1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions. This pass does not modify the CFG. This pass is where
11 // algebraic simplification happens.
13 // This pass combines things like:
19 // This is a simple worklist driven algorithm.
21 // This pass guarantees that the following canonicalizations are performed on
23 // 1. If a binary operator has a constant operand, it is moved to the RHS
24 // 2. Bitwise operators with constant operands are always grouped so that
25 // shifts are performed first, then or's, then and's, then xor's.
26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 // 4. All cmp instructions on boolean values are replaced with logical ops
28 // 5. add X, X is represented as (X*2) => (X << 1)
29 // 6. Multiplies with a power-of-two constant argument are transformed into
33 //===----------------------------------------------------------------------===//
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/CFG.h"
50 #include "llvm/Analysis/ConstantFolding.h"
51 #include "llvm/Analysis/EHPersonalities.h"
52 #include "llvm/Analysis/GlobalsModRef.h"
53 #include "llvm/Analysis/InstructionSimplify.h"
54 #include "llvm/Analysis/LoopInfo.h"
55 #include "llvm/Analysis/MemoryBuiltins.h"
56 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
57 #include "llvm/Analysis/TargetFolder.h"
58 #include "llvm/Analysis/TargetLibraryInfo.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DIBuilder.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DerivedTypes.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GetElementPtrTypeIterator.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/LegacyPassManager.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Operator.h"
79 #include "llvm/IR/PassManager.h"
80 #include "llvm/IR/PatternMatch.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Use.h"
83 #include "llvm/IR/User.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/IR/ValueHandle.h"
86 #include "llvm/Pass.h"
87 #include "llvm/Support/CBindingWrapping.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Compiler.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/DebugCounter.h"
93 #include "llvm/Support/ErrorHandling.h"
94 #include "llvm/Support/KnownBits.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Transforms/InstCombine/InstCombine.h"
97 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
98 #include "llvm/Transforms/Utils/Local.h"
106 using namespace llvm
;
107 using namespace llvm::PatternMatch
;
109 #define DEBUG_TYPE "instcombine"
111 STATISTIC(NumCombined
, "Number of insts combined");
112 STATISTIC(NumConstProp
, "Number of constant folds");
113 STATISTIC(NumDeadInst
, "Number of dead inst eliminated");
114 STATISTIC(NumSunkInst
, "Number of instructions sunk");
115 STATISTIC(NumExpand
, "Number of expansions");
116 STATISTIC(NumFactor
, "Number of factorizations");
117 STATISTIC(NumReassoc
, "Number of reassociations");
118 DEBUG_COUNTER(VisitCounter
, "instcombine-visit",
119 "Controls which instructions are visited");
122 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
126 EnableExpensiveCombines("expensive-combines",
127 cl::desc("Enable expensive instruction combines"));
129 static cl::opt
<unsigned>
130 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
131 cl::desc("Maximum array size considered when doing a combine"));
133 // FIXME: Remove this flag when it is no longer necessary to convert
134 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
135 // increases variable availability at the cost of accuracy. Variables that
136 // cannot be promoted by mem2reg or SROA will be described as living in memory
137 // for their entire lifetime. However, passes like DSE and instcombine can
138 // delete stores to the alloca, leading to misleading and inaccurate debug
139 // information. This flag can be removed when those passes are fixed.
140 static cl::opt
<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
141 cl::Hidden
, cl::init(true));
143 Value
*InstCombiner::EmitGEPOffset(User
*GEP
) {
144 return llvm::EmitGEPOffset(&Builder
, DL
, GEP
);
147 /// Return true if it is desirable to convert an integer computation from a
148 /// given bit width to a new bit width.
149 /// We don't want to convert from a legal to an illegal type or from a smaller
150 /// to a larger illegal type. A width of '1' is always treated as a legal type
151 /// because i1 is a fundamental type in IR, and there are many specialized
152 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
153 /// legal to convert to, in order to open up more combining opportunities.
154 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
155 /// from frontend languages.
156 bool InstCombiner::shouldChangeType(unsigned FromWidth
,
157 unsigned ToWidth
) const {
158 bool FromLegal
= FromWidth
== 1 || DL
.isLegalInteger(FromWidth
);
159 bool ToLegal
= ToWidth
== 1 || DL
.isLegalInteger(ToWidth
);
161 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
162 // shrink types, to prevent infinite loops.
163 if (ToWidth
< FromWidth
&& (ToWidth
== 8 || ToWidth
== 16 || ToWidth
== 32))
166 // If this is a legal integer from type, and the result would be an illegal
167 // type, don't do the transformation.
168 if (FromLegal
&& !ToLegal
)
171 // Otherwise, if both are illegal, do not increase the size of the result. We
172 // do allow things like i160 -> i64, but not i64 -> i160.
173 if (!FromLegal
&& !ToLegal
&& ToWidth
> FromWidth
)
179 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
180 /// We don't want to convert from a legal to an illegal type or from a smaller
181 /// to a larger illegal type. i1 is always treated as a legal type because it is
182 /// a fundamental type in IR, and there are many specialized optimizations for
184 bool InstCombiner::shouldChangeType(Type
*From
, Type
*To
) const {
185 // TODO: This could be extended to allow vectors. Datalayout changes might be
186 // needed to properly support that.
187 if (!From
->isIntegerTy() || !To
->isIntegerTy())
190 unsigned FromWidth
= From
->getPrimitiveSizeInBits();
191 unsigned ToWidth
= To
->getPrimitiveSizeInBits();
192 return shouldChangeType(FromWidth
, ToWidth
);
195 // Return true, if No Signed Wrap should be maintained for I.
196 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
197 // where both B and C should be ConstantInts, results in a constant that does
198 // not overflow. This function only handles the Add and Sub opcodes. For
199 // all other opcodes, the function conservatively returns false.
200 static bool MaintainNoSignedWrap(BinaryOperator
&I
, Value
*B
, Value
*C
) {
201 OverflowingBinaryOperator
*OBO
= dyn_cast
<OverflowingBinaryOperator
>(&I
);
202 if (!OBO
|| !OBO
->hasNoSignedWrap())
205 // We reason about Add and Sub Only.
206 Instruction::BinaryOps Opcode
= I
.getOpcode();
207 if (Opcode
!= Instruction::Add
&& Opcode
!= Instruction::Sub
)
210 const APInt
*BVal
, *CVal
;
211 if (!match(B
, m_APInt(BVal
)) || !match(C
, m_APInt(CVal
)))
214 bool Overflow
= false;
215 if (Opcode
== Instruction::Add
)
216 (void)BVal
->sadd_ov(*CVal
, Overflow
);
218 (void)BVal
->ssub_ov(*CVal
, Overflow
);
223 /// Conservatively clears subclassOptionalData after a reassociation or
224 /// commutation. We preserve fast-math flags when applicable as they can be
226 static void ClearSubclassDataAfterReassociation(BinaryOperator
&I
) {
227 FPMathOperator
*FPMO
= dyn_cast
<FPMathOperator
>(&I
);
229 I
.clearSubclassOptionalData();
233 FastMathFlags FMF
= I
.getFastMathFlags();
234 I
.clearSubclassOptionalData();
235 I
.setFastMathFlags(FMF
);
238 /// Combine constant operands of associative operations either before or after a
239 /// cast to eliminate one of the associative operations:
240 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
241 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
242 static bool simplifyAssocCastAssoc(BinaryOperator
*BinOp1
) {
243 auto *Cast
= dyn_cast
<CastInst
>(BinOp1
->getOperand(0));
244 if (!Cast
|| !Cast
->hasOneUse())
247 // TODO: Enhance logic for other casts and remove this check.
248 auto CastOpcode
= Cast
->getOpcode();
249 if (CastOpcode
!= Instruction::ZExt
)
252 // TODO: Enhance logic for other BinOps and remove this check.
253 if (!BinOp1
->isBitwiseLogicOp())
256 auto AssocOpcode
= BinOp1
->getOpcode();
257 auto *BinOp2
= dyn_cast
<BinaryOperator
>(Cast
->getOperand(0));
258 if (!BinOp2
|| !BinOp2
->hasOneUse() || BinOp2
->getOpcode() != AssocOpcode
)
262 if (!match(BinOp1
->getOperand(1), m_Constant(C1
)) ||
263 !match(BinOp2
->getOperand(1), m_Constant(C2
)))
266 // TODO: This assumes a zext cast.
267 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
268 // to the destination type might lose bits.
270 // Fold the constants together in the destination type:
271 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
272 Type
*DestTy
= C1
->getType();
273 Constant
*CastC2
= ConstantExpr::getCast(CastOpcode
, C2
, DestTy
);
274 Constant
*FoldedC
= ConstantExpr::get(AssocOpcode
, C1
, CastC2
);
275 Cast
->setOperand(0, BinOp2
->getOperand(0));
276 BinOp1
->setOperand(1, FoldedC
);
280 /// This performs a few simplifications for operators that are associative or
283 /// Commutative operators:
285 /// 1. Order operands such that they are listed from right (least complex) to
286 /// left (most complex). This puts constants before unary operators before
287 /// binary operators.
289 /// Associative operators:
291 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
292 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
294 /// Associative and commutative operators:
296 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
297 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
298 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
299 /// if C1 and C2 are constants.
300 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator
&I
) {
301 Instruction::BinaryOps Opcode
= I
.getOpcode();
302 bool Changed
= false;
305 // Order operands such that they are listed from right (least complex) to
306 // left (most complex). This puts constants before unary operators before
308 if (I
.isCommutative() && getComplexity(I
.getOperand(0)) <
309 getComplexity(I
.getOperand(1)))
310 Changed
= !I
.swapOperands();
312 BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(I
.getOperand(0));
313 BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(I
.getOperand(1));
315 if (I
.isAssociative()) {
316 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
317 if (Op0
&& Op0
->getOpcode() == Opcode
) {
318 Value
*A
= Op0
->getOperand(0);
319 Value
*B
= Op0
->getOperand(1);
320 Value
*C
= I
.getOperand(1);
322 // Does "B op C" simplify?
323 if (Value
*V
= SimplifyBinOp(Opcode
, B
, C
, SQ
.getWithInstruction(&I
))) {
324 // It simplifies to V. Form "A op V".
327 // Conservatively clear the optional flags, since they may not be
328 // preserved by the reassociation.
329 if (MaintainNoSignedWrap(I
, B
, C
) &&
330 (!Op0
|| (isa
<BinaryOperator
>(Op0
) && Op0
->hasNoSignedWrap()))) {
331 // Note: this is only valid because SimplifyBinOp doesn't look at
332 // the operands to Op0.
333 I
.clearSubclassOptionalData();
334 I
.setHasNoSignedWrap(true);
336 ClearSubclassDataAfterReassociation(I
);
345 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
346 if (Op1
&& Op1
->getOpcode() == Opcode
) {
347 Value
*A
= I
.getOperand(0);
348 Value
*B
= Op1
->getOperand(0);
349 Value
*C
= Op1
->getOperand(1);
351 // Does "A op B" simplify?
352 if (Value
*V
= SimplifyBinOp(Opcode
, A
, B
, SQ
.getWithInstruction(&I
))) {
353 // It simplifies to V. Form "V op C".
356 // Conservatively clear the optional flags, since they may not be
357 // preserved by the reassociation.
358 ClearSubclassDataAfterReassociation(I
);
366 if (I
.isAssociative() && I
.isCommutative()) {
367 if (simplifyAssocCastAssoc(&I
)) {
373 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
374 if (Op0
&& Op0
->getOpcode() == Opcode
) {
375 Value
*A
= Op0
->getOperand(0);
376 Value
*B
= Op0
->getOperand(1);
377 Value
*C
= I
.getOperand(1);
379 // Does "C op A" simplify?
380 if (Value
*V
= SimplifyBinOp(Opcode
, C
, A
, SQ
.getWithInstruction(&I
))) {
381 // It simplifies to V. Form "V op B".
384 // Conservatively clear the optional flags, since they may not be
385 // preserved by the reassociation.
386 ClearSubclassDataAfterReassociation(I
);
393 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
394 if (Op1
&& Op1
->getOpcode() == Opcode
) {
395 Value
*A
= I
.getOperand(0);
396 Value
*B
= Op1
->getOperand(0);
397 Value
*C
= Op1
->getOperand(1);
399 // Does "C op A" simplify?
400 if (Value
*V
= SimplifyBinOp(Opcode
, C
, A
, SQ
.getWithInstruction(&I
))) {
401 // It simplifies to V. Form "B op V".
404 // Conservatively clear the optional flags, since they may not be
405 // preserved by the reassociation.
406 ClearSubclassDataAfterReassociation(I
);
413 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
414 // if C1 and C2 are constants.
418 Op0
->getOpcode() == Opcode
&& Op1
->getOpcode() == Opcode
&&
419 match(Op0
, m_OneUse(m_BinOp(m_Value(A
), m_Constant(C1
)))) &&
420 match(Op1
, m_OneUse(m_BinOp(m_Value(B
), m_Constant(C2
))))) {
421 BinaryOperator
*NewBO
= BinaryOperator::Create(Opcode
, A
, B
);
422 if (isa
<FPMathOperator
>(NewBO
)) {
423 FastMathFlags Flags
= I
.getFastMathFlags();
424 Flags
&= Op0
->getFastMathFlags();
425 Flags
&= Op1
->getFastMathFlags();
426 NewBO
->setFastMathFlags(Flags
);
428 InsertNewInstWith(NewBO
, I
);
429 NewBO
->takeName(Op1
);
430 I
.setOperand(0, NewBO
);
431 I
.setOperand(1, ConstantExpr::get(Opcode
, C1
, C2
));
432 // Conservatively clear the optional flags, since they may not be
433 // preserved by the reassociation.
434 ClearSubclassDataAfterReassociation(I
);
441 // No further simplifications.
446 /// Return whether "X LOp (Y ROp Z)" is always equal to
447 /// "(X LOp Y) ROp (X LOp Z)".
448 static bool leftDistributesOverRight(Instruction::BinaryOps LOp
,
449 Instruction::BinaryOps ROp
) {
450 // X & (Y | Z) <--> (X & Y) | (X & Z)
451 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
452 if (LOp
== Instruction::And
)
453 return ROp
== Instruction::Or
|| ROp
== Instruction::Xor
;
455 // X | (Y & Z) <--> (X | Y) & (X | Z)
456 if (LOp
== Instruction::Or
)
457 return ROp
== Instruction::And
;
459 // X * (Y + Z) <--> (X * Y) + (X * Z)
460 // X * (Y - Z) <--> (X * Y) - (X * Z)
461 if (LOp
== Instruction::Mul
)
462 return ROp
== Instruction::Add
|| ROp
== Instruction::Sub
;
467 /// Return whether "(X LOp Y) ROp Z" is always equal to
468 /// "(X ROp Z) LOp (Y ROp Z)".
469 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp
,
470 Instruction::BinaryOps ROp
) {
471 if (Instruction::isCommutative(ROp
))
472 return leftDistributesOverRight(ROp
, LOp
);
474 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
475 return Instruction::isBitwiseLogicOp(LOp
) && Instruction::isShift(ROp
);
477 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
478 // but this requires knowing that the addition does not overflow and other
482 /// This function returns identity value for given opcode, which can be used to
483 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
484 static Value
*getIdentityValue(Instruction::BinaryOps Opcode
, Value
*V
) {
485 if (isa
<Constant
>(V
))
488 return ConstantExpr::getBinOpIdentity(Opcode
, V
->getType());
491 /// This function predicates factorization using distributive laws. By default,
492 /// it just returns the 'Op' inputs. But for special-cases like
493 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
494 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
495 /// allow more factorization opportunities.
496 static Instruction::BinaryOps
497 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode
, BinaryOperator
*Op
,
498 Value
*&LHS
, Value
*&RHS
) {
499 assert(Op
&& "Expected a binary operator");
500 LHS
= Op
->getOperand(0);
501 RHS
= Op
->getOperand(1);
502 if (TopOpcode
== Instruction::Add
|| TopOpcode
== Instruction::Sub
) {
504 if (match(Op
, m_Shl(m_Value(), m_Constant(C
)))) {
505 // X << C --> X * (1 << C)
506 RHS
= ConstantExpr::getShl(ConstantInt::get(Op
->getType(), 1), C
);
507 return Instruction::Mul
;
509 // TODO: We can add other conversions e.g. shr => div etc.
511 return Op
->getOpcode();
514 /// This tries to simplify binary operations by factorizing out common terms
515 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
516 Value
*InstCombiner::tryFactorization(BinaryOperator
&I
,
517 Instruction::BinaryOps InnerOpcode
,
518 Value
*A
, Value
*B
, Value
*C
, Value
*D
) {
519 assert(A
&& B
&& C
&& D
&& "All values must be provided");
522 Value
*SimplifiedInst
= nullptr;
523 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
524 Instruction::BinaryOps TopLevelOpcode
= I
.getOpcode();
526 // Does "X op' Y" always equal "Y op' X"?
527 bool InnerCommutative
= Instruction::isCommutative(InnerOpcode
);
529 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
530 if (leftDistributesOverRight(InnerOpcode
, TopLevelOpcode
))
531 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
532 // commutative case, "(A op' B) op (C op' A)"?
533 if (A
== C
|| (InnerCommutative
&& A
== D
)) {
536 // Consider forming "A op' (B op D)".
537 // If "B op D" simplifies then it can be formed with no cost.
538 V
= SimplifyBinOp(TopLevelOpcode
, B
, D
, SQ
.getWithInstruction(&I
));
539 // If "B op D" doesn't simplify then only go on if both of the existing
540 // operations "A op' B" and "C op' D" will be zapped as no longer used.
541 if (!V
&& LHS
->hasOneUse() && RHS
->hasOneUse())
542 V
= Builder
.CreateBinOp(TopLevelOpcode
, B
, D
, RHS
->getName());
544 SimplifiedInst
= Builder
.CreateBinOp(InnerOpcode
, A
, V
);
548 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
549 if (!SimplifiedInst
&& rightDistributesOverLeft(TopLevelOpcode
, InnerOpcode
))
550 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
551 // commutative case, "(A op' B) op (B op' D)"?
