Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / Scalar / Scalarizer.cpp
blob3d554f15af2cfd94f4128f269a47506e686e7c9b
1 //===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass converts vector operations into scalar operations, in order
10 // to expose optimization opportunities on the individual scalar operations.
11 // It is mainly intended for targets that do not have vector units, but it
12 // may also be useful for revectorizing code to different vector widths.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/ADT/PostOrderIterator.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/VectorUtils.h"
20 #include "llvm/IR/Argument.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstVisitor.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Options.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Scalar/Scalarizer.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <map>
46 #include <utility>
48 using namespace llvm;
50 #define DEBUG_TYPE "scalarizer"
52 // This is disabled by default because having separate loads and stores
53 // makes it more likely that the -combiner-alias-analysis limits will be
54 // reached.
55 static cl::opt<bool>
56 ScalarizeLoadStore("scalarize-load-store", cl::init(false), cl::Hidden,
57 cl::desc("Allow the scalarizer pass to scalarize loads and store"));
59 namespace {
61 // Used to store the scattered form of a vector.
62 using ValueVector = SmallVector<Value *, 8>;
64 // Used to map a vector Value to its scattered form. We use std::map
65 // because we want iterators to persist across insertion and because the
66 // values are relatively large.
67 using ScatterMap = std::map<Value *, ValueVector>;
69 // Lists Instructions that have been replaced with scalar implementations,
70 // along with a pointer to their scattered forms.
71 using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
73 // Provides a very limited vector-like interface for lazily accessing one
74 // component of a scattered vector or vector pointer.
75 class Scatterer {
76 public:
77 Scatterer() = default;
79 // Scatter V into Size components. If new instructions are needed,
80 // insert them before BBI in BB. If Cache is nonnull, use it to cache
81 // the results.
82 Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
83 ValueVector *cachePtr = nullptr);
85 // Return component I, creating a new Value for it if necessary.
86 Value *operator[](unsigned I);
88 // Return the number of components.
89 unsigned size() const { return Size; }
91 private:
92 BasicBlock *BB;
93 BasicBlock::iterator BBI;
94 Value *V;
95 ValueVector *CachePtr;
96 PointerType *PtrTy;
97 ValueVector Tmp;
98 unsigned Size;
101 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
102 // called Name that compares X and Y in the same way as FCI.
103 struct FCmpSplitter {
104 FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
106 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
107 const Twine &Name) const {
108 return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
111 FCmpInst &FCI;
114 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
115 // called Name that compares X and Y in the same way as ICI.
116 struct ICmpSplitter {
117 ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
119 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
120 const Twine &Name) const {
121 return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
124 ICmpInst &ICI;
127 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
128 // a binary operator like BO called Name with operands X and Y.
129 struct BinarySplitter {
130 BinarySplitter(BinaryOperator &bo) : BO(bo) {}
132 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
133 const Twine &Name) const {
134 return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
137 BinaryOperator &BO;
140 // Information about a load or store that we're scalarizing.
141 struct VectorLayout {
142 VectorLayout() = default;
144 // Return the alignment of element I.
145 uint64_t getElemAlign(unsigned I) {
146 return MinAlign(VecAlign, I * ElemSize);
149 // The type of the vector.
150 VectorType *VecTy = nullptr;
152 // The type of each element.
153 Type *ElemTy = nullptr;
155 // The alignment of the vector.
156 uint64_t VecAlign = 0;
158 // The size of each element.
159 uint64_t ElemSize = 0;
162 class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> {
163 public:
164 ScalarizerVisitor(unsigned ParallelLoopAccessMDKind)
165 : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind) {
168 bool visit(Function &F);
170 // InstVisitor methods. They return true if the instruction was scalarized,
171 // false if nothing changed.
