1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs global value numbering to eliminate fully redundant
10 // instructions. It also performs simple dead load elimination.
12 // Note that this pass does the value numbering itself; it does not use the
13 // ValueNumbering analysis passes.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/PointerIntPair.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/CFG.h"
32 #include "llvm/Analysis/DomTreeUpdater.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/MemoryBuiltins.h"
37 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PHITransAddr.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/ValueTracking.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/PassManager.h"
62 #include "llvm/IR/PatternMatch.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/Use.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Compiler.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
73 #include "llvm/Transforms/Utils/Local.h"
74 #include "llvm/Transforms/Utils/SSAUpdater.h"
75 #include "llvm/Transforms/Utils/VNCoercion.h"
83 using namespace llvm::gvn
;
84 using namespace llvm::VNCoercion
;
85 using namespace PatternMatch
;
87 #define DEBUG_TYPE "gvn"
89 STATISTIC(NumGVNInstr
, "Number of instructions deleted");
90 STATISTIC(NumGVNLoad
, "Number of loads deleted");
91 STATISTIC(NumGVNPRE
, "Number of instructions PRE'd");
92 STATISTIC(NumGVNBlocks
, "Number of blocks merged");
93 STATISTIC(NumGVNSimpl
, "Number of instructions simplified");
94 STATISTIC(NumGVNEqProp
, "Number of equalities propagated");
95 STATISTIC(NumPRELoad
, "Number of loads PRE'd");
97 static cl::opt
<bool> EnablePRE("enable-pre",
98 cl::init(true), cl::Hidden
);
99 static cl::opt
<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
100 static cl::opt
<bool> EnableMemDep("enable-gvn-memdep", cl::init(true));
102 // Maximum allowed recursion depth.
103 static cl::opt
<uint32_t>
104 MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden
, cl::init(1000), cl::ZeroOrMore
,
105 cl::desc("Max recurse depth in GVN (default = 1000)"));
107 static cl::opt
<uint32_t> MaxNumDeps(
108 "gvn-max-num-deps", cl::Hidden
, cl::init(100), cl::ZeroOrMore
,
109 cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
111 struct llvm::GVN::Expression
{
114 bool commutative
= false;
115 SmallVector
<uint32_t, 4> varargs
;
117 Expression(uint32_t o
= ~2U) : opcode(o
) {}
119 bool operator==(const Expression
&other
) const {
120 if (opcode
!= other
.opcode
)
122 if (opcode
== ~0U || opcode
== ~1U)
124 if (type
!= other
.type
)
126 if (varargs
!= other
.varargs
)
131 friend hash_code
hash_value(const Expression
&Value
) {
133 Value
.opcode
, Value
.type
,
134 hash_combine_range(Value
.varargs
.begin(), Value
.varargs
.end()));
140 template <> struct DenseMapInfo
<GVN::Expression
> {
141 static inline GVN::Expression
getEmptyKey() { return ~0U; }
142 static inline GVN::Expression
getTombstoneKey() { return ~1U; }
144 static unsigned getHashValue(const GVN::Expression
&e
) {
145 using llvm::hash_value
;
147 return static_cast<unsigned>(hash_value(e
));
150 static bool isEqual(const GVN::Expression
&LHS
, const GVN::Expression
&RHS
) {
155 } // end namespace llvm
157 /// Represents a particular available value that we know how to materialize.
158 /// Materialization of an AvailableValue never fails. An AvailableValue is
159 /// implicitly associated with a rematerialization point which is the
160 /// location of the instruction from which it was formed.
161 struct llvm::gvn::AvailableValue
{
163 SimpleVal
, // A simple offsetted value that is accessed.
164 LoadVal
, // A value produced by a load.
165 MemIntrin
, // A memory intrinsic which is loaded from.
166 UndefVal
// A UndefValue representing a value from dead block (which
167 // is not yet physically removed from the CFG).
170 /// V - The value that is live out of the block.
171 PointerIntPair
<Value
*, 2, ValType
> Val
;
173 /// Offset - The byte offset in Val that is interesting for the load query.
176 static AvailableValue
get(Value
*V
, unsigned Offset
= 0) {
178 Res
.Val
.setPointer(V
);
179 Res
.Val
.setInt(SimpleVal
);
184 static AvailableValue
getMI(MemIntrinsic
*MI
, unsigned Offset
= 0) {
186 Res
.Val
.setPointer(MI
);
187 Res
.Val
.setInt(MemIntrin
);
192 static AvailableValue
getLoad(LoadInst
*LI
, unsigned Offset
= 0) {
194 Res
.Val
.setPointer(LI
);
195 Res
.Val
.setInt(LoadVal
);
200 static AvailableValue
getUndef() {
202 Res
.Val
.setPointer(nullptr);
203 Res
.Val
.setInt(UndefVal
);
208 bool isSimpleValue() const { return Val
.getInt() == SimpleVal
; }
209 bool isCoercedLoadValue() const { return Val
.getInt() == LoadVal
; }
210 bool isMemIntrinValue() const { return Val
.getInt() == MemIntrin
; }
211 bool isUndefValue() const { return Val
.getInt() == UndefVal
; }
213 Value
*getSimpleValue() const {
214 assert(isSimpleValue() && "Wrong accessor");
215 return Val
.getPointer();
218 LoadInst
*getCoercedLoadValue() const {
219 assert(isCoercedLoadValue() && "Wrong accessor");
220 return cast
<LoadInst
>(Val
.getPointer());
223 MemIntrinsic
*getMemIntrinValue() const {
224 assert(isMemIntrinValue() && "Wrong accessor");
225 return cast
<MemIntrinsic
>(Val
.getPointer());
228 /// Emit code at the specified insertion point to adjust the value defined
229 /// here to the specified type. This handles various coercion cases.
230 Value
*MaterializeAdjustedValue(LoadInst
*LI
, Instruction
*InsertPt
,
234 /// Represents an AvailableValue which can be rematerialized at the end of
235 /// the associated BasicBlock.
236 struct llvm::gvn::AvailableValueInBlock
{
237 /// BB - The basic block in question.
240 /// AV - The actual available value
243 static AvailableValueInBlock
get(BasicBlock
*BB
, AvailableValue
&&AV
) {
244 AvailableValueInBlock Res
;
246 Res
.AV
= std::move(AV
);
250 static AvailableValueInBlock
get(BasicBlock
*BB
, Value
*V
,
251 unsigned Offset
= 0) {
252 return get(BB
, AvailableValue::get(V
, Offset
));
255 static AvailableValueInBlock
getUndef(BasicBlock
*BB
) {
256 return get(BB
, AvailableValue::getUndef());
259 /// Emit code at the end of this block to adjust the value defined here to
260 /// the specified type. This handles various coercion cases.
261 Value
*MaterializeAdjustedValue(LoadInst
*LI
, GVN
&gvn
) const {
262 return AV
.MaterializeAdjustedValue(LI
, BB
->getTerminator(), gvn
);
266 //===----------------------------------------------------------------------===//
267 // ValueTable Internal Functions
268 //===----------------------------------------------------------------------===//
270 GVN::Expression
GVN::ValueTable::createExpr(Instruction
*I
) {
272 e
.type
= I
->getType();
273 e
.opcode
= I
->getOpcode();
274 for (Instruction::op_iterator OI
= I
->op_begin(), OE
= I
->op_end();
276 e
.varargs
.push_back(lookupOrAdd(*OI
));
277 if (I
->isCommutative()) {
278 // Ensure that commutative instructions that only differ by a permutation
279 // of their operands get the same value number by sorting the operand value
280 // numbers. Since all commutative instructions have two operands it is more
281 // efficient to sort by hand rather than using, say, std::sort.
282 assert(I
->getNumOperands() == 2 && "Unsupported commutative instruction!");
283 if (e
.varargs
[0] > e
.varargs
[1])
284 std::swap(e
.varargs
[0], e
.varargs
[1]);
285 e
.commutative
= true;
288 if (CmpInst
*C
= dyn_cast
<CmpInst
>(I
)) {
289 // Sort the operand value numbers so x<y and y>x get the same value number.
290 CmpInst::Predicate Predicate
= C
->getPredicate();
291 if (e
.varargs
[0] > e
.varargs
[1]) {
292 std::swap(e
.varargs
[0], e
.varargs
[1]);
293 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
295 e
.opcode
= (C
->getOpcode() << 8) | Predicate
;
296 e
.commutative
= true;
297 } else if (InsertValueInst
*E
= dyn_cast
<InsertValueInst
>(I
)) {
298 for (InsertValueInst::idx_iterator II
= E
->idx_begin(), IE
= E
->idx_end();
300 e
.varargs
.push_back(*II
);
306 GVN::Expression
GVN::ValueTable::createCmpExpr(unsigned Opcode
,
307 CmpInst::Predicate Predicate
,
308 Value
*LHS
, Value
*RHS
) {
309 assert((Opcode
== Instruction::ICmp
|| Opcode
== Instruction::FCmp
) &&
310 "Not a comparison!");
312 e
.type
= CmpInst::makeCmpResultType(LHS
->getType());
313 e
.varargs
.push_back(lookupOrAdd(LHS
));
314 e
.varargs
.push_back(lookupOrAdd(RHS
));
316 // Sort the operand value numbers so x<y and y>x get the same value number.
317 if (e
.varargs
[0] > e
.varargs
[1]) {
318 std::swap(e
.varargs
[0], e
.varargs
[1]);
319 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
321 e
.opcode
= (Opcode
<< 8) | Predicate
;
322 e
.commutative
= true;
326 GVN::Expression
GVN::ValueTable::createExtractvalueExpr(ExtractValueInst
*EI
) {
327 assert(EI
&& "Not an ExtractValueInst?");
329 e
.type
= EI
->getType();
332 IntrinsicInst
*I
= dyn_cast
<IntrinsicInst
>(EI
->getAggregateOperand());
333 if (I
!= nullptr && EI
->getNumIndices() == 1 && *EI
->idx_begin() == 0 ) {
334 // EI might be an extract from one of our recognised intrinsics. If it
335 // is we'll synthesize a semantically equivalent expression instead on
336 // an extract value expression.
337 switch (I
->getIntrinsicID()) {
338 case Intrinsic::sadd_with_overflow
:
339 case Intrinsic::uadd_with_overflow
:
340 e
.opcode
= Instruction::Add
;
342 case Intrinsic::ssub_with_overflow
:
343 case Intrinsic::usub_with_overflow
:
344 e
.opcode
= Instruction::Sub
;
346 case Intrinsic::smul_with_overflow
:
347 case Intrinsic::umul_with_overflow
:
348 e
.opcode
= Instruction::Mul
;
355 // Intrinsic recognized. Grab its args to finish building the expression.
356 assert(I
->getNumArgOperands() == 2 &&
357 "Expect two args for recognised intrinsics.");
358 e
.varargs
.push_back(lookupOrAdd(I
->getArgOperand(0)));
359 e
.varargs
.push_back(lookupOrAdd(I
->getArgOperand(1)));
364 // Not a recognised intrinsic. Fall back to producing an extract value
366 e
.opcode
= EI
->getOpcode();
367 for (Instruction::op_iterator OI
= EI
->op_begin(), OE
= EI
->op_end();
369 e
.varargs
.push_back(lookupOrAdd(*OI
));
371 for (ExtractValueInst::idx_iterator II
= EI
->idx_begin(), IE
= EI
->idx_end();
373 e
.varargs
.push_back(*II
);
378 //===----------------------------------------------------------------------===//
379 // ValueTable External Functions
380 //===----------------------------------------------------------------------===//
382 GVN::ValueTable::ValueTable() = default;
383 GVN::ValueTable::ValueTable(const ValueTable
&) = default;
384 GVN::ValueTable::ValueTable(ValueTable
&&) = default;
385 GVN::ValueTable::~ValueTable() = default;
387 /// add - Insert a value into the table with a specified value number.
