Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / Scalar / RewriteStatepointsForGC.cpp
blobc358258d24cf9eca349b16d4612cceadab60e320
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <set>
74 #include <string>
75 #include <utility>
76 #include <vector>
78 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 using namespace llvm;
82 // Print the liveset found at the insert location
83 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
84 cl::init(false));
85 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
86 cl::init(false));
88 // Print out the base pointers for debugging
89 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
90 cl::init(false));
92 // Cost threshold measuring when it is profitable to rematerialize value instead
93 // of relocating it
94 static cl::opt<unsigned>
95 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
96 cl::init(6));
98 #ifdef EXPENSIVE_CHECKS
99 static bool ClobberNonLive = true;
100 #else
101 static bool ClobberNonLive = false;
102 #endif
104 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
105 cl::location(ClobberNonLive),
106 cl::Hidden);
108 static cl::opt<bool>
109 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
110 cl::Hidden, cl::init(true));
112 /// The IR fed into RewriteStatepointsForGC may have had attributes and
113 /// metadata implying dereferenceability that are no longer valid/correct after
114 /// RewriteStatepointsForGC has run. This is because semantically, after
115 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
116 /// heap. stripNonValidData (conservatively) restores
117 /// correctness by erasing all attributes in the module that externally imply
118 /// dereferenceability. Similar reasoning also applies to the noalias
119 /// attributes and metadata. gc.statepoint can touch the entire heap including
120 /// noalias objects.
121 /// Apart from attributes and metadata, we also remove instructions that imply
122 /// constant physical memory: llvm.invariant.start.
123 static void stripNonValidData(Module &M);
125 static bool shouldRewriteStatepointsIn(Function &F);
127 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
128 ModuleAnalysisManager &AM) {
129 bool Changed = false;
130 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
131 for (Function &F : M) {
132 // Nothing to do for declarations.
133 if (F.isDeclaration() || F.empty())
134 continue;
136 // Policy choice says not to rewrite - the most common reason is that we're
137 // compiling code without a GCStrategy.
138 if (!shouldRewriteStatepointsIn(F))
139 continue;
141 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
142 auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
143 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
144 Changed |= runOnFunction(F, DT, TTI, TLI);
146 if (!Changed)
147 return PreservedAnalyses::all();
149 // stripNonValidData asserts that shouldRewriteStatepointsIn
150 // returns true for at least one function in the module. Since at least
151 // one function changed, we know that the precondition is satisfied.
152 stripNonValidData(M);
154 PreservedAnalyses PA;
155 PA.preserve<TargetIRAnalysis>();
156 PA.preserve<TargetLibraryAnalysis>();
157 return PA;
160 namespace {
162 class RewriteStatepointsForGCLegacyPass : public ModulePass {
163 RewriteStatepointsForGC Impl;
165 public:
166 static char ID; // Pass identification, replacement for typeid
168 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
169 initializeRewriteStatepointsForGCLegacyPassPass(
170 *PassRegistry::getPassRegistry());
173 bool runOnModule(Module &M) override {
174 bool Changed = false;
175 const TargetLibraryInfo &TLI =
176 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
177 for (Function &F : M) {
178 // Nothing to do for declarations.
179 if (F.isDeclaration() || F.empty())
180 continue;
182 // Policy choice says not to rewrite - the most common reason is that
183 // we're compiling code without a GCStrategy.
184 if (!shouldRewriteStatepointsIn(F))
185 continue;
187 TargetTransformInfo &TTI =
188 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
189 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
194 if (!Changed)
195 return false;
197 // stripNonValidData asserts that shouldRewriteStatepointsIn
198 // returns true for at least one function in the module. Since at least
199 // one function changed, we know that the precondition is satisfied.
200 stripNonValidData(M);
201 return true;
204 void getAnalysisUsage(AnalysisUsage &AU) const override {
205 // We add and rewrite a bunch of instructions, but don't really do much
206 // else. We could in theory preserve a lot more analyses here.
207 AU.addRequired<DominatorTreeWrapperPass>();
208 AU.addRequired<TargetTransformInfoWrapperPass>();
209 AU.addRequired<TargetLibraryInfoWrapperPass>();
213 } // end anonymous namespace
215 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
218 return new RewriteStatepointsForGCLegacyPass();
221 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
222 "rewrite-statepoints-for-gc",
223 "Make relocations explicit at statepoints", false, false)
224 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
225 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
226 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
227 "rewrite-statepoints-for-gc",
228 "Make relocations explicit at statepoints", false, false)
230 namespace {
232 struct GCPtrLivenessData {
233 /// Values defined in this block.
234 MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 /// Values used in this block (and thus live); does not included values
237 /// killed within this block.
238 MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 /// Values live into this basic block (i.e. used by any
241 /// instruction in this basic block or ones reachable from here)
242 MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 /// Values live out of this basic block (i.e. live into
245 /// any successor block)
246 MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
249 // The type of the internal cache used inside the findBasePointers family
250 // of functions. From the callers perspective, this is an opaque type and
251 // should not be inspected.
253 // In the actual implementation this caches two relations:
254 // - The base relation itself (i.e. this pointer is based on that one)
255 // - The base defining value relation (i.e. before base_phi insertion)
256 // Generally, after the execution of a full findBasePointer call, only the
257 // base relation will remain. Internally, we add a mixture of the two
258 // types, then update all the second type to the first type
259 using DefiningValueMapTy = MapVector<Value *, Value *>;
260 using StatepointLiveSetTy = SetVector<Value *>;
261 using RematerializedValueMapTy =
262 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 struct PartiallyConstructedSafepointRecord {
265 /// The set of values known to be live across this safepoint
266 StatepointLiveSetTy LiveSet;
268 /// Mapping from live pointers to a base-defining-value
269 MapVector<Value *, Value *> PointerToBase;
271 /// The *new* gc.statepoint instruction itself. This produces the token
272 /// that normal path gc.relocates and the gc.result are tied to.
273 Instruction *StatepointToken;
275 /// Instruction to which exceptional gc relocates are attached
276 /// Makes it easier to iterate through them during relocationViaAlloca.
277 Instruction *UnwindToken;
279 /// Record live values we are rematerialized instead of relocating.
280 /// They are not included into 'LiveSet' field.
281 /// Maps rematerialized copy to it's original value.
282 RematerializedValueMapTy RematerializedValues;
285 } // end anonymous namespace
287 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
288 Optional<OperandBundleUse> DeoptBundle =
289 Call->getOperandBundle(LLVMContext::OB_deopt);
291 if (!DeoptBundle.hasValue()) {
292 assert(AllowStatepointWithNoDeoptInfo &&
293 "Found non-leaf call without deopt info!");
294 return None;
297 return DeoptBundle.getValue().Inputs;
300 /// Compute the live-in set for every basic block in the function
301 static void computeLiveInValues(DominatorTree &DT, Function &F,
302 GCPtrLivenessData &Data);
304 /// Given results from the dataflow liveness computation, find the set of live
305 /// Values at a particular instruction.
306 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
307 StatepointLiveSetTy &out);
309 // TODO: Once we can get to the GCStrategy, this becomes
310 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 static bool isGCPointerType(Type *T) {
313 if (auto *PT = dyn_cast<PointerType>(T))
314 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
315 // GC managed heap. We know that a pointer into this heap needs to be
316 // updated and that no other pointer does.
317 return PT->getAddressSpace() == 1;
318 return false;
321 // Return true if this type is one which a) is a gc pointer or contains a GC
322 // pointer and b) is of a type this code expects to encounter as a live value.
323 // (The insertion code will assert that a type which matches (a) and not (b)
324 // is not encountered.)
325 static bool isHandledGCPointerType(Type *T) {
326 // We fully support gc pointers
327 if (isGCPointerType(T))
328 return true;
329 // We partially support vectors of gc pointers. The code will assert if it
330 // can't handle something.
331 if (auto VT = dyn_cast<VectorType>(T))
332 if (isGCPointerType(VT->getElementType()))
333 return true;
334 return false;
337 #ifndef NDEBUG
338 /// Returns true if this type contains a gc pointer whether we know how to
339 /// handle that type or not.
340 static bool containsGCPtrType(Type *Ty) {
341 if (isGCPointerType(Ty))
342 return true;
343 if (VectorType *VT = dyn_cast<VectorType>(Ty))
344 return isGCPointerType(VT->getScalarType());
345 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
346 return containsGCPtrType(AT->getElementType());
347 if (StructType *ST = dyn_cast<StructType>(Ty))
348 return llvm::any_of(ST->elements(), containsGCPtrType);
349 return false;
352 // Returns true if this is a type which a) is a gc pointer or contains a GC
353 // pointer and b) is of a type which the code doesn't expect (i.e. first class
354 // aggregates). Used to trip assertions.
355 static bool isUnhandledGCPointerType(Type *Ty) {
356 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 #endif
360 // Return the name of the value suffixed with the provided value, or if the
361 // value didn't have a name, the default value specified.
362 static std::string suffixed_name_or(Value *V, StringRef Suffix,
363 StringRef DefaultName) {
364 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
367 // Conservatively identifies any definitions which might be live at the
368 // given instruction. The analysis is performed immediately before the
369 // given instruction. Values defined by that instruction are not considered
370 // live. Values used by that instruction are considered live.
371 static void analyzeParsePointLiveness(
372 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
373 PartiallyConstructedSafepointRecord &Result) {
374 StatepointLiveSetTy LiveSet;
375 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377 if (PrintLiveSet) {
378 dbgs() << "Live Variables:\n";
379 for (Value *V : LiveSet)
380 dbgs() << " " << V->getName() << " " << *V << "\n";
382 if (PrintLiveSetSize) {
383 dbgs() << "Safepoint For: " << Call->getCalledValue()->getName() << "\n";
384 dbgs() << "Number live values: " << LiveSet.size() << "\n";
386 Result.LiveSet = LiveSet;
389 static bool isKnownBaseResult(Value *V);
391 namespace {
393 /// A single base defining value - An immediate base defining value for an
394 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
395 /// For instructions which have multiple pointer [vector] inputs or that
396 /// transition between vector and scalar types, there is no immediate base
397 /// defining value. The 'base defining value' for 'Def' is the transitive
398 /// closure of this relation stopping at the first instruction which has no
399 /// immediate base defining value. The b.d.v. might itself be a base pointer,
400 /// but it can also be an arbitrary derived pointer.
401 struct BaseDefiningValueResult {
402 /// Contains the value which is the base defining value.
403 Value * const BDV;
405 /// True if the base defining value is also known to be an actual base
406 /// pointer.
407 const bool IsKnownBase;
409 BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
410 : BDV(BDV), IsKnownBase(IsKnownBase) {
411 #ifndef NDEBUG
412 // Check consistency between new and old means of checking whether a BDV is
413 // a base.
414 bool MustBeBase = isKnownBaseResult(BDV);
415 assert(!MustBeBase || MustBeBase == IsKnownBase);
416 #endif
420 } // end anonymous namespace
422 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
424 /// Return a base defining value for the 'Index' element of the given vector
425 /// instruction 'I'. If Index is null, returns a BDV for the entire vector
426 /// 'I'. As an optimization, this method will try to determine when the
427 /// element is known to already be a base pointer. If this can be established,
428 /// the second value in the returned pair will be true. Note that either a
429 /// vector or a pointer typed value can be returned. For the former, the
430 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
431 /// If the later, the return pointer is a BDV (or possibly a base) for the
432 /// particular element in 'I'.
433 static BaseDefiningValueResult
434 findBaseDefiningValueOfVector(Value *I) {
435 // Each case parallels findBaseDefiningValue below, see that code for
436 // detailed motivation.
438 if (isa<Argument>(I))
439 // An incoming argument to the function is a base pointer
440 return BaseDefiningValueResult(I, true);
442 if (isa<Constant>(I))
443 // Base of constant vector consists only of constant null pointers.
444 // For reasoning see similar case inside 'findBaseDefiningValue' function.
445 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
446 true);
448 if (isa<LoadInst>(I))
449 return BaseDefiningValueResult(I, true);
451 if (isa<InsertElementInst>(I))
452 // We don't know whether this vector contains entirely base pointers or
453 // not. To be conservatively correct, we treat it as a BDV and will
454 // duplicate code as needed to construct a parallel vector of bases.
