Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / Utils / CodeExtractor.cpp
blob023ab76d0012d2c0d509b3fdbdee433b09d9706a
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/Verifier.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <map>
66 #include <set>
67 #include <utility>
68 #include <vector>
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 using ProfileCount = Function::ProfileCount;
74 #define DEBUG_TYPE "code-extractor"
76 // Provide a command-line option to aggregate function arguments into a struct
77 // for functions produced by the code extractor. This is useful when converting
78 // extracted functions to pthread-based code, as only one argument (void*) can
79 // be passed in to pthread_create().
80 static cl::opt<bool>
81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82 cl::desc("Aggregate arguments to code-extracted functions"));
84 /// Test whether a block is valid for extraction.
85 static bool isBlockValidForExtraction(const BasicBlock &BB,
86 const SetVector<BasicBlock *> &Result,
87 bool AllowVarArgs, bool AllowAlloca) {
88 // taking the address of a basic block moved to another function is illegal
89 if (BB.hasAddressTaken())
90 return false;
92 // don't hoist code that uses another basicblock address, as it's likely to
93 // lead to unexpected behavior, like cross-function jumps
94 SmallPtrSet<User const *, 16> Visited;
95 SmallVector<User const *, 16> ToVisit;
97 for (Instruction const &Inst : BB)
98 ToVisit.push_back(&Inst);
100 while (!ToVisit.empty()) {
101 User const *Curr = ToVisit.pop_back_val();
102 if (!Visited.insert(Curr).second)
103 continue;
104 if (isa<BlockAddress const>(Curr))
105 return false; // even a reference to self is likely to be not compatible
107 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108 continue;
110 for (auto const &U : Curr->operands()) {
111 if (auto *UU = dyn_cast<User>(U))
112 ToVisit.push_back(UU);
116 // If explicitly requested, allow vastart and alloca. For invoke instructions
117 // verify that extraction is valid.
118 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119 if (isa<AllocaInst>(I)) {
120 if (!AllowAlloca)
121 return false;
122 continue;
125 if (const auto *II = dyn_cast<InvokeInst>(I)) {
126 // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127 // must be a part of the subgraph which is being extracted.
128 if (auto *UBB = II->getUnwindDest())
129 if (!Result.count(UBB))
130 return false;
131 continue;
134 // All catch handlers of a catchswitch instruction as well as the unwind
135 // destination must be in the subgraph.
136 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137 if (auto *UBB = CSI->getUnwindDest())
138 if (!Result.count(UBB))
139 return false;
140 for (auto *HBB : CSI->handlers())
141 if (!Result.count(const_cast<BasicBlock*>(HBB)))
142 return false;
143 continue;
146 // Make sure that entire catch handler is within subgraph. It is sufficient
147 // to check that catch return's block is in the list.
148 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149 for (const auto *U : CPI->users())
150 if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152 return false;
153 continue;
156 // And do similar checks for cleanup handler - the entire handler must be
157 // in subgraph which is going to be extracted. For cleanup return should
158 // additionally check that the unwind destination is also in the subgraph.
159 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160 for (const auto *U : CPI->users())
161 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163 return false;
164 continue;
166 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167 if (auto *UBB = CRI->getUnwindDest())
168 if (!Result.count(UBB))
169 return false;
170 continue;
173 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174 if (const Function *F = CI->getCalledFunction()) {
175 auto IID = F->getIntrinsicID();
176 if (IID == Intrinsic::vastart) {
177 if (AllowVarArgs)
178 continue;
179 else
180 return false;
183 // Currently, we miscompile outlined copies of eh_typid_for. There are
184 // proposals for fixing this in llvm.org/PR39545.
185 if (IID == Intrinsic::eh_typeid_for)
186 return false;
191 return true;
194 /// Build a set of blocks to extract if the input blocks are viable.
195 static SetVector<BasicBlock *>
196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197 bool AllowVarArgs, bool AllowAlloca) {
198 assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199 SetVector<BasicBlock *> Result;
201 // Loop over the blocks, adding them to our set-vector, and aborting with an
202 // empty set if we encounter invalid blocks.
203 for (BasicBlock *BB : BBs) {
204 // If this block is dead, don't process it.
205 if (DT && !DT->isReachableFromEntry(BB))
206 continue;
208 if (!Result.insert(BB))
209 llvm_unreachable("Repeated basic blocks in extraction input");
212 for (auto *BB : Result) {
213 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
214 return {};
216 // Make sure that the first block is not a landing pad.
217 if (BB == Result.front()) {
218 if (BB->isEHPad()) {
219 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
220 return {};
222 continue;
225 // All blocks other than the first must not have predecessors outside of
226 // the subgraph which is being extracted.
227 for (auto *PBB : predecessors(BB))
228 if (!Result.count(PBB)) {
229 LLVM_DEBUG(
230 dbgs() << "No blocks in this region may have entries from "
231 "outside the region except for the first block!\n");
232 return {};
236 return Result;
239 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
240 bool AggregateArgs, BlockFrequencyInfo *BFI,
241 BranchProbabilityInfo *BPI, AssumptionCache *AC,
242 bool AllowVarArgs, bool AllowAlloca,
243 std::string Suffix)
244 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
245 BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
246 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
247 Suffix(Suffix) {}
249 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
250 BlockFrequencyInfo *BFI,
251 BranchProbabilityInfo *BPI, AssumptionCache *AC,
252 std::string Suffix)
253 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
254 BPI(BPI), AC(AC), AllowVarArgs(false),
255 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
256 /* AllowVarArgs */ false,
257 /* AllowAlloca */ false)),
258 Suffix(Suffix) {}
260 /// definedInRegion - Return true if the specified value is defined in the
261 /// extracted region.
262 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
263 if (Instruction *I = dyn_cast<Instruction>(V))
264 if (Blocks.count(I->getParent()))
265 return true;
266 return false;
269 /// definedInCaller - Return true if the specified value is defined in the
270 /// function being code extracted, but not in the region being extracted.