388 void GVN::ValueTable::add(Value
*V
, uint32_t num
) {
389 valueNumbering
.insert(std::make_pair(V
, num
));
390 if (PHINode
*PN
= dyn_cast
<PHINode
>(V
))
391 NumberingPhi
[num
] = PN
;
394 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst
*C
) {
395 if (AA
->doesNotAccessMemory(C
)) {
396 Expression exp
= createExpr(C
);
397 uint32_t e
= assignExpNewValueNum(exp
).first
;
398 valueNumbering
[C
] = e
;
400 } else if (MD
&& AA
->onlyReadsMemory(C
)) {
401 Expression exp
= createExpr(C
);
402 auto ValNum
= assignExpNewValueNum(exp
);
404 valueNumbering
[C
] = ValNum
.first
;
408 MemDepResult local_dep
= MD
->getDependency(C
);
410 if (!local_dep
.isDef() && !local_dep
.isNonLocal()) {
411 valueNumbering
[C
] = nextValueNumber
;
412 return nextValueNumber
++;
415 if (local_dep
.isDef()) {
416 CallInst
* local_cdep
= cast
<CallInst
>(local_dep
.getInst());
418 if (local_cdep
->getNumArgOperands() != C
->getNumArgOperands()) {
419 valueNumbering
[C
] = nextValueNumber
;
420 return nextValueNumber
++;
423 for (unsigned i
= 0, e
= C
->getNumArgOperands(); i
< e
; ++i
) {
424 uint32_t c_vn
= lookupOrAdd(C
->getArgOperand(i
));
425 uint32_t cd_vn
= lookupOrAdd(local_cdep
->getArgOperand(i
));
427 valueNumbering
[C
] = nextValueNumber
;
428 return nextValueNumber
++;
432 uint32_t v
= lookupOrAdd(local_cdep
);
433 valueNumbering
[C
] = v
;
438 const MemoryDependenceResults::NonLocalDepInfo
&deps
=
439 MD
->getNonLocalCallDependency(C
);
440 // FIXME: Move the checking logic to MemDep!
441 CallInst
* cdep
= nullptr;
443 // Check to see if we have a single dominating call instruction that is
445 for (unsigned i
= 0, e
= deps
.size(); i
!= e
; ++i
) {
446 const NonLocalDepEntry
*I
= &deps
[i
];
447 if (I
->getResult().isNonLocal())
450 // We don't handle non-definitions. If we already have a call, reject
451 // instruction dependencies.
452 if (!I
->getResult().isDef() || cdep
!= nullptr) {
457 CallInst
*NonLocalDepCall
= dyn_cast
<CallInst
>(I
->getResult().getInst());
458 // FIXME: All duplicated with non-local case.
459 if (NonLocalDepCall
&& DT
->properlyDominates(I
->getBB(), C
->getParent())){
460 cdep
= NonLocalDepCall
;
469 valueNumbering
[C
] = nextValueNumber
;
470 return nextValueNumber
++;
473 if (cdep
->getNumArgOperands() != C
->getNumArgOperands()) {
474 valueNumbering
[C
] = nextValueNumber
;
475 return nextValueNumber
++;
477 for (unsigned i
= 0, e
= C
->getNumArgOperands(); i
< e
; ++i
) {
478 uint32_t c_vn
= lookupOrAdd(C
->getArgOperand(i
));
479 uint32_t cd_vn
= lookupOrAdd(cdep
->getArgOperand(i
));
481 valueNumbering
[C
] = nextValueNumber
;
482 return nextValueNumber
++;
486 uint32_t v
= lookupOrAdd(cdep
);
487 valueNumbering
[C
] = v
;
490 valueNumbering
[C
] = nextValueNumber
;
491 return nextValueNumber
++;
495 /// Returns true if a value number exists for the specified value.
496 bool GVN::ValueTable::exists(Value
*V
) const { return valueNumbering
.count(V
) != 0; }
498 /// lookup_or_add - Returns the value number for the specified value, assigning
499 /// it a new number if it did not have one before.
500 uint32_t GVN::ValueTable::lookupOrAdd(Value
*V
) {
501 DenseMap
<Value
*, uint32_t>::iterator VI
= valueNumbering
.find(V
);
502 if (VI
!= valueNumbering
.end())
505 if (!isa
<Instruction
>(V
)) {
506 valueNumbering
[V
] = nextValueNumber
;
507 return nextValueNumber
++;
510 Instruction
* I
= cast
<Instruction
>(V
);
512 switch (I
->getOpcode()) {
513 case Instruction::Call
:
514 return lookupOrAddCall(cast
<CallInst
>(I
));
515 case Instruction::Add
:
516 case Instruction::FAdd
:
517 case Instruction::Sub
:
518 case Instruction::FSub
:
519 case Instruction::Mul
:
520 case Instruction::FMul
:
521 case Instruction::UDiv
:
522 case Instruction::SDiv
:
523 case Instruction::FDiv
:
524 case Instruction::URem
:
525 case Instruction::SRem
:
526 case Instruction::FRem
:
527 case Instruction::Shl
:
528 case Instruction::LShr
:
529 case Instruction::AShr
:
530 case Instruction::And
:
531 case Instruction::Or
:
532 case Instruction::Xor
:
533 case Instruction::ICmp
:
534 case Instruction::FCmp
:
535 case Instruction::Trunc
:
536 case Instruction::ZExt
:
537 case Instruction::SExt
:
538 case Instruction::FPToUI
:
539 case Instruction::FPToSI
:
540 case Instruction::UIToFP
:
541 case Instruction::SIToFP
:
542 case Instruction::FPTrunc
:
543 case Instruction::FPExt
:
544 case Instruction::PtrToInt
:
545 case Instruction::IntToPtr
:
546 case Instruction::BitCast
:
547 case Instruction::Select
:
548 case Instruction::ExtractElement
:
549 case Instruction::InsertElement
:
550 case Instruction::ShuffleVector
:
551 case Instruction::InsertValue
:
552 case Instruction::GetElementPtr
:
555 case Instruction::ExtractValue
:
556 exp
= createExtractvalueExpr(cast
<ExtractValueInst
>(I
));
558 case Instruction::PHI
:
559 valueNumbering
[V
] = nextValueNumber
;
560 NumberingPhi
[nextValueNumber
] = cast
<PHINode
>(V
);
561 return nextValueNumber
++;
563 valueNumbering
[V
] = nextValueNumber
;
564 return nextValueNumber
++;
567 uint32_t e
= assignExpNewValueNum(exp
).first
;
568 valueNumbering
[V
] = e
;
572 /// Returns the value number of the specified value. Fails if
573 /// the value has not yet been numbered.
574 uint32_t GVN::ValueTable::lookup(Value
*V
, bool Verify
) const {
575 DenseMap
<Value
*, uint32_t>::const_iterator VI
= valueNumbering
.find(V
);
577 assert(VI
!= valueNumbering
.end() && "Value not numbered?");
580 return (VI
!= valueNumbering
.end()) ? VI
->second
: 0;
583 /// Returns the value number of the given comparison,
584 /// assigning it a new number if it did not have one before. Useful when
585 /// we deduced the result of a comparison, but don't immediately have an
586 /// instruction realizing that comparison to hand.
587 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode
,
588 CmpInst::Predicate Predicate
,
589 Value
*LHS
, Value
*RHS
) {
590 Expression exp
= createCmpExpr(Opcode
, Predicate
, LHS
, RHS
);
591 return assignExpNewValueNum(exp
).first
;
594 /// Remove all entries from the ValueTable.
595 void GVN::ValueTable::clear() {
596 valueNumbering
.clear();
597 expressionNumbering
.clear();
598 NumberingPhi
.clear();
599 PhiTranslateTable
.clear();
606 /// Remove a value from the value numbering.
607 void GVN::ValueTable::erase(Value
*V
) {
608 uint32_t Num
= valueNumbering
.lookup(V
);
609 valueNumbering
.erase(V
);
610 // If V is PHINode, V <--> value number is an one-to-one mapping.
612 NumberingPhi
.erase(Num
);
615 /// verifyRemoved - Verify that the value is removed from all internal data
617 void GVN::ValueTable::verifyRemoved(const Value
*V
) const {
618 for (DenseMap
<Value
*, uint32_t>::const_iterator
619 I
= valueNumbering
.begin(), E
= valueNumbering
.end(); I
!= E
; ++I
) {
620 assert(I
->first
!= V
&& "Inst still occurs in value numbering map!");
624 //===----------------------------------------------------------------------===//
626 //===----------------------------------------------------------------------===//
628 PreservedAnalyses
GVN::run(Function
&F
, FunctionAnalysisManager
&AM
) {
629 // FIXME: The order of evaluation of these 'getResult' calls is very
630 // significant! Re-ordering these variables will cause GVN when run alone to
631 // be less effective! We should fix memdep and basic-aa to not exhibit this
632 // behavior, but until then don't change the order here.
633 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
634 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
635 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
636 auto &AA
= AM
.getResult
<AAManager
>(F
);
637 auto &MemDep
= AM
.getResult
<MemoryDependenceAnalysis
>(F
);
638 auto *LI
= AM
.getCachedResult
<LoopAnalysis
>(F
);
639 auto &ORE
= AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
640 bool Changed
= runImpl(F
, AC
, DT
, TLI
, AA
, &MemDep
, LI
, &ORE
);
642 return PreservedAnalyses::all();
643 PreservedAnalyses PA
;
644 PA
.preserve
<DominatorTreeAnalysis
>();
645 PA
.preserve
<GlobalsAA
>();
646 PA
.preserve
<TargetLibraryAnalysis
>();
650 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
651 LLVM_DUMP_METHOD
void GVN::dump(DenseMap
<uint32_t, Value
*>& d
) const {
653 for (DenseMap
<uint32_t, Value
*>::iterator I
= d
.begin(),
654 E
= d
.end(); I
!= E
; ++I
) {
655 errs() << I
->first
<< "\n";
662 /// Return true if we can prove that the value
663 /// we're analyzing is fully available in the specified block. As we go, keep
664 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
665 /// map is actually a tri-state map with the following values:
666 /// 0) we know the block *is not* fully available.
667 /// 1) we know the block *is* fully available.
668 /// 2) we do not know whether the block is fully available or not, but we are
669 /// currently speculating that it will be.
670 /// 3) we are speculating for this block and have used that to speculate for
672 static bool IsValueFullyAvailableInBlock(BasicBlock
*BB
,
673 DenseMap
<BasicBlock
*, char> &FullyAvailableBlocks
,
674 uint32_t RecurseDepth
) {
675 if (RecurseDepth
> MaxRecurseDepth
)
678 // Optimistically assume that the block is fully available and check to see
679 // if we already know about this block in one lookup.
680 std::pair
<DenseMap
<BasicBlock
*, char>::iterator
, bool> IV
=
681 FullyAvailableBlocks
.insert(std::make_pair(BB
, 2));
683 // If the entry already existed for this block, return the precomputed value.
685 // If this is a speculative "available" value, mark it as being used for
686 // speculation of other blocks.
687 if (IV
.first
->second
== 2)
688 IV
.first
->second
= 3;
689 return IV
.first
->second
!= 0;
692 // Otherwise, see if it is fully available in all predecessors.
693 pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
);
695 // If this block has no predecessors, it isn't live-in here.
697 goto SpeculationFailure
;
699 for (; PI
!= PE
; ++PI
)
700 // If the value isn't fully available in one of our predecessors, then it
701 // isn't fully available in this block either. Undo our previous
702 // optimistic assumption and bail out.
703 if (!IsValueFullyAvailableInBlock(*PI
, FullyAvailableBlocks
,RecurseDepth
+1))
704 goto SpeculationFailure
;
708 // If we get here, we found out that this is not, after
709 // all, a fully-available block. We have a problem if we speculated on this and
710 // used the speculation to mark other blocks as available.
712 char &BBVal
= FullyAvailableBlocks
[BB
];
714 // If we didn't speculate on this, just return with it set to false.
720 // If we did speculate on this value, we could have blocks set to 1 that are
721 // incorrect. Walk the (transitive) successors of this block and mark them as
723 SmallVector
<BasicBlock
*, 32> BBWorklist
;
724 BBWorklist
.push_back(BB
);
727 BasicBlock
*Entry
= BBWorklist
.pop_back_val();
728 // Note that this sets blocks to 0 (unavailable) if they happen to not
729 // already be in FullyAvailableBlocks. This is safe.
730 char &EntryVal
= FullyAvailableBlocks
[Entry
];
731 if (EntryVal
== 0) continue; // Already unavailable.
733 // Mark as unavailable.
736 BBWorklist
.append(succ_begin(Entry
), succ_end(Entry
));
737 } while (!BBWorklist
.empty());
742 /// Given a set of loads specified by ValuesPerBlock,
743 /// construct SSA form, allowing us to eliminate LI. This returns the value
744 /// that should be used at LI's definition site.
