Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / InstCombine / InstructionCombining.cpp
blob723bb4c0d68988b83bf1f0224e490bcc9ae0050f
1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions. This pass does not modify the CFG. This pass is where
11 // algebraic simplification happens.
13 // This pass combines things like:
14 // %Y = add i32 %X, 1
15 // %Z = add i32 %Y, 1
16 // into:
17 // %Z = add i32 %X, 2
19 // This is a simple worklist driven algorithm.
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 // 1. If a binary operator has a constant operand, it is moved to the RHS
24 // 2. Bitwise operators with constant operands are always grouped so that
25 // shifts are performed first, then or's, then and's, then xor's.
26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 // 4. All cmp instructions on boolean values are replaced with logical ops
28 // 5. add X, X is represented as (X*2) => (X << 1)
29 // 6. Multiplies with a power-of-two constant argument are transformed into
30 // shifts.
31 // ... etc.
33 //===----------------------------------------------------------------------===//
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/CFG.h"
50 #include "llvm/Analysis/ConstantFolding.h"
51 #include "llvm/Analysis/EHPersonalities.h"
52 #include "llvm/Analysis/GlobalsModRef.h"
53 #include "llvm/Analysis/InstructionSimplify.h"
54 #include "llvm/Analysis/LoopInfo.h"
55 #include "llvm/Analysis/MemoryBuiltins.h"
56 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
57 #include "llvm/Analysis/TargetFolder.h"
58 #include "llvm/Analysis/TargetLibraryInfo.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DIBuilder.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DerivedTypes.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GetElementPtrTypeIterator.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/LegacyPassManager.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Operator.h"
79 #include "llvm/IR/PassManager.h"
80 #include "llvm/IR/PatternMatch.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Use.h"
83 #include "llvm/IR/User.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/IR/ValueHandle.h"
86 #include "llvm/Pass.h"
87 #include "llvm/Support/CBindingWrapping.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Compiler.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/DebugCounter.h"
93 #include "llvm/Support/ErrorHandling.h"
94 #include "llvm/Support/KnownBits.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Transforms/InstCombine/InstCombine.h"
97 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
98 #include "llvm/Transforms/Utils/Local.h"
99 #include <algorithm>
100 #include <cassert>
101 #include <cstdint>
102 #include <memory>
103 #include <string>
104 #include <utility>
106 using namespace llvm;
107 using namespace llvm::PatternMatch;
109 #define DEBUG_TYPE "instcombine"
111 STATISTIC(NumCombined , "Number of insts combined");
112 STATISTIC(NumConstProp, "Number of constant folds");
113 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
114 STATISTIC(NumSunkInst , "Number of instructions sunk");
115 STATISTIC(NumExpand, "Number of expansions");
116 STATISTIC(NumFactor , "Number of factorizations");
117 STATISTIC(NumReassoc , "Number of reassociations");
118 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
119 "Controls which instructions are visited");
121 static cl::opt<bool>
122 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
123 cl::init(true));
125 static cl::opt<bool>
126 EnableExpensiveCombines("expensive-combines",
127 cl::desc("Enable expensive instruction combines"));
129 static cl::opt<unsigned>
130 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
131 cl::desc("Maximum array size considered when doing a combine"));
133 // FIXME: Remove this flag when it is no longer necessary to convert
134 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
135 // increases variable availability at the cost of accuracy. Variables that
136 // cannot be promoted by mem2reg or SROA will be described as living in memory
137 // for their entire lifetime. However, passes like DSE and instcombine can
138 // delete stores to the alloca, leading to misleading and inaccurate debug
139 // information. This flag can be removed when those passes are fixed.
140 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
141 cl::Hidden, cl::init(true));
143 Value *InstCombiner::EmitGEPOffset(User *GEP) {
144 return llvm::EmitGEPOffset(&Builder, DL, GEP);
147 /// Return true if it is desirable to convert an integer computation from a
148 /// given bit width to a new bit width.
149 /// We don't want to convert from a legal to an illegal type or from a smaller
150 /// to a larger illegal type. A width of '1' is always treated as a legal type
151 /// because i1 is a fundamental type in IR, and there are many specialized
152 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
153 /// legal to convert to, in order to open up more combining opportunities.
154 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
155 /// from frontend languages.
156 bool InstCombiner::shouldChangeType(unsigned FromWidth,
157 unsigned ToWidth) const {
158 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
159 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
161 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
162 // shrink types, to prevent infinite loops.
163 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
164 return true;
166 // If this is a legal integer from type, and the result would be an illegal
167 // type, don't do the transformation.
168 if (FromLegal && !ToLegal)
169 return false;
171 // Otherwise, if both are illegal, do not increase the size of the result. We
172 // do allow things like i160 -> i64, but not i64 -> i160.
173 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
174 return false;
176 return true;
179 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
180 /// We don't want to convert from a legal to an illegal type or from a smaller
181 /// to a larger illegal type. i1 is always treated as a legal type because it is
182 /// a fundamental type in IR, and there are many specialized optimizations for
183 /// i1 types.
184 bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
185 // TODO: This could be extended to allow vectors. Datalayout changes might be
186 // needed to properly support that.
187 if (!From->isIntegerTy() || !To->isIntegerTy())
188 return false;
190 unsigned FromWidth = From->getPrimitiveSizeInBits();
191 unsigned ToWidth = To->getPrimitiveSizeInBits();
192 return shouldChangeType(FromWidth, ToWidth);
195 // Return true, if No Signed Wrap should be maintained for I.
196 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
197 // where both B and C should be ConstantInts, results in a constant that does
198 // not overflow. This function only handles the Add and Sub opcodes. For
199 // all other opcodes, the function conservatively returns false.
200 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
201 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
202 if (!OBO || !OBO->hasNoSignedWrap())
203 return false;
205 // We reason about Add and Sub Only.
206 Instruction::BinaryOps Opcode = I.getOpcode();
207 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
208 return false;
210 const APInt *BVal, *CVal;
211 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
212 return false;
214 bool Overflow = false;
215 if (Opcode == Instruction::Add)
216 (void)BVal->sadd_ov(*CVal, Overflow);
217 else
218 (void)BVal->ssub_ov(*CVal, Overflow);
220 return !Overflow;
223 /// Conservatively clears subclassOptionalData after a reassociation or
224 /// commutation. We preserve fast-math flags when applicable as they can be
225 /// preserved.
226 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
227 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
228 if (!FPMO) {
229 I.clearSubclassOptionalData();
230 return;
233 FastMathFlags FMF = I.getFastMathFlags();
234 I.clearSubclassOptionalData();
235 I.setFastMathFlags(FMF);
238 /// Combine constant operands of associative operations either before or after a
239 /// cast to eliminate one of the associative operations:
240 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
241 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
242 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
243 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
244 if (!Cast || !Cast->hasOneUse())
245 return false;
247 // TODO: Enhance logic for other casts and remove this check.
248 auto CastOpcode = Cast->getOpcode();
249 if (CastOpcode != Instruction::ZExt)
250 return false;
252 // TODO: Enhance logic for other BinOps and remove this check.
253 if (!BinOp1->isBitwiseLogicOp())
254 return false;
256 auto AssocOpcode = BinOp1->getOpcode();
257 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
258 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
259 return false;
261 Constant *C1, *C2;
262 if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
263 !match(BinOp2->getOperand(1), m_Constant(C2)))
264 return false;
266 // TODO: This assumes a zext cast.
267 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
268 // to the destination type might lose bits.
270 // Fold the constants together in the destination type:
271 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
272 Type *DestTy = C1->getType();
273 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
274 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
275 Cast->setOperand(0, BinOp2->getOperand(0));
276 BinOp1->setOperand(1, FoldedC);
277 return true;
280 /// This performs a few simplifications for operators that are associative or
281 /// commutative:
283 /// Commutative operators:
285 /// 1. Order operands such that they are listed from right (least complex) to
286 /// left (most complex). This puts constants before unary operators before
287 /// binary operators.
289 /// Associative operators:
291 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
292 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
294 /// Associative and commutative operators:
296 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
297 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
298 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
299 /// if C1 and C2 are constants.
300 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
301 Instruction::BinaryOps Opcode = I.getOpcode();
302 bool Changed = false;
304 do {
305 // Order operands such that they are listed from right (least complex) to
306 // left (most complex). This puts constants before unary operators before
307 // binary operators.
308 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
309 getComplexity(I.getOperand(1)))
310 Changed = !I.swapOperands();
312 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
313 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
315 if (I.isAssociative()) {
316 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
317 if (Op0 && Op0->getOpcode() == Opcode) {
318 Value *A = Op0->getOperand(0);
319 Value *B = Op0->getOperand(1);
320 Value *C = I.getOperand(1);
322 // Does "B op C" simplify?
323 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
324 // It simplifies to V. Form "A op V".
325 I.setOperand(0, A);
326 I.setOperand(1, V);
327 // Conservatively clear the optional flags, since they may not be
328 // preserved by the reassociation.
329 if (MaintainNoSignedWrap(I, B, C) &&
330 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
331 // Note: this is only valid because SimplifyBinOp doesn't look at
332 // the operands to Op0.
333 I.clearSubclassOptionalData();
334 I.setHasNoSignedWrap(true);
335 } else {
336 ClearSubclassDataAfterReassociation(I);
339 Changed = true;
340 ++NumReassoc;
341 continue;
345 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
346 if (Op1 && Op1->getOpcode() == Opcode) {
347 Value *A = I.getOperand(0);
348 Value *B = Op1->getOperand(0);
349 Value *C = Op1->getOperand(1);
351 // Does "A op B" simplify?
352 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
353 // It simplifies to V. Form "V op C".
354 I.setOperand(0, V);
355 I.setOperand(1, C);
356 // Conservatively clear the optional flags, since they may not be
357 // preserved by the reassociation.
358 ClearSubclassDataAfterReassociation(I);
359 Changed = true;
360 ++NumReassoc;
361 continue;
366 if (I.isAssociative() && I.isCommutative()) {
367 if (simplifyAssocCastAssoc(&I)) {
368 Changed = true;
369 ++NumReassoc;
370 continue;
373 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
374 if (Op0 && Op0->getOpcode() == Opcode) {
375 Value *A = Op0->getOperand(0);
376 Value *B = Op0->getOperand(1);
377 Value *C = I.getOperand(1);
379 // Does "C op A" simplify?
380 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
381 // It simplifies to V. Form "V op B".
382 I.setOperand(0, V);
383 I.setOperand(1, B);
384 // Conservatively clear the optional flags, since they may not be
385 // preserved by the reassociation.
386 ClearSubclassDataAfterReassociation(I);
387 Changed = true;
388 ++NumReassoc;
389 continue;
393 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
394 if (Op1 && Op1->getOpcode() == Opcode) {
395 Value *A = I.getOperand(0);
396 Value *B = Op1->getOperand(0);
397 Value *C = Op1->getOperand(1);
399 // Does "C op A" simplify?
400 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
401 // It simplifies to V. Form "B op V".
402 I.setOperand(0, B);
403 I.setOperand(1, V);
404 // Conservatively clear the optional flags, since they may not be
405 // preserved by the reassociation.
406 ClearSubclassDataAfterReassociation(I);
407 Changed = true;
408 ++NumReassoc;
409 continue;
413 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
414 // if C1 and C2 are constants.
415 Value *A, *B;
416 Constant *C1, *C2;
417 if (Op0 && Op1 &&
418 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
419 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
420 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
421 BinaryOperator *NewBO = BinaryOperator::Create(Opcode, A, B);
422 if (isa<FPMathOperator>(NewBO)) {
423 FastMathFlags Flags = I.getFastMathFlags();
424 Flags &= Op0->getFastMathFlags();
425 Flags &= Op1->getFastMathFlags();
426 NewBO->setFastMathFlags(Flags);
428 InsertNewInstWith(NewBO, I);
429 NewBO->takeName(Op1);
430 I.setOperand(0, NewBO);
431 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2));
432 // Conservatively clear the optional flags, since they may not be
433 // preserved by the reassociation.
434 ClearSubclassDataAfterReassociation(I);
436 Changed = true;
437 continue;
441 // No further simplifications.
442 return Changed;
443 } while (true);
446 /// Return whether "X LOp (Y ROp Z)" is always equal to
447 /// "(X LOp Y) ROp (X LOp Z)".
448 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
449 Instruction::BinaryOps ROp) {
450 // X & (Y | Z) <--> (X & Y) | (X & Z)
451 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
452 if (LOp == Instruction::And)
453 return ROp == Instruction::Or || ROp == Instruction::Xor;
455 // X | (Y & Z) <--> (X | Y) & (X | Z)
456 if (LOp == Instruction::Or)
457 return ROp == Instruction::And;
459 // X * (Y + Z) <--> (X * Y) + (X * Z)
460 // X * (Y - Z) <--> (X * Y) - (X * Z)
461 if (LOp == Instruction::Mul)
462 return ROp == Instruction::Add || ROp == Instruction::Sub;
464 return false;
467 /// Return whether "(X LOp Y) ROp Z" is always equal to
468 /// "(X ROp Z) LOp (Y ROp Z)".
469 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
470 Instruction::BinaryOps ROp) {
471 if (Instruction::isCommutative(ROp))
472 return leftDistributesOverRight(ROp, LOp);
474 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
475 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
477 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
478 // but this requires knowing that the addition does not overflow and other
479 // such subtleties.
482 /// This function returns identity value for given opcode, which can be used to
483 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
484 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
485 if (isa<Constant>(V))
486 return nullptr;
488 return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
491 /// This function predicates factorization using distributive laws. By default,
492 /// it just returns the 'Op' inputs. But for special-cases like
493 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
494 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
495 /// allow more factorization opportunities.
