1 //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Function evaluator for LLVM IR.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/Evaluator.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
43 #define DEBUG_TYPE "evaluator"
48 isSimpleEnoughValueToCommit(Constant
*C
,
49 SmallPtrSetImpl
<Constant
*> &SimpleConstants
,
50 const DataLayout
&DL
);
52 /// Return true if the specified constant can be handled by the code generator.
53 /// We don't want to generate something like:
55 /// because the code generator doesn't have a relocation that can handle that.
57 /// This function should be called if C was not found (but just got inserted)
58 /// in SimpleConstants to avoid having to rescan the same constants all the
61 isSimpleEnoughValueToCommitHelper(Constant
*C
,
62 SmallPtrSetImpl
<Constant
*> &SimpleConstants
,
63 const DataLayout
&DL
) {
64 // Simple global addresses are supported, do not allow dllimport or
65 // thread-local globals.
66 if (auto *GV
= dyn_cast
<GlobalValue
>(C
))
67 return !GV
->hasDLLImportStorageClass() && !GV
->isThreadLocal();
69 // Simple integer, undef, constant aggregate zero, etc are all supported.
70 if (C
->getNumOperands() == 0 || isa
<BlockAddress
>(C
))
73 // Aggregate values are safe if all their elements are.
74 if (isa
<ConstantAggregate
>(C
)) {
75 for (Value
*Op
: C
->operands())
76 if (!isSimpleEnoughValueToCommit(cast
<Constant
>(Op
), SimpleConstants
, DL
))
81 // We don't know exactly what relocations are allowed in constant expressions,
82 // so we allow &global+constantoffset, which is safe and uniformly supported
84 ConstantExpr
*CE
= cast
<ConstantExpr
>(C
);
85 switch (CE
->getOpcode()) {
86 case Instruction::BitCast
:
87 // Bitcast is fine if the casted value is fine.
88 return isSimpleEnoughValueToCommit(CE
->getOperand(0), SimpleConstants
, DL
);
90 case Instruction::IntToPtr
:
91 case Instruction::PtrToInt
:
92 // int <=> ptr is fine if the int type is the same size as the
94 if (DL
.getTypeSizeInBits(CE
->getType()) !=
95 DL
.getTypeSizeInBits(CE
->getOperand(0)->getType()))
97 return isSimpleEnoughValueToCommit(CE
->getOperand(0), SimpleConstants
, DL
);
99 // GEP is fine if it is simple + constant offset.
100 case Instruction::GetElementPtr
:
101 for (unsigned i
= 1, e
= CE
->getNumOperands(); i
!= e
; ++i
)
102 if (!isa
<ConstantInt
>(CE
->getOperand(i
)))
104 return isSimpleEnoughValueToCommit(CE
->getOperand(0), SimpleConstants
, DL
);
106 case Instruction::Add
:
107 // We allow simple+cst.
108 if (!isa
<ConstantInt
>(CE
->getOperand(1)))
110 return isSimpleEnoughValueToCommit(CE
->getOperand(0), SimpleConstants
, DL
);
116 isSimpleEnoughValueToCommit(Constant
*C
,
117 SmallPtrSetImpl
<Constant
*> &SimpleConstants
,
118 const DataLayout
&DL
) {
119 // If we already checked this constant, we win.
120 if (!SimpleConstants
.insert(C
).second
)
122 // Check the constant.
123 return isSimpleEnoughValueToCommitHelper(C
, SimpleConstants
, DL
);
126 /// Return true if this constant is simple enough for us to understand. In
127 /// particular, if it is a cast to anything other than from one pointer type to
128 /// another pointer type, we punt. We basically just support direct accesses to
129 /// globals and GEP's of globals. This should be kept up to date with
131 static bool isSimpleEnoughPointerToCommit(Constant
*C
) {
132 // Conservatively, avoid aggregate types. This is because we don't
133 // want to worry about them partially overlapping other stores.