745 static Value
*ConstructSSAForLoadSet(LoadInst
*LI
,
746 SmallVectorImpl
<AvailableValueInBlock
> &ValuesPerBlock
,
748 // Check for the fully redundant, dominating load case. In this case, we can
749 // just use the dominating value directly.
750 if (ValuesPerBlock
.size() == 1 &&
751 gvn
.getDominatorTree().properlyDominates(ValuesPerBlock
[0].BB
,
753 assert(!ValuesPerBlock
[0].AV
.isUndefValue() &&
754 "Dead BB dominate this block");
755 return ValuesPerBlock
[0].MaterializeAdjustedValue(LI
, gvn
);
758 // Otherwise, we have to construct SSA form.
759 SmallVector
<PHINode
*, 8> NewPHIs
;
760 SSAUpdater
SSAUpdate(&NewPHIs
);
761 SSAUpdate
.Initialize(LI
->getType(), LI
->getName());
763 for (const AvailableValueInBlock
&AV
: ValuesPerBlock
) {
764 BasicBlock
*BB
= AV
.BB
;
766 if (SSAUpdate
.HasValueForBlock(BB
))
769 // If the value is the load that we will be eliminating, and the block it's
770 // available in is the block that the load is in, then don't add it as
771 // SSAUpdater will resolve the value to the relevant phi which may let it
772 // avoid phi construction entirely if there's actually only one value.
773 if (BB
== LI
->getParent() &&
774 ((AV
.AV
.isSimpleValue() && AV
.AV
.getSimpleValue() == LI
) ||
775 (AV
.AV
.isCoercedLoadValue() && AV
.AV
.getCoercedLoadValue() == LI
)))
778 SSAUpdate
.AddAvailableValue(BB
, AV
.MaterializeAdjustedValue(LI
, gvn
));
781 // Perform PHI construction.
782 return SSAUpdate
.GetValueInMiddleOfBlock(LI
->getParent());
785 Value
*AvailableValue::MaterializeAdjustedValue(LoadInst
*LI
,
786 Instruction
*InsertPt
,
789 Type
*LoadTy
= LI
->getType();
790 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
791 if (isSimpleValue()) {
792 Res
= getSimpleValue();
793 if (Res
->getType() != LoadTy
) {
794 Res
= getStoreValueForLoad(Res
, Offset
, LoadTy
, InsertPt
, DL
);
796 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
797 << " " << *getSimpleValue() << '\n'
801 } else if (isCoercedLoadValue()) {
802 LoadInst
*Load
= getCoercedLoadValue();
803 if (Load
->getType() == LoadTy
&& Offset
== 0) {
806 Res
= getLoadValueForLoad(Load
, Offset
, LoadTy
, InsertPt
, DL
);
807 // We would like to use gvn.markInstructionForDeletion here, but we can't
808 // because the load is already memoized into the leader map table that GVN
809 // tracks. It is potentially possible to remove the load from the table,
810 // but then there all of the operations based on it would need to be
811 // rehashed. Just leave the dead load around.
812 gvn
.getMemDep().removeInstruction(Load
);
813 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
814 << " " << *getCoercedLoadValue() << '\n'
818 } else if (isMemIntrinValue()) {
819 Res
= getMemInstValueForLoad(getMemIntrinValue(), Offset
, LoadTy
,
821 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
822 << " " << *getMemIntrinValue() << '\n'
826 assert(isUndefValue() && "Should be UndefVal");
827 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
828 return UndefValue::get(LoadTy
);
830 assert(Res
&& "failed to materialize?");
834 static bool isLifetimeStart(const Instruction
*Inst
) {
835 if (const IntrinsicInst
* II
= dyn_cast
<IntrinsicInst
>(Inst
))
836 return II
->getIntrinsicID() == Intrinsic::lifetime_start
;
840 /// Try to locate the three instruction involved in a missed
841 /// load-elimination case that is due to an intervening store.
842 static void reportMayClobberedLoad(LoadInst
*LI
, MemDepResult DepInfo
,
844 OptimizationRemarkEmitter
*ORE
) {
847 User
*OtherAccess
= nullptr;
849 OptimizationRemarkMissed
R(DEBUG_TYPE
, "LoadClobbered", LI
);
850 R
<< "load of type " << NV("Type", LI
->getType()) << " not eliminated"
853 for (auto *U
: LI
->getPointerOperand()->users())
854 if (U
!= LI
&& (isa
<LoadInst
>(U
) || isa
<StoreInst
>(U
)) &&
855 DT
->dominates(cast
<Instruction
>(U
), LI
)) {
856 // FIXME: for now give up if there are multiple memory accesses that
857 // dominate the load. We need further analysis to decide which one is
858 // that we're forwarding from.
860 OtherAccess
= nullptr;
866 R
<< " in favor of " << NV("OtherAccess", OtherAccess
);
868 R
<< " because it is clobbered by " << NV("ClobberedBy", DepInfo
.getInst());
873 bool GVN::AnalyzeLoadAvailability(LoadInst
*LI
, MemDepResult DepInfo
,
874 Value
*Address
, AvailableValue
&Res
) {
875 assert((DepInfo
.isDef() || DepInfo
.isClobber()) &&
876 "expected a local dependence");
877 assert(LI
->isUnordered() && "rules below are incorrect for ordered access");
879 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
881 if (DepInfo
.isClobber()) {
882 // If the dependence is to a store that writes to a superset of the bits
883 // read by the load, we can extract the bits we need for the load from the
885 if (StoreInst
*DepSI
= dyn_cast
<StoreInst
>(DepInfo
.getInst())) {
886 // Can't forward from non-atomic to atomic without violating memory model.
887 if (Address
&& LI
->isAtomic() <= DepSI
->isAtomic()) {
889 analyzeLoadFromClobberingStore(LI
->getType(), Address
, DepSI
, DL
);
891 Res
= AvailableValue::get(DepSI
->getValueOperand(), Offset
);
897 // Check to see if we have something like this:
900 // if we have this, replace the later with an extraction from the former.
901 if (LoadInst
*DepLI
= dyn_cast
<LoadInst
>(DepInfo
.getInst())) {
902 // If this is a clobber and L is the first instruction in its block, then
903 // we have the first instruction in the entry block.
904 // Can't forward from non-atomic to atomic without violating memory model.
905 if (DepLI
!= LI
&& Address
&& LI
->isAtomic() <= DepLI
->isAtomic()) {
907 analyzeLoadFromClobberingLoad(LI
->getType(), Address
, DepLI
, DL
);
910 Res
= AvailableValue::getLoad(DepLI
, Offset
);
916 // If the clobbering value is a memset/memcpy/memmove, see if we can
917 // forward a value on from it.
918 if (MemIntrinsic
*DepMI
= dyn_cast
<MemIntrinsic
>(DepInfo
.getInst())) {
919 if (Address
&& !LI
->isAtomic()) {
920 int Offset
= analyzeLoadFromClobberingMemInst(LI
->getType(), Address
,
923 Res
= AvailableValue::getMI(DepMI
, Offset
);
928 // Nothing known about this clobber, have to be conservative
930 // fast print dep, using operator<< on instruction is too slow.
931 dbgs() << "GVN: load "; LI
->printAsOperand(dbgs());
932 Instruction
*I
= DepInfo
.getInst();
933 dbgs() << " is clobbered by " << *I
<< '\n';);
934 if (ORE
->allowExtraAnalysis(DEBUG_TYPE
))
935 reportMayClobberedLoad(LI
, DepInfo
, DT
, ORE
);
939 assert(DepInfo
.isDef() && "follows from above");
941 Instruction
*DepInst
= DepInfo
.getInst();
943 // Loading the allocation -> undef.
944 if (isa
<AllocaInst
>(DepInst
) || isMallocLikeFn(DepInst
, TLI
) ||
945 // Loading immediately after lifetime begin -> undef.
946 isLifetimeStart(DepInst
)) {
947 Res
= AvailableValue::get(UndefValue::get(LI
->getType()));
951 // Loading from calloc (which zero initializes memory) -> zero
952 if (isCallocLikeFn(DepInst
, TLI
)) {
953 Res
= AvailableValue::get(Constant::getNullValue(LI
->getType()));
957 if (StoreInst
*S
= dyn_cast
<StoreInst
>(DepInst
)) {
958 // Reject loads and stores that are to the same address but are of
959 // different types if we have to. If the stored value is larger or equal to
960 // the loaded value, we can reuse it.
961 if (S
->getValueOperand()->getType() != LI
->getType() &&
962 !canCoerceMustAliasedValueToLoad(S
->getValueOperand(),
966 // Can't forward from non-atomic to atomic without violating memory model.
967 if (S
->isAtomic() < LI
->isAtomic())
970 Res
= AvailableValue::get(S
->getValueOperand());
974 if (LoadInst
*LD
= dyn_cast
<LoadInst
>(DepInst
)) {
975 // If the types mismatch and we can't handle it, reject reuse of the load.
976 // If the stored value is larger or equal to the loaded value, we can reuse
978 if (LD
->getType() != LI
->getType() &&
979 !canCoerceMustAliasedValueToLoad(LD
, LI
->getType(), DL
))
982 // Can't forward from non-atomic to atomic without violating memory model.
983 if (LD
->isAtomic() < LI
->isAtomic())
986 Res
= AvailableValue::getLoad(LD
);
990 // Unknown def - must be conservative
992 // fast print dep, using operator<< on instruction is too slow.
993 dbgs() << "GVN: load "; LI
->printAsOperand(dbgs());
994 dbgs() << " has unknown def " << *DepInst
<< '\n';);
998 void GVN::AnalyzeLoadAvailability(LoadInst
*LI
, LoadDepVect
&Deps
,
999 AvailValInBlkVect
&ValuesPerBlock
,
1000 UnavailBlkVect
&UnavailableBlocks
) {
1001 // Filter out useless results (non-locals, etc). Keep track of the blocks
1002 // where we have a value available in repl, also keep track of whether we see
1003 // dependencies that produce an unknown value for the load (such as a call
1004 // that could potentially clobber the load).
1005 unsigned NumDeps
= Deps
.size();
1006 for (unsigned i
= 0, e
= NumDeps
; i
!= e
; ++i
) {
1007 BasicBlock
*DepBB
= Deps
[i
].getBB();
1008 MemDepResult DepInfo
= Deps
[i
].getResult();
1010 if (DeadBlocks
.count(DepBB
)) {
1011 // Dead dependent mem-op disguise as a load evaluating the same value
1012 // as the load in question.
1013 ValuesPerBlock
.push_back(AvailableValueInBlock::getUndef(DepBB
));
1017 if (!DepInfo
.isDef() && !DepInfo
.isClobber()) {
1018 UnavailableBlocks
.push_back(DepBB
);
1022 // The address being loaded in this non-local block may not be the same as
1023 // the pointer operand of the load if PHI translation occurs. Make sure
1024 // to consider the right address.
1025 Value
*Address
= Deps
[i
].getAddress();
1028 if (AnalyzeLoadAvailability(LI
, DepInfo
, Address
, AV
)) {
1029 // subtlety: because we know this was a non-local dependency, we know
1030 // it's safe to materialize anywhere between the instruction within
1031 // DepInfo and the end of it's block.
1032 ValuesPerBlock
.push_back(AvailableValueInBlock::get(DepBB
,
1035 UnavailableBlocks
.push_back(DepBB
);
1039 assert(NumDeps
== ValuesPerBlock
.size() + UnavailableBlocks
.size() &&
1040 "post condition violation");
1043 bool GVN::PerformLoadPRE(LoadInst
*LI
, AvailValInBlkVect
&ValuesPerBlock
,
1044 UnavailBlkVect
&UnavailableBlocks
) {
1045 // Okay, we have *some* definitions of the value. This means that the value
1046 // is available in some of our (transitive) predecessors. Lets think about
1047 // doing PRE of this load. This will involve inserting a new load into the
1048 // predecessor when it's not available. We could do this in general, but
1049 // prefer to not increase code size. As such, we only do this when we know
1050 // that we only have to insert *one* load (which means we're basically moving
1051 // the load, not inserting a new one).
1053 SmallPtrSet
<BasicBlock
*, 4> Blockers(UnavailableBlocks
.begin(),
1054 UnavailableBlocks
.end());
1056 // Let's find the first basic block with more than one predecessor. Walk
1057 // backwards through predecessors if needed.
