Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / InstCombine / InstCombineSimplifyDemanded.cpp
blob19cdea6923045418f1ca028326875e93ba163c67
1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Support/KnownBits.h"
20 using namespace llvm;
21 using namespace llvm::PatternMatch;
23 #define DEBUG_TYPE "instcombine"
25 namespace {
27 struct AMDGPUImageDMaskIntrinsic {
28 unsigned Intr;
31 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
32 #include "InstCombineTables.inc"
34 } // end anonymous namespace
36 /// Check to see if the specified operand of the specified instruction is a
37 /// constant integer. If so, check to see if there are any bits set in the
38 /// constant that are not demanded. If so, shrink the constant and return true.
39 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
40 const APInt &Demanded) {
41 assert(I && "No instruction?");
42 assert(OpNo < I->getNumOperands() && "Operand index too large");
44 // The operand must be a constant integer or splat integer.
45 Value *Op = I->getOperand(OpNo);
46 const APInt *C;
47 if (!match(Op, m_APInt(C)))
48 return false;
50 // If there are no bits set that aren't demanded, nothing to do.
51 if (C->isSubsetOf(Demanded))
52 return false;
54 // This instruction is producing bits that are not demanded. Shrink the RHS.
55 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
57 return true;
62 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
63 /// the instruction has any properties that allow us to simplify its operands.
64 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
65 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
66 KnownBits Known(BitWidth);
67 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
69 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
70 0, &Inst);
71 if (!V) return false;
72 if (V == &Inst) return true;
73 replaceInstUsesWith(Inst, V);
74 return true;
77 /// This form of SimplifyDemandedBits simplifies the specified instruction
78 /// operand if possible, updating it in place. It returns true if it made any
79 /// change and false otherwise.
80 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
81 const APInt &DemandedMask,
82 KnownBits &Known,
83 unsigned Depth) {
84 Use &U = I->getOperandUse(OpNo);
85 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
86 Depth, I);
87 if (!NewVal) return false;
88 U = NewVal;
89 return true;
93 /// This function attempts to replace V with a simpler value based on the
94 /// demanded bits. When this function is called, it is known that only the bits
95 /// set in DemandedMask of the result of V are ever used downstream.
96 /// Consequently, depending on the mask and V, it may be possible to replace V
97 /// with a constant or one of its operands. In such cases, this function does
98 /// the replacement and returns true. In all other cases, it returns false after
99 /// analyzing the expression and setting KnownOne and known to be one in the
100 /// expression. Known.Zero contains all the bits that are known to be zero in
101 /// the expression. These are provided to potentially allow the caller (which
102 /// might recursively be SimplifyDemandedBits itself) to simplify the
103 /// expression.
104 /// Known.One and Known.Zero always follow the invariant that:
105 /// Known.One & Known.Zero == 0.
106 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
107 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
108 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
109 /// be the same.
111 /// This returns null if it did not change anything and it permits no
112 /// simplification. This returns V itself if it did some simplification of V's
113 /// operands based on the information about what bits are demanded. This returns
114 /// some other non-null value if it found out that V is equal to another value
115 /// in the context where the specified bits are demanded, but not for all users.
116 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
117 KnownBits &Known, unsigned Depth,
118 Instruction *CxtI) {
119 assert(V != nullptr && "Null pointer of Value???");
120 assert(Depth <= 6 && "Limit Search Depth");
121 uint32_t BitWidth = DemandedMask.getBitWidth();
122 Type *VTy = V->getType();
123 assert(
124 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
125 Known.getBitWidth() == BitWidth &&
126 "Value *V, DemandedMask and Known must have same BitWidth");
128 if (isa<Constant>(V)) {
129 computeKnownBits(V, Known, Depth, CxtI);
130 return nullptr;
133 Known.resetAll();
134 if (DemandedMask.isNullValue()) // Not demanding any bits from V.
135 return UndefValue::get(VTy);
137 if (Depth == 6) // Limit search depth.
138 return nullptr;
140 Instruction *I = dyn_cast<Instruction>(V);
141 if (!I) {
142 computeKnownBits(V, Known, Depth, CxtI);
143 return nullptr; // Only analyze instructions.
146 // If there are multiple uses of this value and we aren't at the root, then
147 // we can't do any simplifications of the operands, because DemandedMask
148 // only reflects the bits demanded by *one* of the users.
149 if (Depth != 0 && !I->hasOneUse())
150 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
152 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
154 // If this is the root being simplified, allow it to have multiple uses,
155 // just set the DemandedMask to all bits so that we can try to simplify the
156 // operands. This allows visitTruncInst (for example) to simplify the
157 // operand of a trunc without duplicating all the logic below.
158 if (Depth == 0 && !V->hasOneUse())
159 DemandedMask.setAllBits();
161 switch (I->getOpcode()) {
162 default:
163 computeKnownBits(I, Known, Depth, CxtI);
164 break;
165 case Instruction::And: {
166 // If either the LHS or the RHS are Zero, the result is zero.
167 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
168 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
169 Depth + 1))
170 return I;
171 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
172 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
174 // Output known-0 are known to be clear if zero in either the LHS | RHS.
175 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
176 // Output known-1 bits are only known if set in both the LHS & RHS.
177 APInt IKnownOne = RHSKnown.One & LHSKnown.One;
179 // If the client is only demanding bits that we know, return the known
180 // constant.
181 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
182 return Constant::getIntegerValue(VTy, IKnownOne);
184 // If all of the demanded bits are known 1 on one side, return the other.
185 // These bits cannot contribute to the result of the 'and'.
186 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
187 return I->getOperand(0);
188 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
189 return I->getOperand(1);
191 // If the RHS is a constant, see if we can simplify it.
192 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
193 return I;
195 Known.Zero = std::move(IKnownZero);
196 Known.One = std::move(IKnownOne);
197 break;
199 case Instruction::Or: {
200 // If either the LHS or the RHS are One, the result is One.
201 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
202 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
203 Depth + 1))
204 return I;
205 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
206 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
208 // Output known-0 bits are only known if clear in both the LHS & RHS.
209 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
210 // Output known-1 are known. to be set if s.et in either the LHS | RHS.
211 APInt IKnownOne = RHSKnown.One | LHSKnown.One;
213 // If the client is only demanding bits that we know, return the known
214 // constant.
215 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
216 return Constant::getIntegerValue(VTy, IKnownOne);
218 // If all of the demanded bits are known zero on one side, return the other.
219 // These bits cannot contribute to the result of the 'or'.
220 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
221 return I->getOperand(0);
222 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
223 return I->getOperand(1);
225 // If the RHS is a constant, see if we can simplify it.