134 if (!cast
<PointerType
>(C
->getType())->getElementType()->isSingleValueType())
137 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(C
))
138 // Do not allow weak/*_odr/linkonce linkage or external globals.
139 return GV
->hasUniqueInitializer();
141 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
142 // Handle a constantexpr gep.
143 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
144 isa
<GlobalVariable
>(CE
->getOperand(0)) &&
145 cast
<GEPOperator
>(CE
)->isInBounds()) {
146 GlobalVariable
*GV
= cast
<GlobalVariable
>(CE
->getOperand(0));
147 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
149 if (!GV
->hasUniqueInitializer())
152 // The first index must be zero.
153 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(*std::next(CE
->op_begin()));
154 if (!CI
|| !CI
->isZero()) return false;
156 // The remaining indices must be compile-time known integers within the
157 // notional bounds of the corresponding static array types.
158 if (!CE
->isGEPWithNoNotionalOverIndexing())
161 return ConstantFoldLoadThroughGEPConstantExpr(GV
->getInitializer(), CE
);
163 // A constantexpr bitcast from a pointer to another pointer is a no-op,
164 // and we know how to evaluate it by moving the bitcast from the pointer
165 // operand to the value operand.
166 } else if (CE
->getOpcode() == Instruction::BitCast
&&
167 isa
<GlobalVariable
>(CE
->getOperand(0))) {
168 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
170 return cast
<GlobalVariable
>(CE
->getOperand(0))->hasUniqueInitializer();
177 static Constant
*getInitializer(Constant
*C
) {
178 auto *GV
= dyn_cast
<GlobalVariable
>(C
);
179 return GV
&& GV
->hasDefinitiveInitializer() ? GV
->getInitializer() : nullptr;
182 /// Return the value that would be computed by a load from P after the stores
183 /// reflected by 'memory' have been performed. If we can't decide, return null.
184 Constant
*Evaluator::ComputeLoadResult(Constant
*P
) {
185 // If this memory location has been recently stored, use the stored value: it
186 // is the most up-to-date.
187 DenseMap
<Constant
*, Constant
*>::const_iterator I
= MutatedMemory
.find(P
);
188 if (I
!= MutatedMemory
.end()) return I
->second
;
191 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(P
)) {
192 if (GV
->hasDefinitiveInitializer())
193 return GV
->getInitializer();
197 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(P
)) {
198 switch (CE
->getOpcode()) {
199 // Handle a constantexpr getelementptr.
200 case Instruction::GetElementPtr
:
201 if (auto *I
= getInitializer(CE
->getOperand(0)))
202 return ConstantFoldLoadThroughGEPConstantExpr(I
, CE
);
204 // Handle a constantexpr bitcast.
205 case Instruction::BitCast
:
206 Constant
*Val
= getVal(CE
->getOperand(0));
207 auto MM
= MutatedMemory
.find(Val
);
208 auto *I
= (MM
!= MutatedMemory
.end()) ? MM
->second
209 : getInitializer(CE
->getOperand(0));
211 return ConstantFoldLoadThroughBitcast(
212 I
, P
->getType()->getPointerElementType(), DL
);
217 return nullptr; // don't know how to evaluate.