455 return BaseDefiningValueResult(I, false);
457 if (isa<ShuffleVectorInst>(I))
458 // We don't know whether this vector contains entirely base pointers or
459 // not. To be conservatively correct, we treat it as a BDV and will
460 // duplicate code as needed to construct a parallel vector of bases.
461 // TODO: There a number of local optimizations which could be applied here
462 // for particular sufflevector patterns.
463 return BaseDefiningValueResult(I, false);
465 // The behavior of getelementptr instructions is the same for vector and
466 // non-vector data types.
467 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
468 return findBaseDefiningValue(GEP->getPointerOperand());
470 // If the pointer comes through a bitcast of a vector of pointers to
471 // a vector of another type of pointer, then look through the bitcast
472 if (auto *BC = dyn_cast<BitCastInst>(I))
473 return findBaseDefiningValue(BC->getOperand(0));
475 // We assume that functions in the source language only return base
476 // pointers. This should probably be generalized via attributes to support
477 // both source language and internal functions.
478 if (isa<CallInst>(I) || isa<InvokeInst>(I))
479 return BaseDefiningValueResult(I, true);
481 // A PHI or Select is a base defining value. The outer findBasePointer
482 // algorithm is responsible for constructing a base value for this BDV.
483 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
484 "unknown vector instruction - no base found for vector element");
485 return BaseDefiningValueResult(I, false);
488 /// Helper function for findBasePointer - Will return a value which either a)
489 /// defines the base pointer for the input, b) blocks the simple search
490 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
491 /// from pointer to vector type or back.
492 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
493 assert(I->getType()->isPtrOrPtrVectorTy() &&
494 "Illegal to ask for the base pointer of a non-pointer type");
496 if (I->getType()->isVectorTy())
497 return findBaseDefiningValueOfVector(I);
499 if (isa<Argument>(I))
500 // An incoming argument to the function is a base pointer
501 // We should have never reached here if this argument isn't an gc value
502 return BaseDefiningValueResult(I, true);
504 if (isa<Constant>(I)) {
505 // We assume that objects with a constant base (e.g. a global) can't move
506 // and don't need to be reported to the collector because they are always
507 // live. Besides global references, all kinds of constants (e.g. undef,
508 // constant expressions, null pointers) can be introduced by the inliner or
509 // the optimizer, especially on dynamically dead paths.
510 // Here we treat all of them as having single null base. By doing this we
511 // trying to avoid problems reporting various conflicts in a form of
512 // "phi (const1, const2)" or "phi (const, regular gc ptr)".
513 // See constant.ll file for relevant test cases.
515 return BaseDefiningValueResult(
516 ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
519 if (CastInst *CI = dyn_cast<CastInst>(I)) {
520 Value *Def = CI->stripPointerCasts();
521 // If stripping pointer casts changes the address space there is an
522 // addrspacecast in between.
523 assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
524 cast<PointerType>(CI->getType())->getAddressSpace() &&
525 "unsupported addrspacecast");
526 // If we find a cast instruction here, it means we've found a cast which is
527 // not simply a pointer cast (i.e. an inttoptr). We don't know how to
528 // handle int->ptr conversion.
529 assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
530 return findBaseDefiningValue(Def);
533 if (isa<LoadInst>(I))
534 // The value loaded is an gc base itself
535 return BaseDefiningValueResult(I, true);
537 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
538 // The base of this GEP is the base
539 return findBaseDefiningValue(GEP->getPointerOperand());
541 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
542 switch (II->getIntrinsicID()) {
543 default:
544 // fall through to general call handling
545 break;
546 case Intrinsic::experimental_gc_statepoint:
547 llvm_unreachable("statepoints don't produce pointers");
548 case Intrinsic::experimental_gc_relocate:
549 // Rerunning safepoint insertion after safepoints are already
550 // inserted is not supported. It could probably be made to work,
551 // but why are you doing this? There's no good reason.
552 llvm_unreachable("repeat safepoint insertion is not supported");
553 case Intrinsic::gcroot:
554 // Currently, this mechanism hasn't been extended to work with gcroot.
555 // There's no reason it couldn't be, but I haven't thought about the
556 // implications much.
557 llvm_unreachable(
558 "interaction with the gcroot mechanism is not supported");
561 // We assume that functions in the source language only return base
562 // pointers. This should probably be generalized via attributes to support
563 // both source language and internal functions.
564 if (isa<CallInst>(I) || isa<InvokeInst>(I))
565 return BaseDefiningValueResult(I, true);
567 // TODO: I have absolutely no idea how to implement this part yet. It's not
568 // necessarily hard, I just haven't really looked at it yet.
569 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
571 if (isa<AtomicCmpXchgInst>(I))
572 // A CAS is effectively a atomic store and load combined under a
573 // predicate. From the perspective of base pointers, we just treat it
574 // like a load.
575 return BaseDefiningValueResult(I, true);
577 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
578 "binary ops which don't apply to pointers");
580 // The aggregate ops. Aggregates can either be in the heap or on the
581 // stack, but in either case, this is simply a field load. As a result,
582 // this is a defining definition of the base just like a load is.
583 if (isa<ExtractValueInst>(I))
584 return BaseDefiningValueResult(I, true);
586 // We should never see an insert vector since that would require we be
587 // tracing back a struct value not a pointer value.
588 assert(!isa<InsertValueInst>(I) &&
589 "Base pointer for a struct is meaningless");
591 // An extractelement produces a base result exactly when it's input does.
592 // We may need to insert a parallel instruction to extract the appropriate
593 // element out of the base vector corresponding to the input. Given this,
594 // it's analogous to the phi and select case even though it's not a merge.
595 if (isa<ExtractElementInst>(I))
596 // Note: There a lot of obvious peephole cases here. This are deliberately
597 // handled after the main base pointer inference algorithm to make writing
598 // test cases to exercise that code easier.
599 return BaseDefiningValueResult(I, false);
601 // The last two cases here don't return a base pointer. Instead, they
602 // return a value which dynamically selects from among several base
603 // derived pointers (each with it's own base potentially). It's the job of
604 // the caller to resolve these.
605 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
606 "missing instruction case in findBaseDefiningValing");
607 return BaseDefiningValueResult(I, false);
610 /// Returns the base defining value for this value.
611 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
612 Value *&Cached = Cache[I];
613 if (!Cached) {
614 Cached = findBaseDefiningValue(I).BDV;
615 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
616 << Cached->getName() << "\n");
618 assert(Cache[I] != nullptr);
619 return Cached;
622 /// Return a base pointer for this value if known. Otherwise, return it's
623 /// base defining value.
624 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
625 Value *Def = findBaseDefiningValueCached(I, Cache);
626 auto Found = Cache.find(Def);
627 if (Found != Cache.end()) {
628 // Either a base-of relation, or a self reference. Caller must check.
629 return Found->second;
631 // Only a BDV available
632 return Def;
635 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
636 /// is it known to be a base pointer? Or do we need to continue searching.
637 static bool isKnownBaseResult(Value *V) {
638 if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
639 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
640 !isa<ShuffleVectorInst>(V)) {
641 // no recursion possible
642 return true;
644 if (isa<Instruction>(V) &&
645 cast<Instruction>(V)->getMetadata("is_base_value")) {
646 // This is a previously inserted base phi or select. We know
647 // that this is a base value.
648 return true;
651 // We need to keep searching
652 return false;
655 namespace {
657 /// Models the state of a single base defining value in the findBasePointer
658 /// algorithm for determining where a new instruction is needed to propagate
659 /// the base of this BDV.
660 class BDVState {
661 public:
662 enum Status { Unknown, Base, Conflict };
664 BDVState() : BaseValue(nullptr) {}
666 explicit BDVState(Status Status, Value *BaseValue = nullptr)
667 : Status(Status), BaseValue(BaseValue) {
668 assert(Status != Base || BaseValue);
671 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
673 Status getStatus() const { return Status; }
674 Value *getBaseValue() const { return BaseValue; }
676 bool isBase() const { return getStatus() == Base; }
677 bool isUnknown() const { return getStatus() == Unknown; }
678 bool isConflict() const { return getStatus() == Conflict; }
680 bool operator==(const BDVState &Other) const {
681 return BaseValue == Other.BaseValue && Status == Other.Status;
684 bool operator!=(const BDVState &other) const { return !(*this == other); }
686 LLVM_DUMP_METHOD
687 void dump() const {
688 print(dbgs());
689 dbgs() << '\n';
692 void print(raw_ostream &OS) const {
693 switch (getStatus()) {
694 case Unknown:
695 OS << "U";
696 break;
697 case Base:
698 OS << "B";
699 break;
700 case Conflict:
701 OS << "C";
702 break;
704 OS << " (" << getBaseValue() << " - "
705 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
708 private:
709 Status Status = Unknown;
710 AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
713 } // end anonymous namespace
715 #ifndef NDEBUG
716 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
717 State.print(OS);
718 return OS;
720 #endif
722 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
723 switch (LHS.getStatus()) {
724 case BDVState::Unknown:
725 return RHS;
727 case BDVState::Base:
728 assert(LHS.getBaseValue() && "can't be null");
729 if (RHS.isUnknown())
730 return LHS;
732 if (RHS.isBase()) {
733 if (LHS.getBaseValue() == RHS.getBaseValue()) {
734 assert(LHS == RHS && "equality broken!");
735 return LHS;
737 return BDVState(BDVState::Conflict);
739 assert(RHS.isConflict() && "only three states!");
740 return BDVState(BDVState::Conflict);
742 case BDVState::Conflict:
743 return LHS;
745 llvm_unreachable("only three states!");
748 // Values of type BDVState form a lattice, and this function implements the meet
749 // operation.
750 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
751 BDVState Result = meetBDVStateImpl(LHS, RHS);
752 assert(Result == meetBDVStateImpl(RHS, LHS) &&
753 "Math is wrong: meet does not commute!");
754 return Result;
757 /// For a given value or instruction, figure out what base ptr its derived from.
758 /// For gc objects, this is simply itself. On success, returns a value which is
759 /// the base pointer. (This is reliable and can be used for relocation.) On
760 /// failure, returns nullptr.
761 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
762 Value *Def = findBaseOrBDV(I, Cache);
764 if (isKnownBaseResult(Def))
765 return Def;
767 // Here's the rough algorithm:
768 // - For every SSA value, construct a mapping to either an actual base
769 // pointer or a PHI which obscures the base pointer.
770 // - Construct a mapping from PHI to unknown TOP state. Use an
771 // optimistic algorithm to propagate base pointer information. Lattice
772 // looks like:
773 // UNKNOWN
774 // b1 b2 b3 b4
775 // CONFLICT
776 // When algorithm terminates, all PHIs will either have a single concrete
777 // base or be in a conflict state.
778 // - For every conflict, insert a dummy PHI node without arguments. Add
779 // these to the base[Instruction] = BasePtr mapping. For every
780 // non-conflict, add the actual base.
781 // - For every conflict, add arguments for the base[a] of each input
782 // arguments.
784 // Note: A simpler form of this would be to add the conflict form of all
785 // PHIs without running the optimistic algorithm. This would be
786 // analogous to pessimistic data flow and would likely lead to an
787 // overall worse solution.
789 #ifndef NDEBUG
790 auto isExpectedBDVType = [](Value *BDV) {
791 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
792 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
793 isa<ShuffleVectorInst>(BDV);
795 #endif
797 // Once populated, will contain a mapping from each potentially non-base BDV
798 // to a lattice value (described above) which corresponds to that BDV.
799 // We use the order of insertion (DFS over the def/use graph) to provide a
800 // stable deterministic ordering for visiting DenseMaps (which are unordered)
801 // below. This is important for deterministic compilation.