226 if (ShrinkDemandedConstant(I, 1, DemandedMask))
227 return I;
229 Known.Zero = std::move(IKnownZero);
230 Known.One = std::move(IKnownOne);
231 break;
233 case Instruction::Xor: {
234 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
235 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
236 return I;
237 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
238 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
240 // Output known-0 bits are known if clear or set in both the LHS & RHS.
241 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
242 (RHSKnown.One & LHSKnown.One);
243 // Output known-1 are known to be set if set in only one of the LHS, RHS.
244 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
245 (RHSKnown.One & LHSKnown.Zero);
247 // If the client is only demanding bits that we know, return the known
248 // constant.
249 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
250 return Constant::getIntegerValue(VTy, IKnownOne);
252 // If all of the demanded bits are known zero on one side, return the other.
253 // These bits cannot contribute to the result of the 'xor'.
254 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
255 return I->getOperand(0);
256 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
257 return I->getOperand(1);
259 // If all of the demanded bits are known to be zero on one side or the
260 // other, turn this into an *inclusive* or.
261 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
262 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
263 Instruction *Or =
264 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
265 I->getName());
266 return InsertNewInstWith(Or, *I);
269 // If all of the demanded bits on one side are known, and all of the set
270 // bits on that side are also known to be set on the other side, turn this
271 // into an AND, as we know the bits will be cleared.
272 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
273 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
274 RHSKnown.One.isSubsetOf(LHSKnown.One)) {
275 Constant *AndC = Constant::getIntegerValue(VTy,
276 ~RHSKnown.One & DemandedMask);
277 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
278 return InsertNewInstWith(And, *I);
281 // If the RHS is a constant, see if we can simplify it.
282 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
283 if (ShrinkDemandedConstant(I, 1, DemandedMask))
284 return I;
286 // If our LHS is an 'and' and if it has one use, and if any of the bits we
287 // are flipping are known to be set, then the xor is just resetting those
288 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
289 // simplifying both of them.
290 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
291 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
292 isa<ConstantInt>(I->getOperand(1)) &&
293 isa<ConstantInt>(LHSInst->getOperand(1)) &&
294 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
295 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
296 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
297 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
299 Constant *AndC =
300 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
301 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
302 InsertNewInstWith(NewAnd, *I);
304 Constant *XorC =
305 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
306 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
307 return InsertNewInstWith(NewXor, *I);
310 // Output known-0 bits are known if clear or set in both the LHS & RHS.
311 Known.Zero = std::move(IKnownZero);
312 // Output known-1 are known to be set if set in only one of the LHS, RHS.
313 Known.One = std::move(IKnownOne);
314 break;
316 case Instruction::Select: {
317 Value *LHS, *RHS;
318 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
319 if (SPF == SPF_UMAX) {
320 // UMax(A, C) == A if ...
321 // The lowest non-zero bit of DemandMask is higher than the highest
322 // non-zero bit of C.
323 const APInt *C;
324 unsigned CTZ = DemandedMask.countTrailingZeros();
325 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
326 return LHS;
327 } else if (SPF == SPF_UMIN) {
328 // UMin(A, C) == A if ...
329 // The lowest non-zero bit of DemandMask is higher than the highest
330 // non-one bit of C.
331 // This comes from using DeMorgans on the above umax example.
332 const APInt *C;
333 unsigned CTZ = DemandedMask.countTrailingZeros();
334 if (match(RHS, m_APInt(C)) &&
335 CTZ >= C->getBitWidth() - C->countLeadingOnes())
336 return LHS;
339 // If this is a select as part of any other min/max pattern, don't simplify
340 // any further in case we break the structure.
341 if (SPF != SPF_UNKNOWN)
342 return nullptr;
344 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
345 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
346 return I;
347 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
348 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
350 // If the operands are constants, see if we can simplify them.
351 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
352 ShrinkDemandedConstant(I, 2, DemandedMask))
353 return I;
355 // Only known if known in both the LHS and RHS.
356 Known.One = RHSKnown.One & LHSKnown.One;
357 Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
358 break;
360 case Instruction::ZExt:
361 case Instruction::Trunc: {
362 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
364 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
365 KnownBits InputKnown(SrcBitWidth);
366 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
367 return I;
368 Known = InputKnown.zextOrTrunc(BitWidth);
369 // Any top bits are known to be zero.
370 if (BitWidth > SrcBitWidth)
371 Known.Zero.setBitsFrom(SrcBitWidth);
372 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
373 break;
375 case Instruction::BitCast:
376 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
377 return nullptr; // vector->int or fp->int?
379 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
380 if (VectorType *SrcVTy =
381 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
382 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
383 // Don't touch a bitcast between vectors of different element counts.
384 return nullptr;
385 } else
386 // Don't touch a scalar-to-vector bitcast.
387 return nullptr;
388 } else if (I->getOperand(0)->getType()->isVectorTy())
389 // Don't touch a vector-to-scalar bitcast.
390 return nullptr;
392 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
393 return I;
394 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
395 break;
396 case Instruction::SExt: {
397 // Compute the bits in the result that are not present in the input.
398 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
400 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
402 // If any of the sign extended bits are demanded, we know that the sign
403 // bit is demanded.
404 if (DemandedMask.getActiveBits() > SrcBitWidth)
405 InputDemandedBits.setBit(SrcBitWidth-1);
407 KnownBits InputKnown(SrcBitWidth);
408 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
409 return I;
411 // If the input sign bit is known zero, or if the NewBits are not demanded
412 // convert this into a zero extension.
413 if (InputKnown.isNonNegative() ||
414 DemandedMask.getActiveBits() <= SrcBitWidth) {
415 // Convert to ZExt cast.
416 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
417 return InsertNewInstWith(NewCast, *I);
420 // If the sign bit of the input is known set or clear, then we know the
421 // top bits of the result.
422 Known = InputKnown.sext(BitWidth);
423 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
424 break;
426 case Instruction::Add:
427 case Instruction::Sub: {
428 /// If the high-bits of an ADD/SUB are not demanded, then we do not care
429 /// about the high bits of the operands.
430 unsigned NLZ = DemandedMask.countLeadingZeros();
431 // Right fill the mask of bits for this ADD/SUB to demand the most
432 // significant bit and all those below it.
433 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
434 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
435 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
436 ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
437 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
438 if (NLZ > 0) {
439 // Disable the nsw and nuw flags here: We can no longer guarantee that
440 // we won't wrap after simplification. Removing the nsw/nuw flags is
441 // legal here because the top bit is not demanded.
442 BinaryOperator &BinOP = *cast<BinaryOperator>(I);
443 BinOP.setHasNoSignedWrap(false);
444 BinOP.setHasNoUnsignedWrap(false);
446 return I;
449 // If we are known to be adding/subtracting zeros to every bit below
450 // the highest demanded bit, we just return the other side.
451 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
452 return I->getOperand(0);
453 // We can't do this with the LHS for subtraction, unless we are only
454 // demanding the LSB.
