIntVectorTy(1) &&
1935 areInverseVectorBitmasks(AConst
, BConst
)) {
1936 AConst
= ConstantExpr::getTrunc(AConst
, CmpInst::makeCmpResultType(Ty
));
1937 return Builder
.CreateXor(Cond
, AConst
);
1942 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
1943 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
1944 Value
*InstCombiner::matchSelectFromAndOr(Value
*A
, Value
*C
, Value
*B
,
1946 // The potential condition of the select may be bitcasted. In that case, look
1947 // through its bitcast and the corresponding bitcast of the 'not' condition.
1948 Type
*OrigType
= A
->getType();
1949 A
= peekThroughBitcast(A
, true);
1950 B
= peekThroughBitcast(B
, true);
1951 if (Value
*Cond
= getSelectCondition(A
, B
)) {
1952 // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
1953 // The bitcasts will either all exist or all not exist. The builder will
1954 // not create unnecessary casts if the types already match.
1955 Value
*BitcastC
= Builder
.CreateBitCast(C
, A
->getType());
1956 Value
*BitcastD
= Builder
.CreateBitCast(D
, A
->getType());
1957 Value
*Select
= Builder
.CreateSelect(Cond
, BitcastC
, BitcastD
);
1958 return Builder
.CreateBitCast(Select
, OrigType
);
1964 /// Fold (icmp)|(icmp) if possible.
1965 Value
*InstCombiner::foldOrOfICmps(ICmpInst
*LHS
, ICmpInst
*RHS
,
1966 Instruction
&CxtI
) {
1967 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
1968 // if K1 and K2 are a one-bit mask.
1969 if (Value
*V
= foldAndOrOfICmpsOfAndWithPow2(LHS
, RHS
, false, CxtI
))
1972 ICmpInst::Predicate PredL
= LHS
->getPredicate(), PredR
= RHS
->getPredicate();
1974 ConstantInt
*LHSC
= dyn_cast
<ConstantInt
>(LHS
->getOperand(1));
1975 ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
->getOperand(1));
1977 // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
1978 // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
1979 // The original condition actually refers to the following two ranges:
1980 // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
1981 // We can fold these two ranges if:
1982 // 1) C1 and C2 is unsigned greater than C3.
1983 // 2) The two ranges are separated.
1984 // 3) C1 ^ C2 is one-bit mask.
1985 // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
1986 // This implies all values in the two ranges differ by exactly one bit.
1988 if ((PredL
== ICmpInst::ICMP_ULT
|| PredL
== ICmpInst::ICMP_ULE
) &&
1989 PredL
== PredR
&& LHSC
&& RHSC
&& LHS
->hasOneUse() && RHS
->hasOneUse() &&
1990 LHSC
->getType() == RHSC
->getType() &&
1991 LHSC
->getValue() == (RHSC
->getValue())) {
1993 Value
*LAdd
= LHS
->getOperand(0);
1994 Value
*RAdd
= RHS
->getOperand(0);
1996 Value
*LAddOpnd
, *RAddOpnd
;
1997 ConstantInt
*LAddC
, *RAddC
;
1998 if (match(LAdd
, m_Add(m_Value(LAddOpnd
), m_ConstantInt(LAddC
))) &&
1999 match(RAdd
, m_Add(m_Value(RAddOpnd
), m_ConstantInt(RAddC
))) &&
2000 LAddC
->getValue().ugt(LHSC
->getValue()) &&
2001 RAddC
->getValue().ugt(LHSC
->getValue())) {
2003 APInt DiffC
= LAddC
->getValue() ^ RAddC
->getValue();
2004 if (LAddOpnd
== RAddOpnd
&& DiffC
.isPowerOf2()) {
2005 ConstantInt
*MaxAddC
= nullptr;
2006 if (LAddC
->getValue().ult(RAddC
->getValue()))
2011 APInt RRangeLow
= -RAddC
->getValue();
2012 APInt RRangeHigh
= RRangeLow
+ LHSC
->getValue();
2013 APInt LRangeLow
= -LAddC
->getValue();
2014 APInt LRangeHigh
= LRangeLow
+ LHSC
->getValue();
2015 APInt LowRangeDiff
= RRangeLow
^ LRangeLow
;
2016 APInt HighRangeDiff
= RRangeHigh
^ LRangeHigh
;
2017 APInt RangeDiff
= LRangeLow
.sgt(RRangeLow
) ? LRangeLow
- RRangeLow
2018 : RRangeLow
- LRangeLow
;
2020 if (LowRangeDiff
.isPowerOf2() && LowRangeDiff
== HighRangeDiff
&&
2021 RangeDiff
.ugt(LHSC
->getValue())) {
2022 Value
*MaskC
= ConstantInt::get(LAddC
->getType(), ~DiffC
);
2024 Value
*NewAnd
= Builder
.CreateAnd(LAddOpnd
, MaskC
);
2025 Value
*NewAdd
= Builder
.CreateAdd(NewAnd
, MaxAddC
);
2026 return Builder
.CreateICmp(LHS
->getPredicate(), NewAdd
, LHSC
);
2032 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
2033 if (predicatesFoldable(PredL
, PredR
)) {
2034 if (LHS
->getOperand(0) == RHS
->getOperand(1) &&
2035 LHS
->getOperand(1) == RHS
->getOperand(0))
2036 LHS
->swapOperands();
2037 if (LHS
->getOperand(0) == RHS
->getOperand(0) &&
2038 LHS
->getOperand(1) == RHS
->getOperand(1)) {
2039 Value
*Op0
= LHS
->getOperand(0), *Op1
= LHS
->getOperand(1);
2040 unsigned Code
= getICmpCode(LHS
) | getICmpCode(RHS
);
2041 bool IsSigned
= LHS
->isSigned() || RHS
->isSigned();
2042 return getNewICmpValue(Code
, IsSigned
, Op0
, Op1
, Builder
);
2046 // handle (roughly):
2047 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
2048 if (Value
*V
= foldLogOpOfMaskedICmps(LHS
, RHS
, false, Builder
))
2051 Value
*LHS0
= LHS
->getOperand(0), *RHS0
= RHS
->getOperand(0);
2052 if (LHS
->hasOneUse() || RHS
->hasOneUse()) {
2053 // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
2054 // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
2055 Value
*A
= nullptr, *B
= nullptr;
2056 if (PredL
== ICmpInst::ICMP_EQ
&& LHSC
&& LHSC
->isZero()) {
2058 if (PredR
== ICmpInst::ICMP_ULT
&& LHS0
== RHS
->getOperand(1))
2060 else if (PredR
== ICmpInst::ICMP_UGT
&& LHS0
== RHS0
)
2061 A
= RHS
->getOperand(1);
2063 // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
2064 // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
2065 else if (PredR
== ICmpInst::ICMP_EQ
&& RHSC
&& RHSC
->isZero()) {
2067 if (PredL
== ICmpInst::ICMP_ULT
&& RHS0
== LHS
->getOperand(1))
2069 else if (PredL
== ICmpInst::ICMP_UGT
&& LHS0
== RHS0
)
2070 A
= LHS
->getOperand(1);
2073 return Builder
.CreateICmp(
2075 Builder
.CreateAdd(B
, ConstantInt::getSigned(B
->getType(), -1)), A
);
2078 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
2079 if (Value
*V
= simplifyRangeCheck(LHS
, RHS
, /*Inverted=*/true))
2082 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
2083 if (Value
*V
= simplifyRangeCheck(RHS
, LHS
, /*Inverted=*/true))
2086 if (Value
*V
= foldAndOrOfEqualityCmpsWithConstants(LHS
, RHS
, false, Builder
))
2089 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
2093 if (LHSC
== RHSC
&& PredL
== PredR
) {
2094 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
2095 if (PredL
== ICmpInst::ICMP_NE
&& LHSC
->isZero()) {
2096 Value
*NewOr
= Builder
.CreateOr(LHS0
, RHS0
);
2097 return Builder
.CreateICmp(PredL
, NewOr
, LHSC
);
2101 // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
2102 // iff C2 + CA == C1.