802 MapVector<Value *, BDVState> States;
804 // Recursively fill in all base defining values reachable from the initial
805 // one for which we don't already know a definite base value for
806 /* scope */ {
807 SmallVector<Value*, 16> Worklist;
808 Worklist.push_back(Def);
809 States.insert({Def, BDVState()});
810 while (!Worklist.empty()) {
811 Value *Current = Worklist.pop_back_val();
812 assert(!isKnownBaseResult(Current) && "why did it get added?");
814 auto visitIncomingValue = [&](Value *InVal) {
815 Value *Base = findBaseOrBDV(InVal, Cache);
816 if (isKnownBaseResult(Base))
817 // Known bases won't need new instructions introduced and can be
818 // ignored safely
819 return;
820 assert(isExpectedBDVType(Base) && "the only non-base values "
821 "we see should be base defining values");
822 if (States.insert(std::make_pair(Base, BDVState())).second)
823 Worklist.push_back(Base);
825 if (PHINode *PN = dyn_cast<PHINode>(Current)) {
826 for (Value *InVal : PN->incoming_values())
827 visitIncomingValue(InVal);
828 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
829 visitIncomingValue(SI->getTrueValue());
830 visitIncomingValue(SI->getFalseValue());
831 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
832 visitIncomingValue(EE->getVectorOperand());
833 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
834 visitIncomingValue(IE->getOperand(0)); // vector operand
835 visitIncomingValue(IE->getOperand(1)); // scalar operand
836 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
837 visitIncomingValue(SV->getOperand(0));
838 visitIncomingValue(SV->getOperand(1));
840 else {
841 llvm_unreachable("Unimplemented instruction case");
846 #ifndef NDEBUG
847 LLVM_DEBUG(dbgs() << "States after initialization:\n");
848 for (auto Pair : States) {
849 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
851 #endif
853 // Return a phi state for a base defining value. We'll generate a new
854 // base state for known bases and expect to find a cached state otherwise.
855 auto getStateForBDV = [&](Value *baseValue) {
856 if (isKnownBaseResult(baseValue))
857 return BDVState(baseValue);
858 auto I = States.find(baseValue);
859 assert(I != States.end() && "lookup failed!");
860 return I->second;
863 bool Progress = true;
864 while (Progress) {
865 #ifndef NDEBUG
866 const size_t OldSize = States.size();
867 #endif
868 Progress = false;
869 // We're only changing values in this loop, thus safe to keep iterators.
870 // Since this is computing a fixed point, the order of visit does not
871 // effect the result. TODO: We could use a worklist here and make this run
872 // much faster.
873 for (auto Pair : States) {
874 Value *BDV = Pair.first;
875 assert(!isKnownBaseResult(BDV) && "why did it get added?");
877 // Given an input value for the current instruction, return a BDVState
878 // instance which represents the BDV of that value.
879 auto getStateForInput = [&](Value *V) mutable {
880 Value *BDV = findBaseOrBDV(V, Cache);
881 return getStateForBDV(BDV);
884 BDVState NewState;
885 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
886 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
887 NewState =
888 meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
889 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
890 for (Value *Val : PN->incoming_values())
891 NewState = meetBDVState(NewState, getStateForInput(Val));
892 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
893 // The 'meet' for an extractelement is slightly trivial, but it's still
894 // useful in that it drives us to conflict if our input is.
895 NewState =
896 meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
897 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
898 // Given there's a inherent type mismatch between the operands, will
899 // *always* produce Conflict.
900 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
901 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
902 } else {
903 // The only instance this does not return a Conflict is when both the
904 // vector operands are the same vector.
905 auto *SV = cast<ShuffleVectorInst>(BDV);
906 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
907 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
910 BDVState OldState = States[BDV];
911 if (OldState != NewState) {
912 Progress = true;
913 States[BDV] = NewState;
917 assert(OldSize == States.size() &&
918 "fixed point shouldn't be adding any new nodes to state");
921 #ifndef NDEBUG
922 LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
923 for (auto Pair : States) {
924 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
926 #endif
928 // Insert Phis for all conflicts
929 // TODO: adjust naming patterns to avoid this order of iteration dependency
930 for (auto Pair : States) {
931 Instruction *I = cast<Instruction>(Pair.first);
932 BDVState State = Pair.second;
933 assert(!isKnownBaseResult(I) && "why did it get added?");
934 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
936 // extractelement instructions are a bit special in that we may need to
937 // insert an extract even when we know an exact base for the instruction.
938 // The problem is that we need to convert from a vector base to a scalar
939 // base for the particular indice we're interested in.
940 if (State.isBase() && isa<ExtractElementInst>(I) &&
941 isa<VectorType>(State.getBaseValue()->getType())) {
942 auto *EE = cast<ExtractElementInst>(I);
943 // TODO: In many cases, the new instruction is just EE itself. We should
944 // exploit this, but can't do it here since it would break the invariant
945 // about the BDV not being known to be a base.
946 auto *BaseInst = ExtractElementInst::Create(
947 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
948 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
949 States[I] = BDVState(BDVState::Base, BaseInst);
952 // Since we're joining a vector and scalar base, they can never be the
953 // same. As a result, we should always see insert element having reached
954 // the conflict state.
955 assert(!isa<InsertElementInst>(I) || State.isConflict());
957 if (!State.isConflict())
958 continue;
960 /// Create and insert a new instruction which will represent the base of
961 /// the given instruction 'I'.
962 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
963 if (isa<PHINode>(I)) {
964 BasicBlock *BB = I->getParent();
965 int NumPreds = pred_size(BB);
966 assert(NumPreds > 0 && "how did we reach here");
967 std::string Name = suffixed_name_or(I, ".base", "base_phi");
968 return PHINode::Create(I->getType(), NumPreds, Name, I);
969 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
970 // The undef will be replaced later
971 UndefValue *Undef = UndefValue::get(SI->getType());
972 std::string Name = suffixed_name_or(I, ".base", "base_select");
973 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
974 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
975 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
976 std::string Name = suffixed_name_or(I, ".base", "base_ee");
977 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
978 EE);
979 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
980 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
981 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
982 std::string Name = suffixed_name_or(I, ".base", "base_ie");
983 return InsertElementInst::Create(VecUndef, ScalarUndef,
984 IE->getOperand(2), Name, IE);
985 } else {
986 auto *SV = cast<ShuffleVectorInst>(I);
987 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
988 std::string Name = suffixed_name_or(I, ".base", "base_sv");
989 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
990 Name, SV);
993 Instruction *BaseInst = MakeBaseInstPlaceholder(I);
994 // Add metadata marking this as a base value
995 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
996 States[I] = BDVState(BDVState::Conflict, BaseInst);
999 // Returns a instruction which produces the base pointer for a given
1000 // instruction. The instruction is assumed to be an input to one of the BDVs
1001 // seen in the inference algorithm above. As such, we must either already
1002 // know it's base defining value is a base, or have inserted a new
1003 // instruction to propagate the base of it's BDV and have entered that newly
1004 // introduced instruction into the state table. In either case, we are
1005 // assured to be able to determine an instruction which produces it's base
1006 // pointer.
1007 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1008 Value *BDV = findBaseOrBDV(Input, Cache);
1009 Value *Base = nullptr;
1010 if (isKnownBaseResult(BDV)) {
1011 Base = BDV;
1012 } else {
1013 // Either conflict or base.
1014 assert(States.count(BDV));
1015 Base = States[BDV].getBaseValue();
1017 assert(Base && "Can't be null");
1018 // The cast is needed since base traversal may strip away bitcasts
1019 if (Base->getType() != Input->getType() && InsertPt)
1020 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1021 return Base;
1024 // Fixup all the inputs of the new PHIs. Visit order needs to be
1025 // deterministic and predictable because we're naming newly created
1026 // instructions.
1027 for (auto Pair : States) {
1028 Instruction *BDV = cast<Instruction>(Pair.first);
1029 BDVState State = Pair.second;
1031 assert(!isKnownBaseResult(BDV) && "why did it get added?");
1032 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1033 if (!State.isConflict())
1034 continue;
1036 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1037 PHINode *PN = cast<PHINode>(BDV);
1038 unsigned NumPHIValues = PN->getNumIncomingValues();
1039 for (unsigned i = 0; i < NumPHIValues; i++) {
1040 Value *InVal = PN->getIncomingValue(i);
1041 BasicBlock *InBB = PN->getIncomingBlock(i);
1043 // If we've already seen InBB, add the same incoming value
1044 // we added for it earlier. The IR verifier requires phi
1045 // nodes with multiple entries from the same basic block
1046 // to have the same incoming value for each of those
1047 // entries. If we don't do this check here and basephi
1048 // has a different type than base, we'll end up adding two
1049 // bitcasts (and hence two distinct values) as incoming
1050 // values for the same basic block.
1052 int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
1053 if (BlockIndex != -1) {
1054 Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
1055 BasePHI->addIncoming(OldBase, InBB);
1057 #ifndef NDEBUG
1058 Value *Base = getBaseForInput(InVal, nullptr);
1059 // In essence this assert states: the only way two values
1060 // incoming from the same basic block may be different is by
1061 // being different bitcasts of the same value. A cleanup
1062 // that remains TODO is changing findBaseOrBDV to return an
1063 // llvm::Value of the correct type (and still remain pure).
1064 // This will remove the need to add bitcasts.
1065 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1066 "Sanity -- findBaseOrBDV should be pure!");
1067 #endif
1068 continue;
1071 // Find the instruction which produces the base for each input. We may
1072 // need to insert a bitcast in the incoming block.
1073 // TODO: Need to split critical edges if insertion is needed
1074 Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1075 BasePHI->addIncoming(Base, InBB);
1077 assert(BasePHI->getNumIncomingValues() == NumPHIValues);
1078 } else if (SelectInst *BaseSI =
1079 dyn_cast<SelectInst>(State.getBaseValue())) {
1080 SelectInst *SI = cast<SelectInst>(BDV);
1082 // Find the instruction which produces the base for each input.
1083 // We may need to insert a bitcast.
1084 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1085 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1086 } else if (auto *BaseEE =
1087 dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1088 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1089 // Find the instruction which produces the base for each input. We may
1090 // need to insert a bitcast.
1091 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1092 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1093 auto *BdvIE = cast<InsertElementInst>(BDV);
1094 auto UpdateOperand = [&](int OperandIdx) {
1095 Value *InVal = BdvIE->getOperand(OperandIdx);
1096 Value *Base = getBaseForInput(InVal, BaseIE);
1097 BaseIE->setOperand(OperandIdx, Base);
1099 UpdateOperand(0); // vector operand
1100 UpdateOperand(1); // scalar operand
1101 } else {
1102 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1103 auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1104 auto UpdateOperand = [&](int OperandIdx) {
1105 Value *InVal = BdvSV->getOperand(OperandIdx);
1106 Value *Base = getBaseForInput(InVal, BaseSV);
1107 BaseSV->setOperand(OperandIdx, Base);
1109 UpdateOperand(0); // vector operand
1110 UpdateOperand(1); // vector operand
1114 // Cache all of our results so we can cheaply reuse them
1115 // NOTE: This is actually two caches: one of the base defining value
1116 // relation and one of the base pointer relation! FIXME
1117 for (auto Pair : States) {
1118 auto *BDV = Pair.first;
1119 Value *Base = Pair.second.getBaseValue();
1120 assert(BDV && Base);
1121 assert(!isKnownBaseResult(BDV) && "why did it get added?");
1123 LLVM_DEBUG(
1124 dbgs() << "Updating base value cache"
1125 << " for: " << BDV->getName() << " from: "
1126 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1127 << " to: " << Base->getName() << "\n");
1129 if (Cache.count(BDV)) {
1130 assert(isKnownBaseResult(Base) &&
1131 "must be something we 'know' is a base pointer");
1132 // Once we transition from the BDV relation being store in the Cache to
1133 // the base relation being stored, it must be stable
1134 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1135 "base relation should be stable");
1137 Cache[BDV] = Base;
1139 assert(Cache.count(Def));
1140 return Cache[Def];
1143 // For a set of live pointers (base and/or derived), identify the base
1144 // pointer of the object which they are derived from. This routine will
1145 // mutate the IR graph as needed to make the 'base' pointer live at the
1146 // definition site of 'derived'. This ensures that any use of 'derived' can
1147 // also use 'base'. This may involve the insertion of a number of
1148 // additional PHI nodes.
1150 // preconditions: live is a set of pointer type Values
1152 // side effects: may insert PHI nodes into the existing CFG, will preserve
1153 // CFG, will not remove or mutate any existing nodes
1155 // post condition: PointerToBase contains one (derived, base) pair for every
1156 // pointer in live. Note that derived can be equal to base if the original
1157 // pointer was a base pointer.