271 /// These values must be passed in as live-ins to the function.
272 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
273 if (isa<Argument>(V)) return true;
274 if (Instruction *I = dyn_cast<Instruction>(V))
275 if (!Blocks.count(I->getParent()))
276 return true;
277 return false;
280 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
281 BasicBlock *CommonExitBlock = nullptr;
282 auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
283 for (auto *Succ : successors(Block)) {
284 // Internal edges, ok.
285 if (Blocks.count(Succ))
286 continue;
287 if (!CommonExitBlock) {
288 CommonExitBlock = Succ;
289 continue;
291 if (CommonExitBlock == Succ)
292 continue;
294 return true;
296 return false;
299 if (any_of(Blocks, hasNonCommonExitSucc))
300 return nullptr;
302 return CommonExitBlock;
305 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
306 Instruction *Addr) const {
307 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
308 Function *Func = (*Blocks.begin())->getParent();
309 for (BasicBlock &BB : *Func) {
310 if (Blocks.count(&BB))
311 continue;
312 for (Instruction &II : BB) {
313 if (isa<DbgInfoIntrinsic>(II))
314 continue;
316 unsigned Opcode = II.getOpcode();
317 Value *MemAddr = nullptr;
318 switch (Opcode) {
319 case Instruction::Store:
320 case Instruction::Load: {
321 if (Opcode == Instruction::Store) {
322 StoreInst *SI = cast<StoreInst>(&II);
323 MemAddr = SI->getPointerOperand();
324 } else {
325 LoadInst *LI = cast<LoadInst>(&II);
326 MemAddr = LI->getPointerOperand();
328 // Global variable can not be aliased with locals.
329 if (dyn_cast<Constant>(MemAddr))
330 break;
331 Value *Base = MemAddr->stripInBoundsConstantOffsets();
332 if (!dyn_cast<AllocaInst>(Base) || Base == AI)
333 return false;
334 break;
336 default: {
337 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
338 if (IntrInst) {
339 if (IntrInst->isLifetimeStartOrEnd())
340 break;
341 return false;
343 // Treat all the other cases conservatively if it has side effects.
344 if (II.mayHaveSideEffects())
345 return false;
351 return true;
354 BasicBlock *
355 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
356 BasicBlock *SinglePredFromOutlineRegion = nullptr;
357 assert(!Blocks.count(CommonExitBlock) &&
358 "Expect a block outside the region!");
359 for (auto *Pred : predecessors(CommonExitBlock)) {
360 if (!Blocks.count(Pred))
361 continue;
362 if (!SinglePredFromOutlineRegion) {
363 SinglePredFromOutlineRegion = Pred;
364 } else if (SinglePredFromOutlineRegion != Pred) {
365 SinglePredFromOutlineRegion = nullptr;
366 break;
370 if (SinglePredFromOutlineRegion)
371 return SinglePredFromOutlineRegion;
373 #ifndef NDEBUG
374 auto getFirstPHI = [](BasicBlock *BB) {
375 BasicBlock::iterator I = BB->begin();
376 PHINode *FirstPhi = nullptr;
377 while (I != BB->end()) {
378 PHINode *Phi = dyn_cast<PHINode>(I);
379 if (!Phi)
380 break;
381 if (!FirstPhi) {
382 FirstPhi = Phi;
383 break;
386 return FirstPhi;
388 // If there are any phi nodes, the single pred either exists or has already
389 // be created before code extraction.
390 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
391 #endif
393 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
394 CommonExitBlock->getFirstNonPHI()->getIterator());
396 for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
397 PI != PE;) {
398 BasicBlock *Pred = *PI++;
399 if (Blocks.count(Pred))
400 continue;
401 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
403 // Now add the old exit block to the outline region.
404 Blocks.insert(CommonExitBlock);
405 return CommonExitBlock;
408 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
409 BasicBlock *&ExitBlock) const {
410 Function *Func = (*Blocks.begin())->getParent();
411 ExitBlock = getCommonExitBlock(Blocks);
413 for (BasicBlock &BB : *Func) {
414 if (Blocks.count(&BB))
415 continue;
416 for (Instruction &II : BB) {
417 auto *AI = dyn_cast<AllocaInst>(&II);
418 if (!AI)
419 continue;
421 // Find the pair of life time markers for address 'Addr' that are either
422 // defined inside the outline region or can legally be shrinkwrapped into
423 // the outline region. If there are not other untracked uses of the
424 // address, return the pair of markers if found; otherwise return a pair
425 // of nullptr.
426 auto GetLifeTimeMarkers =
427 [&](Instruction *Addr, bool &SinkLifeStart,
428 bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> {
429 Instruction *LifeStart = nullptr, *LifeEnd = nullptr;
431 for (User *U : Addr->users()) {
432 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
433 if (IntrInst) {
434 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
435 // Do not handle the case where AI has multiple start markers.
436 if (LifeStart)
437 return std::make_pair<Instruction *>(nullptr, nullptr);
438 LifeStart = IntrInst;
440 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
441 if (LifeEnd)
442 return std::make_pair<Instruction *>(nullptr, nullptr);
443 LifeEnd = IntrInst;
445 continue;
447 // Find untracked uses of the address, bail.
448 if (!definedInRegion(Blocks, U))
449 return std::make_pair<Instruction *>(nullptr, nullptr);
452 if (!LifeStart || !LifeEnd)
453 return std::make_pair<Instruction *>(nullptr, nullptr);
455 SinkLifeStart = !definedInRegion(Blocks, LifeStart);
456 HoistLifeEnd = !definedInRegion(Blocks, LifeEnd);
457 // Do legality Check.