552 if (B
== D
|| (InnerCommutative
&& B
== C
)) {
555 // Consider forming "(A op C) op' B".
556 // If "A op C" simplifies then it can be formed with no cost.
557 V
= SimplifyBinOp(TopLevelOpcode
, A
, C
, SQ
.getWithInstruction(&I
));
559 // If "A op C" doesn't simplify then only go on if both of the existing
560 // operations "A op' B" and "C op' D" will be zapped as no longer used.
561 if (!V
&& LHS
->hasOneUse() && RHS
->hasOneUse())
562 V
= Builder
.CreateBinOp(TopLevelOpcode
, A
, C
, LHS
->getName());
564 SimplifiedInst
= Builder
.CreateBinOp(InnerOpcode
, V
, B
);
568 if (SimplifiedInst
) {
570 SimplifiedInst
->takeName(&I
);
572 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
573 // TODO: Check for NUW.
574 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(SimplifiedInst
)) {
575 if (isa
<OverflowingBinaryOperator
>(SimplifiedInst
)) {
577 if (isa
<OverflowingBinaryOperator
>(&I
))
578 HasNSW
= I
.hasNoSignedWrap();
580 if (auto *LOBO
= dyn_cast
<OverflowingBinaryOperator
>(LHS
))
581 HasNSW
&= LOBO
->hasNoSignedWrap();
583 if (auto *ROBO
= dyn_cast
<OverflowingBinaryOperator
>(RHS
))
584 HasNSW
&= ROBO
->hasNoSignedWrap();
586 // We can propagate 'nsw' if we know that
587 // %Y = mul nsw i16 %X, C
588 // %Z = add nsw i16 %Y, %X
590 // %Z = mul nsw i16 %X, C+1
592 // iff C+1 isn't INT_MIN
594 if (TopLevelOpcode
== Instruction::Add
&&
595 InnerOpcode
== Instruction::Mul
)
596 if (match(V
, m_APInt(CInt
)) && !CInt
->isMinSignedValue())
597 BO
->setHasNoSignedWrap(HasNSW
);
601 return SimplifiedInst
;
604 /// This tries to simplify binary operations which some other binary operation
605 /// distributes over either by factorizing out common terms
606 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
607 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
608 /// Returns the simplified value, or null if it didn't simplify.
609 Value
*InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator
&I
) {
610 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
611 BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(LHS
);
612 BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(RHS
);
613 Instruction::BinaryOps TopLevelOpcode
= I
.getOpcode();
617 Value
*A
, *B
, *C
, *D
;
618 Instruction::BinaryOps LHSOpcode
, RHSOpcode
;
620 LHSOpcode
= getBinOpsForFactorization(TopLevelOpcode
, Op0
, A
, B
);
622 RHSOpcode
= getBinOpsForFactorization(TopLevelOpcode
, Op1
, C
, D
);
624 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
626 if (Op0
&& Op1
&& LHSOpcode
== RHSOpcode
)
627 if (Value
*V
= tryFactorization(I
, LHSOpcode
, A
, B
, C
, D
))
630 // The instruction has the form "(A op' B) op (C)". Try to factorize common
633 if (Value
*Ident
= getIdentityValue(LHSOpcode
, RHS
))
634 if (Value
*V
= tryFactorization(I
, LHSOpcode
, A
, B
, RHS
, Ident
))
637 // The instruction has the form "(B) op (C op' D)". Try to factorize common
640 if (Value
*Ident
= getIdentityValue(RHSOpcode
, LHS
))
641 if (Value
*V
= tryFactorization(I
, RHSOpcode
, LHS
, Ident
, C
, D
))
646 if (Op0
&& rightDistributesOverLeft(Op0
->getOpcode(), TopLevelOpcode
)) {
647 // The instruction has the form "(A op' B) op C". See if expanding it out
648 // to "(A op C) op' (B op C)" results in simplifications.
649 Value
*A
= Op0
->getOperand(0), *B
= Op0
->getOperand(1), *C
= RHS
;
650 Instruction::BinaryOps InnerOpcode
= Op0
->getOpcode(); // op'
652 Value
*L
= SimplifyBinOp(TopLevelOpcode
, A
, C
, SQ
.getWithInstruction(&I
));
653 Value
*R
= SimplifyBinOp(TopLevelOpcode
, B
, C
, SQ
.getWithInstruction(&I
));
655 // Do "A op C" and "B op C" both simplify?
657 // They do! Return "L op' R".
659 C
= Builder
.CreateBinOp(InnerOpcode
, L
, R
);
664 // Does "A op C" simplify to the identity value for the inner opcode?
665 if (L
&& L
== ConstantExpr::getBinOpIdentity(InnerOpcode
, L
->getType())) {
666 // They do! Return "B op C".
668 C
= Builder
.CreateBinOp(TopLevelOpcode
, B
, C
);
673 // Does "B op C" simplify to the identity value for the inner opcode?
674 if (R
&& R
== ConstantExpr::getBinOpIdentity(InnerOpcode
, R
->getType())) {
675 // They do! Return "A op C".
677 C
= Builder
.CreateBinOp(TopLevelOpcode
, A
, C
);
683 if (Op1
&& leftDistributesOverRight(TopLevelOpcode
, Op1
->getOpcode())) {
684 // The instruction has the form "A op (B op' C)". See if expanding it out
685 // to "(A op B) op' (A op C)" results in simplifications.
686 Value
*A
= LHS
, *B
= Op1
->getOperand(0), *C
= Op1
->getOperand(1);
687 Instruction::BinaryOps InnerOpcode
= Op1
->getOpcode(); // op'
689 Value
*L
= SimplifyBinOp(TopLevelOpcode
, A
, B
, SQ
.getWithInstruction(&I
));
690 Value
*R
= SimplifyBinOp(TopLevelOpcode
, A
, C
, SQ
.getWithInstruction(&I
));
692 // Do "A op B" and "A op C" both simplify?
694 // They do! Return "L op' R".
696 A
= Builder
.CreateBinOp(InnerOpcode
, L
, R
);
701 // Does "A op B" simplify to the identity value for the inner opcode?
702 if (L
&& L
== ConstantExpr::getBinOpIdentity(InnerOpcode
, L
->getType())) {
703 // They do! Return "A op C".
705 A
= Builder
.CreateBinOp(TopLevelOpcode
, A
, C
);
710 // Does "A op C" simplify to the identity value for the inner opcode?
711 if (R
&& R
== ConstantExpr::getBinOpIdentity(InnerOpcode
, R
->getType())) {
712 // They do! Return "A op B".
714 A
= Builder
.CreateBinOp(TopLevelOpcode
, A
, B
);
720 return SimplifySelectsFeedingBinaryOp(I
, LHS
, RHS
);
723 Value
*InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator
&I
,
724 Value
*LHS
, Value
*RHS
) {
725 Instruction::BinaryOps Opcode
= I
.getOpcode();
726 // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op
728 Value
*A
, *B
, *C
, *D
, *E
;
730 if (match(LHS
, m_Select(m_Value(A
), m_Value(B
), m_Value(C
))) &&
731 match(RHS
, m_Select(m_Specific(A
), m_Value(D
), m_Value(E
)))) {
732 bool SelectsHaveOneUse
= LHS
->hasOneUse() && RHS
->hasOneUse();
733 BuilderTy::FastMathFlagGuard
Guard(Builder
);
734 if (isa
<FPMathOperator
>(&I
))
735 Builder
.setFastMathFlags(I
.getFastMathFlags());
737 Value
*V1
= SimplifyBinOp(Opcode
, C
, E
, SQ
.getWithInstruction(&I
));
738 Value
*V2
= SimplifyBinOp(Opcode
, B
, D
, SQ
.getWithInstruction(&I
));
740 SI
= Builder
.CreateSelect(A
, V2
, V1
);
741 else if (V2
&& SelectsHaveOneUse
)
742 SI
= Builder
.CreateSelect(A
, V2
, Builder
.CreateBinOp(Opcode
, C
, E
));
743 else if (V1
&& SelectsHaveOneUse
)
744 SI
= Builder
.CreateSelect(A
, Builder
.CreateBinOp(Opcode
, B
, D
), V1
);
753 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
754 /// constant zero (which is the 'negate' form).
755 Value
*InstCombiner::dyn_castNegVal(Value
*V
) const {
757 if (match(V
, m_Neg(m_Value(NegV
))))
760 // Constants can be considered to be negated values if they can be folded.
761 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(V
))
762 return ConstantExpr::getNeg(C
);
764 if (ConstantDataVector
*C
= dyn_cast
<ConstantDataVector
>(V
))
765 if (C
->getType()->getElementType()->isIntegerTy())
766 return ConstantExpr::getNeg(C
);
768 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
)) {
769 for (unsigned i
= 0, e
= CV
->getNumOperands(); i
!= e
; ++i
) {
770 Constant
*Elt
= CV
->getAggregateElement(i
);
774 if (isa
<UndefValue
>(Elt
))
777 if (!isa
<ConstantInt
>(Elt
))
780 return ConstantExpr::getNeg(CV
);
786 static Value
*foldOperationIntoSelectOperand(Instruction
&I
, Value
*SO
,
787 InstCombiner::BuilderTy
&Builder
) {
788 if (auto *Cast
= dyn_cast
<CastInst
>(&I
))
789 return Builder
.CreateCast(Cast
->getOpcode(), SO
, I
.getType());
791 assert(I
.isBinaryOp() && "Unexpected opcode for select folding");
793 // Figure out if the constant is the left or the right argument.
794 bool ConstIsRHS
= isa
<Constant
>(I
.getOperand(1));
795 Constant
*ConstOperand
= cast
<Constant
>(I
.getOperand(ConstIsRHS
));
797 if (auto *SOC
= dyn_cast
<Constant
>(SO
)) {
799 return ConstantExpr::get(I
.getOpcode(), SOC
, ConstOperand
);
800 return ConstantExpr::get(I
.getOpcode(), ConstOperand
, SOC
);
803 Value
*Op0
= SO
, *Op1
= ConstOperand
;
807 auto *BO
= cast
<BinaryOperator
>(&I
);
808 Value
*RI
= Builder
.CreateBinOp(BO
->getOpcode(), Op0
, Op1
,
809 SO
->getName() + ".op");
810 auto *FPInst
= dyn_cast
<Instruction
>(RI
);
811 if (FPInst
&& isa
<FPMathOperator
>(FPInst
))
812 FPInst
->copyFastMathFlags(BO
);
816 Instruction
*InstCombiner::FoldOpIntoSelect(Instruction
&Op
, SelectInst
*SI
) {
817 // Don't modify shared select instructions.
818 if (!SI
->hasOneUse())
821 Value
*TV
= SI
->getTrueValue();
822 Value
*FV
= SI
->getFalseValue();
823 if (!(isa
<Constant
>(TV
) || isa
<Constant
>(FV
)))
826 // Bool selects with constant operands can be folded to logical ops.
827 if (SI
->getType()->isIntOrIntVectorTy(1))
830 // If it's a bitcast involving vectors, make sure it has the same number of
831 // elements on both sides.
832 if (auto *BC
= dyn_cast
<BitCastInst
>(&Op
)) {
833 VectorType
*DestTy
= dyn_cast
<VectorType
>(BC
->getDestTy());
834 VectorType
*SrcTy
= dyn_cast
<VectorType
>(BC
->getSrcTy());
836 // Verify that either both or neither are vectors.
837 if ((SrcTy
== nullptr) != (DestTy
== nullptr))
840 // If vectors, verify that they have the same number of elements.
841 if (SrcTy
&& SrcTy
->getNumElements() != DestTy
->getNumElements())
845 // Test if a CmpInst instruction is used exclusively by a select as
846 // part of a minimum or maximum operation. If so, refrain from doing
847 // any other folding. This helps out other analyses which understand
848 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
849 // and CodeGen. And in this case, at least one of the comparison
850 // operands has at least one user besides the compare (the select),
851 // which would often largely negate the benefit of folding anyway.
852 if (auto *CI
= dyn_cast
<CmpInst
>(SI
->getCondition())) {
853 if (CI
->hasOneUse()) {
854 Value
*Op0
= CI
->getOperand(0), *Op1
= CI
->getOperand(1);
855 if ((SI
->getOperand(1) == Op0
&& SI
->getOperand(2) == Op1
) ||
856 (SI
->getOperand(2) == Op0
&& SI
->getOperand(1) == Op1
))
861 Value
*NewTV
= foldOperationIntoSelectOperand(Op
, TV
, Builder
);
862 Value
*NewFV
= foldOperationIntoSelectOperand(Op
, FV
, Builder
);
863 return SelectInst::Create(SI
->getCondition(), NewTV
, NewFV
, "", nullptr, SI
);
866 static Value
*foldOperationIntoPhiValue(BinaryOperator
*I
, Value
*InV
,
867 InstCombiner::BuilderTy
&Builder
) {
868 bool ConstIsRHS
= isa
<Constant
>(I
->getOperand(1));
869 Constant
*C
= cast
<Constant
>(I
->getOperand(ConstIsRHS
));
871 if (auto *InC
= dyn_cast
<Constant
>(InV
)) {
873 return ConstantExpr::get(I
->getOpcode(), InC
, C
);
874 return ConstantExpr::get(I
->getOpcode(), C
, InC
);
877 Value
*Op0
= InV
, *Op1
= C
;
881 Value
*RI
= Builder
.CreateBinOp(I
->getOpcode(), Op0
, Op1
, "phitmp");
882 auto *FPInst
= dyn_cast
<Instruction
>(RI
);
883 if (FPInst
&& isa
<FPMathOperator
>(FPInst
))
884 FPInst
->copyFastMathFlags(I
);
888 Instruction
*InstCombiner::foldOpIntoPhi(Instruction
&I
, PHINode
*PN
) {
889 unsigned NumPHIValues
= PN
->getNumIncomingValues();
890 if (NumPHIValues
== 0)
893 // We normally only transform phis with a single use. However, if a PHI has
894 // multiple uses and they are all the same operation, we can fold *all* of the
895 // uses into the PHI.
896 if (!PN
->hasOneUse()) {
897 // Walk the use list for the instruction, comparing them to I.
898 for (User
*U
: PN
->users()) {
899 Instruction
*UI
= cast
<Instruction
>(U
);
900 if (UI
!= &I
&& !I
.isIdenticalTo(UI
))
903 // Otherwise, we can replace *all* users with the new PHI we form.
906 // Check to see if all of the operands of the PHI are simple constants
907 // (constantint/constantfp/undef). If there is one non-constant value,
908 // remember the BB it is in. If there is more than one or if *it* is a PHI,
909 // bail out. We don't do arbitrary constant expressions here because moving
910 // their computation can be expensive without a cost model.
911 BasicBlock
*NonConstBB
= nullptr;
912 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
913 Value
*InVal
= PN
->getIncomingValue(i
);
914 if (isa
<Constant
>(InVal
) && !isa
<ConstantExpr
>(InVal
))
917 if (isa
<PHINode
>(InVal
)) return nullptr; // Itself a phi.
918 if (NonConstBB
) return nullptr; // More than one non-const value.
920 NonConstBB
= PN
->getIncomingBlock(i
);
922 // If the InVal is an invoke at the end of the pred block, then we can't
923 // insert a computation after it without breaking the edge.
924 if (isa
<InvokeInst
>(InVal
))
925 if (cast
<Instruction
>(InVal
)->getParent() == NonConstBB
)
928 // If the incoming non-constant value is in I's block, we will remove one
929 // instruction, but insert another equivalent one, leading to infinite
931 if (isPotentiallyReachable(I
.getParent(), NonConstBB
, &DT
, LI
))
935 // If there is exactly one non-constant value, we can insert a copy of the
936 // operation in that block. However, if this is a critical edge, we would be
937 // inserting the computation on some other paths (e.g. inside a loop). Only
938 // do this if the pred block is unconditionally branching into the phi block.
939 if (NonConstBB
!= nullptr) {
940 BranchInst
*BI
= dyn_cast
<BranchInst
>(NonConstBB
->getTerminator());
941 if (!BI
|| !BI
->isUnconditional()) return nullptr;
944 // Okay, we can do the transformation: create the new PHI node.
945 PHINode
*NewPN
= PHINode::Create(I
.getType(), PN
->getNumIncomingValues());
946 InsertNewInstBefore(NewPN
, *PN
);
949 // If we are going to have to insert a new computation, do so right before the
950 // predecessor's terminator.
952 Builder
.SetInsertPoint(NonConstBB
->getTerminator());
954 // Next, add all of the operands to the PHI.
955 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(&I
)) {
956 // We only currently try to fold the condition of a select when it is a phi,
957 // not the true/false values.
958 Value
*TrueV
= SI
->getTrueValue();
959 Value
*FalseV
= SI
->getFalseValue();
960 BasicBlock
*PhiTransBB
= PN
->getParent();
961 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
962 BasicBlock
*ThisBB
= PN
->getIncomingBlock(i
);
963 Value
*TrueVInPred
= TrueV
->DoPHITranslation(PhiTransBB
, ThisBB
);
964 Value
*FalseVInPred
= FalseV
->DoPHITranslation(PhiTransBB
, ThisBB
);
965 Value
*InV
= nullptr;
966 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
967 // even if currently isNullValue gives false.
968 Constant
*InC
= dyn_cast
<Constant
>(PN
->getIncomingValue(i
));
969 // For vector constants, we cannot use isNullValue to fold into
970 // FalseVInPred versus TrueVInPred. When we have individual nonzero
971 // elements in the vector, we will incorrectly fold InC to
973 if (InC
&& !isa
<ConstantExpr
>(InC
) && isa
<ConstantInt
>(InC
))
974 InV
= InC
->isNullValue() ? FalseVInPred
: TrueVInPred
;
976 // Generate the select in the same block as PN's current incoming block.