1158 static void
1159 findBasePointers(const StatepointLiveSetTy &live,
1160 MapVector<Value *, Value *> &PointerToBase,
1161 DominatorTree *DT, DefiningValueMapTy &DVCache) {
1162 for (Value *ptr : live) {
1163 Value *base = findBasePointer(ptr, DVCache);
1164 assert(base && "failed to find base pointer");
1165 PointerToBase[ptr] = base;
1166 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1167 DT->dominates(cast<Instruction>(base)->getParent(),
1168 cast<Instruction>(ptr)->getParent())) &&
1169 "The base we found better dominate the derived pointer");
1173 /// Find the required based pointers (and adjust the live set) for the given
1174 /// parse point.
1175 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1176 CallBase *Call,
1177 PartiallyConstructedSafepointRecord &result) {
1178 MapVector<Value *, Value *> PointerToBase;
1179 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1181 if (PrintBasePointers) {
1182 errs() << "Base Pairs (w/o Relocation):\n";
1183 for (auto &Pair : PointerToBase) {
1184 errs() << " derived ";
1185 Pair.first->printAsOperand(errs(), false);
1186 errs() << " base ";
1187 Pair.second->printAsOperand(errs(), false);
1188 errs() << "\n";;
1192 result.PointerToBase = PointerToBase;
1195 /// Given an updated version of the dataflow liveness results, update the
1196 /// liveset and base pointer maps for the call site CS.
1197 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1198 CallBase *Call,
1199 PartiallyConstructedSafepointRecord &result);
1201 static void recomputeLiveInValues(
1202 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1203 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1204 // TODO-PERF: reuse the original liveness, then simply run the dataflow
1205 // again. The old values are still live and will help it stabilize quickly.
1206 GCPtrLivenessData RevisedLivenessData;
1207 computeLiveInValues(DT, F, RevisedLivenessData);
1208 for (size_t i = 0; i < records.size(); i++) {
1209 struct PartiallyConstructedSafepointRecord &info = records[i];
1210 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1214 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1215 // no uses of the original value / return value between the gc.statepoint and
1216 // the gc.relocate / gc.result call. One case which can arise is a phi node
1217 // starting one of the successor blocks. We also need to be able to insert the
1218 // gc.relocates only on the path which goes through the statepoint. We might
1219 // need to split an edge to make this possible.
1220 static BasicBlock *
1221 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1222 DominatorTree &DT) {
1223 BasicBlock *Ret = BB;
1224 if (!BB->getUniquePredecessor())
1225 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1227 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1228 // from it
1229 FoldSingleEntryPHINodes(Ret);
1230 assert(!isa<PHINode>(Ret->begin()) &&
1231 "All PHI nodes should have been removed!");
1233 // At this point, we can safely insert a gc.relocate or gc.result as the first
1234 // instruction in Ret if needed.
1235 return Ret;
1238 // Create new attribute set containing only attributes which can be transferred
1239 // from original call to the safepoint.
1240 static AttributeList legalizeCallAttributes(AttributeList AL) {
1241 if (AL.isEmpty())
1242 return AL;
1244 // Remove the readonly, readnone, and statepoint function attributes.
1245 AttrBuilder FnAttrs = AL.getFnAttributes();
1246 FnAttrs.removeAttribute(Attribute::ReadNone);
1247 FnAttrs.removeAttribute(Attribute::ReadOnly);
1248 for (Attribute A : AL.getFnAttributes()) {
1249 if (isStatepointDirectiveAttr(A))
1250 FnAttrs.remove(A);
1253 // Just skip parameter and return attributes for now
1254 LLVMContext &Ctx = AL.getContext();
1255 return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1256 AttributeSet::get(Ctx, FnAttrs));
1259 /// Helper function to place all gc relocates necessary for the given
1260 /// statepoint.
1261 /// Inputs:
1262 /// liveVariables - list of variables to be relocated.
1263 /// liveStart - index of the first live variable.
1264 /// basePtrs - base pointers.
1265 /// statepointToken - statepoint instruction to which relocates should be
1266 /// bound.
1267 /// Builder - Llvm IR builder to be used to construct new calls.
1268 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1269 const int LiveStart,
1270 ArrayRef<Value *> BasePtrs,
1271 Instruction *StatepointToken,
1272 IRBuilder<> Builder) {
1273 if (LiveVariables.empty())
1274 return;
1276 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1277 auto ValIt = llvm::find(LiveVec, Val);
1278 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1279 size_t Index = std::distance(LiveVec.begin(), ValIt);
1280 assert(Index < LiveVec.size() && "Bug in std::find?");
1281 return Index;
1283 Module *M = StatepointToken->getModule();
1285 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1286 // element type is i8 addrspace(1)*). We originally generated unique
1287 // declarations for each pointer type, but this proved problematic because
1288 // the intrinsic mangling code is incomplete and fragile. Since we're moving
1289 // towards a single unified pointer type anyways, we can just cast everything
1290 // to an i8* of the right address space. A bitcast is added later to convert
1291 // gc_relocate to the actual value's type.
1292 auto getGCRelocateDecl = [&] (Type *Ty) {
1293 assert(isHandledGCPointerType(Ty));
1294 auto AS = Ty->getScalarType()->getPointerAddressSpace();
1295 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1296 if (auto *VT = dyn_cast<VectorType>(Ty))
1297 NewTy = VectorType::get(NewTy, VT->getNumElements());
1298 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1299 {NewTy});
1302 // Lazily populated map from input types to the canonicalized form mentioned
1303 // in the comment above. This should probably be cached somewhere more
1304 // broadly.
1305 DenseMap<Type *, Function *> TypeToDeclMap;
1307 for (unsigned i = 0; i < LiveVariables.size(); i++) {
1308 // Generate the gc.relocate call and save the result
1309 Value *BaseIdx =
1310 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1311 Value *LiveIdx = Builder.getInt32(LiveStart + i);
1313 Type *Ty = LiveVariables[i]->getType();
1314 if (!TypeToDeclMap.count(Ty))
1315 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1316 Function *GCRelocateDecl = TypeToDeclMap[Ty];
1318 // only specify a debug name if we can give a useful one
1319 CallInst *Reloc = Builder.CreateCall(
1320 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1321 suffixed_name_or(LiveVariables[i], ".relocated", ""));
1322 // Trick CodeGen into thinking there are lots of free registers at this
1323 // fake call.
1324 Reloc->setCallingConv(CallingConv::Cold);
1328 namespace {
1330 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
1331 /// avoids having to worry about keeping around dangling pointers to Values.
1332 class DeferredReplacement {
1333 AssertingVH<Instruction> Old;
1334 AssertingVH<Instruction> New;
1335 bool IsDeoptimize = false;
1337 DeferredReplacement() = default;
1339 public:
1340 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1341 assert(Old != New && Old && New &&
1342 "Cannot RAUW equal values or to / from null!");
1344 DeferredReplacement D;
1345 D.Old = Old;
1346 D.New = New;
1347 return D;
1350 static DeferredReplacement createDelete(Instruction *ToErase) {
1351 DeferredReplacement D;
1352 D.Old = ToErase;
1353 return D;
1356 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1357 #ifndef NDEBUG
1358 auto *F = cast<CallInst>(Old)->getCalledFunction();
1359 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1360 "Only way to construct a deoptimize deferred replacement");
1361 #endif
1362 DeferredReplacement D;
1363 D.Old = Old;
1364 D.IsDeoptimize = true;
1365 return D;
1368 /// Does the task represented by this instance.
1369 void doReplacement() {
1370 Instruction *OldI = Old;
1371 Instruction *NewI = New;
1373 assert(OldI != NewI && "Disallowed at construction?!");
1374 assert((!IsDeoptimize || !New) &&
1375 "Deoptimize intrinsics are not replaced!");
1377 Old = nullptr;
1378 New = nullptr;
1380 if (NewI)
1381 OldI->replaceAllUsesWith(NewI);
1383 if (IsDeoptimize) {
1384 // Note: we've inserted instructions, so the call to llvm.deoptimize may
1385 // not necessarily be followed by the matching return.
1386 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1387 new UnreachableInst(RI->getContext(), RI);
1388 RI->eraseFromParent();
1391 OldI->eraseFromParent();
1395 } // end anonymous namespace
1397 static StringRef getDeoptLowering(CallBase *Call) {
1398 const char *DeoptLowering = "deopt-lowering";
1399 if (Call->hasFnAttr(DeoptLowering)) {
1400 // FIXME: Calls have a *really* confusing interface around attributes
1401 // with values.
1402 const AttributeList &CSAS = Call->getAttributes();
1403 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1404 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1405 .getValueAsString();
1406 Function *F = Call->getCalledFunction();
1407 assert(F && F->hasFnAttribute(DeoptLowering));
1408 return F->getFnAttribute(DeoptLowering).getValueAsString();
1410 return "live-through";
1413 static void
1414 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1415 const SmallVectorImpl<Value *> &BasePtrs,
1416 const SmallVectorImpl<Value *> &LiveVariables,
1417 PartiallyConstructedSafepointRecord &Result,
1418 std::vector<DeferredReplacement> &Replacements) {
1419 assert(BasePtrs.size() == LiveVariables.size());
1421 // Then go ahead and use the builder do actually do the inserts. We insert
1422 // immediately before the previous instruction under the assumption that all
1423 // arguments will be available here. We can't insert afterwards since we may
1424 // be replacing a terminator.
1425 IRBuilder<> Builder(Call);
1427 ArrayRef<Value *> GCArgs(LiveVariables);
1428 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1429 uint32_t NumPatchBytes = 0;
1430 uint32_t Flags = uint32_t(StatepointFlags::None);
1432 ArrayRef<Use> CallArgs(Call->arg_begin(), Call->arg_end());
1433 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(Call);
1434 ArrayRef<Use> TransitionArgs;
1435 if (auto TransitionBundle =
1436 Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1437 Flags |= uint32_t(StatepointFlags::GCTransition);
1438 TransitionArgs = TransitionBundle->Inputs;
1441 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1442 // with a return value, we lower then as never returning calls to
1443 // __llvm_deoptimize that are followed by unreachable to get better codegen.
1444 bool IsDeoptimize = false;
1446 StatepointDirectives SD =
1447 parseStatepointDirectivesFromAttrs(Call->getAttributes());
1448 if (SD.NumPatchBytes)
1449 NumPatchBytes = *SD.NumPatchBytes;
1450 if (SD.StatepointID)
1451 StatepointID = *SD.StatepointID;
1453 // Pass through the requested lowering if any. The default is live-through.
1454 StringRef DeoptLowering = getDeoptLowering(Call);
1455 if (DeoptLowering.equals("live-in"))
1456 Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1457 else {
1458 assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1461 Value *CallTarget = Call->getCalledValue();
1462 if (Function *F = dyn_cast<Function>(CallTarget)) {
1463 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1464 // Calls to llvm.experimental.deoptimize are lowered to calls to the
1465 // __llvm_deoptimize symbol. We want to resolve this now, since the
1466 // verifier does not allow taking the address of an intrinsic function.
1468 SmallVector<Type *, 8> DomainTy;
1469 for (Value *Arg : CallArgs)
1470 DomainTy.push_back(Arg->getType());
1471 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1472 /* isVarArg = */ false);
1474 // Note: CallTarget can be a bitcast instruction of a symbol if there are
1475 // calls to @llvm.experimental.deoptimize with different argument types in
1476 // the same module. This is fine -- we assume the frontend knew what it
1477 // was doing when generating this kind of IR.
1478 CallTarget = F->getParent()
1479 ->getOrInsertFunction("__llvm_deoptimize", FTy)
1480 .getCallee();
1482 IsDeoptimize = true;
1486 // Create the statepoint given all the arguments
1487 Instruction *Token = nullptr;
1488 if (auto *CI = dyn_cast<CallInst>(Call)) {
1489 CallInst *SPCall = Builder.CreateGCStatepointCall(
1490 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1491 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1493 SPCall->setTailCallKind(CI->getTailCallKind());
1494 SPCall->setCallingConv(CI->getCallingConv());
1496 // Currently we will fail on parameter attributes and on certain
1497 // function attributes. In case if we can handle this set of attributes -
1498 // set up function attrs directly on statepoint and return attrs later for
1499 // gc_result intrinsic.