2103 if (PredL
== ICmpInst::ICMP_ULT
&& PredR
== ICmpInst::ICMP_EQ
) {
2105 if (match(LHS0
, m_Add(m_Specific(RHS0
), m_ConstantInt(AddC
))))
2106 if (RHSC
->getValue() + AddC
->getValue() == LHSC
->getValue())
2107 return Builder
.CreateICmpULE(LHS0
, LHSC
);
2110 // From here on, we only handle:
2111 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
2115 // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
2116 if (PredL
== ICmpInst::ICMP_UGE
|| PredL
== ICmpInst::ICMP_ULE
||
2117 PredR
== ICmpInst::ICMP_UGE
|| PredR
== ICmpInst::ICMP_ULE
||
2118 PredL
== ICmpInst::ICMP_SGE
|| PredL
== ICmpInst::ICMP_SLE
||
2119 PredR
== ICmpInst::ICMP_SGE
|| PredR
== ICmpInst::ICMP_SLE
)
2122 // We can't fold (ugt x, C) | (sgt x, C2).
2123 if (!predicatesFoldable(PredL
, PredR
))
2126 // Ensure that the larger constant is on the RHS.
2128 if (CmpInst::isSigned(PredL
) ||
2129 (ICmpInst::isEquality(PredL
) && CmpInst::isSigned(PredR
)))
2130 ShouldSwap
= LHSC
->getValue().sgt(RHSC
->getValue());
2132 ShouldSwap
= LHSC
->getValue().ugt(RHSC
->getValue());
2135 std::swap(LHS
, RHS
);
2136 std::swap(LHSC
, RHSC
);
2137 std::swap(PredL
, PredR
);
2140 // At this point, we know we have two icmp instructions
2141 // comparing a value against two constants and or'ing the result
2142 // together. Because of the above check, we know that we only have
2143 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
2144 // icmp folding check above), that the two constants are not
2146 assert(LHSC
!= RHSC
&& "Compares not folded above?");
2150 llvm_unreachable("Unknown integer condition code!");
2151 case ICmpInst::ICMP_EQ
:
2154 llvm_unreachable("Unknown integer condition code!");
2155 case ICmpInst::ICMP_EQ
:
2156 // Potential folds for this case should already be handled.
2158 case ICmpInst::ICMP_UGT
: // (X == 13 | X u> 14) -> no change
2159 case ICmpInst::ICMP_SGT
: // (X == 13 | X s> 14) -> no change
2163 case ICmpInst::ICMP_ULT
:
2166 llvm_unreachable("Unknown integer condition code!");
2167 case ICmpInst::ICMP_EQ
: // (X u< 13 | X == 14) -> no change
2169 case ICmpInst::ICMP_UGT
: // (X u< 13 | X u> 15) -> (X-13) u> 2
2170 assert(!RHSC
->isMaxValue(false) && "Missed icmp simplification");
2171 return insertRangeTest(LHS0
, LHSC
->getValue(), RHSC
->getValue() + 1,
2175 case ICmpInst::ICMP_SLT
:
2178 llvm_unreachable("Unknown integer condition code!");
2179 case ICmpInst::ICMP_EQ
: // (X s< 13 | X == 14) -> no change
2181 case ICmpInst::ICMP_SGT
: // (X s< 13 | X s> 15) -> (X-13) s> 2
2182 assert(!RHSC
->isMaxValue(true) && "Missed icmp simplification");
2183 return insertRangeTest(LHS0
, LHSC
->getValue(), RHSC
->getValue() + 1, true,
2191 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2192 // here. We should standardize that construct where it is needed or choose some
2193 // other way to ensure that commutated variants of patterns are not missed.
2194 Instruction
*InstCombiner::visitOr(BinaryOperator
&I
) {
2195 if (Value
*V
= SimplifyOrInst(I
.getOperand(0), I
.getOperand(1),
2196 SQ
.getWithInstruction(&I
)))
2197 return replaceInstUsesWith(I
, V
);
2199 if (SimplifyAssociativeOrCommutative(I
))
2202 if (Instruction
*X
= foldVectorBinop(I
))
2205 // See if we can simplify any instructions used by the instruction whose sole
2206 // purpose is to compute bits we don't care about.
2207 if (SimplifyDemandedInstructionBits(I
))
2210 // Do this before using distributive laws to catch simple and/or/not patterns.