977 // Note: ThisBB need not be the NonConstBB because vector constants
978 // which are constants by definition are handled here.
979 // FIXME: This can lead to an increase in IR generation because we might
980 // generate selects for vector constant phi operand, that could not be
981 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
982 // non-vector phis, this transformation was always profitable because
983 // the select would be generated exactly once in the NonConstBB.
984 Builder
.SetInsertPoint(ThisBB
->getTerminator());
985 InV
= Builder
.CreateSelect(PN
->getIncomingValue(i
), TrueVInPred
,
986 FalseVInPred
, "phitmp");
988 NewPN
->addIncoming(InV
, ThisBB
);
990 } else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
)) {
991 Constant
*C
= cast
<Constant
>(I
.getOperand(1));
992 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
993 Value
*InV
= nullptr;
994 if (Constant
*InC
= dyn_cast
<Constant
>(PN
->getIncomingValue(i
)))
995 InV
= ConstantExpr::getCompare(CI
->getPredicate(), InC
, C
);
996 else if (isa
<ICmpInst
>(CI
))
997 InV
= Builder
.CreateICmp(CI
->getPredicate(), PN
->getIncomingValue(i
),
1000 InV
= Builder
.CreateFCmp(CI
->getPredicate(), PN
->getIncomingValue(i
),
1002 NewPN
->addIncoming(InV
, PN
->getIncomingBlock(i
));
1004 } else if (auto *BO
= dyn_cast
<BinaryOperator
>(&I
)) {
1005 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
1006 Value
*InV
= foldOperationIntoPhiValue(BO
, PN
->getIncomingValue(i
),
1008 NewPN
->addIncoming(InV
, PN
->getIncomingBlock(i
));
1011 CastInst
*CI
= cast
<CastInst
>(&I
);
1012 Type
*RetTy
= CI
->getType();
1013 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
1015 if (Constant
*InC
= dyn_cast
<Constant
>(PN
->getIncomingValue(i
)))
1016 InV
= ConstantExpr::getCast(CI
->getOpcode(), InC
, RetTy
);
1018 InV
= Builder
.CreateCast(CI
->getOpcode(), PN
->getIncomingValue(i
),
1019 I
.getType(), "phitmp");
1020 NewPN
->addIncoming(InV
, PN
->getIncomingBlock(i
));
1024 for (auto UI
= PN
->user_begin(), E
= PN
->user_end(); UI
!= E
;) {
1025 Instruction
*User
= cast
<Instruction
>(*UI
++);
1026 if (User
== &I
) continue;
1027 replaceInstUsesWith(*User
, NewPN
);
1028 eraseInstFromFunction(*User
);
1030 return replaceInstUsesWith(I
, NewPN
);
1033 Instruction
*InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator
&I
) {
1034 if (!isa
<Constant
>(I
.getOperand(1)))
1037 if (auto *Sel
= dyn_cast
<SelectInst
>(I
.getOperand(0))) {
1038 if (Instruction
*NewSel
= FoldOpIntoSelect(I
, Sel
))
1040 } else if (auto *PN
= dyn_cast
<PHINode
>(I
.getOperand(0))) {
1041 if (Instruction
*NewPhi
= foldOpIntoPhi(I
, PN
))
1047 /// Given a pointer type and a constant offset, determine whether or not there
1048 /// is a sequence of GEP indices into the pointed type that will land us at the
1049 /// specified offset. If so, fill them into NewIndices and return the resultant
1050 /// element type, otherwise return null.
1051 Type
*InstCombiner::FindElementAtOffset(PointerType
*PtrTy
, int64_t Offset
,
1052 SmallVectorImpl
<Value
*> &NewIndices
) {
1053 Type
*Ty
= PtrTy
->getElementType();
1057 // Start with the index over the outer type. Note that the type size
1058 // might be zero (even if the offset isn't zero) if the indexed type
1059 // is something like [0 x {int, int}]
1060 Type
*IndexTy
= DL
.getIndexType(PtrTy
);
1061 int64_t FirstIdx
= 0;
1062 if (int64_t TySize
= DL
.getTypeAllocSize(Ty
)) {
1063 FirstIdx
= Offset
/TySize
;
1064 Offset
-= FirstIdx
*TySize
;
1066 // Handle hosts where % returns negative instead of values [0..TySize).
1070 assert(Offset
>= 0);
1072 assert((uint64_t)Offset
< (uint64_t)TySize
&& "Out of range offset");
1075 NewIndices
.push_back(ConstantInt::get(IndexTy
, FirstIdx
));
1077 // Index into the types. If we fail, set OrigBase to null.
1079 // Indexing into tail padding between struct/array elements.
1080 if (uint64_t(Offset
* 8) >= DL
.getTypeSizeInBits(Ty
))
1083 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1084 const StructLayout
*SL
= DL
.getStructLayout(STy
);
1085 assert(Offset
< (int64_t)SL
->getSizeInBytes() &&
1086 "Offset must stay within the indexed type");
1088 unsigned Elt
= SL
->getElementContainingOffset(Offset
);
1089 NewIndices
.push_back(ConstantInt::get(Type::getInt32Ty(Ty
->getContext()),
1092 Offset
-= SL
->getElementOffset(Elt
);
1093 Ty
= STy
->getElementType(Elt
);
1094 } else if (ArrayType
*AT
= dyn_cast
<ArrayType
>(Ty
)) {
1095 uint64_t EltSize
= DL
.getTypeAllocSize(AT
->getElementType());
1096 assert(EltSize
&& "Cannot index into a zero-sized array");
1097 NewIndices
.push_back(ConstantInt::get(IndexTy
,Offset
/EltSize
));
1099 Ty
= AT
->getElementType();
1101 // Otherwise, we can't index into the middle of this atomic type, bail.
1109 static bool shouldMergeGEPs(GEPOperator
&GEP
, GEPOperator
&Src
) {
1110 // If this GEP has only 0 indices, it is the same pointer as
1111 // Src. If Src is not a trivial GEP too, don't combine
1113 if (GEP
.hasAllZeroIndices() && !Src
.hasAllZeroIndices() &&
1119 /// Return a value X such that Val = X * Scale, or null if none.
1120 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
1121 Value
*InstCombiner::Descale(Value
*Val
, APInt Scale
, bool &NoSignedWrap
) {
1122 assert(isa
<IntegerType
>(Val
->getType()) && "Can only descale integers!");
1123 assert(cast
<IntegerType
>(Val
->getType())->getBitWidth() ==
1124 Scale
.getBitWidth() && "Scale not compatible with value!");
1126 // If Val is zero or Scale is one then Val = Val * Scale.
1127 if (match(Val
, m_Zero()) || Scale
== 1) {
1128 NoSignedWrap
= true;
1132 // If Scale is zero then it does not divide Val.
1133 if (Scale
.isMinValue())
1136 // Look through chains of multiplications, searching for a constant that is
1137 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
1138 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
1139 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
1142 // Val = M1 * X || Analysis starts here and works down
1143 // M1 = M2 * Y || Doesn't descend into terms with more
1144 // M2 = Z * 4 \/ than one use
1146 // Then to modify a term at the bottom:
1149 // M1 = Z * Y || Replaced M2 with Z
1151 // Then to work back up correcting nsw flags.
1153 // Op - the term we are currently analyzing. Starts at Val then drills down.
1154 // Replaced with its descaled value before exiting from the drill down loop.
1157 // Parent - initially null, but after drilling down notes where Op came from.
1158 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1159 // 0'th operand of Val.
1160 std::pair
<Instruction
*, unsigned> Parent
;
1162 // Set if the transform requires a descaling at deeper levels that doesn't
1164 bool RequireNoSignedWrap
= false;
1166 // Log base 2 of the scale. Negative if not a power of 2.
1167 int32_t logScale
= Scale
.exactLogBase2();
1169 for (;; Op
= Parent
.first
->getOperand(Parent
.second
)) { // Drill down
1170 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op
)) {
1171 // If Op is a constant divisible by Scale then descale to the quotient.
1172 APInt
Quotient(Scale
), Remainder(Scale
); // Init ensures right bitwidth.
1173 APInt::sdivrem(CI
->getValue(), Scale
, Quotient
, Remainder
);
1174 if (!Remainder
.isMinValue())
1175 // Not divisible by Scale.
1177 // Replace with the quotient in the parent.
1178 Op
= ConstantInt::get(CI
->getType(), Quotient
);
1179 NoSignedWrap
= true;
1183 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Op
)) {
1184 if (BO
->getOpcode() == Instruction::Mul
) {
1186 NoSignedWrap
= BO
->hasNoSignedWrap();
1187 if (RequireNoSignedWrap
&& !NoSignedWrap
)
1190 // There are three cases for multiplication: multiplication by exactly
1191 // the scale, multiplication by a constant different to the scale, and
1192 // multiplication by something else.
1193 Value
*LHS
= BO
->getOperand(0);
1194 Value
*RHS
= BO
->getOperand(1);
1196 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
)) {
1197 // Multiplication by a constant.
1198 if (CI
->getValue() == Scale
) {
1199 // Multiplication by exactly the scale, replace the multiplication
1200 // by its left-hand side in the parent.
1205 // Otherwise drill down into the constant.
1206 if (!Op
->hasOneUse())
1209 Parent
= std::make_pair(BO
, 1);
1213 // Multiplication by something else. Drill down into the left-hand side
1214 // since that's where the reassociate pass puts the good stuff.
1215 if (!Op
->hasOneUse())
1218 Parent
= std::make_pair(BO
, 0);
1222 if (logScale
> 0 && BO
->getOpcode() == Instruction::Shl
&&
1223 isa
<ConstantInt
>(BO
->getOperand(1))) {
1224 // Multiplication by a power of 2.
1225 NoSignedWrap
= BO
->hasNoSignedWrap();
1226 if (RequireNoSignedWrap
&& !NoSignedWrap
)
1229 Value
*LHS
= BO
->getOperand(0);
1230 int32_t Amt
= cast
<ConstantInt
>(BO
->getOperand(1))->
1231 getLimitedValue(Scale
.getBitWidth());
1234 if (Amt
== logScale
) {
1235 // Multiplication by exactly the scale, replace the multiplication
1236 // by its left-hand side in the parent.
1240 if (Amt
< logScale
|| !Op
->hasOneUse())
1243 // Multiplication by more than the scale. Reduce the multiplying amount
1244 // by the scale in the parent.
1245 Parent
= std::make_pair(BO
, 1);
1246 Op
= ConstantInt::get(BO
->getType(), Amt
- logScale
);
1251 if (!Op
->hasOneUse())
1254 if (CastInst
*Cast
= dyn_cast
<CastInst
>(Op
)) {
1255 if (Cast
->getOpcode() == Instruction::SExt
) {
1256 // Op is sign-extended from a smaller type, descale in the smaller type.
1257 unsigned SmallSize
= Cast
->getSrcTy()->getPrimitiveSizeInBits();
1258 APInt SmallScale
= Scale
.trunc(SmallSize
);
1259 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1260 // descale Op as (sext Y) * Scale. In order to have
1261 // sext (Y * SmallScale) = (sext Y) * Scale
1262 // some conditions need to hold however: SmallScale must sign-extend to
1263 // Scale and the multiplication Y * SmallScale should not overflow.
1264 if (SmallScale
.sext(Scale
.getBitWidth()) != Scale
)
1265 // SmallScale does not sign-extend to Scale.
1267 assert(SmallScale
.exactLogBase2() == logScale
);
1268 // Require that Y * SmallScale must not overflow.
1269 RequireNoSignedWrap
= true;
1271 // Drill down through the cast.
1272 Parent
= std::make_pair(Cast
, 0);
1277 if (Cast
->getOpcode() == Instruction::Trunc
) {
1278 // Op is truncated from a larger type, descale in the larger type.
1279 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1280 // trunc (Y * sext Scale) = (trunc Y) * Scale
1281 // always holds. However (trunc Y) * Scale may overflow even if
1282 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1283 // from this point up in the expression (see later).
1284 if (RequireNoSignedWrap
)
1287 // Drill down through the cast.
1288 unsigned LargeSize
= Cast
->getSrcTy()->getPrimitiveSizeInBits();
1289 Parent
= std::make_pair(Cast
, 0);
1290 Scale
= Scale
.sext(LargeSize
);
1291 if (logScale
+ 1 == (int32_t)Cast
->getType()->getPrimitiveSizeInBits())
1293 assert(Scale
.exactLogBase2() == logScale
);
1298 // Unsupported expression, bail out.
1302 // If Op is zero then Val = Op * Scale.
1303 if (match(Op
, m_Zero())) {
1304 NoSignedWrap
= true;
1308 // We know that we can successfully descale, so from here on we can safely
1309 // modify the IR. Op holds the descaled version of the deepest term in the
1310 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1314 // The expression only had one term.
1317 // Rewrite the parent using the descaled version of its operand.
1318 assert(Parent
.first
->hasOneUse() && "Drilled down when more than one use!");
1319 assert(Op
!= Parent
.first
->getOperand(Parent
.second
) &&
1320 "Descaling was a no-op?");
1321 Parent
.first
->setOperand(Parent
.second
, Op
);
1322 Worklist
.Add(Parent
.first
);
1324 // Now work back up the expression correcting nsw flags. The logic is based
1325 // on the following observation: if X * Y is known not to overflow as a signed
1326 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1327 // then X * Z will not overflow as a signed multiplication either. As we work
1328 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1329 // current level has strictly smaller absolute value than the original.
1330 Instruction
*Ancestor
= Parent
.first
;
1332 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Ancestor
)) {
1333 // If the multiplication wasn't nsw then we can't say anything about the
1334 // value of the descaled multiplication, and we have to clear nsw flags
1335 // from this point on up.
1336 bool OpNoSignedWrap
= BO
->hasNoSignedWrap();
1337 NoSignedWrap
&= OpNoSignedWrap
;
1338 if (NoSignedWrap
!= OpNoSignedWrap
) {
1339 BO
->setHasNoSignedWrap(NoSignedWrap
);
1340 Worklist
.Add(Ancestor
);
1342 } else if (Ancestor
->getOpcode() == Instruction::Trunc
) {
1343 // The fact that the descaled input to the trunc has smaller absolute
1344 // value than the original input doesn't tell us anything useful about
1345 // the absolute values of the truncations.
1346 NoSignedWrap
= false;
1348 assert((Ancestor
->getOpcode() != Instruction::SExt
|| NoSignedWrap
) &&
1349 "Failed to keep proper track of nsw flags while drilling down?");
1351 if (Ancestor
== Val
)
1352 // Got to the top, all done!
1355 // Move up one level in the expression.
1356 assert(Ancestor
->hasOneUse() && "Drilled down when more than one use!");
1357 Ancestor
= Ancestor
->user_back();
1361 Instruction
*InstCombiner::foldVectorBinop(BinaryOperator
&Inst
) {
1362 if (!Inst
.getType()->isVectorTy()) return nullptr;
1364 BinaryOperator::BinaryOps Opcode
= Inst
.getOpcode();
1365 unsigned NumElts
= cast
<VectorType
>(Inst
.getType())->getNumElements();
1366 Value
*LHS
= Inst
.getOperand(0), *RHS
= Inst
.getOperand(1);
1367 assert(cast
<VectorType
>(LHS
->getType())->getNumElements() == NumElts
);
1368 assert(cast
<VectorType
>(RHS
->getType())->getNumElements() == NumElts
);
1370 // If both operands of the binop are vector concatenations, then perform the
1371 // narrow binop on each pair of the source operands followed by concatenation
1373 Value
*L0
, *L1
, *R0
, *R1
;
1375 if (match(LHS
, m_ShuffleVector(m_Value(L0
), m_Value(L1
), m_Constant(Mask
))) &&
1376 match(RHS
, m_ShuffleVector(m_Value(R0
), m_Value(R1
), m_Specific(Mask
))) &&
1377 LHS
->hasOneUse() && RHS
->hasOneUse() &&
1378 cast
<ShuffleVectorInst
>(LHS
)->isConcat() &&
1379 cast
<ShuffleVectorInst
>(RHS
)->isConcat()) {
1380 // This transform does not have the speculative execution constraint as
1381 // below because the shuffle is a concatenation. The new binops are
1382 // operating on exactly the same elements as the existing binop.
1383 // TODO: We could ease the mask requirement to allow different undef lanes,
1384 // but that requires an analysis of the binop-with-undef output value.
1385 Value
*NewBO0
= Builder
.CreateBinOp(Opcode
, L0
, R0
);
1386 if (auto *BO
= dyn_cast
<BinaryOperator
>(NewBO0
))
1387 BO
->copyIRFlags(&Inst
);
1388 Value
*NewBO1
= Builder
.CreateBinOp(Opcode
, L1
, R1
);
1389 if (auto *BO
= dyn_cast
<BinaryOperator
>(NewBO1
))
1390 BO
->copyIRFlags(&Inst
);
1391 return new ShuffleVectorInst(NewBO0
, NewBO1
, Mask
);
1394 // It may not be safe to reorder shuffles and things like div, urem, etc.
1395 // because we may trap when executing those ops on unknown vector elements.
1397 if (!isSafeToSpeculativelyExecute(&Inst
))
1400 auto createBinOpShuffle
= [&](Value
*X
, Value
*Y
, Constant
*M
) {
1401 Value
*XY
= Builder
.CreateBinOp(Opcode
, X
, Y
);
1402 if (auto *BO
= dyn_cast
<BinaryOperator
>(XY
))
1403 BO
->copyIRFlags(&Inst
);
1404 return new ShuffleVectorInst(XY
, UndefValue::get(XY
->getType()), M
);
1407 // If both arguments of the binary operation are shuffles that use the same
1408 // mask and shuffle within a single vector, move the shuffle after the binop.