172 bool visitInstruction(Instruction &I) { return false; }
173 bool visitSelectInst(SelectInst &SI);
174 bool visitICmpInst(ICmpInst &ICI);
175 bool visitFCmpInst(FCmpInst &FCI);
176 bool visitBinaryOperator(BinaryOperator &BO);
177 bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
178 bool visitCastInst(CastInst &CI);
179 bool visitBitCastInst(BitCastInst &BCI);
180 bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
181 bool visitPHINode(PHINode &PHI);
182 bool visitLoadInst(LoadInst &LI);
183 bool visitStoreInst(StoreInst &SI);
184 bool visitCallInst(CallInst &ICI);
186 private:
187 Scatterer scatter(Instruction *Point, Value *V);
188 void gather(Instruction *Op, const ValueVector &CV);
189 bool canTransferMetadata(unsigned Kind);
190 void transferMetadata(Instruction *Op, const ValueVector &CV);
191 bool getVectorLayout(Type *Ty, unsigned Alignment, VectorLayout &Layout,
192 const DataLayout &DL);
193 bool finish();
195 template<typename T> bool splitBinary(Instruction &, const T &);
197 bool splitCall(CallInst &CI);
199 ScatterMap Scattered;
200 GatherList Gathered;
202 unsigned ParallelLoopAccessMDKind;
205 class ScalarizerLegacyPass : public FunctionPass {
206 public:
207 static char ID;
209 ScalarizerLegacyPass() : FunctionPass(ID) {
210 initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry());
213 bool runOnFunction(Function &F) override;
216 } // end anonymous namespace
218 char ScalarizerLegacyPass::ID = 0;
219 INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer",
220 "Scalarize vector operations", false, false)
221 INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer",
222 "Scalarize vector operations", false, false)
224 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
225 ValueVector *cachePtr)
226 : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
227 Type *Ty = V->getType();
228 PtrTy = dyn_cast<PointerType>(Ty);
229 if (PtrTy)
230 Ty = PtrTy->getElementType();
231 Size = Ty->getVectorNumElements();
232 if (!CachePtr)
233 Tmp.resize(Size, nullptr);
234 else if (CachePtr->empty())
235 CachePtr->resize(Size, nullptr);
236 else
237 assert(Size == CachePtr->size() && "Inconsistent vector sizes");
240 // Return component I, creating a new Value for it if necessary.
241 Value *Scatterer::operator[](unsigned I) {
242 ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
243 // Try to reuse a previous value.
244 if (CV[I])
245 return CV[I];
246 IRBuilder<> Builder(BB, BBI);
247 if (PtrTy) {
248 Type *ElTy = PtrTy->getElementType()->getVectorElementType();
249 if (!CV[0]) {
250 Type *NewPtrTy = PointerType::get(ElTy, PtrTy->getAddressSpace());
251 CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0");
253 if (I != 0)
254 CV[I] = Builder.CreateConstGEP1_32(ElTy, CV[0], I,
255 V->getName() + ".i" + Twine(I));
256 } else {
257 // Search through a chain of InsertElementInsts looking for element I.
258 // Record other elements in the cache. The new V is still suitable
259 // for all uncached indices.
260 while (true) {
261 InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
262 if (!Insert)
263 break;
264 ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
265 if (!Idx)
266 break;
267 unsigned J = Idx->getZExtValue();
268 V = Insert->getOperand(0);
269 if (I == J) {
270 CV[J] = Insert->getOperand(1);
271 return CV[J];
272 } else if (!CV[J]) {
273 // Only cache the first entry we find for each index we're not actively
274 // searching for. This prevents us from going too far up the chain and
275 // caching incorrect entries.
276 CV[J] = Insert->getOperand(1);
279 CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
280 V->getName() + ".i" + Twine(I));
282 return CV[I];
285 bool ScalarizerLegacyPass::runOnFunction(Function &F) {
286 if (skipFunction(F))
287 return false;
289 Module &M = *F.getParent();
290 unsigned ParallelLoopAccessMDKind =
291 M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
292 ScalarizerVisitor Impl(ParallelLoopAccessMDKind);
293 return Impl.visit(F);
296 FunctionPass *llvm::createScalarizerPass() {
297 return new ScalarizerLegacyPass();
300 bool ScalarizerVisitor::visit(Function &F) {
301 assert(Gathered.empty() && Scattered.empty());
303 // To ensure we replace gathered components correctly we need to do an ordered
304 // traversal of the basic blocks in the function.
305 ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
306 for (BasicBlock *BB : RPOT) {
307 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
308 Instruction *I = &*II;
309 bool Done = InstVisitor::visit(I);
310 ++II;
311 if (Done && I->getType()->isVoidTy())
312 I->eraseFromParent();
315 return finish();
318 // Return a scattered form of V that can be accessed by Point. V must be a
319 // vector or a pointer to a vector.