496 static Instruction::BinaryOps
497 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
498 Value *&LHS, Value *&RHS) {
499 assert(Op && "Expected a binary operator");
500 LHS = Op->getOperand(0);
501 RHS = Op->getOperand(1);
502 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
503 Constant *C;
504 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
505 // X << C --> X * (1 << C)
506 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
507 return Instruction::Mul;
509 // TODO: We can add other conversions e.g. shr => div etc.
511 return Op->getOpcode();
514 /// This tries to simplify binary operations by factorizing out common terms
515 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
516 Value *InstCombiner::tryFactorization(BinaryOperator &I,
517 Instruction::BinaryOps InnerOpcode,
518 Value *A, Value *B, Value *C, Value *D) {
519 assert(A && B && C && D && "All values must be provided");
521 Value *V = nullptr;
522 Value *SimplifiedInst = nullptr;
523 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
524 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
526 // Does "X op' Y" always equal "Y op' X"?
527 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
529 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
530 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
531 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
532 // commutative case, "(A op' B) op (C op' A)"?
533 if (A == C || (InnerCommutative && A == D)) {
534 if (A != C)
535 std::swap(C, D);
536 // Consider forming "A op' (B op D)".
537 // If "B op D" simplifies then it can be formed with no cost.
538 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
539 // If "B op D" doesn't simplify then only go on if both of the existing
540 // operations "A op' B" and "C op' D" will be zapped as no longer used.
541 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
542 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
543 if (V) {
544 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
548 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
549 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
550 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
551 // commutative case, "(A op' B) op (B op' D)"?
552 if (B == D || (InnerCommutative && B == C)) {
553 if (B != D)
554 std::swap(C, D);
555 // Consider forming "(A op C) op' B".
556 // If "A op C" simplifies then it can be formed with no cost.
557 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
559 // If "A op C" doesn't simplify then only go on if both of the existing
560 // operations "A op' B" and "C op' D" will be zapped as no longer used.
561 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
562 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
563 if (V) {
564 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
568 if (SimplifiedInst) {
569 ++NumFactor;
570 SimplifiedInst->takeName(&I);
572 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
573 // TODO: Check for NUW.
574 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
575 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
576 bool HasNSW = false;
577 if (isa<OverflowingBinaryOperator>(&I))
578 HasNSW = I.hasNoSignedWrap();
580 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS))
581 HasNSW &= LOBO->hasNoSignedWrap();
583 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS))
584 HasNSW &= ROBO->hasNoSignedWrap();
586 // We can propagate 'nsw' if we know that
587 // %Y = mul nsw i16 %X, C
588 // %Z = add nsw i16 %Y, %X
589 // =>
590 // %Z = mul nsw i16 %X, C+1
592 // iff C+1 isn't INT_MIN
593 const APInt *CInt;
594 if (TopLevelOpcode == Instruction::Add &&
595 InnerOpcode == Instruction::Mul)
596 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
597 BO->setHasNoSignedWrap(HasNSW);
601 return SimplifiedInst;
604 /// This tries to simplify binary operations which some other binary operation
605 /// distributes over either by factorizing out common terms
606 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
607 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
608 /// Returns the simplified value, or null if it didn't simplify.
609 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
610 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
611 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
612 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
613 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
616 // Factorization.
617 Value *A, *B, *C, *D;
618 Instruction::BinaryOps LHSOpcode, RHSOpcode;
619 if (Op0)
620 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
621 if (Op1)
622 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
624 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
625 // a common term.
626 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
627 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
628 return V;
630 // The instruction has the form "(A op' B) op (C)". Try to factorize common
631 // term.
632 if (Op0)
633 if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
634 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
635 return V;
637 // The instruction has the form "(B) op (C op' D)". Try to factorize common
638 // term.
639 if (Op1)
640 if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
641 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
642 return V;
645 // Expansion.
646 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
647 // The instruction has the form "(A op' B) op C". See if expanding it out
648 // to "(A op C) op' (B op C)" results in simplifications.
649 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
650 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
652 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
653 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
655 // Do "A op C" and "B op C" both simplify?
656 if (L && R) {
657 // They do! Return "L op' R".
658 ++NumExpand;
659 C = Builder.CreateBinOp(InnerOpcode, L, R);
660 C->takeName(&I);
661 return C;
664 // Does "A op C" simplify to the identity value for the inner opcode?
665 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
666 // They do! Return "B op C".
667 ++NumExpand;
668 C = Builder.CreateBinOp(TopLevelOpcode, B, C);
669 C->takeName(&I);
670 return C;
673 // Does "B op C" simplify to the identity value for the inner opcode?
674 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
675 // They do! Return "A op C".
676 ++NumExpand;
677 C = Builder.CreateBinOp(TopLevelOpcode, A, C);
678 C->takeName(&I);
679 return C;
683 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
684 // The instruction has the form "A op (B op' C)". See if expanding it out
685 // to "(A op B) op' (A op C)" results in simplifications.
686 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
687 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
689 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
690 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
692 // Do "A op B" and "A op C" both simplify?
693 if (L && R) {
694 // They do! Return "L op' R".
695 ++NumExpand;
696 A = Builder.CreateBinOp(InnerOpcode, L, R);
697 A->takeName(&I);
698 return A;
701 // Does "A op B" simplify to the identity value for the inner opcode?
702 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
703 // They do! Return "A op C".
704 ++NumExpand;
705 A = Builder.CreateBinOp(TopLevelOpcode, A, C);
706 A->takeName(&I);
707 return A;
710 // Does "A op C" simplify to the identity value for the inner opcode?
711 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
712 // They do! Return "A op B".
713 ++NumExpand;
714 A = Builder.CreateBinOp(TopLevelOpcode, A, B);
715 A->takeName(&I);
716 return A;
720 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
723 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
724 Value *LHS, Value *RHS) {
725 Instruction::BinaryOps Opcode = I.getOpcode();
726 // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op
727 // c, e)))
728 Value *A, *B, *C, *D, *E;
729 Value *SI = nullptr;
730 if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) &&
731 match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) {
732 bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse();
733 BuilderTy::FastMathFlagGuard Guard(Builder);
734 if (isa<FPMathOperator>(&I))
735 Builder.setFastMathFlags(I.getFastMathFlags());
737 Value *V1 = SimplifyBinOp(Opcode, C, E, SQ.getWithInstruction(&I));
738 Value *V2 = SimplifyBinOp(Opcode, B, D, SQ.getWithInstruction(&I));
739 if (V1 && V2)
740 SI = Builder.CreateSelect(A, V2, V1);
741 else if (V2 && SelectsHaveOneUse)
742 SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E));
743 else if (V1 && SelectsHaveOneUse)
744 SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1);
746 if (SI)
747 SI->takeName(&I);
750 return SI;
753 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
754 /// constant zero (which is the 'negate' form).
755 Value *InstCombiner::dyn_castNegVal(Value *V) const {
756 Value *NegV;
757 if (match(V, m_Neg(m_Value(NegV))))
758 return NegV;
760 // Constants can be considered to be negated values if they can be folded.
761 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
762 return ConstantExpr::getNeg(C);
764 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
765 if (C->getType()->getElementType()->isIntegerTy())
766 return ConstantExpr::getNeg(C);
768 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
769 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
770 Constant *Elt = CV->getAggregateElement(i);
771 if (!Elt)
772 return nullptr;
774 if (isa<UndefValue>(Elt))
775 continue;
777 if (!isa<ConstantInt>(Elt))
778 return nullptr;
780 return ConstantExpr::getNeg(CV);
783 return nullptr;
786 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
787 InstCombiner::BuilderTy &Builder) {
788 if (auto *Cast = dyn_cast<CastInst>(&I))
789 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
791 assert(I.isBinaryOp() && "Unexpected opcode for select folding");
793 // Figure out if the constant is the left or the right argument.
794 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
795 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
797 if (auto *SOC = dyn_cast<Constant>(SO)) {
798 if (ConstIsRHS)
799 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
800 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
803 Value *Op0 = SO, *Op1 = ConstOperand;
804 if (!ConstIsRHS)
805 std::swap(Op0, Op1);
807 auto *BO = cast<BinaryOperator>(&I);
808 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
809 SO->getName() + ".op");
810 auto *FPInst = dyn_cast<Instruction>(RI);
811 if (FPInst && isa<FPMathOperator>(FPInst))
812 FPInst->copyFastMathFlags(BO);
813 return RI;
816 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
817 // Don't modify shared select instructions.
818 if (!SI->hasOneUse())
819 return nullptr;
821 Value *TV = SI->getTrueValue();
822 Value *FV = SI->getFalseValue();
823 if (!(isa<Constant>(TV) || isa<Constant>(FV)))
824 return nullptr;
826 // Bool selects with constant operands can be folded to logical ops.
827 if (SI->getType()->isIntOrIntVectorTy(1))
828 return nullptr;
830 // If it's a bitcast involving vectors, make sure it has the same number of
831 // elements on both sides.
832 if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
833 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
834 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
836 // Verify that either both or neither are vectors.
837 if ((SrcTy == nullptr) != (DestTy == nullptr))
838 return nullptr;
840 // If vectors, verify that they have the same number of elements.
841 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
842 return nullptr;
845 // Test if a CmpInst instruction is used exclusively by a select as
846 // part of a minimum or maximum operation. If so, refrain from doing
847 // any other folding. This helps out other analyses which understand
848 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
849 // and CodeGen. And in this case, at least one of the comparison
850 // operands has at least one user besides the compare (the select),
851 // which would often largely negate the benefit of folding anyway.
852 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
853 if (CI->hasOneUse()) {
854 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
855 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
856 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
857 return nullptr;
861 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
862 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
863 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
866 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
867 InstCombiner::BuilderTy &Builder) {
868 bool ConstIsRHS = isa<Constant>(I->getOperand(1));
869 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
871 if (auto *InC = dyn_cast<Constant>(InV)) {
872 if (ConstIsRHS)
873 return ConstantExpr::get(I->getOpcode(), InC, C);
874 return ConstantExpr::get(I->getOpcode(), C, InC);
877 Value *Op0 = InV, *Op1 = C;
878 if (!ConstIsRHS)
879 std::swap(Op0, Op1);
881 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp");
882 auto *FPInst = dyn_cast<Instruction>(RI);
883 if (FPInst && isa<FPMathOperator>(FPInst))
884 FPInst->copyFastMathFlags(I);
885 return RI;
888 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
889 unsigned NumPHIValues = PN->getNumIncomingValues();
890 if (NumPHIValues == 0)
891 return nullptr;
893 // We normally only transform phis with a single use. However, if a PHI has
894 // multiple uses and they are all the same operation, we can fold *all* of the
895 // uses into the PHI.
896 if (!PN->hasOneUse()) {
897 // Walk the use list for the instruction, comparing them to I.
898 for (User *U : PN->users()) {
899 Instruction *UI = cast<Instruction>(U);
900 if (UI != &I && !I.isIdenticalTo(UI))
901 return nullptr;
903 // Otherwise, we can replace *all* users with the new PHI we form.
906 // Check to see if all of the operands of the PHI are simple constants
907 // (constantint/constantfp/undef). If there is one non-constant value,
908 // remember the BB it is in. If there is more than one or if *it* is a PHI,
909 // bail out. We don't do arbitrary constant expressions here because moving
910 // their computation can be expensive without a cost model.
911 BasicBlock *NonConstBB = nullptr;
912 for (unsigned i = 0; i != NumPHIValues; ++i) {
913 Value *InVal = PN->getIncomingValue(i);
914 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
915 continue;
917 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
918 if (NonConstBB) return nullptr; // More than one non-const value.
920 NonConstBB = PN->getIncomingBlock(i);
922 // If the InVal is an invoke at the end of the pred block, then we can't
923 // insert a computation after it without breaking the edge.
924 if (isa<InvokeInst>(InVal))
925 if (cast<Instruction>(InVal)->getParent() == NonConstBB)
926 return nullptr;
928 // If the incoming non-constant value is in I's block, we will remove one
929 // instruction, but insert another equivalent one, leading to infinite
930 // instcombine.
931 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
932 return nullptr;
935 // If there is exactly one non-constant value, we can insert a copy of the
936 // operation in that block. However, if this is a critical edge, we would be
937 // inserting the computation on some other paths (e.g. inside a loop). Only
938 // do this if the pred block is unconditionally branching into the phi block.
939 if (NonConstBB != nullptr) {
940 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
941 if (!BI || !BI->isUnconditional()) return nullptr;
944 // Okay, we can do the transformation: create the new PHI node.
945 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
946 InsertNewInstBefore(NewPN, *PN);
947 NewPN->takeName(PN);
949 // If we are going to have to insert a new computation, do so right before the
950 // predecessor's terminator.
951 if (NonConstBB)
952 Builder.SetInsertPoint(NonConstBB->getTerminator());
954 // Next, add all of the operands to the PHI.
955 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
956 // We only currently try to fold the condition of a select when it is a phi,
957 // not the true/false values.
958 Value *TrueV = SI->getTrueValue();
959 Value *FalseV = SI->getFalseValue();
960 BasicBlock *PhiTransBB = PN->getParent();
961 for (unsigned i = 0; i != NumPHIValues; ++i) {
962 BasicBlock *ThisBB = PN->getIncomingBlock(i);
963 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
964 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
965 Value *InV = nullptr;
966 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
967 // even if currently isNullValue gives false.
968 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
969 // For vector constants, we cannot use isNullValue to fold into
970 // FalseVInPred versus TrueVInPred. When we have individual nonzero
971 // elements in the vector, we will incorrectly fold InC to
972 // `TrueVInPred`.
973 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
974 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
975 else {
976 // Generate the select in the same block as PN's current incoming block.
977 // Note: ThisBB need not be the NonConstBB because vector constants
978 // which are constants by definition are handled here.
979 // FIXME: This can lead to an increase in IR generation because we might
980 // generate selects for vector constant phi operand, that could not be
981 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
982 // non-vector phis, this transformation was always profitable because
983 // the select would be generated exactly once in the NonConstBB.
