1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
10 // inserting a dummy basic block. This pass may be "required" by passes that
11 // cannot deal with critical edges. For this usage, the structure type is
12 // forward declared. This pass obviously invalidates the CFG, but can update
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/Utils/BreakCriticalEdges.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/BlockFrequencyInfo.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Transforms/Utils.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Cloning.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
37 #define DEBUG_TYPE "break-crit-edges"
39 STATISTIC(NumBroken
, "Number of blocks inserted");
42 struct BreakCriticalEdges
: public FunctionPass
{
43 static char ID
; // Pass identification, replacement for typeid
44 BreakCriticalEdges() : FunctionPass(ID
) {
45 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
48 bool runOnFunction(Function
&F
) override
{
49 auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
50 auto *DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
51 auto *LIWP
= getAnalysisIfAvailable
<LoopInfoWrapperPass
>();
52 auto *LI
= LIWP
? &LIWP
->getLoopInfo() : nullptr;
54 SplitAllCriticalEdges(F
, CriticalEdgeSplittingOptions(DT
, LI
));
59 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
60 AU
.addPreserved
<DominatorTreeWrapperPass
>();
61 AU
.addPreserved
<LoopInfoWrapperPass
>();
63 // No loop canonicalization guarantees are broken by this pass.
64 AU
.addPreservedID(LoopSimplifyID
);
69 char BreakCriticalEdges::ID
= 0;
70 INITIALIZE_PASS(BreakCriticalEdges
, "break-crit-edges",
71 "Break critical edges in CFG", false, false)
73 // Publicly exposed interface to pass...
74 char &llvm::BreakCriticalEdgesID
= BreakCriticalEdges::ID
;
75 FunctionPass
*llvm::createBreakCriticalEdgesPass() {
76 return new BreakCriticalEdges();
79 PreservedAnalyses
BreakCriticalEdgesPass::run(Function
&F
,
80 FunctionAnalysisManager
&AM
) {
81 auto *DT
= AM
.getCachedResult
<DominatorTreeAnalysis
>(F
);
82 auto *LI
= AM
.getCachedResult
<LoopAnalysis
>(F
);
83 unsigned N
= SplitAllCriticalEdges(F
, CriticalEdgeSplittingOptions(DT
, LI
));
86 return PreservedAnalyses::all();
88 PA
.preserve
<DominatorTreeAnalysis
>();
89 PA
.preserve
<LoopAnalysis
>();
93 //===----------------------------------------------------------------------===//
94 // Implementation of the external critical edge manipulation functions
95 //===----------------------------------------------------------------------===//
97 /// When a loop exit edge is split, LCSSA form may require new PHIs in the new
98 /// exit block. This function inserts the new PHIs, as needed. Preds is a list
99 /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
100 /// the old loop exit, now the successor of SplitBB.
101 static void createPHIsForSplitLoopExit(ArrayRef
<BasicBlock
*> Preds
,
103 BasicBlock
*DestBB
) {
104 // SplitBB shouldn't have anything non-trivial in it yet.
105 assert((SplitBB
->getFirstNonPHI() == SplitBB
->getTerminator() ||
106 SplitBB
->isLandingPad()) && "SplitBB has non-PHI nodes!");
108 // For each PHI in the destination block.
109 for (PHINode
&PN
: DestBB
->phis()) {
110 unsigned Idx
= PN
.getBasicBlockIndex(SplitBB
);
111 Value
*V
= PN
.getIncomingValue(Idx
);
113 // If the input is a PHI which already satisfies LCSSA, don't create
115 if (const PHINode
*VP
= dyn_cast
<PHINode
>(V
))
116 if (VP
->getParent() == SplitBB
)
119 // Otherwise a new PHI is needed. Create one and populate it.
120 PHINode
*NewPN
= PHINode::Create(
121 PN
.getType(), Preds
.size(), "split",
122 SplitBB
->isLandingPad() ? &SplitBB
->front() : SplitBB
->getTerminator());
123 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
)
124 NewPN
->addIncoming(V
, Preds
[i
]);
126 // Update the original PHI.
127 PN
.setIncomingValue(Idx
, NewPN
);
132 llvm::SplitCriticalEdge(Instruction
*TI
, unsigned SuccNum
,
133 const CriticalEdgeSplittingOptions
&Options
) {
134 if (!isCriticalEdge(TI
, SuccNum
, Options
.MergeIdenticalEdges
))
137 assert(!isa
<IndirectBrInst
>(TI
) &&
138 "Cannot split critical edge from IndirectBrInst");
140 BasicBlock
*TIBB
= TI
->getParent();
141 BasicBlock
*DestBB
= TI
->getSuccessor(SuccNum
);
143 // Splitting the critical edge to a pad block is non-trivial. Don't do
144 // it in this generic function.