1058 BasicBlock
*LoadBB
= LI
->getParent();
1059 BasicBlock
*TmpBB
= LoadBB
;
1060 bool IsSafeToSpeculativelyExecute
= isSafeToSpeculativelyExecute(LI
);
1062 // Check that there is no implicit control flow instructions above our load in
1063 // its block. If there is an instruction that doesn't always pass the
1064 // execution to the following instruction, then moving through it may become
1065 // invalid. For example:
1070 // guard(0 <= index && index < LEN);
1073 // It is illegal to move the array access to any point above the guard,
1074 // because if the index is out of bounds we should deoptimize rather than
1075 // access the array.
1076 // Check that there is no guard in this block above our instruction.
1077 if (!IsSafeToSpeculativelyExecute
&& ICF
->isDominatedByICFIFromSameBlock(LI
))
1079 while (TmpBB
->getSinglePredecessor()) {
1080 TmpBB
= TmpBB
->getSinglePredecessor();
1081 if (TmpBB
== LoadBB
) // Infinite (unreachable) loop.
1083 if (Blockers
.count(TmpBB
))
1086 // If any of these blocks has more than one successor (i.e. if the edge we
1087 // just traversed was critical), then there are other paths through this
1088 // block along which the load may not be anticipated. Hoisting the load
1089 // above this block would be adding the load to execution paths along
1090 // which it was not previously executed.
1091 if (TmpBB
->getTerminator()->getNumSuccessors() != 1)
1094 // Check that there is no implicit control flow in a block above.
1095 if (!IsSafeToSpeculativelyExecute
&& ICF
->hasICF(TmpBB
))
1102 // Check to see how many predecessors have the loaded value fully
1104 MapVector
<BasicBlock
*, Value
*> PredLoads
;
1105 DenseMap
<BasicBlock
*, char> FullyAvailableBlocks
;
1106 for (const AvailableValueInBlock
&AV
: ValuesPerBlock
)
1107 FullyAvailableBlocks
[AV
.BB
] = true;
1108 for (BasicBlock
*UnavailableBB
: UnavailableBlocks
)
1109 FullyAvailableBlocks
[UnavailableBB
] = false;
1111 SmallVector
<BasicBlock
*, 4> CriticalEdgePred
;
1112 for (BasicBlock
*Pred
: predecessors(LoadBB
)) {
1113 // If any predecessor block is an EH pad that does not allow non-PHI
1114 // instructions before the terminator, we can't PRE the load.
1115 if (Pred
->getTerminator()->isEHPad()) {
1117 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1118 << Pred
->getName() << "': " << *LI
<< '\n');
1122 if (IsValueFullyAvailableInBlock(Pred
, FullyAvailableBlocks
, 0)) {
1126 if (Pred
->getTerminator()->getNumSuccessors() != 1) {
1127 if (isa
<IndirectBrInst
>(Pred
->getTerminator())) {
1129 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1130 << Pred
->getName() << "': " << *LI
<< '\n');
1134 // FIXME: Can we support the fallthrough edge?
1135 if (isa
<CallBrInst
>(Pred
->getTerminator())) {
1137 dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '"
1138 << Pred
->getName() << "': " << *LI
<< '\n');
1142 if (LoadBB
->isEHPad()) {
1144 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1145 << Pred
->getName() << "': " << *LI
<< '\n');
1149 CriticalEdgePred
.push_back(Pred
);
1151 // Only add the predecessors that will not be split for now.
1152 PredLoads
[Pred
] = nullptr;
1156 // Decide whether PRE is profitable for this load.
1157 unsigned NumUnavailablePreds
= PredLoads
.size() + CriticalEdgePred
.size();
1158 assert(NumUnavailablePreds
!= 0 &&
1159 "Fully available value should already be eliminated!");
1161 // If this load is unavailable in multiple predecessors, reject it.
1162 // FIXME: If we could restructure the CFG, we could make a common pred with
1163 // all the preds that don't have an available LI and insert a new load into
1165 if (NumUnavailablePreds
!= 1)
1168 // Split critical edges, and update the unavailable predecessors accordingly.
1169 for (BasicBlock
*OrigPred
: CriticalEdgePred
) {
1170 BasicBlock
*NewPred
= splitCriticalEdges(OrigPred
, LoadBB
);
1171 assert(!PredLoads
.count(OrigPred
) && "Split edges shouldn't be in map!");
1172 PredLoads
[NewPred
] = nullptr;
1173 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred
->getName() << "->"
1174 << LoadBB
->getName() << '\n');
1177 // Check if the load can safely be moved to all the unavailable predecessors.
1178 bool CanDoPRE
= true;
1179 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
1180 SmallVector
<Instruction
*, 8> NewInsts
;
1181 for (auto &PredLoad
: PredLoads
) {
1182 BasicBlock
*UnavailablePred
= PredLoad
.first
;
1184 // Do PHI translation to get its value in the predecessor if necessary. The
1185 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1187 // If all preds have a single successor, then we know it is safe to insert
1188 // the load on the pred (?!?), so we can insert code to materialize the
1189 // pointer if it is not available.
1190 PHITransAddr
Address(LI
->getPointerOperand(), DL
, AC
);
1191 Value
*LoadPtr
= nullptr;
1192 LoadPtr
= Address
.PHITranslateWithInsertion(LoadBB
, UnavailablePred
,
1195 // If we couldn't find or insert a computation of this phi translated value,
1198 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1199 << *LI
->getPointerOperand() << "\n");
1204 PredLoad
.second
= LoadPtr
;
1208 while (!NewInsts
.empty()) {
1209 Instruction
*I
= NewInsts
.pop_back_val();
1210 markInstructionForDeletion(I
);
1212 // HINT: Don't revert the edge-splitting as following transformation may
1213 // also need to split these critical edges.
1214 return !CriticalEdgePred
.empty();
1217 // Okay, we can eliminate this load by inserting a reload in the predecessor
1218 // and using PHI construction to get the value in the other predecessors, do
1220 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI
<< '\n');
1221 LLVM_DEBUG(if (!NewInsts
.empty()) dbgs()
1222 << "INSERTED " << NewInsts
.size() << " INSTS: " << *NewInsts
.back()
1225 // Assign value numbers to the new instructions.
1226 for (Instruction
*I
: NewInsts
) {
1227 // Instructions that have been inserted in predecessor(s) to materialize
1228 // the load address do not retain their original debug locations. Doing
1229 // so could lead to confusing (but correct) source attributions.
1230 // FIXME: How do we retain source locations without causing poor debugging
1232 I
->setDebugLoc(DebugLoc());
1234 // FIXME: We really _ought_ to insert these value numbers into their
1235 // parent's availability map. However, in doing so, we risk getting into
1236 // ordering issues. If a block hasn't been processed yet, we would be
1237 // marking a value as AVAIL-IN, which isn't what we intend.
1241 for (const auto &PredLoad
: PredLoads
) {
1242 BasicBlock
*UnavailablePred
= PredLoad
.first
;
1243 Value
*LoadPtr
= PredLoad
.second
;
1246 new LoadInst(LI
->getType(), LoadPtr
, LI
->getName() + ".pre",
1247 LI
->isVolatile(), LI
->getAlignment(), LI
->getOrdering(),
1248 LI
->getSyncScopeID(), UnavailablePred
->getTerminator());
1249 NewLoad
->setDebugLoc(LI
->getDebugLoc());
1251 // Transfer the old load's AA tags to the new load.
1253 LI
->getAAMetadata(Tags
);
1255 NewLoad
->setAAMetadata(Tags
);
1257 if (auto *MD
= LI
->getMetadata(LLVMContext::MD_invariant_load
))
1258 NewLoad
->setMetadata(LLVMContext::MD_invariant_load
, MD
);
1259 if (auto *InvGroupMD
= LI
->getMetadata(LLVMContext::MD_invariant_group
))
1260 NewLoad
->setMetadata(LLVMContext::MD_invariant_group
, InvGroupMD
);
1261 if (auto *RangeMD
= LI
->getMetadata(LLVMContext::MD_range
))
1262 NewLoad
->setMetadata(LLVMContext::MD_range
, RangeMD
);
1264 // We do not propagate the old load's debug location, because the new
1265 // load now lives in a different BB, and we want to avoid a jumpy line
1267 // FIXME: How do we retain source locations without causing poor debugging
1270 // Add the newly created load.
1271 ValuesPerBlock
.push_back(AvailableValueInBlock::get(UnavailablePred
,
1273 MD
->invalidateCachedPointerInfo(LoadPtr
);
1274 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad
<< '\n');
1277 // Perform PHI construction.
1278 Value
*V
= ConstructSSAForLoadSet(LI
, ValuesPerBlock
, *this);
1279 LI
->replaceAllUsesWith(V
);
1280 if (isa
<PHINode
>(V
))
1282 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
1283 I
->setDebugLoc(LI
->getDebugLoc());
1284 if (V
->getType()->isPtrOrPtrVectorTy())
1285 MD
->invalidateCachedPointerInfo(V
);
1286 markInstructionForDeletion(LI
);
1288 return OptimizationRemark(DEBUG_TYPE
, "LoadPRE", LI
)
1289 << "load eliminated by PRE";
1295 static void reportLoadElim(LoadInst
*LI
, Value
*AvailableValue
,
1296 OptimizationRemarkEmitter
*ORE
) {
1297 using namespace ore
;
1300 return OptimizationRemark(DEBUG_TYPE
, "LoadElim", LI
)
1301 << "load of type " << NV("Type", LI
->getType()) << " eliminated"
1302 << setExtraArgs() << " in favor of "
1303 << NV("InfavorOfValue", AvailableValue
);
1307 /// Attempt to eliminate a load whose dependencies are
1308 /// non-local by performing PHI construction.
1309 bool GVN::processNonLocalLoad(LoadInst
*LI
) {
1310 // non-local speculations are not allowed under asan.
1311 if (LI
->getParent()->getParent()->hasFnAttribute(
1312 Attribute::SanitizeAddress
) ||
1313 LI
->getParent()->getParent()->hasFnAttribute(
1314 Attribute::SanitizeHWAddress
))
1317 // Step 1: Find the non-local dependencies of the load.
1319 MD
->getNonLocalPointerDependency(LI
, Deps
);
1321 // If we had to process more than one hundred blocks to find the
1322 // dependencies, this load isn't worth worrying about. Optimizing
1323 // it will be too expensive.
1324 unsigned NumDeps
= Deps
.size();
1325 if (NumDeps
> MaxNumDeps
)
1328 // If we had a phi translation failure, we'll have a single entry which is a
1329 // clobber in the current block. Reject this early.
1331 !Deps
[0].getResult().isDef() && !Deps
[0].getResult().isClobber()) {
1332 LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI
->printAsOperand(dbgs());
1333 dbgs() << " has unknown dependencies\n";);
1337 // If this load follows a GEP, see if we can PRE the indices before analyzing.
1338 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0))) {
1339 for (GetElementPtrInst::op_iterator OI
= GEP
->idx_begin(),
1340 OE
= GEP
->idx_end();
1342 if (Instruction
*I
= dyn_cast
<Instruction
>(OI
->get()))
1343 performScalarPRE(I
);
1346 // Step 2: Analyze the availability of the load
1347 AvailValInBlkVect ValuesPerBlock
;
1348 UnavailBlkVect UnavailableBlocks
;
1349 AnalyzeLoadAvailability(LI
, Deps
, ValuesPerBlock
, UnavailableBlocks
);
1351 // If we have no predecessors that produce a known value for this load, exit
1353 if (ValuesPerBlock
.empty())
1356 // Step 3: Eliminate fully redundancy.
1358 // If all of the instructions we depend on produce a known value for this
1359 // load, then it is fully redundant and we can use PHI insertion to compute
1360 // its value. Insert PHIs and remove the fully redundant value now.
1361 if (UnavailableBlocks
.empty()) {
1362 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI
<< '\n');
1364 // Perform PHI construction.
1365 Value
*V
= ConstructSSAForLoadSet(LI
, ValuesPerBlock
, *this);
1366 LI
->replaceAllUsesWith(V
);
1368 if (isa
<PHINode
>(V
))
1370 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
1371 // If instruction I has debug info, then we should not update it.