984 Builder.SetInsertPoint(ThisBB->getTerminator());
985 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
986 FalseVInPred, "phitmp");
988 NewPN->addIncoming(InV, ThisBB);
990 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
991 Constant *C = cast<Constant>(I.getOperand(1));
992 for (unsigned i = 0; i != NumPHIValues; ++i) {
993 Value *InV = nullptr;
994 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
995 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
996 else if (isa<ICmpInst>(CI))
997 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
998 C, "phitmp");
999 else
1000 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
1001 C, "phitmp");
1002 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1004 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1005 for (unsigned i = 0; i != NumPHIValues; ++i) {
1006 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1007 Builder);
1008 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1010 } else {
1011 CastInst *CI = cast<CastInst>(&I);
1012 Type *RetTy = CI->getType();
1013 for (unsigned i = 0; i != NumPHIValues; ++i) {
1014 Value *InV;
1015 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1016 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1017 else
1018 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1019 I.getType(), "phitmp");
1020 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1024 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1025 Instruction *User = cast<Instruction>(*UI++);
1026 if (User == &I) continue;
1027 replaceInstUsesWith(*User, NewPN);
1028 eraseInstFromFunction(*User);
1030 return replaceInstUsesWith(I, NewPN);
1033 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1034 if (!isa<Constant>(I.getOperand(1)))
1035 return nullptr;
1037 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1038 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1039 return NewSel;
1040 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1041 if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1042 return NewPhi;
1044 return nullptr;
1047 /// Given a pointer type and a constant offset, determine whether or not there
1048 /// is a sequence of GEP indices into the pointed type that will land us at the
1049 /// specified offset. If so, fill them into NewIndices and return the resultant
1050 /// element type, otherwise return null.
1051 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1052 SmallVectorImpl<Value *> &NewIndices) {
1053 Type *Ty = PtrTy->getElementType();
1054 if (!Ty->isSized())
1055 return nullptr;
1057 // Start with the index over the outer type. Note that the type size
1058 // might be zero (even if the offset isn't zero) if the indexed type
1059 // is something like [0 x {int, int}]
1060 Type *IndexTy = DL.getIndexType(PtrTy);
1061 int64_t FirstIdx = 0;
1062 if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1063 FirstIdx = Offset/TySize;
1064 Offset -= FirstIdx*TySize;
1066 // Handle hosts where % returns negative instead of values [0..TySize).
1067 if (Offset < 0) {
1068 --FirstIdx;
1069 Offset += TySize;
1070 assert(Offset >= 0);
1072 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1075 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1077 // Index into the types. If we fail, set OrigBase to null.
1078 while (Offset) {
1079 // Indexing into tail padding between struct/array elements.
1080 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1081 return nullptr;
1083 if (StructType *STy = dyn_cast<StructType>(Ty)) {
1084 const StructLayout *SL = DL.getStructLayout(STy);
1085 assert(Offset < (int64_t)SL->getSizeInBytes() &&
1086 "Offset must stay within the indexed type");
1088 unsigned Elt = SL->getElementContainingOffset(Offset);
1089 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1090 Elt));
1092 Offset -= SL->getElementOffset(Elt);
1093 Ty = STy->getElementType(Elt);
1094 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1095 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1096 assert(EltSize && "Cannot index into a zero-sized array");
1097 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1098 Offset %= EltSize;
1099 Ty = AT->getElementType();
1100 } else {
1101 // Otherwise, we can't index into the middle of this atomic type, bail.
1102 return nullptr;
1106 return Ty;
1109 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1110 // If this GEP has only 0 indices, it is the same pointer as
1111 // Src. If Src is not a trivial GEP too, don't combine
1112 // the indices.
1113 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1114 !Src.hasOneUse())
1115 return false;
1116 return true;
1119 /// Return a value X such that Val = X * Scale, or null if none.
1120 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1121 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1122 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1123 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1124 Scale.getBitWidth() && "Scale not compatible with value!");
1126 // If Val is zero or Scale is one then Val = Val * Scale.
1127 if (match(Val, m_Zero()) || Scale == 1) {
1128 NoSignedWrap = true;
1129 return Val;
1132 // If Scale is zero then it does not divide Val.
1133 if (Scale.isMinValue())
1134 return nullptr;
1136 // Look through chains of multiplications, searching for a constant that is
1137 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
1138 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
1139 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
1140 // down from Val:
1142 // Val = M1 * X || Analysis starts here and works down
1143 // M1 = M2 * Y || Doesn't descend into terms with more
1144 // M2 = Z * 4 \/ than one use
1146 // Then to modify a term at the bottom:
1148 // Val = M1 * X
1149 // M1 = Z * Y || Replaced M2 with Z
1151 // Then to work back up correcting nsw flags.
1153 // Op - the term we are currently analyzing. Starts at Val then drills down.
1154 // Replaced with its descaled value before exiting from the drill down loop.
1155 Value *Op = Val;
1157 // Parent - initially null, but after drilling down notes where Op came from.
1158 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1159 // 0'th operand of Val.
1160 std::pair<Instruction *, unsigned> Parent;
1162 // Set if the transform requires a descaling at deeper levels that doesn't
1163 // overflow.
1164 bool RequireNoSignedWrap = false;
1166 // Log base 2 of the scale. Negative if not a power of 2.
1167 int32_t logScale = Scale.exactLogBase2();
1169 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1170 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1171 // If Op is a constant divisible by Scale then descale to the quotient.
1172 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1173 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1174 if (!Remainder.isMinValue())
1175 // Not divisible by Scale.
1176 return nullptr;
1177 // Replace with the quotient in the parent.
1178 Op = ConstantInt::get(CI->getType(), Quotient);
1179 NoSignedWrap = true;
1180 break;
1183 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1184 if (BO->getOpcode() == Instruction::Mul) {
1185 // Multiplication.
1186 NoSignedWrap = BO->hasNoSignedWrap();
1187 if (RequireNoSignedWrap && !NoSignedWrap)
1188 return nullptr;
1190 // There are three cases for multiplication: multiplication by exactly
1191 // the scale, multiplication by a constant different to the scale, and
1192 // multiplication by something else.
1193 Value *LHS = BO->getOperand(0);
1194 Value *RHS = BO->getOperand(1);
1196 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1197 // Multiplication by a constant.
1198 if (CI->getValue() == Scale) {
1199 // Multiplication by exactly the scale, replace the multiplication
1200 // by its left-hand side in the parent.
1201 Op = LHS;
1202 break;
1205 // Otherwise drill down into the constant.
1206 if (!Op->hasOneUse())
1207 return nullptr;
1209 Parent = std::make_pair(BO, 1);
1210 continue;
1213 // Multiplication by something else. Drill down into the left-hand side
1214 // since that's where the reassociate pass puts the good stuff.
1215 if (!Op->hasOneUse())
1216 return nullptr;
1218 Parent = std::make_pair(BO, 0);
1219 continue;
1222 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1223 isa<ConstantInt>(BO->getOperand(1))) {
1224 // Multiplication by a power of 2.
1225 NoSignedWrap = BO->hasNoSignedWrap();
1226 if (RequireNoSignedWrap && !NoSignedWrap)
1227 return nullptr;
1229 Value *LHS = BO->getOperand(0);
1230 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1231 getLimitedValue(Scale.getBitWidth());
1232 // Op = LHS << Amt.
1234 if (Amt == logScale) {
1235 // Multiplication by exactly the scale, replace the multiplication
1236 // by its left-hand side in the parent.
1237 Op = LHS;
1238 break;
1240 if (Amt < logScale || !Op->hasOneUse())
1241 return nullptr;
1243 // Multiplication by more than the scale. Reduce the multiplying amount
1244 // by the scale in the parent.
1245 Parent = std::make_pair(BO, 1);
1246 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1247 break;
1251 if (!Op->hasOneUse())
1252 return nullptr;
1254 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1255 if (Cast->getOpcode() == Instruction::SExt) {
1256 // Op is sign-extended from a smaller type, descale in the smaller type.
1257 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1258 APInt SmallScale = Scale.trunc(SmallSize);
1259 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1260 // descale Op as (sext Y) * Scale. In order to have
1261 // sext (Y * SmallScale) = (sext Y) * Scale
1262 // some conditions need to hold however: SmallScale must sign-extend to
1263 // Scale and the multiplication Y * SmallScale should not overflow.
1264 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1265 // SmallScale does not sign-extend to Scale.
1266 return nullptr;
1267 assert(SmallScale.exactLogBase2() == logScale);
1268 // Require that Y * SmallScale must not overflow.
1269 RequireNoSignedWrap = true;
1271 // Drill down through the cast.
1272 Parent = std::make_pair(Cast, 0);
1273 Scale = SmallScale;
1274 continue;
1277 if (Cast->getOpcode() == Instruction::Trunc) {
1278 // Op is truncated from a larger type, descale in the larger type.
1279 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1280 // trunc (Y * sext Scale) = (trunc Y) * Scale
1281 // always holds. However (trunc Y) * Scale may overflow even if
1282 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1283 // from this point up in the expression (see later).
1284 if (RequireNoSignedWrap)
1285 return nullptr;
1287 // Drill down through the cast.
1288 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1289 Parent = std::make_pair(Cast, 0);
1290 Scale = Scale.sext(LargeSize);
1291 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1292 logScale = -1;
1293 assert(Scale.exactLogBase2() == logScale);
1294 continue;
1298 // Unsupported expression, bail out.
1299 return nullptr;
1302 // If Op is zero then Val = Op * Scale.
1303 if (match(Op, m_Zero())) {
1304 NoSignedWrap = true;
1305 return Op;
1308 // We know that we can successfully descale, so from here on we can safely
1309 // modify the IR. Op holds the descaled version of the deepest term in the
1310 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1311 // not to overflow.
1313 if (!Parent.first)
1314 // The expression only had one term.
1315 return Op;
1317 // Rewrite the parent using the descaled version of its operand.
1318 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1319 assert(Op != Parent.first->getOperand(Parent.second) &&
1320 "Descaling was a no-op?");
1321 Parent.first->setOperand(Parent.second, Op);
1322 Worklist.Add(Parent.first);
1324 // Now work back up the expression correcting nsw flags. The logic is based
1325 // on the following observation: if X * Y is known not to overflow as a signed
1326 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1327 // then X * Z will not overflow as a signed multiplication either. As we work
1328 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1329 // current level has strictly smaller absolute value than the original.
1330 Instruction *Ancestor = Parent.first;
1331 do {
1332 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1333 // If the multiplication wasn't nsw then we can't say anything about the
1334 // value of the descaled multiplication, and we have to clear nsw flags
1335 // from this point on up.
1336 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1337 NoSignedWrap &= OpNoSignedWrap;
1338 if (NoSignedWrap != OpNoSignedWrap) {
1339 BO->setHasNoSignedWrap(NoSignedWrap);
1340 Worklist.Add(Ancestor);
1342 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1343 // The fact that the descaled input to the trunc has smaller absolute
1344 // value than the original input doesn't tell us anything useful about
1345 // the absolute values of the truncations.
1346 NoSignedWrap = false;
1348 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1349 "Failed to keep proper track of nsw flags while drilling down?");
1351 if (Ancestor == Val)
1352 // Got to the top, all done!
1353 return Val;
1355 // Move up one level in the expression.
1356 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1357 Ancestor = Ancestor->user_back();
1358 } while (true);
1361 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
1362 if (!Inst.getType()->isVectorTy()) return nullptr;
1364 BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1365 unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements();
1366 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1367 assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts);
1368 assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts);
1370 // If both operands of the binop are vector concatenations, then perform the
1371 // narrow binop on each pair of the source operands followed by concatenation
1372 // of the results.
1373 Value *L0, *L1, *R0, *R1;
1374 Constant *Mask;
1375 if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) &&
1376 match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) &&
1377 LHS->hasOneUse() && RHS->hasOneUse() &&
1378 cast<ShuffleVectorInst>(LHS)->isConcat() &&
1379 cast<ShuffleVectorInst>(RHS)->isConcat()) {
1380 // This transform does not have the speculative execution constraint as
1381 // below because the shuffle is a concatenation. The new binops are
1382 // operating on exactly the same elements as the existing binop.
1383 // TODO: We could ease the mask requirement to allow different undef lanes,
1384 // but that requires an analysis of the binop-with-undef output value.
1385 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1386 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1387 BO->copyIRFlags(&Inst);
1388 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1389 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1390 BO->copyIRFlags(&Inst);
1391 return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1394 // It may not be safe to reorder shuffles and things like div, urem, etc.
1395 // because we may trap when executing those ops on unknown vector elements.
1396 // See PR20059.
1397 if (!isSafeToSpeculativelyExecute(&Inst))
1398 return nullptr;
1400 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) {
1401 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1402 if (auto *BO = dyn_cast<BinaryOperator>(XY))
1403 BO->copyIRFlags(&Inst);
1404 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1407 // If both arguments of the binary operation are shuffles that use the same
1408 // mask and shuffle within a single vector, move the shuffle after the binop.
1409 Value *V1, *V2;
1410 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) &&
1411 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) &&
1412 V1->getType() == V2->getType() &&
1413 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1414 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1415 return createBinOpShuffle(V1, V2, Mask);
1418 // If one argument is a shuffle within one vector and the other is a constant,
1419 // try moving the shuffle after the binary operation. This canonicalization
1420 // intends to move shuffles closer to other shuffles and binops closer to
1421 // other binops, so they can be folded. It may also enable demanded elements
1422 // transforms.