455 if ((I->getOpcode() == Instruction::Add ||
456 DemandedFromOps.isOneValue()) &&
457 DemandedFromOps.isSubsetOf(LHSKnown.Zero))
458 return I->getOperand(1);
460 // Otherwise just compute the known bits of the result.
461 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
462 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
463 NSW, LHSKnown, RHSKnown);
464 break;
466 case Instruction::Shl: {
467 const APInt *SA;
468 if (match(I->getOperand(1), m_APInt(SA))) {
469 const APInt *ShrAmt;
470 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
471 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
472 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
473 DemandedMask, Known))
474 return R;
476 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
477 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
479 // If the shift is NUW/NSW, then it does demand the high bits.
480 ShlOperator *IOp = cast<ShlOperator>(I);
481 if (IOp->hasNoSignedWrap())
482 DemandedMaskIn.setHighBits(ShiftAmt+1);
483 else if (IOp->hasNoUnsignedWrap())
484 DemandedMaskIn.setHighBits(ShiftAmt);
486 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
487 return I;
488 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
489 Known.Zero <<= ShiftAmt;
490 Known.One <<= ShiftAmt;
491 // low bits known zero.
492 if (ShiftAmt)
493 Known.Zero.setLowBits(ShiftAmt);
495 break;
497 case Instruction::LShr: {
498 const APInt *SA;
499 if (match(I->getOperand(1), m_APInt(SA))) {
500 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
502 // Unsigned shift right.
503 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
505 // If the shift is exact, then it does demand the low bits (and knows that
506 // they are zero).
507 if (cast<LShrOperator>(I)->isExact())
508 DemandedMaskIn.setLowBits(ShiftAmt);
510 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
511 return I;
512 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
513 Known.Zero.lshrInPlace(ShiftAmt);
514 Known.One.lshrInPlace(ShiftAmt);
515 if (ShiftAmt)
516 Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
518 break;
520 case Instruction::AShr: {
521 // If this is an arithmetic shift right and only the low-bit is set, we can
522 // always convert this into a logical shr, even if the shift amount is
523 // variable. The low bit of the shift cannot be an input sign bit unless
524 // the shift amount is >= the size of the datatype, which is undefined.
525 if (DemandedMask.isOneValue()) {
526 // Perform the logical shift right.
527 Instruction *NewVal = BinaryOperator::CreateLShr(
528 I->getOperand(0), I->getOperand(1), I->getName());
529 return InsertNewInstWith(NewVal, *I);
532 // If the sign bit is the only bit demanded by this ashr, then there is no
533 // need to do it, the shift doesn't change the high bit.
534 if (DemandedMask.isSignMask())
535 return I->getOperand(0);
537 const APInt *SA;
538 if (match(I->getOperand(1), m_APInt(SA))) {
539 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
541 // Signed shift right.
542 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
543 // If any of the high bits are demanded, we should set the sign bit as
544 // demanded.
545 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
546 DemandedMaskIn.setSignBit();
548 // If the shift is exact, then it does demand the low bits (and knows that
549 // they are zero).
550 if (cast<AShrOperator>(I)->isExact())
551 DemandedMaskIn.setLowBits(ShiftAmt);
553 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
554 return I;
556 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
558 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
559 // Compute the new bits that are at the top now plus sign bits.
560 APInt HighBits(APInt::getHighBitsSet(
561 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
562 Known.Zero.lshrInPlace(ShiftAmt);
563 Known.One.lshrInPlace(ShiftAmt);
565 // If the input sign bit is known to be zero, or if none of the top bits
566 // are demanded, turn this into an unsigned shift right.
567 assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
568 if (Known.Zero[BitWidth-ShiftAmt-1] ||
569 !DemandedMask.intersects(HighBits)) {
570 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
571 I->getOperand(1));
572 LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
573 return InsertNewInstWith(LShr, *I);
574 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
575 Known.One |= HighBits;
578 break;
580 case Instruction::UDiv: {
581 // UDiv doesn't demand low bits that are zero in the divisor.
582 const APInt *SA;
583 if (match(I->getOperand(1), m_APInt(SA))) {
584 // If the shift is exact, then it does demand the low bits.
585 if (cast<UDivOperator>(I)->isExact())
586 break;
588 // FIXME: Take the demanded mask of the result into account.
589 unsigned RHSTrailingZeros = SA->countTrailingZeros();
590 APInt DemandedMaskIn =
591 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
592 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
593 return I;
595 // Propagate zero bits from the input.
596 Known.Zero.setHighBits(std::min(
597 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
599 break;
601 case Instruction::SRem:
602 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
603 // X % -1 demands all the bits because we don't want to introduce
604 // INT_MIN % -1 (== undef) by accident.
605 if (Rem->isMinusOne())
606 break;
607 APInt RA = Rem->getValue().abs();
608 if (RA.isPowerOf2()) {
609 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
610 return I->getOperand(0);
612 APInt LowBits = RA - 1;
613 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
614 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
615 return I;
617 // The low bits of LHS are unchanged by the srem.
618 Known.Zero = LHSKnown.Zero & LowBits;
619 Known.One = LHSKnown.One & LowBits;
621 // If LHS is non-negative or has all low bits zero, then the upper bits
622 // are all zero.
623 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
624 Known.Zero |= ~LowBits;
626 // If LHS is negative and not all low bits are zero, then the upper bits
627 // are all one.
628 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
629 Known.One |= ~LowBits;
631 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
632 break;
636 // The sign bit is the LHS's sign bit, except when the result of the
637 // remainder is zero.
638 if (DemandedMask.isSignBitSet()) {
639 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
640 // If it's known zero, our sign bit is also zero.
641 if (LHSKnown.isNonNegative())
642 Known.makeNonNegative();
644 break;
645 case Instruction::URem: {
646 KnownBits Known2(BitWidth);
647 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
648 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
649 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
650 return I;
652 unsigned Leaders = Known2.countMinLeadingZeros();
653 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
654 break;
656 case Instruction::Call:
657 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
658 switch (II->getIntrinsicID()) {
659 default: break;
660 case Intrinsic::bswap: {
661 // If the only bits demanded come from one byte of the bswap result,
662 // just shift the input byte into position to eliminate the bswap.
663 unsigned NLZ = DemandedMask.countLeadingZeros();
664 unsigned NTZ = DemandedMask.countTrailingZeros();
666 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
667 // we need all the bits down to bit 8. Likewise, round NLZ. If we
668 // have 14 leading zeros, round to 8.
669 NLZ &= ~7;
670 NTZ &= ~7;
671 // If we need exactly one byte, we can do this transformation.
672 if (BitWidth-NLZ-NTZ == 8) {
673 unsigned ResultBit = NTZ;
674 unsigned InputBit = BitWidth-NTZ-8;
676 // Replace this with either a left or right shift to get the byte into
677 // the right place.