320 Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V) {
321 if (Argument *VArg = dyn_cast<Argument>(V)) {
322 // Put the scattered form of arguments in the entry block,
323 // so that it can be used everywhere.
324 Function *F = VArg->getParent();
325 BasicBlock *BB = &F->getEntryBlock();
326 return Scatterer(BB, BB->begin(), V, &Scattered[V]);
328 if (Instruction *VOp = dyn_cast<Instruction>(V)) {
329 // Put the scattered form of an instruction directly after the
330 // instruction.
331 BasicBlock *BB = VOp->getParent();
332 return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
333 V, &Scattered[V]);
335 // In the fallback case, just put the scattered before Point and
336 // keep the result local to Point.
337 return Scatterer(Point->getParent(), Point->getIterator(), V);
340 // Replace Op with the gathered form of the components in CV. Defer the
341 // deletion of Op and creation of the gathered form to the end of the pass,
342 // so that we can avoid creating the gathered form if all uses of Op are
343 // replaced with uses of CV.
344 void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) {
345 // Since we're not deleting Op yet, stub out its operands, so that it
346 // doesn't make anything live unnecessarily.
347 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
348 Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
350 transferMetadata(Op, CV);
352 // If we already have a scattered form of Op (created from ExtractElements
353 // of Op itself), replace them with the new form.
354 ValueVector &SV = Scattered[Op];
355 if (!SV.empty()) {
356 for (unsigned I = 0, E = SV.size(); I != E; ++I) {
357 Value *V = SV[I];
358 if (V == nullptr)
359 continue;
361 Instruction *Old = cast<Instruction>(V);
362 CV[I]->takeName(Old);
363 Old->replaceAllUsesWith(CV[I]);
364 Old->eraseFromParent();
367 SV = CV;
368 Gathered.push_back(GatherList::value_type(Op, &SV));
371 // Return true if it is safe to transfer the given metadata tag from
372 // vector to scalar instructions.
373 bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) {
374 return (Tag == LLVMContext::MD_tbaa
375 || Tag == LLVMContext::MD_fpmath
376 || Tag == LLVMContext::MD_tbaa_struct
377 || Tag == LLVMContext::MD_invariant_load
378 || Tag == LLVMContext::MD_alias_scope
379 || Tag == LLVMContext::MD_noalias
380 || Tag == ParallelLoopAccessMDKind
381 || Tag == LLVMContext::MD_access_group);
384 // Transfer metadata from Op to the instructions in CV if it is known
385 // to be safe to do so.
386 void ScalarizerVisitor::transferMetadata(Instruction *Op, const ValueVector &CV) {
387 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
388 Op->getAllMetadataOtherThanDebugLoc(MDs);
389 for (unsigned I = 0, E = CV.size(); I != E; ++I) {
390 if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
391 for (const auto &MD : MDs)
392 if (canTransferMetadata(MD.first))
393 New->setMetadata(MD.first, MD.second);
394 if (Op->getDebugLoc() && !New->getDebugLoc())
395 New->setDebugLoc(Op->getDebugLoc());
400 // Try to fill in Layout from Ty, returning true on success. Alignment is
401 // the alignment of the vector, or 0 if the ABI default should be used.
402 bool ScalarizerVisitor::getVectorLayout(Type *Ty, unsigned Alignment,
403 VectorLayout &Layout, const DataLayout &DL) {
404 // Make sure we're dealing with a vector.
405 Layout.VecTy = dyn_cast<VectorType>(Ty);
406 if (!Layout.VecTy)
407 return false;
409 // Check that we're dealing with full-byte elements.
410 Layout.ElemTy = Layout.VecTy->getElementType();
411 if (DL.getTypeSizeInBits(Layout.ElemTy) !=
412 DL.getTypeStoreSizeInBits(Layout.ElemTy))
413 return false;
415 if (Alignment)
416 Layout.VecAlign = Alignment;
417 else
418 Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
419 Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
420 return true;
423 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
424 // to create an instruction like I with operands X and Y and name Name.