1423 Constant *C;
1424 if (match(&Inst, m_c_BinOp(
1425 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))),
1426 m_Constant(C))) &&
1427 V1->getType()->getVectorNumElements() <= NumElts) {
1428 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
1429 "Shuffle should not change scalar type");
1431 // Find constant NewC that has property:
1432 // shuffle(NewC, ShMask) = C
1433 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1434 // reorder is not possible. A 1-to-1 mapping is not required. Example:
1435 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1436 bool ConstOp1 = isa<Constant>(RHS);
1437 SmallVector<int, 16> ShMask;
1438 ShuffleVectorInst::getShuffleMask(Mask, ShMask);
1439 unsigned SrcVecNumElts = V1->getType()->getVectorNumElements();
1440 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1441 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1442 bool MayChange = true;
1443 for (unsigned I = 0; I < NumElts; ++I) {
1444 Constant *CElt = C->getAggregateElement(I);
1445 if (ShMask[I] >= 0) {
1446 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1447 Constant *NewCElt = NewVecC[ShMask[I]];
1448 // Bail out if:
1449 // 1. The constant vector contains a constant expression.
1450 // 2. The shuffle needs an element of the constant vector that can't
1451 // be mapped to a new constant vector.
1452 // 3. This is a widening shuffle that copies elements of V1 into the
1453 // extended elements (extending with undef is allowed).
1454 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1455 I >= SrcVecNumElts) {
1456 MayChange = false;
1457 break;
1459 NewVecC[ShMask[I]] = CElt;
1461 // If this is a widening shuffle, we must be able to extend with undef
1462 // elements. If the original binop does not produce an undef in the high
1463 // lanes, then this transform is not safe.
1464 // TODO: We could shuffle those non-undef constant values into the
1465 // result by using a constant vector (rather than an undef vector)
1466 // as operand 1 of the new binop, but that might be too aggressive
1467 // for target-independent shuffle creation.
1468 if (I >= SrcVecNumElts) {
1469 Constant *MaybeUndef =
1470 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1471 : ConstantExpr::get(Opcode, CElt, UndefScalar);
1472 if (!isa<UndefValue>(MaybeUndef)) {
1473 MayChange = false;
1474 break;
1478 if (MayChange) {
1479 Constant *NewC = ConstantVector::get(NewVecC);
1480 // It may not be safe to execute a binop on a vector with undef elements
1481 // because the entire instruction can be folded to undef or create poison
1482 // that did not exist in the original code.
1483 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1484 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1486 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1487 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1488 Value *NewLHS = ConstOp1 ? V1 : NewC;
1489 Value *NewRHS = ConstOp1 ? NewC : V1;
1490 return createBinOpShuffle(NewLHS, NewRHS, Mask);
1494 return nullptr;
1497 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1498 /// of a value. This requires a potentially expensive known bits check to make
1499 /// sure the narrow op does not overflow.
1500 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
1501 // We need at least one extended operand.
1502 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1504 // If this is a sub, we swap the operands since we always want an extension
1505 // on the RHS. The LHS can be an extension or a constant.
1506 if (BO.getOpcode() == Instruction::Sub)
1507 std::swap(Op0, Op1);
1509 Value *X;
1510 bool IsSext = match(Op0, m_SExt(m_Value(X)));
1511 if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1512 return nullptr;
1514 // If both operands are the same extension from the same source type and we
1515 // can eliminate at least one (hasOneUse), this might work.
1516 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1517 Value *Y;
1518 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1519 cast<Operator>(Op1)->getOpcode() == CastOpc &&
1520 (Op0->hasOneUse() || Op1->hasOneUse()))) {
1521 // If that did not match, see if we have a suitable constant operand.
1522 // Truncating and extending must produce the same constant.
1523 Constant *WideC;
1524 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1525 return nullptr;
1526 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1527 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1528 return nullptr;
1529 Y = NarrowC;
1532 // Swap back now that we found our operands.
1533 if (BO.getOpcode() == Instruction::Sub)
1534 std::swap(X, Y);
1536 // Both operands have narrow versions. Last step: the math must not overflow
1537 // in the narrow width.
1538 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1539 return nullptr;
1541 // bo (ext X), (ext Y) --> ext (bo X, Y)
1542 // bo (ext X), C --> ext (bo X, C')
1543 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1544 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1545 if (IsSext)
1546 NewBinOp->setHasNoSignedWrap();
1547 else
1548 NewBinOp->setHasNoUnsignedWrap();
1550 return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1553 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1554 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1555 Type *GEPType = GEP.getType();
1556 Type *GEPEltType = GEP.getSourceElementType();
1557 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1558 return replaceInstUsesWith(GEP, V);
1560 Value *PtrOp = GEP.getOperand(0);
1562 // Eliminate unneeded casts for indices, and replace indices which displace
1563 // by multiples of a zero size type with zero.
1564 bool MadeChange = false;
1566 // Index width may not be the same width as pointer width.
1567 // Data layout chooses the right type based on supported integer types.
1568 Type *NewScalarIndexTy =
1569 DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1571 gep_type_iterator GTI = gep_type_begin(GEP);
1572 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1573 ++I, ++GTI) {
1574 // Skip indices into struct types.
1575 if (GTI.isStruct())
1576 continue;
1578 Type *IndexTy = (*I)->getType();
1579 Type *NewIndexType =
1580 IndexTy->isVectorTy()
1581 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements())
1582 : NewScalarIndexTy;
1584 // If the element type has zero size then any index over it is equivalent
1585 // to an index of zero, so replace it with zero if it is not zero already.
1586 Type *EltTy = GTI.getIndexedType();
1587 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
1588 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1589 *I = Constant::getNullValue(NewIndexType);
1590 MadeChange = true;
1593 if (IndexTy != NewIndexType) {
1594 // If we are using a wider index than needed for this platform, shrink
1595 // it to what we need. If narrower, sign-extend it to what we need.
1596 // This explicit cast can make subsequent optimizations more obvious.
1597 *I = Builder.CreateIntCast(*I, NewIndexType, true);
1598 MadeChange = true;
1601 if (MadeChange)
1602 return &GEP;
1604 // Check to see if the inputs to the PHI node are getelementptr instructions.
1605 if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1606 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1607 if (!Op1)
1608 return nullptr;
1610 // Don't fold a GEP into itself through a PHI node. This can only happen
1611 // through the back-edge of a loop. Folding a GEP into itself means that
1612 // the value of the previous iteration needs to be stored in the meantime,
1613 // thus requiring an additional register variable to be live, but not
1614 // actually achieving anything (the GEP still needs to be executed once per
1615 // loop iteration).
1616 if (Op1 == &GEP)
1617 return nullptr;
1619 int DI = -1;
1621 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1622 auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1623 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1624 return nullptr;
1626 // As for Op1 above, don't try to fold a GEP into itself.
1627 if (Op2 == &GEP)
1628 return nullptr;
1630 // Keep track of the type as we walk the GEP.
1631 Type *CurTy = nullptr;
1633 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1634 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1635 return nullptr;
1637 if (Op1->getOperand(J) != Op2->getOperand(J)) {
1638 if (DI == -1) {
1639 // We have not seen any differences yet in the GEPs feeding the
1640 // PHI yet, so we record this one if it is allowed to be a
1641 // variable.
1643 // The first two arguments can vary for any GEP, the rest have to be
1644 // static for struct slots
1645 if (J > 1 && CurTy->isStructTy())
1646 return nullptr;
1648 DI = J;
1649 } else {
1650 // The GEP is different by more than one input. While this could be
1651 // extended to support GEPs that vary by more than one variable it
1652 // doesn't make sense since it greatly increases the complexity and
1653 // would result in an R+R+R addressing mode which no backend
1654 // directly supports and would need to be broken into several
1655 // simpler instructions anyway.
1656 return nullptr;
1660 // Sink down a layer of the type for the next iteration.
1661 if (J > 0) {
1662 if (J == 1) {
1663 CurTy = Op1->getSourceElementType();
1664 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) {
1665 CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1666 } else {
1667 CurTy = nullptr;
1673 // If not all GEPs are identical we'll have to create a new PHI node.
1674 // Check that the old PHI node has only one use so that it will get
1675 // removed.
1676 if (DI != -1 && !PN->hasOneUse())
1677 return nullptr;
1679 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1680 if (DI == -1) {
1681 // All the GEPs feeding the PHI are identical. Clone one down into our
1682 // BB so that it can be merged with the current GEP.
1683 GEP.getParent()->getInstList().insert(
1684 GEP.getParent()->getFirstInsertionPt(), NewGEP);
1685 } else {
1686 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1687 // into the current block so it can be merged, and create a new PHI to
1688 // set that index.
1689 PHINode *NewPN;
1691 IRBuilderBase::InsertPointGuard Guard(Builder);
1692 Builder.SetInsertPoint(PN);
1693 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
1694 PN->getNumOperands());
1697 for (auto &I : PN->operands())
1698 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1699 PN->getIncomingBlock(I));
1701 NewGEP->setOperand(DI, NewPN);
1702 GEP.getParent()->getInstList().insert(
1703 GEP.getParent()->getFirstInsertionPt(), NewGEP);
1704 NewGEP->setOperand(DI, NewPN);
1707 GEP.setOperand(0, NewGEP);
1708 PtrOp = NewGEP;
1711 // Combine Indices - If the source pointer to this getelementptr instruction
1712 // is a getelementptr instruction, combine the indices of the two
1713 // getelementptr instructions into a single instruction.
1714 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
1715 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1716 return nullptr;
1718 // Try to reassociate loop invariant GEP chains to enable LICM.
1719 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1720 Src->hasOneUse()) {
1721 if (Loop *L = LI->getLoopFor(GEP.getParent())) {
1722 Value *GO1 = GEP.getOperand(1);
1723 Value *SO1 = Src->getOperand(1);
1724 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1725 // invariant: this breaks the dependence between GEPs and allows LICM
1726 // to hoist the invariant part out of the loop.
1727 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
1728 // We have to be careful here.
1729 // We have something like:
1730 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1731 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1732 // If we just swap idx & idx2 then we could inadvertantly
1733 // change %src from a vector to a scalar, or vice versa.
1734 // Cases:
1735 // 1) %base a scalar & idx a scalar & idx2 a vector
1736 // => Swapping idx & idx2 turns %src into a vector type.
1737 // 2) %base a scalar & idx a vector & idx2 a scalar
1738 // => Swapping idx & idx2 turns %src in a scalar type
1739 // 3) %base, %idx, and %idx2 are scalars
1740 // => %src & %gep are scalars
1741 // => swapping idx & idx2 is safe
1742 // 4) %base a vector
1743 // => %src is a vector
1744 // => swapping idx & idx2 is safe.
1745 auto *SO0 = Src->getOperand(0);
1746 auto *SO0Ty = SO0->getType();
1747 if (!isa<VectorType>(GEPType) || // case 3
1748 isa<VectorType>(SO0Ty)) { // case 4
1749 Src->setOperand(1, GO1);
1750 GEP.setOperand(1, SO1);
1751 return &GEP;
1752 } else {
1753 // Case 1 or 2
1754 // -- have to recreate %src & %gep
1755 // put NewSrc at same location as %src
1756 Builder.SetInsertPoint(cast<Instruction>(PtrOp));
1757 auto *NewSrc = cast<GetElementPtrInst>(
1758 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
1759 NewSrc->setIsInBounds(Src->isInBounds());
1760 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
1761 NewGEP->setIsInBounds(GEP.isInBounds());
1762 return NewGEP;
1768 // Note that if our source is a gep chain itself then we wait for that
1769 // chain to be resolved before we perform this transformation. This
1770 // avoids us creating a TON of code in some cases.
1771 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
1772 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1773 return nullptr; // Wait until our source is folded to completion.
1775 SmallVector<Value*, 8> Indices;
1777 // Find out whether the last index in the source GEP is a sequential idx.
1778 bool EndsWithSequential = false;
1779 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1780 I != E; ++I)
1781 EndsWithSequential = I.isSequential();
1783 // Can we combine the two pointer arithmetics offsets?
1784 if (EndsWithSequential) {
1785 // Replace: gep (gep %P, long B), long A, ...
1786 // With: T = long A+B; gep %P, T, ...
1787 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1788 Value *GO1 = GEP.getOperand(1);
1790 // If they aren't the same type, then the input hasn't been processed
1791 // by the loop above yet (which canonicalizes sequential index types to
1792 // intptr_t). Just avoid transforming this until the input has been
1793 // normalized.
1794 if (SO1->getType() != GO1->getType())
1795 return nullptr;
1797 Value *Sum =
1798 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
1799 // Only do the combine when we are sure the cost after the
1800 // merge is never more than that before the merge.
1801 if (Sum == nullptr)
1802 return nullptr;
1804 // Update the GEP in place if possible.
1805 if (Src->getNumOperands() == 2) {
1806 GEP.setOperand(0, Src->getOperand(0));
1807 GEP.setOperand(1, Sum);
1808 return &GEP;
1810 Indices.append(Src->op_begin()+1, Src->op_end()-1);
1811 Indices.push_back(Sum);
1812 Indices.append(GEP.op_begin()+2, GEP.op_end());
1813 } else if (isa<Constant>(*GEP.idx_begin()) &&
1814 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1815 Src->getNumOperands() != 1) {
1816 // Otherwise we can do the fold if the first index of the GEP is a zero
1817 Indices.append(Src->op_begin()+1, Src->op_end());
1818 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1821 if (!Indices.empty())
1822 return GEP.isInBounds() && Src->isInBounds()
1823 ? GetElementPtrInst::CreateInBounds(
1824 Src->getSourceElementType(), Src->getOperand(0), Indices,
1825 GEP.getName())
1826 : GetElementPtrInst::Create(Src->getSourceElementType(),
1827 Src->getOperand(0), Indices,
1828 GEP.getName());
1831 if (GEP.getNumIndices() == 1) {
1832 unsigned AS = GEP.getPointerAddressSpace();
1833 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1834 DL.getIndexSizeInBits(AS)) {
1835 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType);
1837 bool Matched = false;
1838 uint64_t C;
1839 Value *V = nullptr;
1840 if (TyAllocSize == 1) {
1841 V = GEP.getOperand(1);
1842 Matched = true;
1843 } else if (match(GEP.getOperand(1),
1844 m_AShr(m_Value(V), m_ConstantInt(C)))) {
1845 if (TyAllocSize == 1ULL << C)
1846 Matched = true;
1847 } else if (match(GEP.getOperand(1),
1848 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1849 if (TyAllocSize == C)
1850 Matched = true;
1853 if (Matched) {
1854 // Canonicalize (gep i8* X, -(ptrtoint Y))
1855 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1856 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1857 // pointer arithmetic.
