Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / Scalar / SCCP.cpp
blobe75a5dbddbae4e9be0707ff87f00d82636b72104
1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sparse conditional constant propagation and merging:
11 // Specifically, this:
12 // * Assumes values are constant unless proven otherwise
13 // * Assumes BasicBlocks are dead unless proven otherwise
14 // * Proves values to be constant, and replaces them with constants
15 // * Proves conditional branches to be unconditional
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/Scalar/SCCP.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/PointerIntPair.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/GlobalsModRef.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Analysis/ValueLattice.h"
33 #include "llvm/Analysis/ValueLatticeUtils.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstVisitor.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Utils/PredicateInfo.h"
58 #include <cassert>
59 #include <utility>
60 #include <vector>
62 using namespace llvm;
64 #define DEBUG_TYPE "sccp"
66 STATISTIC(NumInstRemoved, "Number of instructions removed");
67 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
69 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
70 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
71 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
73 namespace {
75 /// LatticeVal class - This class represents the different lattice values that
76 /// an LLVM value may occupy. It is a simple class with value semantics.
77 ///
78 class LatticeVal {
79 enum LatticeValueTy {
80 /// unknown - This LLVM Value has no known value yet.
81 unknown,
83 /// constant - This LLVM Value has a specific constant value.
84 constant,
86 /// forcedconstant - This LLVM Value was thought to be undef until
87 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
88 /// with another (different) constant, it goes to overdefined, instead of
89 /// asserting.
90 forcedconstant,
92 /// overdefined - This instruction is not known to be constant, and we know
93 /// it has a value.
94 overdefined
97 /// Val: This stores the current lattice value along with the Constant* for
98 /// the constant if this is a 'constant' or 'forcedconstant' value.
99 PointerIntPair<Constant *, 2, LatticeValueTy> Val;
101 LatticeValueTy getLatticeValue() const {
102 return Val.getInt();
105 public:
106 LatticeVal() : Val(nullptr, unknown) {}
108 bool isUnknown() const { return getLatticeValue() == unknown; }
110 bool isConstant() const {
111 return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
114 bool isOverdefined() const { return getLatticeValue() == overdefined; }
116 Constant *getConstant() const {
117 assert(isConstant() && "Cannot get the constant of a non-constant!");
118 return Val.getPointer();
121 /// markOverdefined - Return true if this is a change in status.
122 bool markOverdefined() {
123 if (isOverdefined())
124 return false;
126 Val.setInt(overdefined);
127 return true;
130 /// markConstant - Return true if this is a change in status.
131 bool markConstant(Constant *V) {
132 if (getLatticeValue() == constant) { // Constant but not forcedconstant.
133 assert(getConstant() == V && "Marking constant with different value");
134 return false;
137 if (isUnknown()) {
138 Val.setInt(constant);
139 assert(V && "Marking constant with NULL");
140 Val.setPointer(V);
141 } else {
142 assert(getLatticeValue() == forcedconstant &&
143 "Cannot move from overdefined to constant!");
144 // Stay at forcedconstant if the constant is the same.
145 if (V == getConstant()) return false;
147 // Otherwise, we go to overdefined. Assumptions made based on the
148 // forced value are possibly wrong. Assuming this is another constant
149 // could expose a contradiction.
150 Val.setInt(overdefined);
152 return true;
155 /// getConstantInt - If this is a constant with a ConstantInt value, return it
156 /// otherwise return null.
157 ConstantInt *getConstantInt() const {
158 if (isConstant())
159 return dyn_cast<ConstantInt>(getConstant());
160 return nullptr;
163 /// getBlockAddress - If this is a constant with a BlockAddress value, return
164 /// it, otherwise return null.
165 BlockAddress *getBlockAddress() const {
166 if (isConstant())
167 return dyn_cast<BlockAddress>(getConstant());
168 return nullptr;
171 void markForcedConstant(Constant *V) {
172 assert(isUnknown() && "Can't force a defined value!");
173 Val.setInt(forcedconstant);
174 Val.setPointer(V);
177 ValueLatticeElement toValueLattice() const {
178 if (isOverdefined())
179 return ValueLatticeElement::getOverdefined();
180 if (isConstant())
181 return ValueLatticeElement::get(getConstant());
182 return ValueLatticeElement();
186 //===----------------------------------------------------------------------===//
188 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
189 /// Constant Propagation.
191 class SCCPSolver : public InstVisitor<SCCPSolver> {
192 const DataLayout &DL;
193 const TargetLibraryInfo *TLI;
194 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
195 DenseMap<Value *, LatticeVal> ValueState; // The state each value is in.
196 // The state each parameter is in.
197 DenseMap<Value *, ValueLatticeElement> ParamState;
199 /// StructValueState - This maintains ValueState for values that have
200 /// StructType, for example for formal arguments, calls, insertelement, etc.
201 DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState;
203 /// GlobalValue - If we are tracking any values for the contents of a global
204 /// variable, we keep a mapping from the constant accessor to the element of
205 /// the global, to the currently known value. If the value becomes
206 /// overdefined, it's entry is simply removed from this map.
207 DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals;
209 /// TrackedRetVals - If we are tracking arguments into and the return
210 /// value out of a function, it will have an entry in this map, indicating
211 /// what the known return value for the function is.
212 DenseMap<Function *, LatticeVal> TrackedRetVals;
214 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
215 /// that return multiple values.
216 DenseMap<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals;
218 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
219 /// represented here for efficient lookup.
220 SmallPtrSet<Function *, 16> MRVFunctionsTracked;
222 /// MustTailFunctions - Each function here is a callee of non-removable
223 /// musttail call site.
224 SmallPtrSet<Function *, 16> MustTailCallees;
226 /// TrackingIncomingArguments - This is the set of functions for whose
227 /// arguments we make optimistic assumptions about and try to prove as
228 /// constants.
229 SmallPtrSet<Function *, 16> TrackingIncomingArguments;
231 /// The reason for two worklists is that overdefined is the lowest state
232 /// on the lattice, and moving things to overdefined as fast as possible
233 /// makes SCCP converge much faster.
235 /// By having a separate worklist, we accomplish this because everything
236 /// possibly overdefined will become overdefined at the soonest possible
237 /// point.
238 SmallVector<Value *, 64> OverdefinedInstWorkList;
239 SmallVector<Value *, 64> InstWorkList;
241 // The BasicBlock work list
242 SmallVector<BasicBlock *, 64> BBWorkList;
244 /// KnownFeasibleEdges - Entries in this set are edges which have already had
245 /// PHI nodes retriggered.
246 using Edge = std::pair<BasicBlock *, BasicBlock *>;
247 DenseSet<Edge> KnownFeasibleEdges;
249 DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
250 DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
252 public:
253 void addAnalysis(Function &F, AnalysisResultsForFn A) {
254 AnalysisResults.insert({&F, std::move(A)});
257 const PredicateBase *getPredicateInfoFor(Instruction *I) {
258 auto A = AnalysisResults.find(I->getParent()->getParent());
259 if (A == AnalysisResults.end())
260 return nullptr;
261 return A->second.PredInfo->getPredicateInfoFor(I);
264 DomTreeUpdater getDTU(Function &F) {
265 auto A = AnalysisResults.find(&F);
266 assert(A != AnalysisResults.end() && "Need analysis results for function.");
267 return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
270 SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
271 : DL(DL), TLI(tli) {}
273 /// MarkBlockExecutable - This method can be used by clients to mark all of
274 /// the blocks that are known to be intrinsically live in the processed unit.
276 /// This returns true if the block was not considered live before.
277 bool MarkBlockExecutable(BasicBlock *BB) {
278 if (!BBExecutable.insert(BB).second)
279 return false;
280 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
281 BBWorkList.push_back(BB); // Add the block to the work list!
282 return true;
285 /// TrackValueOfGlobalVariable - Clients can use this method to
286 /// inform the SCCPSolver that it should track loads and stores to the
287 /// specified global variable if it can. This is only legal to call if
288 /// performing Interprocedural SCCP.
289 void TrackValueOfGlobalVariable(GlobalVariable *GV) {
290 // We only track the contents of scalar globals.
291 if (GV->getValueType()->isSingleValueType()) {
292 LatticeVal &IV = TrackedGlobals[GV];
293 if (!isa<UndefValue>(GV->getInitializer()))
294 IV.markConstant(GV->getInitializer());
298 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
299 /// and out of the specified function (which cannot have its address taken),
300 /// this method must be called.
301 void AddTrackedFunction(Function *F) {
302 // Add an entry, F -> undef.
303 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
304 MRVFunctionsTracked.insert(F);
305 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
306 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
307 LatticeVal()));
308 } else
309 TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
312 /// AddMustTailCallee - If the SCCP solver finds that this function is called
313 /// from non-removable musttail call site.