145 if (DestBB
->isEHPad()) return nullptr;
147 // Don't split the non-fallthrough edge from a callbr.
148 if (isa
<CallBrInst
>(TI
) && SuccNum
> 0)
151 // Create a new basic block, linking it into the CFG.
152 BasicBlock
*NewBB
= BasicBlock::Create(TI
->getContext(),
153 TIBB
->getName() + "." + DestBB
->getName() + "_crit_edge");
154 // Create our unconditional branch.
155 BranchInst
*NewBI
= BranchInst::Create(DestBB
, NewBB
);
156 NewBI
->setDebugLoc(TI
->getDebugLoc());
158 // Branch to the new block, breaking the edge.
159 TI
->setSuccessor(SuccNum
, NewBB
);
161 // Insert the block into the function... right after the block TI lives in.
162 Function
&F
= *TIBB
->getParent();
163 Function::iterator FBBI
= TIBB
->getIterator();
164 F
.getBasicBlockList().insert(++FBBI
, NewBB
);
166 // If there are any PHI nodes in DestBB, we need to update them so that they
167 // merge incoming values from NewBB instead of from TIBB.
170 for (BasicBlock::iterator I
= DestBB
->begin(); isa
<PHINode
>(I
); ++I
) {
171 // We no longer enter through TIBB, now we come in through NewBB.
172 // Revector exactly one entry in the PHI node that used to come from
173 // TIBB to come from NewBB.
174 PHINode
*PN
= cast
<PHINode
>(I
);
176 // Reuse the previous value of BBIdx if it lines up. In cases where we
177 // have multiple phi nodes with *lots* of predecessors, this is a speed
178 // win because we don't have to scan the PHI looking for TIBB. This
179 // happens because the BB list of PHI nodes are usually in the same
181 if (PN
->getIncomingBlock(BBIdx
) != TIBB
)
182 BBIdx
= PN
->getBasicBlockIndex(TIBB
);
183 PN
->setIncomingBlock(BBIdx
, NewBB
);
187 // If there are any other edges from TIBB to DestBB, update those to go
188 // through the split block, making those edges non-critical as well (and
189 // reducing the number of phi entries in the DestBB if relevant).
190 if (Options
.MergeIdenticalEdges
) {
191 for (unsigned i
= SuccNum
+1, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
192 if (TI
->getSuccessor(i
) != DestBB
) continue;
194 // Remove an entry for TIBB from DestBB phi nodes.
195 DestBB
->removePredecessor(TIBB
, Options
.KeepOneInputPHIs
);
197 // We found another edge to DestBB, go to NewBB instead.
198 TI
->setSuccessor(i
, NewBB
);
202 // If we have nothing to update, just return.
203 auto *DT
= Options
.DT
;
204 auto *LI
= Options
.LI
;
205 auto *MSSAU
= Options
.MSSAU
;
207 MSSAU
->wireOldPredecessorsToNewImmediatePredecessor(
208 DestBB
, NewBB
, {TIBB
}, Options
.MergeIdenticalEdges
);
214 // Update the DominatorTree.
217 // TIBB -------\\------> DestBB
219 // First, inform the DT about the new path from TIBB to DestBB via NewBB,
220 // then delete the old edge from TIBB to DestBB. By doing this in that order
221 // DestBB stays reachable in the DT the whole time and its subtree doesn't
223 SmallVector
<DominatorTree::UpdateType
, 3> Updates
;
224 Updates
.push_back({DominatorTree::Insert
, TIBB
, NewBB
});
225 Updates
.push_back({DominatorTree::Insert
, NewBB
, DestBB
});
226 if (llvm::find(successors(TIBB
), DestBB
) == succ_end(TIBB
))
227 Updates
.push_back({DominatorTree::Delete
, TIBB
, DestBB
});
229 DT
->applyUpdates(Updates
);
232 // Update LoopInfo if it is around.
234 if (Loop
*TIL
= LI
->getLoopFor(TIBB
)) {
235 // If one or the other blocks were not in a loop, the new block is not
236 // either, and thus LI doesn't need to be updated.
237 if (Loop
*DestLoop
= LI
->getLoopFor(DestBB
)) {
238 if (TIL
== DestLoop
) {
239 // Both in the same loop, the NewBB joins loop.
240 DestLoop
->addBasicBlockToLoop(NewBB
, *LI
);
241 } else if (TIL
->contains(DestLoop
)) {
242 // Edge from an outer loop to an inner loop. Add to the outer loop.