220 static Function
*getFunction(Constant
*C
) {
221 if (auto *Fn
= dyn_cast
<Function
>(C
))
224 if (auto *Alias
= dyn_cast
<GlobalAlias
>(C
))
225 if (auto *Fn
= dyn_cast
<Function
>(Alias
->getAliasee()))
231 Evaluator::getCalleeWithFormalArgs(CallSite
&CS
,
232 SmallVector
<Constant
*, 8> &Formals
) {
233 auto *V
= CS
.getCalledValue();
234 if (auto *Fn
= getFunction(getVal(V
)))
235 return getFormalParams(CS
, Fn
, Formals
) ? Fn
: nullptr;
237 auto *CE
= dyn_cast
<ConstantExpr
>(V
);
238 if (!CE
|| CE
->getOpcode() != Instruction::BitCast
||
239 !getFormalParams(CS
, getFunction(CE
->getOperand(0)), Formals
))
242 return dyn_cast
<Function
>(
243 ConstantFoldLoadThroughBitcast(CE
, CE
->getOperand(0)->getType(), DL
));
246 bool Evaluator::getFormalParams(CallSite
&CS
, Function
*F
,
247 SmallVector
<Constant
*, 8> &Formals
) {
251 auto *FTy
= F
->getFunctionType();
252 if (FTy
->getNumParams() > CS
.getNumArgOperands()) {
253 LLVM_DEBUG(dbgs() << "Too few arguments for function.\n");
257 auto ArgI
= CS
.arg_begin();
258 for (auto ParI
= FTy
->param_begin(), ParE
= FTy
->param_end(); ParI
!= ParE
;
260 auto *ArgC
= ConstantFoldLoadThroughBitcast(getVal(*ArgI
), *ParI
, DL
);
262 LLVM_DEBUG(dbgs() << "Can not convert function argument.\n");
265 Formals
.push_back(ArgC
);
271 /// If call expression contains bitcast then we may need to cast
272 /// evaluated return value to a type of the call expression.
273 Constant
*Evaluator::castCallResultIfNeeded(Value
*CallExpr
, Constant
*RV
) {
274 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CallExpr
);
275 if (!RV
|| !CE
|| CE
->getOpcode() != Instruction::BitCast
)
279 dyn_cast
<FunctionType
>(CE
->getType()->getPointerElementType())) {
280 RV
= ConstantFoldLoadThroughBitcast(RV
, FT
->getReturnType(), DL
);
282 LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n");
287 /// Evaluate all instructions in block BB, returning true if successful, false
288 /// if we can't evaluate it. NewBB returns the next BB that control flows into,
289 /// or null upon return.
290 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst
,
291 BasicBlock
*&NextBB
) {
292 // This is the main evaluation loop.
294 Constant
*InstResult
= nullptr;
296 LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst
<< "\n");
298 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(CurInst
)) {
299 if (!SI
->isSimple()) {
300 LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
301 return false; // no volatile/atomic accesses.
303 Constant
*Ptr
= getVal(SI
->getOperand(1));
304 if (auto *FoldedPtr
= ConstantFoldConstant(Ptr
, DL
, TLI
)) {
305 LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr
);
307 LLVM_DEBUG(dbgs() << "; To: " << *Ptr
<< "\n");
309 if (!isSimpleEnoughPointerToCommit(Ptr
)) {
310 // If this is too complex for us to commit, reject it.
312 dbgs() << "Pointer is too complex for us to evaluate store.");
316 Constant
*Val
= getVal(SI
->getOperand(0));
318 // If this might be too difficult for the backend to handle (e.g. the addr
319 // of one global variable divided by another) then we can't commit it.
320 if (!isSimpleEnoughValueToCommit(Val
, SimpleConstants
, DL
)) {
321 LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. "
326 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ptr
)) {
327 if (CE
->getOpcode() == Instruction::BitCast
) {
329 << "Attempting to resolve bitcast on constant ptr.\n");
330 // If we're evaluating a store through a bitcast, then we need
331 // to pull the bitcast off the pointer type and push it onto the
333 Ptr
= CE
->getOperand(0);
335 Type
*NewTy
= cast
<PointerType
>(Ptr
->getType())->getElementType();
337 // In order to push the bitcast onto the stored value, a bitcast
338 // from NewTy to Val's type must be legal. If it's not, we can try
339 // introspecting NewTy to find a legal conversion.
341 while (!(NewVal
= ConstantFoldLoadThroughBitcast(Val
, NewTy
, DL
))) {
342 // If NewTy is a struct, we can convert the pointer to the struct
343 // into a pointer to its first member.
344 // FIXME: This could be extended to support arrays as well.