314 void AddMustTailCallee(Function *F) {
315 MustTailCallees.insert(F);
318 /// Returns true if the given function is called from non-removable musttail
319 /// call site.
320 bool isMustTailCallee(Function *F) {
321 return MustTailCallees.count(F);
324 void AddArgumentTrackedFunction(Function *F) {
325 TrackingIncomingArguments.insert(F);
328 /// Returns true if the given function is in the solver's set of
329 /// argument-tracked functions.
330 bool isArgumentTrackedFunction(Function *F) {
331 return TrackingIncomingArguments.count(F);
334 /// Solve - Solve for constants and executable blocks.
335 void Solve();
337 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
338 /// that branches on undef values cannot reach any of their successors.
339 /// However, this is not a safe assumption. After we solve dataflow, this
340 /// method should be use to handle this. If this returns true, the solver
341 /// should be rerun.
342 bool ResolvedUndefsIn(Function &F);
344 bool isBlockExecutable(BasicBlock *BB) const {
345 return BBExecutable.count(BB);
348 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
349 // block to the 'To' basic block is currently feasible.
350 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
352 std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const {
353 std::vector<LatticeVal> StructValues;
354 auto *STy = dyn_cast<StructType>(V->getType());
355 assert(STy && "getStructLatticeValueFor() can be called only on structs");
356 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
357 auto I = StructValueState.find(std::make_pair(V, i));
358 assert(I != StructValueState.end() && "Value not in valuemap!");
359 StructValues.push_back(I->second);
361 return StructValues;
364 const LatticeVal &getLatticeValueFor(Value *V) const {
365 assert(!V->getType()->isStructTy() &&
366 "Should use getStructLatticeValueFor");
367 DenseMap<Value *, LatticeVal>::const_iterator I = ValueState.find(V);
368 assert(I != ValueState.end() &&
369 "V not found in ValueState nor Paramstate map!");
370 return I->second;
373 /// getTrackedRetVals - Get the inferred return value map.
374 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
375 return TrackedRetVals;
378 /// getTrackedGlobals - Get and return the set of inferred initializers for
379 /// global variables.
380 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
381 return TrackedGlobals;
384 /// getMRVFunctionsTracked - Get the set of functions which return multiple
385 /// values tracked by the pass.
386 const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
387 return MRVFunctionsTracked;
390 /// getMustTailCallees - Get the set of functions which are called
391 /// from non-removable musttail call sites.
392 const SmallPtrSet<Function *, 16> getMustTailCallees() {
393 return MustTailCallees;
396 /// markOverdefined - Mark the specified value overdefined. This
397 /// works with both scalars and structs.
398 void markOverdefined(Value *V) {
399 if (auto *STy = dyn_cast<StructType>(V->getType()))
400 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
401 markOverdefined(getStructValueState(V, i), V);
402 else
403 markOverdefined(ValueState[V], V);
406 // isStructLatticeConstant - Return true if all the lattice values
407 // corresponding to elements of the structure are not overdefined,
408 // false otherwise.
409 bool isStructLatticeConstant(Function *F, StructType *STy) {
410 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
411 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
412 assert(It != TrackedMultipleRetVals.end());
413 LatticeVal LV = It->second;
414 if (LV.isOverdefined())
415 return false;
417 return true;
420 private:
421 // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined
422 void pushToWorkList(LatticeVal &IV, Value *V) {
423 if (IV.isOverdefined())
424 return OverdefinedInstWorkList.push_back(V);
425 InstWorkList.push_back(V);
428 // markConstant - Make a value be marked as "constant". If the value
429 // is not already a constant, add it to the instruction work list so that
430 // the users of the instruction are updated later.
431 bool markConstant(LatticeVal &IV, Value *V, Constant *C) {
432 if (!IV.markConstant(C)) return false;
433 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
434 pushToWorkList(IV, V);
435 return true;
438 bool markConstant(Value *V, Constant *C) {
439 assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
440 return markConstant(ValueState[V], V, C);
443 void markForcedConstant(Value *V, Constant *C) {
444 assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
445 LatticeVal &IV = ValueState[V];
446 IV.markForcedConstant(C);
447 LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
448 pushToWorkList(IV, V);
451 // markOverdefined - Make a value be marked as "overdefined". If the
452 // value is not already overdefined, add it to the overdefined instruction
453 // work list so that the users of the instruction are updated later.
454 bool markOverdefined(LatticeVal &IV, Value *V) {
455 if (!IV.markOverdefined()) return false;
457 LLVM_DEBUG(dbgs() << "markOverdefined: ";
458 if (auto *F = dyn_cast<Function>(V)) dbgs()
459 << "Function '" << F->getName() << "'\n";
460 else dbgs() << *V << '\n');
461 // Only instructions go on the work list
462 pushToWorkList(IV, V);
463 return true;
466 bool mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
467 if (IV.isOverdefined() || MergeWithV.isUnknown())
468 return false; // Noop.
469 if (MergeWithV.isOverdefined())
470 return markOverdefined(IV, V);
471 if (IV.isUnknown())
472 return markConstant(IV, V, MergeWithV.getConstant());
473 if (IV.getConstant() != MergeWithV.getConstant())
474 return markOverdefined(IV, V);
475 return false;
478 bool mergeInValue(Value *V, LatticeVal MergeWithV) {
479 assert(!V->getType()->isStructTy() &&
480 "non-structs should use markConstant");
481 return mergeInValue(ValueState[V], V, MergeWithV);
484 /// getValueState - Return the LatticeVal object that corresponds to the
485 /// value. This function handles the case when the value hasn't been seen yet
486 /// by properly seeding constants etc.
487 LatticeVal &getValueState(Value *V) {
488 assert(!V->getType()->isStructTy() && "Should use getStructValueState");
490 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
491 ValueState.insert(std::make_pair(V, LatticeVal()));
492 LatticeVal &LV = I.first->second;
494 if (!I.second)
495 return LV; // Common case, already in the map.
497 if (auto *C = dyn_cast<Constant>(V)) {
498 // Undef values remain unknown.
499 if (!isa<UndefValue>(V))
500 LV.markConstant(C); // Constants are constant
503 // All others are underdefined by default.
504 return LV;
507 ValueLatticeElement &getParamState(Value *V) {
508 assert(!V->getType()->isStructTy() && "Should use getStructValueState");
510 std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool>
511 PI = ParamState.insert(std::make_pair(V, ValueLatticeElement()));
512 ValueLatticeElement &LV = PI.first->second;
513 if (PI.second)
514 LV = getValueState(V).toValueLattice();
516 return LV;
519 /// getStructValueState - Return the LatticeVal object that corresponds to the
520 /// value/field pair. This function handles the case when the value hasn't
521 /// been seen yet by properly seeding constants etc.
522 LatticeVal &getStructValueState(Value *V, unsigned i) {
523 assert(V->getType()->isStructTy() && "Should use getValueState");
524 assert(i < cast<StructType>(V->getType())->getNumElements() &&
525 "Invalid element #");
527 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
528 bool> I = StructValueState.insert(
529 std::make_pair(std::make_pair(V, i), LatticeVal()));
530 LatticeVal &LV = I.first->second;
532 if (!I.second)
533 return LV; // Common case, already in the map.
535 if (auto *C = dyn_cast<Constant>(V)) {
536 Constant *Elt = C->getAggregateElement(i);
538 if (!Elt)
539 LV.markOverdefined(); // Unknown sort of constant.
540 else if (isa<UndefValue>(Elt))
541 ; // Undef values remain unknown.
542 else
543 LV.markConstant(Elt); // Constants are constant.
546 // All others are underdefined by default.
547 return LV;
550 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
551 /// work list if it is not already executable.
552 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
553 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
554 return false; // This edge is already known to be executable!
556 if (!MarkBlockExecutable(Dest)) {
557 // If the destination is already executable, we just made an *edge*
558 // feasible that wasn't before. Revisit the PHI nodes in the block
559 // because they have potentially new operands.
560 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
561 << " -> " << Dest->getName() << '\n');
563 for (PHINode &PN : Dest->phis())
564 visitPHINode(PN);
566 return true;
569 // getFeasibleSuccessors - Return a vector of booleans to indicate which
570 // successors are reachable from a given terminator instruction.
571 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
573 // OperandChangedState - This method is invoked on all of the users of an
574 // instruction that was just changed state somehow. Based on this
575 // information, we need to update the specified user of this instruction.
576 void OperandChangedState(Instruction *I) {
577 if (BBExecutable.count(I->getParent())) // Inst is executable?
578 visit(*I);
581 // Add U as additional user of V.
582 void addAdditionalUser(Value *V, User *U) {
583 auto Iter = AdditionalUsers.insert({V, {}});
584 Iter.first->second.insert(U);
587 // Mark I's users as changed, including AdditionalUsers.