1858 if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1859 Operator *Index = cast<Operator>(V);
1860 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
1861 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
1862 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
1864 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1865 // to (bitcast Y)
1866 Value *Y;
1867 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1868 m_PtrToInt(m_Specific(GEP.getOperand(0))))))
1869 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
1874 // We do not handle pointer-vector geps here.
1875 if (GEPType->isVectorTy())
1876 return nullptr;
1878 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1879 Value *StrippedPtr = PtrOp->stripPointerCasts();
1880 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
1882 if (StrippedPtr != PtrOp) {
1883 bool HasZeroPointerIndex = false;
1884 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
1886 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1887 HasZeroPointerIndex = C->isZero();
1889 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1890 // into : GEP [10 x i8]* X, i32 0, ...
1892 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1893 // into : GEP i8* X, ...
1895 // This occurs when the program declares an array extern like "int X[];"
1896 if (HasZeroPointerIndex) {
1897 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
1898 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1899 if (CATy->getElementType() == StrippedPtrEltTy) {
1900 // -> GEP i8* X, ...
1901 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1902 GetElementPtrInst *Res = GetElementPtrInst::Create(
1903 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
1904 Res->setIsInBounds(GEP.isInBounds());
1905 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1906 return Res;
1907 // Insert Res, and create an addrspacecast.
1908 // e.g.,
1909 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1910 // ->
1911 // %0 = GEP i8 addrspace(1)* X, ...
1912 // addrspacecast i8 addrspace(1)* %0 to i8*
1913 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
1916 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
1917 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1918 if (CATy->getElementType() == XATy->getElementType()) {
1919 // -> GEP [10 x i8]* X, i32 0, ...
1920 // At this point, we know that the cast source type is a pointer
1921 // to an array of the same type as the destination pointer
1922 // array. Because the array type is never stepped over (there
1923 // is a leading zero) we can fold the cast into this GEP.
1924 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1925 GEP.setOperand(0, StrippedPtr);
1926 GEP.setSourceElementType(XATy);
1927 return &GEP;
1929 // Cannot replace the base pointer directly because StrippedPtr's
1930 // address space is different. Instead, create a new GEP followed by
1931 // an addrspacecast.
1932 // e.g.,
1933 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1934 // i32 0, ...
1935 // ->
1936 // %0 = GEP [10 x i8] addrspace(1)* X, ...
1937 // addrspacecast i8 addrspace(1)* %0 to i8*
1938 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1939 Value *NewGEP =
1940 GEP.isInBounds()
1941 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
1942 Idx, GEP.getName())
1943 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
1944 GEP.getName());
1945 return new AddrSpaceCastInst(NewGEP, GEPType);
1949 } else if (GEP.getNumOperands() == 2) {
1950 // Transform things like:
1951 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1952 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1953 if (StrippedPtrEltTy->isArrayTy() &&
1954 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
1955 DL.getTypeAllocSize(GEPEltType)) {
1956 Type *IdxType = DL.getIndexType(GEPType);
1957 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1958 Value *NewGEP =
1959 GEP.isInBounds()
1960 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
1961 GEP.getName())
1962 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
1963 GEP.getName());
1965 // V and GEP are both pointer types --> BitCast
1966 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
1969 // Transform things like:
1970 // %V = mul i64 %N, 4
1971 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1972 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
1973 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
1974 // Check that changing the type amounts to dividing the index by a scale
1975 // factor.
1976 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
1977 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy);
1978 if (ResSize && SrcSize % ResSize == 0) {
1979 Value *Idx = GEP.getOperand(1);
1980 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1981 uint64_t Scale = SrcSize / ResSize;
1983 // Earlier transforms ensure that the index has the right type
1984 // according to Data Layout, which considerably simplifies the
1985 // logic by eliminating implicit casts.
1986 assert(Idx->getType() == DL.getIndexType(GEPType) &&
1987 "Index type does not match the Data Layout preferences");
1989 bool NSW;
1990 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1991 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1992 // If the multiplication NewIdx * Scale may overflow then the new
1993 // GEP may not be "inbounds".
1994 Value *NewGEP =
1995 GEP.isInBounds() && NSW
1996 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
1997 NewIdx, GEP.getName())
1998 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
1999 GEP.getName());
2001 // The NewGEP must be pointer typed, so must the old one -> BitCast
2002 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2003 GEPType);
2008 // Similarly, transform things like:
2009 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2010 // (where tmp = 8*tmp2) into:
2011 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2012 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2013 StrippedPtrEltTy->isArrayTy()) {
2014 // Check that changing to the array element type amounts to dividing the
2015 // index by a scale factor.
2016 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
2017 uint64_t ArrayEltSize =
2018 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType());
2019 if (ResSize && ArrayEltSize % ResSize == 0) {
2020 Value *Idx = GEP.getOperand(1);
2021 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2022 uint64_t Scale = ArrayEltSize / ResSize;
2024 // Earlier transforms ensure that the index has the right type
2025 // according to the Data Layout, which considerably simplifies
2026 // the logic by eliminating implicit casts.
2027 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2028 "Index type does not match the Data Layout preferences");
2030 bool NSW;
2031 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2032 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2033 // If the multiplication NewIdx * Scale may overflow then the new
2034 // GEP may not be "inbounds".
2035 Type *IndTy = DL.getIndexType(GEPType);
2036 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2038 Value *NewGEP =
2039 GEP.isInBounds() && NSW
2040 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2041 Off, GEP.getName())
2042 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2043 GEP.getName());
2044 // The NewGEP must be pointer typed, so must the old one -> BitCast
2045 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2046 GEPType);
2053 // addrspacecast between types is canonicalized as a bitcast, then an
2054 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2055 // through the addrspacecast.
2056 Value *ASCStrippedPtrOp = PtrOp;
2057 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2058 // X = bitcast A addrspace(1)* to B addrspace(1)*
2059 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2060 // Z = gep Y, <...constant indices...>
2061 // Into an addrspacecasted GEP of the struct.
2062 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2063 ASCStrippedPtrOp = BC;
2066 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2067 Value *SrcOp = BCI->getOperand(0);
2068 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2069 Type *SrcEltType = SrcType->getElementType();
2071 // GEP directly using the source operand if this GEP is accessing an element
2072 // of a bitcasted pointer to vector or array of the same dimensions:
2073 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2074 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2075 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) {
2076 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() &&
2077 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements();
2079 if (GEP.getNumOperands() == 3 &&
2080 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
2081 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) ||
2082 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
2083 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) {
2085 // Create a new GEP here, as using `setOperand()` followed by
2086 // `setSourceElementType()` won't actually update the type of the
2087 // existing GEP Value. Causing issues if this Value is accessed when
2088 // constructing an AddrSpaceCastInst
2089 Value *NGEP =
2090 GEP.isInBounds()
2091 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2092 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2093 NGEP->takeName(&GEP);
2095 // Preserve GEP address space to satisfy users
2096 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2097 return new AddrSpaceCastInst(NGEP, GEPType);
2099 return replaceInstUsesWith(GEP, NGEP);
2102 // See if we can simplify:
2103 // X = bitcast A* to B*
2104 // Y = gep X, <...constant indices...>
2105 // into a gep of the original struct. This is important for SROA and alias
2106 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2107 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2108 APInt Offset(OffsetBits, 0);
2109 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2110 // If this GEP instruction doesn't move the pointer, just replace the GEP
2111 // with a bitcast of the real input to the dest type.
2112 if (!Offset) {
2113 // If the bitcast is of an allocation, and the allocation will be
2114 // converted to match the type of the cast, don't touch this.
2115 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2116 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2117 if (Instruction *I = visitBitCast(*BCI)) {
2118 if (I != BCI) {
2119 I->takeName(BCI);
2120 BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2121 replaceInstUsesWith(*BCI, I);
2123 return &GEP;
2127 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2128 return new AddrSpaceCastInst(SrcOp, GEPType);
2129 return new BitCastInst(SrcOp, GEPType);
2132 // Otherwise, if the offset is non-zero, we need to find out if there is a
2133 // field at Offset in 'A's type. If so, we can pull the cast through the
2134 // GEP.
2135 SmallVector<Value*, 8> NewIndices;
2136 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2137 Value *NGEP =
2138 GEP.isInBounds()
2139 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2140 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2142 if (NGEP->getType() == GEPType)
2143 return replaceInstUsesWith(GEP, NGEP);
2144 NGEP->takeName(&GEP);
2146 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2147 return new AddrSpaceCastInst(NGEP, GEPType);
2148 return new BitCastInst(NGEP, GEPType);
2153 if (!GEP.isInBounds()) {
2154 unsigned IdxWidth =
2155 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2156 APInt BasePtrOffset(IdxWidth, 0);
2157 Value *UnderlyingPtrOp =
2158 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2159 BasePtrOffset);
2160 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2161 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2162 BasePtrOffset.isNonNegative()) {
2163 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
2164 if (BasePtrOffset.ule(AllocSize)) {
2165 return GetElementPtrInst::CreateInBounds(
2166 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2167 GEP.getName());
2173 return nullptr;
2176 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2177 Instruction *AI) {
2178 if (isa<ConstantPointerNull>(V))
2179 return true;
2180 if (auto *LI = dyn_cast<LoadInst>(V))
2181 return isa<GlobalVariable>(LI->getPointerOperand());
2182 // Two distinct allocations will never be equal.
2183 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2184 // through bitcasts of V can cause
2185 // the result statement below to be true, even when AI and V (ex:
2186 // i8* ->i32* ->i8* of AI) are the same allocations.
2187 return isAllocLikeFn(V, TLI) && V != AI;
2190 static bool isAllocSiteRemovable(Instruction *AI,
2191 SmallVectorImpl<WeakTrackingVH> &Users,
2192 const TargetLibraryInfo *TLI) {
2193 SmallVector<Instruction*, 4> Worklist;
2194 Worklist.push_back(AI);
2196 do {
2197 Instruction *PI = Worklist.pop_back_val();
2198 for (User *U : PI->users()) {
2199 Instruction *I = cast<Instruction>(U);
2200 switch (I->getOpcode()) {
2201 default:
2202 // Give up the moment we see something we can't handle.
2203 return false;
2205 case Instruction::AddrSpaceCast:
2206 case Instruction::BitCast:
2207 case Instruction::GetElementPtr:
2208 Users.emplace_back(I);
2209 Worklist.push_back(I);
2210 continue;
2212 case Instruction::ICmp: {
2213 ICmpInst *ICI = cast<ICmpInst>(I);
2214 // We can fold eq/ne comparisons with null to false/true, respectively.
2215 // We also fold comparisons in some conditions provided the alloc has
2216 // not escaped (see isNeverEqualToUnescapedAlloc).
2217 if (!ICI->isEquality())
2218 return false;
2219 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2220 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2221 return false;
2222 Users.emplace_back(I);
2223 continue;
2226 case Instruction::Call:
2227 // Ignore no-op and store intrinsics.
2228 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2229 switch (II->getIntrinsicID()) {
2230 default:
2231 return false;
2233 case Intrinsic::memmove:
2234 case Intrinsic::memcpy:
2235 case Intrinsic::memset: {
2236 MemIntrinsic *MI = cast<MemIntrinsic>(II);
2237 if (MI->isVolatile() || MI->getRawDest() != PI)
2238 return false;
2239 LLVM_FALLTHROUGH;
2241 case Intrinsic::invariant_start:
2242 case Intrinsic::invariant_end:
2243 case Intrinsic::lifetime_start:
2244 case Intrinsic::lifetime_end:
2245 case Intrinsic::objectsize:
2246 Users.emplace_back(I);
2247 continue;
2251 if (isFreeCall(I, TLI)) {
2252 Users.emplace_back(I);
2253 continue;
2255 return false;
2257 case Instruction::Store: {
2258 StoreInst *SI = cast<StoreInst>(I);
2259 if (SI->isVolatile() || SI->getPointerOperand() != PI)
2260 return false;
2261 Users.emplace_back(I);
2262 continue;
2265 llvm_unreachable("missing a return?");
2267 } while (!Worklist.empty());
2268 return true;
2271 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
2272 // If we have a malloc call which is only used in any amount of comparisons to
2273 // null and free calls, delete the calls and replace the comparisons with true
2274 // or false as appropriate.
2276 // This is based on the principle that we can substitute our own allocation
2277 // function (which will never return null) rather than knowledge of the
2278 // specific function being called. In some sense this can change the permitted
2279 // outputs of a program (when we convert a malloc to an alloca, the fact that
2280 // the allocation is now on the stack is potentially visible, for example),
2281 // but we believe in a permissible manner.
2282 SmallVector<WeakTrackingVH, 64> Users;
2284 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2285 // before each store.
2286 TinyPtrVector<DbgVariableIntrinsic *> DIIs;
2287 std::unique_ptr<DIBuilder> DIB;
2288 if (isa<AllocaInst>(MI)) {
2289 DIIs = FindDbgAddrUses(&MI);
2290 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2293 if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2294 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2295 // Lowering all @llvm.objectsize calls first because they may
2296 // use a bitcast/GEP of the alloca we are removing.