345 if (StructType
*STy
= dyn_cast
<StructType
>(NewTy
)) {
347 IntegerType
*IdxTy
= IntegerType::get(NewTy
->getContext(), 32);
348 Constant
*IdxZero
= ConstantInt::get(IdxTy
, 0, false);
349 Constant
* const IdxList
[] = {IdxZero
, IdxZero
};
351 Ptr
= ConstantExpr::getGetElementPtr(NewTy
, Ptr
, IdxList
);
352 if (auto *FoldedPtr
= ConstantFoldConstant(Ptr
, DL
, TLI
))
354 NewTy
= STy
->getTypeAtIndex(0U);
356 // If we can't improve the situation by introspecting NewTy,
357 // we have to give up.
359 LLVM_DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
366 LLVM_DEBUG(dbgs() << "Evaluated bitcast: " << *Val
<< "\n");
370 MutatedMemory
[Ptr
] = Val
;
371 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(CurInst
)) {
372 InstResult
= ConstantExpr::get(BO
->getOpcode(),
373 getVal(BO
->getOperand(0)),
374 getVal(BO
->getOperand(1)));
375 LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: "
376 << *InstResult
<< "\n");
377 } else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(CurInst
)) {
378 InstResult
= ConstantExpr::getCompare(CI
->getPredicate(),
379 getVal(CI
->getOperand(0)),
380 getVal(CI
->getOperand(1)));
381 LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
383 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(CurInst
)) {
384 InstResult
= ConstantExpr::getCast(CI
->getOpcode(),
385 getVal(CI
->getOperand(0)),
387 LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
389 } else if (SelectInst
*SI
= dyn_cast
<SelectInst
>(CurInst
)) {
390 InstResult
= ConstantExpr::getSelect(getVal(SI
->getOperand(0)),
391 getVal(SI
->getOperand(1)),
392 getVal(SI
->getOperand(2)));
393 LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
395 } else if (auto *EVI
= dyn_cast
<ExtractValueInst
>(CurInst
)) {
396 InstResult
= ConstantExpr::getExtractValue(
397 getVal(EVI
->getAggregateOperand()), EVI
->getIndices());
398 LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: "
399 << *InstResult
<< "\n");
400 } else if (auto *IVI
= dyn_cast
<InsertValueInst
>(CurInst
)) {
401 InstResult
= ConstantExpr::getInsertValue(
402 getVal(IVI
->getAggregateOperand()),
403 getVal(IVI
->getInsertedValueOperand()), IVI
->getIndices());
404 LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: "
405 << *InstResult
<< "\n");
406 } else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(CurInst
)) {
407 Constant
*P
= getVal(GEP
->getOperand(0));
408 SmallVector
<Constant
*, 8> GEPOps
;
409 for (User::op_iterator i
= GEP
->op_begin() + 1, e
= GEP
->op_end();
411 GEPOps
.push_back(getVal(*i
));
413 ConstantExpr::getGetElementPtr(GEP
->getSourceElementType(), P
, GEPOps
,
414 cast
<GEPOperator
>(GEP
)->isInBounds());
415 LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
<< "\n");
416 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(CurInst
)) {
417 if (!LI
->isSimple()) {
419 dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
420 return false; // no volatile/atomic accesses.
423 Constant
*Ptr
= getVal(LI
->getOperand(0));
424 if (auto *FoldedPtr
= ConstantFoldConstant(Ptr
, DL
, TLI
)) {
426 LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant "
430 InstResult
= ComputeLoadResult(Ptr
);
433 dbgs() << "Failed to compute load result. Can not evaluate load."
435 return false; // Could not evaluate load.
438 LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult
<< "\n");
439 } else if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(CurInst
)) {
440 if (AI
->isArrayAllocation()) {
441 LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
442 return false; // Cannot handle array allocs.
444 Type
*Ty
= AI
->getAllocatedType();
445 AllocaTmps
.push_back(llvm::make_unique
<GlobalVariable
>(
446 Ty
, false, GlobalValue::InternalLinkage
, UndefValue::get(Ty
),
447 AI
->getName(), /*TLMode=*/GlobalValue::NotThreadLocal
,
448 AI
->getType()->getPointerAddressSpace()));
449 InstResult
= AllocaTmps
.back().get();
450 LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult
<< "\n");
451 } else if (isa
<CallInst
>(CurInst
) || isa
<InvokeInst
>(CurInst
)) {
452 CallSite
CS(&*CurInst
);
454 // Debug info can safely be ignored here.