588 void markUsersAsChanged(Value *I) {
589 for (User *U : I->users())
590 if (auto *UI = dyn_cast<Instruction>(U))
591 OperandChangedState(UI);
593 auto Iter = AdditionalUsers.find(I);
594 if (Iter != AdditionalUsers.end()) {
595 for (User *U : Iter->second)
596 if (auto *UI = dyn_cast<Instruction>(U))
597 OperandChangedState(UI);
601 private:
602 friend class InstVisitor<SCCPSolver>;
604 // visit implementations - Something changed in this instruction. Either an
605 // operand made a transition, or the instruction is newly executable. Change
606 // the value type of I to reflect these changes if appropriate.
607 void visitPHINode(PHINode &I);
609 // Terminators
611 void visitReturnInst(ReturnInst &I);
612 void visitTerminator(Instruction &TI);
614 void visitCastInst(CastInst &I);
615 void visitSelectInst(SelectInst &I);
616 void visitBinaryOperator(Instruction &I);
617 void visitCmpInst(CmpInst &I);
618 void visitExtractValueInst(ExtractValueInst &EVI);
619 void visitInsertValueInst(InsertValueInst &IVI);
621 void visitCatchSwitchInst(CatchSwitchInst &CPI) {
622 markOverdefined(&CPI);
623 visitTerminator(CPI);
626 // Instructions that cannot be folded away.
628 void visitStoreInst (StoreInst &I);
629 void visitLoadInst (LoadInst &I);
630 void visitGetElementPtrInst(GetElementPtrInst &I);
632 void visitCallInst (CallInst &I) {
633 visitCallSite(&I);
636 void visitInvokeInst (InvokeInst &II) {
637 visitCallSite(&II);
638 visitTerminator(II);
641 void visitCallBrInst (CallBrInst &CBI) {
642 visitCallSite(&CBI);
643 visitTerminator(CBI);
646 void visitCallSite (CallSite CS);
647 void visitResumeInst (ResumeInst &I) { /*returns void*/ }
648 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ }
649 void visitFenceInst (FenceInst &I) { /*returns void*/ }
651 void visitInstruction(Instruction &I) {
652 // All the instructions we don't do any special handling for just
653 // go to overdefined.
654 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
655 markOverdefined(&I);
659 } // end anonymous namespace
661 // getFeasibleSuccessors - Return a vector of booleans to indicate which
662 // successors are reachable from a given terminator instruction.
663 void SCCPSolver::getFeasibleSuccessors(Instruction &TI,
664 SmallVectorImpl<bool> &Succs) {
665 Succs.resize(TI.getNumSuccessors());
666 if (auto *BI = dyn_cast<BranchInst>(&TI)) {
667 if (BI->isUnconditional()) {
668 Succs[0] = true;
669 return;
672 LatticeVal BCValue = getValueState(BI->getCondition());
673 ConstantInt *CI = BCValue.getConstantInt();
674 if (!CI) {
675 // Overdefined condition variables, and branches on unfoldable constant
676 // conditions, mean the branch could go either way.
677 if (!BCValue.isUnknown())
678 Succs[0] = Succs[1] = true;
679 return;
682 // Constant condition variables mean the branch can only go a single way.
683 Succs[CI->isZero()] = true;
684 return;
687 // Unwinding instructions successors are always executable.
688 if (TI.isExceptionalTerminator()) {
689 Succs.assign(TI.getNumSuccessors(), true);
690 return;
693 if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
694 if (!SI->getNumCases()) {
695 Succs[0] = true;
696 return;
698 LatticeVal SCValue = getValueState(SI->getCondition());
699 ConstantInt *CI = SCValue.getConstantInt();
701 if (!CI) { // Overdefined or unknown condition?
702 // All destinations are executable!
703 if (!SCValue.isUnknown())
704 Succs.assign(TI.getNumSuccessors(), true);
705 return;
708 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
709 return;
712 // In case of indirect branch and its address is a blockaddress, we mark
713 // the target as executable.
714 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
715 // Casts are folded by visitCastInst.
716 LatticeVal IBRValue = getValueState(IBR->getAddress());
717 BlockAddress *Addr = IBRValue.getBlockAddress();
718 if (!Addr) { // Overdefined or unknown condition?
719 // All destinations are executable!
720 if (!IBRValue.isUnknown())
721 Succs.assign(TI.getNumSuccessors(), true);
722 return;
725 BasicBlock* T = Addr->getBasicBlock();
726 assert(Addr->getFunction() == T->getParent() &&
727 "Block address of a different function ?");
728 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
729 // This is the target.
730 if (IBR->getDestination(i) == T) {
731 Succs[i] = true;
732 return;
736 // If we didn't find our destination in the IBR successor list, then we
737 // have undefined behavior. Its ok to assume no successor is executable.
738 return;
741 // In case of callbr, we pessimistically assume that all successors are
742 // feasible.
743 if (isa<CallBrInst>(&TI)) {
744 Succs.assign(TI.getNumSuccessors(), true);
745 return;
748 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
749 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
752 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
753 // block to the 'To' basic block is currently feasible.
754 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
755 // Check if we've called markEdgeExecutable on the edge yet. (We could
756 // be more aggressive and try to consider edges which haven't been marked
757 // yet, but there isn't any need.)
758 return KnownFeasibleEdges.count(Edge(From, To));
761 // visit Implementations - Something changed in this instruction, either an
762 // operand made a transition, or the instruction is newly executable. Change
763 // the value type of I to reflect these changes if appropriate. This method
764 // makes sure to do the following actions:
766 // 1. If a phi node merges two constants in, and has conflicting value coming
767 // from different branches, or if the PHI node merges in an overdefined
768 // value, then the PHI node becomes overdefined.
769 // 2. If a phi node merges only constants in, and they all agree on value, the
770 // PHI node becomes a constant value equal to that.
771 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
772 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
773 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
774 // 6. If a conditional branch has a value that is constant, make the selected
775 // destination executable
776 // 7. If a conditional branch has a value that is overdefined, make all
777 // successors executable.
778 void SCCPSolver::visitPHINode(PHINode &PN) {
779 // If this PN returns a struct, just mark the result overdefined.
780 // TODO: We could do a lot better than this if code actually uses this.
781 if (PN.getType()->isStructTy())
782 return (void)markOverdefined(&PN);
784 if (getValueState(&PN).isOverdefined())
785 return; // Quick exit
787 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
788 // and slow us down a lot. Just mark them overdefined.
789 if (PN.getNumIncomingValues() > 64)
790 return (void)markOverdefined(&PN);
792 // Look at all of the executable operands of the PHI node. If any of them
793 // are overdefined, the PHI becomes overdefined as well. If they are all
794 // constant, and they agree with each other, the PHI becomes the identical
795 // constant. If they are constant and don't agree, the PHI is overdefined.
796 // If there are no executable operands, the PHI remains unknown.
797 Constant *OperandVal = nullptr;
798 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
799 LatticeVal IV = getValueState(PN.getIncomingValue(i));
800 if (IV.isUnknown()) continue; // Doesn't influence PHI node.
802 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
803 continue;
805 if (IV.isOverdefined()) // PHI node becomes overdefined!
806 return (void)markOverdefined(&PN);
808 if (!OperandVal) { // Grab the first value.
809 OperandVal = IV.getConstant();
810 continue;
813 // There is already a reachable operand. If we conflict with it,
814 // then the PHI node becomes overdefined. If we agree with it, we
815 // can continue on.
817 // Check to see if there are two different constants merging, if so, the PHI
818 // node is overdefined.
819 if (IV.getConstant() != OperandVal)
820 return (void)markOverdefined(&PN);
823 // If we exited the loop, this means that the PHI node only has constant
824 // arguments that agree with each other(and OperandVal is the constant) or
825 // OperandVal is null because there are no defined incoming arguments. If
826 // this is the case, the PHI remains unknown.
827 if (OperandVal)
828 markConstant(&PN, OperandVal); // Acquire operand value
831 void SCCPSolver::visitReturnInst(ReturnInst &I) {
832 if (I.getNumOperands() == 0) return; // ret void
834 Function *F = I.getParent()->getParent();
835 Value *ResultOp = I.getOperand(0);
837 // If we are tracking the return value of this function, merge it in.
838 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
839 DenseMap<Function*, LatticeVal>::iterator TFRVI =
840 TrackedRetVals.find(F);
841 if (TFRVI != TrackedRetVals.end()) {
842 mergeInValue(TFRVI->second, F, getValueState(ResultOp));
843 return;
847 // Handle functions that return multiple values.
848 if (!TrackedMultipleRetVals.empty()) {
849 if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
850 if (MRVFunctionsTracked.count(F))
851 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
852 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
853 getStructValueState(ResultOp, i));
857 void SCCPSolver::visitTerminator(Instruction &TI) {
858 SmallVector<bool, 16> SuccFeasible;
859 getFeasibleSuccessors(TI, SuccFeasible);
861 BasicBlock *BB = TI.getParent();
863 // Mark all feasible successors executable.
