Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / InstCombine / InstCombineInternal.h
blob5b0c7fce0d1f8199711c5269393e99eb4b7b1075
1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstVisitor.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Use.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
47 #define DEBUG_TYPE "instcombine"
49 using namespace llvm::PatternMatch;
51 namespace llvm {
53 class APInt;
54 class AssumptionCache;
55 class DataLayout;
56 class DominatorTree;
57 class GEPOperator;
58 class GlobalVariable;
59 class LoopInfo;
60 class OptimizationRemarkEmitter;
61 class TargetLibraryInfo;
62 class User;
64 /// Assign a complexity or rank value to LLVM Values. This is used to reduce
65 /// the amount of pattern matching needed for compares and commutative
66 /// instructions. For example, if we have:
67 /// icmp ugt X, Constant
68 /// or
69 /// xor (add X, Constant), cast Z
70 ///
71 /// We do not have to consider the commuted variants of these patterns because
72 /// canonicalization based on complexity guarantees the above ordering.
73 ///
74 /// This routine maps IR values to various complexity ranks:
75 /// 0 -> undef
76 /// 1 -> Constants
77 /// 2 -> Other non-instructions
78 /// 3 -> Arguments
79 /// 4 -> Cast and (f)neg/not instructions
80 /// 5 -> Other instructions
81 static inline unsigned getComplexity(Value *V) {
82 if (isa<Instruction>(V)) {
83 if (isa<CastInst>(V) || match(V, m_Neg(m_Value())) ||
84 match(V, m_Not(m_Value())) || match(V, m_FNeg(m_Value())))
85 return 4;
86 return 5;
88 if (isa<Argument>(V))
89 return 3;
90 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
93 /// Predicate canonicalization reduces the number of patterns that need to be
94 /// matched by other transforms. For example, we may swap the operands of a
95 /// conditional branch or select to create a compare with a canonical (inverted)
96 /// predicate which is then more likely to be matched with other values.
97 static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) {
98 switch (Pred) {
99 case CmpInst::ICMP_NE:
100 case CmpInst::ICMP_ULE:
101 case CmpInst::ICMP_SLE:
102 case CmpInst::ICMP_UGE:
103 case CmpInst::ICMP_SGE:
104 // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
105 case CmpInst::FCMP_ONE:
106 case CmpInst::FCMP_OLE:
107 case CmpInst::FCMP_OGE:
108 return false;
109 default:
110 return true;
114 /// Return the source operand of a potentially bitcasted value while optionally
115 /// checking if it has one use. If there is no bitcast or the one use check is
116 /// not met, return the input value itself.
117 static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
118 if (auto *BitCast = dyn_cast<BitCastInst>(V))
119 if (!OneUseOnly || BitCast->hasOneUse())
120 return BitCast->getOperand(0);
122 // V is not a bitcast or V has more than one use and OneUseOnly is true.
123 return V;
126 /// Add one to a Constant
127 static inline Constant *AddOne(Constant *C) {
128 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
131 /// Subtract one from a Constant
132 static inline Constant *SubOne(Constant *C) {
133 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
136 /// Return true if the specified value is free to invert (apply ~ to).
137 /// This happens in cases where the ~ can be eliminated. If WillInvertAllUses
138 /// is true, work under the assumption that the caller intends to remove all
139 /// uses of V and only keep uses of ~V.
140 static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
141 // ~(~(X)) -> X.
142 if (match(V, m_Not(m_Value())))
143 return true;
145 // Constants can be considered to be not'ed values.
146 if (isa<ConstantInt>(V))
147 return true;
149 // A vector of constant integers can be inverted easily.
150 if (V->getType()->isVectorTy() && isa<Constant>(V)) {
151 unsigned NumElts = V->getType()->getVectorNumElements();
152 for (unsigned i = 0; i != NumElts; ++i) {
153 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
154 if (!Elt)
155 return false;
157 if (isa<UndefValue>(Elt))
158 continue;
160 if (!isa<ConstantInt>(Elt))
161 return false;
163 return true;
166 // Compares can be inverted if all of their uses are being modified to use the
167 // ~V.