455 if (isa
<DbgInfoIntrinsic
>(CS
.getInstruction())) {
456 LLVM_DEBUG(dbgs() << "Ignoring debug info.\n");
461 // Cannot handle inline asm.
462 if (isa
<InlineAsm
>(CS
.getCalledValue())) {
463 LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
467 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CS
.getInstruction())) {
468 if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(II
)) {
469 if (MSI
->isVolatile()) {
470 LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset "
474 Constant
*Ptr
= getVal(MSI
->getDest());
475 Constant
*Val
= getVal(MSI
->getValue());
476 Constant
*DestVal
= ComputeLoadResult(getVal(Ptr
));
477 if (Val
->isNullValue() && DestVal
&& DestVal
->isNullValue()) {
478 // This memset is a no-op.
479 LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n");
485 if (II
->isLifetimeStartOrEnd()) {
486 LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
491 if (II
->getIntrinsicID() == Intrinsic::invariant_start
) {
492 // We don't insert an entry into Values, as it doesn't have a
493 // meaningful return value.
494 if (!II
->use_empty()) {
496 << "Found unused invariant_start. Can't evaluate.\n");
499 ConstantInt
*Size
= cast
<ConstantInt
>(II
->getArgOperand(0));
500 Value
*PtrArg
= getVal(II
->getArgOperand(1));
501 Value
*Ptr
= PtrArg
->stripPointerCasts();
502 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Ptr
)) {
503 Type
*ElemTy
= GV
->getValueType();
504 if (!Size
->isMinusOne() &&
505 Size
->getValue().getLimitedValue() >=
506 DL
.getTypeStoreSize(ElemTy
)) {
507 Invariants
.insert(GV
);
508 LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: "
512 << "Found a global var, but can not treat it as an "
516 // Continue even if we do nothing.
519 } else if (II
->getIntrinsicID() == Intrinsic::assume
) {
520 LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n");
523 } else if (II
->getIntrinsicID() == Intrinsic::sideeffect
) {
524 LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n");
529 LLVM_DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
533 // Resolve function pointers.
534 SmallVector
<Constant
*, 8> Formals
;
535 Function
*Callee
= getCalleeWithFormalArgs(CS
, Formals
);
536 if (!Callee
|| Callee
->isInterposable()) {
537 LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n");
538 return false; // Cannot resolve.
541 if (Callee
->isDeclaration()) {
542 // If this is a function we can constant fold, do it.
543 if (Constant
*C
= ConstantFoldCall(cast
<CallBase
>(CS
.getInstruction()),
544 Callee
, Formals
, TLI
)) {
545 InstResult
= castCallResultIfNeeded(CS
.getCalledValue(), C
);
548 LLVM_DEBUG(dbgs() << "Constant folded function call. Result: "
549 << *InstResult
<< "\n");
551 LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n");
555 if (Callee
->getFunctionType()->isVarArg()) {
556 LLVM_DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
560 Constant
*RetVal
= nullptr;
561 // Execute the call, if successful, use the return value.
562 ValueStack
.emplace_back();
563 if (!EvaluateFunction(Callee
, RetVal
, Formals
)) {
564 LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n");
567 ValueStack
.pop_back();
568 InstResult
= castCallResultIfNeeded(CS
.getCalledValue(), RetVal
);
569 if (RetVal
&& !InstResult
)
573 LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: "
574 << *InstResult
<< "\n\n");
577 << "Successfully evaluated function. Result: 0\n\n");
580 } else if (CurInst
->isTerminator()) {
581 LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n");
583 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(CurInst
)) {
584 if (BI
->isUnconditional()) {
585 NextBB
= BI
->getSuccessor(0);
588 dyn_cast
<ConstantInt
>(getVal(BI
->getCondition()));
589 if (!Cond
) return false; // Cannot determine.