2211 if (Instruction
*Xor
= foldOrToXor(I
, Builder
))
2214 // (A&B)|(A&C) -> A&(B|C) etc
2215 if (Value
*V
= SimplifyUsingDistributiveLaws(I
))
2216 return replaceInstUsesWith(I
, V
);
2218 if (Value
*V
= SimplifyBSwap(I
, Builder
))
2219 return replaceInstUsesWith(I
, V
);
2221 if (Instruction
*FoldedLogic
= foldBinOpIntoSelectOrPhi(I
))
2224 if (Instruction
*BSwap
= matchBSwap(I
))
2227 if (Instruction
*Rotate
= matchRotate(I
))
2232 if (match(&I
, m_c_Or(m_OneUse(m_Xor(m_Value(X
), m_APInt(CV
))), m_Value(Y
))) &&
2233 !CV
->isAllOnesValue() && MaskedValueIsZero(Y
, *CV
, 0, &I
)) {
2234 // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
2235 // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
2236 Value
*Or
= Builder
.CreateOr(X
, Y
);
2237 return BinaryOperator::CreateXor(Or
, ConstantInt::get(I
.getType(), *CV
));
2241 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2242 Value
*A
, *B
, *C
, *D
;
2243 if (match(Op0
, m_And(m_Value(A
), m_Value(C
))) &&
2244 match(Op1
, m_And(m_Value(B
), m_Value(D
)))) {
2245 ConstantInt
*C1
= dyn_cast
<ConstantInt
>(C
);
2246 ConstantInt
*C2
= dyn_cast
<ConstantInt
>(D
);
2247 if (C1
&& C2
) { // (A & C1)|(B & C2)
2248 Value
*V1
= nullptr, *V2
= nullptr;
2249 if ((C1
->getValue() & C2
->getValue()).isNullValue()) {
2250 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2251 // iff (C1&C2) == 0 and (N&~C1) == 0
2252 if (match(A
, m_Or(m_Value(V1
), m_Value(V2
))) &&
2254 MaskedValueIsZero(V2
, ~C1
->getValue(), 0, &I
)) || // (V|N)
2256 MaskedValueIsZero(V1
, ~C1
->getValue(), 0, &I
)))) // (N|V)
2257 return BinaryOperator::CreateAnd(A
,
2258 Builder
.getInt(C1
->getValue()|C2
->getValue()));
2259 // Or commutes, try both ways.
2260 if (match(B
, m_Or(m_Value(V1
), m_Value(V2
))) &&
2262 MaskedValueIsZero(V2
, ~C2
->getValue(), 0, &I
)) || // (V|N)
2264 MaskedValueIsZero(V1
, ~C2
->getValue(), 0, &I
)))) // (N|V)
2265 return BinaryOperator::CreateAnd(B
,
2266 Builder
.getInt(C1
->getValue()|C2
->getValue()));
2268 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2269 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2270 ConstantInt
*C3
= nullptr, *C4
= nullptr;
2271 if (match(A
, m_Or(m_Value(V1
), m_ConstantInt(C3
))) &&
2272 (C3
->getValue() & ~C1
->getValue()).isNullValue() &&
2273 match(B
, m_Or(m_Specific(V1
), m_ConstantInt(C4
))) &&
2274 (C4
->getValue() & ~C2
->getValue()).isNullValue()) {
2275 V2
= Builder
.CreateOr(V1
, ConstantExpr::getOr(C3
, C4
), "bitfield");
2276 return BinaryOperator::CreateAnd(V2
,
2277 Builder
.getInt(C1
->getValue()|C2
->getValue()));
2281 if (C1
->getValue() == ~C2
->getValue()) {
2284 // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2
2285 if (match(A
, m_c_Or(m_Value(X
), m_Specific(B
))))
2286 return BinaryOperator::CreateOr(Builder
.CreateAnd(X
, C1
), B
);
2287 // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2
2288 if (match(B
, m_c_Or(m_Specific(A
), m_Value(X
))))
2289 return BinaryOperator::CreateOr(Builder
.CreateAnd(X
, C2
), A
);
2291 // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2
2292 if (match(A
, m_c_Xor(m_Value(X
), m_Specific(B
))))
2293 return BinaryOperator::CreateXor(Builder
.CreateAnd(X
, C1
), B
);
2294 // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2
2295 if (match(B
, m_c_Xor(m_Specific(A
), m_Value(X
))))
2296 return BinaryOperator::CreateXor(Builder
.CreateAnd(X
, C2
), A
);
2300 // Don't try to form a select if it's unlikely that we'll get rid of at
2301 // least one of the operands. A select is generally more expensive than the
2302 // 'or' that it is replacing.
2303 if (Op0
->hasOneUse() || Op1
->hasOneUse()) {
2304 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
2305 if (Value
*V
= matchSelectFromAndOr(A
, C
, B
, D
))
2306 return replaceInstUsesWith(I
, V
);
2307 if (Value
*V
= matchSelectFromAndOr(A
, C
, D
, B
))
2308 return replaceInstUsesWith(I
, V
);
2309 if (Value
*V
= matchSelectFromAndOr(C
, A
, B
, D
))
2310 return replaceInstUsesWith(I
, V
);
2311 if (Value
*V
= matchSelectFromAndOr(C
, A
, D
, B
))
2312 return replaceInstUsesWith(I
, V
);
2313 if (Value
*V
= matchSelectFromAndOr(B
, D
, A
, C
))
2314 return replaceInstUsesWith(I
, V
);
2315 if (Value
*V
= matchSelectFromAndOr(B
, D
, C
, A
))
2316 return replaceInstUsesWith(I
, V
);
2317 if (Value
*V
= matchSelectFromAndOr(D
, B
, A
, C
))
2318 return replaceInstUsesWith(I
, V
);
2319 if (Value
*V
= matchSelectFromAndOr(D
, B
, C
, A
))
2320 return replaceInstUsesWith(I
, V
);
2324 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2325 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
))))
2326 if (match(Op1
, m_Xor(m_Xor(m_Specific(B
), m_Value(C
)), m_Specific(A
))))
2327 return BinaryOperator::CreateOr(Op0
, C
);
2329 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2330 if (match(Op0
, m_Xor(m_Xor(m_Value(A
), m_Value(C
)), m_Value(B
))))
2331 if (match(Op1
, m_Xor(m_Specific(B
), m_Specific(A
))))
2332 return BinaryOperator::CreateOr(Op1
, C
);
2334 // ((B | C) & A) | B -> B | (A & C)
2335 if (match(Op0
, m_And(m_Or(m_Specific(Op1
), m_Value(C
)), m_Value(A
))))
2336 return BinaryOperator::CreateOr(Op1
, Builder
.CreateAnd(A
, C
));
2338 if (Instruction
*DeMorgan
= matchDeMorgansLaws(I
, Builder
))
2341 // Canonicalize xor to the RHS.