168 if (isa<CmpInst>(V))
169 return WillInvertAllUses;
171 // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
172 // - Constant) - A` if we are willing to invert all of the uses.
173 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
174 if (BO->getOpcode() == Instruction::Add ||
175 BO->getOpcode() == Instruction::Sub)
176 if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
177 return WillInvertAllUses;
179 // Selects with invertible operands are freely invertible
180 if (match(V, m_Select(m_Value(), m_Not(m_Value()), m_Not(m_Value()))))
181 return WillInvertAllUses;
183 return false;
186 /// Specific patterns of overflow check idioms that we match.
187 enum OverflowCheckFlavor {
188 OCF_UNSIGNED_ADD,
189 OCF_SIGNED_ADD,
190 OCF_UNSIGNED_SUB,
191 OCF_SIGNED_SUB,
192 OCF_UNSIGNED_MUL,
193 OCF_SIGNED_MUL,
195 OCF_INVALID
198 /// Returns the OverflowCheckFlavor corresponding to a overflow_with_op
199 /// intrinsic.
200 static inline OverflowCheckFlavor
201 IntrinsicIDToOverflowCheckFlavor(unsigned ID) {
202 switch (ID) {
203 default:
204 return OCF_INVALID;
205 case Intrinsic::uadd_with_overflow:
206 return OCF_UNSIGNED_ADD;
207 case Intrinsic::sadd_with_overflow:
208 return OCF_SIGNED_ADD;
209 case Intrinsic::usub_with_overflow:
210 return OCF_UNSIGNED_SUB;
211 case Intrinsic::ssub_with_overflow:
212 return OCF_SIGNED_SUB;
213 case Intrinsic::umul_with_overflow:
214 return OCF_UNSIGNED_MUL;
215 case Intrinsic::smul_with_overflow:
216 return OCF_SIGNED_MUL;
220 /// Some binary operators require special handling to avoid poison and undefined
221 /// behavior. If a constant vector has undef elements, replace those undefs with
222 /// identity constants if possible because those are always safe to execute.
223 /// If no identity constant exists, replace undef with some other safe constant.
224 static inline Constant *getSafeVectorConstantForBinop(
225 BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) {
226 assert(In->getType()->isVectorTy() && "Not expecting scalars here");
228 Type *EltTy = In->getType()->getVectorElementType();
229 auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
230 if (!SafeC) {
231 // TODO: Should this be available as a constant utility function? It is
232 // similar to getBinOpAbsorber().
233 if (IsRHSConstant) {
234 switch (Opcode) {
235 case Instruction::SRem: // X % 1 = 0
236 case Instruction::URem: // X %u 1 = 0
237 SafeC = ConstantInt::get(EltTy, 1);
238 break;
239 case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
240 SafeC = ConstantFP::get(EltTy, 1.0);
241 break;
242 default:
243 llvm_unreachable("Only rem opcodes have no identity constant for RHS");
245 } else {
246 switch (Opcode) {
247 case Instruction::Shl: // 0 << X = 0
248 case Instruction::LShr: // 0 >>u X = 0
249 case Instruction::AShr: // 0 >> X = 0
250 case Instruction::SDiv: // 0 / X = 0
251 case Instruction::UDiv: // 0 /u X = 0
252 case Instruction::SRem: // 0 % X = 0
253 case Instruction::URem: // 0 %u X = 0
254 case Instruction::Sub: // 0 - X (doesn't simplify, but it is safe)
255 case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
256 case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
257 case Instruction::FRem: // 0.0 % X = 0
258 SafeC = Constant::getNullValue(EltTy);
259 break;
260 default:
261 llvm_unreachable("Expected to find identity constant for opcode");
265 assert(SafeC && "Must have safe constant for binop");
266 unsigned NumElts = In->getType()->getVectorNumElements();
267 SmallVector<Constant *, 16> Out(NumElts);
268 for (unsigned i = 0; i != NumElts; ++i) {
269 Constant *C = In->getAggregateElement(i);
270 Out[i] = isa<UndefValue>(C) ? SafeC : C;
272 return ConstantVector::get(Out);
275 /// The core instruction combiner logic.
277 /// This class provides both the logic to recursively visit instructions and
278 /// combine them.