678 Instruction *NewVal;
679 if (InputBit > ResultBit)
680 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
681 ConstantInt::get(I->getType(), InputBit-ResultBit));
682 else
683 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
684 ConstantInt::get(I->getType(), ResultBit-InputBit));
685 NewVal->takeName(I);
686 return InsertNewInstWith(NewVal, *I);
689 // TODO: Could compute known zero/one bits based on the input.
690 break;
692 case Intrinsic::fshr:
693 case Intrinsic::fshl: {
694 const APInt *SA;
695 if (!match(I->getOperand(2), m_APInt(SA)))
696 break;
698 // Normalize to funnel shift left. APInt shifts of BitWidth are well-
699 // defined, so no need to special-case zero shifts here.
700 uint64_t ShiftAmt = SA->urem(BitWidth);
701 if (II->getIntrinsicID() == Intrinsic::fshr)
702 ShiftAmt = BitWidth - ShiftAmt;
704 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
705 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
706 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
707 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
708 return I;
710 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
711 RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
712 Known.One = LHSKnown.One.shl(ShiftAmt) |
713 RHSKnown.One.lshr(BitWidth - ShiftAmt);
714 break;
716 case Intrinsic::x86_mmx_pmovmskb:
717 case Intrinsic::x86_sse_movmsk_ps:
718 case Intrinsic::x86_sse2_movmsk_pd:
719 case Intrinsic::x86_sse2_pmovmskb_128:
720 case Intrinsic::x86_avx_movmsk_ps_256:
721 case Intrinsic::x86_avx_movmsk_pd_256:
722 case Intrinsic::x86_avx2_pmovmskb: {
723 // MOVMSK copies the vector elements' sign bits to the low bits
724 // and zeros the high bits.
725 unsigned ArgWidth;
726 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
727 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
728 } else {
729 auto Arg = II->getArgOperand(0);
730 auto ArgType = cast<VectorType>(Arg->getType());
731 ArgWidth = ArgType->getNumElements();
734 // If we don't need any of low bits then return zero,
735 // we know that DemandedMask is non-zero already.
736 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
737 if (DemandedElts.isNullValue())
738 return ConstantInt::getNullValue(VTy);
740 // We know that the upper bits are set to zero.
741 Known.Zero.setBitsFrom(ArgWidth);
742 return nullptr;
744 case Intrinsic::x86_sse42_crc32_64_64:
745 Known.Zero.setBitsFrom(32);
746 return nullptr;
749 computeKnownBits(V, Known, Depth, CxtI);
750 break;
753 // If the client is only demanding bits that we know, return the known
754 // constant.
755 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
756 return Constant::getIntegerValue(VTy, Known.One);
757 return nullptr;
760 /// Helper routine of SimplifyDemandedUseBits. It computes Known
761 /// bits. It also tries to handle simplifications that can be done based on
762 /// DemandedMask, but without modifying the Instruction.
763 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
764 const APInt &DemandedMask,
765 KnownBits &Known,
766 unsigned Depth,
767 Instruction *CxtI) {
768 unsigned BitWidth = DemandedMask.getBitWidth();
769 Type *ITy = I->getType();
771 KnownBits LHSKnown(BitWidth);
772 KnownBits RHSKnown(BitWidth);
774 // Despite the fact that we can't simplify this instruction in all User's
775 // context, we can at least compute the known bits, and we can
776 // do simplifications that apply to *just* the one user if we know that
777 // this instruction has a simpler value in that context.
778 switch (I->getOpcode()) {
779 case Instruction::And: {
780 // If either the LHS or the RHS are Zero, the result is zero.
781 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
782 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
783 CxtI);
785 // Output known-0 are known to be clear if zero in either the LHS | RHS.
786 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
787 // Output known-1 bits are only known if set in both the LHS & RHS.
788 APInt IKnownOne = RHSKnown.One & LHSKnown.One;
790 // If the client is only demanding bits that we know, return the known
791 // constant.
792 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
793 return Constant::getIntegerValue(ITy, IKnownOne);
795 // If all of the demanded bits are known 1 on one side, return the other.
796 // These bits cannot contribute to the result of the 'and' in this
797 // context.
798 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
799 return I->getOperand(0);
800 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
801 return I->getOperand(1);
803 Known.Zero = std::move(IKnownZero);
804 Known.One = std::move(IKnownOne);
805 break;
807 case Instruction::Or: {
808 // We can simplify (X|Y) -> X or Y in the user's context if we know that
809 // only bits from X or Y are demanded.
811 // If either the LHS or the RHS are One, the result is One.
812 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
813 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
814 CxtI);
816 // Output known-0 bits are only known if clear in both the LHS & RHS.
817 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
818 // Output known-1 are known to be set if set in either the LHS | RHS.
819 APInt IKnownOne = RHSKnown.One | LHSKnown.One;
821 // If the client is only demanding bits that we know, return the known
822 // constant.
823 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
824 return Constant::getIntegerValue(ITy, IKnownOne);
826 // If all of the demanded bits are known zero on one side, return the
827 // other. These bits cannot contribute to the result of the 'or' in this
828 // context.
829 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
830 return I->getOperand(0);
831 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
832 return I->getOperand(1);
834 Known.Zero = std::move(IKnownZero);
835 Known.One = std::move(IKnownOne);
836 break;
838 case Instruction::Xor: {
839 // We can simplify (X^Y) -> X or Y in the user's context if we know that
840 // only bits from X or Y are demanded.
842 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
843 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
844 CxtI);
846 // Output known-0 bits are known if clear or set in both the LHS & RHS.
847 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
848 (RHSKnown.One & LHSKnown.One);
849 // Output known-1 are known to be set if set in only one of the LHS, RHS.
850 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
851 (RHSKnown.One & LHSKnown.Zero);
853 // If the client is only demanding bits that we know, return the known
854 // constant.
855 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
856 return Constant::getIntegerValue(ITy, IKnownOne);
858 // If all of the demanded bits are known zero on one side, return the
859 // other.
860 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
861 return I->getOperand(0);
862 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
863 return I->getOperand(1);
865 // Output known-0 bits are known if clear or set in both the LHS & RHS.
866 Known.Zero = std::move(IKnownZero);
867 // Output known-1 are known to be set if set in only one of the LHS, RHS.
868 Known.One = std::move(IKnownOne);
869 break;
871 default:
872 // Compute the Known bits to simplify things downstream.
873 computeKnownBits(I, Known, Depth, CxtI);
875 // If this user is only demanding bits that we know, return the known
876 // constant.
877 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
878 return Constant::getIntegerValue(ITy, Known.One);
880 break;
883 return nullptr;
887 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
888 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
889 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
890 /// of "C2-C1".