458 if ((SinkLifeStart || HoistLifeEnd) &&
459 !isLegalToShrinkwrapLifetimeMarkers(Addr))
460 return std::make_pair<Instruction *>(nullptr, nullptr);
462 // Check to see if we have a place to do hoisting, if not, bail.
463 if (HoistLifeEnd && !ExitBlock)
464 return std::make_pair<Instruction *>(nullptr, nullptr);
466 return std::make_pair(LifeStart, LifeEnd);
469 bool SinkLifeStart = false, HoistLifeEnd = false;
470 auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd);
472 if (Markers.first) {
473 if (SinkLifeStart)
474 SinkCands.insert(Markers.first);
475 SinkCands.insert(AI);
476 if (HoistLifeEnd)
477 HoistCands.insert(Markers.second);
478 continue;
481 // Follow the bitcast.
482 Instruction *MarkerAddr = nullptr;
483 for (User *U : AI->users()) {
484 if (U->stripInBoundsConstantOffsets() == AI) {
485 SinkLifeStart = false;
486 HoistLifeEnd = false;
487 Instruction *Bitcast = cast<Instruction>(U);
488 Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd);
489 if (Markers.first) {
490 MarkerAddr = Bitcast;
491 continue;
495 // Found unknown use of AI.
496 if (!definedInRegion(Blocks, U)) {
497 MarkerAddr = nullptr;
498 break;
502 if (MarkerAddr) {
503 if (SinkLifeStart)
504 SinkCands.insert(Markers.first);
505 if (!definedInRegion(Blocks, MarkerAddr))
506 SinkCands.insert(MarkerAddr);
507 SinkCands.insert(AI);
508 if (HoistLifeEnd)
509 HoistCands.insert(Markers.second);
515 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
516 const ValueSet &SinkCands) const {
517 for (BasicBlock *BB : Blocks) {
518 // If a used value is defined outside the region, it's an input. If an
519 // instruction is used outside the region, it's an output.
520 for (Instruction &II : *BB) {
521 for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
522 ++OI) {
523 Value *V = *OI;
524 if (!SinkCands.count(V) && definedInCaller(Blocks, V))
525 Inputs.insert(V);
528 for (User *U : II.users())
529 if (!definedInRegion(Blocks, U)) {
530 Outputs.insert(&II);
531 break;
537 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
538 /// of the region, we need to split the entry block of the region so that the
539 /// PHI node is easier to deal with.
540 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
541 unsigned NumPredsFromRegion = 0;
542 unsigned NumPredsOutsideRegion = 0;
544 if (Header != &Header->getParent()->getEntryBlock()) {
545 PHINode *PN = dyn_cast<PHINode>(Header->begin());
546 if (!PN) return; // No PHI nodes.
548 // If the header node contains any PHI nodes, check to see if there is more
549 // than one entry from outside the region. If so, we need to sever the
550 // header block into two.
551 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
552 if (Blocks.count(PN->getIncomingBlock(i)))
553 ++NumPredsFromRegion;
554 else
555 ++NumPredsOutsideRegion;
557 // If there is one (or fewer) predecessor from outside the region, we don't
558 // need to do anything special.
559 if (NumPredsOutsideRegion <= 1) return;
562 // Otherwise, we need to split the header block into two pieces: one
563 // containing PHI nodes merging values from outside of the region, and a
564 // second that contains all of the code for the block and merges back any
565 // incoming values from inside of the region.
566 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
568 // We only want to code extract the second block now, and it becomes the new
569 // header of the region.
570 BasicBlock *OldPred = Header;
571 Blocks.remove(OldPred);
572 Blocks.insert(NewBB);
573 Header = NewBB;
575 // Okay, now we need to adjust the PHI nodes and any branches from within the
576 // region to go to the new header block instead of the old header block.
577 if (NumPredsFromRegion) {
578 PHINode *PN = cast<PHINode>(OldPred->begin());
579 // Loop over all of the predecessors of OldPred that are in the region,
580 // changing them to branch to NewBB instead.
581 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
582 if (Blocks.count(PN->getIncomingBlock(i))) {
583 Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
584 TI->replaceUsesOfWith(OldPred, NewBB);
587 // Okay, everything within the region is now branching to the right block, we
588 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
589 BasicBlock::iterator AfterPHIs;
590 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
591 PHINode *PN = cast<PHINode>(AfterPHIs);
592 // Create a new PHI node in the new region, which has an incoming value
593 // from OldPred of PN.
594 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
595 PN->getName() + ".ce", &NewBB->front());
596 PN->replaceAllUsesWith(NewPN);
597 NewPN->addIncoming(PN, OldPred);
599 // Loop over all of the incoming value in PN, moving them to NewPN if they
600 // are from the extracted region.
601 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
602 if (Blocks.count(PN->getIncomingBlock(i))) {
603 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
604 PN->removeIncomingValue(i);
605 --i;
612 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
613 /// outlined region, we split these PHIs on two: one with inputs from region
614 /// and other with remaining incoming blocks; then first PHIs are placed in
615 /// outlined region.
616 void CodeExtractor::severSplitPHINodesOfExits(
617 const SmallPtrSetImpl<BasicBlock *> &Exits) {
618 for (BasicBlock *ExitBB : Exits) {
619 BasicBlock *NewBB = nullptr;
621 for (PHINode &PN : ExitBB->phis()) {
622 // Find all incoming values from the outlining region.
623 SmallVector<unsigned, 2> IncomingVals;
624 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
625 if (Blocks.count(PN.getIncomingBlock(i)))
626 IncomingVals.push_back(i);
628 // Do not process PHI if there is one (or fewer) predecessor from region.
629 // If PHI has exactly one predecessor from region, only this one incoming
630 // will be replaced on codeRepl block, so it should be safe to skip PHI.
631 if (IncomingVals.size() <= 1)
632 continue;
634 // Create block for new PHIs and add it to the list of outlined if it
635 // wasn't done before.