279 class LLVM_LIBRARY_VISIBILITY InstCombiner
280 : public InstVisitor<InstCombiner, Instruction *> {
281 // FIXME: These members shouldn't be public.
282 public:
283 /// A worklist of the instructions that need to be simplified.
284 InstCombineWorklist &Worklist;
286 /// An IRBuilder that automatically inserts new instructions into the
287 /// worklist.
288 using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
289 BuilderTy &Builder;
291 private:
292 // Mode in which we are running the combiner.
293 const bool MinimizeSize;
295 /// Enable combines that trigger rarely but are costly in compiletime.
296 const bool ExpensiveCombines;
298 AliasAnalysis *AA;
300 // Required analyses.
301 AssumptionCache &AC;
302 TargetLibraryInfo &TLI;
303 DominatorTree &DT;
304 const DataLayout &DL;
305 const SimplifyQuery SQ;
306 OptimizationRemarkEmitter &ORE;
308 // Optional analyses. When non-null, these can both be used to do better
309 // combining and will be updated to reflect any changes.
310 LoopInfo *LI;
312 bool MadeIRChange = false;
314 public:
315 InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder,
316 bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
317 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
318 OptimizationRemarkEmitter &ORE, const DataLayout &DL,
319 LoopInfo *LI)
320 : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
321 ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
322 DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), LI(LI) {}
324 /// Run the combiner over the entire worklist until it is empty.
326 /// \returns true if the IR is changed.
327 bool run();
329 AssumptionCache &getAssumptionCache() const { return AC; }
331 const DataLayout &getDataLayout() const { return DL; }
333 DominatorTree &getDominatorTree() const { return DT; }
335 LoopInfo *getLoopInfo() const { return LI; }
337 TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
339 // Visitation implementation - Implement instruction combining for different
340 // instruction types. The semantics are as follows:
341 // Return Value:
342 // null - No change was made
343 // I - Change was made, I is still valid, I may be dead though
344 // otherwise - Change was made, replace I with returned instruction
346 Instruction *visitAdd(BinaryOperator &I);
347 Instruction *visitFAdd(BinaryOperator &I);
348 Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
349 Instruction *visitSub(BinaryOperator &I);
350 Instruction *visitFSub(BinaryOperator &I);
351 Instruction *visitMul(BinaryOperator &I);
352 Instruction *visitFMul(BinaryOperator &I);
353 Instruction *visitURem(BinaryOperator &I);
354 Instruction *visitSRem(BinaryOperator &I);
355 Instruction *visitFRem(BinaryOperator &I);
356 bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
357 Instruction *commonRemTransforms(BinaryOperator &I);
358 Instruction *commonIRemTransforms(BinaryOperator &I);
359 Instruction *commonDivTransforms(BinaryOperator &I);
360 Instruction *commonIDivTransforms(BinaryOperator &I);
361 Instruction *visitUDiv(BinaryOperator &I);
362 Instruction *visitSDiv(BinaryOperator &I);
363 Instruction *visitFDiv(BinaryOperator &I);
364 Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
365 Instruction *visitAnd(BinaryOperator &I);
366 Instruction *visitOr(BinaryOperator &I);
367 Instruction *visitXor(BinaryOperator &I);
368 Instruction *visitShl(BinaryOperator &I);
369 Instruction *visitAShr(BinaryOperator &I);
370 Instruction *visitLShr(BinaryOperator &I);
371 Instruction *commonShiftTransforms(BinaryOperator &I);
372 Instruction *visitFCmpInst(FCmpInst &I);
373 Instruction *visitICmpInst(ICmpInst &I);
374 Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
375 BinaryOperator &I);
376 Instruction *commonCastTransforms(CastInst &CI);
377 Instruction *commonPointerCastTransforms(CastInst &CI);
378 Instruction *visitTrunc(TruncInst &CI);
379 Instruction *visitZExt(ZExtInst &CI);
380 Instruction *visitSExt(SExtInst &CI);
381 Instruction *visitFPTrunc(FPTruncInst &CI);
382 Instruction *visitFPExt(CastInst &CI);
383 Instruction *visitFPToUI(FPToUIInst &FI);
384 Instruction *visitFPToSI(FPToSIInst &FI);
385 Instruction *visitUIToFP(CastInst &CI);
386 Instruction *visitSIToFP(CastInst &CI);