1372 // Also, if I has a null DebugLoc, then it is still potentially incorrect
1373 // to propagate LI's DebugLoc because LI may not post-dominate I.
1374 if (LI
->getDebugLoc() && LI
->getParent() == I
->getParent())
1375 I
->setDebugLoc(LI
->getDebugLoc());
1376 if (V
->getType()->isPtrOrPtrVectorTy())
1377 MD
->invalidateCachedPointerInfo(V
);
1378 markInstructionForDeletion(LI
);
1380 reportLoadElim(LI
, V
, ORE
);
1384 // Step 4: Eliminate partial redundancy.
1385 if (!EnablePRE
|| !EnableLoadPRE
)
1388 return PerformLoadPRE(LI
, ValuesPerBlock
, UnavailableBlocks
);
1391 bool GVN::processAssumeIntrinsic(IntrinsicInst
*IntrinsicI
) {
1392 assert(IntrinsicI
->getIntrinsicID() == Intrinsic::assume
&&
1393 "This function can only be called with llvm.assume intrinsic");
1394 Value
*V
= IntrinsicI
->getArgOperand(0);
1396 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(V
)) {
1397 if (Cond
->isZero()) {
1398 Type
*Int8Ty
= Type::getInt8Ty(V
->getContext());
1399 // Insert a new store to null instruction before the load to indicate that
1400 // this code is not reachable. FIXME: We could insert unreachable
1401 // instruction directly because we can modify the CFG.
1402 new StoreInst(UndefValue::get(Int8Ty
),
1403 Constant::getNullValue(Int8Ty
->getPointerTo()),
1406 markInstructionForDeletion(IntrinsicI
);
1408 } else if (isa
<Constant
>(V
)) {
1409 // If it's not false, and constant, it must evaluate to true. This means our
1410 // assume is assume(true), and thus, pointless, and we don't want to do
1411 // anything more here.
1415 Constant
*True
= ConstantInt::getTrue(V
->getContext());
1416 bool Changed
= false;
1418 for (BasicBlock
*Successor
: successors(IntrinsicI
->getParent())) {
1419 BasicBlockEdge
Edge(IntrinsicI
->getParent(), Successor
);
1421 // This property is only true in dominated successors, propagateEquality
1422 // will check dominance for us.
1423 Changed
|= propagateEquality(V
, True
, Edge
, false);
1426 // We can replace assume value with true, which covers cases like this:
1427 // call void @llvm.assume(i1 %cmp)
1428 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1429 ReplaceWithConstMap
[V
] = True
;
1431 // If one of *cmp *eq operand is const, adding it to map will cover this:
1432 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1433 // call void @llvm.assume(i1 %cmp)
1434 // ret float %0 ; will change it to ret float 3.000000e+00
1435 if (auto *CmpI
= dyn_cast
<CmpInst
>(V
)) {
1436 if (CmpI
->getPredicate() == CmpInst::Predicate::ICMP_EQ
||
1437 CmpI
->getPredicate() == CmpInst::Predicate::FCMP_OEQ
||
1438 (CmpI
->getPredicate() == CmpInst::Predicate::FCMP_UEQ
&&
1439 CmpI
->getFastMathFlags().noNaNs())) {
1440 Value
*CmpLHS
= CmpI
->getOperand(0);
1441 Value
*CmpRHS
= CmpI
->getOperand(1);
1442 if (isa
<Constant
>(CmpLHS
))
1443 std::swap(CmpLHS
, CmpRHS
);
1444 auto *RHSConst
= dyn_cast
<Constant
>(CmpRHS
);
1446 // If only one operand is constant.
1447 if (RHSConst
!= nullptr && !isa
<Constant
>(CmpLHS
))
1448 ReplaceWithConstMap
[CmpLHS
] = RHSConst
;
1454 static void patchAndReplaceAllUsesWith(Instruction
*I
, Value
*Repl
) {
1455 patchReplacementInstruction(I
, Repl
);
1456 I
->replaceAllUsesWith(Repl
);
1459 /// Attempt to eliminate a load, first by eliminating it
1460 /// locally, and then attempting non-local elimination if that fails.
1461 bool GVN::processLoad(LoadInst
*L
) {
1465 // This code hasn't been audited for ordered or volatile memory access
1466 if (!L
->isUnordered())
1469 if (L
->use_empty()) {
1470 markInstructionForDeletion(L
);
1474 // ... to a pointer that has been loaded from before...
1475 MemDepResult Dep
= MD
->getDependency(L
);
1477 // If it is defined in another block, try harder.
1478 if (Dep
.isNonLocal())
1479 return processNonLocalLoad(L
);
1481 // Only handle the local case below
1482 if (!Dep
.isDef() && !Dep
.isClobber()) {
1483 // This might be a NonFuncLocal or an Unknown
1485 // fast print dep, using operator<< on instruction is too slow.
1486 dbgs() << "GVN: load "; L
->printAsOperand(dbgs());
1487 dbgs() << " has unknown dependence\n";);
1492 if (AnalyzeLoadAvailability(L
, Dep
, L
->getPointerOperand(), AV
)) {
1493 Value
*AvailableValue
= AV
.MaterializeAdjustedValue(L
, L
, *this);
1495 // Replace the load!
1496 patchAndReplaceAllUsesWith(L
, AvailableValue
);
1497 markInstructionForDeletion(L
);
1499 reportLoadElim(L
, AvailableValue
, ORE
);
1500 // Tell MDA to rexamine the reused pointer since we might have more
1501 // information after forwarding it.
1502 if (MD
&& AvailableValue
->getType()->isPtrOrPtrVectorTy())
1503 MD
->invalidateCachedPointerInfo(AvailableValue
);
1510 /// Return a pair the first field showing the value number of \p Exp and the
1511 /// second field showing whether it is a value number newly created.
1512 std::pair
<uint32_t, bool>
1513 GVN::ValueTable::assignExpNewValueNum(Expression
&Exp
) {
1514 uint32_t &e
= expressionNumbering
[Exp
];
1515 bool CreateNewValNum
= !e
;
1516 if (CreateNewValNum
) {
1517 Expressions
.push_back(Exp
);
1518 if (ExprIdx
.size() < nextValueNumber
+ 1)
1519 ExprIdx
.resize(nextValueNumber
* 2);
1520 e
= nextValueNumber
;
1521 ExprIdx
[nextValueNumber
++] = nextExprNumber
++;
1523 return {e
, CreateNewValNum
};
1526 /// Return whether all the values related with the same \p num are
1527 /// defined in \p BB.
1528 bool GVN::ValueTable::areAllValsInBB(uint32_t Num
, const BasicBlock
*BB
,
1530 LeaderTableEntry
*Vals
= &Gvn
.LeaderTable
[Num
];
1531 while (Vals
&& Vals
->BB
== BB
)
1536 /// Wrap phiTranslateImpl to provide caching functionality.
1537 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock
*Pred
,
1538 const BasicBlock
*PhiBlock
, uint32_t Num
,
1540 auto FindRes
= PhiTranslateTable
.find({Num
, Pred
});
1541 if (FindRes
!= PhiTranslateTable
.end())
1542 return FindRes
->second
;
1543 uint32_t NewNum
= phiTranslateImpl(Pred
, PhiBlock
, Num
, Gvn
);
1544 PhiTranslateTable
.insert({{Num
, Pred
}, NewNum
});
1548 /// Translate value number \p Num using phis, so that it has the values of
1550 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock
*Pred
,
1551 const BasicBlock
*PhiBlock
,
1552 uint32_t Num
, GVN
&Gvn
) {
1553 if (PHINode
*PN
= NumberingPhi
[Num
]) {
1554 for (unsigned i
= 0; i
!= PN
->getNumIncomingValues(); ++i
) {
1555 if (PN
->getParent() == PhiBlock
&& PN
->getIncomingBlock(i
) == Pred
)
1556 if (uint32_t TransVal
= lookup(PN
->getIncomingValue(i
), false))
1562 // If there is any value related with Num is defined in a BB other than
1563 // PhiBlock, it cannot depend on a phi in PhiBlock without going through
1564 // a backedge. We can do an early exit in that case to save compile time.
1565 if (!areAllValsInBB(Num
, PhiBlock
, Gvn
))
1568 if (Num
>= ExprIdx
.size() || ExprIdx
[Num
] == 0)
1570 Expression Exp
= Expressions
[ExprIdx
[Num
]];
1572 for (unsigned i
= 0; i
< Exp
.varargs
.size(); i
++) {
1573 // For InsertValue and ExtractValue, some varargs are index numbers
1574 // instead of value numbers. Those index numbers should not be
1576 if ((i
> 1 && Exp
.opcode
== Instruction::InsertValue
) ||
1577 (i
> 0 && Exp
.opcode
== Instruction::ExtractValue
))
1579 Exp
.varargs
[i
] = phiTranslate(Pred
, PhiBlock
, Exp
.varargs
[i
], Gvn
);
1582 if (Exp
.commutative
) {
1583 assert(Exp
.varargs
.size() == 2 && "Unsupported commutative expression!");
1584 if (Exp
.varargs
[0] > Exp
.varargs
[1]) {
1585 std::swap(Exp
.varargs
[0], Exp
.varargs
[1]);
1586 uint32_t Opcode
= Exp
.opcode
>> 8;
1587 if (Opcode
== Instruction::ICmp
|| Opcode
== Instruction::FCmp
)
1588 Exp
.opcode
= (Opcode
<< 8) |
1589 CmpInst::getSwappedPredicate(
1590 static_cast<CmpInst::Predicate
>(Exp
.opcode
& 255));
1594 if (uint32_t NewNum
= expressionNumbering
[Exp
])
1599 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
1601 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num
,
1602 const BasicBlock
&CurrBlock
) {
1603 for (const BasicBlock
*Pred
: predecessors(&CurrBlock
)) {
1604 auto FindRes
= PhiTranslateTable
.find({Num
, Pred
});
1605 if (FindRes
!= PhiTranslateTable
.end())
1606 PhiTranslateTable
.erase(FindRes
);
1610 // In order to find a leader for a given value number at a
1611 // specific basic block, we first obtain the list of all Values for that number,
1612 // and then scan the list to find one whose block dominates the block in
1613 // question. This is fast because dominator tree queries consist of only
1614 // a few comparisons of DFS numbers.
1615 Value
*GVN::findLeader(const BasicBlock
*BB
, uint32_t num
) {
1616 LeaderTableEntry Vals
= LeaderTable
[num
];
1617 if (!Vals
.Val
) return nullptr;
1619 Value
*Val
= nullptr;
1620 if (DT
->dominates(Vals
.BB
, BB
)) {
1622 if (isa
<Constant
>(Val
)) return Val
;
1625 LeaderTableEntry
* Next
= Vals
.Next
;
1627 if (DT
->dominates(Next
->BB
, BB
)) {
1628 if (isa
<Constant
>(Next
->Val
)) return Next
->Val
;
1629 if (!Val
) Val
= Next
->Val
;
1638 /// There is an edge from 'Src' to 'Dst'. Return
1639 /// true if every path from the entry block to 'Dst' passes via this edge. In
1640 /// particular 'Dst' must not be reachable via another edge from 'Src'.
1641 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge
&E
,
1642 DominatorTree
*DT
) {
1643 // While in theory it is interesting to consider the case in which Dst has
1644 // more than one predecessor, because Dst might be part of a loop which is
1645 // only reachable from Src, in practice it is pointless since at the time
1646 // GVN runs all such loops have preheaders, which means that Dst will have
1647 // been changed to have only one predecessor, namely Src.
1648 const BasicBlock
*Pred
= E
.getEnd()->getSinglePredecessor();
1649 assert((!Pred
|| Pred
== E
.getStart()) &&
1650 "No edge between these basic blocks!");
1651 return Pred
!= nullptr;
1654 void GVN::assignBlockRPONumber(Function
&F
) {
1655 BlockRPONumber
.clear();
1656 uint32_t NextBlockNumber
= 1;
1657 ReversePostOrderTraversal
<Function
*> RPOT(&F
);
1658 for (BasicBlock
*BB
: RPOT
)
1659 BlockRPONumber
[BB
] = NextBlockNumber
++;
1660 InvalidBlockRPONumbers
= false;
1663 // Tries to replace instruction with const, using information from
1664 // ReplaceWithConstMap.