243 TIL
->addBasicBlockToLoop(NewBB
, *LI
);
244 } else if (DestLoop
->contains(TIL
)) {
245 // Edge from an inner loop to an outer loop. Add to the outer loop.
246 DestLoop
->addBasicBlockToLoop(NewBB
, *LI
);
248 // Edge from two loops with no containment relation. Because these
249 // are natural loops, we know that the destination block must be the
250 // header of its loop (adding a branch into a loop elsewhere would
251 // create an irreducible loop).
252 assert(DestLoop
->getHeader() == DestBB
&&
253 "Should not create irreducible loops!");
254 if (Loop
*P
= DestLoop
->getParentLoop())
255 P
->addBasicBlockToLoop(NewBB
, *LI
);
259 // If TIBB is in a loop and DestBB is outside of that loop, we may need
260 // to update LoopSimplify form and LCSSA form.
261 if (!TIL
->contains(DestBB
)) {
262 assert(!TIL
->contains(NewBB
) &&
263 "Split point for loop exit is contained in loop!");
265 // Update LCSSA form in the newly created exit block.
266 if (Options
.PreserveLCSSA
) {
267 createPHIsForSplitLoopExit(TIBB
, NewBB
, DestBB
);
270 // The only that we can break LoopSimplify form by splitting a critical
271 // edge is if after the split there exists some edge from TIL to DestBB
272 // *and* the only edge into DestBB from outside of TIL is that of
273 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
274 // is the new exit block and it has no non-loop predecessors. If the
275 // second isn't true, then DestBB was not in LoopSimplify form prior to
276 // the split as it had a non-loop predecessor. In both of these cases,
277 // the predecessor must be directly in TIL, not in a subloop, or again
278 // LoopSimplify doesn't hold.
279 SmallVector
<BasicBlock
*, 4> LoopPreds
;
280 for (pred_iterator I
= pred_begin(DestBB
), E
= pred_end(DestBB
); I
!= E
;
284 continue; // The new block is known.
285 if (LI
->getLoopFor(P
) != TIL
) {
286 // No need to re-simplify, it wasn't to start with.
290 LoopPreds
.push_back(P
);
292 if (!LoopPreds
.empty()) {
293 assert(!DestBB
->isEHPad() && "We don't split edges to EH pads!");
294 BasicBlock
*NewExitBB
= SplitBlockPredecessors(
295 DestBB
, LoopPreds
, "split", DT
, LI
, MSSAU
, Options
.PreserveLCSSA
);
296 if (Options
.PreserveLCSSA
)
297 createPHIsForSplitLoopExit(LoopPreds
, NewExitBB
, DestBB
);
306 // Return the unique indirectbr predecessor of a block. This may return null
307 // even if such a predecessor exists, if it's not useful for splitting.
308 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
309 // predecessors of BB.
311 findIBRPredecessor(BasicBlock
*BB
, SmallVectorImpl
<BasicBlock
*> &OtherPreds
) {
312 // If the block doesn't have any PHIs, we don't care about it, since there's
313 // no point in splitting it.
314 PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin());
318 // Verify we have exactly one IBR predecessor.
319 // Conservatively bail out if one of the other predecessors is not a "regular"
320 // terminator (that is, not a switch or a br).
321 BasicBlock
*IBB
= nullptr;
322 for (unsigned Pred
= 0, E
= PN
->getNumIncomingValues(); Pred
!= E
; ++Pred
) {
323 BasicBlock
*PredBB
= PN
->getIncomingBlock(Pred
);
324 Instruction
*PredTerm
= PredBB
->getTerminator();
325 switch (PredTerm
->getOpcode()) {
326 case Instruction::IndirectBr
:
331 case Instruction::Br
:
332 case Instruction::Switch
:
333 OtherPreds
.push_back(PredBB
);
343 bool llvm::SplitIndirectBrCriticalEdges(Function
&F
,
344 BranchProbabilityInfo
*BPI
,
345 BlockFrequencyInfo
*BFI
) {
346 // Check whether the function has any indirectbrs, and collect which blocks
347 // they may jump to. Since most functions don't have indirect branches,
348 // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
349 SmallSetVector
<BasicBlock
*, 16> Targets
;
351 auto *IBI
= dyn_cast
<IndirectBrInst
>(BB
.getTerminator());
355 for (unsigned Succ
= 0, E
= IBI
->getNumSuccessors(); Succ
!= E
; ++Succ
)
356 Targets
.insert(IBI
->getSuccessor(Succ
));
362 bool ShouldUpdateAnalysis
= BPI
&& BFI
;
363 bool Changed
= false;
364 for (BasicBlock
*Target
: Targets
) {
365 SmallVector
<BasicBlock
*, 16> OtherPreds
;
366 BasicBlock
*IBRPred
= findIBRPredecessor(Target
, OtherPreds
);
367 // If we did not found an indirectbr, or the indirectbr is the only
368 // incoming edge, this isn't the kind of edge we're looking for.