387 Instruction *visitPtrToInt(PtrToIntInst &CI);
388 Instruction *visitIntToPtr(IntToPtrInst &CI);
389 Instruction *visitBitCast(BitCastInst &CI);
390 Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
391 Instruction *FoldItoFPtoI(Instruction &FI);
392 Instruction *visitSelectInst(SelectInst &SI);
393 Instruction *visitCallInst(CallInst &CI);
394 Instruction *visitInvokeInst(InvokeInst &II);
395 Instruction *visitCallBrInst(CallBrInst &CBI);
397 Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
398 Instruction *visitPHINode(PHINode &PN);
399 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
400 Instruction *visitAllocaInst(AllocaInst &AI);
401 Instruction *visitAllocSite(Instruction &FI);
402 Instruction *visitFree(CallInst &FI);
403 Instruction *visitLoadInst(LoadInst &LI);
404 Instruction *visitStoreInst(StoreInst &SI);
405 Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
406 Instruction *visitBranchInst(BranchInst &BI);
407 Instruction *visitFenceInst(FenceInst &FI);
408 Instruction *visitSwitchInst(SwitchInst &SI);
409 Instruction *visitReturnInst(ReturnInst &RI);
410 Instruction *visitInsertValueInst(InsertValueInst &IV);
411 Instruction *visitInsertElementInst(InsertElementInst &IE);
412 Instruction *visitExtractElementInst(ExtractElementInst &EI);
413 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
414 Instruction *visitExtractValueInst(ExtractValueInst &EV);
415 Instruction *visitLandingPadInst(LandingPadInst &LI);
416 Instruction *visitVAStartInst(VAStartInst &I);
417 Instruction *visitVACopyInst(VACopyInst &I);
419 /// Specify what to return for unhandled instructions.
420 Instruction *visitInstruction(Instruction &I) { return nullptr; }
422 /// True when DB dominates all uses of DI except UI.
423 /// UI must be in the same block as DI.
424 /// The routine checks that the DI parent and DB are different.
425 bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
426 const BasicBlock *DB) const;
428 /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
429 bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
430 const unsigned SIOpd);
432 /// Try to replace instruction \p I with value \p V which are pointers
433 /// in different address space.
434 /// \return true if successful.
435 bool replacePointer(Instruction &I, Value *V);
437 private:
438 bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
439 bool shouldChangeType(Type *From, Type *To) const;
440 Value *dyn_castNegVal(Value *V) const;
441 Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
442 SmallVectorImpl<Value *> &NewIndices);
444 /// Classify whether a cast is worth optimizing.
446 /// This is a helper to decide whether the simplification of
447 /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
449 /// \param CI The cast we are interested in.
451 /// \return true if this cast actually results in any code being generated and
452 /// if it cannot already be eliminated by some other transformation.
453 bool shouldOptimizeCast(CastInst *CI);
455 /// Try to optimize a sequence of instructions checking if an operation
456 /// on LHS and RHS overflows.
458 /// If this overflow check is done via one of the overflow check intrinsics,
459 /// then CtxI has to be the call instruction calling that intrinsic. If this
460 /// overflow check is done by arithmetic followed by a compare, then CtxI has
461 /// to be the arithmetic instruction.
463 /// If a simplification is possible, stores the simplified result of the
464 /// operation in OperationResult and result of the overflow check in
465 /// OverflowResult, and return true. If no simplification is possible,
466 /// returns false.
467 bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS,
468 Instruction &CtxI, Value *&OperationResult,
469 Constant *&OverflowResult);
471 Instruction *visitCallBase(CallBase &Call);
472 Instruction *tryOptimizeCall(CallInst *CI);
473 bool transformConstExprCastCall(CallBase &Call);
474 Instruction *transformCallThroughTrampoline(CallBase &Call,
475 IntrinsicInst &Tramp);
477 /// Transform (zext icmp) to bitwise / integer operations in order to
478 /// eliminate it.
480 /// \param ICI The icmp of the (zext icmp) pair we are interested in.
481 /// \parem CI The zext of the (zext icmp) pair we are interested in.