892 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
893 /// ..., bn}, without considering the specific value X is holding.
894 /// This transformation is legal iff one of following conditions is hold:
895 /// 1) All the bit in S are 0, in this case E1 == E2.
896 /// 2) We don't care those bits in S, per the input DemandedMask.
897 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
898 /// rest bits.
900 /// Currently we only test condition 2).
902 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
903 /// not successful.
904 Value *
905 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
906 Instruction *Shl, const APInt &ShlOp1,
907 const APInt &DemandedMask,
908 KnownBits &Known) {
909 if (!ShlOp1 || !ShrOp1)
910 return nullptr; // No-op.
912 Value *VarX = Shr->getOperand(0);
913 Type *Ty = VarX->getType();
914 unsigned BitWidth = Ty->getScalarSizeInBits();
915 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
916 return nullptr; // Undef.
918 unsigned ShlAmt = ShlOp1.getZExtValue();
919 unsigned ShrAmt = ShrOp1.getZExtValue();
921 Known.One.clearAllBits();
922 Known.Zero.setLowBits(ShlAmt - 1);
923 Known.Zero &= DemandedMask;
925 APInt BitMask1(APInt::getAllOnesValue(BitWidth));
926 APInt BitMask2(APInt::getAllOnesValue(BitWidth));
928 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
929 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
930 (BitMask1.ashr(ShrAmt) << ShlAmt);
932 if (ShrAmt <= ShlAmt) {
933 BitMask2 <<= (ShlAmt - ShrAmt);
934 } else {
935 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
936 BitMask2.ashr(ShrAmt - ShlAmt);
939 // Check if condition-2 (see the comment to this function) is satified.
940 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
941 if (ShrAmt == ShlAmt)
942 return VarX;
944 if (!Shr->hasOneUse())
945 return nullptr;
947 BinaryOperator *New;
948 if (ShrAmt < ShlAmt) {
949 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
950 New = BinaryOperator::CreateShl(VarX, Amt);
951 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
952 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
953 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
954 } else {
955 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
956 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
957 BinaryOperator::CreateAShr(VarX, Amt);
958 if (cast<BinaryOperator>(Shr)->isExact())
959 New->setIsExact(true);
962 return InsertNewInstWith(New, *Shl);
965 return nullptr;
968 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
970 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have
971 /// struct returns.
972 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
973 APInt DemandedElts,
974 int DMaskIdx) {
975 unsigned VWidth = II->getType()->getVectorNumElements();
976 if (VWidth == 1)
977 return nullptr;
979 ConstantInt *NewDMask = nullptr;
981 if (DMaskIdx < 0) {
982 // Pretend that a prefix of elements is demanded to simplify the code
983 // below.
984 DemandedElts = (1 << DemandedElts.getActiveBits()) - 1;
985 } else {
986 ConstantInt *DMask = dyn_cast<ConstantInt>(II->getArgOperand(DMaskIdx));
987 if (!DMask)
988 return nullptr; // non-constant dmask is not supported by codegen
990 unsigned DMaskVal = DMask->getZExtValue() & 0xf;
992 // Mask off values that are undefined because the dmask doesn't cover them
993 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
995 unsigned NewDMaskVal = 0;
996 unsigned OrigLoadIdx = 0;
997 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
998 const unsigned Bit = 1 << SrcIdx;
999 if (!!(DMaskVal & Bit)) {
1000 if (!!DemandedElts[OrigLoadIdx])
1001 NewDMaskVal |= Bit;
1002 OrigLoadIdx++;
1006 if (DMaskVal != NewDMaskVal)
1007 NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal);
1010 // TODO: Handle 3 vectors when supported in code gen.
1011 unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countPopulation());
1012 if (!NewNumElts)
1013 return UndefValue::get(II->getType());
1015 if (NewNumElts >= VWidth && DemandedElts.isMask()) {
1016 if (NewDMask)
1017 II->setArgOperand(DMaskIdx, NewDMask);
1018 return nullptr;
1021 // Determine the overload types of the original intrinsic.
1022 auto IID = II->getIntrinsicID();
1023 SmallVector<Intrinsic::IITDescriptor, 16> Table;
1024 getIntrinsicInfoTableEntries(IID, Table);
1025 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1027 FunctionType *FTy = II->getCalledFunction()->getFunctionType();
1028 SmallVector<Type *, 6> OverloadTys;
1029 Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, OverloadTys);
1030 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1031 Intrinsic::matchIntrinsicType(FTy->getParamType(i), TableRef, OverloadTys);
1033 // Get the new return type overload of the intrinsic.
1034 Module *M = II->getParent()->getParent()->getParent();
1035 Type *EltTy = II->getType()->getVectorElementType();
1036 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
1038 OverloadTys[0] = NewTy;
1039 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
1041 SmallVector<Value *, 16> Args;
1042 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1043 Args.push_back(II->getArgOperand(I));
1045 if (NewDMask)
1046 Args[DMaskIdx] = NewDMask;
1048 IRBuilderBase::InsertPointGuard Guard(Builder);
1049 Builder.SetInsertPoint(II);
1051 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
1052 NewCall->takeName(II);
1053 NewCall->copyMetadata(*II);
1055 if (NewNumElts == 1) {
1056 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
1057 DemandedElts.countTrailingZeros());
1060 SmallVector<uint32_t, 8> EltMask;
1061 unsigned NewLoadIdx = 0;
1062 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
1063 if (!!DemandedElts[OrigLoadIdx])
1064 EltMask.push_back(NewLoadIdx++);
1065 else
1066 EltMask.push_back(NewNumElts);
1069 Value *Shuffle =
1070 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
1072 return Shuffle;
1075 /// The specified value produces a vector with any number of elements.
1076 /// DemandedElts contains the set of elements that are actually used by the
1077 /// caller. This method analyzes which elements of the operand are undef and
1078 /// returns that information in UndefElts.
1080 /// If the information about demanded elements can be used to simplify the
1081 /// operation, the operation is simplified, then the resultant value is
1082 /// returned. This returns null if no change was made.
1083 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
1084 APInt &UndefElts,
1085 unsigned Depth) {
1086 unsigned VWidth = V->getType()->getVectorNumElements();
1087 APInt EltMask(APInt::getAllOnesValue(VWidth));
1088 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1090 if (isa<UndefValue>(V)) {
1091 // If the entire vector is undefined, just return this info.
1092 UndefElts = EltMask;
1093 return nullptr;
1096 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
1097 UndefElts = EltMask;
1098 return UndefValue::get(V->getType());
1101 UndefElts = 0;
1103 if (auto *C = dyn_cast<Constant>(V)) {
1104 // Check if this is identity. If so, return 0 since we are not simplifying
1105 // anything.