591 NextBB
= BI
->getSuccessor(!Cond
->getZExtValue());
593 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(CurInst
)) {
595 dyn_cast
<ConstantInt
>(getVal(SI
->getCondition()));
596 if (!Val
) return false; // Cannot determine.
597 NextBB
= SI
->findCaseValue(Val
)->getCaseSuccessor();
598 } else if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(CurInst
)) {
599 Value
*Val
= getVal(IBI
->getAddress())->stripPointerCasts();
600 if (BlockAddress
*BA
= dyn_cast
<BlockAddress
>(Val
))
601 NextBB
= BA
->getBasicBlock();
603 return false; // Cannot determine.
604 } else if (isa
<ReturnInst
>(CurInst
)) {
607 // invoke, unwind, resume, unreachable.
608 LLVM_DEBUG(dbgs() << "Can not handle terminator.");
609 return false; // Cannot handle this terminator.
612 // We succeeded at evaluating this block!
613 LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n");
616 // Did not know how to evaluate this!
618 dbgs() << "Failed to evaluate block due to unhandled instruction."
623 if (!CurInst
->use_empty()) {
624 if (auto *FoldedInstResult
= ConstantFoldConstant(InstResult
, DL
, TLI
))
625 InstResult
= FoldedInstResult
;
627 setVal(&*CurInst
, InstResult
);
630 // If we just processed an invoke, we finished evaluating the block.
631 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(CurInst
)) {
632 NextBB
= II
->getNormalDest();
633 LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
637 // Advance program counter.
642 /// Evaluate a call to function F, returning true if successful, false if we
643 /// can't evaluate it. ActualArgs contains the formal arguments for the
645 bool Evaluator::EvaluateFunction(Function
*F
, Constant
*&RetVal
,
646 const SmallVectorImpl
<Constant
*> &ActualArgs
) {
647 // Check to see if this function is already executing (recursion). If so,
648 // bail out. TODO: we might want to accept limited recursion.
649 if (is_contained(CallStack
, F
))
652 CallStack
.push_back(F
);
654 // Initialize arguments to the incoming values specified.
656 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end(); AI
!= E
;
658 setVal(&*AI
, ActualArgs
[ArgNo
]);
660 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
661 // we can only evaluate any one basic block at most once. This set keeps
662 // track of what we have executed so we can detect recursive cases etc.
663 SmallPtrSet
<BasicBlock
*, 32> ExecutedBlocks
;
665 // CurBB - The current basic block we're evaluating.
666 BasicBlock
*CurBB
= &F
->front();
668 BasicBlock::iterator CurInst
= CurBB
->begin();
671 BasicBlock
*NextBB
= nullptr; // Initialized to avoid compiler warnings.
672 LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB
<< "\n");
674 if (!EvaluateBlock(CurInst
, NextBB
))
678 // Successfully running until there's no next block means that we found
679 // the return. Fill it the return value and pop the call stack.
680 ReturnInst
*RI
= cast
<ReturnInst
>(CurBB
->getTerminator());
681 if (RI
->getNumOperands())
682 RetVal
= getVal(RI
->getOperand(0));
683 CallStack
.pop_back();
687 // Okay, we succeeded in evaluating this control flow. See if we have
688 // executed the new block before. If so, we have a looping function,
689 // which we cannot evaluate in reasonable time.
690 if (!ExecutedBlocks
.insert(NextBB
).second
)
691 return false; // looped!
693 // Okay, we have never been in this block before. Check to see if there
694 // are any PHI nodes. If so, evaluate them with information about where
696 PHINode
*PN
= nullptr;
697 for (CurInst
= NextBB
->begin();
698 (PN
= dyn_cast
<PHINode
>(CurInst
)); ++CurInst
)
699 setVal(PN
, getVal(PN
->getIncomingValueForBlock(CurBB
)));
701 // Advance to the next block.