2342 bool SwappedForXor
= false;
2343 if (match(Op0
, m_Xor(m_Value(), m_Value()))) {
2344 std::swap(Op0
, Op1
);
2345 SwappedForXor
= true;
2348 // A | ( A ^ B) -> A | B
2349 // A | (~A ^ B) -> A | ~B
2350 // (A & B) | (A ^ B)
2351 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
)))) {
2352 if (Op0
== A
|| Op0
== B
)
2353 return BinaryOperator::CreateOr(A
, B
);
2355 if (match(Op0
, m_And(m_Specific(A
), m_Specific(B
))) ||
2356 match(Op0
, m_And(m_Specific(B
), m_Specific(A
))))
2357 return BinaryOperator::CreateOr(A
, B
);
2359 if (Op1
->hasOneUse() && match(A
, m_Not(m_Specific(Op0
)))) {
2360 Value
*Not
= Builder
.CreateNot(B
, B
->getName() + ".not");
2361 return BinaryOperator::CreateOr(Not
, Op0
);
2363 if (Op1
->hasOneUse() && match(B
, m_Not(m_Specific(Op0
)))) {
2364 Value
*Not
= Builder
.CreateNot(A
, A
->getName() + ".not");
2365 return BinaryOperator::CreateOr(Not
, Op0
);
2369 // A | ~(A | B) -> A | ~B
2370 // A | ~(A ^ B) -> A | ~B
2371 if (match(Op1
, m_Not(m_Value(A
))))
2372 if (BinaryOperator
*B
= dyn_cast
<BinaryOperator
>(A
))
2373 if ((Op0
== B
->getOperand(0) || Op0
== B
->getOperand(1)) &&
2374 Op1
->hasOneUse() && (B
->getOpcode() == Instruction::Or
||
2375 B
->getOpcode() == Instruction::Xor
)) {
2376 Value
*NotOp
= Op0
== B
->getOperand(0) ? B
->getOperand(1) :
2378 Value
*Not
= Builder
.CreateNot(NotOp
, NotOp
->getName() + ".not");
2379 return BinaryOperator::CreateOr(Not
, Op0
);
2383 std::swap(Op0
, Op1
);
2386 ICmpInst
*LHS
= dyn_cast
<ICmpInst
>(Op0
);
2387 ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(Op1
);
2389 if (Value
*Res
= foldOrOfICmps(LHS
, RHS
, I
))
2390 return replaceInstUsesWith(I
, Res
);
2392 // TODO: Make this recursive; it's a little tricky because an arbitrary
2393 // number of 'or' instructions might have to be created.
2395 if (LHS
&& match(Op1
, m_OneUse(m_Or(m_Value(X
), m_Value(Y
))))) {
2396 if (auto *Cmp
= dyn_cast
<ICmpInst
>(X
))
2397 if (Value
*Res
= foldOrOfICmps(LHS
, Cmp
, I
))
2398 return replaceInstUsesWith(I
, Builder
.CreateOr(Res
, Y
));
2399 if (auto *Cmp
= dyn_cast
<ICmpInst
>(Y
))
2400 if (Value
*Res
= foldOrOfICmps(LHS
, Cmp
, I
))
2401 return replaceInstUsesWith(I
, Builder
.CreateOr(Res
, X
));
2403 if (RHS
&& match(Op0
, m_OneUse(m_Or(m_Value(X
), m_Value(Y
))))) {
2404 if (auto *Cmp
= dyn_cast
<ICmpInst
>(X
))
2405 if (Value
*Res
= foldOrOfICmps(Cmp
, RHS
, I
))
2406 return replaceInstUsesWith(I
, Builder
.CreateOr(Res
, Y
));
2407 if (auto *Cmp
= dyn_cast
<ICmpInst
>(Y
))
2408 if (Value
*Res
= foldOrOfICmps(Cmp
, RHS
, I
))
2409 return replaceInstUsesWith(I
, Builder
.CreateOr(Res
, X
));
2413 if (FCmpInst
*LHS
= dyn_cast
<FCmpInst
>(I
.getOperand(0)))
2414 if (FCmpInst
*RHS
= dyn_cast
<FCmpInst
>(I
.getOperand(1)))
2415 if (Value
*Res
= foldLogicOfFCmps(LHS
, RHS
, false))
2416 return replaceInstUsesWith(I
, Res
);
2418 if (Instruction
*CastedOr
= foldCastedBitwiseLogic(I
))
2421 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
2422 if (match(Op0
, m_OneUse(m_SExt(m_Value(A
)))) &&
2423 A
->getType()->isIntOrIntVectorTy(1))
2424 return SelectInst::Create(A
, ConstantInt::getSigned(I
.getType(), -1), Op1
);
2425 if (match(Op1
, m_OneUse(m_SExt(m_Value(A
)))) &&
2426 A
->getType()->isIntOrIntVectorTy(1))
2427 return SelectInst::Create(A
, ConstantInt::getSigned(I
.getType(), -1), Op0
);
2429 // Note: If we've gotten to the point of visiting the outer OR, then the
2430 // inner one couldn't be simplified. If it was a constant, then it won't
2431 // be simplified by a later pass either, so we try swapping the inner/outer
2432 // ORs in the hopes that we'll be able to simplify it this way.
2433 // (X|C) | V --> (X|V) | C
2435 if (Op0
->hasOneUse() && !isa
<ConstantInt
>(Op1
) &&
2436 match(Op0
, m_Or(m_Value(A
), m_ConstantInt(CI
)))) {
2437 Value
*Inner
= Builder
.CreateOr(A
, Op1
);
2438 Inner
->takeName(Op0
);
2439 return BinaryOperator::CreateOr(Inner
, CI
);
2442 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2443 // Since this OR statement hasn't been optimized further yet, we hope
2444 // that this transformation will allow the new ORs to be optimized.
2446 Value
*X
= nullptr, *Y
= nullptr;
2447 if (Op0
->hasOneUse() && Op1
->hasOneUse() &&
2448 match(Op0
, m_Select(m_Value(X
), m_Value(A
), m_Value(B
))) &&
2449 match(Op1
, m_Select(m_Value(Y
), m_Value(C
), m_Value(D
))) && X
== Y
) {
2450 Value
*orTrue
= Builder
.CreateOr(A
, C
);
2451 Value
*orFalse
= Builder
.CreateOr(B
, D
);
2452 return SelectInst::Create(X
, orTrue
, orFalse
);
2459 /// A ^ B can be specified using other logic ops in a variety of patterns. We
2460 /// can fold these early and efficiently by morphing an existing instruction.