864 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
865 if (SuccFeasible[i])
866 markEdgeExecutable(BB, TI.getSuccessor(i));
869 void SCCPSolver::visitCastInst(CastInst &I) {
870 LatticeVal OpSt = getValueState(I.getOperand(0));
871 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand
872 markOverdefined(&I);
873 else if (OpSt.isConstant()) {
874 // Fold the constant as we build.
875 Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(),
876 I.getType(), DL);
877 if (isa<UndefValue>(C))
878 return;
879 // Propagate constant value
880 markConstant(&I, C);
884 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
885 // If this returns a struct, mark all elements over defined, we don't track
886 // structs in structs.
887 if (EVI.getType()->isStructTy())
888 return (void)markOverdefined(&EVI);
890 // If this is extracting from more than one level of struct, we don't know.
891 if (EVI.getNumIndices() != 1)
892 return (void)markOverdefined(&EVI);
894 Value *AggVal = EVI.getAggregateOperand();
895 if (AggVal->getType()->isStructTy()) {
896 unsigned i = *EVI.idx_begin();
897 LatticeVal EltVal = getStructValueState(AggVal, i);
898 mergeInValue(getValueState(&EVI), &EVI, EltVal);
899 } else {
900 // Otherwise, must be extracting from an array.
901 return (void)markOverdefined(&EVI);
905 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
906 auto *STy = dyn_cast<StructType>(IVI.getType());
907 if (!STy)
908 return (void)markOverdefined(&IVI);
910 // If this has more than one index, we can't handle it, drive all results to
911 // undef.
912 if (IVI.getNumIndices() != 1)
913 return (void)markOverdefined(&IVI);
915 Value *Aggr = IVI.getAggregateOperand();
916 unsigned Idx = *IVI.idx_begin();
918 // Compute the result based on what we're inserting.
919 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
920 // This passes through all values that aren't the inserted element.
921 if (i != Idx) {
922 LatticeVal EltVal = getStructValueState(Aggr, i);
923 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
924 continue;
927 Value *Val = IVI.getInsertedValueOperand();
928 if (Val->getType()->isStructTy())
929 // We don't track structs in structs.
930 markOverdefined(getStructValueState(&IVI, i), &IVI);
931 else {
932 LatticeVal InVal = getValueState(Val);
933 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
938 void SCCPSolver::visitSelectInst(SelectInst &I) {
939 // If this select returns a struct, just mark the result overdefined.
940 // TODO: We could do a lot better than this if code actually uses this.
941 if (I.getType()->isStructTy())
942 return (void)markOverdefined(&I);
944 LatticeVal CondValue = getValueState(I.getCondition());
945 if (CondValue.isUnknown())
946 return;
948 if (ConstantInt *CondCB = CondValue.getConstantInt()) {
949 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
950 mergeInValue(&I, getValueState(OpVal));
951 return;
954 // Otherwise, the condition is overdefined or a constant we can't evaluate.
955 // See if we can produce something better than overdefined based on the T/F
956 // value.
957 LatticeVal TVal = getValueState(I.getTrueValue());
958 LatticeVal FVal = getValueState(I.getFalseValue());
960 // select ?, C, C -> C.
961 if (TVal.isConstant() && FVal.isConstant() &&
962 TVal.getConstant() == FVal.getConstant())
963 return (void)markConstant(&I, FVal.getConstant());
965 if (TVal.isUnknown()) // select ?, undef, X -> X.
966 return (void)mergeInValue(&I, FVal);
967 if (FVal.isUnknown()) // select ?, X, undef -> X.
968 return (void)mergeInValue(&I, TVal);
969 markOverdefined(&I);
972 // Handle Binary Operators.
973 void SCCPSolver::visitBinaryOperator(Instruction &I) {
974 LatticeVal V1State = getValueState(I.getOperand(0));
975 LatticeVal V2State = getValueState(I.getOperand(1));
977 LatticeVal &IV = ValueState[&I];
978 if (IV.isOverdefined()) return;
980 if (V1State.isConstant() && V2State.isConstant()) {
981 Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
982 V2State.getConstant());
983 // X op Y -> undef.
984 if (isa<UndefValue>(C))
985 return;
986 return (void)markConstant(IV, &I, C);
989 // If something is undef, wait for it to resolve.
990 if (!V1State.isOverdefined() && !V2State.isOverdefined())
991 return;
993 // Otherwise, one of our operands is overdefined. Try to produce something
994 // better than overdefined with some tricks.
995 // If this is 0 / Y, it doesn't matter that the second operand is
996 // overdefined, and we can replace it with zero.
997 if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv)
998 if (V1State.isConstant() && V1State.getConstant()->isNullValue())
999 return (void)markConstant(IV, &I, V1State.getConstant());
1001 // If this is:
1002 // -> AND/MUL with 0
1003 // -> OR with -1
1004 // it doesn't matter that the other operand is overdefined.
1005 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul ||
1006 I.getOpcode() == Instruction::Or) {
1007 LatticeVal *NonOverdefVal = nullptr;
1008 if (!V1State.isOverdefined())
1009 NonOverdefVal = &V1State;
1010 else if (!V2State.isOverdefined())
1011 NonOverdefVal = &V2State;
1013 if (NonOverdefVal) {
1014 if (NonOverdefVal->isUnknown())
1015 return;
1017 if (I.getOpcode() == Instruction::And ||
1018 I.getOpcode() == Instruction::Mul) {
1019 // X and 0 = 0
1020 // X * 0 = 0
1021 if (NonOverdefVal->getConstant()->isNullValue())
1022 return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
1023 } else {
1024 // X or -1 = -1
1025 if (ConstantInt *CI = NonOverdefVal->getConstantInt())
1026 if (CI->isMinusOne())
1027 return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
1032 markOverdefined(&I);
1035 // Handle ICmpInst instruction.
1036 void SCCPSolver::visitCmpInst(CmpInst &I) {
1037 // Do not cache this lookup, getValueState calls later in the function might
1038 // invalidate the reference.
1039 if (ValueState[&I].isOverdefined()) return;
1041 Value *Op1 = I.getOperand(0);
1042 Value *Op2 = I.getOperand(1);
1044 // For parameters, use ParamState which includes constant range info if
1045 // available.
1046 auto V1Param = ParamState.find(Op1);
1047 ValueLatticeElement V1State = (V1Param != ParamState.end())
1048 ? V1Param->second
1049 : getValueState(Op1).toValueLattice();
1051 auto V2Param = ParamState.find(Op2);
1052 ValueLatticeElement V2State = V2Param != ParamState.end()
1053 ? V2Param->second
1054 : getValueState(Op2).toValueLattice();
1056 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
1057 if (C) {
1058 if (isa<UndefValue>(C))
1059 return;
1060 LatticeVal CV;
1061 CV.markConstant(C);
1062 mergeInValue(&I, CV);
1063 return;
1066 // If operands are still unknown, wait for it to resolve.
1067 if (!V1State.isOverdefined() && !V2State.isOverdefined() &&
1068 !ValueState[&I].isConstant())
1069 return;
1071 markOverdefined(&I);
1074 // Handle getelementptr instructions. If all operands are constants then we
1075 // can turn this into a getelementptr ConstantExpr.
1076 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1077 if (ValueState[&I].isOverdefined()) return;
1079 SmallVector<Constant*, 8> Operands;
1080 Operands.reserve(I.getNumOperands());
1082 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1083 LatticeVal State = getValueState(I.getOperand(i));
1084 if (State.isUnknown())
1085 return; // Operands are not resolved yet.
1087 if (State.isOverdefined())
1088 return (void)markOverdefined(&I);
1090 assert(State.isConstant() && "Unknown state!");
1091 Operands.push_back(State.getConstant());
1094 Constant *Ptr = Operands[0];
1095 auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
1096 Constant *C =
1097 ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
1098 if (isa<UndefValue>(C))
1099 return;
1100 markConstant(&I, C);
1103 void SCCPSolver::visitStoreInst(StoreInst &SI) {
1104 // If this store is of a struct, ignore it.
1105 if (SI.getOperand(0)->getType()->isStructTy())
1106 return;
1108 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1109 return;
1111 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1112 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1113 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1115 // Get the value we are storing into the global, then merge it.
1116 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1117 if (I->second.isOverdefined())
1118 TrackedGlobals.erase(I); // No need to keep tracking this!
1121 // Handle load instructions. If the operand is a constant pointer to a constant
1122 // global, we can replace the load with the loaded constant value!
1123 void SCCPSolver::visitLoadInst(LoadInst &I) {
1124 // If this load is of a struct, just mark the result overdefined.
1125 if (I.getType()->isStructTy())
1126 return (void)markOverdefined(&I);
1128 LatticeVal PtrVal = getValueState(I.getOperand(0));
1129 if (PtrVal.isUnknown()) return; // The pointer is not resolved yet!