1410 if (match(LHS
, m_ShuffleVector(m_Value(V1
), m_Undef(), m_Constant(Mask
))) &&
1411 match(RHS
, m_ShuffleVector(m_Value(V2
), m_Undef(), m_Specific(Mask
))) &&
1412 V1
->getType() == V2
->getType() &&
1413 (LHS
->hasOneUse() || RHS
->hasOneUse() || LHS
== RHS
)) {
1414 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1415 return createBinOpShuffle(V1
, V2
, Mask
);
1418 // If one argument is a shuffle within one vector and the other is a constant,
1419 // try moving the shuffle after the binary operation. This canonicalization
1420 // intends to move shuffles closer to other shuffles and binops closer to
1421 // other binops, so they can be folded. It may also enable demanded elements
1424 if (match(&Inst
, m_c_BinOp(
1425 m_OneUse(m_ShuffleVector(m_Value(V1
), m_Undef(), m_Constant(Mask
))),
1427 V1
->getType()->getVectorNumElements() <= NumElts
) {
1428 assert(Inst
.getType()->getScalarType() == V1
->getType()->getScalarType() &&
1429 "Shuffle should not change scalar type");
1431 // Find constant NewC that has property:
1432 // shuffle(NewC, ShMask) = C
1433 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1434 // reorder is not possible. A 1-to-1 mapping is not required. Example:
1435 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1436 bool ConstOp1
= isa
<Constant
>(RHS
);
1437 SmallVector
<int, 16> ShMask
;
1438 ShuffleVectorInst::getShuffleMask(Mask
, ShMask
);
1439 unsigned SrcVecNumElts
= V1
->getType()->getVectorNumElements();
1440 UndefValue
*UndefScalar
= UndefValue::get(C
->getType()->getScalarType());
1441 SmallVector
<Constant
*, 16> NewVecC(SrcVecNumElts
, UndefScalar
);
1442 bool MayChange
= true;
1443 for (unsigned I
= 0; I
< NumElts
; ++I
) {
1444 Constant
*CElt
= C
->getAggregateElement(I
);
1445 if (ShMask
[I
] >= 0) {
1446 assert(ShMask
[I
] < (int)NumElts
&& "Not expecting narrowing shuffle");
1447 Constant
*NewCElt
= NewVecC
[ShMask
[I
]];
1449 // 1. The constant vector contains a constant expression.
1450 // 2. The shuffle needs an element of the constant vector that can't
1451 // be mapped to a new constant vector.
1452 // 3. This is a widening shuffle that copies elements of V1 into the
1453 // extended elements (extending with undef is allowed).
1454 if (!CElt
|| (!isa
<UndefValue
>(NewCElt
) && NewCElt
!= CElt
) ||
1455 I
>= SrcVecNumElts
) {
1459 NewVecC
[ShMask
[I
]] = CElt
;
1461 // If this is a widening shuffle, we must be able to extend with undef
1462 // elements. If the original binop does not produce an undef in the high
1463 // lanes, then this transform is not safe.
1464 // TODO: We could shuffle those non-undef constant values into the
1465 // result by using a constant vector (rather than an undef vector)
1466 // as operand 1 of the new binop, but that might be too aggressive
1467 // for target-independent shuffle creation.
1468 if (I
>= SrcVecNumElts
) {
1469 Constant
*MaybeUndef
=
1470 ConstOp1
? ConstantExpr::get(Opcode
, UndefScalar
, CElt
)
1471 : ConstantExpr::get(Opcode
, CElt
, UndefScalar
);
1472 if (!isa
<UndefValue
>(MaybeUndef
)) {
1479 Constant
*NewC
= ConstantVector::get(NewVecC
);
1480 // It may not be safe to execute a binop on a vector with undef elements
1481 // because the entire instruction can be folded to undef or create poison
1482 // that did not exist in the original code.
1483 if (Inst
.isIntDivRem() || (Inst
.isShift() && ConstOp1
))
1484 NewC
= getSafeVectorConstantForBinop(Opcode
, NewC
, ConstOp1
);
1486 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1487 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1488 Value
*NewLHS
= ConstOp1
? V1
: NewC
;
1489 Value
*NewRHS
= ConstOp1
? NewC
: V1
;
1490 return createBinOpShuffle(NewLHS
, NewRHS
, Mask
);
1497 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1498 /// of a value. This requires a potentially expensive known bits check to make
1499 /// sure the narrow op does not overflow.
1500 Instruction
*InstCombiner::narrowMathIfNoOverflow(BinaryOperator
&BO
) {
1501 // We need at least one extended operand.
1502 Value
*Op0
= BO
.getOperand(0), *Op1
= BO
.getOperand(1);
1504 // If this is a sub, we swap the operands since we always want an extension
1505 // on the RHS. The LHS can be an extension or a constant.
1506 if (BO
.getOpcode() == Instruction::Sub
)
1507 std::swap(Op0
, Op1
);
1510 bool IsSext
= match(Op0
, m_SExt(m_Value(X
)));
1511 if (!IsSext
&& !match(Op0
, m_ZExt(m_Value(X
))))
1514 // If both operands are the same extension from the same source type and we
1515 // can eliminate at least one (hasOneUse), this might work.
1516 CastInst::CastOps CastOpc
= IsSext
? Instruction::SExt
: Instruction::ZExt
;
1518 if (!(match(Op1
, m_ZExtOrSExt(m_Value(Y
))) && X
->getType() == Y
->getType() &&
1519 cast
<Operator
>(Op1
)->getOpcode() == CastOpc
&&
1520 (Op0
->hasOneUse() || Op1
->hasOneUse()))) {
1521 // If that did not match, see if we have a suitable constant operand.
1522 // Truncating and extending must produce the same constant.
1524 if (!Op0
->hasOneUse() || !match(Op1
, m_Constant(WideC
)))
1526 Constant
*NarrowC
= ConstantExpr::getTrunc(WideC
, X
->getType());
1527 if (ConstantExpr::getCast(CastOpc
, NarrowC
, BO
.getType()) != WideC
)
1532 // Swap back now that we found our operands.
1533 if (BO
.getOpcode() == Instruction::Sub
)
1536 // Both operands have narrow versions. Last step: the math must not overflow
1537 // in the narrow width.
1538 if (!willNotOverflow(BO
.getOpcode(), X
, Y
, BO
, IsSext
))
1541 // bo (ext X), (ext Y) --> ext (bo X, Y)
1542 // bo (ext X), C --> ext (bo X, C')
1543 Value
*NarrowBO
= Builder
.CreateBinOp(BO
.getOpcode(), X
, Y
, "narrow");
1544 if (auto *NewBinOp
= dyn_cast
<BinaryOperator
>(NarrowBO
)) {
1546 NewBinOp
->setHasNoSignedWrap();
1548 NewBinOp
->setHasNoUnsignedWrap();
1550 return CastInst::Create(CastOpc
, NarrowBO
, BO
.getType());
1553 Instruction
*InstCombiner::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
1554 SmallVector
<Value
*, 8> Ops(GEP
.op_begin(), GEP
.op_end());
1555 Type
*GEPType
= GEP
.getType();
1556 Type
*GEPEltType
= GEP
.getSourceElementType();
1557 if (Value
*V
= SimplifyGEPInst(GEPEltType
, Ops
, SQ
.getWithInstruction(&GEP
)))
1558 return replaceInstUsesWith(GEP
, V
);
1560 Value
*PtrOp
= GEP
.getOperand(0);
1562 // Eliminate unneeded casts for indices, and replace indices which displace
1563 // by multiples of a zero size type with zero.
1564 bool MadeChange
= false;
1566 // Index width may not be the same width as pointer width.
1567 // Data layout chooses the right type based on supported integer types.
1568 Type
*NewScalarIndexTy
=
1569 DL
.getIndexType(GEP
.getPointerOperandType()->getScalarType());
1571 gep_type_iterator GTI
= gep_type_begin(GEP
);
1572 for (User::op_iterator I
= GEP
.op_begin() + 1, E
= GEP
.op_end(); I
!= E
;
1574 // Skip indices into struct types.
1578 Type
*IndexTy
= (*I
)->getType();
1579 Type
*NewIndexType
=
1580 IndexTy
->isVectorTy()
1581 ? VectorType::get(NewScalarIndexTy
, IndexTy
->getVectorNumElements())
1584 // If the element type has zero size then any index over it is equivalent
1585 // to an index of zero, so replace it with zero if it is not zero already.
1586 Type
*EltTy
= GTI
.getIndexedType();
1587 if (EltTy
->isSized() && DL
.getTypeAllocSize(EltTy
) == 0)
1588 if (!isa
<Constant
>(*I
) || !cast
<Constant
>(*I
)->isNullValue()) {
1589 *I
= Constant::getNullValue(NewIndexType
);
1593 if (IndexTy
!= NewIndexType
) {
1594 // If we are using a wider index than needed for this platform, shrink
1595 // it to what we need. If narrower, sign-extend it to what we need.
1596 // This explicit cast can make subsequent optimizations more obvious.
1597 *I
= Builder
.CreateIntCast(*I
, NewIndexType
, true);
1604 // Check to see if the inputs to the PHI node are getelementptr instructions.
1605 if (auto *PN
= dyn_cast
<PHINode
>(PtrOp
)) {
1606 auto *Op1
= dyn_cast
<GetElementPtrInst
>(PN
->getOperand(0));
1610 // Don't fold a GEP into itself through a PHI node. This can only happen
1611 // through the back-edge of a loop. Folding a GEP into itself means that
1612 // the value of the previous iteration needs to be stored in the meantime,
1613 // thus requiring an additional register variable to be live, but not
1614 // actually achieving anything (the GEP still needs to be executed once per
1621 for (auto I
= PN
->op_begin()+1, E
= PN
->op_end(); I
!=E
; ++I
) {
1622 auto *Op2
= dyn_cast
<GetElementPtrInst
>(*I
);
1623 if (!Op2
|| Op1
->getNumOperands() != Op2
->getNumOperands())
1626 // As for Op1 above, don't try to fold a GEP into itself.
1630 // Keep track of the type as we walk the GEP.
1631 Type
*CurTy
= nullptr;
1633 for (unsigned J
= 0, F
= Op1
->getNumOperands(); J
!= F
; ++J
) {
1634 if (Op1
->getOperand(J
)->getType() != Op2
->getOperand(J
)->getType())
1637 if (Op1
->getOperand(J
) != Op2
->getOperand(J
)) {
1639 // We have not seen any differences yet in the GEPs feeding the
1640 // PHI yet, so we record this one if it is allowed to be a
1643 // The first two arguments can vary for any GEP, the rest have to be
1644 // static for struct slots
1645 if (J
> 1 && CurTy
->isStructTy())
1650 // The GEP is different by more than one input. While this could be
1651 // extended to support GEPs that vary by more than one variable it
1652 // doesn't make sense since it greatly increases the complexity and
1653 // would result in an R+R+R addressing mode which no backend
1654 // directly supports and would need to be broken into several
1655 // simpler instructions anyway.
1660 // Sink down a layer of the type for the next iteration.
1663 CurTy
= Op1
->getSourceElementType();
1664 } else if (auto *CT
= dyn_cast
<CompositeType
>(CurTy
)) {
1665 CurTy
= CT
->getTypeAtIndex(Op1
->getOperand(J
));
1673 // If not all GEPs are identical we'll have to create a new PHI node.
1674 // Check that the old PHI node has only one use so that it will get
1676 if (DI
!= -1 && !PN
->hasOneUse())
1679 auto *NewGEP
= cast
<GetElementPtrInst
>(Op1
->clone());
1681 // All the GEPs feeding the PHI are identical. Clone one down into our
1682 // BB so that it can be merged with the current GEP.
1683 GEP
.getParent()->getInstList().insert(
1684 GEP
.getParent()->getFirstInsertionPt(), NewGEP
);
1686 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1687 // into the current block so it can be merged, and create a new PHI to
1691 IRBuilderBase::InsertPointGuard
Guard(Builder
);
1692 Builder
.SetInsertPoint(PN
);
1693 NewPN
= Builder
.CreatePHI(Op1
->getOperand(DI
)->getType(),
1694 PN
->getNumOperands());
1697 for (auto &I
: PN
->operands())
1698 NewPN
->addIncoming(cast
<GEPOperator
>(I
)->getOperand(DI
),
1699 PN
->getIncomingBlock(I
));
1701 NewGEP
->setOperand(DI
, NewPN
);
1702 GEP
.getParent()->getInstList().insert(
1703 GEP
.getParent()->getFirstInsertionPt(), NewGEP
);
1704 NewGEP
->setOperand(DI
, NewPN
);
1707 GEP
.setOperand(0, NewGEP
);
1711 // Combine Indices - If the source pointer to this getelementptr instruction
1712 // is a getelementptr instruction, combine the indices of the two
1713 // getelementptr instructions into a single instruction.
1714 if (auto *Src
= dyn_cast
<GEPOperator
>(PtrOp
)) {
1715 if (!shouldMergeGEPs(*cast
<GEPOperator
>(&GEP
), *Src
))
1718 // Try to reassociate loop invariant GEP chains to enable LICM.
1719 if (LI
&& Src
->getNumOperands() == 2 && GEP
.getNumOperands() == 2 &&
1721 if (Loop
*L
= LI
->getLoopFor(GEP
.getParent())) {
1722 Value
*GO1
= GEP
.getOperand(1);
1723 Value
*SO1
= Src
->getOperand(1);
1724 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1725 // invariant: this breaks the dependence between GEPs and allows LICM
1726 // to hoist the invariant part out of the loop.
1727 if (L
->isLoopInvariant(GO1
) && !L
->isLoopInvariant(SO1
)) {
1728 // We have to be careful here.
1729 // We have something like:
1730 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1731 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1732 // If we just swap idx & idx2 then we could inadvertantly
1733 // change %src from a vector to a scalar, or vice versa.
1735 // 1) %base a scalar & idx a scalar & idx2 a vector
1736 // => Swapping idx & idx2 turns %src into a vector type.
1737 // 2) %base a scalar & idx a vector & idx2 a scalar
1738 // => Swapping idx & idx2 turns %src in a scalar type
1739 // 3) %base, %idx, and %idx2 are scalars
1740 // => %src & %gep are scalars
1741 // => swapping idx & idx2 is safe
1742 // 4) %base a vector
1743 // => %src is a vector
1744 // => swapping idx & idx2 is safe.
1745 auto *SO0
= Src
->getOperand(0);
1746 auto *SO0Ty
= SO0
->getType();
1747 if (!isa
<VectorType
>(GEPType
) || // case 3
1748 isa
<VectorType
>(SO0Ty
)) { // case 4
1749 Src
->setOperand(1, GO1
);
1750 GEP
.setOperand(1, SO1
);
1754 // -- have to recreate %src & %gep
1755 // put NewSrc at same location as %src
1756 Builder
.SetInsertPoint(cast
<Instruction
>(PtrOp
));
1757 auto *NewSrc
= cast
<GetElementPtrInst
>(
1758 Builder
.CreateGEP(GEPEltType
, SO0
, GO1
, Src
->getName()));
1759 NewSrc
->setIsInBounds(Src
->isInBounds());
1760 auto *NewGEP
= GetElementPtrInst::Create(GEPEltType
, NewSrc
, {SO1
});
1761 NewGEP
->setIsInBounds(GEP
.isInBounds());
1768 // Note that if our source is a gep chain itself then we wait for that
1769 // chain to be resolved before we perform this transformation. This
1770 // avoids us creating a TON of code in some cases.
1771 if (auto *SrcGEP
= dyn_cast
<GEPOperator
>(Src
->getOperand(0)))
1772 if (SrcGEP
->getNumOperands() == 2 && shouldMergeGEPs(*Src
, *SrcGEP
))
1773 return nullptr; // Wait until our source is folded to completion.
1775 SmallVector
<Value
*, 8> Indices
;
1777 // Find out whether the last index in the source GEP is a sequential idx.
1778 bool EndsWithSequential
= false;
1779 for (gep_type_iterator I
= gep_type_begin(*Src
), E
= gep_type_end(*Src
);
1781 EndsWithSequential
= I
.isSequential();
1783 // Can we combine the two pointer arithmetics offsets?
1784 if (EndsWithSequential
) {
1785 // Replace: gep (gep %P, long B), long A, ...
1786 // With: T = long A+B; gep %P, T, ...
1787 Value
*SO1
= Src
->getOperand(Src
->getNumOperands()-1);
1788 Value
*GO1
= GEP
.getOperand(1);
1790 // If they aren't the same type, then the input hasn't been processed
1791 // by the loop above yet (which canonicalizes sequential index types to
1792 // intptr_t). Just avoid transforming this until the input has been
1794 if (SO1
->getType() != GO1
->getType())
1798 SimplifyAddInst(GO1
, SO1
, false, false, SQ
.getWithInstruction(&GEP
));
1799 // Only do the combine when we are sure the cost after the
1800 // merge is never more than that before the merge.
1804 // Update the GEP in place if possible.
1805 if (Src
->getNumOperands() == 2) {
1806 GEP
.setOperand(0, Src
->getOperand(0));
1807 GEP
.setOperand(1, Sum
);
1810 Indices
.append(Src
->op_begin()+1, Src
->op_end()-1);
1811 Indices
.push_back(Sum
);
1812 Indices
.append(GEP
.op_begin()+2, GEP
.op_end());
1813 } else if (isa
<Constant
>(*GEP
.idx_begin()) &&
1814 cast
<Constant
>(*GEP
.idx_begin())->isNullValue() &&
1815 Src
->getNumOperands() != 1) {
1816 // Otherwise we can do the fold if the first index of the GEP is a zero
1817 Indices
.append(Src
->op_begin()+1, Src
->op_end());
1818 Indices
.append(GEP
.idx_begin()+1, GEP
.idx_end());
1821 if (!Indices
.empty())
1822 return GEP
.isInBounds() && Src
->isInBounds()
1823 ? GetElementPtrInst::CreateInBounds(
1824 Src
->getSourceElementType(), Src
->getOperand(0), Indices
,
1826 : GetElementPtrInst::Create(Src
->getSourceElementType(),
1827 Src
->getOperand(0), Indices
,
1831 if (GEP
.getNumIndices() == 1) {
1832 unsigned AS
= GEP
.getPointerAddressSpace();
1833 if (GEP
.getOperand(1)->getType()->getScalarSizeInBits() ==
1834 DL
.getIndexSizeInBits(AS
)) {
1835 uint64_t TyAllocSize
= DL
.getTypeAllocSize(GEPEltType
);
1837 bool Matched
= false;
1840 if (TyAllocSize
== 1) {
1841 V
= GEP
.getOperand(1);
1843 } else if (match(GEP
.getOperand(1),
1844 m_AShr(m_Value(V
), m_ConstantInt(C
)))) {
1845 if (TyAllocSize
== 1ULL << C
)
1847 } else if (match(GEP
.getOperand(1),
1848 m_SDiv(m_Value(V
), m_ConstantInt(C
)))) {
1849 if (TyAllocSize
== C
)
1854 // Canonicalize (gep i8* X, -(ptrtoint Y))
1855 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1856 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1857 // pointer arithmetic.