636 if (!NewBB) {
637 NewBB = BasicBlock::Create(ExitBB->getContext(),
638 ExitBB->getName() + ".split",
639 ExitBB->getParent(), ExitBB);
640 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
641 pred_end(ExitBB));
642 for (BasicBlock *PredBB : Preds)
643 if (Blocks.count(PredBB))
644 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
645 BranchInst::Create(ExitBB, NewBB);
646 Blocks.insert(NewBB);
649 // Split this PHI.
650 PHINode *NewPN =
651 PHINode::Create(PN.getType(), IncomingVals.size(),
652 PN.getName() + ".ce", NewBB->getFirstNonPHI());
653 for (unsigned i : IncomingVals)
654 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
655 for (unsigned i : reverse(IncomingVals))
656 PN.removeIncomingValue(i, false);
657 PN.addIncoming(NewPN, NewBB);
662 void CodeExtractor::splitReturnBlocks() {
663 for (BasicBlock *Block : Blocks)
664 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
665 BasicBlock *New =
666 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
667 if (DT) {
668 // Old dominates New. New node dominates all other nodes dominated
669 // by Old.
670 DomTreeNode *OldNode = DT->getNode(Block);
671 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
672 OldNode->end());
674 DomTreeNode *NewNode = DT->addNewBlock(New, Block);
676 for (DomTreeNode *I : Children)
677 DT->changeImmediateDominator(I, NewNode);
682 /// constructFunction - make a function based on inputs and outputs, as follows:
683 /// f(in0, ..., inN, out0, ..., outN)
684 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
685 const ValueSet &outputs,
686 BasicBlock *header,
687 BasicBlock *newRootNode,
688 BasicBlock *newHeader,
689 Function *oldFunction,
690 Module *M) {
691 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
692 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
694 // This function returns unsigned, outputs will go back by reference.
695 switch (NumExitBlocks) {
696 case 0:
697 case 1: RetTy = Type::getVoidTy(header->getContext()); break;
698 case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
699 default: RetTy = Type::getInt16Ty(header->getContext()); break;
702 std::vector<Type *> paramTy;
704 // Add the types of the input values to the function's argument list
705 for (Value *value : inputs) {
706 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
707 paramTy.push_back(value->getType());
710 // Add the types of the output values to the function's argument list.
711 for (Value *output : outputs) {
712 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
713 if (AggregateArgs)
714 paramTy.push_back(output->getType());
715 else
716 paramTy.push_back(PointerType::getUnqual(output->getType()));
719 LLVM_DEBUG({
720 dbgs() << "Function type: " << *RetTy << " f(";
721 for (Type *i : paramTy)
722 dbgs() << *i << ", ";
723 dbgs() << ")\n";
726 StructType *StructTy;
727 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
728 StructTy = StructType::get(M->getContext(), paramTy);
729 paramTy.clear();
730 paramTy.push_back(PointerType::getUnqual(StructTy));
732 FunctionType *funcType =
733 FunctionType::get(RetTy, paramTy,
734 AllowVarArgs && oldFunction->isVarArg());
736 std::string SuffixToUse =
737 Suffix.empty()
738 ? (header->getName().empty() ? "extracted" : header->getName().str())
739 : Suffix;
740 // Create the new function
741 Function *newFunction = Function::Create(
742 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
743 oldFunction->getName() + "." + SuffixToUse, M);
744 // If the old function is no-throw, so is the new one.
745 if (oldFunction->doesNotThrow())
746 newFunction->setDoesNotThrow();
748 // Inherit the uwtable attribute if we need to.
749 if (oldFunction->hasUWTable())
750 newFunction->setHasUWTable();
752 // Inherit all of the target dependent attributes and white-listed
753 // target independent attributes.
754 // (e.g. If the extracted region contains a call to an x86.sse
755 // instruction we need to make sure that the extracted region has the
756 // "target-features" attribute allowing it to be lowered.
757 // FIXME: This should be changed to check to see if a specific
758 // attribute can not be inherited.
759 for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
760 if (Attr.isStringAttribute()) {
761 if (Attr.getKindAsString() == "thunk")
762 continue;
763 } else
764 switch (Attr.getKindAsEnum()) {
765 // Those attributes cannot be propagated safely. Explicitly list them
766 // here so we get a warning if new attributes are added. This list also
767 // includes non-function attributes.
768 case Attribute::Alignment:
769 case Attribute::AllocSize:
770 case Attribute::ArgMemOnly:
771 case Attribute::Builtin:
772 case Attribute::ByVal:
773 case Attribute::Convergent:
774 case Attribute::Dereferenceable:
775 case Attribute::DereferenceableOrNull:
776 case Attribute::InAlloca:
777 case Attribute::InReg:
778 case Attribute::InaccessibleMemOnly:
779 case Attribute::InaccessibleMemOrArgMemOnly:
780 case Attribute::JumpTable:
781 case Attribute::Naked:
782 case Attribute::Nest:
783 case Attribute::NoAlias:
784 case Attribute::NoBuiltin:
785 case Attribute::NoCapture:
786 case Attribute::NoReturn:
787 case Attribute::None:
788 case Attribute::NonNull:
789 case Attribute::ReadNone:
790 case Attribute::ReadOnly:
791 case Attribute::Returned:
792 case Attribute::ReturnsTwice:
793 case Attribute::SExt:
794 case Attribute::Speculatable:
795 case Attribute::StackAlignment:
796 case Attribute::StructRet:
797 case Attribute::SwiftError:
798 case Attribute::SwiftSelf:
799 case Attribute::WriteOnly:
800 case Attribute::ZExt:
801 case Attribute::EndAttrKinds:
802 continue;
803 // Those attributes should be safe to propagate to the extracted function.