1131 LatticeVal &IV = ValueState[&I];
1132 if (IV.isOverdefined()) return;
1134 if (!PtrVal.isConstant() || I.isVolatile())
1135 return (void)markOverdefined(IV, &I);
1137 Constant *Ptr = PtrVal.getConstant();
1139 // load null is undefined.
1140 if (isa<ConstantPointerNull>(Ptr)) {
1141 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1142 return (void)markOverdefined(IV, &I);
1143 else
1144 return;
1147 // Transform load (constant global) into the value loaded.
1148 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1149 if (!TrackedGlobals.empty()) {
1150 // If we are tracking this global, merge in the known value for it.
1151 DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1152 TrackedGlobals.find(GV);
1153 if (It != TrackedGlobals.end()) {
1154 mergeInValue(IV, &I, It->second);
1155 return;
1160 // Transform load from a constant into a constant if possible.
1161 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
1162 if (isa<UndefValue>(C))
1163 return;
1164 return (void)markConstant(IV, &I, C);
1167 // Otherwise we cannot say for certain what value this load will produce.
1168 // Bail out.
1169 markOverdefined(IV, &I);
1172 void SCCPSolver::visitCallSite(CallSite CS) {
1173 Function *F = CS.getCalledFunction();
1174 Instruction *I = CS.getInstruction();
1176 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1177 if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1178 if (ValueState[I].isOverdefined())
1179 return;
1181 auto *PI = getPredicateInfoFor(I);
1182 if (!PI)
1183 return;
1185 Value *CopyOf = I->getOperand(0);
1186 auto *PBranch = dyn_cast<PredicateBranch>(PI);
1187 if (!PBranch) {
1188 mergeInValue(ValueState[I], I, getValueState(CopyOf));
1189 return;
1192 Value *Cond = PBranch->Condition;
1194 // Everything below relies on the condition being a comparison.
1195 auto *Cmp = dyn_cast<CmpInst>(Cond);
1196 if (!Cmp) {
1197 mergeInValue(ValueState[I], I, getValueState(CopyOf));
1198 return;
1201 Value *CmpOp0 = Cmp->getOperand(0);
1202 Value *CmpOp1 = Cmp->getOperand(1);
1203 if (CopyOf != CmpOp0 && CopyOf != CmpOp1) {
1204 mergeInValue(ValueState[I], I, getValueState(CopyOf));
1205 return;
1208 if (CmpOp0 != CopyOf)
1209 std::swap(CmpOp0, CmpOp1);
1211 LatticeVal OriginalVal = getValueState(CopyOf);
1212 LatticeVal EqVal = getValueState(CmpOp1);
1213 LatticeVal &IV = ValueState[I];
1214 if (PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_EQ) {
1215 addAdditionalUser(CmpOp1, I);
1216 if (OriginalVal.isConstant())
1217 mergeInValue(IV, I, OriginalVal);
1218 else
1219 mergeInValue(IV, I, EqVal);
1220 return;
1222 if (!PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_NE) {
1223 addAdditionalUser(CmpOp1, I);
1224 if (OriginalVal.isConstant())
1225 mergeInValue(IV, I, OriginalVal);
1226 else
1227 mergeInValue(IV, I, EqVal);
1228 return;
1231 return (void)mergeInValue(IV, I, getValueState(CopyOf));
1235 // The common case is that we aren't tracking the callee, either because we
1236 // are not doing interprocedural analysis or the callee is indirect, or is
1237 // external. Handle these cases first.
1238 if (!F || F->isDeclaration()) {
1239 CallOverdefined:
1240 // Void return and not tracking callee, just bail.
1241 if (I->getType()->isVoidTy()) return;
1243 // Otherwise, if we have a single return value case, and if the function is
1244 // a declaration, maybe we can constant fold it.
1245 if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1246 canConstantFoldCallTo(cast<CallBase>(CS.getInstruction()), F)) {
1247 SmallVector<Constant*, 8> Operands;
1248 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1249 AI != E; ++AI) {
1250 if (AI->get()->getType()->isStructTy())
1251 return markOverdefined(I); // Can't handle struct args.
1252 LatticeVal State = getValueState(*AI);
1254 if (State.isUnknown())
1255 return; // Operands are not resolved yet.
1256 if (State.isOverdefined())
1257 return (void)markOverdefined(I);
1258 assert(State.isConstant() && "Unknown state!");
1259 Operands.push_back(State.getConstant());
1262 if (getValueState(I).isOverdefined())
1263 return;
1265 // If we can constant fold this, mark the result of the call as a
1266 // constant.
1267 if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()), F,
1268 Operands, TLI)) {
1269 // call -> undef.
1270 if (isa<UndefValue>(C))
1271 return;
1272 return (void)markConstant(I, C);
1276 // Otherwise, we don't know anything about this call, mark it overdefined.
1277 return (void)markOverdefined(I);
1280 // If this is a local function that doesn't have its address taken, mark its
1281 // entry block executable and merge in the actual arguments to the call into
1282 // the formal arguments of the function.
1283 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1284 MarkBlockExecutable(&F->front());
1286 // Propagate information from this call site into the callee.
1287 CallSite::arg_iterator CAI = CS.arg_begin();
1288 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1289 AI != E; ++AI, ++CAI) {
1290 // If this argument is byval, and if the function is not readonly, there
1291 // will be an implicit copy formed of the input aggregate.
1292 if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1293 markOverdefined(&*AI);
1294 continue;
1297 if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1298 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1299 LatticeVal CallArg = getStructValueState(*CAI, i);
1300 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
1302 } else {
1303 // Most other parts of the Solver still only use the simpler value
1304 // lattice, so we propagate changes for parameters to both lattices.
1305 LatticeVal ConcreteArgument = getValueState(*CAI);
1306 bool ParamChanged =
1307 getParamState(&*AI).mergeIn(ConcreteArgument.toValueLattice(), DL);
1308 bool ValueChanged = mergeInValue(&*AI, ConcreteArgument);
1309 // Add argument to work list, if the state of a parameter changes but
1310 // ValueState does not change (because it is already overdefined there),
1311 // We have to take changes in ParamState into account, as it is used
1312 // when evaluating Cmp instructions.
1313 if (!ValueChanged && ParamChanged)
1314 pushToWorkList(ValueState[&*AI], &*AI);
1319 // If this is a single/zero retval case, see if we're tracking the function.
1320 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1321 if (!MRVFunctionsTracked.count(F))
1322 goto CallOverdefined; // Not tracking this callee.
1324 // If we are tracking this callee, propagate the result of the function
1325 // into this call site.
1326 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1327 mergeInValue(getStructValueState(I, i), I,
1328 TrackedMultipleRetVals[std::make_pair(F, i)]);
1329 } else {
1330 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1331 if (TFRVI == TrackedRetVals.end())
1332 goto CallOverdefined; // Not tracking this callee.
1334 // If so, propagate the return value of the callee into this call result.
1335 mergeInValue(I, TFRVI->second);
1339 void SCCPSolver::Solve() {
1340 // Process the work lists until they are empty!
1341 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1342 !OverdefinedInstWorkList.empty()) {
1343 // Process the overdefined instruction's work list first, which drives other
1344 // things to overdefined more quickly.
1345 while (!OverdefinedInstWorkList.empty()) {
1346 Value *I = OverdefinedInstWorkList.pop_back_val();
1348 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1350 // "I" got into the work list because it either made the transition from
1351 // bottom to constant, or to overdefined.
1353 // Anything on this worklist that is overdefined need not be visited
1354 // since all of its users will have already been marked as overdefined
1355 // Update all of the users of this instruction's value.
1357 markUsersAsChanged(I);
1360 // Process the instruction work list.
1361 while (!InstWorkList.empty()) {
1362 Value *I = InstWorkList.pop_back_val();
1364 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1366 // "I" got into the work list because it made the transition from undef to
1367 // constant.
1369 // Anything on this worklist that is overdefined need not be visited
1370 // since all of its users will have already been marked as overdefined.
1371 // Update all of the users of this instruction's value.
1373 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1374 markUsersAsChanged(I);
1377 // Process the basic block work list.
1378 while (!BBWorkList.empty()) {
1379 BasicBlock *BB = BBWorkList.back();
1380 BBWorkList.pop_back();
1382 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1384 // Notify all instructions in this basic block that they are newly
1385 // executable.
1386 visit(BB);
1391 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1392 /// that branches on undef values cannot reach any of their successors.
1393 /// However, this is not a safe assumption. After we solve dataflow, this
1394 /// method should be use to handle this. If this returns true, the solver
1395 /// should be rerun.