1665 bool GVN::replaceOperandsWithConsts(Instruction
*Instr
) const {
1666 bool Changed
= false;
1667 for (unsigned OpNum
= 0; OpNum
< Instr
->getNumOperands(); ++OpNum
) {
1668 Value
*Operand
= Instr
->getOperand(OpNum
);
1669 auto it
= ReplaceWithConstMap
.find(Operand
);
1670 if (it
!= ReplaceWithConstMap
.end()) {
1671 assert(!isa
<Constant
>(Operand
) &&
1672 "Replacing constants with constants is invalid");
1673 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand
<< " with "
1674 << *it
->second
<< " in instruction " << *Instr
<< '\n');
1675 Instr
->setOperand(OpNum
, it
->second
);
1682 /// The given values are known to be equal in every block
1683 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
1684 /// 'RHS' everywhere in the scope. Returns whether a change was made.
1685 /// If DominatesByEdge is false, then it means that we will propagate the RHS
1686 /// value starting from the end of Root.Start.
1687 bool GVN::propagateEquality(Value
*LHS
, Value
*RHS
, const BasicBlockEdge
&Root
,
1688 bool DominatesByEdge
) {
1689 SmallVector
<std::pair
<Value
*, Value
*>, 4> Worklist
;
1690 Worklist
.push_back(std::make_pair(LHS
, RHS
));
1691 bool Changed
= false;
1692 // For speed, compute a conservative fast approximation to
1693 // DT->dominates(Root, Root.getEnd());
1694 const bool RootDominatesEnd
= isOnlyReachableViaThisEdge(Root
, DT
);
1696 while (!Worklist
.empty()) {
1697 std::pair
<Value
*, Value
*> Item
= Worklist
.pop_back_val();
1698 LHS
= Item
.first
; RHS
= Item
.second
;
1702 assert(LHS
->getType() == RHS
->getType() && "Equality but unequal types!");
1704 // Don't try to propagate equalities between constants.
1705 if (isa
<Constant
>(LHS
) && isa
<Constant
>(RHS
))
1708 // Prefer a constant on the right-hand side, or an Argument if no constants.
1709 if (isa
<Constant
>(LHS
) || (isa
<Argument
>(LHS
) && !isa
<Constant
>(RHS
)))
1710 std::swap(LHS
, RHS
);
1711 assert((isa
<Argument
>(LHS
) || isa
<Instruction
>(LHS
)) && "Unexpected value!");
1713 // If there is no obvious reason to prefer the left-hand side over the
1714 // right-hand side, ensure the longest lived term is on the right-hand side,
1715 // so the shortest lived term will be replaced by the longest lived.
1716 // This tends to expose more simplifications.
1717 uint32_t LVN
= VN
.lookupOrAdd(LHS
);
1718 if ((isa
<Argument
>(LHS
) && isa
<Argument
>(RHS
)) ||
1719 (isa
<Instruction
>(LHS
) && isa
<Instruction
>(RHS
))) {
1720 // Move the 'oldest' value to the right-hand side, using the value number
1721 // as a proxy for age.
1722 uint32_t RVN
= VN
.lookupOrAdd(RHS
);
1724 std::swap(LHS
, RHS
);
1729 // If value numbering later sees that an instruction in the scope is equal
1730 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
1731 // the invariant that instructions only occur in the leader table for their
1732 // own value number (this is used by removeFromLeaderTable), do not do this
1733 // if RHS is an instruction (if an instruction in the scope is morphed into
1734 // LHS then it will be turned into RHS by the next GVN iteration anyway, so
1735 // using the leader table is about compiling faster, not optimizing better).
1736 // The leader table only tracks basic blocks, not edges. Only add to if we
1737 // have the simple case where the edge dominates the end.
1738 if (RootDominatesEnd
&& !isa
<Instruction
>(RHS
))
1739 addToLeaderTable(LVN
, RHS
, Root
.getEnd());
1741 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
1742 // LHS always has at least one use that is not dominated by Root, this will
1743 // never do anything if LHS has only one use.
1744 if (!LHS
->hasOneUse()) {
1745 unsigned NumReplacements
=
1747 ? replaceDominatedUsesWith(LHS
, RHS
, *DT
, Root
)
1748 : replaceDominatedUsesWith(LHS
, RHS
, *DT
, Root
.getStart());
1750 Changed
|= NumReplacements
> 0;
1751 NumGVNEqProp
+= NumReplacements
;
1752 // Cached information for anything that uses LHS will be invalid.
1754 MD
->invalidateCachedPointerInfo(LHS
);
1757 // Now try to deduce additional equalities from this one. For example, if
1758 // the known equality was "(A != B)" == "false" then it follows that A and B
1759 // are equal in the scope. Only boolean equalities with an explicit true or
1760 // false RHS are currently supported.
1761 if (!RHS
->getType()->isIntegerTy(1))
1762 // Not a boolean equality - bail out.
1764 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
);
1766 // RHS neither 'true' nor 'false' - bail out.
1768 // Whether RHS equals 'true'. Otherwise it equals 'false'.
1769 bool isKnownTrue
= CI
->isMinusOne();
1770 bool isKnownFalse
= !isKnownTrue
;
1772 // If "A && B" is known true then both A and B are known true. If "A || B"
1773 // is known false then both A and B are known false.
1775 if ((isKnownTrue
&& match(LHS
, m_And(m_Value(A
), m_Value(B
)))) ||
1776 (isKnownFalse
&& match(LHS
, m_Or(m_Value(A
), m_Value(B
))))) {
1777 Worklist
.push_back(std::make_pair(A
, RHS
));
1778 Worklist
.push_back(std::make_pair(B
, RHS
));
1782 // If we are propagating an equality like "(A == B)" == "true" then also
1783 // propagate the equality A == B. When propagating a comparison such as
1784 // "(A >= B)" == "true", replace all instances of "A < B" with "false".
1785 if (CmpInst
*Cmp
= dyn_cast
<CmpInst
>(LHS
)) {
1786 Value
*Op0
= Cmp
->getOperand(0), *Op1
= Cmp
->getOperand(1);
1788 // If "A == B" is known true, or "A != B" is known false, then replace
1789 // A with B everywhere in the scope.
1790 if ((isKnownTrue
&& Cmp
->getPredicate() == CmpInst::ICMP_EQ
) ||
1791 (isKnownFalse
&& Cmp
->getPredicate() == CmpInst::ICMP_NE
))
1792 Worklist
.push_back(std::make_pair(Op0
, Op1
));
1794 // Handle the floating point versions of equality comparisons too.
1795 if ((isKnownTrue
&& Cmp
->getPredicate() == CmpInst::FCMP_OEQ
) ||
1796 (isKnownFalse
&& Cmp
->getPredicate() == CmpInst::FCMP_UNE
)) {
1798 // Floating point -0.0 and 0.0 compare equal, so we can only
1799 // propagate values if we know that we have a constant and that
1800 // its value is non-zero.
1802 // FIXME: We should do this optimization if 'no signed zeros' is
1803 // applicable via an instruction-level fast-math-flag or some other
1804 // indicator that relaxed FP semantics are being used.
1806 if (isa
<ConstantFP
>(Op1
) && !cast
<ConstantFP
>(Op1
)->isZero())
1807 Worklist
.push_back(std::make_pair(Op0
, Op1
));
1810 // If "A >= B" is known true, replace "A < B" with false everywhere.
1811 CmpInst::Predicate NotPred
= Cmp
->getInversePredicate();
1812 Constant
*NotVal
= ConstantInt::get(Cmp
->getType(), isKnownFalse
);
1813 // Since we don't have the instruction "A < B" immediately to hand, work
1814 // out the value number that it would have and use that to find an
1815 // appropriate instruction (if any).
1816 uint32_t NextNum
= VN
.getNextUnusedValueNumber();
1817 uint32_t Num
= VN
.lookupOrAddCmp(Cmp
->getOpcode(), NotPred
, Op0
, Op1
);
1818 // If the number we were assigned was brand new then there is no point in
1819 // looking for an instruction realizing it: there cannot be one!
1820 if (Num
< NextNum
) {
1821 Value
*NotCmp
= findLeader(Root
.getEnd(), Num
);
1822 if (NotCmp
&& isa
<Instruction
>(NotCmp
)) {
1823 unsigned NumReplacements
=
1825 ? replaceDominatedUsesWith(NotCmp
, NotVal
, *DT
, Root
)
1826 : replaceDominatedUsesWith(NotCmp
, NotVal
, *DT
,
1828 Changed
|= NumReplacements
> 0;
1829 NumGVNEqProp
+= NumReplacements
;
1830 // Cached information for anything that uses NotCmp will be invalid.
1832 MD
->invalidateCachedPointerInfo(NotCmp
);
1835 // Ensure that any instruction in scope that gets the "A < B" value number
1836 // is replaced with false.
1837 // The leader table only tracks basic blocks, not edges. Only add to if we
1838 // have the simple case where the edge dominates the end.
1839 if (RootDominatesEnd
)
1840 addToLeaderTable(Num
, NotVal
, Root
.getEnd());
1849 /// When calculating availability, handle an instruction
1850 /// by inserting it into the appropriate sets
1851 bool GVN::processInstruction(Instruction
*I
) {
1852 // Ignore dbg info intrinsics.
1853 if (isa
<DbgInfoIntrinsic
>(I
))
1856 // If the instruction can be easily simplified then do so now in preference
1857 // to value numbering it. Value numbering often exposes redundancies, for
1858 // example if it determines that %y is equal to %x then the instruction
1859 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1860 const DataLayout
&DL
= I
->getModule()->getDataLayout();
1861 if (Value
*V
= SimplifyInstruction(I
, {DL
, TLI
, DT
, AC
})) {
1862 bool Changed
= false;
1863 if (!I
->use_empty()) {
1864 I
->replaceAllUsesWith(V
);
1867 if (isInstructionTriviallyDead(I
, TLI
)) {
1868 markInstructionForDeletion(I
);
1872 if (MD
&& V
->getType()->isPtrOrPtrVectorTy())
1873 MD
->invalidateCachedPointerInfo(V
);
1879 if (IntrinsicInst
*IntrinsicI
= dyn_cast
<IntrinsicInst
>(I
))
1880 if (IntrinsicI
->getIntrinsicID() == Intrinsic::assume
)
1881 return processAssumeIntrinsic(IntrinsicI
);
1883 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
1884 if (processLoad(LI
))
1887 unsigned Num
= VN
.lookupOrAdd(LI
);
1888 addToLeaderTable(Num
, LI
, LI
->getParent());
1892 // For conditional branches, we can perform simple conditional propagation on
1893 // the condition value itself.
1894 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(I
)) {
1895 if (!BI
->isConditional())
1898 if (isa
<Constant
>(BI
->getCondition()))
1899 return processFoldableCondBr(BI
);
1901 Value
*BranchCond
= BI
->getCondition();
1902 BasicBlock
*TrueSucc
= BI
->getSuccessor(0);
1903 BasicBlock
*FalseSucc
= BI
->getSuccessor(1);
1904 // Avoid multiple edges early.
1905 if (TrueSucc
== FalseSucc
)
1908 BasicBlock
*Parent
= BI
->getParent();
1909 bool Changed
= false;
1911 Value
*TrueVal
= ConstantInt::getTrue(TrueSucc
->getContext());
1912 BasicBlockEdge
TrueE(Parent
, TrueSucc
);
1913 Changed
|= propagateEquality(BranchCond
, TrueVal
, TrueE
, true);
1915 Value
*FalseVal
= ConstantInt::getFalse(FalseSucc
->getContext());
1916 BasicBlockEdge
FalseE(Parent
, FalseSucc
);
1917 Changed
|= propagateEquality(BranchCond
, FalseVal
, FalseE
, true);
1922 // For switches, propagate the case values into the case destinations.
1923 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(I
)) {
1924 Value
*SwitchCond
= SI
->getCondition();
1925 BasicBlock
*Parent
= SI
->getParent();
1926 bool Changed
= false;
1928 // Remember how many outgoing edges there are to every successor.
1929 SmallDenseMap
<BasicBlock
*, unsigned, 16> SwitchEdges
;
1930 for (unsigned i
= 0, n
= SI
->getNumSuccessors(); i
!= n
; ++i
)
1931 ++SwitchEdges
[SI
->getSuccessor(i
)];
1933 for (SwitchInst::CaseIt i
= SI
->case_begin(), e
= SI
->case_end();
1935 BasicBlock
*Dst
= i
->getCaseSuccessor();
1936 // If there is only a single edge, propagate the case value into it.