1106 if (DemandedElts.isAllOnesValue())
1107 return nullptr;
1109 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1110 Constant *Undef = UndefValue::get(EltTy);
1111 SmallVector<Constant*, 16> Elts;
1112 for (unsigned i = 0; i != VWidth; ++i) {
1113 if (!DemandedElts[i]) { // If not demanded, set to undef.
1114 Elts.push_back(Undef);
1115 UndefElts.setBit(i);
1116 continue;
1119 Constant *Elt = C->getAggregateElement(i);
1120 if (!Elt) return nullptr;
1122 if (isa<UndefValue>(Elt)) { // Already undef.
1123 Elts.push_back(Undef);
1124 UndefElts.setBit(i);
1125 } else { // Otherwise, defined.
1126 Elts.push_back(Elt);
1130 // If we changed the constant, return it.
1131 Constant *NewCV = ConstantVector::get(Elts);
1132 return NewCV != C ? NewCV : nullptr;
1135 // Limit search depth.
1136 if (Depth == 10)
1137 return nullptr;
1139 // If multiple users are using the root value, proceed with
1140 // simplification conservatively assuming that all elements
1141 // are needed.
1142 if (!V->hasOneUse()) {
1143 // Quit if we find multiple users of a non-root value though.
1144 // They'll be handled when it's their turn to be visited by
1145 // the main instcombine process.
1146 if (Depth != 0)
1147 // TODO: Just compute the UndefElts information recursively.
1148 return nullptr;
1150 // Conservatively assume that all elements are needed.
1151 DemandedElts = EltMask;
1154 Instruction *I = dyn_cast<Instruction>(V);
1155 if (!I) return nullptr; // Only analyze instructions.
1157 bool MadeChange = false;
1158 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1159 APInt Demanded, APInt &Undef) {
1160 auto *II = dyn_cast<IntrinsicInst>(Inst);
1161 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1162 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1163 if (II)
1164 II->setArgOperand(OpNum, V);
1165 else
1166 Inst->setOperand(OpNum, V);
1167 MadeChange = true;
1171 APInt UndefElts2(VWidth, 0);
1172 APInt UndefElts3(VWidth, 0);
1173 switch (I->getOpcode()) {
1174 default: break;
1176 case Instruction::GetElementPtr: {
1177 // Conservatively track the demanded elements back through any vector
1178 // operands we may have. We know there must be at least one, or we
1179 // wouldn't have a vector result to get here. Note that we intentionally
1180 // merge the undef bits here since gepping with either an undef base or
1181 // index results in undef.
1182 for (unsigned i = 0; i < I->getNumOperands(); i++)
1183 if (I->getOperand(i)->getType()->isVectorTy())
1184 simplifyAndSetOp(I, i, DemandedElts, UndefElts);
1186 break;
1188 case Instruction::InsertElement: {
1189 // If this is a variable index, we don't know which element it overwrites.
1190 // demand exactly the same input as we produce.
1191 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1192 if (!Idx) {
1193 // Note that we can't propagate undef elt info, because we don't know
1194 // which elt is getting updated.
1195 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1196 break;
1199 // The element inserted overwrites whatever was there, so the input demanded
1200 // set is simpler than the output set.
1201 unsigned IdxNo = Idx->getZExtValue();
1202 APInt PreInsertDemandedElts = DemandedElts;
1203 if (IdxNo < VWidth)
1204 PreInsertDemandedElts.clearBit(IdxNo);
1206 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1208 // If this is inserting an element that isn't demanded, remove this
1209 // insertelement.
1210 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1211 Worklist.Add(I);
1212 return I->getOperand(0);
1215 // The inserted element is defined.
1216 UndefElts.clearBit(IdxNo);
1217 break;
1219 case Instruction::ShuffleVector: {
1220 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1221 unsigned LHSVWidth =
1222 Shuffle->getOperand(0)->getType()->getVectorNumElements();
1223 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1224 for (unsigned i = 0; i < VWidth; i++) {
1225 if (DemandedElts[i]) {
1226 unsigned MaskVal = Shuffle->getMaskValue(i);
1227 if (MaskVal != -1u) {
1228 assert(MaskVal < LHSVWidth * 2 &&
1229 "shufflevector mask index out of range!");
1230 if (MaskVal < LHSVWidth)
1231 LeftDemanded.setBit(MaskVal);
1232 else
1233 RightDemanded.setBit(MaskVal - LHSVWidth);
1238 APInt LHSUndefElts(LHSVWidth, 0);
1239 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1241 APInt RHSUndefElts(LHSVWidth, 0);
1242 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1244 bool NewUndefElts = false;
1245 unsigned LHSIdx = -1u, LHSValIdx = -1u;
1246 unsigned RHSIdx = -1u, RHSValIdx = -1u;
1247 bool LHSUniform = true;
1248 bool RHSUniform = true;
1249 for (unsigned i = 0; i < VWidth; i++) {
1250 unsigned MaskVal = Shuffle->getMaskValue(i);
1251 if (MaskVal == -1u) {
1252 UndefElts.setBit(i);
1253 } else if (!DemandedElts[i]) {
1254 NewUndefElts = true;
1255 UndefElts.setBit(i);
1256 } else if (MaskVal < LHSVWidth) {
1257 if (LHSUndefElts[MaskVal]) {
1258 NewUndefElts = true;
1259 UndefElts.setBit(i);
1260 } else {
1261 LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1262 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
1263 LHSUniform = LHSUniform && (MaskVal == i);
1265 } else {
1266 if (RHSUndefElts[MaskVal - LHSVWidth]) {
1267 NewUndefElts = true;
1268 UndefElts.setBit(i);
1269 } else {
1270 RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1271 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
1272 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
1277 // Try to transform shuffle with constant vector and single element from
1278 // this constant vector to single insertelement instruction.
1279 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1280 // insertelement V, C[ci], ci-n
1281 if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1282 Value *Op = nullptr;
1283 Constant *Value = nullptr;
1284 unsigned Idx = -1u;
1286 // Find constant vector with the single element in shuffle (LHS or RHS).
1287 if (LHSIdx < LHSVWidth && RHSUniform) {
1288 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1289 Op = Shuffle->getOperand(1);
1290 Value = CV->getOperand(LHSValIdx);
1291 Idx = LHSIdx;
1294 if (RHSIdx < LHSVWidth && LHSUniform) {
1295 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1296 Op = Shuffle->getOperand(0);
1297 Value = CV->getOperand(RHSValIdx);
1298 Idx = RHSIdx;
1301 // Found constant vector with single element - convert to insertelement.
1302 if (Op && Value) {
1303 Instruction *New = InsertElementInst::Create(
1304 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1305 Shuffle->getName());
1306 InsertNewInstWith(New, *Shuffle);
1307 return New;
1310 if (NewUndefElts) {
1311 // Add additional discovered undefs.