1397 /// This method handles this by finding an unresolved branch and marking it one
1398 /// of the edges from the block as being feasible, even though the condition
1399 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1400 /// CFG and only slightly pessimizes the analysis results (by marking one,
1401 /// potentially infeasible, edge feasible). This cannot usefully modify the
1402 /// constraints on the condition of the branch, as that would impact other users
1403 /// of the value.
1405 /// This scan also checks for values that use undefs, whose results are actually
1406 /// defined. For example, 'zext i8 undef to i32' should produce all zeros
1407 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1408 /// even if X isn't defined.
1409 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1410 for (BasicBlock &BB : F) {
1411 if (!BBExecutable.count(&BB))
1412 continue;
1414 for (Instruction &I : BB) {
1415 // Look for instructions which produce undef values.
1416 if (I.getType()->isVoidTy()) continue;
1418 if (auto *STy = dyn_cast<StructType>(I.getType())) {
1419 // Only a few things that can be structs matter for undef.
1421 // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1422 if (CallSite CS = CallSite(&I))
1423 if (Function *F = CS.getCalledFunction())
1424 if (MRVFunctionsTracked.count(F))
1425 continue;
1427 // extractvalue and insertvalue don't need to be marked; they are
1428 // tracked as precisely as their operands.
1429 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1430 continue;
1432 // Send the results of everything else to overdefined. We could be
1433 // more precise than this but it isn't worth bothering.
1434 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1435 LatticeVal &LV = getStructValueState(&I, i);
1436 if (LV.isUnknown())
1437 markOverdefined(LV, &I);
1439 continue;
1442 LatticeVal &LV = getValueState(&I);
1443 if (!LV.isUnknown()) continue;
1445 // extractvalue is safe; check here because the argument is a struct.
1446 if (isa<ExtractValueInst>(I))
1447 continue;
1449 // Compute the operand LatticeVals, for convenience below.
1450 // Anything taking a struct is conservatively assumed to require
1451 // overdefined markings.
1452 if (I.getOperand(0)->getType()->isStructTy()) {
1453 markOverdefined(&I);
1454 return true;
1456 LatticeVal Op0LV = getValueState(I.getOperand(0));
1457 LatticeVal Op1LV;
1458 if (I.getNumOperands() == 2) {
1459 if (I.getOperand(1)->getType()->isStructTy()) {
1460 markOverdefined(&I);
1461 return true;
1464 Op1LV = getValueState(I.getOperand(1));
1466 // If this is an instructions whose result is defined even if the input is
1467 // not fully defined, propagate the information.
1468 Type *ITy = I.getType();
1469 switch (I.getOpcode()) {
1470 case Instruction::Add:
1471 case Instruction::Sub:
1472 case Instruction::Trunc:
1473 case Instruction::FPTrunc:
1474 case Instruction::BitCast:
1475 break; // Any undef -> undef
1476 case Instruction::FSub:
1477 case Instruction::FAdd:
1478 case Instruction::FMul:
1479 case Instruction::FDiv:
1480 case Instruction::FRem:
1481 // Floating-point binary operation: be conservative.
1482 if (Op0LV.isUnknown() && Op1LV.isUnknown())
1483 markForcedConstant(&I, Constant::getNullValue(ITy));
1484 else
1485 markOverdefined(&I);
1486 return true;
1487 case Instruction::ZExt:
1488 case Instruction::SExt:
1489 case Instruction::FPToUI:
1490 case Instruction::FPToSI:
1491 case Instruction::FPExt:
1492 case Instruction::PtrToInt:
1493 case Instruction::IntToPtr:
1494 case Instruction::SIToFP:
1495 case Instruction::UIToFP:
1496 // undef -> 0; some outputs are impossible
1497 markForcedConstant(&I, Constant::getNullValue(ITy));
1498 return true;
1499 case Instruction::Mul:
1500 case Instruction::And:
1501 // Both operands undef -> undef
1502 if (Op0LV.isUnknown() && Op1LV.isUnknown())
1503 break;
1504 // undef * X -> 0. X could be zero.
1505 // undef & X -> 0. X could be zero.
1506 markForcedConstant(&I, Constant::getNullValue(ITy));
1507 return true;
1508 case Instruction::Or:
1509 // Both operands undef -> undef
1510 if (Op0LV.isUnknown() && Op1LV.isUnknown())
1511 break;
1512 // undef | X -> -1. X could be -1.
1513 markForcedConstant(&I, Constant::getAllOnesValue(ITy));
1514 return true;
1515 case Instruction::Xor:
1516 // undef ^ undef -> 0; strictly speaking, this is not strictly
1517 // necessary, but we try to be nice to people who expect this
1518 // behavior in simple cases
1519 if (Op0LV.isUnknown() && Op1LV.isUnknown()) {
1520 markForcedConstant(&I, Constant::getNullValue(ITy));
1521 return true;
1523 // undef ^ X -> undef
1524 break;
1525 case Instruction::SDiv:
1526 case Instruction::UDiv:
1527 case Instruction::SRem:
1528 case Instruction::URem:
1529 // X / undef -> undef. No change.
1530 // X % undef -> undef. No change.
1531 if (Op1LV.isUnknown()) break;
1533 // X / 0 -> undef. No change.
1534 // X % 0 -> undef. No change.
1535 if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue())
1536 break;
1538 // undef / X -> 0. X could be maxint.
1539 // undef % X -> 0. X could be 1.
1540 markForcedConstant(&I, Constant::getNullValue(ITy));
1541 return true;
1542 case Instruction::AShr:
1543 // X >>a undef -> undef.
1544 if (Op1LV.isUnknown()) break;
1546 // Shifting by the bitwidth or more is undefined.
1547 if (Op1LV.isConstant()) {
1548 if (auto *ShiftAmt = Op1LV.getConstantInt())
1549 if (ShiftAmt->getLimitedValue() >=
1550 ShiftAmt->getType()->getScalarSizeInBits())
1551 break;
1554 // undef >>a X -> 0
1555 markForcedConstant(&I, Constant::getNullValue(ITy));
1556 return true;
1557 case Instruction::LShr:
1558 case Instruction::Shl:
1559 // X << undef -> undef.
1560 // X >> undef -> undef.
1561 if (Op1LV.isUnknown()) break;
1563 // Shifting by the bitwidth or more is undefined.
1564 if (Op1LV.isConstant()) {
1565 if (auto *ShiftAmt = Op1LV.getConstantInt())
1566 if (ShiftAmt->getLimitedValue() >=
1567 ShiftAmt->getType()->getScalarSizeInBits())
1568 break;
1571 // undef << X -> 0
1572 // undef >> X -> 0
1573 markForcedConstant(&I, Constant::getNullValue(ITy));
1574 return true;
1575 case Instruction::Select:
1576 Op1LV = getValueState(I.getOperand(1));
1577 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1578 if (Op0LV.isUnknown()) {
1579 if (!Op1LV.isConstant()) // Pick the constant one if there is any.
1580 Op1LV = getValueState(I.getOperand(2));
1581 } else if (Op1LV.isUnknown()) {
1582 // c ? undef : undef -> undef. No change.
1583 Op1LV = getValueState(I.getOperand(2));
1584 if (Op1LV.isUnknown())
1585 break;
1586 // Otherwise, c ? undef : x -> x.
1587 } else {
1588 // Leave Op1LV as Operand(1)'s LatticeValue.
1591 if (Op1LV.isConstant())
1592 markForcedConstant(&I, Op1LV.getConstant());
1593 else
1594 markOverdefined(&I);
1595 return true;
1596 case Instruction::Load:
1597 // A load here means one of two things: a load of undef from a global,
1598 // a load from an unknown pointer. Either way, having it return undef
1599 // is okay.
1600 break;
1601 case Instruction::ICmp:
1602 // X == undef -> undef. Other comparisons get more complicated.
1603 Op0LV = getValueState(I.getOperand(0));
1604 Op1LV = getValueState(I.getOperand(1));
1606 if ((Op0LV.isUnknown() || Op1LV.isUnknown()) &&
1607 cast<ICmpInst>(&I)->isEquality())
1608 break;
1609 markOverdefined(&I);
1610 return true;
1611 case Instruction::Call:
1612 case Instruction::Invoke:
1613 case Instruction::CallBr:
1614 // There are two reasons a call can have an undef result
1615 // 1. It could be tracked.
1616 // 2. It could be constant-foldable.
1617 // Because of the way we solve return values, tracked calls must
1618 // never be marked overdefined in ResolvedUndefsIn.
1619 if (Function *F = CallSite(&I).getCalledFunction())
1620 if (TrackedRetVals.count(F))
1621 break;
1623 // If the call is constant-foldable, we mark it overdefined because
1624 // we do not know what return values are valid.
1625 markOverdefined(&I);
1626 return true;
1627 default:
1628 // If we don't know what should happen here, conservatively mark it
1629 // overdefined.