1858 if (match(V
, m_Neg(m_PtrToInt(m_Value())))) {
1859 Operator
*Index
= cast
<Operator
>(V
);
1860 Value
*PtrToInt
= Builder
.CreatePtrToInt(PtrOp
, Index
->getType());
1861 Value
*NewSub
= Builder
.CreateSub(PtrToInt
, Index
->getOperand(1));
1862 return CastInst::Create(Instruction::IntToPtr
, NewSub
, GEPType
);
1864 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1867 if (match(V
, m_Sub(m_PtrToInt(m_Value(Y
)),
1868 m_PtrToInt(m_Specific(GEP
.getOperand(0))))))
1869 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y
, GEPType
);
1874 // We do not handle pointer-vector geps here.
1875 if (GEPType
->isVectorTy())
1878 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1879 Value
*StrippedPtr
= PtrOp
->stripPointerCasts();
1880 PointerType
*StrippedPtrTy
= cast
<PointerType
>(StrippedPtr
->getType());
1882 if (StrippedPtr
!= PtrOp
) {
1883 bool HasZeroPointerIndex
= false;
1884 Type
*StrippedPtrEltTy
= StrippedPtrTy
->getElementType();
1886 if (auto *C
= dyn_cast
<ConstantInt
>(GEP
.getOperand(1)))
1887 HasZeroPointerIndex
= C
->isZero();
1889 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1890 // into : GEP [10 x i8]* X, i32 0, ...
1892 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1893 // into : GEP i8* X, ...
1895 // This occurs when the program declares an array extern like "int X[];"
1896 if (HasZeroPointerIndex
) {
1897 if (auto *CATy
= dyn_cast
<ArrayType
>(GEPEltType
)) {
1898 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1899 if (CATy
->getElementType() == StrippedPtrEltTy
) {
1900 // -> GEP i8* X, ...
1901 SmallVector
<Value
*, 8> Idx(GEP
.idx_begin()+1, GEP
.idx_end());
1902 GetElementPtrInst
*Res
= GetElementPtrInst::Create(
1903 StrippedPtrEltTy
, StrippedPtr
, Idx
, GEP
.getName());
1904 Res
->setIsInBounds(GEP
.isInBounds());
1905 if (StrippedPtrTy
->getAddressSpace() == GEP
.getAddressSpace())
1907 // Insert Res, and create an addrspacecast.
1909 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1911 // %0 = GEP i8 addrspace(1)* X, ...
1912 // addrspacecast i8 addrspace(1)* %0 to i8*
1913 return new AddrSpaceCastInst(Builder
.Insert(Res
), GEPType
);
1916 if (auto *XATy
= dyn_cast
<ArrayType
>(StrippedPtrEltTy
)) {
1917 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1918 if (CATy
->getElementType() == XATy
->getElementType()) {
1919 // -> GEP [10 x i8]* X, i32 0, ...
1920 // At this point, we know that the cast source type is a pointer
1921 // to an array of the same type as the destination pointer
1922 // array. Because the array type is never stepped over (there
1923 // is a leading zero) we can fold the cast into this GEP.
1924 if (StrippedPtrTy
->getAddressSpace() == GEP
.getAddressSpace()) {
1925 GEP
.setOperand(0, StrippedPtr
);
1926 GEP
.setSourceElementType(XATy
);
1929 // Cannot replace the base pointer directly because StrippedPtr's
1930 // address space is different. Instead, create a new GEP followed by
1931 // an addrspacecast.
1933 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1936 // %0 = GEP [10 x i8] addrspace(1)* X, ...
1937 // addrspacecast i8 addrspace(1)* %0 to i8*
1938 SmallVector
<Value
*, 8> Idx(GEP
.idx_begin(), GEP
.idx_end());
1941 ? Builder
.CreateInBoundsGEP(StrippedPtrEltTy
, StrippedPtr
,
1943 : Builder
.CreateGEP(StrippedPtrEltTy
, StrippedPtr
, Idx
,
1945 return new AddrSpaceCastInst(NewGEP
, GEPType
);
1949 } else if (GEP
.getNumOperands() == 2) {
1950 // Transform things like:
1951 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1952 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1953 if (StrippedPtrEltTy
->isArrayTy() &&
1954 DL
.getTypeAllocSize(StrippedPtrEltTy
->getArrayElementType()) ==
1955 DL
.getTypeAllocSize(GEPEltType
)) {
1956 Type
*IdxType
= DL
.getIndexType(GEPType
);
1957 Value
*Idx
[2] = { Constant::getNullValue(IdxType
), GEP
.getOperand(1) };
1960 ? Builder
.CreateInBoundsGEP(StrippedPtrEltTy
, StrippedPtr
, Idx
,
1962 : Builder
.CreateGEP(StrippedPtrEltTy
, StrippedPtr
, Idx
,
1965 // V and GEP are both pointer types --> BitCast
1966 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP
, GEPType
);
1969 // Transform things like:
1970 // %V = mul i64 %N, 4
1971 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1972 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
1973 if (GEPEltType
->isSized() && StrippedPtrEltTy
->isSized()) {
1974 // Check that changing the type amounts to dividing the index by a scale
1976 uint64_t ResSize
= DL
.getTypeAllocSize(GEPEltType
);
1977 uint64_t SrcSize
= DL
.getTypeAllocSize(StrippedPtrEltTy
);
1978 if (ResSize
&& SrcSize
% ResSize
== 0) {
1979 Value
*Idx
= GEP
.getOperand(1);
1980 unsigned BitWidth
= Idx
->getType()->getPrimitiveSizeInBits();
1981 uint64_t Scale
= SrcSize
/ ResSize
;
1983 // Earlier transforms ensure that the index has the right type
1984 // according to Data Layout, which considerably simplifies the
1985 // logic by eliminating implicit casts.
1986 assert(Idx
->getType() == DL
.getIndexType(GEPType
) &&
1987 "Index type does not match the Data Layout preferences");
1990 if (Value
*NewIdx
= Descale(Idx
, APInt(BitWidth
, Scale
), NSW
)) {
1991 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1992 // If the multiplication NewIdx * Scale may overflow then the new
1993 // GEP may not be "inbounds".
1995 GEP
.isInBounds() && NSW
1996 ? Builder
.CreateInBoundsGEP(StrippedPtrEltTy
, StrippedPtr
,
1997 NewIdx
, GEP
.getName())
1998 : Builder
.CreateGEP(StrippedPtrEltTy
, StrippedPtr
, NewIdx
,
2001 // The NewGEP must be pointer typed, so must the old one -> BitCast
2002 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP
,
2008 // Similarly, transform things like:
2009 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2010 // (where tmp = 8*tmp2) into:
2011 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2012 if (GEPEltType
->isSized() && StrippedPtrEltTy
->isSized() &&
2013 StrippedPtrEltTy
->isArrayTy()) {
2014 // Check that changing to the array element type amounts to dividing the
2015 // index by a scale factor.
2016 uint64_t ResSize
= DL
.getTypeAllocSize(GEPEltType
);
2017 uint64_t ArrayEltSize
=
2018 DL
.getTypeAllocSize(StrippedPtrEltTy
->getArrayElementType());
2019 if (ResSize
&& ArrayEltSize
% ResSize
== 0) {
2020 Value
*Idx
= GEP
.getOperand(1);
2021 unsigned BitWidth
= Idx
->getType()->getPrimitiveSizeInBits();
2022 uint64_t Scale
= ArrayEltSize
/ ResSize
;
2024 // Earlier transforms ensure that the index has the right type
2025 // according to the Data Layout, which considerably simplifies
2026 // the logic by eliminating implicit casts.
2027 assert(Idx
->getType() == DL
.getIndexType(GEPType
) &&
2028 "Index type does not match the Data Layout preferences");
2031 if (Value
*NewIdx
= Descale(Idx
, APInt(BitWidth
, Scale
), NSW
)) {
2032 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2033 // If the multiplication NewIdx * Scale may overflow then the new
2034 // GEP may not be "inbounds".
2035 Type
*IndTy
= DL
.getIndexType(GEPType
);
2036 Value
*Off
[2] = {Constant::getNullValue(IndTy
), NewIdx
};
2039 GEP
.isInBounds() && NSW
2040 ? Builder
.CreateInBoundsGEP(StrippedPtrEltTy
, StrippedPtr
,
2042 : Builder
.CreateGEP(StrippedPtrEltTy
, StrippedPtr
, Off
,
2044 // The NewGEP must be pointer typed, so must the old one -> BitCast
2045 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP
,
2053 // addrspacecast between types is canonicalized as a bitcast, then an
2054 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2055 // through the addrspacecast.
2056 Value
*ASCStrippedPtrOp
= PtrOp
;
2057 if (auto *ASC
= dyn_cast
<AddrSpaceCastInst
>(PtrOp
)) {
2058 // X = bitcast A addrspace(1)* to B addrspace(1)*
2059 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2060 // Z = gep Y, <...constant indices...>
2061 // Into an addrspacecasted GEP of the struct.
2062 if (auto *BC
= dyn_cast
<BitCastInst
>(ASC
->getOperand(0)))
2063 ASCStrippedPtrOp
= BC
;
2066 if (auto *BCI
= dyn_cast
<BitCastInst
>(ASCStrippedPtrOp
)) {
2067 Value
*SrcOp
= BCI
->getOperand(0);
2068 PointerType
*SrcType
= cast
<PointerType
>(BCI
->getSrcTy());
2069 Type
*SrcEltType
= SrcType
->getElementType();
2071 // GEP directly using the source operand if this GEP is accessing an element
2072 // of a bitcasted pointer to vector or array of the same dimensions:
2073 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2074 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2075 auto areMatchingArrayAndVecTypes
= [](Type
*ArrTy
, Type
*VecTy
) {
2076 return ArrTy
->getArrayElementType() == VecTy
->getVectorElementType() &&
2077 ArrTy
->getArrayNumElements() == VecTy
->getVectorNumElements();
2079 if (GEP
.getNumOperands() == 3 &&
2080 ((GEPEltType
->isArrayTy() && SrcEltType
->isVectorTy() &&
2081 areMatchingArrayAndVecTypes(GEPEltType
, SrcEltType
)) ||
2082 (GEPEltType
->isVectorTy() && SrcEltType
->isArrayTy() &&
2083 areMatchingArrayAndVecTypes(SrcEltType
, GEPEltType
)))) {
2085 // Create a new GEP here, as using `setOperand()` followed by
2086 // `setSourceElementType()` won't actually update the type of the
2087 // existing GEP Value. Causing issues if this Value is accessed when
2088 // constructing an AddrSpaceCastInst
2091 ? Builder
.CreateInBoundsGEP(SrcEltType
, SrcOp
, {Ops
[1], Ops
[2]})
2092 : Builder
.CreateGEP(SrcEltType
, SrcOp
, {Ops
[1], Ops
[2]});
2093 NGEP
->takeName(&GEP
);
2095 // Preserve GEP address space to satisfy users
2096 if (NGEP
->getType()->getPointerAddressSpace() != GEP
.getAddressSpace())
2097 return new AddrSpaceCastInst(NGEP
, GEPType
);
2099 return replaceInstUsesWith(GEP
, NGEP
);
2102 // See if we can simplify:
2103 // X = bitcast A* to B*
2104 // Y = gep X, <...constant indices...>
2105 // into a gep of the original struct. This is important for SROA and alias
2106 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2107 unsigned OffsetBits
= DL
.getIndexTypeSizeInBits(GEPType
);
2108 APInt
Offset(OffsetBits
, 0);
2109 if (!isa
<BitCastInst
>(SrcOp
) && GEP
.accumulateConstantOffset(DL
, Offset
)) {
2110 // If this GEP instruction doesn't move the pointer, just replace the GEP
2111 // with a bitcast of the real input to the dest type.
2113 // If the bitcast is of an allocation, and the allocation will be
2114 // converted to match the type of the cast, don't touch this.
2115 if (isa
<AllocaInst
>(SrcOp
) || isAllocationFn(SrcOp
, &TLI
)) {
2116 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2117 if (Instruction
*I
= visitBitCast(*BCI
)) {
2120 BCI
->getParent()->getInstList().insert(BCI
->getIterator(), I
);
2121 replaceInstUsesWith(*BCI
, I
);
2127 if (SrcType
->getPointerAddressSpace() != GEP
.getAddressSpace())
2128 return new AddrSpaceCastInst(SrcOp
, GEPType
);
2129 return new BitCastInst(SrcOp
, GEPType
);
2132 // Otherwise, if the offset is non-zero, we need to find out if there is a
2133 // field at Offset in 'A's type. If so, we can pull the cast through the
2135 SmallVector
<Value
*, 8> NewIndices
;
2136 if (FindElementAtOffset(SrcType
, Offset
.getSExtValue(), NewIndices
)) {
2139 ? Builder
.CreateInBoundsGEP(SrcEltType
, SrcOp
, NewIndices
)
2140 : Builder
.CreateGEP(SrcEltType
, SrcOp
, NewIndices
);
2142 if (NGEP
->getType() == GEPType
)
2143 return replaceInstUsesWith(GEP
, NGEP
);
2144 NGEP
->takeName(&GEP
);
2146 if (NGEP
->getType()->getPointerAddressSpace() != GEP
.getAddressSpace())
2147 return new AddrSpaceCastInst(NGEP
, GEPType
);
2148 return new BitCastInst(NGEP
, GEPType
);
2153 if (!GEP
.isInBounds()) {
2155 DL
.getIndexSizeInBits(PtrOp
->getType()->getPointerAddressSpace());
2156 APInt
BasePtrOffset(IdxWidth
, 0);
2157 Value
*UnderlyingPtrOp
=
2158 PtrOp
->stripAndAccumulateInBoundsConstantOffsets(DL
,
2160 if (auto *AI
= dyn_cast
<AllocaInst
>(UnderlyingPtrOp
)) {
2161 if (GEP
.accumulateConstantOffset(DL
, BasePtrOffset
) &&
2162 BasePtrOffset
.isNonNegative()) {
2163 APInt
AllocSize(IdxWidth
, DL
.getTypeAllocSize(AI
->getAllocatedType()));
2164 if (BasePtrOffset
.ule(AllocSize
)) {
2165 return GetElementPtrInst::CreateInBounds(
2166 GEP
.getSourceElementType(), PtrOp
, makeArrayRef(Ops
).slice(1),
2176 static bool isNeverEqualToUnescapedAlloc(Value
*V
, const TargetLibraryInfo
*TLI
,
2178 if (isa
<ConstantPointerNull
>(V
))
2180 if (auto *LI
= dyn_cast
<LoadInst
>(V
))
2181 return isa
<GlobalVariable
>(LI
->getPointerOperand());
2182 // Two distinct allocations will never be equal.
2183 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2184 // through bitcasts of V can cause
2185 // the result statement below to be true, even when AI and V (ex:
2186 // i8* ->i32* ->i8* of AI) are the same allocations.
2187 return isAllocLikeFn(V
, TLI
) && V
!= AI
;
2190 static bool isAllocSiteRemovable(Instruction
*AI
,
2191 SmallVectorImpl
<WeakTrackingVH
> &Users
,
2192 const TargetLibraryInfo
*TLI
) {
2193 SmallVector
<Instruction
*, 4> Worklist
;
2194 Worklist
.push_back(AI
);
2197 Instruction
*PI
= Worklist
.pop_back_val();
2198 for (User
*U
: PI
->users()) {
2199 Instruction
*I
= cast
<Instruction
>(U
);
2200 switch (I
->getOpcode()) {
2202 // Give up the moment we see something we can't handle.
2205 case Instruction::AddrSpaceCast
:
2206 case Instruction::BitCast
:
2207 case Instruction::GetElementPtr
:
2208 Users
.emplace_back(I
);
2209 Worklist
.push_back(I
);
2212 case Instruction::ICmp
: {
2213 ICmpInst
*ICI
= cast
<ICmpInst
>(I
);
2214 // We can fold eq/ne comparisons with null to false/true, respectively.
2215 // We also fold comparisons in some conditions provided the alloc has
2216 // not escaped (see isNeverEqualToUnescapedAlloc).
2217 if (!ICI
->isEquality())
2219 unsigned OtherIndex
= (ICI
->getOperand(0) == PI
) ? 1 : 0;
2220 if (!isNeverEqualToUnescapedAlloc(ICI
->getOperand(OtherIndex
), TLI
, AI
))
2222 Users
.emplace_back(I
);
2226 case Instruction::Call
:
2227 // Ignore no-op and store intrinsics.