2297 if (!Users[i])
2298 continue;
2300 Instruction *I = cast<Instruction>(&*Users[i]);
2302 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2303 if (II->getIntrinsicID() == Intrinsic::objectsize) {
2304 Value *Result =
2305 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2306 replaceInstUsesWith(*I, Result);
2307 eraseInstFromFunction(*I);
2308 Users[i] = nullptr; // Skip examining in the next loop.
2312 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2313 if (!Users[i])
2314 continue;
2316 Instruction *I = cast<Instruction>(&*Users[i]);
2318 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2319 replaceInstUsesWith(*C,
2320 ConstantInt::get(Type::getInt1Ty(C->getContext()),
2321 C->isFalseWhenEqual()));
2322 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) ||
2323 isa<AddrSpaceCastInst>(I)) {
2324 replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2325 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2326 for (auto *DII : DIIs)
2327 ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
2329 eraseInstFromFunction(*I);
2332 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2333 // Replace invoke with a NOP intrinsic to maintain the original CFG
2334 Module *M = II->getModule();
2335 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2336 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2337 None, "", II->getParent());
2340 for (auto *DII : DIIs)
2341 eraseInstFromFunction(*DII);
2343 return eraseInstFromFunction(MI);
2345 return nullptr;
2348 /// Move the call to free before a NULL test.
2350 /// Check if this free is accessed after its argument has been test
2351 /// against NULL (property 0).
2352 /// If yes, it is legal to move this call in its predecessor block.
2354 /// The move is performed only if the block containing the call to free
2355 /// will be removed, i.e.:
2356 /// 1. it has only one predecessor P, and P has two successors
2357 /// 2. it contains the call, noops, and an unconditional branch
2358 /// 3. its successor is the same as its predecessor's successor
2360 /// The profitability is out-of concern here and this function should
2361 /// be called only if the caller knows this transformation would be
2362 /// profitable (e.g., for code size).
2363 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2364 const DataLayout &DL) {
2365 Value *Op = FI.getArgOperand(0);
2366 BasicBlock *FreeInstrBB = FI.getParent();
2367 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2369 // Validate part of constraint #1: Only one predecessor
2370 // FIXME: We can extend the number of predecessor, but in that case, we
2371 // would duplicate the call to free in each predecessor and it may
2372 // not be profitable even for code size.
2373 if (!PredBB)
2374 return nullptr;
2376 // Validate constraint #2: Does this block contains only the call to
2377 // free, noops, and an unconditional branch?
2378 BasicBlock *SuccBB;
2379 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2380 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2381 return nullptr;
2383 // If there are only 2 instructions in the block, at this point,
2384 // this is the call to free and unconditional.
2385 // If there are more than 2 instructions, check that they are noops
2386 // i.e., they won't hurt the performance of the generated code.
2387 if (FreeInstrBB->size() != 2) {
2388 for (const Instruction &Inst : *FreeInstrBB) {
2389 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2390 continue;
2391 auto *Cast = dyn_cast<CastInst>(&Inst);
2392 if (!Cast || !Cast->isNoopCast(DL))
2393 return nullptr;
2396 // Validate the rest of constraint #1 by matching on the pred branch.
2397 Instruction *TI = PredBB->getTerminator();
2398 BasicBlock *TrueBB, *FalseBB;
2399 ICmpInst::Predicate Pred;
2400 if (!match(TI, m_Br(m_ICmp(Pred,
2401 m_CombineOr(m_Specific(Op),
2402 m_Specific(Op->stripPointerCasts())),
2403 m_Zero()),
2404 TrueBB, FalseBB)))
2405 return nullptr;
2406 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2407 return nullptr;
2409 // Validate constraint #3: Ensure the null case just falls through.
2410 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2411 return nullptr;
2412 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2413 "Broken CFG: missing edge from predecessor to successor");
2415 // At this point, we know that everything in FreeInstrBB can be moved
2416 // before TI.
2417 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2418 It != End;) {
2419 Instruction &Instr = *It++;
2420 if (&Instr == FreeInstrBBTerminator)
2421 break;
2422 Instr.moveBefore(TI);
2424 assert(FreeInstrBB->size() == 1 &&
2425 "Only the branch instruction should remain");
2426 return &FI;
2429 Instruction *InstCombiner::visitFree(CallInst &FI) {
2430 Value *Op = FI.getArgOperand(0);
2432 // free undef -> unreachable.
2433 if (isa<UndefValue>(Op)) {
2434 // Insert a new store to null because we cannot modify the CFG here.
2435 Builder.CreateStore(ConstantInt::getTrue(FI.getContext()),
2436 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
2437 return eraseInstFromFunction(FI);
2440 // If we have 'free null' delete the instruction. This can happen in stl code
2441 // when lots of inlining happens.
2442 if (isa<ConstantPointerNull>(Op))
2443 return eraseInstFromFunction(FI);
2445 // If we optimize for code size, try to move the call to free before the null
2446 // test so that simplify cfg can remove the empty block and dead code
2447 // elimination the branch. I.e., helps to turn something like:
2448 // if (foo) free(foo);
2449 // into
2450 // free(foo);
2451 if (MinimizeSize)
2452 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2453 return I;
2455 return nullptr;
2458 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2459 if (RI.getNumOperands() == 0) // ret void
2460 return nullptr;
2462 Value *ResultOp = RI.getOperand(0);
2463 Type *VTy = ResultOp->getType();
2464 if (!VTy->isIntegerTy())
2465 return nullptr;
2467 // There might be assume intrinsics dominating this return that completely
2468 // determine the value. If so, constant fold it.
2469 KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2470 if (Known.isConstant())
2471 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant()));
2473 return nullptr;
2476 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2477 // Change br (not X), label True, label False to: br X, label False, True
2478 Value *X = nullptr;
2479 BasicBlock *TrueDest;
2480 BasicBlock *FalseDest;
2481 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
2482 !isa<Constant>(X)) {
2483 // Swap Destinations and condition...
2484 BI.setCondition(X);
2485 BI.swapSuccessors();
2486 return &BI;
2489 // If the condition is irrelevant, remove the use so that other
2490 // transforms on the condition become more effective.
2491 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) &&
2492 BI.getSuccessor(0) == BI.getSuccessor(1)) {
2493 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType()));
2494 return &BI;
2497 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
2498 CmpInst::Predicate Pred;
2499 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest,
2500 FalseDest)) &&
2501 !isCanonicalPredicate(Pred)) {
2502 // Swap destinations and condition.
2503 CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2504 Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2505 BI.swapSuccessors();
2506 Worklist.Add(Cond);
2507 return &BI;
2510 return nullptr;
2513 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2514 Value *Cond = SI.getCondition();
2515 Value *Op0;
2516 ConstantInt *AddRHS;
2517 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2518 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2519 for (auto Case : SI.cases()) {
2520 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2521 assert(isa<ConstantInt>(NewCase) &&
2522 "Result of expression should be constant");
2523 Case.setValue(cast<ConstantInt>(NewCase));
2525 SI.setCondition(Op0);
2526 return &SI;
2529 KnownBits Known = computeKnownBits(Cond, 0, &SI);
2530 unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2531 unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2533 // Compute the number of leading bits we can ignore.
2534 // TODO: A better way to determine this would use ComputeNumSignBits().
2535 for (auto &C : SI.cases()) {
2536 LeadingKnownZeros = std::min(
2537 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2538 LeadingKnownOnes = std::min(
2539 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2542 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2544 // Shrink the condition operand if the new type is smaller than the old type.
2545 // But do not shrink to a non-standard type, because backend can't generate
2546 // good code for that yet.
2547 // TODO: We can make it aggressive again after fixing PR39569.
2548 if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2549 shouldChangeType(Known.getBitWidth(), NewWidth)) {
2550 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2551 Builder.SetInsertPoint(&SI);
2552 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2553 SI.setCondition(NewCond);
2555 for (auto Case : SI.cases()) {
2556 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2557 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2559 return &SI;
2562 return nullptr;
2565 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2566 Value *Agg = EV.getAggregateOperand();
2568 if (!EV.hasIndices())
2569 return replaceInstUsesWith(EV, Agg);
2571 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2572 SQ.getWithInstruction(&EV)))
2573 return replaceInstUsesWith(EV, V);
2575 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2576 // We're extracting from an insertvalue instruction, compare the indices
2577 const unsigned *exti, *exte, *insi, *inse;
2578 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2579 exte = EV.idx_end(), inse = IV->idx_end();
2580 exti != exte && insi != inse;
2581 ++exti, ++insi) {
2582 if (*insi != *exti)
2583 // The insert and extract both reference distinctly different elements.
2584 // This means the extract is not influenced by the insert, and we can
2585 // replace the aggregate operand of the extract with the aggregate
2586 // operand of the insert. i.e., replace
2587 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2588 // %E = extractvalue { i32, { i32 } } %I, 0
2589 // with
2590 // %E = extractvalue { i32, { i32 } } %A, 0
2591 return ExtractValueInst::Create(IV->getAggregateOperand(),
2592 EV.getIndices());
2594 if (exti == exte && insi == inse)
2595 // Both iterators are at the end: Index lists are identical. Replace
2596 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2597 // %C = extractvalue { i32, { i32 } } %B, 1, 0
2598 // with "i32 42"
2599 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2600 if (exti == exte) {
2601 // The extract list is a prefix of the insert list. i.e. replace
2602 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2603 // %E = extractvalue { i32, { i32 } } %I, 1
2604 // with
2605 // %X = extractvalue { i32, { i32 } } %A, 1
2606 // %E = insertvalue { i32 } %X, i32 42, 0
2607 // by switching the order of the insert and extract (though the
2608 // insertvalue should be left in, since it may have other uses).
2609 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
2610 EV.getIndices());
2611 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2612 makeArrayRef(insi, inse));
2614 if (insi == inse)
2615 // The insert list is a prefix of the extract list
2616 // We can simply remove the common indices from the extract and make it
2617 // operate on the inserted value instead of the insertvalue result.
2618 // i.e., replace
2619 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2620 // %E = extractvalue { i32, { i32 } } %I, 1, 0
2621 // with
2622 // %E extractvalue { i32 } { i32 42 }, 0
2623 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2624 makeArrayRef(exti, exte));
2626 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2627 // We're extracting from an intrinsic, see if we're the only user, which
2628 // allows us to simplify multiple result intrinsics to simpler things that
2629 // just get one value.
2630 if (II->hasOneUse()) {
2631 // Check if we're grabbing the overflow bit or the result of a 'with
2632 // overflow' intrinsic. If it's the latter we can remove the intrinsic
2633 // and replace it with a traditional binary instruction.
2634 switch (II->getIntrinsicID()) {
2635 case Intrinsic::uadd_with_overflow:
2636 case Intrinsic::sadd_with_overflow:
2637 if (*EV.idx_begin() == 0) { // Normal result.
2638 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2639 replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2640 eraseInstFromFunction(*II);
2641 return BinaryOperator::CreateAdd(LHS, RHS);
2644 // If the normal result of the add is dead, and the RHS is a constant,
2645 // we can transform this into a range comparison.
2646 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
2647 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2648 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2649 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2650 ConstantExpr::getNot(CI));
2651 break;
2652 case Intrinsic::usub_with_overflow:
2653 case Intrinsic::ssub_with_overflow:
2654 if (*EV.idx_begin() == 0) { // Normal result.
2655 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2656 replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2657 eraseInstFromFunction(*II);
2658 return BinaryOperator::CreateSub(LHS, RHS);
2660 break;
2661 case Intrinsic::umul_with_overflow:
2662 case Intrinsic::smul_with_overflow:
2663 if (*EV.idx_begin() == 0) { // Normal result.
2664 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2665 replaceInstUsesWith(*II, UndefValue::get(II->getType()));
2666 eraseInstFromFunction(*II);
2667 return BinaryOperator::CreateMul(LHS, RHS);
2669 break;
2670 default:
2671 break;
2675 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2676 // If the (non-volatile) load only has one use, we can rewrite this to a
2677 // load from a GEP. This reduces the size of the load. If a load is used
2678 // only by extractvalue instructions then this either must have been
2679 // optimized before, or it is a struct with padding, in which case we
2680 // don't want to do the transformation as it loses padding knowledge.
2681 if (L->isSimple() && L->hasOneUse()) {
2682 // extractvalue has integer indices, getelementptr has Value*s. Convert.
2683 SmallVector<Value*, 4> Indices;
2684 // Prefix an i32 0 since we need the first element.
2685 Indices.push_back(Builder.getInt32(0));
2686 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2687 I != E; ++I)
2688 Indices.push_back(Builder.getInt32(*I));
2690 // We need to insert these at the location of the old load, not at that of
2691 // the extractvalue.
2692 Builder.SetInsertPoint(L);
2693 Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
2694 L->getPointerOperand(), Indices);
2695 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
2696 // Whatever aliasing information we had for the orignal load must also
2697 // hold for the smaller load, so propagate the annotations.
2698 AAMDNodes Nodes;
2699 L->getAAMetadata(Nodes);
2700 NL->setAAMetadata(Nodes);
2701 // Returning the load directly will cause the main loop to insert it in
2702 // the wrong spot, so use replaceInstUsesWith().
2703 return replaceInstUsesWith(EV, NL);
2705 // We could simplify extracts from other values. Note that nested extracts may
2706 // already be simplified implicitly by the above: extract (extract (insert) )
2707 // will be translated into extract ( insert ( extract ) ) first and then just
2708 // the value inserted, if appropriate. Similarly for extracts from single-use
2709 // loads: extract (extract (load)) will be translated to extract (load (gep))
2710 // and if again single-use then via load (gep (gep)) to load (gep).
2711 // However, double extracts from e.g. function arguments or return values
2712 // aren't handled yet.
2713 return nullptr;
2716 /// Return 'true' if the given typeinfo will match anything.
2717 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2718 switch (Personality) {
2719 case EHPersonality::GNU_C:
2720 case EHPersonality::GNU_C_SjLj:
2721 case EHPersonality::Rust:
2722 // The GCC C EH and Rust personality only exists to support cleanups, so
2723 // it's not clear what the semantics of catch clauses are.