1312 SmallVector<Constant*, 16> Elts;
1313 for (unsigned i = 0; i < VWidth; ++i) {
1314 if (UndefElts[i])
1315 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1316 else
1317 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1318 Shuffle->getMaskValue(i)));
1320 I->setOperand(2, ConstantVector::get(Elts));
1321 MadeChange = true;
1323 break;
1325 case Instruction::Select: {
1326 // If this is a vector select, try to transform the select condition based
1327 // on the current demanded elements.
1328 SelectInst *Sel = cast<SelectInst>(I);
1329 if (Sel->getCondition()->getType()->isVectorTy()) {
1330 // TODO: We are not doing anything with UndefElts based on this call.
1331 // It is overwritten below based on the other select operands. If an
1332 // element of the select condition is known undef, then we are free to
1333 // choose the output value from either arm of the select. If we know that
1334 // one of those values is undef, then the output can be undef.
1335 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1338 // Next, see if we can transform the arms of the select.
1339 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1340 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1341 for (unsigned i = 0; i < VWidth; i++) {
1342 // isNullValue() always returns false when called on a ConstantExpr.
1343 // Skip constant expressions to avoid propagating incorrect information.
1344 Constant *CElt = CV->getAggregateElement(i);
1345 if (isa<ConstantExpr>(CElt))
1346 continue;
1347 // TODO: If a select condition element is undef, we can demand from
1348 // either side. If one side is known undef, choosing that side would
1349 // propagate undef.
1350 if (CElt->isNullValue())
1351 DemandedLHS.clearBit(i);
1352 else
1353 DemandedRHS.clearBit(i);
1357 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1358 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1360 // Output elements are undefined if the element from each arm is undefined.
1361 // TODO: This can be improved. See comment in select condition handling.
1362 UndefElts = UndefElts2 & UndefElts3;
1363 break;
1365 case Instruction::BitCast: {
1366 // Vector->vector casts only.
1367 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1368 if (!VTy) break;
1369 unsigned InVWidth = VTy->getNumElements();
1370 APInt InputDemandedElts(InVWidth, 0);
1371 UndefElts2 = APInt(InVWidth, 0);
1372 unsigned Ratio;
1374 if (VWidth == InVWidth) {
1375 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1376 // elements as are demanded of us.
1377 Ratio = 1;
1378 InputDemandedElts = DemandedElts;
1379 } else if ((VWidth % InVWidth) == 0) {
1380 // If the number of elements in the output is a multiple of the number of
1381 // elements in the input then an input element is live if any of the
1382 // corresponding output elements are live.
1383 Ratio = VWidth / InVWidth;
1384 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1385 if (DemandedElts[OutIdx])
1386 InputDemandedElts.setBit(OutIdx / Ratio);
1387 } else if ((InVWidth % VWidth) == 0) {
1388 // If the number of elements in the input is a multiple of the number of
1389 // elements in the output then an input element is live if the
1390 // corresponding output element is live.
1391 Ratio = InVWidth / VWidth;
1392 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1393 if (DemandedElts[InIdx / Ratio])
1394 InputDemandedElts.setBit(InIdx);
1395 } else {
1396 // Unsupported so far.
1397 break;
1400 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1402 if (VWidth == InVWidth) {
1403 UndefElts = UndefElts2;
1404 } else if ((VWidth % InVWidth) == 0) {
1405 // If the number of elements in the output is a multiple of the number of
1406 // elements in the input then an output element is undef if the
1407 // corresponding input element is undef.
1408 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1409 if (UndefElts2[OutIdx / Ratio])
1410 UndefElts.setBit(OutIdx);
1411 } else if ((InVWidth % VWidth) == 0) {
1412 // If the number of elements in the input is a multiple of the number of
1413 // elements in the output then an output element is undef if all of the
1414 // corresponding input elements are undef.
1415 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1416 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1417 if (SubUndef.countPopulation() == Ratio)
1418 UndefElts.setBit(OutIdx);
1420 } else {
1421 llvm_unreachable("Unimp");
1423 break;
1425 case Instruction::FPTrunc:
1426 case Instruction::FPExt:
1427 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1428 break;
1430 case Instruction::Call: {
1431 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1432 if (!II) break;
1433 switch (II->getIntrinsicID()) {
1434 case Intrinsic::x86_xop_vfrcz_ss:
1435 case Intrinsic::x86_xop_vfrcz_sd:
1436 // The instructions for these intrinsics are speced to zero upper bits not
1437 // pass them through like other scalar intrinsics. So we shouldn't just
1438 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1439 // Instead we should return a zero vector.
1440 if (!DemandedElts[0]) {
1441 Worklist.Add(II);
1442 return ConstantAggregateZero::get(II->getType());
1445 // Only the lower element is used.
1446 DemandedElts = 1;
1447 simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1449 // Only the lower element is undefined. The high elements are zero.
1450 UndefElts = UndefElts[0];
1451 break;
1453 // Unary scalar-as-vector operations that work column-wise.
1454 case Intrinsic::x86_sse_rcp_ss:
1455 case Intrinsic::x86_sse_rsqrt_ss:
1456 simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1458 // If lowest element of a scalar op isn't used then use Arg0.
1459 if (!DemandedElts[0]) {
1460 Worklist.Add(II);
1461 return II->getArgOperand(0);
1463 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1464 // checks).
1465 break;
1467 // Binary scalar-as-vector operations that work column-wise. The high
1468 // elements come from operand 0. The low element is a function of both
1469 // operands.
1470 case Intrinsic::x86_sse_min_ss:
1471 case Intrinsic::x86_sse_max_ss:
1472 case Intrinsic::x86_sse_cmp_ss:
1473 case Intrinsic::x86_sse2_min_sd:
1474 case Intrinsic::x86_sse2_max_sd:
1475 case Intrinsic::x86_sse2_cmp_sd: {
1476 simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1478 // If lowest element of a scalar op isn't used then use Arg0.
1479 if (!DemandedElts[0]) {
1480 Worklist.Add(II);
1481 return II->getArgOperand(0);
1484 // Only lower element is used for operand 1.
1485 DemandedElts = 1;
1486 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1488 // Lower element is undefined if both lower elements are undefined.
1489 // Consider things like undef&0. The result is known zero, not undef.
1490 if (!UndefElts2[0])
1491 UndefElts.clearBit(0);
1493 break;
1496 // Binary scalar-as-vector operations that work column-wise. The high
1497 // elements come from operand 0 and the low element comes from operand 1.
1498 case Intrinsic::x86_sse41_round_ss:
1499 case Intrinsic::x86_sse41_round_sd: {
1500 // Don't use the low element of operand 0.
1501 APInt DemandedElts2 = DemandedElts;
1502 DemandedElts2.clearBit(0);
1503 simplifyAndSetOp(II, 0, DemandedElts2, UndefElts);
1505 // If lowest element of a scalar op isn't used then use Arg0.