1500 SPCall->setAttributes(legalizeCallAttributes(CI->getAttributes()));
1502 Token = SPCall;
1504 // Put the following gc_result and gc_relocate calls immediately after the
1505 // the old call (which we're about to delete)
1506 assert(CI->getNextNode() && "Not a terminator, must have next!");
1507 Builder.SetInsertPoint(CI->getNextNode());
1508 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1509 } else {
1510 auto *II = cast<InvokeInst>(Call);
1512 // Insert the new invoke into the old block. We'll remove the old one in a
1513 // moment at which point this will become the new terminator for the
1514 // original block.
1515 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1516 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1517 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1518 "statepoint_token");
1520 SPInvoke->setCallingConv(II->getCallingConv());
1522 // Currently we will fail on parameter attributes and on certain
1523 // function attributes. In case if we can handle this set of attributes -
1524 // set up function attrs directly on statepoint and return attrs later for
1525 // gc_result intrinsic.
1526 SPInvoke->setAttributes(legalizeCallAttributes(II->getAttributes()));
1528 Token = SPInvoke;
1530 // Generate gc relocates in exceptional path
1531 BasicBlock *UnwindBlock = II->getUnwindDest();
1532 assert(!isa<PHINode>(UnwindBlock->begin()) &&
1533 UnwindBlock->getUniquePredecessor() &&
1534 "can't safely insert in this block!");
1536 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1537 Builder.SetCurrentDebugLocation(II->getDebugLoc());
1539 // Attach exceptional gc relocates to the landingpad.
1540 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1541 Result.UnwindToken = ExceptionalToken;
1543 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1544 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1545 Builder);
1547 // Generate gc relocates and returns for normal block
1548 BasicBlock *NormalDest = II->getNormalDest();
1549 assert(!isa<PHINode>(NormalDest->begin()) &&
1550 NormalDest->getUniquePredecessor() &&
1551 "can't safely insert in this block!");
1553 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1555 // gc relocates will be generated later as if it were regular call
1556 // statepoint
1558 assert(Token && "Should be set in one of the above branches!");
1560 if (IsDeoptimize) {
1561 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1562 // transform the tail-call like structure to a call to a void function
1563 // followed by unreachable to get better codegen.
1564 Replacements.push_back(
1565 DeferredReplacement::createDeoptimizeReplacement(Call));
1566 } else {
1567 Token->setName("statepoint_token");
1568 if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1569 StringRef Name = Call->hasName() ? Call->getName() : "";
1570 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1571 GCResult->setAttributes(
1572 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1573 Call->getAttributes().getRetAttributes()));
1575 // We cannot RAUW or delete CS.getInstruction() because it could be in the
1576 // live set of some other safepoint, in which case that safepoint's
1577 // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1578 // llvm::Instruction. Instead, we defer the replacement and deletion to
1579 // after the live sets have been made explicit in the IR, and we no longer
1580 // have raw pointers to worry about.
1581 Replacements.emplace_back(
1582 DeferredReplacement::createRAUW(Call, GCResult));
1583 } else {
1584 Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1588 Result.StatepointToken = Token;
1590 // Second, create a gc.relocate for every live variable
1591 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1592 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1595 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1596 // which make the relocations happening at this safepoint explicit.
1598 // WARNING: Does not do any fixup to adjust users of the original live
1599 // values. That's the callers responsibility.
1600 static void
1601 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1602 PartiallyConstructedSafepointRecord &Result,
1603 std::vector<DeferredReplacement> &Replacements) {
1604 const auto &LiveSet = Result.LiveSet;
1605 const auto &PointerToBase = Result.PointerToBase;
1607 // Convert to vector for efficient cross referencing.
1608 SmallVector<Value *, 64> BaseVec, LiveVec;
1609 LiveVec.reserve(LiveSet.size());
1610 BaseVec.reserve(LiveSet.size());
1611 for (Value *L : LiveSet) {
1612 LiveVec.push_back(L);
1613 assert(PointerToBase.count(L));
1614 Value *Base = PointerToBase.find(L)->second;
1615 BaseVec.push_back(Base);
1617 assert(LiveVec.size() == BaseVec.size());
1619 // Do the actual rewriting and delete the old statepoint
1620 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1623 // Helper function for the relocationViaAlloca.
1625 // It receives iterator to the statepoint gc relocates and emits a store to the
1626 // assigned location (via allocaMap) for the each one of them. It adds the
1627 // visited values into the visitedLiveValues set, which we will later use them
1628 // for sanity checking.
1629 static void
1630 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1631 DenseMap<Value *, AllocaInst *> &AllocaMap,
1632 DenseSet<Value *> &VisitedLiveValues) {
1633 for (User *U : GCRelocs) {
1634 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1635 if (!Relocate)
1636 continue;
1638 Value *OriginalValue = Relocate->getDerivedPtr();
1639 assert(AllocaMap.count(OriginalValue));
1640 Value *Alloca = AllocaMap[OriginalValue];
1642 // Emit store into the related alloca
1643 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1644 // the correct type according to alloca.
1645 assert(Relocate->getNextNode() &&
1646 "Should always have one since it's not a terminator");
1647 IRBuilder<> Builder(Relocate->getNextNode());
1648 Value *CastedRelocatedValue =
1649 Builder.CreateBitCast(Relocate,
1650 cast<AllocaInst>(Alloca)->getAllocatedType(),
1651 suffixed_name_or(Relocate, ".casted", ""));
1653 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1654 Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1656 #ifndef NDEBUG
1657 VisitedLiveValues.insert(OriginalValue);
1658 #endif
1662 // Helper function for the "relocationViaAlloca". Similar to the
1663 // "insertRelocationStores" but works for rematerialized values.
1664 static void insertRematerializationStores(
1665 const RematerializedValueMapTy &RematerializedValues,
1666 DenseMap<Value *, AllocaInst *> &AllocaMap,
1667 DenseSet<Value *> &VisitedLiveValues) {
1668 for (auto RematerializedValuePair: RematerializedValues) {
1669 Instruction *RematerializedValue = RematerializedValuePair.first;
1670 Value *OriginalValue = RematerializedValuePair.second;
1672 assert(AllocaMap.count(OriginalValue) &&
1673 "Can not find alloca for rematerialized value");
1674 Value *Alloca = AllocaMap[OriginalValue];
1676 StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1677 Store->insertAfter(RematerializedValue);
1679 #ifndef NDEBUG
1680 VisitedLiveValues.insert(OriginalValue);
1681 #endif
1685 /// Do all the relocation update via allocas and mem2reg
1686 static void relocationViaAlloca(
1687 Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1688 ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1689 #ifndef NDEBUG
1690 // record initial number of (static) allocas; we'll check we have the same
1691 // number when we get done.
1692 int InitialAllocaNum = 0;
1693 for (Instruction &I : F.getEntryBlock())
1694 if (isa<AllocaInst>(I))
1695 InitialAllocaNum++;
1696 #endif
1698 // TODO-PERF: change data structures, reserve
1699 DenseMap<Value *, AllocaInst *> AllocaMap;
1700 SmallVector<AllocaInst *, 200> PromotableAllocas;
1701 // Used later to chack that we have enough allocas to store all values
1702 std::size_t NumRematerializedValues = 0;
1703 PromotableAllocas.reserve(Live.size());
1705 // Emit alloca for "LiveValue" and record it in "allocaMap" and
1706 // "PromotableAllocas"
1707 const DataLayout &DL = F.getParent()->getDataLayout();
1708 auto emitAllocaFor = [&](Value *LiveValue) {
1709 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1710 DL.getAllocaAddrSpace(), "",
1711 F.getEntryBlock().getFirstNonPHI());
1712 AllocaMap[LiveValue] = Alloca;
1713 PromotableAllocas.push_back(Alloca);
1716 // Emit alloca for each live gc pointer
1717 for (Value *V : Live)
1718 emitAllocaFor(V);
1720 // Emit allocas for rematerialized values
1721 for (const auto &Info : Records)
1722 for (auto RematerializedValuePair : Info.RematerializedValues) {
1723 Value *OriginalValue = RematerializedValuePair.second;
1724 if (AllocaMap.count(OriginalValue) != 0)
1725 continue;
1727 emitAllocaFor(OriginalValue);
1728 ++NumRematerializedValues;
1731 // The next two loops are part of the same conceptual operation. We need to
1732 // insert a store to the alloca after the original def and at each
1733 // redefinition. We need to insert a load before each use. These are split
1734 // into distinct loops for performance reasons.
1736 // Update gc pointer after each statepoint: either store a relocated value or
1737 // null (if no relocated value was found for this gc pointer and it is not a
1738 // gc_result). This must happen before we update the statepoint with load of
1739 // alloca otherwise we lose the link between statepoint and old def.
1740 for (const auto &Info : Records) {
1741 Value *Statepoint = Info.StatepointToken;
1743 // This will be used for consistency check
1744 DenseSet<Value *> VisitedLiveValues;
1746 // Insert stores for normal statepoint gc relocates
1747 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1749 // In case if it was invoke statepoint
1750 // we will insert stores for exceptional path gc relocates.
1751 if (isa<InvokeInst>(Statepoint)) {
1752 insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1753 VisitedLiveValues);
1756 // Do similar thing with rematerialized values
1757 insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1758 VisitedLiveValues);
1760 if (ClobberNonLive) {
1761 // As a debugging aid, pretend that an unrelocated pointer becomes null at
1762 // the gc.statepoint. This will turn some subtle GC problems into
1763 // slightly easier to debug SEGVs. Note that on large IR files with
1764 // lots of gc.statepoints this is extremely costly both memory and time
1765 // wise.
1766 SmallVector<AllocaInst *, 64> ToClobber;
1767 for (auto Pair : AllocaMap) {
1768 Value *Def = Pair.first;
1769 AllocaInst *Alloca = Pair.second;
1771 // This value was relocated
1772 if (VisitedLiveValues.count(Def)) {
1773 continue;
1775 ToClobber.push_back(Alloca);
1778 auto InsertClobbersAt = [&](Instruction *IP) {
1779 for (auto *AI : ToClobber) {
1780 auto PT = cast<PointerType>(AI->getAllocatedType());
1781 Constant *CPN = ConstantPointerNull::get(PT);
1782 StoreInst *Store = new StoreInst(CPN, AI);
1783 Store->insertBefore(IP);
1787 // Insert the clobbering stores. These may get intermixed with the
1788 // gc.results and gc.relocates, but that's fine.
1789 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1790 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1791 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1792 } else {
1793 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1798 // Update use with load allocas and add store for gc_relocated.
1799 for (auto Pair : AllocaMap) {
1800 Value *Def = Pair.first;
1801 AllocaInst *Alloca = Pair.second;
1803 // We pre-record the uses of allocas so that we dont have to worry about
1804 // later update that changes the user information..
1806 SmallVector<Instruction *, 20> Uses;
1807 // PERF: trade a linear scan for repeated reallocation
1808 Uses.reserve(Def->getNumUses());
1809 for (User *U : Def->users()) {
1810 if (!isa<ConstantExpr>(U)) {
1811 // If the def has a ConstantExpr use, then the def is either a
1812 // ConstantExpr use itself or null. In either case
1813 // (recursively in the first, directly in the second), the oop
1814 // it is ultimately dependent on is null and this particular
1815 // use does not need to be fixed up.
1816 Uses.push_back(cast<Instruction>(U));
1820 llvm::sort(Uses);
1821 auto Last = std::unique(Uses.begin(), Uses.end());
1822 Uses.erase(Last, Uses.end());
1824 for (Instruction *Use : Uses) {
1825 if (isa<PHINode>(Use)) {
1826 PHINode *Phi = cast<PHINode>(Use);
1827 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1828 if (Def == Phi->getIncomingValue(i)) {
1829 LoadInst *Load =
1830 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
1831 Phi->getIncomingBlock(i)->getTerminator());
1832 Phi->setIncomingValue(i, Load);
1835 } else {
1836 LoadInst *Load =
1837 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
1838 Use->replaceUsesOfWith(Def, Load);
1842 // Emit store for the initial gc value. Store must be inserted after load,
1843 // otherwise store will be in alloca's use list and an extra load will be
1844 // inserted before it.