2724 return false;
2725 case EHPersonality::Unknown:
2726 return false;
2727 case EHPersonality::GNU_Ada:
2728 // While __gnat_all_others_value will match any Ada exception, it doesn't
2729 // match foreign exceptions (or didn't, before gcc-4.7).
2730 return false;
2731 case EHPersonality::GNU_CXX:
2732 case EHPersonality::GNU_CXX_SjLj:
2733 case EHPersonality::GNU_ObjC:
2734 case EHPersonality::MSVC_X86SEH:
2735 case EHPersonality::MSVC_Win64SEH:
2736 case EHPersonality::MSVC_CXX:
2737 case EHPersonality::CoreCLR:
2738 case EHPersonality::Wasm_CXX:
2739 return TypeInfo->isNullValue();
2741 llvm_unreachable("invalid enum");
2744 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2745 return
2746 cast<ArrayType>(LHS->getType())->getNumElements()
2748 cast<ArrayType>(RHS->getType())->getNumElements();
2751 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2752 // The logic here should be correct for any real-world personality function.
2753 // However if that turns out not to be true, the offending logic can always
2754 // be conditioned on the personality function, like the catch-all logic is.
2755 EHPersonality Personality =
2756 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
2758 // Simplify the list of clauses, eg by removing repeated catch clauses
2759 // (these are often created by inlining).
2760 bool MakeNewInstruction = false; // If true, recreate using the following:
2761 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2762 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
2764 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2765 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2766 bool isLastClause = i + 1 == e;
2767 if (LI.isCatch(i)) {
2768 // A catch clause.
2769 Constant *CatchClause = LI.getClause(i);
2770 Constant *TypeInfo = CatchClause->stripPointerCasts();
2772 // If we already saw this clause, there is no point in having a second
2773 // copy of it.
2774 if (AlreadyCaught.insert(TypeInfo).second) {
2775 // This catch clause was not already seen.
2776 NewClauses.push_back(CatchClause);
2777 } else {
2778 // Repeated catch clause - drop the redundant copy.
2779 MakeNewInstruction = true;
2782 // If this is a catch-all then there is no point in keeping any following
2783 // clauses or marking the landingpad as having a cleanup.
2784 if (isCatchAll(Personality, TypeInfo)) {
2785 if (!isLastClause)
2786 MakeNewInstruction = true;
2787 CleanupFlag = false;
2788 break;
2790 } else {
2791 // A filter clause. If any of the filter elements were already caught
2792 // then they can be dropped from the filter. It is tempting to try to
2793 // exploit the filter further by saying that any typeinfo that does not
2794 // occur in the filter can't be caught later (and thus can be dropped).
2795 // However this would be wrong, since typeinfos can match without being
2796 // equal (for example if one represents a C++ class, and the other some
2797 // class derived from it).
2798 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2799 Constant *FilterClause = LI.getClause(i);
2800 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2801 unsigned NumTypeInfos = FilterType->getNumElements();
2803 // An empty filter catches everything, so there is no point in keeping any
2804 // following clauses or marking the landingpad as having a cleanup. By
2805 // dealing with this case here the following code is made a bit simpler.
2806 if (!NumTypeInfos) {
2807 NewClauses.push_back(FilterClause);
2808 if (!isLastClause)
2809 MakeNewInstruction = true;
2810 CleanupFlag = false;
2811 break;
2814 bool MakeNewFilter = false; // If true, make a new filter.
2815 SmallVector<Constant *, 16> NewFilterElts; // New elements.
2816 if (isa<ConstantAggregateZero>(FilterClause)) {
2817 // Not an empty filter - it contains at least one null typeinfo.
2818 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2819 Constant *TypeInfo =
2820 Constant::getNullValue(FilterType->getElementType());
2821 // If this typeinfo is a catch-all then the filter can never match.
2822 if (isCatchAll(Personality, TypeInfo)) {
2823 // Throw the filter away.
2824 MakeNewInstruction = true;
2825 continue;
2828 // There is no point in having multiple copies of this typeinfo, so
2829 // discard all but the first copy if there is more than one.
2830 NewFilterElts.push_back(TypeInfo);
2831 if (NumTypeInfos > 1)
2832 MakeNewFilter = true;
2833 } else {
2834 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2835 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2836 NewFilterElts.reserve(NumTypeInfos);
2838 // Remove any filter elements that were already caught or that already
2839 // occurred in the filter. While there, see if any of the elements are
2840 // catch-alls. If so, the filter can be discarded.
2841 bool SawCatchAll = false;
2842 for (unsigned j = 0; j != NumTypeInfos; ++j) {
2843 Constant *Elt = Filter->getOperand(j);
2844 Constant *TypeInfo = Elt->stripPointerCasts();
2845 if (isCatchAll(Personality, TypeInfo)) {
2846 // This element is a catch-all. Bail out, noting this fact.
2847 SawCatchAll = true;
2848 break;
2851 // Even if we've seen a type in a catch clause, we don't want to
2852 // remove it from the filter. An unexpected type handler may be
2853 // set up for a call site which throws an exception of the same
2854 // type caught. In order for the exception thrown by the unexpected
2855 // handler to propagate correctly, the filter must be correctly
2856 // described for the call site.
2858 // Example:
2860 // void unexpected() { throw 1;}
2861 // void foo() throw (int) {
2862 // std::set_unexpected(unexpected);
2863 // try {
2864 // throw 2.0;
2865 // } catch (int i) {}
2866 // }
2868 // There is no point in having multiple copies of the same typeinfo in
2869 // a filter, so only add it if we didn't already.
2870 if (SeenInFilter.insert(TypeInfo).second)
2871 NewFilterElts.push_back(cast<Constant>(Elt));
2873 // A filter containing a catch-all cannot match anything by definition.
2874 if (SawCatchAll) {
2875 // Throw the filter away.
2876 MakeNewInstruction = true;
2877 continue;
2880 // If we dropped something from the filter, make a new one.
2881 if (NewFilterElts.size() < NumTypeInfos)
2882 MakeNewFilter = true;
2884 if (MakeNewFilter) {
2885 FilterType = ArrayType::get(FilterType->getElementType(),
2886 NewFilterElts.size());
2887 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2888 MakeNewInstruction = true;
2891 NewClauses.push_back(FilterClause);
2893 // If the new filter is empty then it will catch everything so there is
2894 // no point in keeping any following clauses or marking the landingpad
2895 // as having a cleanup. The case of the original filter being empty was
2896 // already handled above.
2897 if (MakeNewFilter && !NewFilterElts.size()) {
2898 assert(MakeNewInstruction && "New filter but not a new instruction!");
2899 CleanupFlag = false;
2900 break;
2905 // If several filters occur in a row then reorder them so that the shortest
2906 // filters come first (those with the smallest number of elements). This is
2907 // advantageous because shorter filters are more likely to match, speeding up
2908 // unwinding, but mostly because it increases the effectiveness of the other
2909 // filter optimizations below.
2910 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2911 unsigned j;
2912 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2913 for (j = i; j != e; ++j)
2914 if (!isa<ArrayType>(NewClauses[j]->getType()))
2915 break;
2917 // Check whether the filters are already sorted by length. We need to know
2918 // if sorting them is actually going to do anything so that we only make a
2919 // new landingpad instruction if it does.
2920 for (unsigned k = i; k + 1 < j; ++k)
2921 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2922 // Not sorted, so sort the filters now. Doing an unstable sort would be
2923 // correct too but reordering filters pointlessly might confuse users.
2924 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2925 shorter_filter);
2926 MakeNewInstruction = true;
2927 break;
2930 // Look for the next batch of filters.
2931 i = j + 1;
2934 // If typeinfos matched if and only if equal, then the elements of a filter L
2935 // that occurs later than a filter F could be replaced by the intersection of
2936 // the elements of F and L. In reality two typeinfos can match without being
2937 // equal (for example if one represents a C++ class, and the other some class
2938 // derived from it) so it would be wrong to perform this transform in general.
2939 // However the transform is correct and useful if F is a subset of L. In that
2940 // case L can be replaced by F, and thus removed altogether since repeating a
2941 // filter is pointless. So here we look at all pairs of filters F and L where
2942 // L follows F in the list of clauses, and remove L if every element of F is
2943 // an element of L. This can occur when inlining C++ functions with exception
2944 // specifications.
2945 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2946 // Examine each filter in turn.
2947 Value *Filter = NewClauses[i];
2948 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2949 if (!FTy)
2950 // Not a filter - skip it.
2951 continue;
2952 unsigned FElts = FTy->getNumElements();
2953 // Examine each filter following this one. Doing this backwards means that
2954 // we don't have to worry about filters disappearing under us when removed.
2955 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2956 Value *LFilter = NewClauses[j];
2957 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2958 if (!LTy)
2959 // Not a filter - skip it.
2960 continue;
2961 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2962 // an element of LFilter, then discard LFilter.
2963 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
2964 // If Filter is empty then it is a subset of LFilter.
2965 if (!FElts) {
2966 // Discard LFilter.
2967 NewClauses.erase(J);
2968 MakeNewInstruction = true;
2969 // Move on to the next filter.
2970 continue;
2972 unsigned LElts = LTy->getNumElements();
2973 // If Filter is longer than LFilter then it cannot be a subset of it.
2974 if (FElts > LElts)
2975 // Move on to the next filter.
2976 continue;
2977 // At this point we know that LFilter has at least one element.
2978 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2979 // Filter is a subset of LFilter iff Filter contains only zeros (as we
2980 // already know that Filter is not longer than LFilter).
2981 if (isa<ConstantAggregateZero>(Filter)) {
2982 assert(FElts <= LElts && "Should have handled this case earlier!");
2983 // Discard LFilter.
2984 NewClauses.erase(J);
2985 MakeNewInstruction = true;
2987 // Move on to the next filter.
2988 continue;
2990 ConstantArray *LArray = cast<ConstantArray>(LFilter);
2991 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2992 // Since Filter is non-empty and contains only zeros, it is a subset of
2993 // LFilter iff LFilter contains a zero.
2994 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2995 for (unsigned l = 0; l != LElts; ++l)
2996 if (LArray->getOperand(l)->isNullValue()) {
2997 // LFilter contains a zero - discard it.
2998 NewClauses.erase(J);
2999 MakeNewInstruction = true;
3000 break;
3002 // Move on to the next filter.
3003 continue;
3005 // At this point we know that both filters are ConstantArrays. Loop over
3006 // operands to see whether every element of Filter is also an element of
3007 // LFilter. Since filters tend to be short this is probably faster than
3008 // using a method that scales nicely.
3009 ConstantArray *FArray = cast<ConstantArray>(Filter);
3010 bool AllFound = true;
3011 for (unsigned f = 0; f != FElts; ++f) {
3012 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3013 AllFound = false;
3014 for (unsigned l = 0; l != LElts; ++l) {
3015 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3016 if (LTypeInfo == FTypeInfo) {
3017 AllFound = true;
3018 break;
3021 if (!AllFound)
3022 break;
3024 if (AllFound) {
3025 // Discard LFilter.
3026 NewClauses.erase(J);
3027 MakeNewInstruction = true;
3029 // Move on to the next filter.
3033 // If we changed any of the clauses, replace the old landingpad instruction
3034 // with a new one.
3035 if (MakeNewInstruction) {
3036 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3037 NewClauses.size());
3038 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3039 NLI->addClause(NewClauses[i]);
3040 // A landing pad with no clauses must have the cleanup flag set. It is
3041 // theoretically possible, though highly unlikely, that we eliminated all
3042 // clauses. If so, force the cleanup flag to true.
3043 if (NewClauses.empty())
3044 CleanupFlag = true;
3045 NLI->setCleanup(CleanupFlag);
3046 return NLI;
3049 // Even if none of the clauses changed, we may nonetheless have understood
3050 // that the cleanup flag is pointless. Clear it if so.
3051 if (LI.isCleanup() != CleanupFlag) {
3052 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3053 LI.setCleanup(CleanupFlag);
3054 return &LI;
3057 return nullptr;
3060 /// Try to move the specified instruction from its current block into the
3061 /// beginning of DestBlock, which can only happen if it's safe to move the
3062 /// instruction past all of the instructions between it and the end of its
3063 /// block.
3064 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3065 assert(I->hasOneUse() && "Invariants didn't hold!");
3066 BasicBlock *SrcBlock = I->getParent();
3068 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3069 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3070 I->isTerminator())
3071 return false;
3073 // Do not sink static or dynamic alloca instructions. Static allocas must
3074 // remain in the entry block, and dynamic allocas must not be sunk in between
3075 // a stacksave / stackrestore pair, which would incorrectly shorten its
3076 // lifetime.
3077 if (isa<AllocaInst>(I))
3078 return false;
3080 // Do not sink into catchswitch blocks.
3081 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3082 return false;
3084 // Do not sink convergent call instructions.
3085 if (auto *CI = dyn_cast<CallInst>(I)) {
3086 if (CI->isConvergent())
3087 return false;
3089 // We can only sink load instructions if there is nothing between the load and
3090 // the end of block that could change the value.
3091 if (I->mayReadFromMemory()) {
3092 for (BasicBlock::iterator Scan = I->getIterator(),
3093 E = I->getParent()->end();
3094 Scan != E; ++Scan)
3095 if (Scan->mayWriteToMemory())
3096 return false;
3098 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3099 I->moveBefore(&*InsertPos);
3100 ++NumSunkInst;
3102 // Also sink all related debug uses from the source basic block. Otherwise we
3103 // get debug use before the def. Attempt to salvage debug uses first, to
3104 // maximise the range variables have location for. If we cannot salvage, then
3105 // mark the location undef: we know it was supposed to receive a new location
3106 // here, but that computation has been sunk.
3107 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3108 findDbgUsers(DbgUsers, I);
3109 for (auto *DII : reverse(DbgUsers)) {
3110 if (DII->getParent() == SrcBlock) {
3111 // dbg.value is in the same basic block as the sunk inst, see if we can
3112 // salvage it. Clone a new copy of the instruction: on success we need
3113 // both salvaged and unsalvaged copies.