2461 static Instruction
*foldXorToXor(BinaryOperator
&I
,
2462 InstCombiner::BuilderTy
&Builder
) {
2463 assert(I
.getOpcode() == Instruction::Xor
);
2464 Value
*Op0
= I
.getOperand(0);
2465 Value
*Op1
= I
.getOperand(1);
2468 // There are 4 commuted variants for each of the basic patterns.
2470 // (A & B) ^ (A | B) -> A ^ B
2471 // (A & B) ^ (B | A) -> A ^ B
2472 // (A | B) ^ (A & B) -> A ^ B
2473 // (A | B) ^ (B & A) -> A ^ B
2474 if (match(&I
, m_c_Xor(m_And(m_Value(A
), m_Value(B
)),
2475 m_c_Or(m_Deferred(A
), m_Deferred(B
))))) {
2481 // (A | ~B) ^ (~A | B) -> A ^ B
2482 // (~B | A) ^ (~A | B) -> A ^ B
2483 // (~A | B) ^ (A | ~B) -> A ^ B
2484 // (B | ~A) ^ (A | ~B) -> A ^ B
2485 if (match(&I
, m_Xor(m_c_Or(m_Value(A
), m_Not(m_Value(B
))),
2486 m_c_Or(m_Not(m_Deferred(A
)), m_Deferred(B
))))) {
2492 // (A & ~B) ^ (~A & B) -> A ^ B
2493 // (~B & A) ^ (~A & B) -> A ^ B
2494 // (~A & B) ^ (A & ~B) -> A ^ B
2495 // (B & ~A) ^ (A & ~B) -> A ^ B
2496 if (match(&I
, m_Xor(m_c_And(m_Value(A
), m_Not(m_Value(B
))),
2497 m_c_And(m_Not(m_Deferred(A
)), m_Deferred(B
))))) {
2503 // For the remaining cases we need to get rid of one of the operands.
2504 if (!Op0
->hasOneUse() && !Op1
->hasOneUse())
2507 // (A | B) ^ ~(A & B) -> ~(A ^ B)
2508 // (A | B) ^ ~(B & A) -> ~(A ^ B)
2509 // (A & B) ^ ~(A | B) -> ~(A ^ B)
2510 // (A & B) ^ ~(B | A) -> ~(A ^ B)
2511 // Complexity sorting ensures the not will be on the right side.
2512 if ((match(Op0
, m_Or(m_Value(A
), m_Value(B
))) &&
2513 match(Op1
, m_Not(m_c_And(m_Specific(A
), m_Specific(B
))))) ||
2514 (match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
2515 match(Op1
, m_Not(m_c_Or(m_Specific(A
), m_Specific(B
))))))
2516 return BinaryOperator::CreateNot(Builder
.CreateXor(A
, B
));
2521 Value
*InstCombiner::foldXorOfICmps(ICmpInst
*LHS
, ICmpInst
*RHS
) {
2522 if (predicatesFoldable(LHS
->getPredicate(), RHS
->getPredicate())) {
2523 if (LHS
->getOperand(0) == RHS
->getOperand(1) &&
2524 LHS
->getOperand(1) == RHS
->getOperand(0))
2525 LHS
->swapOperands();
2526 if (LHS
->getOperand(0) == RHS
->getOperand(0) &&
2527 LHS
->getOperand(1) == RHS
->getOperand(1)) {
2528 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2529 Value
*Op0
= LHS
->getOperand(0), *Op1
= LHS
->getOperand(1);
2530 unsigned Code
= getICmpCode(LHS
) ^ getICmpCode(RHS
);
2531 bool IsSigned
= LHS
->isSigned() || RHS
->isSigned();
2532 return getNewICmpValue(Code
, IsSigned
, Op0
, Op1
, Builder
);
2536 // TODO: This can be generalized to compares of non-signbits using
2537 // decomposeBitTestICmp(). It could be enhanced more by using (something like)
2538 // foldLogOpOfMaskedICmps().
2539 ICmpInst::Predicate PredL
= LHS
->getPredicate(), PredR
= RHS
->getPredicate();
2540 Value
*LHS0
= LHS
->getOperand(0), *LHS1
= LHS
->getOperand(1);
2541 Value
*RHS0
= RHS
->getOperand(0), *RHS1
= RHS
->getOperand(1);
2542 if ((LHS
->hasOneUse() || RHS
->hasOneUse()) &&
2543 LHS0
->getType() == RHS0
->getType() &&
2544 LHS0
->getType()->isIntOrIntVectorTy()) {
2545 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
2546 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0
2547 if ((PredL
== CmpInst::ICMP_SGT
&& match(LHS1
, m_AllOnes()) &&
2548 PredR
== CmpInst::ICMP_SGT
&& match(RHS1
, m_AllOnes())) ||
2549 (PredL
== CmpInst::ICMP_SLT
&& match(LHS1
, m_Zero()) &&
2550 PredR
== CmpInst::ICMP_SLT
&& match(RHS1
, m_Zero()))) {
2551 Value
*Zero
= ConstantInt::getNullValue(LHS0
->getType());
2552 return Builder
.CreateICmpSLT(Builder
.CreateXor(LHS0
, RHS0
), Zero
);
2554 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1
2555 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1
2556 if ((PredL
== CmpInst::ICMP_SGT
&& match(LHS1
, m_AllOnes()) &&
2557 PredR
== CmpInst::ICMP_SLT
&& match(RHS1
, m_Zero())) ||
2558 (PredL
== CmpInst::ICMP_SLT
&& match(LHS1
, m_Zero()) &&
2559 PredR
== CmpInst::ICMP_SGT
&& match(RHS1
, m_AllOnes()))) {
2560 Value
*MinusOne
= ConstantInt::getAllOnesValue(LHS0
->getType());
2561 return Builder
.CreateICmpSGT(Builder
.CreateXor(LHS0
, RHS0
), MinusOne
);
2565 // Instead of trying to imitate the folds for and/or, decompose this 'xor'
2566 // into those logic ops. That is, try to turn this into an and-of-icmps
2567 // because we have many folds for that pattern.
2569 // This is based on a truth table definition of xor:
2570 // X ^ Y --> (X | Y) & !(X & Y)
2571 if (Value
*OrICmp
= SimplifyBinOp(Instruction::Or
, LHS
, RHS
, SQ
)) {
2572 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
2573 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
2574 if (Value
*AndICmp
= SimplifyBinOp(Instruction::And
, LHS
, RHS
, SQ
)) {
2575 // TODO: Independently handle cases where the 'and' side is a constant.