1937 if (SwitchEdges
.lookup(Dst
) == 1) {
1938 BasicBlockEdge
E(Parent
, Dst
);
1939 Changed
|= propagateEquality(SwitchCond
, i
->getCaseValue(), E
, true);
1945 // Instructions with void type don't return a value, so there's
1946 // no point in trying to find redundancies in them.
1947 if (I
->getType()->isVoidTy())
1950 uint32_t NextNum
= VN
.getNextUnusedValueNumber();
1951 unsigned Num
= VN
.lookupOrAdd(I
);
1953 // Allocations are always uniquely numbered, so we can save time and memory
1954 // by fast failing them.
1955 if (isa
<AllocaInst
>(I
) || I
->isTerminator() || isa
<PHINode
>(I
)) {
1956 addToLeaderTable(Num
, I
, I
->getParent());
1960 // If the number we were assigned was a brand new VN, then we don't
1961 // need to do a lookup to see if the number already exists
1962 // somewhere in the domtree: it can't!
1963 if (Num
>= NextNum
) {
1964 addToLeaderTable(Num
, I
, I
->getParent());
1968 // Perform fast-path value-number based elimination of values inherited from
1970 Value
*Repl
= findLeader(I
->getParent(), Num
);
1972 // Failure, just remember this instance for future use.
1973 addToLeaderTable(Num
, I
, I
->getParent());
1975 } else if (Repl
== I
) {
1976 // If I was the result of a shortcut PRE, it might already be in the table
1977 // and the best replacement for itself. Nothing to do.
1982 patchAndReplaceAllUsesWith(I
, Repl
);
1983 if (MD
&& Repl
->getType()->isPtrOrPtrVectorTy())
1984 MD
->invalidateCachedPointerInfo(Repl
);
1985 markInstructionForDeletion(I
);
1989 /// runOnFunction - This is the main transformation entry point for a function.
1990 bool GVN::runImpl(Function
&F
, AssumptionCache
&RunAC
, DominatorTree
&RunDT
,
1991 const TargetLibraryInfo
&RunTLI
, AAResults
&RunAA
,
1992 MemoryDependenceResults
*RunMD
, LoopInfo
*LI
,
1993 OptimizationRemarkEmitter
*RunORE
) {
1998 VN
.setAliasAnalysis(&RunAA
);
2000 ImplicitControlFlowTracking
ImplicitCFT(DT
);
2004 InvalidBlockRPONumbers
= true;
2006 bool Changed
= false;
2007 bool ShouldContinue
= true;
2009 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
2010 // Merge unconditional branches, allowing PRE to catch more
2011 // optimization opportunities.
2012 for (Function::iterator FI
= F
.begin(), FE
= F
.end(); FI
!= FE
; ) {
2013 BasicBlock
*BB
= &*FI
++;
2015 bool removedBlock
= MergeBlockIntoPredecessor(BB
, &DTU
, LI
, nullptr, MD
);
2019 Changed
|= removedBlock
;
2022 unsigned Iteration
= 0;
2023 while (ShouldContinue
) {
2024 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration
<< "\n");
2025 ShouldContinue
= iterateOnFunction(F
);
2026 Changed
|= ShouldContinue
;
2031 // Fabricate val-num for dead-code in order to suppress assertion in
2033 assignValNumForDeadCode();
2034 bool PREChanged
= true;
2035 while (PREChanged
) {
2036 PREChanged
= performPRE(F
);
2037 Changed
|= PREChanged
;
2041 // FIXME: Should perform GVN again after PRE does something. PRE can move
2042 // computations into blocks where they become fully redundant. Note that
2043 // we can't do this until PRE's critical edge splitting updates memdep.
2044 // Actually, when this happens, we should just fully integrate PRE into GVN.
2046 cleanupGlobalSets();
2047 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2054 bool GVN::processBlock(BasicBlock
*BB
) {
2055 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2056 // (and incrementing BI before processing an instruction).
2057 assert(InstrsToErase
.empty() &&
2058 "We expect InstrsToErase to be empty across iterations");
2059 if (DeadBlocks
.count(BB
))
2062 // Clearing map before every BB because it can be used only for single BB.
2063 ReplaceWithConstMap
.clear();
2064 bool ChangedFunction
= false;
2066 for (BasicBlock::iterator BI
= BB
->begin(), BE
= BB
->end();
2068 if (!ReplaceWithConstMap
.empty())
2069 ChangedFunction
|= replaceOperandsWithConsts(&*BI
);
2070 ChangedFunction
|= processInstruction(&*BI
);
2072 if (InstrsToErase
.empty()) {
2077 // If we need some instructions deleted, do it now.
2078 NumGVNInstr
+= InstrsToErase
.size();
2080 // Avoid iterator invalidation.
2081 bool AtStart
= BI
== BB
->begin();
2085 for (auto *I
: InstrsToErase
) {
2086 assert(I
->getParent() == BB
&& "Removing instruction from wrong block?");
2087 LLVM_DEBUG(dbgs() << "GVN removed: " << *I
<< '\n');
2088 salvageDebugInfo(*I
);
2089 if (MD
) MD
->removeInstruction(I
);
2090 LLVM_DEBUG(verifyRemoved(I
));
2091 ICF
->removeInstruction(I
);
2092 I
->eraseFromParent();
2094 InstrsToErase
.clear();
2102 return ChangedFunction
;
2105 // Instantiate an expression in a predecessor that lacked it.
2106 bool GVN::performScalarPREInsertion(Instruction
*Instr
, BasicBlock
*Pred
,
2107 BasicBlock
*Curr
, unsigned int ValNo
) {
2108 // Because we are going top-down through the block, all value numbers
2109 // will be available in the predecessor by the time we need them. Any
2110 // that weren't originally present will have been instantiated earlier
2112 bool success
= true;
2113 for (unsigned i
= 0, e
= Instr
->getNumOperands(); i
!= e
; ++i
) {
2114 Value
*Op
= Instr
->getOperand(i
);
2115 if (isa
<Argument
>(Op
) || isa
<Constant
>(Op
) || isa
<GlobalValue
>(Op
))
2117 // This could be a newly inserted instruction, in which case, we won't
2118 // find a value number, and should give up before we hurt ourselves.
2119 // FIXME: Rewrite the infrastructure to let it easier to value number
2120 // and process newly inserted instructions.
2121 if (!VN
.exists(Op
)) {
2126 VN
.phiTranslate(Pred
, Curr
, VN
.lookup(Op
), *this);
2127 if (Value
*V
= findLeader(Pred
, TValNo
)) {
2128 Instr
->setOperand(i
, V
);
2135 // Fail out if we encounter an operand that is not available in
2136 // the PRE predecessor. This is typically because of loads which
2137 // are not value numbered precisely.
2141 Instr
->insertBefore(Pred
->getTerminator());
2142 Instr
->setName(Instr
->getName() + ".pre");
2143 Instr
->setDebugLoc(Instr
->getDebugLoc());
2145 unsigned Num
= VN
.lookupOrAdd(Instr
);
2148 // Update the availability map to include the new instruction.
2149 addToLeaderTable(Num
, Instr
, Pred
);
2153 bool GVN::performScalarPRE(Instruction
*CurInst
) {
2154 if (isa
<AllocaInst
>(CurInst
) || CurInst
->isTerminator() ||
2155 isa
<PHINode
>(CurInst
) || CurInst
->getType()->isVoidTy() ||
2156 CurInst
->mayReadFromMemory() || CurInst
->mayHaveSideEffects() ||
2157 isa
<DbgInfoIntrinsic
>(CurInst
))
2160 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2161 // sinking the compare again, and it would force the code generator to
2162 // move the i1 from processor flags or predicate registers into a general
2163 // purpose register.
2164 if (isa
<CmpInst
>(CurInst
))
2167 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
2168 // sinking the addressing mode computation back to its uses. Extending the
2169 // GEP's live range increases the register pressure, and therefore it can
2170 // introduce unnecessary spills.
2172 // This doesn't prevent Load PRE. PHI translation will make the GEP available
2173 // to the load by moving it to the predecessor block if necessary.
2174 if (isa
<GetElementPtrInst
>(CurInst
))
2177 // We don't currently value number ANY inline asm calls.
2178 if (auto *CallB
= dyn_cast
<CallBase
>(CurInst
))
2179 if (CallB
->isInlineAsm())
2182 uint32_t ValNo
= VN
.lookup(CurInst
);
2184 // Look for the predecessors for PRE opportunities. We're
2185 // only trying to solve the basic diamond case, where
2186 // a value is computed in the successor and one predecessor,
2187 // but not the other. We also explicitly disallow cases
2188 // where the successor is its own predecessor, because they're
2189 // more complicated to get right.
2190 unsigned NumWith
= 0;
2191 unsigned NumWithout
= 0;
2192 BasicBlock
*PREPred
= nullptr;
2193 BasicBlock
*CurrentBlock
= CurInst
->getParent();
2195 // Update the RPO numbers for this function.
2196 if (InvalidBlockRPONumbers
)
2197 assignBlockRPONumber(*CurrentBlock
->getParent());
2199 SmallVector
<std::pair
<Value
*, BasicBlock
*>, 8> predMap
;
2200 for (BasicBlock
*P
: predecessors(CurrentBlock
)) {
2201 // We're not interested in PRE where blocks with predecessors that are
2203 if (!DT
->isReachableFromEntry(P
)) {
2207 // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2208 // when CurInst has operand defined in CurrentBlock (so it may be defined
2209 // by phi in the loop header).
2210 assert(BlockRPONumber
.count(P
) && BlockRPONumber
.count(CurrentBlock
) &&
2211 "Invalid BlockRPONumber map.");
2212 if (BlockRPONumber
[P
] >= BlockRPONumber
[CurrentBlock
] &&
2213 llvm::any_of(CurInst
->operands(), [&](const Use
&U
) {
2214 if (auto *Inst
= dyn_cast
<Instruction
>(U
.get()))
2215 return Inst
->getParent() == CurrentBlock
;
2222 uint32_t TValNo
= VN
.phiTranslate(P
, CurrentBlock
, ValNo
, *this);
2223 Value
*predV
= findLeader(P
, TValNo
);
2225 predMap
.push_back(std::make_pair(static_cast<Value
*>(nullptr), P
));
2228 } else if (predV
== CurInst
) {
2229 /* CurInst dominates this predecessor. */
2233 predMap
.push_back(std::make_pair(predV
, P
));
2238 // Don't do PRE when it might increase code size, i.e. when
2239 // we would need to insert instructions in more than one pred.
2240 if (NumWithout
> 1 || NumWith
== 0)
2243 // We may have a case where all predecessors have the instruction,
2244 // and we just need to insert a phi node. Otherwise, perform
2246 Instruction
*PREInstr
= nullptr;
2248 if (NumWithout
!= 0) {
2249 if (!isSafeToSpeculativelyExecute(CurInst
)) {
2250 // It is only valid to insert a new instruction if the current instruction
2251 // is always executed. An instruction with implicit control flow could
2252 // prevent us from doing it. If we cannot speculate the execution, then
2253 // PRE should be prohibited.
2254 if (ICF
->isDominatedByICFIFromSameBlock(CurInst
))
2258 // Don't do PRE across indirect branch.
2259 if (isa
<IndirectBrInst
>(PREPred
->getTerminator()))
2262 // Don't do PRE across callbr.
2263 // FIXME: Can we do this across the fallthrough edge?
2264 if (isa
<CallBrInst
>(PREPred
->getTerminator()))
2267 // We can't do PRE safely on a critical edge, so instead we schedule
2268 // the edge to be split and perform the PRE the next time we iterate
2270 unsigned SuccNum
= GetSuccessorNumber(PREPred
, CurrentBlock
);
2271 if (isCriticalEdge(PREPred
->getTerminator(), SuccNum
)) {
2272 toSplit
.push_back(std::make_pair(PREPred
->getTerminator(), SuccNum
));
2275 // We need to insert somewhere, so let's give it a shot
2276 PREInstr
= CurInst
->clone();
2277 if (!performScalarPREInsertion(PREInstr
, PREPred
, CurrentBlock
, ValNo
)) {
2278 // If we failed insertion, make sure we remove the instruction.