2228 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
2229 switch (II
->getIntrinsicID()) {
2233 case Intrinsic::memmove
:
2234 case Intrinsic::memcpy
:
2235 case Intrinsic::memset
: {
2236 MemIntrinsic
*MI
= cast
<MemIntrinsic
>(II
);
2237 if (MI
->isVolatile() || MI
->getRawDest() != PI
)
2241 case Intrinsic::invariant_start
:
2242 case Intrinsic::invariant_end
:
2243 case Intrinsic::lifetime_start
:
2244 case Intrinsic::lifetime_end
:
2245 case Intrinsic::objectsize
:
2246 Users
.emplace_back(I
);
2251 if (isFreeCall(I
, TLI
)) {
2252 Users
.emplace_back(I
);
2257 case Instruction::Store
: {
2258 StoreInst
*SI
= cast
<StoreInst
>(I
);
2259 if (SI
->isVolatile() || SI
->getPointerOperand() != PI
)
2261 Users
.emplace_back(I
);
2265 llvm_unreachable("missing a return?");
2267 } while (!Worklist
.empty());
2271 Instruction
*InstCombiner::visitAllocSite(Instruction
&MI
) {
2272 // If we have a malloc call which is only used in any amount of comparisons to
2273 // null and free calls, delete the calls and replace the comparisons with true
2274 // or false as appropriate.
2276 // This is based on the principle that we can substitute our own allocation
2277 // function (which will never return null) rather than knowledge of the
2278 // specific function being called. In some sense this can change the permitted
2279 // outputs of a program (when we convert a malloc to an alloca, the fact that
2280 // the allocation is now on the stack is potentially visible, for example),
2281 // but we believe in a permissible manner.
2282 SmallVector
<WeakTrackingVH
, 64> Users
;
2284 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2285 // before each store.
2286 TinyPtrVector
<DbgVariableIntrinsic
*> DIIs
;
2287 std::unique_ptr
<DIBuilder
> DIB
;
2288 if (isa
<AllocaInst
>(MI
)) {
2289 DIIs
= FindDbgAddrUses(&MI
);
2290 DIB
.reset(new DIBuilder(*MI
.getModule(), /*AllowUnresolved=*/false));
2293 if (isAllocSiteRemovable(&MI
, Users
, &TLI
)) {
2294 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
) {
2295 // Lowering all @llvm.objectsize calls first because they may
2296 // use a bitcast/GEP of the alloca we are removing.
2300 Instruction
*I
= cast
<Instruction
>(&*Users
[i
]);
2302 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
2303 if (II
->getIntrinsicID() == Intrinsic::objectsize
) {
2305 lowerObjectSizeCall(II
, DL
, &TLI
, /*MustSucceed=*/true);
2306 replaceInstUsesWith(*I
, Result
);
2307 eraseInstFromFunction(*I
);
2308 Users
[i
] = nullptr; // Skip examining in the next loop.
2312 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
) {
2316 Instruction
*I
= cast
<Instruction
>(&*Users
[i
]);
2318 if (ICmpInst
*C
= dyn_cast
<ICmpInst
>(I
)) {
2319 replaceInstUsesWith(*C
,
2320 ConstantInt::get(Type::getInt1Ty(C
->getContext()),
2321 C
->isFalseWhenEqual()));
2322 } else if (isa
<BitCastInst
>(I
) || isa
<GetElementPtrInst
>(I
) ||
2323 isa
<AddrSpaceCastInst
>(I
)) {
2324 replaceInstUsesWith(*I
, UndefValue::get(I
->getType()));
2325 } else if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
2326 for (auto *DII
: DIIs
)
2327 ConvertDebugDeclareToDebugValue(DII
, SI
, *DIB
);
2329 eraseInstFromFunction(*I
);
2332 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(&MI
)) {
2333 // Replace invoke with a NOP intrinsic to maintain the original CFG
2334 Module
*M
= II
->getModule();
2335 Function
*F
= Intrinsic::getDeclaration(M
, Intrinsic::donothing
);
2336 InvokeInst::Create(F
, II
->getNormalDest(), II
->getUnwindDest(),
2337 None
, "", II
->getParent());
2340 for (auto *DII
: DIIs
)
2341 eraseInstFromFunction(*DII
);
2343 return eraseInstFromFunction(MI
);
2348 /// Move the call to free before a NULL test.
2350 /// Check if this free is accessed after its argument has been test
2351 /// against NULL (property 0).
2352 /// If yes, it is legal to move this call in its predecessor block.
2354 /// The move is performed only if the block containing the call to free
2355 /// will be removed, i.e.:
2356 /// 1. it has only one predecessor P, and P has two successors
2357 /// 2. it contains the call, noops, and an unconditional branch
2358 /// 3. its successor is the same as its predecessor's successor
2360 /// The profitability is out-of concern here and this function should
2361 /// be called only if the caller knows this transformation would be
2362 /// profitable (e.g., for code size).
2363 static Instruction
*tryToMoveFreeBeforeNullTest(CallInst
&FI
,
2364 const DataLayout
&DL
) {
2365 Value
*Op
= FI
.getArgOperand(0);
2366 BasicBlock
*FreeInstrBB
= FI
.getParent();
2367 BasicBlock
*PredBB
= FreeInstrBB
->getSinglePredecessor();
2369 // Validate part of constraint #1: Only one predecessor
2370 // FIXME: We can extend the number of predecessor, but in that case, we
2371 // would duplicate the call to free in each predecessor and it may
2372 // not be profitable even for code size.
2376 // Validate constraint #2: Does this block contains only the call to
2377 // free, noops, and an unconditional branch?
2379 Instruction
*FreeInstrBBTerminator
= FreeInstrBB
->getTerminator();
2380 if (!match(FreeInstrBBTerminator
, m_UnconditionalBr(SuccBB
)))
2383 // If there are only 2 instructions in the block, at this point,
2384 // this is the call to free and unconditional.
2385 // If there are more than 2 instructions, check that they are noops
2386 // i.e., they won't hurt the performance of the generated code.
2387 if (FreeInstrBB
->size() != 2) {
2388 for (const Instruction
&Inst
: *FreeInstrBB
) {
2389 if (&Inst
== &FI
|| &Inst
== FreeInstrBBTerminator
)
2391 auto *Cast
= dyn_cast
<CastInst
>(&Inst
);
2392 if (!Cast
|| !Cast
->isNoopCast(DL
))
2396 // Validate the rest of constraint #1 by matching on the pred branch.
2397 Instruction
*TI
= PredBB
->getTerminator();
2398 BasicBlock
*TrueBB
, *FalseBB
;
2399 ICmpInst::Predicate Pred
;
2400 if (!match(TI
, m_Br(m_ICmp(Pred
,
2401 m_CombineOr(m_Specific(Op
),
2402 m_Specific(Op
->stripPointerCasts())),
2406 if (Pred
!= ICmpInst::ICMP_EQ
&& Pred
!= ICmpInst::ICMP_NE
)
2409 // Validate constraint #3: Ensure the null case just falls through.
2410 if (SuccBB
!= (Pred
== ICmpInst::ICMP_EQ
? TrueBB
: FalseBB
))
2412 assert(FreeInstrBB
== (Pred
== ICmpInst::ICMP_EQ
? FalseBB
: TrueBB
) &&
2413 "Broken CFG: missing edge from predecessor to successor");
2415 // At this point, we know that everything in FreeInstrBB can be moved
2417 for (BasicBlock::iterator It
= FreeInstrBB
->begin(), End
= FreeInstrBB
->end();
2419 Instruction
&Instr
= *It
++;
2420 if (&Instr
== FreeInstrBBTerminator
)
2422 Instr
.moveBefore(TI
);
2424 assert(FreeInstrBB
->size() == 1 &&
2425 "Only the branch instruction should remain");
2429 Instruction
*InstCombiner::visitFree(CallInst
&FI
) {
2430 Value
*Op
= FI
.getArgOperand(0);
2432 // free undef -> unreachable.
2433 if (isa
<UndefValue
>(Op
)) {
2434 // Insert a new store to null because we cannot modify the CFG here.
2435 Builder
.CreateStore(ConstantInt::getTrue(FI
.getContext()),
2436 UndefValue::get(Type::getInt1PtrTy(FI
.getContext())));
2437 return eraseInstFromFunction(FI
);
2440 // If we have 'free null' delete the instruction. This can happen in stl code
2441 // when lots of inlining happens.
2442 if (isa
<ConstantPointerNull
>(Op
))
2443 return eraseInstFromFunction(FI
);
2445 // If we optimize for code size, try to move the call to free before the null
2446 // test so that simplify cfg can remove the empty block and dead code
2447 // elimination the branch. I.e., helps to turn something like:
2448 // if (foo) free(foo);
2452 if (Instruction
*I
= tryToMoveFreeBeforeNullTest(FI
, DL
))
2458 Instruction
*InstCombiner::visitReturnInst(ReturnInst
&RI
) {
2459 if (RI
.getNumOperands() == 0) // ret void
2462 Value
*ResultOp
= RI
.getOperand(0);
2463 Type
*VTy
= ResultOp
->getType();
2464 if (!VTy
->isIntegerTy())
2467 // There might be assume intrinsics dominating this return that completely
2468 // determine the value. If so, constant fold it.
2469 KnownBits Known
= computeKnownBits(ResultOp
, 0, &RI
);
2470 if (Known
.isConstant())
2471 RI
.setOperand(0, Constant::getIntegerValue(VTy
, Known
.getConstant()));
2476 Instruction
*InstCombiner::visitBranchInst(BranchInst
&BI
) {
2477 // Change br (not X), label True, label False to: br X, label False, True
2479 BasicBlock
*TrueDest
;
2480 BasicBlock
*FalseDest
;
2481 if (match(&BI
, m_Br(m_Not(m_Value(X
)), TrueDest
, FalseDest
)) &&
2482 !isa
<Constant
>(X
)) {
2483 // Swap Destinations and condition...
2485 BI
.swapSuccessors();
2489 // If the condition is irrelevant, remove the use so that other
2490 // transforms on the condition become more effective.
2491 if (BI
.isConditional() && !isa
<ConstantInt
>(BI
.getCondition()) &&
2492 BI
.getSuccessor(0) == BI
.getSuccessor(1)) {
2493 BI
.setCondition(ConstantInt::getFalse(BI
.getCondition()->getType()));
2497 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
2498 CmpInst::Predicate Pred
;
2499 if (match(&BI
, m_Br(m_OneUse(m_Cmp(Pred
, m_Value(), m_Value())), TrueDest
,
2501 !isCanonicalPredicate(Pred
)) {
2502 // Swap destinations and condition.
2503 CmpInst
*Cond
= cast
<CmpInst
>(BI
.getCondition());
2504 Cond
->setPredicate(CmpInst::getInversePredicate(Pred
));
2505 BI
.swapSuccessors();
2513 Instruction
*InstCombiner::visitSwitchInst(SwitchInst
&SI
) {
2514 Value
*Cond
= SI
.getCondition();
2516 ConstantInt
*AddRHS
;
2517 if (match(Cond
, m_Add(m_Value(Op0
), m_ConstantInt(AddRHS
)))) {
2518 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2519 for (auto Case
: SI
.cases()) {
2520 Constant
*NewCase
= ConstantExpr::getSub(Case
.getCaseValue(), AddRHS
);
2521 assert(isa
<ConstantInt
>(NewCase
) &&
2522 "Result of expression should be constant");
2523 Case
.setValue(cast
<ConstantInt
>(NewCase
));
2525 SI
.setCondition(Op0
);
2529 KnownBits Known
= computeKnownBits(Cond
, 0, &SI
);
2530 unsigned LeadingKnownZeros
= Known
.countMinLeadingZeros();
2531 unsigned LeadingKnownOnes
= Known
.countMinLeadingOnes();
2533 // Compute the number of leading bits we can ignore.
2534 // TODO: A better way to determine this would use ComputeNumSignBits().
2535 for (auto &C
: SI
.cases()) {
2536 LeadingKnownZeros
= std::min(
2537 LeadingKnownZeros
, C
.getCaseValue()->getValue().countLeadingZeros());
2538 LeadingKnownOnes
= std::min(
2539 LeadingKnownOnes
, C
.getCaseValue()->getValue().countLeadingOnes());
2542 unsigned NewWidth
= Known
.getBitWidth() - std::max(LeadingKnownZeros
, LeadingKnownOnes
);
2544 // Shrink the condition operand if the new type is smaller than the old type.
2545 // But do not shrink to a non-standard type, because backend can't generate
2546 // good code for that yet.
2547 // TODO: We can make it aggressive again after fixing PR39569.
2548 if (NewWidth
> 0 && NewWidth
< Known
.getBitWidth() &&
2549 shouldChangeType(Known
.getBitWidth(), NewWidth
)) {
2550 IntegerType
*Ty
= IntegerType::get(SI
.getContext(), NewWidth
);
2551 Builder
.SetInsertPoint(&SI
);
2552 Value
*NewCond
= Builder
.CreateTrunc(Cond
, Ty
, "trunc");
2553 SI
.setCondition(NewCond
);
2555 for (auto Case
: SI
.cases()) {
2556 APInt TruncatedCase
= Case
.getCaseValue()->getValue().trunc(NewWidth
);
2557 Case
.setValue(ConstantInt::get(SI
.getContext(), TruncatedCase
));
2565 Instruction
*InstCombiner::visitExtractValueInst(ExtractValueInst
&EV
) {
2566 Value
*Agg
= EV
.getAggregateOperand();
2568 if (!EV
.hasIndices())
2569 return replaceInstUsesWith(EV
, Agg
);
2571 if (Value
*V
= SimplifyExtractValueInst(Agg
, EV
.getIndices(),
2572 SQ
.getWithInstruction(&EV
)))
2573 return replaceInstUsesWith(EV
, V
);
2575 if (InsertValueInst
*IV
= dyn_cast
<InsertValueInst
>(Agg
)) {
2576 // We're extracting from an insertvalue instruction, compare the indices
2577 const unsigned *exti
, *exte
, *insi
, *inse
;
2578 for (exti
= EV
.idx_begin(), insi
= IV
->idx_begin(),
2579 exte
= EV
.idx_end(), inse
= IV
->idx_end();
2580 exti
!= exte
&& insi
!= inse
;
2583 // The insert and extract both reference distinctly different elements.
2584 // This means the extract is not influenced by the insert, and we can
2585 // replace the aggregate operand of the extract with the aggregate
2586 // operand of the insert. i.e., replace
2587 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2588 // %E = extractvalue { i32, { i32 } } %I, 0
2590 // %E = extractvalue { i32, { i32 } } %A, 0
2591 return ExtractValueInst::Create(IV
->getAggregateOperand(),
2594 if (exti
== exte
&& insi
== inse
)
2595 // Both iterators are at the end: Index lists are identical. Replace
2596 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2597 // %C = extractvalue { i32, { i32 } } %B, 1, 0
2599 return replaceInstUsesWith(EV
, IV
->getInsertedValueOperand());
2601 // The extract list is a prefix of the insert list. i.e. replace
2602 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2603 // %E = extractvalue { i32, { i32 } } %I, 1
2605 // %X = extractvalue { i32, { i32 } } %A, 1
2606 // %E = insertvalue { i32 } %X, i32 42, 0
2607 // by switching the order of the insert and extract (though the
2608 // insertvalue should be left in, since it may have other uses).
2609 Value
*NewEV
= Builder
.CreateExtractValue(IV
->getAggregateOperand(),
2611 return InsertValueInst::Create(NewEV
, IV
->getInsertedValueOperand(),
2612 makeArrayRef(insi
, inse
));
2615 // The insert list is a prefix of the extract list
2616 // We can simply remove the common indices from the extract and make it
2617 // operate on the inserted value instead of the insertvalue result.
2619 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2620 // %E = extractvalue { i32, { i32 } } %I, 1, 0
2622 // %E extractvalue { i32 } { i32 42 }, 0
2623 return ExtractValueInst::Create(IV
->getInsertedValueOperand(),
2624 makeArrayRef(exti
, exte
));
2626 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Agg
)) {
2627 // We're extracting from an intrinsic, see if we're the only user, which
2628 // allows us to simplify multiple result intrinsics to simpler things that
2629 // just get one value.
2630 if (II
->hasOneUse()) {
2631 // Check if we're grabbing the overflow bit or the result of a 'with
2632 // overflow' intrinsic. If it's the latter we can remove the intrinsic
2633 // and replace it with a traditional binary instruction.
2634 switch (II
->getIntrinsicID()) {
2635 case Intrinsic::uadd_with_overflow
:
2636 case Intrinsic::sadd_with_overflow
:
2637 if (*EV
.idx_begin() == 0) { // Normal result.
2638 Value
*LHS
= II
->getArgOperand(0), *RHS
= II
->getArgOperand(1);
2639 replaceInstUsesWith(*II
, UndefValue::get(II
->getType()));
2640 eraseInstFromFunction(*II
);
2641 return BinaryOperator::CreateAdd(LHS
, RHS
);
2644 // If the normal result of the add is dead, and the RHS is a constant,
2645 // we can transform this into a range comparison.
2646 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
2647 if (II
->getIntrinsicID() == Intrinsic::uadd_with_overflow
)
2648 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(II
->getArgOperand(1)))
2649 return new ICmpInst(ICmpInst::ICMP_UGT
, II
->getArgOperand(0),
2650 ConstantExpr::getNot(CI
));
2652 case Intrinsic::usub_with_overflow
:
2653 case Intrinsic::ssub_with_overflow
:
2654 if (*EV
.idx_begin() == 0) { // Normal result.
2655 Value
*LHS
= II
->getArgOperand(0), *RHS
= II
->getArgOperand(1);
2656 replaceInstUsesWith(*II
, UndefValue::get(II
->getType()));
2657 eraseInstFromFunction(*II
);
2658 return BinaryOperator::CreateSub(LHS
, RHS
);
2661 case Intrinsic::umul_with_overflow
:
2662 case Intrinsic::smul_with_overflow
:
2663 if (*EV
.idx_begin() == 0) { // Normal result.