425 template<typename Splitter>
426 bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) {
427 VectorType *VT = dyn_cast<VectorType>(I.getType());
428 if (!VT)
429 return false;
431 unsigned NumElems = VT->getNumElements();
432 IRBuilder<> Builder(&I);
433 Scatterer Op0 = scatter(&I, I.getOperand(0));
434 Scatterer Op1 = scatter(&I, I.getOperand(1));
435 assert(Op0.size() == NumElems && "Mismatched binary operation");
436 assert(Op1.size() == NumElems && "Mismatched binary operation");
437 ValueVector Res;
438 Res.resize(NumElems);
439 for (unsigned Elem = 0; Elem < NumElems; ++Elem)
440 Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
441 I.getName() + ".i" + Twine(Elem));
442 gather(&I, Res);
443 return true;
446 static bool isTriviallyScalariable(Intrinsic::ID ID) {
447 return isTriviallyVectorizable(ID);
450 // All of the current scalarizable intrinsics only have one mangled type.
451 static Function *getScalarIntrinsicDeclaration(Module *M,
452 Intrinsic::ID ID,
453 VectorType *Ty) {
454 return Intrinsic::getDeclaration(M, ID, { Ty->getScalarType() });
457 /// If a call to a vector typed intrinsic function, split into a scalar call per
458 /// element if possible for the intrinsic.
459 bool ScalarizerVisitor::splitCall(CallInst &CI) {
460 VectorType *VT = dyn_cast<VectorType>(CI.getType());
461 if (!VT)
462 return false;
464 Function *F = CI.getCalledFunction();
465 if (!F)
466 return false;
468 Intrinsic::ID ID = F->getIntrinsicID();
469 if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
470 return false;
472 unsigned NumElems = VT->getNumElements();
473 unsigned NumArgs = CI.getNumArgOperands();
475 ValueVector ScalarOperands(NumArgs);
476 SmallVector<Scatterer, 8> Scattered(NumArgs);
478 Scattered.resize(NumArgs);
480 // Assumes that any vector type has the same number of elements as the return
481 // vector type, which is true for all current intrinsics.
482 for (unsigned I = 0; I != NumArgs; ++I) {
483 Value *OpI = CI.getOperand(I);
484 if (OpI->getType()->isVectorTy()) {
485 Scattered[I] = scatter(&CI, OpI);
486 assert(Scattered[I].size() == NumElems && "mismatched call operands");
487 } else {
488 ScalarOperands[I] = OpI;
492 ValueVector Res(NumElems);
493 ValueVector ScalarCallOps(NumArgs);
495 Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, VT);
496 IRBuilder<> Builder(&CI);
498 // Perform actual scalarization, taking care to preserve any scalar operands.
499 for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
500 ScalarCallOps.clear();
502 for (unsigned J = 0; J != NumArgs; ++J) {
503 if (hasVectorInstrinsicScalarOpd(ID, J))
504 ScalarCallOps.push_back(ScalarOperands[J]);
505 else
506 ScalarCallOps.push_back(Scattered[J][Elem]);
509 Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
510 CI.getName() + ".i" + Twine(Elem));
513 gather(&CI, Res);
514 return true;
517 bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) {
518 VectorType *VT = dyn_cast<VectorType>(SI.getType());
519 if (!VT)
520 return false;
522 unsigned NumElems = VT->getNumElements();
523 IRBuilder<> Builder(&SI);
524 Scatterer Op1 = scatter(&SI, SI.getOperand(1));
525 Scatterer Op2 = scatter(&SI, SI.getOperand(2));
526 assert(Op1.size() == NumElems && "Mismatched select");
527 assert(Op2.size() == NumElems && "Mismatched select");
528 ValueVector Res;
529 Res.resize(NumElems);
531 if (SI.getOperand(0)->getType()->isVectorTy()) {
532 Scatterer Op0 = scatter(&SI, SI.getOperand(0));
533 assert(Op0.size() == NumElems && "Mismatched select");
534 for (unsigned I = 0; I < NumElems; ++I)
535 Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
536 SI.getName() + ".i" + Twine(I));
537 } else {
538 Value *Op0 = SI.getOperand(0);
539 for (unsigned I = 0; I < NumElems; ++I)
540 Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
541 SI.getName() + ".i" + Twine(I));
543 gather(&SI, Res);
544 return true;
547 bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) {
548 return splitBinary(ICI, ICmpSplitter(ICI));
551 bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) {
552 return splitBinary(FCI, FCmpSplitter(FCI));
555 bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
556 return splitBinary(BO, BinarySplitter(BO));
559 bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
560 VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
561 if (!VT)
562 return false;
564 IRBuilder<> Builder(&GEPI);
565 unsigned NumElems = VT->getNumElements();
566 unsigned NumIndices = GEPI.getNumIndices();
568 // The base pointer might be scalar even if it's a vector GEP. In those cases,
569 // splat the pointer into a vector value, and scatter that vector.