482 /// \param DoTransform Pass false to just test whether the given (zext icmp)
483 /// would be transformed. Pass true to actually perform the transformation.
485 /// \return null if the transformation cannot be performed. If the
486 /// transformation can be performed the new instruction that replaces the
487 /// (zext icmp) pair will be returned (if \p DoTransform is false the
488 /// unmodified \p ICI will be returned in this case).
489 Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
490 bool DoTransform = true);
492 Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
494 bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
495 const Instruction &CxtI) const {
496 return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
497 OverflowResult::NeverOverflows;
500 bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
501 const Instruction &CxtI) const {
502 return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
503 OverflowResult::NeverOverflows;
506 bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
507 const Instruction &CxtI, bool IsSigned) const {
508 return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
509 : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
512 bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
513 const Instruction &CxtI) const {
514 return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
515 OverflowResult::NeverOverflows;
518 bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
519 const Instruction &CxtI) const {
520 return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
521 OverflowResult::NeverOverflows;
524 bool willNotOverflowSub(const Value *LHS, const Value *RHS,
525 const Instruction &CxtI, bool IsSigned) const {
526 return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
527 : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
530 bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
531 const Instruction &CxtI) const {
532 return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
533 OverflowResult::NeverOverflows;
536 bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
537 const Instruction &CxtI) const {
538 return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
539 OverflowResult::NeverOverflows;
542 bool willNotOverflowMul(const Value *LHS, const Value *RHS,
543 const Instruction &CxtI, bool IsSigned) const {
544 return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
545 : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
548 bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
549 const Value *RHS, const Instruction &CxtI,
550 bool IsSigned) const {
551 switch (Opcode) {
552 case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
553 case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
554 case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
555 default: llvm_unreachable("Unexpected opcode for overflow query");
559 Value *EmitGEPOffset(User *GEP);
560 Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
561 Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
562 Instruction *narrowBinOp(TruncInst &Trunc);
563 Instruction *narrowMaskedBinOp(BinaryOperator &And);
564 Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
565 Instruction *narrowRotate(TruncInst &Trunc);
566 Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
568 /// Determine if a pair of casts can be replaced by a single cast.
570 /// \param CI1 The first of a pair of casts.
571 /// \param CI2 The second of a pair of casts.
573 /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
574 /// Instruction::CastOps value for a cast that can replace the pair, casting
575 /// CI1->getSrcTy() to CI2->getDstTy().
577 /// \see CastInst::isEliminableCastPair
578 Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
579 const CastInst *CI2);
581 Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
582 Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
583 Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS);
585 /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
586 /// NOTE: Unlike most of instcombine, this returns a Value which should
587 /// already be inserted into the function.
588 Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
590 Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
591 bool JoinedByAnd, Instruction &CxtI);
592 Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
593 Value *getSelectCondition(Value *A, Value *B);
595 public:
596 /// Inserts an instruction \p New before instruction \p Old
598 /// Also adds the new instruction to the worklist and returns \p New so that
599 /// it is suitable for use as the return from the visitation patterns.
600 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
601 assert(New && !New->getParent() &&
602 "New instruction already inserted into a basic block!");
603 BasicBlock *BB = Old.getParent();
604 BB->getInstList().insert(Old.getIterator(), New); // Insert inst
605 Worklist.Add(New);
606 return New;
609 /// Same as InsertNewInstBefore, but also sets the debug loc.
610 Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
611 New->setDebugLoc(Old.getDebugLoc());
612 return InsertNewInstBefore(New, Old);
615 /// A combiner-aware RAUW-like routine.
617 /// This method is to be used when an instruction is found to be dead,
618 /// replaceable with another preexisting expression. Here we add all uses of
619 /// I to the worklist, replace all uses of I with the new value, then return
620 /// I, so that the inst combiner will know that I was modified.
621 Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
622 // If there are no uses to replace, then we return nullptr to indicate that
623 // no changes were made to the program.
624 if (I.use_empty()) return nullptr;
626 Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
628 // If we are replacing the instruction with itself, this must be in a
629 // segment of unreachable code, so just clobber the instruction.