2576 if (OrICmp
== LHS
&& AndICmp
== RHS
&& RHS
->hasOneUse()) {
2577 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS
2578 RHS
->setPredicate(RHS
->getInversePredicate());
2579 return Builder
.CreateAnd(LHS
, RHS
);
2581 if (OrICmp
== RHS
&& AndICmp
== LHS
&& LHS
->hasOneUse()) {
2582 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS
2583 LHS
->setPredicate(LHS
->getInversePredicate());
2584 return Builder
.CreateAnd(LHS
, RHS
);
2592 /// If we have a masked merge, in the canonical form of:
2593 /// (assuming that A only has one use.)
2595 /// ((x ^ y) & M) ^ y
2597 /// * If M is inverted:
2599 /// ((x ^ y) & ~M) ^ y
2600 /// We can canonicalize by swapping the final xor operand
2601 /// to eliminate the 'not' of the mask.
2602 /// ((x ^ y) & M) ^ x
2603 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
2604 /// because that shortens the dependency chain and improves analysis:
2605 /// (x & M) | (y & ~M)
2606 static Instruction
*visitMaskedMerge(BinaryOperator
&I
,
2607 InstCombiner::BuilderTy
&Builder
) {
2610 if (!match(&I
, m_c_Xor(m_Value(B
),
2612 m_CombineAnd(m_c_Xor(m_Deferred(B
), m_Value(X
)),
2618 if (match(M
, m_Not(m_Value(NotM
)))) {
2619 // De-invert the mask and swap the value in B part.
2620 Value
*NewA
= Builder
.CreateAnd(D
, NotM
);
2621 return BinaryOperator::CreateXor(NewA
, X
);
2625 if (D
->hasOneUse() && match(M
, m_Constant(C
))) {
2627 Value
*LHS
= Builder
.CreateAnd(X
, C
);
2628 Value
*NotC
= Builder
.CreateNot(C
);
2629 Value
*RHS
= Builder
.CreateAnd(B
, NotC
);
2630 return BinaryOperator::CreateOr(LHS
, RHS
);
2642 static Instruction
*sinkNotIntoXor(BinaryOperator
&I
,
2643 InstCombiner::BuilderTy
&Builder
) {
2645 // FIXME: one-use check is not needed in general, but currently we are unable
2646 // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
2647 if (!match(&I
, m_Not(m_OneUse(m_Xor(m_Value(X
), m_Value(Y
))))))
2650 // We only want to do the transform if it is free to do.
2651 if (IsFreeToInvert(X
, X
->hasOneUse())) {
2653 } else if (IsFreeToInvert(Y
, Y
->hasOneUse())) {
2658 Value
*NotX
= Builder
.CreateNot(X
, X
->getName() + ".not");
2659 return BinaryOperator::CreateXor(NotX
, Y
, I
.getName() + ".demorgan");
2662 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2663 // here. We should standardize that construct where it is needed or choose some
2664 // other way to ensure that commutated variants of patterns are not missed.
2665 Instruction
*InstCombiner::visitXor(BinaryOperator
&I
) {
2666 if (Value
*V
= SimplifyXorInst(I
.getOperand(0), I
.getOperand(1),
2667 SQ
.getWithInstruction(&I
)))
2668 return replaceInstUsesWith(I
, V
);
2670 if (SimplifyAssociativeOrCommutative(I
))
2673 if (Instruction
*X
= foldVectorBinop(I
))
2676 if (Instruction
*NewXor
= foldXorToXor(I
, Builder
))
2679 // (A&B)^(A&C) -> A&(B^C) etc
2680 if (Value
*V
= SimplifyUsingDistributiveLaws(I
))
2681 return replaceInstUsesWith(I
, V
);
2683 // See if we can simplify any instructions used by the instruction whose sole
2684 // purpose is to compute bits we don't care about.
2685 if (SimplifyDemandedInstructionBits(I
))
2688 if (Value
*V
= SimplifyBSwap(I
, Builder
))
2689 return replaceInstUsesWith(I
, V
);
2691 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2693 // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
2694 // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
2695 // calls in there are unnecessary as SimplifyDemandedInstructionBits should
2696 // have already taken care of those cases.
2698 if (match(&I
, m_c_Xor(m_c_And(m_Not(m_Value(M
)), m_Value()),
2699 m_c_And(m_Deferred(M
), m_Value()))))
2700 return BinaryOperator::CreateOr(Op0
, Op1
);
2702 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
2705 // We must eliminate the and/or (one-use) for these transforms to not increase
2706 // the instruction count.
2707 // ~(~X & Y) --> (X | ~Y)
2708 // ~(Y & ~X) --> (X | ~Y)
2709 if (match(&I
, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X
)), m_Value(Y
)))))) {
2710 Value
*NotY
= Builder
.CreateNot(Y
, Y
->getName() + ".not");
2711 return BinaryOperator::CreateOr(X
, NotY
);
2713 // ~(~X | Y) --> (X & ~Y)
2714 // ~(Y | ~X) --> (X & ~Y)
2715 if (match(&I
, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X
)), m_Value(Y
)))))) {
2716 Value
*NotY
= Builder
.CreateNot(Y
, Y
->getName() + ".not");
2717 return BinaryOperator::CreateAnd(X
, NotY
);
2720 if (Instruction
*Xor
= visitMaskedMerge(I
, Builder
))
2723 // Is this a 'not' (~) fed by a binary operator?
2724 BinaryOperator
*NotVal
;
2725 if (match(&I
, m_Not(m_BinOp(NotVal
)))) {
2726 if (NotVal
->getOpcode() == Instruction::And
||
2727 NotVal
->getOpcode() == Instruction::Or
) {
2728 // Apply DeMorgan's Law when inverts are free:
2729 // ~(X & Y) --> (~X | ~Y)
2730 // ~(X | Y) --> (~X & ~Y)
2731 if (IsFreeToInvert(NotVal
->getOperand(0),
2732 NotVal
->getOperand(0)->hasOneUse()) &&
2733 IsFreeToInvert(NotVal
->getOperand(1),
2734 NotVal
->getOperand(1)->hasOneUse())) {
2735 Value
*NotX
= Builder
.CreateNot(NotVal
->getOperand(0), "notlhs");
2736 Value
*NotY
= Builder
.CreateNot(NotVal
->getOperand(1), "notrhs");
2737 if (NotVal
->getOpcode() == Instruction::And
)
2738 return BinaryOperator::CreateOr(NotX
, NotY
);
2739 return BinaryOperator::CreateAnd(NotX
, NotY
);
2743 // ~(X - Y) --> ~X + Y
2744 if (match(NotVal
, m_Sub(m_Value(X
), m_Value(Y
))))
2745 if (isa
<Constant
>(X
) || NotVal
->hasOneUse())
2746 return BinaryOperator::CreateAdd(Builder
.CreateNot(X
), Y
);
2748 // ~(~X >>s Y) --> (X >>s Y)
2749 if (match(NotVal
, m_AShr(m_Not(m_Value(X
)), m_Value(Y
))))
2750 return BinaryOperator::CreateAShr(X
, Y
);
2752 // If we are inverting a right-shifted constant, we may be able to eliminate
2753 // the 'not' by inverting the constant and using the opposite shift type.