369 if (!IBRPred
|| OtherPreds
.empty())
372 // Don't even think about ehpads/landingpads.
373 Instruction
*FirstNonPHI
= Target
->getFirstNonPHI();
374 if (FirstNonPHI
->isEHPad() || Target
->isLandingPad())
377 BasicBlock
*BodyBlock
= Target
->splitBasicBlock(FirstNonPHI
, ".split");
378 if (ShouldUpdateAnalysis
) {
379 // Copy the BFI/BPI from Target to BodyBlock.
380 for (unsigned I
= 0, E
= BodyBlock
->getTerminator()->getNumSuccessors();
382 BPI
->setEdgeProbability(BodyBlock
, I
,
383 BPI
->getEdgeProbability(Target
, I
));
384 BFI
->setBlockFreq(BodyBlock
, BFI
->getBlockFreq(Target
).getFrequency());
386 // It's possible Target was its own successor through an indirectbr.
387 // In this case, the indirectbr now comes from BodyBlock.
388 if (IBRPred
== Target
)
391 // At this point Target only has PHIs, and BodyBlock has the rest of the
392 // block's body. Create a copy of Target that will be used by the "direct"
394 ValueToValueMapTy VMap
;
395 BasicBlock
*DirectSucc
= CloneBasicBlock(Target
, VMap
, ".clone", &F
);
397 BlockFrequency BlockFreqForDirectSucc
;
398 for (BasicBlock
*Pred
: OtherPreds
) {
399 // If the target is a loop to itself, then the terminator of the split
400 // block (BodyBlock) needs to be updated.
401 BasicBlock
*Src
= Pred
!= Target
? Pred
: BodyBlock
;
402 Src
->getTerminator()->replaceUsesOfWith(Target
, DirectSucc
);
403 if (ShouldUpdateAnalysis
)
404 BlockFreqForDirectSucc
+= BFI
->getBlockFreq(Src
) *
405 BPI
->getEdgeProbability(Src
, DirectSucc
);
407 if (ShouldUpdateAnalysis
) {
408 BFI
->setBlockFreq(DirectSucc
, BlockFreqForDirectSucc
.getFrequency());
409 BlockFrequency NewBlockFreqForTarget
=
410 BFI
->getBlockFreq(Target
) - BlockFreqForDirectSucc
;
411 BFI
->setBlockFreq(Target
, NewBlockFreqForTarget
.getFrequency());
412 BPI
->eraseBlock(Target
);
415 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
416 // they are clones, so the number of PHIs are the same.
417 // (a) Remove the edge coming from IBRPred from the "Direct" PHI
418 // (b) Leave that as the only edge in the "Indirect" PHI.
419 // (c) Merge the two in the body block.
420 BasicBlock::iterator Indirect
= Target
->begin(),
421 End
= Target
->getFirstNonPHI()->getIterator();
422 BasicBlock::iterator Direct
= DirectSucc
->begin();
423 BasicBlock::iterator MergeInsert
= BodyBlock
->getFirstInsertionPt();
425 assert(&*End
== Target
->getTerminator() &&
426 "Block was expected to only contain PHIs");
428 while (Indirect
!= End
) {
429 PHINode
*DirPHI
= cast
<PHINode
>(Direct
);
430 PHINode
*IndPHI
= cast
<PHINode
>(Indirect
);
432 // Now, clean up - the direct block shouldn't get the indirect value,
434 DirPHI
->removeIncomingValue(IBRPred
);
437 // Advance the pointer here, to avoid invalidation issues when the old
441 PHINode
*NewIndPHI
= PHINode::Create(IndPHI
->getType(), 1, "ind", IndPHI
);
442 NewIndPHI
->addIncoming(IndPHI
->getIncomingValueForBlock(IBRPred
),
445 // Create a PHI in the body block, to merge the direct and indirect
448 PHINode::Create(IndPHI
->getType(), 2, "merge", &*MergeInsert
);
449 MergePHI
->addIncoming(NewIndPHI
, Target
);
450 MergePHI
->addIncoming(DirPHI
, DirectSucc
);
452 IndPHI
->replaceAllUsesWith(MergePHI
);
453 IndPHI
->eraseFromParent();