2664 Value
*LHS
= II
->getArgOperand(0), *RHS
= II
->getArgOperand(1);
2665 replaceInstUsesWith(*II
, UndefValue::get(II
->getType()));
2666 eraseInstFromFunction(*II
);
2667 return BinaryOperator::CreateMul(LHS
, RHS
);
2675 if (LoadInst
*L
= dyn_cast
<LoadInst
>(Agg
))
2676 // If the (non-volatile) load only has one use, we can rewrite this to a
2677 // load from a GEP. This reduces the size of the load. If a load is used
2678 // only by extractvalue instructions then this either must have been
2679 // optimized before, or it is a struct with padding, in which case we
2680 // don't want to do the transformation as it loses padding knowledge.
2681 if (L
->isSimple() && L
->hasOneUse()) {
2682 // extractvalue has integer indices, getelementptr has Value*s. Convert.
2683 SmallVector
<Value
*, 4> Indices
;
2684 // Prefix an i32 0 since we need the first element.
2685 Indices
.push_back(Builder
.getInt32(0));
2686 for (ExtractValueInst::idx_iterator I
= EV
.idx_begin(), E
= EV
.idx_end();
2688 Indices
.push_back(Builder
.getInt32(*I
));
2690 // We need to insert these at the location of the old load, not at that of
2691 // the extractvalue.
2692 Builder
.SetInsertPoint(L
);
2693 Value
*GEP
= Builder
.CreateInBoundsGEP(L
->getType(),
2694 L
->getPointerOperand(), Indices
);
2695 Instruction
*NL
= Builder
.CreateLoad(EV
.getType(), GEP
);
2696 // Whatever aliasing information we had for the orignal load must also
2697 // hold for the smaller load, so propagate the annotations.
2699 L
->getAAMetadata(Nodes
);
2700 NL
->setAAMetadata(Nodes
);
2701 // Returning the load directly will cause the main loop to insert it in
2702 // the wrong spot, so use replaceInstUsesWith().
2703 return replaceInstUsesWith(EV
, NL
);
2705 // We could simplify extracts from other values. Note that nested extracts may
2706 // already be simplified implicitly by the above: extract (extract (insert) )
2707 // will be translated into extract ( insert ( extract ) ) first and then just
2708 // the value inserted, if appropriate. Similarly for extracts from single-use
2709 // loads: extract (extract (load)) will be translated to extract (load (gep))
2710 // and if again single-use then via load (gep (gep)) to load (gep).
2711 // However, double extracts from e.g. function arguments or return values
2712 // aren't handled yet.
2716 /// Return 'true' if the given typeinfo will match anything.
2717 static bool isCatchAll(EHPersonality Personality
, Constant
*TypeInfo
) {
2718 switch (Personality
) {
2719 case EHPersonality::GNU_C
:
2720 case EHPersonality::GNU_C_SjLj
:
2721 case EHPersonality::Rust
:
2722 // The GCC C EH and Rust personality only exists to support cleanups, so
2723 // it's not clear what the semantics of catch clauses are.
2725 case EHPersonality::Unknown
:
2727 case EHPersonality::GNU_Ada
:
2728 // While __gnat_all_others_value will match any Ada exception, it doesn't
2729 // match foreign exceptions (or didn't, before gcc-4.7).
2731 case EHPersonality::GNU_CXX
:
2732 case EHPersonality::GNU_CXX_SjLj
:
2733 case EHPersonality::GNU_ObjC
:
2734 case EHPersonality::MSVC_X86SEH
:
2735 case EHPersonality::MSVC_Win64SEH
:
2736 case EHPersonality::MSVC_CXX
:
2737 case EHPersonality::CoreCLR
:
2738 case EHPersonality::Wasm_CXX
:
2739 return TypeInfo
->isNullValue();
2741 llvm_unreachable("invalid enum");
2744 static bool shorter_filter(const Value
*LHS
, const Value
*RHS
) {
2746 cast
<ArrayType
>(LHS
->getType())->getNumElements()
2748 cast
<ArrayType
>(RHS
->getType())->getNumElements();
2751 Instruction
*InstCombiner::visitLandingPadInst(LandingPadInst
&LI
) {
2752 // The logic here should be correct for any real-world personality function.
2753 // However if that turns out not to be true, the offending logic can always
2754 // be conditioned on the personality function, like the catch-all logic is.
2755 EHPersonality Personality
=
2756 classifyEHPersonality(LI
.getParent()->getParent()->getPersonalityFn());
2758 // Simplify the list of clauses, eg by removing repeated catch clauses
2759 // (these are often created by inlining).
2760 bool MakeNewInstruction
= false; // If true, recreate using the following:
2761 SmallVector
<Constant
*, 16> NewClauses
; // - Clauses for the new instruction;
2762 bool CleanupFlag
= LI
.isCleanup(); // - The new instruction is a cleanup.
2764 SmallPtrSet
<Value
*, 16> AlreadyCaught
; // Typeinfos known caught already.
2765 for (unsigned i
= 0, e
= LI
.getNumClauses(); i
!= e
; ++i
) {
2766 bool isLastClause
= i
+ 1 == e
;
2767 if (LI
.isCatch(i
)) {
2769 Constant
*CatchClause
= LI
.getClause(i
);
2770 Constant
*TypeInfo
= CatchClause
->stripPointerCasts();
2772 // If we already saw this clause, there is no point in having a second
2774 if (AlreadyCaught
.insert(TypeInfo
).second
) {
2775 // This catch clause was not already seen.
2776 NewClauses
.push_back(CatchClause
);
2778 // Repeated catch clause - drop the redundant copy.
2779 MakeNewInstruction
= true;
2782 // If this is a catch-all then there is no point in keeping any following
2783 // clauses or marking the landingpad as having a cleanup.
2784 if (isCatchAll(Personality
, TypeInfo
)) {
2786 MakeNewInstruction
= true;
2787 CleanupFlag
= false;
2791 // A filter clause. If any of the filter elements were already caught
2792 // then they can be dropped from the filter. It is tempting to try to
2793 // exploit the filter further by saying that any typeinfo that does not
2794 // occur in the filter can't be caught later (and thus can be dropped).
2795 // However this would be wrong, since typeinfos can match without being
2796 // equal (for example if one represents a C++ class, and the other some
2797 // class derived from it).
2798 assert(LI
.isFilter(i
) && "Unsupported landingpad clause!");
2799 Constant
*FilterClause
= LI
.getClause(i
);
2800 ArrayType
*FilterType
= cast
<ArrayType
>(FilterClause
->getType());
2801 unsigned NumTypeInfos
= FilterType
->getNumElements();
2803 // An empty filter catches everything, so there is no point in keeping any
2804 // following clauses or marking the landingpad as having a cleanup. By
2805 // dealing with this case here the following code is made a bit simpler.
2806 if (!NumTypeInfos
) {
2807 NewClauses
.push_back(FilterClause
);
2809 MakeNewInstruction
= true;
2810 CleanupFlag
= false;
2814 bool MakeNewFilter
= false; // If true, make a new filter.
2815 SmallVector
<Constant
*, 16> NewFilterElts
; // New elements.
2816 if (isa
<ConstantAggregateZero
>(FilterClause
)) {
2817 // Not an empty filter - it contains at least one null typeinfo.
2818 assert(NumTypeInfos
> 0 && "Should have handled empty filter already!");
2819 Constant
*TypeInfo
=
2820 Constant::getNullValue(FilterType
->getElementType());
2821 // If this typeinfo is a catch-all then the filter can never match.
2822 if (isCatchAll(Personality
, TypeInfo
)) {
2823 // Throw the filter away.
2824 MakeNewInstruction
= true;
2828 // There is no point in having multiple copies of this typeinfo, so
2829 // discard all but the first copy if there is more than one.
2830 NewFilterElts
.push_back(TypeInfo
);
2831 if (NumTypeInfos
> 1)
2832 MakeNewFilter
= true;
2834 ConstantArray
*Filter
= cast
<ConstantArray
>(FilterClause
);
2835 SmallPtrSet
<Value
*, 16> SeenInFilter
; // For uniquing the elements.
2836 NewFilterElts
.reserve(NumTypeInfos
);
2838 // Remove any filter elements that were already caught or that already
2839 // occurred in the filter. While there, see if any of the elements are
2840 // catch-alls. If so, the filter can be discarded.
2841 bool SawCatchAll
= false;
2842 for (unsigned j
= 0; j
!= NumTypeInfos
; ++j
) {
2843 Constant
*Elt
= Filter
->getOperand(j
);
2844 Constant
*TypeInfo
= Elt
->stripPointerCasts();
2845 if (isCatchAll(Personality
, TypeInfo
)) {
2846 // This element is a catch-all. Bail out, noting this fact.
2851 // Even if we've seen a type in a catch clause, we don't want to
2852 // remove it from the filter. An unexpected type handler may be
2853 // set up for a call site which throws an exception of the same
2854 // type caught. In order for the exception thrown by the unexpected
2855 // handler to propagate correctly, the filter must be correctly
2856 // described for the call site.
2860 // void unexpected() { throw 1;}
2861 // void foo() throw (int) {
2862 // std::set_unexpected(unexpected);
2865 // } catch (int i) {}
2868 // There is no point in having multiple copies of the same typeinfo in
2869 // a filter, so only add it if we didn't already.
2870 if (SeenInFilter
.insert(TypeInfo
).second
)
2871 NewFilterElts
.push_back(cast
<Constant
>(Elt
));
2873 // A filter containing a catch-all cannot match anything by definition.
2875 // Throw the filter away.
2876 MakeNewInstruction
= true;
2880 // If we dropped something from the filter, make a new one.
2881 if (NewFilterElts
.size() < NumTypeInfos
)
2882 MakeNewFilter
= true;
2884 if (MakeNewFilter
) {
2885 FilterType
= ArrayType::get(FilterType
->getElementType(),
2886 NewFilterElts
.size());
2887 FilterClause
= ConstantArray::get(FilterType
, NewFilterElts
);
2888 MakeNewInstruction
= true;
2891 NewClauses
.push_back(FilterClause
);
2893 // If the new filter is empty then it will catch everything so there is
2894 // no point in keeping any following clauses or marking the landingpad
2895 // as having a cleanup. The case of the original filter being empty was
2896 // already handled above.
2897 if (MakeNewFilter
&& !NewFilterElts
.size()) {
2898 assert(MakeNewInstruction
&& "New filter but not a new instruction!");
2899 CleanupFlag
= false;
2905 // If several filters occur in a row then reorder them so that the shortest
2906 // filters come first (those with the smallest number of elements). This is
2907 // advantageous because shorter filters are more likely to match, speeding up
2908 // unwinding, but mostly because it increases the effectiveness of the other
2909 // filter optimizations below.
2910 for (unsigned i
= 0, e
= NewClauses
.size(); i
+ 1 < e
; ) {
2912 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2913 for (j
= i
; j
!= e
; ++j
)
2914 if (!isa
<ArrayType
>(NewClauses
[j
]->getType()))
2917 // Check whether the filters are already sorted by length. We need to know
2918 // if sorting them is actually going to do anything so that we only make a
2919 // new landingpad instruction if it does.
2920 for (unsigned k
= i
; k
+ 1 < j
; ++k
)
2921 if (shorter_filter(NewClauses
[k
+1], NewClauses
[k
])) {
2922 // Not sorted, so sort the filters now. Doing an unstable sort would be
2923 // correct too but reordering filters pointlessly might confuse users.
2924 std::stable_sort(NewClauses
.begin() + i
, NewClauses
.begin() + j
,
2926 MakeNewInstruction
= true;
2930 // Look for the next batch of filters.
2934 // If typeinfos matched if and only if equal, then the elements of a filter L
2935 // that occurs later than a filter F could be replaced by the intersection of
2936 // the elements of F and L. In reality two typeinfos can match without being
2937 // equal (for example if one represents a C++ class, and the other some class
2938 // derived from it) so it would be wrong to perform this transform in general.
2939 // However the transform is correct and useful if F is a subset of L. In that
2940 // case L can be replaced by F, and thus removed altogether since repeating a
2941 // filter is pointless. So here we look at all pairs of filters F and L where
2942 // L follows F in the list of clauses, and remove L if every element of F is
2943 // an element of L. This can occur when inlining C++ functions with exception
2945 for (unsigned i
= 0; i
+ 1 < NewClauses
.size(); ++i
) {
2946 // Examine each filter in turn.
2947 Value
*Filter
= NewClauses
[i
];
2948 ArrayType
*FTy
= dyn_cast
<ArrayType
>(Filter
->getType());
2950 // Not a filter - skip it.
2952 unsigned FElts
= FTy
->getNumElements();
2953 // Examine each filter following this one. Doing this backwards means that
2954 // we don't have to worry about filters disappearing under us when removed.
2955 for (unsigned j
= NewClauses
.size() - 1; j
!= i
; --j
) {
2956 Value
*LFilter
= NewClauses
[j
];
2957 ArrayType
*LTy
= dyn_cast
<ArrayType
>(LFilter
->getType());
2959 // Not a filter - skip it.
2961 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2962 // an element of LFilter, then discard LFilter.
2963 SmallVectorImpl
<Constant
*>::iterator J
= NewClauses
.begin() + j
;
2964 // If Filter is empty then it is a subset of LFilter.
2967 NewClauses
.erase(J
);
2968 MakeNewInstruction
= true;
2969 // Move on to the next filter.
2972 unsigned LElts
= LTy
->getNumElements();
2973 // If Filter is longer than LFilter then it cannot be a subset of it.
2975 // Move on to the next filter.
2977 // At this point we know that LFilter has at least one element.
2978 if (isa
<ConstantAggregateZero
>(LFilter
)) { // LFilter only contains zeros.
2979 // Filter is a subset of LFilter iff Filter contains only zeros (as we
2980 // already know that Filter is not longer than LFilter).
2981 if (isa
<ConstantAggregateZero
>(Filter
)) {
2982 assert(FElts
<= LElts
&& "Should have handled this case earlier!");
2984 NewClauses
.erase(J
);
2985 MakeNewInstruction
= true;
2987 // Move on to the next filter.
2990 ConstantArray
*LArray
= cast
<ConstantArray
>(LFilter
);
2991 if (isa
<ConstantAggregateZero
>(Filter
)) { // Filter only contains zeros.
2992 // Since Filter is non-empty and contains only zeros, it is a subset of
2993 // LFilter iff LFilter contains a zero.
2994 assert(FElts
> 0 && "Should have eliminated the empty filter earlier!");
2995 for (unsigned l
= 0; l
!= LElts
; ++l
)
2996 if (LArray
->getOperand(l
)->isNullValue()) {
2997 // LFilter contains a zero - discard it.
2998 NewClauses
.erase(J
);
2999 MakeNewInstruction
= true;
3002 // Move on to the next filter.
3005 // At this point we know that both filters are ConstantArrays. Loop over
3006 // operands to see whether every element of Filter is also an element of
3007 // LFilter. Since filters tend to be short this is probably faster than
3008 // using a method that scales nicely.
3009 ConstantArray
*FArray
= cast
<ConstantArray
>(Filter
);
3010 bool AllFound
= true;
3011 for (unsigned f
= 0; f
!= FElts
; ++f
) {
3012 Value
*FTypeInfo
= FArray
->getOperand(f
)->stripPointerCasts();
3014 for (unsigned l
= 0; l
!= LElts
; ++l
) {
3015 Value
*LTypeInfo
= LArray
->getOperand(l
)->stripPointerCasts();
3016 if (LTypeInfo
== FTypeInfo
) {
3026 NewClauses
.erase(J
);
3027 MakeNewInstruction
= true;
3029 // Move on to the next filter.
3033 // If we changed any of the clauses, replace the old landingpad instruction
3035 if (MakeNewInstruction
) {
3036 LandingPadInst
*NLI
= LandingPadInst::Create(LI
.getType(),
3038 for (unsigned i
= 0, e
= NewClauses
.size(); i
!= e
; ++i
)
3039 NLI
->addClause(NewClauses
[i
]);
3040 // A landing pad with no clauses must have the cleanup flag set. It is
3041 // theoretically possible, though highly unlikely, that we eliminated all
3042 // clauses. If so, force the cleanup flag to true.
3043 if (NewClauses
.empty())
3045 NLI
->setCleanup(CleanupFlag
);
3049 // Even if none of the clauses changed, we may nonetheless have understood
3050 // that the cleanup flag is pointless. Clear it if so.
3051 if (LI
.isCleanup() != CleanupFlag
) {
3052 assert(!CleanupFlag
&& "Adding a cleanup, not removing one?!");
3053 LI
.setCleanup(CleanupFlag
);
3060 /// Try to move the specified instruction from its current block into the
3061 /// beginning of DestBlock, which can only happen if it's safe to move the
3062 /// instruction past all of the instructions between it and the end of its
3064 static bool TryToSinkInstruction(Instruction
*I
, BasicBlock
*DestBlock
) {
3065 assert(I
->hasOneUse() && "Invariants didn't hold!");
3066 BasicBlock
*SrcBlock
= I
->getParent();
3068 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3069 if (isa
<PHINode
>(I
) || I
->isEHPad() || I
->mayHaveSideEffects() ||
3073 // Do not sink static or dynamic alloca instructions. Static allocas must
3074 // remain in the entry block, and dynamic allocas must not be sunk in between
3075 // a stacksave / stackrestore pair, which would incorrectly shorten its
3077 if (isa
<AllocaInst
>(I
))
3080 // Do not sink into catchswitch blocks.
3081 if (isa
<CatchSwitchInst
>(DestBlock
->getTerminator()))
3084 // Do not sink convergent call instructions.
3085 if (auto *CI
= dyn_cast
<CallInst
>(I
)) {
3086 if (CI
->isConvergent())
3089 // We can only sink load instructions if there is nothing between the load and
3090 // the end of block that could change the value.
3091 if (I
->mayReadFromMemory()) {
3092 for (BasicBlock::iterator Scan
= I
->getIterator(),
3093 E
= I
->getParent()->end();
3095 if (Scan
->mayWriteToMemory())
3098 BasicBlock::iterator InsertPos
= DestBlock
->getFirstInsertionPt();
3099 I
->moveBefore(&*InsertPos
);
3102 // Also sink all related debug uses from the source basic block. Otherwise we
3103 // get debug use before the def. Attempt to salvage debug uses first, to
3104 // maximise the range variables have location for. If we cannot salvage, then
3105 // mark the location undef: we know it was supposed to receive a new location
3106 // here, but that computation has been sunk.