2279 LLVM_DEBUG(verifyRemoved(PREInstr
));
2280 PREInstr
->deleteValue();
2285 // Either we should have filled in the PRE instruction, or we should
2286 // not have needed insertions.
2287 assert(PREInstr
!= nullptr || NumWithout
== 0);
2291 // Create a PHI to make the value available in this block.
2293 PHINode::Create(CurInst
->getType(), predMap
.size(),
2294 CurInst
->getName() + ".pre-phi", &CurrentBlock
->front());
2295 for (unsigned i
= 0, e
= predMap
.size(); i
!= e
; ++i
) {
2296 if (Value
*V
= predMap
[i
].first
) {
2297 // If we use an existing value in this phi, we have to patch the original
2298 // value because the phi will be used to replace a later value.
2299 patchReplacementInstruction(CurInst
, V
);
2300 Phi
->addIncoming(V
, predMap
[i
].second
);
2302 Phi
->addIncoming(PREInstr
, PREPred
);
2306 // After creating a new PHI for ValNo, the phi translate result for ValNo will
2307 // be changed, so erase the related stale entries in phi translate cache.
2308 VN
.eraseTranslateCacheEntry(ValNo
, *CurrentBlock
);
2309 addToLeaderTable(ValNo
, Phi
, CurrentBlock
);
2310 Phi
->setDebugLoc(CurInst
->getDebugLoc());
2311 CurInst
->replaceAllUsesWith(Phi
);
2312 if (MD
&& Phi
->getType()->isPtrOrPtrVectorTy())
2313 MD
->invalidateCachedPointerInfo(Phi
);
2315 removeFromLeaderTable(ValNo
, CurInst
, CurrentBlock
);
2317 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst
<< '\n');
2319 MD
->removeInstruction(CurInst
);
2320 LLVM_DEBUG(verifyRemoved(CurInst
));
2321 // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2322 // some assertion failures.
2323 ICF
->removeInstruction(CurInst
);
2324 CurInst
->eraseFromParent();
2330 /// Perform a purely local form of PRE that looks for diamond
2331 /// control flow patterns and attempts to perform simple PRE at the join point.
2332 bool GVN::performPRE(Function
&F
) {
2333 bool Changed
= false;
2334 for (BasicBlock
*CurrentBlock
: depth_first(&F
.getEntryBlock())) {
2335 // Nothing to PRE in the entry block.
2336 if (CurrentBlock
== &F
.getEntryBlock())
2339 // Don't perform PRE on an EH pad.
2340 if (CurrentBlock
->isEHPad())
2343 for (BasicBlock::iterator BI
= CurrentBlock
->begin(),
2344 BE
= CurrentBlock
->end();
2346 Instruction
*CurInst
= &*BI
++;
2347 Changed
|= performScalarPRE(CurInst
);
2351 if (splitCriticalEdges())
2357 /// Split the critical edge connecting the given two blocks, and return
2358 /// the block inserted to the critical edge.
2359 BasicBlock
*GVN::splitCriticalEdges(BasicBlock
*Pred
, BasicBlock
*Succ
) {
2361 SplitCriticalEdge(Pred
, Succ
, CriticalEdgeSplittingOptions(DT
));
2363 MD
->invalidateCachedPredecessors();
2364 InvalidBlockRPONumbers
= true;
2368 /// Split critical edges found during the previous
2369 /// iteration that may enable further optimization.
2370 bool GVN::splitCriticalEdges() {
2371 if (toSplit
.empty())
2374 std::pair
<Instruction
*, unsigned> Edge
= toSplit
.pop_back_val();
2375 SplitCriticalEdge(Edge
.first
, Edge
.second
,
2376 CriticalEdgeSplittingOptions(DT
));
2377 } while (!toSplit
.empty());
2378 if (MD
) MD
->invalidateCachedPredecessors();
2379 InvalidBlockRPONumbers
= true;
2383 /// Executes one iteration of GVN
2384 bool GVN::iterateOnFunction(Function
&F
) {
2385 cleanupGlobalSets();
2387 // Top-down walk of the dominator tree
2388 bool Changed
= false;
2389 // Needed for value numbering with phi construction to work.
2390 // RPOT walks the graph in its constructor and will not be invalidated during
2392 ReversePostOrderTraversal
<Function
*> RPOT(&F
);
2394 for (BasicBlock
*BB
: RPOT
)
2395 Changed
|= processBlock(BB
);
2400 void GVN::cleanupGlobalSets() {
2402 LeaderTable
.clear();
2403 BlockRPONumber
.clear();
2404 TableAllocator
.Reset();
2406 InvalidBlockRPONumbers
= true;
2409 /// Verify that the specified instruction does not occur in our
2410 /// internal data structures.
2411 void GVN::verifyRemoved(const Instruction
*Inst
) const {
2412 VN
.verifyRemoved(Inst
);
2414 // Walk through the value number scope to make sure the instruction isn't
2415 // ferreted away in it.
2416 for (DenseMap
<uint32_t, LeaderTableEntry
>::const_iterator
2417 I
= LeaderTable
.begin(), E
= LeaderTable
.end(); I
!= E
; ++I
) {
2418 const LeaderTableEntry
*Node
= &I
->second
;
2419 assert(Node
->Val
!= Inst
&& "Inst still in value numbering scope!");
2421 while (Node
->Next
) {
2423 assert(Node
->Val
!= Inst
&& "Inst still in value numbering scope!");
2428 /// BB is declared dead, which implied other blocks become dead as well. This
2429 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2430 /// live successors, update their phi nodes by replacing the operands
2431 /// corresponding to dead blocks with UndefVal.
2432 void GVN::addDeadBlock(BasicBlock
*BB
) {
2433 SmallVector
<BasicBlock
*, 4> NewDead
;
2434 SmallSetVector
<BasicBlock
*, 4> DF
;
2436 NewDead
.push_back(BB
);
2437 while (!NewDead
.empty()) {
2438 BasicBlock
*D
= NewDead
.pop_back_val();
2439 if (DeadBlocks
.count(D
))
2442 // All blocks dominated by D are dead.
2443 SmallVector
<BasicBlock
*, 8> Dom
;
2444 DT
->getDescendants(D
, Dom
);
2445 DeadBlocks
.insert(Dom
.begin(), Dom
.end());
2447 // Figure out the dominance-frontier(D).
2448 for (BasicBlock
*B
: Dom
) {
2449 for (BasicBlock
*S
: successors(B
)) {
2450 if (DeadBlocks
.count(S
))
2453 bool AllPredDead
= true;
2454 for (BasicBlock
*P
: predecessors(S
))
2455 if (!DeadBlocks
.count(P
)) {
2456 AllPredDead
= false;
2461 // S could be proved dead later on. That is why we don't update phi
2462 // operands at this moment.
2465 // While S is not dominated by D, it is dead by now. This could take
2466 // place if S already have a dead predecessor before D is declared
2468 NewDead
.push_back(S
);
2474 // For the dead blocks' live successors, update their phi nodes by replacing
2475 // the operands corresponding to dead blocks with UndefVal.
2476 for(SmallSetVector
<BasicBlock
*, 4>::iterator I
= DF
.begin(), E
= DF
.end();
2479 if (DeadBlocks
.count(B
))
2482 SmallVector
<BasicBlock
*, 4> Preds(pred_begin(B
), pred_end(B
));
2483 for (BasicBlock
*P
: Preds
) {
2484 if (!DeadBlocks
.count(P
))
2487 if (isCriticalEdge(P
->getTerminator(), GetSuccessorNumber(P
, B
))) {
2488 if (BasicBlock
*S
= splitCriticalEdges(P
, B
))
2489 DeadBlocks
.insert(P
= S
);
2492 for (BasicBlock::iterator II
= B
->begin(); isa
<PHINode
>(II
); ++II
) {
2493 PHINode
&Phi
= cast
<PHINode
>(*II
);
2494 Phi
.setIncomingValue(Phi
.getBasicBlockIndex(P
),
2495 UndefValue::get(Phi
.getType()));
2497 MD
->invalidateCachedPointerInfo(&Phi
);
2503 // If the given branch is recognized as a foldable branch (i.e. conditional
2504 // branch with constant condition), it will perform following analyses and
2506 // 1) If the dead out-coming edge is a critical-edge, split it. Let
2507 // R be the target of the dead out-coming edge.
2508 // 1) Identify the set of dead blocks implied by the branch's dead outcoming
2509 // edge. The result of this step will be {X| X is dominated by R}
2510 // 2) Identify those blocks which haves at least one dead predecessor. The
2511 // result of this step will be dominance-frontier(R).
2512 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to
2513 // dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2515 // Return true iff *NEW* dead code are found.
2516 bool GVN::processFoldableCondBr(BranchInst
*BI
) {
2517 if (!BI
|| BI
->isUnconditional())
2520 // If a branch has two identical successors, we cannot declare either dead.
2521 if (BI
->getSuccessor(0) == BI
->getSuccessor(1))
2524 ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition());
2528 BasicBlock
*DeadRoot
=
2529 Cond
->getZExtValue() ? BI
->getSuccessor(1) : BI
->getSuccessor(0);
2530 if (DeadBlocks
.count(DeadRoot
))
2533 if (!DeadRoot
->getSinglePredecessor())
2534 DeadRoot
= splitCriticalEdges(BI
->getParent(), DeadRoot
);
2536 addDeadBlock(DeadRoot
);
2540 // performPRE() will trigger assert if it comes across an instruction without
2541 // associated val-num. As it normally has far more live instructions than dead
2542 // instructions, it makes more sense just to "fabricate" a val-number for the
2543 // dead code than checking if instruction involved is dead or not.
2544 void GVN::assignValNumForDeadCode() {
2545 for (BasicBlock
*BB
: DeadBlocks
) {
2546 for (Instruction
&Inst
: *BB
) {
2547 unsigned ValNum
= VN
.lookupOrAdd(&Inst
);
2548 addToLeaderTable(ValNum
, &Inst
, BB
);
2553 class llvm::gvn::GVNLegacyPass
: public FunctionPass
{
2555 static char ID
; // Pass identification, replacement for typeid
2557 explicit GVNLegacyPass(bool NoMemDepAnalysis
= !EnableMemDep
)
2558 : FunctionPass(ID
), NoMemDepAnalysis(NoMemDepAnalysis
) {
2559 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
2562 bool runOnFunction(Function
&F
) override
{
2563 if (skipFunction(F
))
2566 auto *LIWP
= getAnalysisIfAvailable
<LoopInfoWrapperPass
>();
2568 return Impl
.runImpl(
2569 F
, getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
),
2570 getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
2571 getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(),
2572 getAnalysis
<AAResultsWrapperPass
>().getAAResults(),
2573 NoMemDepAnalysis
? nullptr
2574 : &getAnalysis
<MemoryDependenceWrapperPass
>().getMemDep(),
2575 LIWP
? &LIWP
->getLoopInfo() : nullptr,
2576 &getAnalysis
<OptimizationRemarkEmitterWrapperPass
>().getORE());
2579 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
2580 AU
.addRequired
<AssumptionCacheTracker
>();
2581 AU
.addRequired
<DominatorTreeWrapperPass
>();
2582 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
2583 if (!NoMemDepAnalysis
)
2584 AU
.addRequired
<MemoryDependenceWrapperPass
>();
2585 AU
.addRequired
<AAResultsWrapperPass
>();
2587 AU
.addPreserved
<DominatorTreeWrapperPass
>();
2588 AU
.addPreserved
<GlobalsAAWrapperPass
>();
2589 AU
.addPreserved
<TargetLibraryInfoWrapperPass
>();
2590 AU
.addRequired
<OptimizationRemarkEmitterWrapperPass
>();
2594 bool NoMemDepAnalysis
;
2598 char GVNLegacyPass::ID
= 0;
2600 INITIALIZE_PASS_BEGIN(GVNLegacyPass
, "gvn", "Global Value Numbering", false, false)
2601 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
2602 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass
)
2603 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
2604 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
2605 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
2606 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
2607 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass
)
2608 INITIALIZE_PASS_END(GVNLegacyPass
, "gvn", "Global Value Numbering", false, false)
2610 // The public interface to this file...
2611 FunctionPass
*llvm::createGVNPass(bool NoMemDepAnalysis
) {
2612 return new GVNLegacyPass(NoMemDepAnalysis
);