1845 StoreInst *Store = new StoreInst(Def, Alloca);
1846 if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1847 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1848 // InvokeInst is a terminator so the store need to be inserted into its
1849 // normal destination block.
1850 BasicBlock *NormalDest = Invoke->getNormalDest();
1851 Store->insertBefore(NormalDest->getFirstNonPHI());
1852 } else {
1853 assert(!Inst->isTerminator() &&
1854 "The only terminator that can produce a value is "
1855 "InvokeInst which is handled above.");
1856 Store->insertAfter(Inst);
1858 } else {
1859 assert(isa<Argument>(Def));
1860 Store->insertAfter(cast<Instruction>(Alloca));
1864 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1865 "we must have the same allocas with lives");
1866 if (!PromotableAllocas.empty()) {
1867 // Apply mem2reg to promote alloca to SSA
1868 PromoteMemToReg(PromotableAllocas, DT);
1871 #ifndef NDEBUG
1872 for (auto &I : F.getEntryBlock())
1873 if (isa<AllocaInst>(I))
1874 InitialAllocaNum--;
1875 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1876 #endif
1879 /// Implement a unique function which doesn't require we sort the input
1880 /// vector. Doing so has the effect of changing the output of a couple of
1881 /// tests in ways which make them less useful in testing fused safepoints.
1882 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1883 SmallSet<T, 8> Seen;
1884 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
1885 Vec.end());
1888 /// Insert holders so that each Value is obviously live through the entire
1889 /// lifetime of the call.
1890 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
1891 SmallVectorImpl<CallInst *> &Holders) {
1892 if (Values.empty())
1893 // No values to hold live, might as well not insert the empty holder
1894 return;
1896 Module *M = Call->getModule();
1897 // Use a dummy vararg function to actually hold the values live
1898 FunctionCallee Func = M->getOrInsertFunction(
1899 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
1900 if (isa<CallInst>(Call)) {
1901 // For call safepoints insert dummy calls right after safepoint
1902 Holders.push_back(
1903 CallInst::Create(Func, Values, "", &*++Call->getIterator()));
1904 return;
1906 // For invoke safepooints insert dummy calls both in normal and
1907 // exceptional destination blocks
1908 auto *II = cast<InvokeInst>(Call);
1909 Holders.push_back(CallInst::Create(
1910 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1911 Holders.push_back(CallInst::Create(
1912 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1915 static void findLiveReferences(
1916 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1917 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1918 GCPtrLivenessData OriginalLivenessData;
1919 computeLiveInValues(DT, F, OriginalLivenessData);
1920 for (size_t i = 0; i < records.size(); i++) {
1921 struct PartiallyConstructedSafepointRecord &info = records[i];
1922 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1926 // Helper function for the "rematerializeLiveValues". It walks use chain
1927 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
1928 // the base or a value it cannot process. Only "simple" values are processed
1929 // (currently it is GEP's and casts). The returned root is examined by the
1930 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array
1931 // with all visited values.
1932 static Value* findRematerializableChainToBasePointer(
1933 SmallVectorImpl<Instruction*> &ChainToBase,
1934 Value *CurrentValue) {
1935 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1936 ChainToBase.push_back(GEP);
1937 return findRematerializableChainToBasePointer(ChainToBase,
1938 GEP->getPointerOperand());
1941 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1942 if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1943 return CI;
1945 ChainToBase.push_back(CI);
1946 return findRematerializableChainToBasePointer(ChainToBase,
1947 CI->getOperand(0));
1950 // We have reached the root of the chain, which is either equal to the base or
1951 // is the first unsupported value along the use chain.
1952 return CurrentValue;
1955 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1956 // chain we are going to rematerialize.
1957 static unsigned
1958 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1959 TargetTransformInfo &TTI) {
1960 unsigned Cost = 0;
1962 for (Instruction *Instr : Chain) {
1963 if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1964 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1965 "non noop cast is found during rematerialization");
1967 Type *SrcTy = CI->getOperand(0)->getType();
1968 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
1970 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1971 // Cost of the address calculation
1972 Type *ValTy = GEP->getSourceElementType();
1973 Cost += TTI.getAddressComputationCost(ValTy);
1975 // And cost of the GEP itself
1976 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1977 // allowed for the external usage)
1978 if (!GEP->hasAllConstantIndices())
1979 Cost += 2;
1981 } else {
1982 llvm_unreachable("unsupported instruction type during rematerialization");
1986 return Cost;
1989 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
1990 unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
1991 if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
1992 OrigRootPhi.getParent() != AlternateRootPhi.getParent())
1993 return false;
1994 // Map of incoming values and their corresponding basic blocks of
1995 // OrigRootPhi.
1996 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
1997 for (unsigned i = 0; i < PhiNum; i++)
1998 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
1999 OrigRootPhi.getIncomingBlock(i);
2001 // Both current and base PHIs should have same incoming values and
2002 // the same basic blocks corresponding to the incoming values.
2003 for (unsigned i = 0; i < PhiNum; i++) {
2004 auto CIVI =
2005 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2006 if (CIVI == CurrentIncomingValues.end())
2007 return false;
2008 BasicBlock *CurrentIncomingBB = CIVI->second;
2009 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2010 return false;
2012 return true;
2015 // From the statepoint live set pick values that are cheaper to recompute then
2016 // to relocate. Remove this values from the live set, rematerialize them after
2017 // statepoint and record them in "Info" structure. Note that similar to
2018 // relocated values we don't do any user adjustments here.
2019 static void rematerializeLiveValues(CallBase *Call,
2020 PartiallyConstructedSafepointRecord &Info,
2021 TargetTransformInfo &TTI) {
2022 const unsigned int ChainLengthThreshold = 10;
2024 // Record values we are going to delete from this statepoint live set.
2025 // We can not di this in following loop due to iterator invalidation.
2026 SmallVector<Value *, 32> LiveValuesToBeDeleted;
2028 for (Value *LiveValue: Info.LiveSet) {
2029 // For each live pointer find its defining chain
2030 SmallVector<Instruction *, 3> ChainToBase;
2031 assert(Info.PointerToBase.count(LiveValue));
2032 Value *RootOfChain =
2033 findRematerializableChainToBasePointer(ChainToBase,
2034 LiveValue);
2036 // Nothing to do, or chain is too long
2037 if ( ChainToBase.size() == 0 ||
2038 ChainToBase.size() > ChainLengthThreshold)
2039 continue;
2041 // Handle the scenario where the RootOfChain is not equal to the
2042 // Base Value, but they are essentially the same phi values.
2043 if (RootOfChain != Info.PointerToBase[LiveValue]) {
2044 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2045 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2046 if (!OrigRootPhi || !AlternateRootPhi)
2047 continue;
2048 // PHI nodes that have the same incoming values, and belonging to the same
2049 // basic blocks are essentially the same SSA value. When the original phi
2050 // has incoming values with different base pointers, the original phi is
2051 // marked as conflict, and an additional `AlternateRootPhi` with the same
2052 // incoming values get generated by the findBasePointer function. We need
2053 // to identify the newly generated AlternateRootPhi (.base version of phi)
2054 // and RootOfChain (the original phi node itself) are the same, so that we
2055 // can rematerialize the gep and casts. This is a workaround for the
2056 // deficiency in the findBasePointer algorithm.
2057 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2058 continue;
2059 // Now that the phi nodes are proved to be the same, assert that
2060 // findBasePointer's newly generated AlternateRootPhi is present in the
2061 // liveset of the call.
2062 assert(Info.LiveSet.count(AlternateRootPhi));
2064 // Compute cost of this chain
2065 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2066 // TODO: We can also account for cases when we will be able to remove some
2067 // of the rematerialized values by later optimization passes. I.e if
2068 // we rematerialized several intersecting chains. Or if original values
2069 // don't have any uses besides this statepoint.
2071 // For invokes we need to rematerialize each chain twice - for normal and
2072 // for unwind basic blocks. Model this by multiplying cost by two.
2073 if (isa<InvokeInst>(Call)) {
2074 Cost *= 2;
2076 // If it's too expensive - skip it
2077 if (Cost >= RematerializationThreshold)
2078 continue;
2080 // Remove value from the live set
2081 LiveValuesToBeDeleted.push_back(LiveValue);
2083 // Clone instructions and record them inside "Info" structure
2085 // Walk backwards to visit top-most instructions first
2086 std::reverse(ChainToBase.begin(), ChainToBase.end());
2088 // Utility function which clones all instructions from "ChainToBase"
2089 // and inserts them before "InsertBefore". Returns rematerialized value
2090 // which should be used after statepoint.
2091 auto rematerializeChain = [&ChainToBase](
2092 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2093 Instruction *LastClonedValue = nullptr;
2094 Instruction *LastValue = nullptr;
2095 for (Instruction *Instr: ChainToBase) {
2096 // Only GEP's and casts are supported as we need to be careful to not
2097 // introduce any new uses of pointers not in the liveset.
2098 // Note that it's fine to introduce new uses of pointers which were
2099 // otherwise not used after this statepoint.
2100 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2102 Instruction *ClonedValue = Instr->clone();
2103 ClonedValue->insertBefore(InsertBefore);
2104 ClonedValue->setName(Instr->getName() + ".remat");
2106 // If it is not first instruction in the chain then it uses previously
2107 // cloned value. We should update it to use cloned value.
2108 if (LastClonedValue) {
2109 assert(LastValue);
2110 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2111 #ifndef NDEBUG
2112 for (auto OpValue : ClonedValue->operand_values()) {
2113 // Assert that cloned instruction does not use any instructions from
2114 // this chain other than LastClonedValue
2115 assert(!is_contained(ChainToBase, OpValue) &&
2116 "incorrect use in rematerialization chain");
2117 // Assert that the cloned instruction does not use the RootOfChain
2118 // or the AlternateLiveBase.
2119 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2121 #endif
2122 } else {
2123 // For the first instruction, replace the use of unrelocated base i.e.
2124 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2125 // live set. They have been proved to be the same PHI nodes. Note
2126 // that the *only* use of the RootOfChain in the ChainToBase list is
2127 // the first Value in the list.
2128 if (RootOfChain != AlternateLiveBase)
2129 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2132 LastClonedValue = ClonedValue;
2133 LastValue = Instr;
2135 assert(LastClonedValue);
2136 return LastClonedValue;
2139 // Different cases for calls and invokes. For invokes we need to clone
2140 // instructions both on normal and unwind path.
2141 if (isa<CallInst>(Call)) {
2142 Instruction *InsertBefore = Call->getNextNode();
2143 assert(InsertBefore);
2144 Instruction *RematerializedValue = rematerializeChain(
2145 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2146 Info.RematerializedValues[RematerializedValue] = LiveValue;
2147 } else {
2148 auto *Invoke = cast<InvokeInst>(Call);
2150 Instruction *NormalInsertBefore =
2151 &*Invoke->getNormalDest()->getFirstInsertionPt();
2152 Instruction *UnwindInsertBefore =
2153 &*Invoke->getUnwindDest()->getFirstInsertionPt();
2155 Instruction *NormalRematerializedValue = rematerializeChain(
2156 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2157 Instruction *UnwindRematerializedValue = rematerializeChain(
2158 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2160 Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2161 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2165 // Remove rematerializaed values from the live set
2166 for (auto LiveValue: LiveValuesToBeDeleted) {
2167 Info.LiveSet.remove(LiveValue);
2171 static bool insertParsePoints(Function &F, DominatorTree &DT,
2172 TargetTransformInfo &TTI,
2173 SmallVectorImpl<CallBase *> &ToUpdate) {
2174 #ifndef NDEBUG
2175 // sanity check the input
2176 std::set<CallBase *> Uniqued;
2177 Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2178 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2180 for (CallBase *Call : ToUpdate)
2181 assert(Call->getFunction() == &F);
2182 #endif
2184 // When inserting gc.relocates for invokes, we need to be able to insert at
2185 // the top of the successor blocks. See the comment on
2186 // normalForInvokeSafepoint on exactly what is needed. Note that this step
2187 // may restructure the CFG.