1506 if (!DemandedElts[0]) {
1507 Worklist.Add(II);
1508 return II->getArgOperand(0);
1511 // Only lower element is used for operand 1.
1512 DemandedElts = 1;
1513 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1515 // Take the high undef elements from operand 0 and take the lower element
1516 // from operand 1.
1517 UndefElts.clearBit(0);
1518 UndefElts |= UndefElts2[0];
1519 break;
1522 // Three input scalar-as-vector operations that work column-wise. The high
1523 // elements come from operand 0 and the low element is a function of all
1524 // three inputs.
1525 case Intrinsic::x86_avx512_mask_add_ss_round:
1526 case Intrinsic::x86_avx512_mask_div_ss_round:
1527 case Intrinsic::x86_avx512_mask_mul_ss_round:
1528 case Intrinsic::x86_avx512_mask_sub_ss_round:
1529 case Intrinsic::x86_avx512_mask_max_ss_round:
1530 case Intrinsic::x86_avx512_mask_min_ss_round:
1531 case Intrinsic::x86_avx512_mask_add_sd_round:
1532 case Intrinsic::x86_avx512_mask_div_sd_round:
1533 case Intrinsic::x86_avx512_mask_mul_sd_round:
1534 case Intrinsic::x86_avx512_mask_sub_sd_round:
1535 case Intrinsic::x86_avx512_mask_max_sd_round:
1536 case Intrinsic::x86_avx512_mask_min_sd_round:
1537 simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1539 // If lowest element of a scalar op isn't used then use Arg0.
1540 if (!DemandedElts[0]) {
1541 Worklist.Add(II);
1542 return II->getArgOperand(0);
1545 // Only lower element is used for operand 1 and 2.
1546 DemandedElts = 1;
1547 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1548 simplifyAndSetOp(II, 2, DemandedElts, UndefElts3);
1550 // Lower element is undefined if all three lower elements are undefined.
1551 // Consider things like undef&0. The result is known zero, not undef.
1552 if (!UndefElts2[0] || !UndefElts3[0])
1553 UndefElts.clearBit(0);
1555 break;
1557 case Intrinsic::x86_sse2_packssdw_128:
1558 case Intrinsic::x86_sse2_packsswb_128:
1559 case Intrinsic::x86_sse2_packuswb_128:
1560 case Intrinsic::x86_sse41_packusdw:
1561 case Intrinsic::x86_avx2_packssdw:
1562 case Intrinsic::x86_avx2_packsswb:
1563 case Intrinsic::x86_avx2_packusdw:
1564 case Intrinsic::x86_avx2_packuswb:
1565 case Intrinsic::x86_avx512_packssdw_512:
1566 case Intrinsic::x86_avx512_packsswb_512:
1567 case Intrinsic::x86_avx512_packusdw_512:
1568 case Intrinsic::x86_avx512_packuswb_512: {
1569 auto *Ty0 = II->getArgOperand(0)->getType();
1570 unsigned InnerVWidth = Ty0->getVectorNumElements();
1571 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1573 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1574 unsigned VWidthPerLane = VWidth / NumLanes;
1575 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1577 // Per lane, pack the elements of the first input and then the second.
1578 // e.g.
1579 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1580 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1581 for (int OpNum = 0; OpNum != 2; ++OpNum) {
1582 APInt OpDemandedElts(InnerVWidth, 0);
1583 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1584 unsigned LaneIdx = Lane * VWidthPerLane;
1585 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1586 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1587 if (DemandedElts[Idx])
1588 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1592 // Demand elements from the operand.
1593 APInt OpUndefElts(InnerVWidth, 0);
1594 simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts);
1596 // Pack the operand's UNDEF elements, one lane at a time.
1597 OpUndefElts = OpUndefElts.zext(VWidth);
1598 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1599 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1600 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1601 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
1602 UndefElts |= LaneElts;
1605 break;
1608 // PSHUFB
1609 case Intrinsic::x86_ssse3_pshuf_b_128:
1610 case Intrinsic::x86_avx2_pshuf_b:
1611 case Intrinsic::x86_avx512_pshuf_b_512:
1612 // PERMILVAR
1613 case Intrinsic::x86_avx_vpermilvar_ps:
1614 case Intrinsic::x86_avx_vpermilvar_ps_256:
1615 case Intrinsic::x86_avx512_vpermilvar_ps_512:
1616 case Intrinsic::x86_avx_vpermilvar_pd:
1617 case Intrinsic::x86_avx_vpermilvar_pd_256:
1618 case Intrinsic::x86_avx512_vpermilvar_pd_512:
1619 // PERMV
1620 case Intrinsic::x86_avx2_permd:
1621 case Intrinsic::x86_avx2_permps: {
1622 simplifyAndSetOp(II, 1, DemandedElts, UndefElts);
1623 break;
1626 // SSE4A instructions leave the upper 64-bits of the 128-bit result
1627 // in an undefined state.
1628 case Intrinsic::x86_sse4a_extrq:
1629 case Intrinsic::x86_sse4a_extrqi:
1630 case Intrinsic::x86_sse4a_insertq:
1631 case Intrinsic::x86_sse4a_insertqi:
1632 UndefElts.setHighBits(VWidth / 2);
1633 break;
1634 case Intrinsic::amdgcn_buffer_load:
1635 case Intrinsic::amdgcn_buffer_load_format:
1636 case Intrinsic::amdgcn_raw_buffer_load:
1637 case Intrinsic::amdgcn_raw_buffer_load_format:
1638 case Intrinsic::amdgcn_struct_buffer_load:
1639 case Intrinsic::amdgcn_struct_buffer_load_format:
1640 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
1641 default: {
1642 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) {
1643 LLVM_DEBUG(
1644 Value *TFC = II->getArgOperand(II->getNumOperands() - 2);
1645 assert(!isa<ConstantInt>(TFC) ||
1646 dyn_cast<ConstantInt>(TFC)->getZExtValue() == 0);
1649 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);
1652 break;
1654 } // switch on IntrinsicID
1655 break;
1656 } // case Call
1657 } // switch on Opcode
1659 // TODO: We bail completely on integer div/rem and shifts because they have
1660 // UB/poison potential, but that should be refined.
1661 BinaryOperator *BO;
1662 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1663 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1664 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1666 // Any change to an instruction with potential poison must clear those flags
1667 // because we can not guarantee those constraints now. Other analysis may
1668 // determine that it is safe to re-apply the flags.
1669 if (MadeChange)
1670 BO->dropPoisonGeneratingFlags();
1672 // Output elements are undefined if both are undefined. Consider things
1673 // like undef & 0. The result is known zero, not undef.
1674 UndefElts &= UndefElts2;
1677 return MadeChange ? I : nullptr;