570 Value *Op0 = GEPI.getOperand(0);
571 if (!Op0->getType()->isVectorTy())
572 Op0 = Builder.CreateVectorSplat(NumElems, Op0);
573 Scatterer Base = scatter(&GEPI, Op0);
575 SmallVector<Scatterer, 8> Ops;
576 Ops.resize(NumIndices);
577 for (unsigned I = 0; I < NumIndices; ++I) {
578 Value *Op = GEPI.getOperand(I + 1);
580 // The indices might be scalars even if it's a vector GEP. In those cases,
581 // splat the scalar into a vector value, and scatter that vector.
582 if (!Op->getType()->isVectorTy())
583 Op = Builder.CreateVectorSplat(NumElems, Op);
585 Ops[I] = scatter(&GEPI, Op);
588 ValueVector Res;
589 Res.resize(NumElems);
590 for (unsigned I = 0; I < NumElems; ++I) {
591 SmallVector<Value *, 8> Indices;
592 Indices.resize(NumIndices);
593 for (unsigned J = 0; J < NumIndices; ++J)
594 Indices[J] = Ops[J][I];
595 Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
596 GEPI.getName() + ".i" + Twine(I));
597 if (GEPI.isInBounds())
598 if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
599 NewGEPI->setIsInBounds();
601 gather(&GEPI, Res);
602 return true;
605 bool ScalarizerVisitor::visitCastInst(CastInst &CI) {
606 VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
607 if (!VT)
608 return false;
610 unsigned NumElems = VT->getNumElements();
611 IRBuilder<> Builder(&CI);
612 Scatterer Op0 = scatter(&CI, CI.getOperand(0));
613 assert(Op0.size() == NumElems && "Mismatched cast");
614 ValueVector Res;
615 Res.resize(NumElems);
616 for (unsigned I = 0; I < NumElems; ++I)
617 Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
618 CI.getName() + ".i" + Twine(I));
619 gather(&CI, Res);
620 return true;
623 bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) {
624 VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
625 VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
626 if (!DstVT || !SrcVT)
627 return false;
629 unsigned DstNumElems = DstVT->getNumElements();
630 unsigned SrcNumElems = SrcVT->getNumElements();
631 IRBuilder<> Builder(&BCI);
632 Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
633 ValueVector Res;
634 Res.resize(DstNumElems);
636 if (DstNumElems == SrcNumElems) {
637 for (unsigned I = 0; I < DstNumElems; ++I)
638 Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
639 BCI.getName() + ".i" + Twine(I));
640 } else if (DstNumElems > SrcNumElems) {
641 // <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the
642 // individual elements to the destination.
643 unsigned FanOut = DstNumElems / SrcNumElems;
644 Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
645 unsigned ResI = 0;
646 for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
647 Value *V = Op0[Op0I];
648 Instruction *VI;
649 // Look through any existing bitcasts before converting to <N x t2>.
650 // In the best case, the resulting conversion might be a no-op.
651 while ((VI = dyn_cast<Instruction>(V)) &&
652 VI->getOpcode() == Instruction::BitCast)
653 V = VI->getOperand(0);
654 V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
655 Scatterer Mid = scatter(&BCI, V);
656 for (unsigned MidI = 0; MidI < FanOut; ++MidI)
657 Res[ResI++] = Mid[MidI];
659 } else {
660 // <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2.