1630 markOverdefined(&I);
1631 return true;
1635 // Check to see if we have a branch or switch on an undefined value. If so
1636 // we force the branch to go one way or the other to make the successor
1637 // values live. It doesn't really matter which way we force it.
1638 Instruction *TI = BB.getTerminator();
1639 if (auto *BI = dyn_cast<BranchInst>(TI)) {
1640 if (!BI->isConditional()) continue;
1641 if (!getValueState(BI->getCondition()).isUnknown())
1642 continue;
1644 // If the input to SCCP is actually branch on undef, fix the undef to
1645 // false.
1646 if (isa<UndefValue>(BI->getCondition())) {
1647 BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1648 markEdgeExecutable(&BB, TI->getSuccessor(1));
1649 return true;
1652 // Otherwise, it is a branch on a symbolic value which is currently
1653 // considered to be undef. Make sure some edge is executable, so a
1654 // branch on "undef" always flows somewhere.
1655 // FIXME: Distinguish between dead code and an LLVM "undef" value.
1656 BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
1657 if (markEdgeExecutable(&BB, DefaultSuccessor))
1658 return true;
1660 continue;
1663 if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
1664 // Indirect branch with no successor ?. Its ok to assume it branches
1665 // to no target.
1666 if (IBR->getNumSuccessors() < 1)
1667 continue;
1669 if (!getValueState(IBR->getAddress()).isUnknown())
1670 continue;
1672 // If the input to SCCP is actually branch on undef, fix the undef to
1673 // the first successor of the indirect branch.
1674 if (isa<UndefValue>(IBR->getAddress())) {
1675 IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
1676 markEdgeExecutable(&BB, IBR->getSuccessor(0));
1677 return true;
1680 // Otherwise, it is a branch on a symbolic value which is currently
1681 // considered to be undef. Make sure some edge is executable, so a
1682 // branch on "undef" always flows somewhere.
1683 // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
1684 // we can assume the branch has undefined behavior instead.
1685 BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
1686 if (markEdgeExecutable(&BB, DefaultSuccessor))
1687 return true;
1689 continue;
1692 if (auto *SI = dyn_cast<SwitchInst>(TI)) {
1693 if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown())
1694 continue;
1696 // If the input to SCCP is actually switch on undef, fix the undef to
1697 // the first constant.
1698 if (isa<UndefValue>(SI->getCondition())) {
1699 SI->setCondition(SI->case_begin()->getCaseValue());
1700 markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
1701 return true;
1704 // Otherwise, it is a branch on a symbolic value which is currently
1705 // considered to be undef. Make sure some edge is executable, so a
1706 // branch on "undef" always flows somewhere.
1707 // FIXME: Distinguish between dead code and an LLVM "undef" value.
1708 BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
1709 if (markEdgeExecutable(&BB, DefaultSuccessor))
1710 return true;
1712 continue;
1716 return false;
1719 static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
1720 Constant *Const = nullptr;
1721 if (V->getType()->isStructTy()) {
1722 std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V);
1723 if (llvm::any_of(IVs,
1724 [](const LatticeVal &LV) { return LV.isOverdefined(); }))
1725 return false;
1726 std::vector<Constant *> ConstVals;
1727 auto *ST = dyn_cast<StructType>(V->getType());
1728 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1729 LatticeVal V = IVs[i];
1730 ConstVals.push_back(V.isConstant()
1731 ? V.getConstant()
1732 : UndefValue::get(ST->getElementType(i)));
1734 Const = ConstantStruct::get(ST, ConstVals);
1735 } else {
1736 const LatticeVal &IV = Solver.getLatticeValueFor(V);
1737 if (IV.isOverdefined())
1738 return false;
1740 Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType());
1742 assert(Const && "Constant is nullptr here!");
1744 // Replacing `musttail` instructions with constant breaks `musttail` invariant
1745 // unless the call itself can be removed
1746 CallInst *CI = dyn_cast<CallInst>(V);
1747 if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) {
1748 CallSite CS(CI);
1749 Function *F = CS.getCalledFunction();
1751 // Don't zap returns of the callee
1752 if (F)
1753 Solver.AddMustTailCallee(F);
1755 LLVM_DEBUG(dbgs() << " Can\'t treat the result of musttail call : " << *CI
1756 << " as a constant\n");
1757 return false;
1760 LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
1762 // Replaces all of the uses of a variable with uses of the constant.
1763 V->replaceAllUsesWith(Const);
1764 return true;
1767 // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
1768 // and return true if the function was modified.
1769 static bool runSCCP(Function &F, const DataLayout &DL,
1770 const TargetLibraryInfo *TLI) {
1771 LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1772 SCCPSolver Solver(DL, TLI);
1774 // Mark the first block of the function as being executable.
1775 Solver.MarkBlockExecutable(&F.front());
1777 // Mark all arguments to the function as being overdefined.
1778 for (Argument &AI : F.args())
1779 Solver.markOverdefined(&AI);
1781 // Solve for constants.
1782 bool ResolvedUndefs = true;
1783 while (ResolvedUndefs) {
1784 Solver.Solve();
1785 LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1786 ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1789 bool MadeChanges = false;
1791 // If we decided that there are basic blocks that are dead in this function,
1792 // delete their contents now. Note that we cannot actually delete the blocks,
1793 // as we cannot modify the CFG of the function.
1795 for (BasicBlock &BB : F) {
1796 if (!Solver.isBlockExecutable(&BB)) {
1797 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
1799 ++NumDeadBlocks;
1800 NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB);
1802 MadeChanges = true;
1803 continue;
1806 // Iterate over all of the instructions in a function, replacing them with
1807 // constants if we have found them to be of constant values.
1808 for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
1809 Instruction *Inst = &*BI++;
1810 if (Inst->getType()->isVoidTy() || Inst->isTerminator())
1811 continue;
1813 if (tryToReplaceWithConstant(Solver, Inst)) {
1814 if (isInstructionTriviallyDead(Inst))
1815 Inst->eraseFromParent();
1816 // Hey, we just changed something!
1817 MadeChanges = true;
1818 ++NumInstRemoved;
1823 return MadeChanges;
1826 PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
1827 const DataLayout &DL = F.getParent()->getDataLayout();
1828 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1829 if (!runSCCP(F, DL, &TLI))
1830 return PreservedAnalyses::all();
1832 auto PA = PreservedAnalyses();
1833 PA.preserve<GlobalsAA>();
1834 PA.preserveSet<CFGAnalyses>();
1835 return PA;
1838 namespace {
1840 //===--------------------------------------------------------------------===//
1842 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1843 /// Sparse Conditional Constant Propagator.
1845 class SCCPLegacyPass : public FunctionPass {
1846 public:
1847 // Pass identification, replacement for typeid
1848 static char ID;
1850 SCCPLegacyPass() : FunctionPass(ID) {
1851 initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
1854 void getAnalysisUsage(AnalysisUsage &AU) const override {
1855 AU.addRequired<TargetLibraryInfoWrapperPass>();
1856 AU.addPreserved<GlobalsAAWrapperPass>();
1857 AU.setPreservesCFG();
1860 // runOnFunction - Run the Sparse Conditional Constant Propagation
1861 // algorithm, and return true if the function was modified.
1862 bool runOnFunction(Function &F) override {
1863 if (skipFunction(F))
1864 return false;
1865 const DataLayout &DL = F.getParent()->getDataLayout();
1866 const TargetLibraryInfo *TLI =
1867 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1868 return runSCCP(F, DL, TLI);
1872 } // end anonymous namespace
1874 char SCCPLegacyPass::ID = 0;
1876 INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
1877 "Sparse Conditional Constant Propagation", false, false)
1878 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1879 INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
1880 "Sparse Conditional Constant Propagation", false, false)
1882 // createSCCPPass - This is the public interface to this file.
1883 FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
1885 static void findReturnsToZap(Function &F,
1886 SmallVector<ReturnInst *, 8> &ReturnsToZap,
1887 SCCPSolver &Solver) {
1888 // We can only do this if we know that nothing else can call the function.
1889 if (!Solver.isArgumentTrackedFunction(&F))
1890 return;
1892 // There is a non-removable musttail call site of this function. Zapping
1893 // returns is not allowed.
1894 if (Solver.isMustTailCallee(&F)) {
1895 LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName()
1896 << " due to present musttail call of it\n");
1897 return;
1900 for (BasicBlock &BB : F) {
1901 if (CallInst *CI = BB.getTerminatingMustTailCall()) {
1902 LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
1903 << "musttail call : " << *CI << "\n");
1904 (void)CI;
1905 return;
1908 if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1909 if (!isa<UndefValue>(RI->getOperand(0)))
1910 ReturnsToZap.push_back(RI);
1914 // Update the condition for terminators that are branching on indeterminate
1915 // values, forcing them to use a specific edge.