3107 SmallVector
<DbgVariableIntrinsic
*, 2> DbgUsers
;
3108 findDbgUsers(DbgUsers
, I
);
3109 for (auto *DII
: reverse(DbgUsers
)) {
3110 if (DII
->getParent() == SrcBlock
) {
3111 // dbg.value is in the same basic block as the sunk inst, see if we can
3112 // salvage it. Clone a new copy of the instruction: on success we need
3113 // both salvaged and unsalvaged copies.
3114 SmallVector
<DbgVariableIntrinsic
*, 1> TmpUser
{
3115 cast
<DbgVariableIntrinsic
>(DII
->clone())};
3117 if (!salvageDebugInfoForDbgValues(*I
, TmpUser
)) {
3118 // We are unable to salvage: sink the cloned dbg.value, and mark the
3119 // original as undef, terminating any earlier variable location.
3120 LLVM_DEBUG(dbgs() << "SINK: " << *DII
<< '\n');
3121 TmpUser
[0]->insertBefore(&*InsertPos
);
3122 Value
*Undef
= UndefValue::get(I
->getType());
3123 DII
->setOperand(0, MetadataAsValue::get(DII
->getContext(),
3124 ValueAsMetadata::get(Undef
)));
3126 // We successfully salvaged: place the salvaged dbg.value in the
3127 // original location, and move the unmodified dbg.value to sink with
3129 TmpUser
[0]->insertBefore(DII
);
3130 DII
->moveBefore(&*InsertPos
);
3137 bool InstCombiner::run() {
3138 while (!Worklist
.isEmpty()) {
3139 Instruction
*I
= Worklist
.RemoveOne();
3140 if (I
== nullptr) continue; // skip null values.
3142 // Check to see if we can DCE the instruction.
3143 if (isInstructionTriviallyDead(I
, &TLI
)) {
3144 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I
<< '\n');
3145 eraseInstFromFunction(*I
);
3147 MadeIRChange
= true;
3151 if (!DebugCounter::shouldExecute(VisitCounter
))
3154 // Instruction isn't dead, see if we can constant propagate it.
3155 if (!I
->use_empty() &&
3156 (I
->getNumOperands() == 0 || isa
<Constant
>(I
->getOperand(0)))) {
3157 if (Constant
*C
= ConstantFoldInstruction(I
, DL
, &TLI
)) {
3158 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C
<< " from: " << *I
3161 // Add operands to the worklist.
3162 replaceInstUsesWith(*I
, C
);
3164 if (isInstructionTriviallyDead(I
, &TLI
))
3165 eraseInstFromFunction(*I
);
3166 MadeIRChange
= true;
3171 // In general, it is possible for computeKnownBits to determine all bits in
3172 // a value even when the operands are not all constants.
3173 Type
*Ty
= I
->getType();
3174 if (ExpensiveCombines
&& !I
->use_empty() && Ty
->isIntOrIntVectorTy()) {
3175 KnownBits Known
= computeKnownBits(I
, /*Depth*/0, I
);
3176 if (Known
.isConstant()) {
3177 Constant
*C
= ConstantInt::get(Ty
, Known
.getConstant());
3178 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C
3179 << " from: " << *I
<< '\n');
3181 // Add operands to the worklist.
3182 replaceInstUsesWith(*I
, C
);
3184 if (isInstructionTriviallyDead(I
, &TLI
))
3185 eraseInstFromFunction(*I
);
3186 MadeIRChange
= true;
3191 // See if we can trivially sink this instruction to a successor basic block.
3192 if (EnableCodeSinking
&& I
->hasOneUse()) {
3193 BasicBlock
*BB
= I
->getParent();
3194 Instruction
*UserInst
= cast
<Instruction
>(*I
->user_begin());
3195 BasicBlock
*UserParent
;
3197 // Get the block the use occurs in.
3198 if (PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
))
3199 UserParent
= PN
->getIncomingBlock(*I
->use_begin());
3201 UserParent
= UserInst
->getParent();
3203 if (UserParent
!= BB
) {
3204 bool UserIsSuccessor
= false;
3205 // See if the user is one of our successors.
3206 for (succ_iterator SI
= succ_begin(BB
), E
= succ_end(BB
); SI
!= E
; ++SI
)
3207 if (*SI
== UserParent
) {
3208 UserIsSuccessor
= true;
3212 // If the user is one of our immediate successors, and if that successor
3213 // only has us as a predecessors (we'd have to split the critical edge
3214 // otherwise), we can keep going.
3215 if (UserIsSuccessor
&& UserParent
->getUniquePredecessor()) {
3216 // Okay, the CFG is simple enough, try to sink this instruction.
3217 if (TryToSinkInstruction(I
, UserParent
)) {
3218 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I
<< '\n');
3219 MadeIRChange
= true;
3220 // We'll add uses of the sunk instruction below, but since sinking
3221 // can expose opportunities for it's *operands* add them to the
3223 for (Use
&U
: I
->operands())
3224 if (Instruction
*OpI
= dyn_cast
<Instruction
>(U
.get()))
3231 // Now that we have an instruction, try combining it to simplify it.
3232 Builder
.SetInsertPoint(I
);
3233 Builder
.SetCurrentDebugLocation(I
->getDebugLoc());
3238 LLVM_DEBUG(raw_string_ostream
SS(OrigI
); I
->print(SS
); OrigI
= SS
.str(););
3239 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI
<< '\n');
3241 if (Instruction
*Result
= visit(*I
)) {
3243 // Should we replace the old instruction with a new one?
3245 LLVM_DEBUG(dbgs() << "IC: Old = " << *I
<< '\n'
3246 << " New = " << *Result
<< '\n');
3248 if (I
->getDebugLoc())
3249 Result
->setDebugLoc(I
->getDebugLoc());
3250 // Everything uses the new instruction now.
3251 I
->replaceAllUsesWith(Result
);
3253 // Move the name to the new instruction first.
3254 Result
->takeName(I
);
3256 // Push the new instruction and any users onto the worklist.
3257 Worklist
.AddUsersToWorkList(*Result
);
3258 Worklist
.Add(Result
);
3260 // Insert the new instruction into the basic block...
3261 BasicBlock
*InstParent
= I
->getParent();
3262 BasicBlock::iterator InsertPos
= I
->getIterator();
3264 // If we replace a PHI with something that isn't a PHI, fix up the
3266 if (!isa
<PHINode
>(Result
) && isa
<PHINode
>(InsertPos
))
3267 InsertPos
= InstParent
->getFirstInsertionPt();
3269 InstParent
->getInstList().insert(InsertPos
, Result
);
3271 eraseInstFromFunction(*I
);
3273 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI
<< '\n'
3274 << " New = " << *I
<< '\n');
3276 // If the instruction was modified, it's possible that it is now dead.
3277 // if so, remove it.
3278 if (isInstructionTriviallyDead(I
, &TLI
)) {
3279 eraseInstFromFunction(*I
);
3281 Worklist
.AddUsersToWorkList(*I
);
3285 MadeIRChange
= true;
3290 return MadeIRChange
;
3293 /// Walk the function in depth-first order, adding all reachable code to the
3296 /// This has a couple of tricks to make the code faster and more powerful. In
3297 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3298 /// them to the worklist (this significantly speeds up instcombine on code where
3299 /// many instructions are dead or constant). Additionally, if we find a branch
3300 /// whose condition is a known constant, we only visit the reachable successors.
3301 static bool AddReachableCodeToWorklist(BasicBlock
*BB
, const DataLayout
&DL
,
3302 SmallPtrSetImpl
<BasicBlock
*> &Visited
,
3303 InstCombineWorklist
&ICWorklist
,
3304 const TargetLibraryInfo
*TLI
) {
3305 bool MadeIRChange
= false;
3306 SmallVector
<BasicBlock
*, 256> Worklist
;
3307 Worklist
.push_back(BB
);
3309 SmallVector
<Instruction
*, 128> InstrsForInstCombineWorklist
;
3310 DenseMap
<Constant
*, Constant
*> FoldedConstants
;
3313 BB
= Worklist
.pop_back_val();
3315 // We have now visited this block! If we've already been here, ignore it.
3316 if (!Visited
.insert(BB
).second
)
3319 for (BasicBlock::iterator BBI
= BB
->begin(), E
= BB
->end(); BBI
!= E
; ) {
3320 Instruction
*Inst
= &*BBI
++;
3322 // DCE instruction if trivially dead.
3323 if (isInstructionTriviallyDead(Inst
, TLI
)) {
3325 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst
<< '\n');
3326 salvageDebugInfo(*Inst
);
3327 Inst
->eraseFromParent();
3328 MadeIRChange
= true;
3332 // ConstantProp instruction if trivially constant.
3333 if (!Inst
->use_empty() &&
3334 (Inst
->getNumOperands() == 0 || isa
<Constant
>(Inst
->getOperand(0))))
3335 if (Constant
*C
= ConstantFoldInstruction(Inst
, DL
, TLI
)) {
3336 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C
<< " from: " << *Inst
3338 Inst
->replaceAllUsesWith(C
);
3340 if (isInstructionTriviallyDead(Inst
, TLI
))
3341 Inst
->eraseFromParent();
3342 MadeIRChange
= true;
3346 // See if we can constant fold its operands.
3347 for (Use
&U
: Inst
->operands()) {
3348 if (!isa
<ConstantVector
>(U
) && !isa
<ConstantExpr
>(U
))
3351 auto *C
= cast
<Constant
>(U
);
3352 Constant
*&FoldRes
= FoldedConstants
[C
];
3354 FoldRes
= ConstantFoldConstant(C
, DL
, TLI
);
3359 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3360 << "\n Old = " << *C
3361 << "\n New = " << *FoldRes
<< '\n');
3363 MadeIRChange
= true;
3367 // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3368 // consumes non-trivial amount of time and provides no value for the optimization.
3369 if (!isa
<DbgInfoIntrinsic
>(Inst
))
3370 InstrsForInstCombineWorklist
.push_back(Inst
);
3373 // Recursively visit successors. If this is a branch or switch on a
3374 // constant, only visit the reachable successor.
3375 Instruction
*TI
= BB
->getTerminator();
3376 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
3377 if (BI
->isConditional() && isa
<ConstantInt
>(BI
->getCondition())) {
3378 bool CondVal
= cast
<ConstantInt
>(BI
->getCondition())->getZExtValue();
3379 BasicBlock
*ReachableBB
= BI
->getSuccessor(!CondVal
);
3380 Worklist
.push_back(ReachableBB
);
3383 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
3384 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(SI
->getCondition())) {
3385 Worklist
.push_back(SI
->findCaseValue(Cond
)->getCaseSuccessor());
3390 for (BasicBlock
*SuccBB
: successors(TI
))
3391 Worklist
.push_back(SuccBB
);
3392 } while (!Worklist
.empty());
3394 // Once we've found all of the instructions to add to instcombine's worklist,
3395 // add them in reverse order. This way instcombine will visit from the top
3396 // of the function down. This jives well with the way that it adds all uses
3397 // of instructions to the worklist after doing a transformation, thus avoiding
3398 // some N^2 behavior in pathological cases.
3399 ICWorklist
.AddInitialGroup(InstrsForInstCombineWorklist
);
3401 return MadeIRChange
;
3404 /// Populate the IC worklist from a function, and prune any dead basic
3405 /// blocks discovered in the process.
3407 /// This also does basic constant propagation and other forward fixing to make
3408 /// the combiner itself run much faster.
3409 static bool prepareICWorklistFromFunction(Function
&F
, const DataLayout
&DL
,
3410 TargetLibraryInfo
*TLI
,
3411 InstCombineWorklist
&ICWorklist
) {
3412 bool MadeIRChange
= false;
3414 // Do a depth-first traversal of the function, populate the worklist with
3415 // the reachable instructions. Ignore blocks that are not reachable. Keep
3416 // track of which blocks we visit.
3417 SmallPtrSet
<BasicBlock
*, 32> Visited
;
3419 AddReachableCodeToWorklist(&F
.front(), DL
, Visited
, ICWorklist
, TLI
);
3421 // Do a quick scan over the function. If we find any blocks that are
3422 // unreachable, remove any instructions inside of them. This prevents
3423 // the instcombine code from having to deal with some bad special cases.
3424 for (BasicBlock
&BB
: F
) {
3425 if (Visited
.count(&BB
))
3428 unsigned NumDeadInstInBB
= removeAllNonTerminatorAndEHPadInstructions(&BB
);
3429 MadeIRChange
|= NumDeadInstInBB
> 0;
3430 NumDeadInst
+= NumDeadInstInBB
;
3433 return MadeIRChange
;
3436 static bool combineInstructionsOverFunction(
3437 Function
&F
, InstCombineWorklist
&Worklist
, AliasAnalysis
*AA
,
3438 AssumptionCache
&AC
, TargetLibraryInfo
&TLI
, DominatorTree
&DT
,
3439 OptimizationRemarkEmitter
&ORE
, bool ExpensiveCombines
= true,
3440 LoopInfo
*LI
= nullptr) {
3441 auto &DL
= F
.getParent()->getDataLayout();
3442 ExpensiveCombines
|= EnableExpensiveCombines
;
3444 /// Builder - This is an IRBuilder that automatically inserts new
3445 /// instructions into the worklist when they are created.
3446 IRBuilder
<TargetFolder
, IRBuilderCallbackInserter
> Builder(
3447 F
.getContext(), TargetFolder(DL
),
3448 IRBuilderCallbackInserter([&Worklist
, &AC
](Instruction
*I
) {
3450 if (match(I
, m_Intrinsic
<Intrinsic::assume
>()))
3451 AC
.registerAssumption(cast
<CallInst
>(I
));
3454 // Lower dbg.declare intrinsics otherwise their value may be clobbered
3456 bool MadeIRChange
= false;
3457 if (ShouldLowerDbgDeclare
)
3458 MadeIRChange
= LowerDbgDeclare(F
);
3460 // Iterate while there is work to do.
3464 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration
<< " on "
3465 << F
.getName() << "\n");
3467 MadeIRChange
|= prepareICWorklistFromFunction(F
, DL
, &TLI
, Worklist
);
3469 InstCombiner
IC(Worklist
, Builder
, F
.optForMinSize(), ExpensiveCombines
, AA
,
3470 AC
, TLI
, DT
, ORE
, DL
, LI
);
3471 IC
.MaxArraySizeForCombine
= MaxArraySize
;
3477 return MadeIRChange
|| Iteration
> 1;
3480 PreservedAnalyses
InstCombinePass::run(Function
&F
,
3481 FunctionAnalysisManager
&AM
) {
3482 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
3483 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
3484 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
3485 auto &ORE
= AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
3487 auto *LI
= AM
.getCachedResult
<LoopAnalysis
>(F
);
3489 auto *AA
= &AM
.getResult
<AAManager
>(F
);
3490 if (!combineInstructionsOverFunction(F
, Worklist
, AA
, AC
, TLI
, DT
, ORE
,
3491 ExpensiveCombines
, LI
))
3492 // No changes, all analyses are preserved.
3493 return PreservedAnalyses::all();
3495 // Mark all the analyses that instcombine updates as preserved.
3496 PreservedAnalyses PA
;
3497 PA
.preserveSet
<CFGAnalyses
>();
3498 PA
.preserve
<AAManager
>();
3499 PA
.preserve
<BasicAA
>();
3500 PA
.preserve
<GlobalsAA
>();
3504 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
3505 AU
.setPreservesCFG();
3506 AU
.addRequired
<AAResultsWrapperPass
>();
3507 AU
.addRequired
<AssumptionCacheTracker
>();
3508 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
3509 AU
.addRequired
<DominatorTreeWrapperPass
>();
3510 AU
.addRequired
<OptimizationRemarkEmitterWrapperPass
>();
3511 AU
.addPreserved
<DominatorTreeWrapperPass
>();
3512 AU
.addPreserved
<AAResultsWrapperPass
>();
3513 AU
.addPreserved
<BasicAAWrapperPass
>();
3514 AU
.addPreserved
<GlobalsAAWrapperPass
>();
3517 bool InstructionCombiningPass::runOnFunction(Function
&F
) {
3518 if (skipFunction(F
))
3521 // Required analyses.
3522 auto AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
3523 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
3524 auto &TLI
= getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
3525 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
3526 auto &ORE
= getAnalysis
<OptimizationRemarkEmitterWrapperPass
>().getORE();
3528 // Optional analyses.
3529 auto *LIWP
= getAnalysisIfAvailable
<LoopInfoWrapperPass
>();
3530 auto *LI
= LIWP
? &LIWP
->getLoopInfo() : nullptr;
3532 return combineInstructionsOverFunction(F
, Worklist
, AA
, AC
, TLI
, DT
, ORE
,
3533 ExpensiveCombines
, LI
);
3536 char InstructionCombiningPass::ID
= 0;
3538 INITIALIZE_PASS_BEGIN(InstructionCombiningPass
, "instcombine",
3539 "Combine redundant instructions", false, false)
3540 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
3541 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
3542 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
3543 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
3544 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
3545 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass
)
3546 INITIALIZE_PASS_END(InstructionCombiningPass
, "instcombine",
3547 "Combine redundant instructions", false, false)
3549 // Initialization Routines
3550 void llvm::initializeInstCombine(PassRegistry
&Registry
) {
3551 initializeInstructionCombiningPassPass(Registry
);
3554 void LLVMInitializeInstCombine(LLVMPassRegistryRef R
) {
3555 initializeInstructionCombiningPassPass(*unwrap(R
));
3558 FunctionPass
*llvm::createInstructionCombiningPass(bool ExpensiveCombines
) {
3559 return new InstructionCombiningPass(ExpensiveCombines
);
3562 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM
) {
3563 unwrap(PM
)->add(createInstructionCombiningPass());