804 case Attribute::AlwaysInline:
805 case Attribute::Cold:
806 case Attribute::NoRecurse:
807 case Attribute::InlineHint:
808 case Attribute::MinSize:
809 case Attribute::NoDuplicate:
810 case Attribute::NoImplicitFloat:
811 case Attribute::NoInline:
812 case Attribute::NonLazyBind:
813 case Attribute::NoRedZone:
814 case Attribute::NoUnwind:
815 case Attribute::OptForFuzzing:
816 case Attribute::OptimizeNone:
817 case Attribute::OptimizeForSize:
818 case Attribute::SafeStack:
819 case Attribute::ShadowCallStack:
820 case Attribute::SanitizeAddress:
821 case Attribute::SanitizeMemory:
822 case Attribute::SanitizeThread:
823 case Attribute::SanitizeHWAddress:
824 case Attribute::SpeculativeLoadHardening:
825 case Attribute::StackProtect:
826 case Attribute::StackProtectReq:
827 case Attribute::StackProtectStrong:
828 case Attribute::StrictFP:
829 case Attribute::UWTable:
830 case Attribute::NoCfCheck:
831 break;
834 newFunction->addFnAttr(Attr);
836 newFunction->getBasicBlockList().push_back(newRootNode);
838 // Create an iterator to name all of the arguments we inserted.
839 Function::arg_iterator AI = newFunction->arg_begin();
841 // Rewrite all users of the inputs in the extracted region to use the
842 // arguments (or appropriate addressing into struct) instead.
843 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
844 Value *RewriteVal;
845 if (AggregateArgs) {
846 Value *Idx[2];
847 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
848 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
849 Instruction *TI = newFunction->begin()->getTerminator();
850 GetElementPtrInst *GEP = GetElementPtrInst::Create(
851 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
852 RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
853 "loadgep_" + inputs[i]->getName(), TI);
854 } else
855 RewriteVal = &*AI++;
857 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
858 for (User *use : Users)
859 if (Instruction *inst = dyn_cast<Instruction>(use))
860 if (Blocks.count(inst->getParent()))
861 inst->replaceUsesOfWith(inputs[i], RewriteVal);
864 // Set names for input and output arguments.
865 if (!AggregateArgs) {
866 AI = newFunction->arg_begin();
867 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
868 AI->setName(inputs[i]->getName());
869 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
870 AI->setName(outputs[i]->getName()+".out");
873 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
874 // within the new function. This must be done before we lose track of which
875 // blocks were originally in the code region.
876 std::vector<User *> Users(header->user_begin(), header->user_end());
877 for (unsigned i = 0, e = Users.size(); i != e; ++i)
878 // The BasicBlock which contains the branch is not in the region
879 // modify the branch target to a new block
880 if (Instruction *I = dyn_cast<Instruction>(Users[i]))
881 if (I->isTerminator() && !Blocks.count(I->getParent()) &&
882 I->getParent()->getParent() == oldFunction)
883 I->replaceUsesOfWith(header, newHeader);
885 return newFunction;
888 /// Erase lifetime.start markers which reference inputs to the extraction
889 /// region, and insert the referenced memory into \p LifetimesStart.
891 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
892 /// of allocas which will be moved from the caller function into the extracted
893 /// function (\p SunkAllocas).
894 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
895 const SetVector<Value *> &SunkAllocas,
896 SetVector<Value *> &LifetimesStart) {
897 for (BasicBlock *BB : Blocks) {
898 for (auto It = BB->begin(), End = BB->end(); It != End;) {
899 auto *II = dyn_cast<IntrinsicInst>(&*It);
900 ++It;
901 if (!II || !II->isLifetimeStartOrEnd())
902 continue;
904 // Get the memory operand of the lifetime marker. If the underlying
905 // object is a sunk alloca, or is otherwise defined in the extraction
906 // region, the lifetime marker must not be erased.
907 Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
908 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
909 continue;
911 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
912 LifetimesStart.insert(Mem);
913 II->eraseFromParent();
918 /// Insert lifetime start/end markers surrounding the call to the new function
919 /// for objects defined in the caller.
920 static void insertLifetimeMarkersSurroundingCall(
921 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
922 CallInst *TheCall) {
923 LLVMContext &Ctx = M->getContext();
924 auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
925 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
926 Instruction *Term = TheCall->getParent()->getTerminator();
928 // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
929 // needed to satisfy this requirement so they may be reused.
930 DenseMap<Value *, Value *> Bitcasts;
932 // Emit lifetime markers for the pointers given in \p Objects. Insert the
933 // markers before the call if \p InsertBefore, and after the call otherwise.
934 auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
935 bool InsertBefore) {
936 for (Value *Mem : Objects) {
937 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
938 TheCall->getFunction()) &&
939 "Input memory not defined in original function");
940 Value *&MemAsI8Ptr = Bitcasts[Mem];
941 if (!MemAsI8Ptr) {
942 if (Mem->getType() == Int8PtrTy)
943 MemAsI8Ptr = Mem;
944 else
945 MemAsI8Ptr =
946 CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
949 auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
950 if (InsertBefore)
951 Marker->insertBefore(TheCall);
952 else
953 Marker->insertBefore(Term);
957 if (!LifetimesStart.empty()) {
958 auto StartFn = llvm::Intrinsic::getDeclaration(
959 M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
960 insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
963 if (!LifetimesEnd.empty()) {
964 auto EndFn = llvm::Intrinsic::getDeclaration(
965 M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
966 insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
970 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
971 /// the call instruction, splitting any PHI nodes in the header block as
972 /// necessary.