2754 // Canonicalization rules ensure that only a negative constant uses 'ashr',
2755 // but we must check that in case that transform has not fired yet.
2757 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
2759 if (match(NotVal
, m_AShr(m_Constant(C
), m_Value(Y
))) &&
2760 match(C
, m_Negative()))
2761 return BinaryOperator::CreateLShr(ConstantExpr::getNot(C
), Y
);
2763 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
2764 if (match(NotVal
, m_LShr(m_Constant(C
), m_Value(Y
))) &&
2765 match(C
, m_NonNegative()))
2766 return BinaryOperator::CreateAShr(ConstantExpr::getNot(C
), Y
);
2768 // ~(X + C) --> -(C + 1) - X
2769 if (match(Op0
, m_Add(m_Value(X
), m_Constant(C
))))
2770 return BinaryOperator::CreateSub(ConstantExpr::getNeg(AddOne(C
)), X
);
2773 // Use DeMorgan and reassociation to eliminate a 'not' op.
2775 if (match(Op1
, m_Constant(C1
))) {
2777 if (match(Op0
, m_OneUse(m_Or(m_Not(m_Value(X
)), m_Constant(C2
))))) {
2778 // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
2779 Value
*And
= Builder
.CreateAnd(X
, ConstantExpr::getNot(C2
));
2780 return BinaryOperator::CreateXor(And
, ConstantExpr::getNot(C1
));
2782 if (match(Op0
, m_OneUse(m_And(m_Not(m_Value(X
)), m_Constant(C2
))))) {
2783 // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
2784 Value
*Or
= Builder
.CreateOr(X
, ConstantExpr::getNot(C2
));
2785 return BinaryOperator::CreateXor(Or
, ConstantExpr::getNot(C1
));
2789 // not (cmp A, B) = !cmp A, B
2790 CmpInst::Predicate Pred
;
2791 if (match(&I
, m_Not(m_OneUse(m_Cmp(Pred
, m_Value(), m_Value()))))) {
2792 cast
<CmpInst
>(Op0
)->setPredicate(CmpInst::getInversePredicate(Pred
));
2793 return replaceInstUsesWith(I
, Op0
);
2798 if (match(Op1
, m_APInt(RHSC
))) {
2801 if (RHSC
->isSignMask() && match(Op0
, m_Sub(m_APInt(C
), m_Value(X
)))) {
2802 // (C - X) ^ signmask -> (C + signmask - X)
2803 Constant
*NewC
= ConstantInt::get(I
.getType(), *C
+ *RHSC
);
2804 return BinaryOperator::CreateSub(NewC
, X
);
2806 if (RHSC
->isSignMask() && match(Op0
, m_Add(m_Value(X
), m_APInt(C
)))) {
2807 // (X + C) ^ signmask -> (X + C + signmask)
2808 Constant
*NewC
= ConstantInt::get(I
.getType(), *C
+ *RHSC
);
2809 return BinaryOperator::CreateAdd(X
, NewC
);
2812 // (X|C1)^C2 -> X^(C1^C2) iff X&~C1 == 0
2813 if (match(Op0
, m_Or(m_Value(X
), m_APInt(C
))) &&
2814 MaskedValueIsZero(X
, *C
, 0, &I
)) {
2815 Constant
*NewC
= ConstantInt::get(I
.getType(), *C
^ *RHSC
);
2816 Worklist
.Add(cast
<Instruction
>(Op0
));
2818 I
.setOperand(1, NewC
);
2824 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(Op1
)) {
2825 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
)) {
2826 if (ConstantInt
*Op0CI
= dyn_cast
<ConstantInt
>(Op0I
->getOperand(1))) {
2827 if (Op0I
->getOpcode() == Instruction::LShr
) {
2828 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
2832 if (Op0I
->hasOneUse() &&
2833 (E1
= dyn_cast
<BinaryOperator
>(Op0I
->getOperand(0))) &&
2834 E1
->getOpcode() == Instruction::Xor
&&
2835 (C1
= dyn_cast
<ConstantInt
>(E1
->getOperand(1)))) {
2836 // fold (C1 >> C2) ^ C3
2837 ConstantInt
*C2
= Op0CI
, *C3
= RHSC
;
2838 APInt FoldConst
= C1
->getValue().lshr(C2
->getValue());
2839 FoldConst
^= C3
->getValue();
2840 // Prepare the two operands.
2841 Value
*Opnd0
= Builder
.CreateLShr(E1
->getOperand(0), C2
);
2842 Opnd0
->takeName(Op0I
);
2843 cast
<Instruction
>(Opnd0
)->setDebugLoc(I
.getDebugLoc());
2844 Value
*FoldVal
= ConstantInt::get(Opnd0
->getType(), FoldConst
);
2846 return BinaryOperator::CreateXor(Opnd0
, FoldVal
);
2853 if (Instruction
*FoldedLogic
= foldBinOpIntoSelectOrPhi(I
))
2856 // Y ^ (X | Y) --> X & ~Y
2857 // Y ^ (Y | X) --> X & ~Y
2858 if (match(Op1
, m_OneUse(m_c_Or(m_Value(X
), m_Specific(Op0
)))))
2859 return BinaryOperator::CreateAnd(X
, Builder
.CreateNot(Op0
));
2860 // (X | Y) ^ Y --> X & ~Y
2861 // (Y | X) ^ Y --> X & ~Y
2862 if (match(Op0
, m_OneUse(m_c_Or(m_Value(X
), m_Specific(Op1
)))))
2863 return BinaryOperator::CreateAnd(X
, Builder
.CreateNot(Op1
));
2865 // Y ^ (X & Y) --> ~X & Y
2866 // Y ^ (Y & X) --> ~X & Y
2867 if (match(Op1
, m_OneUse(m_c_And(m_Value(X
), m_Specific(Op0
)))))
2868 return BinaryOperator::CreateAnd(Op0
, Builder
.CreateNot(X
));
2869 // (X & Y) ^ Y --> ~X & Y
2870 // (Y & X) ^ Y --> ~X & Y
2871 // Canonical form is (X & C) ^ C; don't touch that.