630 if (&I == V)
631 V = UndefValue::get(I.getType());
633 LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
634 << " with " << *V << '\n');
636 I.replaceAllUsesWith(V);
637 return &I;
640 /// Creates a result tuple for an overflow intrinsic \p II with a given
641 /// \p Result and a constant \p Overflow value.
642 Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
643 Constant *Overflow) {
644 Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
645 StructType *ST = cast<StructType>(II->getType());
646 Constant *Struct = ConstantStruct::get(ST, V);
647 return InsertValueInst::Create(Struct, Result, 0);
650 /// Combiner aware instruction erasure.
652 /// When dealing with an instruction that has side effects or produces a void
653 /// value, we can't rely on DCE to delete the instruction. Instead, visit
654 /// methods should return the value returned by this function.
655 Instruction *eraseInstFromFunction(Instruction &I) {
656 LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
657 assert(I.use_empty() && "Cannot erase instruction that is used!");
658 salvageDebugInfo(I);
660 // Make sure that we reprocess all operands now that we reduced their
661 // use counts.
662 if (I.getNumOperands() < 8) {
663 for (Use &Operand : I.operands())
664 if (auto *Inst = dyn_cast<Instruction>(Operand))
665 Worklist.Add(Inst);
667 Worklist.Remove(&I);
668 I.eraseFromParent();
669 MadeIRChange = true;
670 return nullptr; // Don't do anything with FI
673 void computeKnownBits(const Value *V, KnownBits &Known,
674 unsigned Depth, const Instruction *CxtI) const {
675 llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
678 KnownBits computeKnownBits(const Value *V, unsigned Depth,
679 const Instruction *CxtI) const {
680 return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
683 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
684 unsigned Depth = 0,
685 const Instruction *CxtI = nullptr) {
686 return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
689 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
690 const Instruction *CxtI = nullptr) const {
691 return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
694 unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
695 const Instruction *CxtI = nullptr) const {
696 return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
699 OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
700 const Value *RHS,
701 const Instruction *CxtI) const {
702 return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
705 OverflowResult computeOverflowForSignedMul(const Value *LHS,
706 const Value *RHS,
707 const Instruction *CxtI) const {
708 return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
711 OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
712 const Value *RHS,
713 const Instruction *CxtI) const {
714 return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
717 OverflowResult computeOverflowForSignedAdd(const Value *LHS,
718 const Value *RHS,
719 const Instruction *CxtI) const {
720 return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
723 OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
724 const Value *RHS,
725 const Instruction *CxtI) const {
726 return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
729 OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
730 const Instruction *CxtI) const {
731 return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
734 /// Maximum size of array considered when transforming.
735 uint64_t MaxArraySizeForCombine;
737 private:
738 /// Performs a few simplifications for operators which are associative
739 /// or commutative.
740 bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
742 /// Tries to simplify binary operations which some other binary
743 /// operation distributes over.
745 /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
746 /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
747 /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
748 /// value, or null if it didn't simplify.
749 Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
751 /// Tries to simplify add operations using the definition of remainder.
753 /// The definition of remainder is X % C = X - (X / C ) * C. The add
754 /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
755 /// X % (C0 * C1)
756 Value *SimplifyAddWithRemainder(BinaryOperator &I);
758 // Binary Op helper for select operations where the expression can be
759 // efficiently reorganized.
760 Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
761 Value *RHS);
763 /// This tries to simplify binary operations by factorizing out common terms
764 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
765 Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
766 Value *, Value *, Value *);
768 /// Match a select chain which produces one of three values based on whether
769 /// the LHS is less than, equal to, or greater than RHS respectively.
770 /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
771 /// Equal and Greater values are saved in the matching process and returned to
772 /// the caller.
773 bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
774 ConstantInt *&Less, ConstantInt *&Equal,
775 ConstantInt *&Greater);
777 /// Attempts to replace V with a simpler value based on the demanded
778 /// bits.
779 Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
780 unsigned Depth, Instruction *CxtI);
781 bool SimplifyDemandedBits(Instruction *I, unsigned Op,
782 const APInt &DemandedMask, KnownBits &Known,
783 unsigned Depth = 0);
785 /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
786 /// bits. It also tries to handle simplifications that can be done based on
787 /// DemandedMask, but without modifying the Instruction.