973 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
974 BasicBlock *codeReplacer,
975 ValueSet &inputs,
976 ValueSet &outputs) {
977 // Emit a call to the new function, passing in: *pointer to struct (if
978 // aggregating parameters), or plan inputs and allocated memory for outputs
979 std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
981 Module *M = newFunction->getParent();
982 LLVMContext &Context = M->getContext();
983 const DataLayout &DL = M->getDataLayout();
984 CallInst *call = nullptr;
986 // Add inputs as params, or to be filled into the struct
987 unsigned ArgNo = 0;
988 SmallVector<unsigned, 1> SwiftErrorArgs;
989 for (Value *input : inputs) {
990 if (AggregateArgs)
991 StructValues.push_back(input);
992 else {
993 params.push_back(input);
994 if (input->isSwiftError())
995 SwiftErrorArgs.push_back(ArgNo);
997 ++ArgNo;
1000 // Create allocas for the outputs
1001 for (Value *output : outputs) {
1002 if (AggregateArgs) {
1003 StructValues.push_back(output);
1004 } else {
1005 AllocaInst *alloca =
1006 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1007 nullptr, output->getName() + ".loc",
1008 &codeReplacer->getParent()->front().front());
1009 ReloadOutputs.push_back(alloca);
1010 params.push_back(alloca);
1014 StructType *StructArgTy = nullptr;
1015 AllocaInst *Struct = nullptr;
1016 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
1017 std::vector<Type *> ArgTypes;
1018 for (ValueSet::iterator v = StructValues.begin(),
1019 ve = StructValues.end(); v != ve; ++v)
1020 ArgTypes.push_back((*v)->getType());
1022 // Allocate a struct at the beginning of this function
1023 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1024 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1025 "structArg",
1026 &codeReplacer->getParent()->front().front());
1027 params.push_back(Struct);
1029 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1030 Value *Idx[2];
1031 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1032 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1033 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1034 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1035 codeReplacer->getInstList().push_back(GEP);
1036 StoreInst *SI = new StoreInst(StructValues[i], GEP);
1037 codeReplacer->getInstList().push_back(SI);
1041 // Emit the call to the function
1042 call = CallInst::Create(newFunction, params,
1043 NumExitBlocks > 1 ? "targetBlock" : "");
1044 // Add debug location to the new call, if the original function has debug
1045 // info. In that case, the terminator of the entry block of the extracted
1046 // function contains the first debug location of the extracted function,
1047 // set in extractCodeRegion.
1048 if (codeReplacer->getParent()->getSubprogram()) {
1049 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1050 call->setDebugLoc(DL);
1052 codeReplacer->getInstList().push_back(call);
1054 // Set swifterror parameter attributes.
1055 for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1056 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1057 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1060 Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
1061 unsigned FirstOut = inputs.size();
1062 if (!AggregateArgs)
1063 std::advance(OutputArgBegin, inputs.size());
1065 // Reload the outputs passed in by reference.
1066 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1067 Value *Output = nullptr;
1068 if (AggregateArgs) {
1069 Value *Idx[2];
1070 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1071 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1072 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1073 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1074 codeReplacer->getInstList().push_back(GEP);
1075 Output = GEP;
1076 } else {
1077 Output = ReloadOutputs[i];
1079 LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1080 outputs[i]->getName() + ".reload");
1081 Reloads.push_back(load);
1082 codeReplacer->getInstList().push_back(load);
1083 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1084 for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1085 Instruction *inst = cast<Instruction>(Users[u]);
1086 if (!Blocks.count(inst->getParent()))
1087 inst->replaceUsesOfWith(outputs[i], load);
1091 // Now we can emit a switch statement using the call as a value.
1092 SwitchInst *TheSwitch =
1093 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1094 codeReplacer, 0, codeReplacer);
1096 // Since there may be multiple exits from the original region, make the new
1097 // function return an unsigned, switch on that number. This loop iterates
1098 // over all of the blocks in the extracted region, updating any terminator
1099 // instructions in the to-be-extracted region that branch to blocks that are
1100 // not in the region to be extracted.
1101 std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1103 unsigned switchVal = 0;
1104 for (BasicBlock *Block : Blocks) {
1105 Instruction *TI = Block->getTerminator();
1106 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1107 if (!Blocks.count(TI->getSuccessor(i))) {
1108 BasicBlock *OldTarget = TI->getSuccessor(i);
1109 // add a new basic block which returns the appropriate value
1110 BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1111 if (!NewTarget) {
1112 // If we don't already have an exit stub for this non-extracted
1113 // destination, create one now!
1114 NewTarget = BasicBlock::Create(Context,
1115 OldTarget->getName() + ".exitStub",
1116 newFunction);
1117 unsigned SuccNum = switchVal++;
1119 Value *brVal = nullptr;
1120 switch (NumExitBlocks) {
1121 case 0:
1122 case 1: break; // No value needed.
1123 case 2: // Conditional branch, return a bool
1124 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1125 break;
1126 default:
1127 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1128 break;
1131 ReturnInst::Create(Context, brVal, NewTarget);
1133 // Update the switch instruction.
1134 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1135 SuccNum),
1136 OldTarget);
1139 // rewrite the original branch instruction with this new target
1140 TI->setSuccessor(i, NewTarget);
1144 // Store the arguments right after the definition of output value.
1145 // This should be proceeded after creating exit stubs to be ensure that invoke
1146 // result restore will be placed in the outlined function.
1147 Function::arg_iterator OAI = OutputArgBegin;
1148 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1149 auto *OutI = dyn_cast<Instruction>(outputs[i]);
1150 if (!OutI)
1151 continue;
1153 // Find proper insertion point.
1154 BasicBlock::iterator InsertPt;
1155 // In case OutI is an invoke, we insert the store at the beginning in the
1156 // 'normal destination' BB. Otherwise we insert the store right after OutI.