2872 // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
2873 // be fixed to prefer that (otherwise we get infinite looping).
2874 if (!match(Op1
, m_Constant()) &&
2875 match(Op0
, m_OneUse(m_c_And(m_Value(X
), m_Specific(Op1
)))))
2876 return BinaryOperator::CreateAnd(Op1
, Builder
.CreateNot(X
));
2879 // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
2880 if (match(&I
, m_c_Xor(m_OneUse(m_Xor(m_Value(A
), m_Value(B
))),
2881 m_OneUse(m_c_Or(m_Deferred(A
), m_Value(C
))))))
2882 return BinaryOperator::CreateXor(
2883 Builder
.CreateAnd(Builder
.CreateNot(A
), C
), B
);
2885 // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
2886 if (match(&I
, m_c_Xor(m_OneUse(m_Xor(m_Value(A
), m_Value(B
))),
2887 m_OneUse(m_c_Or(m_Deferred(B
), m_Value(C
))))))
2888 return BinaryOperator::CreateXor(
2889 Builder
.CreateAnd(Builder
.CreateNot(B
), C
), A
);
2891 // (A & B) ^ (A ^ B) -> (A | B)
2892 if (match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
2893 match(Op1
, m_c_Xor(m_Specific(A
), m_Specific(B
))))
2894 return BinaryOperator::CreateOr(A
, B
);
2895 // (A ^ B) ^ (A & B) -> (A | B)
2896 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
))) &&
2897 match(Op1
, m_c_And(m_Specific(A
), m_Specific(B
))))
2898 return BinaryOperator::CreateOr(A
, B
);
2900 // (A & ~B) ^ ~A -> ~(A & B)
2901 // (~B & A) ^ ~A -> ~(A & B)
2902 if (match(Op0
, m_c_And(m_Value(A
), m_Not(m_Value(B
)))) &&
2903 match(Op1
, m_Not(m_Specific(A
))))
2904 return BinaryOperator::CreateNot(Builder
.CreateAnd(A
, B
));
2906 if (auto *LHS
= dyn_cast
<ICmpInst
>(I
.getOperand(0)))
2907 if (auto *RHS
= dyn_cast
<ICmpInst
>(I
.getOperand(1)))
2908 if (Value
*V
= foldXorOfICmps(LHS
, RHS
))
2909 return replaceInstUsesWith(I
, V
);
2911 if (Instruction
*CastedXor
= foldCastedBitwiseLogic(I
))
2914 // Canonicalize a shifty way to code absolute value to the common pattern.
2915 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
2916 // We're relying on the fact that we only do this transform when the shift has
2917 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
2919 if (Op0
->hasNUses(2))
2920 std::swap(Op0
, Op1
);
2923 Type
*Ty
= I
.getType();
2924 if (match(Op1
, m_AShr(m_Value(A
), m_APInt(ShAmt
))) &&
2925 Op1
->hasNUses(2) && *ShAmt
== Ty
->getScalarSizeInBits() - 1 &&
2926 match(Op0
, m_OneUse(m_c_Add(m_Specific(A
), m_Specific(Op1
))))) {
2927 // B = ashr i32 A, 31 ; smear the sign bit
2928 // xor (add A, B), B ; add -1 and flip bits if negative
2929 // --> (A < 0) ? -A : A
2930 Value
*Cmp
= Builder
.CreateICmpSLT(A
, ConstantInt::getNullValue(Ty
));
2931 // Copy the nuw/nsw flags from the add to the negate.
2932 auto *Add
= cast
<BinaryOperator
>(Op0
);
2933 Value
*Neg
= Builder
.CreateNeg(A
, "", Add
->hasNoUnsignedWrap(),
2934 Add
->hasNoSignedWrap());
2935 return SelectInst::Create(Cmp
, Neg
, A
);
2938 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
2940 // %notx = xor i32 %x, -1
2941 // %cmp1 = icmp sgt i32 %notx, %y
2942 // %smax = select i1 %cmp1, i32 %notx, i32 %y
2943 // %res = xor i32 %smax, -1
2945 // %noty = xor i32 %y, -1
2946 // %cmp2 = icmp slt %x, %noty
2947 // %res = select i1 %cmp2, i32 %x, i32 %noty
2949 // Same is applicable for smin/umax/umin.
2950 if (match(Op1
, m_AllOnes()) && Op0
->hasOneUse()) {
2952 SelectPatternFlavor SPF
= matchSelectPattern(Op0
, LHS
, RHS
).Flavor
;
2953 if (SelectPatternResult::isMinOrMax(SPF
)) {
2954 // It's possible we get here before the not has been simplified, so make
2955 // sure the input to the not isn't freely invertible.
2956 if (match(LHS
, m_Not(m_Value(X
))) && !IsFreeToInvert(X
, X
->hasOneUse())) {
2957 Value
*NotY
= Builder
.CreateNot(RHS
);
2958 return SelectInst::Create(
2959 Builder
.CreateICmp(getInverseMinMaxPred(SPF
), X
, NotY
), X
, NotY
);
2962 // It's possible we get here before the not has been simplified, so make
2963 // sure the input to the not isn't freely invertible.
2964 if (match(RHS
, m_Not(m_Value(Y
))) && !IsFreeToInvert(Y
, Y
->hasOneUse())) {
2965 Value
*NotX
= Builder
.CreateNot(LHS
);
2966 return SelectInst::Create(
2967 Builder
.CreateICmp(getInverseMinMaxPred(SPF
), NotX
, Y
), NotX
, Y
);
2970 // If both sides are freely invertible, then we can get rid of the xor
2972 if (IsFreeToInvert(LHS
, !LHS
->hasNUsesOrMore(3)) &&
2973 IsFreeToInvert(RHS
, !RHS
->hasNUsesOrMore(3))) {
2974 Value
*NotLHS
= Builder
.CreateNot(LHS
);
2975 Value
*NotRHS
= Builder
.CreateNot(RHS
);
2976 return SelectInst::Create(
2977 Builder
.CreateICmp(getInverseMinMaxPred(SPF
), NotLHS
, NotRHS
),
2983 if (Instruction
*NewXor
= sinkNotIntoXor(I
, Builder
))