788 Value *SimplifyMultipleUseDemandedBits(Instruction *I,
789 const APInt &DemandedMask,
790 KnownBits &Known,
791 unsigned Depth, Instruction *CxtI);
793 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
794 /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
795 Value *simplifyShrShlDemandedBits(
796 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
797 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
799 /// Tries to simplify operands to an integer instruction based on its
800 /// demanded bits.
801 bool SimplifyDemandedInstructionBits(Instruction &Inst);
803 Value *simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
804 APInt DemandedElts,
805 int DmaskIdx = -1);
807 Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
808 APInt &UndefElts, unsigned Depth = 0);
810 /// Canonicalize the position of binops relative to shufflevector.
811 Instruction *foldVectorBinop(BinaryOperator &Inst);
813 /// Given a binary operator, cast instruction, or select which has a PHI node
814 /// as operand #0, see if we can fold the instruction into the PHI (which is
815 /// only possible if all operands to the PHI are constants).
816 Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
818 /// Given an instruction with a select as one operand and a constant as the
819 /// other operand, try to fold the binary operator into the select arguments.
820 /// This also works for Cast instructions, which obviously do not have a
821 /// second operand.
822 Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
824 /// This is a convenience wrapper function for the above two functions.
825 Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
827 Instruction *foldAddWithConstant(BinaryOperator &Add);
829 /// Try to rotate an operation below a PHI node, using PHI nodes for
830 /// its operands.
831 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
832 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
833 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
834 Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
835 Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
837 /// If an integer typed PHI has only one use which is an IntToPtr operation,
838 /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
839 /// insert a new pointer typed PHI and replace the original one.
840 Instruction *FoldIntegerTypedPHI(PHINode &PN);
842 /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
843 /// folded operation.
844 void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
846 Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
847 ICmpInst::Predicate Cond, Instruction &I);
848 Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
849 const Value *Other);
850 Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
851 GlobalVariable *GV, CmpInst &ICI,
852 ConstantInt *AndCst = nullptr);
853 Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
854 Constant *RHSC);
855 Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
856 ICmpInst::Predicate Pred);
857 Instruction *foldICmpWithCastAndCast(ICmpInst &ICI);
859 Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
860 Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
861 Instruction *foldICmpWithConstant(ICmpInst &Cmp);
862 Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
863 Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
864 Instruction *foldICmpBinOp(ICmpInst &Cmp);
865 Instruction *foldICmpEquality(ICmpInst &Cmp);
866 Instruction *foldICmpWithZero(ICmpInst &Cmp);
868 Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
869 ConstantInt *C);
870 Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
871 const APInt &C);
872 Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
873 const APInt &C);
874 Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
875 const APInt &C);
876 Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
877 const APInt &C);
878 Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
879 const APInt &C);
880 Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
881 const APInt &C);
882 Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
883 const APInt &C);
884 Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
885 const APInt &C);
886 Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
887 const APInt &C);
888 Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
889 const APInt &C);
890 Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
891 const APInt &C);
892 Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
893 const APInt &C1);
894 Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
895 const APInt &C1, const APInt &C2);
896 Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
897 const APInt &C2);
898 Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
899 const APInt &C2);
901 Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
902 BinaryOperator *BO,
903 const APInt &C);
904 Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
905 const APInt &C);
906 Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
907 const APInt &C);
909 // Helpers of visitSelectInst().
910 Instruction *foldSelectExtConst(SelectInst &Sel);
911 Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
912 Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
913 Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
914 Value *A, Value *B, Instruction &Outer,
915 SelectPatternFlavor SPF2, Value *C);
916 Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
918 Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS,
919 ConstantInt *AndRHS, BinaryOperator &TheAnd);
921 Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
922 bool isSigned, bool Inside);
923 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
924 bool mergeStoreIntoSuccessor(StoreInst &SI);
926 /// Given an 'or' instruction, check to see if it is part of a bswap idiom.
927 /// If so, return the equivalent bswap intrinsic.
928 Instruction *matchBSwap(BinaryOperator &Or);
930 Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
931 Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
933 Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
935 /// Returns a value X such that Val = X * Scale, or null if none.
937 /// If the multiplication is known not to overflow then NoSignedWrap is set.
938 Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
941 } // end namespace llvm
943 #undef DEBUG_TYPE
945 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H