1157 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1158 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1159 else if (auto *Phi = dyn_cast<PHINode>(OutI))
1160 InsertPt = Phi->getParent()->getFirstInsertionPt();
1161 else
1162 InsertPt = std::next(OutI->getIterator());
1164 Instruction *InsertBefore = &*InsertPt;
1165 assert((InsertBefore->getFunction() == newFunction ||
1166 Blocks.count(InsertBefore->getParent())) &&
1167 "InsertPt should be in new function");
1168 assert(OAI != newFunction->arg_end() &&
1169 "Number of output arguments should match "
1170 "the amount of defined values");
1171 if (AggregateArgs) {
1172 Value *Idx[2];
1173 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1174 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1175 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1176 StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
1177 InsertBefore);
1178 new StoreInst(outputs[i], GEP, InsertBefore);
1179 // Since there should be only one struct argument aggregating
1180 // all the output values, we shouldn't increment OAI, which always
1181 // points to the struct argument, in this case.
1182 } else {
1183 new StoreInst(outputs[i], &*OAI, InsertBefore);
1184 ++OAI;
1188 // Now that we've done the deed, simplify the switch instruction.
1189 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1190 switch (NumExitBlocks) {
1191 case 0:
1192 // There are no successors (the block containing the switch itself), which
1193 // means that previously this was the last part of the function, and hence
1194 // this should be rewritten as a `ret'
1196 // Check if the function should return a value
1197 if (OldFnRetTy->isVoidTy()) {
1198 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void
1199 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1200 // return what we have
1201 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1202 } else {
1203 // Otherwise we must have code extracted an unwind or something, just
1204 // return whatever we want.
1205 ReturnInst::Create(Context,
1206 Constant::getNullValue(OldFnRetTy), TheSwitch);
1209 TheSwitch->eraseFromParent();
1210 break;
1211 case 1:
1212 // Only a single destination, change the switch into an unconditional
1213 // branch.
1214 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1215 TheSwitch->eraseFromParent();
1216 break;
1217 case 2:
1218 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1219 call, TheSwitch);
1220 TheSwitch->eraseFromParent();
1221 break;
1222 default:
1223 // Otherwise, make the default destination of the switch instruction be one
1224 // of the other successors.
1225 TheSwitch->setCondition(call);
1226 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1227 // Remove redundant case
1228 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1229 break;
1232 // Insert lifetime markers around the reloads of any output values. The
1233 // allocas output values are stored in are only in-use in the codeRepl block.
1234 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1236 return call;
1239 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1240 Function *oldFunc = (*Blocks.begin())->getParent();
1241 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1242 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1244 for (BasicBlock *Block : Blocks) {
1245 // Delete the basic block from the old function, and the list of blocks
1246 oldBlocks.remove(Block);
1248 // Insert this basic block into the new function
1249 newBlocks.push_back(Block);
1251 // Remove @llvm.assume calls that were moved to the new function from the
1252 // old function's assumption cache.
1253 if (AC)
1254 for (auto &I : *Block)
1255 if (match(&I, m_Intrinsic<Intrinsic::assume>()))
1256 AC->unregisterAssumption(cast<CallInst>(&I));
1260 void CodeExtractor::calculateNewCallTerminatorWeights(
1261 BasicBlock *CodeReplacer,
1262 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1263 BranchProbabilityInfo *BPI) {
1264 using Distribution = BlockFrequencyInfoImplBase::Distribution;
1265 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1267 // Update the branch weights for the exit block.
1268 Instruction *TI = CodeReplacer->getTerminator();
1269 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1271 // Block Frequency distribution with dummy node.
1272 Distribution BranchDist;
1274 // Add each of the frequencies of the successors.
1275 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1276 BlockNode ExitNode(i);
1277 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1278 if (ExitFreq != 0)
1279 BranchDist.addExit(ExitNode, ExitFreq);
1280 else
1281 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1284 // Check for no total weight.
1285 if (BranchDist.Total == 0)
1286 return;
1288 // Normalize the distribution so that they can fit in unsigned.
1289 BranchDist.normalize();
1291 // Create normalized branch weights and set the metadata.
1292 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1293 const auto &Weight = BranchDist.Weights[I];
1295 // Get the weight and update the current BFI.
1296 BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1297 BranchProbability BP(Weight.Amount, BranchDist.Total);
1298 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1300 TI->setMetadata(
1301 LLVMContext::MD_prof,
1302 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1305 Function *CodeExtractor::extractCodeRegion() {
1306 if (!isEligible())
1307 return nullptr;
1309 // Assumption: this is a single-entry code region, and the header is the first
1310 // block in the region.
1311 BasicBlock *header = *Blocks.begin();
1312 Function *oldFunction = header->getParent();
1314 // For functions with varargs, check that varargs handling is only done in the
1315 // outlined function, i.e vastart and vaend are only used in outlined blocks.
1316 if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) {
1317 auto containsVarArgIntrinsic = [](Instruction &I) {
1318 if (const CallInst *CI = dyn_cast<CallInst>(&I))
1319 if (const Function *F = CI->getCalledFunction())
1320 return F->getIntrinsicID() == Intrinsic::vastart ||
1321 F->getIntrinsicID() == Intrinsic::vaend;
1322 return false;
1325 for (auto &BB : *oldFunction) {
1326 if (Blocks.count(&BB))
1327 continue;
1328 if (llvm::any_of(BB, containsVarArgIntrinsic))
1329 return nullptr;
1332 ValueSet inputs, outputs, SinkingCands, HoistingCands;
1333 BasicBlock *CommonExit = nullptr;
1335 // Calculate the entry frequency of the new function before we change the root
1336 // block.
1337 BlockFrequency EntryFreq;
1338 if (BFI) {
1339 assert(BPI && "Both BPI and BFI are required to preserve profile info");
1340 for (BasicBlock *Pred : predecessors(header)) {
1341 if (Blocks.count(Pred))
1342 continue;
1343 EntryFreq +=
1344 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1348 // If we have any return instructions in the region, split those blocks so
1349 // that the return is not in the region.
1350 splitReturnBlocks();
1352 // Calculate the exit blocks for the extracted region and the total exit
1353 // weights for each of those blocks.