2188 for (CallBase *Call : ToUpdate) {
2189 auto *II = dyn_cast<InvokeInst>(Call);
2190 if (!II)
2191 continue;
2192 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2193 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2196 // A list of dummy calls added to the IR to keep various values obviously
2197 // live in the IR. We'll remove all of these when done.
2198 SmallVector<CallInst *, 64> Holders;
2200 // Insert a dummy call with all of the deopt operands we'll need for the
2201 // actual safepoint insertion as arguments. This ensures reference operands
2202 // in the deopt argument list are considered live through the safepoint (and
2203 // thus makes sure they get relocated.)
2204 for (CallBase *Call : ToUpdate) {
2205 SmallVector<Value *, 64> DeoptValues;
2207 for (Value *Arg : GetDeoptBundleOperands(Call)) {
2208 assert(!isUnhandledGCPointerType(Arg->getType()) &&
2209 "support for FCA unimplemented");
2210 if (isHandledGCPointerType(Arg->getType()))
2211 DeoptValues.push_back(Arg);
2214 insertUseHolderAfter(Call, DeoptValues, Holders);
2217 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2219 // A) Identify all gc pointers which are statically live at the given call
2220 // site.
2221 findLiveReferences(F, DT, ToUpdate, Records);
2223 // B) Find the base pointers for each live pointer
2224 /* scope for caching */ {
2225 // Cache the 'defining value' relation used in the computation and
2226 // insertion of base phis and selects. This ensures that we don't insert
2227 // large numbers of duplicate base_phis.
2228 DefiningValueMapTy DVCache;
2230 for (size_t i = 0; i < Records.size(); i++) {
2231 PartiallyConstructedSafepointRecord &info = Records[i];
2232 findBasePointers(DT, DVCache, ToUpdate[i], info);
2234 } // end of cache scope
2236 // The base phi insertion logic (for any safepoint) may have inserted new
2237 // instructions which are now live at some safepoint. The simplest such
2238 // example is:
2239 // loop:
2240 // phi a <-- will be a new base_phi here
2241 // safepoint 1 <-- that needs to be live here
2242 // gep a + 1
2243 // safepoint 2
2244 // br loop
2245 // We insert some dummy calls after each safepoint to definitely hold live
2246 // the base pointers which were identified for that safepoint. We'll then
2247 // ask liveness for _every_ base inserted to see what is now live. Then we
2248 // remove the dummy calls.
2249 Holders.reserve(Holders.size() + Records.size());
2250 for (size_t i = 0; i < Records.size(); i++) {
2251 PartiallyConstructedSafepointRecord &Info = Records[i];
2253 SmallVector<Value *, 128> Bases;
2254 for (auto Pair : Info.PointerToBase)
2255 Bases.push_back(Pair.second);
2257 insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2260 // By selecting base pointers, we've effectively inserted new uses. Thus, we
2261 // need to rerun liveness. We may *also* have inserted new defs, but that's
2262 // not the key issue.
2263 recomputeLiveInValues(F, DT, ToUpdate, Records);
2265 if (PrintBasePointers) {
2266 for (auto &Info : Records) {
2267 errs() << "Base Pairs: (w/Relocation)\n";
2268 for (auto Pair : Info.PointerToBase) {
2269 errs() << " derived ";
2270 Pair.first->printAsOperand(errs(), false);
2271 errs() << " base ";
2272 Pair.second->printAsOperand(errs(), false);
2273 errs() << "\n";
2278 // It is possible that non-constant live variables have a constant base. For
2279 // example, a GEP with a variable offset from a global. In this case we can
2280 // remove it from the liveset. We already don't add constants to the liveset
2281 // because we assume they won't move at runtime and the GC doesn't need to be
2282 // informed about them. The same reasoning applies if the base is constant.
2283 // Note that the relocation placement code relies on this filtering for
2284 // correctness as it expects the base to be in the liveset, which isn't true
2285 // if the base is constant.
2286 for (auto &Info : Records)
2287 for (auto &BasePair : Info.PointerToBase)
2288 if (isa<Constant>(BasePair.second))
2289 Info.LiveSet.remove(BasePair.first);
2291 for (CallInst *CI : Holders)
2292 CI->eraseFromParent();
2294 Holders.clear();
2296 // In order to reduce live set of statepoint we might choose to rematerialize
2297 // some values instead of relocating them. This is purely an optimization and
2298 // does not influence correctness.
2299 for (size_t i = 0; i < Records.size(); i++)
2300 rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2302 // We need this to safely RAUW and delete call or invoke return values that
2303 // may themselves be live over a statepoint. For details, please see usage in
2304 // makeStatepointExplicitImpl.
2305 std::vector<DeferredReplacement> Replacements;
2307 // Now run through and replace the existing statepoints with new ones with
2308 // the live variables listed. We do not yet update uses of the values being
2309 // relocated. We have references to live variables that need to
2310 // survive to the last iteration of this loop. (By construction, the
2311 // previous statepoint can not be a live variable, thus we can and remove
2312 // the old statepoint calls as we go.)
2313 for (size_t i = 0; i < Records.size(); i++)
2314 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2316 ToUpdate.clear(); // prevent accident use of invalid calls.
2318 for (auto &PR : Replacements)
2319 PR.doReplacement();
2321 Replacements.clear();
2323 for (auto &Info : Records) {
2324 // These live sets may contain state Value pointers, since we replaced calls
2325 // with operand bundles with calls wrapped in gc.statepoint, and some of
2326 // those calls may have been def'ing live gc pointers. Clear these out to
2327 // avoid accidentally using them.
2329 // TODO: We should create a separate data structure that does not contain
2330 // these live sets, and migrate to using that data structure from this point
2331 // onward.
2332 Info.LiveSet.clear();
2333 Info.PointerToBase.clear();
2336 // Do all the fixups of the original live variables to their relocated selves
2337 SmallVector<Value *, 128> Live;
2338 for (size_t i = 0; i < Records.size(); i++) {
2339 PartiallyConstructedSafepointRecord &Info = Records[i];
2341 // We can't simply save the live set from the original insertion. One of
2342 // the live values might be the result of a call which needs a safepoint.
2343 // That Value* no longer exists and we need to use the new gc_result.
2344 // Thankfully, the live set is embedded in the statepoint (and updated), so
2345 // we just grab that.
2346 Statepoint Statepoint(Info.StatepointToken);
2347 Live.insert(Live.end(), Statepoint.gc_args_begin(),
2348 Statepoint.gc_args_end());
2349 #ifndef NDEBUG
2350 // Do some basic sanity checks on our liveness results before performing
2351 // relocation. Relocation can and will turn mistakes in liveness results
2352 // into non-sensical code which is must harder to debug.
2353 // TODO: It would be nice to test consistency as well
2354 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2355 "statepoint must be reachable or liveness is meaningless");
2356 for (Value *V : Statepoint.gc_args()) {
2357 if (!isa<Instruction>(V))
2358 // Non-instruction values trivial dominate all possible uses
2359 continue;
2360 auto *LiveInst = cast<Instruction>(V);
2361 assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2362 "unreachable values should never be live");
2363 assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2364 "basic SSA liveness expectation violated by liveness analysis");
2366 #endif
2368 unique_unsorted(Live);
2370 #ifndef NDEBUG
2371 // sanity check
2372 for (auto *Ptr : Live)
2373 assert(isHandledGCPointerType(Ptr->getType()) &&
2374 "must be a gc pointer type");
2375 #endif
2377 relocationViaAlloca(F, DT, Live, Records);
2378 return !Records.empty();
2381 // Handles both return values and arguments for Functions and calls.
2382 template <typename AttrHolder>
2383 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2384 unsigned Index) {
2385 AttrBuilder R;
2386 if (AH.getDereferenceableBytes(Index))
2387 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2388 AH.getDereferenceableBytes(Index)));
2389 if (AH.getDereferenceableOrNullBytes(Index))
2390 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2391 AH.getDereferenceableOrNullBytes(Index)));
2392 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2393 R.addAttribute(Attribute::NoAlias);
2395 if (!R.empty())
2396 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2399 static void stripNonValidAttributesFromPrototype(Function &F) {
2400 LLVMContext &Ctx = F.getContext();
2402 for (Argument &A : F.args())
2403 if (isa<PointerType>(A.getType()))
2404 RemoveNonValidAttrAtIndex(Ctx, F,
2405 A.getArgNo() + AttributeList::FirstArgIndex);
2407 if (isa<PointerType>(F.getReturnType()))
2408 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2411 /// Certain metadata on instructions are invalid after running RS4GC.
2412 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2413 /// optimize functions. We drop such metadata on the instruction.
2414 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2415 if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2416 return;
2417 // These are the attributes that are still valid on loads and stores after
2418 // RS4GC.
2419 // The metadata implying dereferenceability and noalias are (conservatively)
2420 // dropped. This is because semantically, after RewriteStatepointsForGC runs,
2421 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2422 // touch the entire heap including noalias objects. Note: The reasoning is
2423 // same as stripping the dereferenceability and noalias attributes that are
2424 // analogous to the metadata counterparts.
2425 // We also drop the invariant.load metadata on the load because that metadata
2426 // implies the address operand to the load points to memory that is never
2427 // changed once it became dereferenceable. This is no longer true after RS4GC.
2428 // Similar reasoning applies to invariant.group metadata, which applies to
2429 // loads within a group.
2430 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2431 LLVMContext::MD_range,
2432 LLVMContext::MD_alias_scope,
2433 LLVMContext::MD_nontemporal,
2434 LLVMContext::MD_nonnull,
2435 LLVMContext::MD_align,
2436 LLVMContext::MD_type};
2438 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2439 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2442 static void stripNonValidDataFromBody(Function &F) {
2443 if (F.empty())
2444 return;
2446 LLVMContext &Ctx = F.getContext();
2447 MDBuilder Builder(Ctx);
2449 // Set of invariantstart instructions that we need to remove.
2450 // Use this to avoid invalidating the instruction iterator.
2451 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2453 for (Instruction &I : instructions(F)) {
2454 // invariant.start on memory location implies that the referenced memory
2455 // location is constant and unchanging. This is no longer true after
2456 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2457 // which frees the entire heap and the presence of invariant.start allows
2458 // the optimizer to sink the load of a memory location past a statepoint,
2459 // which is incorrect.
2460 if (auto *II = dyn_cast<IntrinsicInst>(&I))
2461 if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2462 InvariantStartInstructions.push_back(II);
2463 continue;
2466 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2467 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2468 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2471 stripInvalidMetadataFromInstruction(I);
2473 if (auto *Call = dyn_cast<CallBase>(&I)) {
2474 for (int i = 0, e = Call->arg_size(); i != e; i++)
2475 if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2476 RemoveNonValidAttrAtIndex(Ctx, *Call,
2477 i + AttributeList::FirstArgIndex);
2478 if (isa<PointerType>(Call->getType()))
2479 RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2483 // Delete the invariant.start instructions and RAUW undef.
2484 for (auto *II : InvariantStartInstructions) {
2485 II->replaceAllUsesWith(UndefValue::get(II->getType()));
2486 II->eraseFromParent();
2490 /// Returns true if this function should be rewritten by this pass. The main
2491 /// point of this function is as an extension point for custom logic.
2492 static bool shouldRewriteStatepointsIn(Function &F) {
2493 // TODO: This should check the GCStrategy
2494 if (F.hasGC()) {
2495 const auto &FunctionGCName = F.getGC();
2496 const StringRef StatepointExampleName("statepoint-example");
2497 const StringRef CoreCLRName("coreclr");
2498 return (StatepointExampleName == FunctionGCName) ||
2499 (CoreCLRName == FunctionGCName);
2500 } else
2501 return false;
2504 static void stripNonValidData(Module &M) {
2505 #ifndef NDEBUG
2506 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2507 #endif
2509 for (Function &F : M)
2510 stripNonValidAttributesFromPrototype(F);
2512 for (Function &F : M)
2513 stripNonValidDataFromBody(F);
2516 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2517 TargetTransformInfo &TTI,
2518 const TargetLibraryInfo &TLI) {
2519 assert(!F.isDeclaration() && !F.empty() &&
2520 "need function body to rewrite statepoints in");
2521 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2523 auto NeedsRewrite = [&TLI](Instruction &I) {
2524 if (const auto *Call = dyn_cast<CallBase>(&I))
2525 return !callsGCLeafFunction(Call, TLI) && !isStatepoint(Call);
2526 return false;
2529 // Delete any unreachable statepoints so that we don't have unrewritten
2530 // statepoints surviving this pass. This makes testing easier and the
2531 // resulting IR less confusing to human readers.