661 unsigned FanIn = SrcNumElems / DstNumElems;
662 Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
663 unsigned Op0I = 0;
664 for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
665 Value *V = UndefValue::get(MidTy);
666 for (unsigned MidI = 0; MidI < FanIn; ++MidI)
667 V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
668 BCI.getName() + ".i" + Twine(ResI)
669 + ".upto" + Twine(MidI));
670 Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
671 BCI.getName() + ".i" + Twine(ResI));
674 gather(&BCI, Res);
675 return true;
678 bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
679 VectorType *VT = dyn_cast<VectorType>(SVI.getType());
680 if (!VT)
681 return false;
683 unsigned NumElems = VT->getNumElements();
684 Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
685 Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
686 ValueVector Res;
687 Res.resize(NumElems);
689 for (unsigned I = 0; I < NumElems; ++I) {
690 int Selector = SVI.getMaskValue(I);
691 if (Selector < 0)
692 Res[I] = UndefValue::get(VT->getElementType());
693 else if (unsigned(Selector) < Op0.size())
694 Res[I] = Op0[Selector];
695 else
696 Res[I] = Op1[Selector - Op0.size()];
698 gather(&SVI, Res);
699 return true;
702 bool ScalarizerVisitor::visitPHINode(PHINode &PHI) {
703 VectorType *VT = dyn_cast<VectorType>(PHI.getType());
704 if (!VT)
705 return false;
707 unsigned NumElems = VT->getNumElements();
708 IRBuilder<> Builder(&PHI);
709 ValueVector Res;
710 Res.resize(NumElems);
712 unsigned NumOps = PHI.getNumOperands();
713 for (unsigned I = 0; I < NumElems; ++I)
714 Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
715 PHI.getName() + ".i" + Twine(I));
717 for (unsigned I = 0; I < NumOps; ++I) {
718 Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
719 BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
720 for (unsigned J = 0; J < NumElems; ++J)
721 cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
723 gather(&PHI, Res);
724 return true;
727 bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) {
728 if (!ScalarizeLoadStore)
729 return false;
730 if (!LI.isSimple())
731 return false;
733 VectorLayout Layout;
734 if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
735 LI.getModule()->getDataLayout()))
736 return false;
738 unsigned NumElems = Layout.VecTy->getNumElements();
739 IRBuilder<> Builder(&LI);
740 Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
741 ValueVector Res;
742 Res.resize(NumElems);
744 for (unsigned I = 0; I < NumElems; ++I)
745 Res[I] = Builder.CreateAlignedLoad(Layout.VecTy->getElementType(), Ptr[I],
746 Layout.getElemAlign(I),
747 LI.getName() + ".i" + Twine(I));
748 gather(&LI, Res);
749 return true;
752 bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) {
753 if (!ScalarizeLoadStore)
754 return false;
755 if (!SI.isSimple())
756 return false;
758 VectorLayout Layout;
759 Value *FullValue = SI.getValueOperand();
760 if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
761 SI.getModule()->getDataLayout()))
762 return false;
764 unsigned NumElems = Layout.VecTy->getNumElements();
765 IRBuilder<> Builder(&SI);
766 Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
767 Scatterer Val = scatter(&SI, FullValue);
769 ValueVector Stores;
770 Stores.resize(NumElems);
771 for (unsigned I = 0; I < NumElems; ++I) {
772 unsigned Align = Layout.getElemAlign(I);
773 Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
775 transferMetadata(&SI, Stores);
776 return true;
779 bool ScalarizerVisitor::visitCallInst(CallInst &CI) {
780 return splitCall(CI);
783 // Delete the instructions that we scalarized. If a full vector result
784 // is still needed, recreate it using InsertElements.
785 bool ScalarizerVisitor::finish() {
786 // The presence of data in Gathered or Scattered indicates changes
787 // made to the Function.
788 if (Gathered.empty() && Scattered.empty())
789 return false;
790 for (const auto &GMI : Gathered) {
791 Instruction *Op = GMI.first;
792 ValueVector &CV = *GMI.second;
793 if (!Op->use_empty()) {
794 // The value is still needed, so recreate it using a series of
795 // InsertElements.
796 Type *Ty = Op->getType();
797 Value *Res = UndefValue::get(Ty);
798 BasicBlock *BB = Op->getParent();
799 unsigned Count = Ty->getVectorNumElements();
800 IRBuilder<> Builder(Op);
801 if (isa<PHINode>(Op))
802 Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
803 for (unsigned I = 0; I < Count; ++I)
804 Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
805 Op->getName() + ".upto" + Twine(I));
806 Res->takeName(Op);
807 Op->replaceAllUsesWith(Res);
809 Op->eraseFromParent();
811 Gathered.clear();
812 Scattered.clear();
813 return true;
816 PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) {
817 Module &M = *F.getParent();
818 unsigned ParallelLoopAccessMDKind =
819 M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
820 ScalarizerVisitor Impl(ParallelLoopAccessMDKind);
821 bool Changed = Impl.visit(F);
822 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();