1354 DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1355 SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1356 for (BasicBlock *Block : Blocks) {
1357 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1358 ++SI) {
1359 if (!Blocks.count(*SI)) {
1360 // Update the branch weight for this successor.
1361 if (BFI) {
1362 BlockFrequency &BF = ExitWeights[*SI];
1363 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1365 ExitBlocks.insert(*SI);
1369 NumExitBlocks = ExitBlocks.size();
1371 // If we have to split PHI nodes of the entry or exit blocks, do so now.
1372 severSplitPHINodesOfEntry(header);
1373 severSplitPHINodesOfExits(ExitBlocks);
1375 // This takes place of the original loop
1376 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1377 "codeRepl", oldFunction,
1378 header);
1380 // The new function needs a root node because other nodes can branch to the
1381 // head of the region, but the entry node of a function cannot have preds.
1382 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1383 "newFuncRoot");
1384 auto *BranchI = BranchInst::Create(header);
1385 // If the original function has debug info, we have to add a debug location
1386 // to the new branch instruction from the artificial entry block.
1387 // We use the debug location of the first instruction in the extracted
1388 // blocks, as there is no other equivalent line in the source code.
1389 if (oldFunction->getSubprogram()) {
1390 any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1391 return any_of(*BB, [&BranchI](const Instruction &I) {
1392 if (!I.getDebugLoc())
1393 return false;
1394 BranchI->setDebugLoc(I.getDebugLoc());
1395 return true;
1399 newFuncRoot->getInstList().push_back(BranchI);
1401 findAllocas(SinkingCands, HoistingCands, CommonExit);
1402 assert(HoistingCands.empty() || CommonExit);
1404 // Find inputs to, outputs from the code region.
1405 findInputsOutputs(inputs, outputs, SinkingCands);
1407 // Now sink all instructions which only have non-phi uses inside the region
1408 for (auto *II : SinkingCands)
1409 cast<Instruction>(II)->moveBefore(*newFuncRoot,
1410 newFuncRoot->getFirstInsertionPt());
1412 if (!HoistingCands.empty()) {
1413 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1414 Instruction *TI = HoistToBlock->getTerminator();
1415 for (auto *II : HoistingCands)
1416 cast<Instruction>(II)->moveBefore(TI);
1419 // Collect objects which are inputs to the extraction region and also
1420 // referenced by lifetime start markers within it. The effects of these
1421 // markers must be replicated in the calling function to prevent the stack
1422 // coloring pass from merging slots which store input objects.
1423 ValueSet LifetimesStart;
1424 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1426 // Construct new function based on inputs/outputs & add allocas for all defs.
1427 Function *newFunction =
1428 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1429 oldFunction, oldFunction->getParent());
1431 // Update the entry count of the function.
1432 if (BFI) {
1433 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1434 if (Count.hasValue())
1435 newFunction->setEntryCount(
1436 ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1437 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1440 CallInst *TheCall =
1441 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1443 moveCodeToFunction(newFunction);
1445 // Replicate the effects of any lifetime start/end markers which referenced
1446 // input objects in the extraction region by placing markers around the call.
1447 insertLifetimeMarkersSurroundingCall(
1448 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1450 // Propagate personality info to the new function if there is one.
1451 if (oldFunction->hasPersonalityFn())
1452 newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1454 // Update the branch weights for the exit block.
1455 if (BFI && NumExitBlocks > 1)
1456 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1458 // Loop over all of the PHI nodes in the header and exit blocks, and change
1459 // any references to the old incoming edge to be the new incoming edge.
1460 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1461 PHINode *PN = cast<PHINode>(I);
1462 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1463 if (!Blocks.count(PN->getIncomingBlock(i)))
1464 PN->setIncomingBlock(i, newFuncRoot);
1467 for (BasicBlock *ExitBB : ExitBlocks)
1468 for (PHINode &PN : ExitBB->phis()) {
1469 Value *IncomingCodeReplacerVal = nullptr;
1470 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1471 // Ignore incoming values from outside of the extracted region.
1472 if (!Blocks.count(PN.getIncomingBlock(i)))
1473 continue;
1475 // Ensure that there is only one incoming value from codeReplacer.
1476 if (!IncomingCodeReplacerVal) {
1477 PN.setIncomingBlock(i, codeReplacer);
1478 IncomingCodeReplacerVal = PN.getIncomingValue(i);
1479 } else
1480 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1481 "PHI has two incompatbile incoming values from codeRepl");
1485 // Erase debug info intrinsics. Variable updates within the new function are
1486 // invisible to debuggers. This could be improved by defining a DISubprogram
1487 // for the new function.
1488 for (BasicBlock &BB : *newFunction) {
1489 auto BlockIt = BB.begin();
1490 // Remove debug info intrinsics from the new function.
1491 while (BlockIt != BB.end()) {
1492 Instruction *Inst = &*BlockIt;
1493 ++BlockIt;
1494 if (isa<DbgInfoIntrinsic>(Inst))
1495 Inst->eraseFromParent();
1497 // Remove debug info intrinsics which refer to values in the new function
1498 // from the old function.
1499 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1500 for (Instruction &I : BB)
1501 findDbgUsers(DbgUsers, &I);
1502 for (DbgVariableIntrinsic *DVI : DbgUsers)
1503 DVI->eraseFromParent();
1506 // Mark the new function `noreturn` if applicable. Terminators which resume
1507 // exception propagation are treated as returning instructions. This is to
1508 // avoid inserting traps after calls to outlined functions which unwind.
1509 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1510 const Instruction *Term = BB.getTerminator();
1511 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1513 if (doesNotReturn)
1514 newFunction->setDoesNotReturn();
1516 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1517 newFunction->dump();
1518 report_fatal_error("verification of newFunction failed!");
1520 LLVM_DEBUG(if (verifyFunction(*oldFunction))
1521 report_fatal_error("verification of oldFunction failed!"));
1522 return newFunction;