2532 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2533 bool MadeChange = removeUnreachableBlocks(F, nullptr, &DTU);
2534 // Flush the Dominator Tree.
2535 DTU.getDomTree();
2537 // Gather all the statepoints which need rewritten. Be careful to only
2538 // consider those in reachable code since we need to ask dominance queries
2539 // when rewriting. We'll delete the unreachable ones in a moment.
2540 SmallVector<CallBase *, 64> ParsePointNeeded;
2541 for (Instruction &I : instructions(F)) {
2542 // TODO: only the ones with the flag set!
2543 if (NeedsRewrite(I)) {
2544 // NOTE removeUnreachableBlocks() is stronger than
2545 // DominatorTree::isReachableFromEntry(). In other words
2546 // removeUnreachableBlocks can remove some blocks for which
2547 // isReachableFromEntry() returns true.
2548 assert(DT.isReachableFromEntry(I.getParent()) &&
2549 "no unreachable blocks expected");
2550 ParsePointNeeded.push_back(cast<CallBase>(&I));
2554 // Return early if no work to do.
2555 if (ParsePointNeeded.empty())
2556 return MadeChange;
2558 // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2559 // These are created by LCSSA. They have the effect of increasing the size
2560 // of liveness sets for no good reason. It may be harder to do this post
2561 // insertion since relocations and base phis can confuse things.
2562 for (BasicBlock &BB : F)
2563 if (BB.getUniquePredecessor()) {
2564 MadeChange = true;
2565 FoldSingleEntryPHINodes(&BB);
2568 // Before we start introducing relocations, we want to tweak the IR a bit to
2569 // avoid unfortunate code generation effects. The main example is that we
2570 // want to try to make sure the comparison feeding a branch is after any
2571 // safepoints. Otherwise, we end up with a comparison of pre-relocation
2572 // values feeding a branch after relocation. This is semantically correct,
2573 // but results in extra register pressure since both the pre-relocation and
2574 // post-relocation copies must be available in registers. For code without
2575 // relocations this is handled elsewhere, but teaching the scheduler to
2576 // reverse the transform we're about to do would be slightly complex.
2577 // Note: This may extend the live range of the inputs to the icmp and thus
2578 // increase the liveset of any statepoint we move over. This is profitable
2579 // as long as all statepoints are in rare blocks. If we had in-register
2580 // lowering for live values this would be a much safer transform.
2581 auto getConditionInst = [](Instruction *TI) -> Instruction * {
2582 if (auto *BI = dyn_cast<BranchInst>(TI))
2583 if (BI->isConditional())
2584 return dyn_cast<Instruction>(BI->getCondition());
2585 // TODO: Extend this to handle switches
2586 return nullptr;
2588 for (BasicBlock &BB : F) {
2589 Instruction *TI = BB.getTerminator();
2590 if (auto *Cond = getConditionInst(TI))
2591 // TODO: Handle more than just ICmps here. We should be able to move
2592 // most instructions without side effects or memory access.
2593 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2594 MadeChange = true;
2595 Cond->moveBefore(TI);
2599 // Nasty workaround - The base computation code in the main algorithm doesn't
2600 // consider the fact that a GEP can be used to convert a scalar to a vector.
2601 // The right fix for this is to integrate GEPs into the base rewriting
2602 // algorithm properly, this is just a short term workaround to prevent
2603 // crashes by canonicalizing such GEPs into fully vector GEPs.
2604 for (Instruction &I : instructions(F)) {
2605 if (!isa<GetElementPtrInst>(I))
2606 continue;
2608 unsigned VF = 0;
2609 for (unsigned i = 0; i < I.getNumOperands(); i++)
2610 if (I.getOperand(i)->getType()->isVectorTy()) {
2611 assert(VF == 0 ||
2612 VF == I.getOperand(i)->getType()->getVectorNumElements());
2613 VF = I.getOperand(i)->getType()->getVectorNumElements();
2616 // It's the vector to scalar traversal through the pointer operand which
2617 // confuses base pointer rewriting, so limit ourselves to that case.
2618 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2619 IRBuilder<> B(&I);
2620 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2621 I.setOperand(0, Splat);
2622 MadeChange = true;
2626 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2627 return MadeChange;
2630 // liveness computation via standard dataflow
2631 // -------------------------------------------------------------------
2633 // TODO: Consider using bitvectors for liveness, the set of potentially
2634 // interesting values should be small and easy to pre-compute.
2636 /// Compute the live-in set for the location rbegin starting from
2637 /// the live-out set of the basic block
2638 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2639 BasicBlock::reverse_iterator End,
2640 SetVector<Value *> &LiveTmp) {
2641 for (auto &I : make_range(Begin, End)) {
2642 // KILL/Def - Remove this definition from LiveIn
2643 LiveTmp.remove(&I);
2645 // Don't consider *uses* in PHI nodes, we handle their contribution to
2646 // predecessor blocks when we seed the LiveOut sets
2647 if (isa<PHINode>(I))
2648 continue;
2650 // USE - Add to the LiveIn set for this instruction
2651 for (Value *V : I.operands()) {
2652 assert(!isUnhandledGCPointerType(V->getType()) &&
2653 "support for FCA unimplemented");
2654 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2655 // The choice to exclude all things constant here is slightly subtle.
2656 // There are two independent reasons:
2657 // - We assume that things which are constant (from LLVM's definition)
2658 // do not move at runtime. For example, the address of a global
2659 // variable is fixed, even though it's contents may not be.
2660 // - Second, we can't disallow arbitrary inttoptr constants even
2661 // if the language frontend does. Optimization passes are free to
2662 // locally exploit facts without respect to global reachability. This
2663 // can create sections of code which are dynamically unreachable and
2664 // contain just about anything. (see constants.ll in tests)
2665 LiveTmp.insert(V);
2671 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2672 for (BasicBlock *Succ : successors(BB)) {
2673 for (auto &I : *Succ) {
2674 PHINode *PN = dyn_cast<PHINode>(&I);
2675 if (!PN)
2676 break;
2678 Value *V = PN->getIncomingValueForBlock(BB);
2679 assert(!isUnhandledGCPointerType(V->getType()) &&
2680 "support for FCA unimplemented");
2681 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2682 LiveTmp.insert(V);
2687 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2688 SetVector<Value *> KillSet;
2689 for (Instruction &I : *BB)
2690 if (isHandledGCPointerType(I.getType()))
2691 KillSet.insert(&I);
2692 return KillSet;
2695 #ifndef NDEBUG
2696 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic
2697 /// sanity check for the liveness computation.
2698 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2699 Instruction *TI, bool TermOkay = false) {
2700 for (Value *V : Live) {
2701 if (auto *I = dyn_cast<Instruction>(V)) {
2702 // The terminator can be a member of the LiveOut set. LLVM's definition
2703 // of instruction dominance states that V does not dominate itself. As
2704 // such, we need to special case this to allow it.
2705 if (TermOkay && TI == I)
2706 continue;
2707 assert(DT.dominates(I, TI) &&
2708 "basic SSA liveness expectation violated by liveness analysis");
2713 /// Check that all the liveness sets used during the computation of liveness
2714 /// obey basic SSA properties. This is useful for finding cases where we miss
2715 /// a def.
2716 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2717 BasicBlock &BB) {
2718 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2719 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2720 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2722 #endif
2724 static void computeLiveInValues(DominatorTree &DT, Function &F,
2725 GCPtrLivenessData &Data) {
2726 SmallSetVector<BasicBlock *, 32> Worklist;
2728 // Seed the liveness for each individual block
2729 for (BasicBlock &BB : F) {
2730 Data.KillSet[&BB] = computeKillSet(&BB);
2731 Data.LiveSet[&BB].clear();
2732 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2734 #ifndef NDEBUG
2735 for (Value *Kill : Data.KillSet[&BB])
2736 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2737 #endif
2739 Data.LiveOut[&BB] = SetVector<Value *>();
2740 computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2741 Data.LiveIn[&BB] = Data.LiveSet[&BB];
2742 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2743 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2744 if (!Data.LiveIn[&BB].empty())
2745 Worklist.insert(pred_begin(&BB), pred_end(&BB));
2748 // Propagate that liveness until stable
2749 while (!Worklist.empty()) {
2750 BasicBlock *BB = Worklist.pop_back_val();
2752 // Compute our new liveout set, then exit early if it hasn't changed despite
2753 // the contribution of our successor.
2754 SetVector<Value *> LiveOut = Data.LiveOut[BB];
2755 const auto OldLiveOutSize = LiveOut.size();
2756 for (BasicBlock *Succ : successors(BB)) {
2757 assert(Data.LiveIn.count(Succ));
2758 LiveOut.set_union(Data.LiveIn[Succ]);
2760 // assert OutLiveOut is a subset of LiveOut
2761 if (OldLiveOutSize == LiveOut.size()) {
2762 // If the sets are the same size, then we didn't actually add anything
2763 // when unioning our successors LiveIn. Thus, the LiveIn of this block
2764 // hasn't changed.
2765 continue;
2767 Data.LiveOut[BB] = LiveOut;
2769 // Apply the effects of this basic block
2770 SetVector<Value *> LiveTmp = LiveOut;
2771 LiveTmp.set_union(Data.LiveSet[BB]);
2772 LiveTmp.set_subtract(Data.KillSet[BB]);
2774 assert(Data.LiveIn.count(BB));
2775 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2776 // assert: OldLiveIn is a subset of LiveTmp
2777 if (OldLiveIn.size() != LiveTmp.size()) {
2778 Data.LiveIn[BB] = LiveTmp;
2779 Worklist.insert(pred_begin(BB), pred_end(BB));
2781 } // while (!Worklist.empty())
2783 #ifndef NDEBUG
2784 // Sanity check our output against SSA properties. This helps catch any
2785 // missing kills during the above iteration.
2786 for (BasicBlock &BB : F)
2787 checkBasicSSA(DT, Data, BB);
2788 #endif
2791 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2792 StatepointLiveSetTy &Out) {
2793 BasicBlock *BB = Inst->getParent();
2795 // Note: The copy is intentional and required
2796 assert(Data.LiveOut.count(BB));
2797 SetVector<Value *> LiveOut = Data.LiveOut[BB];
2799 // We want to handle the statepoint itself oddly. It's
2800 // call result is not live (normal), nor are it's arguments
2801 // (unless they're used again later). This adjustment is
2802 // specifically what we need to relocate
2803 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
2804 LiveOut);
2805 LiveOut.remove(Inst);
2806 Out.insert(LiveOut.begin(), LiveOut.end());
2809 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2810 CallBase *Call,
2811 PartiallyConstructedSafepointRecord &Info) {
2812 StatepointLiveSetTy Updated;
2813 findLiveSetAtInst(Call, RevisedLivenessData, Updated);
2815 // We may have base pointers which are now live that weren't before. We need
2816 // to update the PointerToBase structure to reflect this.
2817 for (auto V : Updated)
2818 if (Info.PointerToBase.insert({V, V}).second) {
2819 assert(isKnownBaseResult(V) &&
2820 "Can't find base for unexpected live value!");
2821 continue;
2824 #ifndef NDEBUG
2825 for (auto V : Updated)
2826 assert(Info.PointerToBase.count(V) &&
2827 "Must be able to find base for live value!");
2828 #endif
2830 // Remove any stale base mappings - this can happen since our liveness is
2831 // more precise then the one inherent in the base pointer analysis.
2832 DenseSet<Value *> ToErase;
2833 for (auto KVPair : Info.PointerToBase)
2834 if (!Updated.count(KVPair.first))
2835 ToErase.insert(KVPair.first);
2837 for (auto *V : ToErase)
2838 Info.PointerToBase.erase(V);
2840 #ifndef NDEBUG
2841 for (auto KVPair : Info.PointerToBase)
2842 assert(Updated.count(KVPair.first) && "record for non-live value");
2843 #endif
2845 Info.LiveSet = Updated;