3114 SmallVector<DbgVariableIntrinsic *, 1> TmpUser{
3115 cast<DbgVariableIntrinsic>(DII->clone())};
3117 if (!salvageDebugInfoForDbgValues(*I, TmpUser)) {
3118 // We are unable to salvage: sink the cloned dbg.value, and mark the
3119 // original as undef, terminating any earlier variable location.
3120 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n');
3121 TmpUser[0]->insertBefore(&*InsertPos);
3122 Value *Undef = UndefValue::get(I->getType());
3123 DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
3124 ValueAsMetadata::get(Undef)));
3125 } else {
3126 // We successfully salvaged: place the salvaged dbg.value in the
3127 // original location, and move the unmodified dbg.value to sink with
3128 // the sunk inst.
3129 TmpUser[0]->insertBefore(DII);
3130 DII->moveBefore(&*InsertPos);
3134 return true;
3137 bool InstCombiner::run() {
3138 while (!Worklist.isEmpty()) {
3139 Instruction *I = Worklist.RemoveOne();
3140 if (I == nullptr) continue; // skip null values.
3142 // Check to see if we can DCE the instruction.
3143 if (isInstructionTriviallyDead(I, &TLI)) {
3144 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
3145 eraseInstFromFunction(*I);
3146 ++NumDeadInst;
3147 MadeIRChange = true;
3148 continue;
3151 if (!DebugCounter::shouldExecute(VisitCounter))
3152 continue;
3154 // Instruction isn't dead, see if we can constant propagate it.
3155 if (!I->use_empty() &&
3156 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3157 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3158 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3159 << '\n');
3161 // Add operands to the worklist.
3162 replaceInstUsesWith(*I, C);
3163 ++NumConstProp;
3164 if (isInstructionTriviallyDead(I, &TLI))
3165 eraseInstFromFunction(*I);
3166 MadeIRChange = true;
3167 continue;
3171 // In general, it is possible for computeKnownBits to determine all bits in
3172 // a value even when the operands are not all constants.
3173 Type *Ty = I->getType();
3174 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
3175 KnownBits Known = computeKnownBits(I, /*Depth*/0, I);
3176 if (Known.isConstant()) {
3177 Constant *C = ConstantInt::get(Ty, Known.getConstant());
3178 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C
3179 << " from: " << *I << '\n');
3181 // Add operands to the worklist.
3182 replaceInstUsesWith(*I, C);
3183 ++NumConstProp;
3184 if (isInstructionTriviallyDead(I, &TLI))
3185 eraseInstFromFunction(*I);
3186 MadeIRChange = true;
3187 continue;
3191 // See if we can trivially sink this instruction to a successor basic block.
3192 if (EnableCodeSinking && I->hasOneUse()) {
3193 BasicBlock *BB = I->getParent();
3194 Instruction *UserInst = cast<Instruction>(*I->user_begin());
3195 BasicBlock *UserParent;
3197 // Get the block the use occurs in.
3198 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3199 UserParent = PN->getIncomingBlock(*I->use_begin());
3200 else
3201 UserParent = UserInst->getParent();
3203 if (UserParent != BB) {
3204 bool UserIsSuccessor = false;
3205 // See if the user is one of our successors.
3206 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
3207 if (*SI == UserParent) {
3208 UserIsSuccessor = true;
3209 break;
3212 // If the user is one of our immediate successors, and if that successor
3213 // only has us as a predecessors (we'd have to split the critical edge
3214 // otherwise), we can keep going.
3215 if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
3216 // Okay, the CFG is simple enough, try to sink this instruction.
3217 if (TryToSinkInstruction(I, UserParent)) {
3218 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3219 MadeIRChange = true;
3220 // We'll add uses of the sunk instruction below, but since sinking
3221 // can expose opportunities for it's *operands* add them to the
3222 // worklist
3223 for (Use &U : I->operands())
3224 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3225 Worklist.Add(OpI);
3231 // Now that we have an instruction, try combining it to simplify it.
3232 Builder.SetInsertPoint(I);
3233 Builder.SetCurrentDebugLocation(I->getDebugLoc());
3235 #ifndef NDEBUG
3236 std::string OrigI;
3237 #endif
3238 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3239 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3241 if (Instruction *Result = visit(*I)) {
3242 ++NumCombined;
3243 // Should we replace the old instruction with a new one?
3244 if (Result != I) {
3245 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3246 << " New = " << *Result << '\n');
3248 if (I->getDebugLoc())
3249 Result->setDebugLoc(I->getDebugLoc());
3250 // Everything uses the new instruction now.
3251 I->replaceAllUsesWith(Result);
3253 // Move the name to the new instruction first.
3254 Result->takeName(I);
3256 // Push the new instruction and any users onto the worklist.
3257 Worklist.AddUsersToWorkList(*Result);
3258 Worklist.Add(Result);
3260 // Insert the new instruction into the basic block...
3261 BasicBlock *InstParent = I->getParent();
3262 BasicBlock::iterator InsertPos = I->getIterator();
3264 // If we replace a PHI with something that isn't a PHI, fix up the
3265 // insertion point.
3266 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
3267 InsertPos = InstParent->getFirstInsertionPt();
3269 InstParent->getInstList().insert(InsertPos, Result);
3271 eraseInstFromFunction(*I);
3272 } else {
3273 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3274 << " New = " << *I << '\n');
3276 // If the instruction was modified, it's possible that it is now dead.
3277 // if so, remove it.
3278 if (isInstructionTriviallyDead(I, &TLI)) {
3279 eraseInstFromFunction(*I);
3280 } else {
3281 Worklist.AddUsersToWorkList(*I);
3282 Worklist.Add(I);
3285 MadeIRChange = true;
3289 Worklist.Zap();
3290 return MadeIRChange;
3293 /// Walk the function in depth-first order, adding all reachable code to the
3294 /// worklist.
3296 /// This has a couple of tricks to make the code faster and more powerful. In
3297 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3298 /// them to the worklist (this significantly speeds up instcombine on code where
3299 /// many instructions are dead or constant). Additionally, if we find a branch
3300 /// whose condition is a known constant, we only visit the reachable successors.
3301 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
3302 SmallPtrSetImpl<BasicBlock *> &Visited,
3303 InstCombineWorklist &ICWorklist,
3304 const TargetLibraryInfo *TLI) {
3305 bool MadeIRChange = false;
3306 SmallVector<BasicBlock*, 256> Worklist;
3307 Worklist.push_back(BB);
3309 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3310 DenseMap<Constant *, Constant *> FoldedConstants;
3312 do {
3313 BB = Worklist.pop_back_val();
3315 // We have now visited this block! If we've already been here, ignore it.
3316 if (!Visited.insert(BB).second)
3317 continue;
3319 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3320 Instruction *Inst = &*BBI++;
3322 // DCE instruction if trivially dead.
3323 if (isInstructionTriviallyDead(Inst, TLI)) {
3324 ++NumDeadInst;
3325 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3326 salvageDebugInfo(*Inst);
3327 Inst->eraseFromParent();
3328 MadeIRChange = true;
3329 continue;
3332 // ConstantProp instruction if trivially constant.
3333 if (!Inst->use_empty() &&
3334 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3335 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3336 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3337 << '\n');
3338 Inst->replaceAllUsesWith(C);
3339 ++NumConstProp;
3340 if (isInstructionTriviallyDead(Inst, TLI))
3341 Inst->eraseFromParent();
3342 MadeIRChange = true;
3343 continue;
3346 // See if we can constant fold its operands.
3347 for (Use &U : Inst->operands()) {
3348 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3349 continue;
3351 auto *C = cast<Constant>(U);
3352 Constant *&FoldRes = FoldedConstants[C];
3353 if (!FoldRes)
3354 FoldRes = ConstantFoldConstant(C, DL, TLI);
3355 if (!FoldRes)
3356 FoldRes = C;
3358 if (FoldRes != C) {
3359 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3360 << "\n Old = " << *C
3361 << "\n New = " << *FoldRes << '\n');
3362 U = FoldRes;
3363 MadeIRChange = true;
3367 // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3368 // consumes non-trivial amount of time and provides no value for the optimization.
3369 if (!isa<DbgInfoIntrinsic>(Inst))
3370 InstrsForInstCombineWorklist.push_back(Inst);
3373 // Recursively visit successors. If this is a branch or switch on a
3374 // constant, only visit the reachable successor.
3375 Instruction *TI = BB->getTerminator();
3376 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3377 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3378 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3379 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3380 Worklist.push_back(ReachableBB);
3381 continue;
3383 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3384 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3385 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3386 continue;
3390 for (BasicBlock *SuccBB : successors(TI))
3391 Worklist.push_back(SuccBB);
3392 } while (!Worklist.empty());
3394 // Once we've found all of the instructions to add to instcombine's worklist,
3395 // add them in reverse order. This way instcombine will visit from the top
3396 // of the function down. This jives well with the way that it adds all uses
3397 // of instructions to the worklist after doing a transformation, thus avoiding
3398 // some N^2 behavior in pathological cases.
3399 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
3401 return MadeIRChange;
3404 /// Populate the IC worklist from a function, and prune any dead basic
3405 /// blocks discovered in the process.
3407 /// This also does basic constant propagation and other forward fixing to make
3408 /// the combiner itself run much faster.
3409 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3410 TargetLibraryInfo *TLI,
3411 InstCombineWorklist &ICWorklist) {
3412 bool MadeIRChange = false;
3414 // Do a depth-first traversal of the function, populate the worklist with
3415 // the reachable instructions. Ignore blocks that are not reachable. Keep
3416 // track of which blocks we visit.
3417 SmallPtrSet<BasicBlock *, 32> Visited;
3418 MadeIRChange |=
3419 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
3421 // Do a quick scan over the function. If we find any blocks that are
3422 // unreachable, remove any instructions inside of them. This prevents
3423 // the instcombine code from having to deal with some bad special cases.
3424 for (BasicBlock &BB : F) {
3425 if (Visited.count(&BB))
3426 continue;
3428 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3429 MadeIRChange |= NumDeadInstInBB > 0;
3430 NumDeadInst += NumDeadInstInBB;
3433 return MadeIRChange;
3436 static bool combineInstructionsOverFunction(
3437 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3438 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
3439 OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true,
3440 LoopInfo *LI = nullptr) {
3441 auto &DL = F.getParent()->getDataLayout();
3442 ExpensiveCombines |= EnableExpensiveCombines;
3444 /// Builder - This is an IRBuilder that automatically inserts new
3445 /// instructions into the worklist when they are created.
3446 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3447 F.getContext(), TargetFolder(DL),
3448 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3449 Worklist.Add(I);
3450 if (match(I, m_Intrinsic<Intrinsic::assume>()))
3451 AC.registerAssumption(cast<CallInst>(I));
3452 }));
3454 // Lower dbg.declare intrinsics otherwise their value may be clobbered
3455 // by instcombiner.
3456 bool MadeIRChange = false;
3457 if (ShouldLowerDbgDeclare)
3458 MadeIRChange = LowerDbgDeclare(F);
3460 // Iterate while there is work to do.
3461 int Iteration = 0;
3462 while (true) {
3463 ++Iteration;
3464 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3465 << F.getName() << "\n");
3467 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3469 InstCombiner IC(Worklist, Builder, F.optForMinSize(), ExpensiveCombines, AA,
3470 AC, TLI, DT, ORE, DL, LI);
3471 IC.MaxArraySizeForCombine = MaxArraySize;
3473 if (!IC.run())
3474 break;
3477 return MadeIRChange || Iteration > 1;
3480 PreservedAnalyses InstCombinePass::run(Function &F,
3481 FunctionAnalysisManager &AM) {
3482 auto &AC = AM.getResult<AssumptionAnalysis>(F);
3483 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3484 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3485 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
3487 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3489 auto *AA = &AM.getResult<AAManager>(F);
3490 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
3491 ExpensiveCombines, LI))
3492 // No changes, all analyses are preserved.
3493 return PreservedAnalyses::all();
3495 // Mark all the analyses that instcombine updates as preserved.
3496 PreservedAnalyses PA;
3497 PA.preserveSet<CFGAnalyses>();
3498 PA.preserve<AAManager>();
3499 PA.preserve<BasicAA>();
3500 PA.preserve<GlobalsAA>();
3501 return PA;
3504 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3505 AU.setPreservesCFG();
3506 AU.addRequired<AAResultsWrapperPass>();
3507 AU.addRequired<AssumptionCacheTracker>();
3508 AU.addRequired<TargetLibraryInfoWrapperPass>();
3509 AU.addRequired<DominatorTreeWrapperPass>();
3510 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3511 AU.addPreserved<DominatorTreeWrapperPass>();
3512 AU.addPreserved<AAResultsWrapperPass>();
3513 AU.addPreserved<BasicAAWrapperPass>();
3514 AU.addPreserved<GlobalsAAWrapperPass>();
3517 bool InstructionCombiningPass::runOnFunction(Function &F) {
3518 if (skipFunction(F))
3519 return false;
3521 // Required analyses.
3522 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3523 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3524 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3525 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3526 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3528 // Optional analyses.
3529 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3530 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3532 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
3533 ExpensiveCombines, LI);
3536 char InstructionCombiningPass::ID = 0;
3538 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3539 "Combine redundant instructions", false, false)
3540 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3541 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3542 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3543 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3544 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3545 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3546 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3547 "Combine redundant instructions", false, false)
3549 // Initialization Routines
3550 void llvm::initializeInstCombine(PassRegistry &Registry) {
3551 initializeInstructionCombiningPassPass(Registry);
3554 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3555 initializeInstructionCombiningPassPass(*unwrap(R));
3558 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
3559 return new InstructionCombiningPass(ExpensiveCombines);
3562 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
3563 unwrap(PM)->add(createInstructionCombiningPass());