1916 static void forceIndeterminateEdge(Instruction* I, SCCPSolver &Solver) {
1917 BasicBlock *Dest = nullptr;
1918 Constant *C = nullptr;
1919 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1920 if (!isa<ConstantInt>(SI->getCondition())) {
1921 // Indeterminate switch; use first case value.
1922 Dest = SI->case_begin()->getCaseSuccessor();
1923 C = SI->case_begin()->getCaseValue();
1925 } else if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1926 if (!isa<ConstantInt>(BI->getCondition())) {
1927 // Indeterminate branch; use false.
1928 Dest = BI->getSuccessor(1);
1929 C = ConstantInt::getFalse(BI->getContext());
1931 } else if (IndirectBrInst *IBR = dyn_cast<IndirectBrInst>(I)) {
1932 if (!isa<BlockAddress>(IBR->getAddress()->stripPointerCasts())) {
1933 // Indeterminate indirectbr; use successor 0.
1934 Dest = IBR->getSuccessor(0);
1935 C = BlockAddress::get(IBR->getSuccessor(0));
1937 } else {
1938 llvm_unreachable("Unexpected terminator instruction");
1940 if (C) {
1941 assert(Solver.isEdgeFeasible(I->getParent(), Dest) &&
1942 "Didn't find feasible edge?");
1943 (void)Dest;
1945 I->setOperand(0, C);
1949 bool llvm::runIPSCCP(
1950 Module &M, const DataLayout &DL, const TargetLibraryInfo *TLI,
1951 function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
1952 SCCPSolver Solver(DL, TLI);
1954 // Loop over all functions, marking arguments to those with their addresses
1955 // taken or that are external as overdefined.
1956 for (Function &F : M) {
1957 if (F.isDeclaration())
1958 continue;
1960 Solver.addAnalysis(F, getAnalysis(F));
1962 // Determine if we can track the function's return values. If so, add the
1963 // function to the solver's set of return-tracked functions.
1964 if (canTrackReturnsInterprocedurally(&F))
1965 Solver.AddTrackedFunction(&F);
1967 // Determine if we can track the function's arguments. If so, add the
1968 // function to the solver's set of argument-tracked functions.
1969 if (canTrackArgumentsInterprocedurally(&F)) {
1970 Solver.AddArgumentTrackedFunction(&F);
1971 continue;
1974 // Assume the function is called.
1975 Solver.MarkBlockExecutable(&F.front());
1977 // Assume nothing about the incoming arguments.
1978 for (Argument &AI : F.args())
1979 Solver.markOverdefined(&AI);
1982 // Determine if we can track any of the module's global variables. If so, add
1983 // the global variables we can track to the solver's set of tracked global
1984 // variables.
1985 for (GlobalVariable &G : M.globals()) {
1986 G.removeDeadConstantUsers();
1987 if (canTrackGlobalVariableInterprocedurally(&G))
1988 Solver.TrackValueOfGlobalVariable(&G);
1991 // Solve for constants.
1992 bool ResolvedUndefs = true;
1993 Solver.Solve();
1994 while (ResolvedUndefs) {
1995 LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1996 ResolvedUndefs = false;
1997 for (Function &F : M)
1998 if (Solver.ResolvedUndefsIn(F)) {
1999 // We run Solve() after we resolved an undef in a function, because
2000 // we might deduce a fact that eliminates an undef in another function.
2001 Solver.Solve();
2002 ResolvedUndefs = true;
2006 bool MadeChanges = false;
2008 // Iterate over all of the instructions in the module, replacing them with
2009 // constants if we have found them to be of constant values.
2011 for (Function &F : M) {
2012 if (F.isDeclaration())
2013 continue;
2015 SmallVector<BasicBlock *, 512> BlocksToErase;
2017 if (Solver.isBlockExecutable(&F.front()))
2018 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;
2019 ++AI) {
2020 if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) {
2021 ++IPNumArgsElimed;
2022 continue;
2026 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2027 if (!Solver.isBlockExecutable(&*BB)) {
2028 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
2029 ++NumDeadBlocks;
2031 MadeChanges = true;
2033 if (&*BB != &F.front())
2034 BlocksToErase.push_back(&*BB);
2035 continue;
2038 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
2039 Instruction *Inst = &*BI++;
2040 if (Inst->getType()->isVoidTy())
2041 continue;
2042 if (tryToReplaceWithConstant(Solver, Inst)) {
2043 if (Inst->isSafeToRemove())
2044 Inst->eraseFromParent();
2045 // Hey, we just changed something!
2046 MadeChanges = true;
2047 ++IPNumInstRemoved;
2052 DomTreeUpdater DTU = Solver.getDTU(F);
2053 // Change dead blocks to unreachable. We do it after replacing constants
2054 // in all executable blocks, because changeToUnreachable may remove PHI
2055 // nodes in executable blocks we found values for. The function's entry
2056 // block is not part of BlocksToErase, so we have to handle it separately.
2057 for (BasicBlock *BB : BlocksToErase) {
2058 NumInstRemoved +=
2059 changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false,
2060 /*PreserveLCSSA=*/false, &DTU);
2062 if (!Solver.isBlockExecutable(&F.front()))
2063 NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
2064 /*UseLLVMTrap=*/false,
2065 /*PreserveLCSSA=*/false, &DTU);
2067 // Now that all instructions in the function are constant folded,
2068 // use ConstantFoldTerminator to get rid of in-edges, record DT updates and
2069 // delete dead BBs.
2070 for (BasicBlock *DeadBB : BlocksToErase) {
2071 // If there are any PHI nodes in this successor, drop entries for BB now.
2072 for (Value::user_iterator UI = DeadBB->user_begin(),
2073 UE = DeadBB->user_end();
2074 UI != UE;) {
2075 // Grab the user and then increment the iterator early, as the user
2076 // will be deleted. Step past all adjacent uses from the same user.
2077 auto *I = dyn_cast<Instruction>(*UI);
2078 do { ++UI; } while (UI != UE && *UI == I);
2080 // Ignore blockaddress users; BasicBlock's dtor will handle them.
2081 if (!I) continue;
2083 // If we have forced an edge for an indeterminate value, then force the
2084 // terminator to fold to that edge.
2085 forceIndeterminateEdge(I, Solver);
2086 bool Folded = ConstantFoldTerminator(I->getParent(),
2087 /*DeleteDeadConditions=*/false,
2088 /*TLI=*/nullptr, &DTU);
2089 assert(Folded &&
2090 "Expect TermInst on constantint or blockaddress to be folded");
2091 (void) Folded;
2093 // Mark dead BB for deletion.
2094 DTU.deleteBB(DeadBB);
2097 for (BasicBlock &BB : F) {
2098 for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
2099 Instruction *Inst = &*BI++;
2100 if (Solver.getPredicateInfoFor(Inst)) {
2101 if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
2102 if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
2103 Value *Op = II->getOperand(0);
2104 Inst->replaceAllUsesWith(Op);
2105 Inst->eraseFromParent();
2113 // If we inferred constant or undef return values for a function, we replaced
2114 // all call uses with the inferred value. This means we don't need to bother
2115 // actually returning anything from the function. Replace all return
2116 // instructions with return undef.
2118 // Do this in two stages: first identify the functions we should process, then
2119 // actually zap their returns. This is important because we can only do this
2120 // if the address of the function isn't taken. In cases where a return is the
2121 // last use of a function, the order of processing functions would affect
2122 // whether other functions are optimizable.
2123 SmallVector<ReturnInst*, 8> ReturnsToZap;
2125 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
2126 for (const auto &I : RV) {
2127 Function *F = I.first;
2128 if (I.second.isOverdefined() || F->getReturnType()->isVoidTy())
2129 continue;
2130 findReturnsToZap(*F, ReturnsToZap, Solver);
2133 for (const auto &F : Solver.getMRVFunctionsTracked()) {
2134 assert(F->getReturnType()->isStructTy() &&
2135 "The return type should be a struct");
2136 StructType *STy = cast<StructType>(F->getReturnType());
2137 if (Solver.isStructLatticeConstant(F, STy))
2138 findReturnsToZap(*F, ReturnsToZap, Solver);
2141 // Zap all returns which we've identified as zap to change.
2142 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
2143 Function *F = ReturnsToZap[i]->getParent()->getParent();
2144 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
2147 // If we inferred constant or undef values for globals variables, we can
2148 // delete the global and any stores that remain to it.
2149 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
2150 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
2151 E = TG.end(); I != E; ++I) {
2152 GlobalVariable *GV = I->first;
2153 assert(!I->second.isOverdefined() &&
2154 "Overdefined values should have been taken out of the map!");
2155 LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
2156 << "' is constant!\n");
2157 while (!GV->use_empty()) {
2158 StoreInst *SI = cast<StoreInst>(GV->user_back());
2159 SI->eraseFromParent();
2161 M.getGlobalList().erase(GV);
2162 ++IPNumGlobalConst;
2165 return MadeChanges;