1 //===- Local.cpp - Functions to perform local transformations -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This family of functions perform various local transformations to the
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
88 using namespace llvm::PatternMatch
;
90 #define DEBUG_TYPE "local"
92 STATISTIC(NumRemoved
, "Number of unreachable basic blocks removed");
94 //===----------------------------------------------------------------------===//
95 // Local constant propagation.
98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
99 /// constant value, convert it into an unconditional branch to the constant
100 /// destination. This is a nontrivial operation because the successors of this
101 /// basic block must have their PHI nodes updated.
102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
103 /// conditions and indirectbr addresses this might make dead if
104 /// DeleteDeadConditions is true.
105 bool llvm::ConstantFoldTerminator(BasicBlock
*BB
, bool DeleteDeadConditions
,
106 const TargetLibraryInfo
*TLI
,
107 DomTreeUpdater
*DTU
) {
108 Instruction
*T
= BB
->getTerminator();
109 IRBuilder
<> Builder(T
);
111 // Branch - See if we are conditional jumping on constant
112 if (auto *BI
= dyn_cast
<BranchInst
>(T
)) {
113 if (BI
->isUnconditional()) return false; // Can't optimize uncond branch
114 BasicBlock
*Dest1
= BI
->getSuccessor(0);
115 BasicBlock
*Dest2
= BI
->getSuccessor(1);
117 if (auto *Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition())) {
118 // Are we branching on constant?
119 // YES. Change to unconditional branch...
120 BasicBlock
*Destination
= Cond
->getZExtValue() ? Dest1
: Dest2
;
121 BasicBlock
*OldDest
= Cond
->getZExtValue() ? Dest2
: Dest1
;
123 // Let the basic block know that we are letting go of it. Based on this,
124 // it will adjust it's PHI nodes.
125 OldDest
->removePredecessor(BB
);
127 // Replace the conditional branch with an unconditional one.
128 Builder
.CreateBr(Destination
);
129 BI
->eraseFromParent();
131 DTU
->deleteEdgeRelaxed(BB
, OldDest
);
135 if (Dest2
== Dest1
) { // Conditional branch to same location?
136 // This branch matches something like this:
137 // br bool %cond, label %Dest, label %Dest
138 // and changes it into: br label %Dest
140 // Let the basic block know that we are letting go of one copy of it.
141 assert(BI
->getParent() && "Terminator not inserted in block!");
142 Dest1
->removePredecessor(BI
->getParent());
144 // Replace the conditional branch with an unconditional one.
145 Builder
.CreateBr(Dest1
);
146 Value
*Cond
= BI
->getCondition();
147 BI
->eraseFromParent();
148 if (DeleteDeadConditions
)
149 RecursivelyDeleteTriviallyDeadInstructions(Cond
, TLI
);
155 if (auto *SI
= dyn_cast
<SwitchInst
>(T
)) {
156 // If we are switching on a constant, we can convert the switch to an
157 // unconditional branch.
158 auto *CI
= dyn_cast
<ConstantInt
>(SI
->getCondition());
159 BasicBlock
*DefaultDest
= SI
->getDefaultDest();
160 BasicBlock
*TheOnlyDest
= DefaultDest
;
162 // If the default is unreachable, ignore it when searching for TheOnlyDest.
163 if (isa
<UnreachableInst
>(DefaultDest
->getFirstNonPHIOrDbg()) &&
164 SI
->getNumCases() > 0) {
165 TheOnlyDest
= SI
->case_begin()->getCaseSuccessor();
168 // Figure out which case it goes to.
169 for (auto i
= SI
->case_begin(), e
= SI
->case_end(); i
!= e
;) {
170 // Found case matching a constant operand?
171 if (i
->getCaseValue() == CI
) {
172 TheOnlyDest
= i
->getCaseSuccessor();
176 // Check to see if this branch is going to the same place as the default
177 // dest. If so, eliminate it as an explicit compare.
178 if (i
->getCaseSuccessor() == DefaultDest
) {
179 MDNode
*MD
= SI
->getMetadata(LLVMContext::MD_prof
);
180 unsigned NCases
= SI
->getNumCases();
181 // Fold the case metadata into the default if there will be any branches
182 // left, unless the metadata doesn't match the switch.
183 if (NCases
> 1 && MD
&& MD
->getNumOperands() == 2 + NCases
) {
184 // Collect branch weights into a vector.
185 SmallVector
<uint32_t, 8> Weights
;
186 for (unsigned MD_i
= 1, MD_e
= MD
->getNumOperands(); MD_i
< MD_e
;
188 auto *CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(MD_i
));
189 Weights
.push_back(CI
->getValue().getZExtValue());
191 // Merge weight of this case to the default weight.
192 unsigned idx
= i
->getCaseIndex();
193 Weights
[0] += Weights
[idx
+1];
194 // Remove weight for this case.
195 std::swap(Weights
[idx
+1], Weights
.back());
197 SI
->setMetadata(LLVMContext::MD_prof
,
198 MDBuilder(BB
->getContext()).
199 createBranchWeights(Weights
));
201 // Remove this entry.
202 BasicBlock
*ParentBB
= SI
->getParent();
203 DefaultDest
->removePredecessor(ParentBB
);
204 i
= SI
->removeCase(i
);
207 DTU
->deleteEdgeRelaxed(ParentBB
, DefaultDest
);
211 // Otherwise, check to see if the switch only branches to one destination.
212 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
214 if (i
->getCaseSuccessor() != TheOnlyDest
)
215 TheOnlyDest
= nullptr;
217 // Increment this iterator as we haven't removed the case.
221 if (CI
&& !TheOnlyDest
) {
222 // Branching on a constant, but not any of the cases, go to the default
224 TheOnlyDest
= SI
->getDefaultDest();
227 // If we found a single destination that we can fold the switch into, do so
230 // Insert the new branch.
231 Builder
.CreateBr(TheOnlyDest
);
232 BasicBlock
*BB
= SI
->getParent();
233 std::vector
<DominatorTree::UpdateType
> Updates
;
235 Updates
.reserve(SI
->getNumSuccessors() - 1);
237 // Remove entries from PHI nodes which we no longer branch to...
238 for (BasicBlock
*Succ
: successors(SI
)) {
239 // Found case matching a constant operand?
240 if (Succ
== TheOnlyDest
) {
241 TheOnlyDest
= nullptr; // Don't modify the first branch to TheOnlyDest
243 Succ
->removePredecessor(BB
);
245 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
249 // Delete the old switch.
250 Value
*Cond
= SI
->getCondition();
251 SI
->eraseFromParent();
252 if (DeleteDeadConditions
)
253 RecursivelyDeleteTriviallyDeadInstructions(Cond
, TLI
);
255 DTU
->applyUpdates(Updates
, /*ForceRemoveDuplicates*/ true);
259 if (SI
->getNumCases() == 1) {
260 // Otherwise, we can fold this switch into a conditional branch
261 // instruction if it has only one non-default destination.
262 auto FirstCase
= *SI
->case_begin();
263 Value
*Cond
= Builder
.CreateICmpEQ(SI
->getCondition(),
264 FirstCase
.getCaseValue(), "cond");
266 // Insert the new branch.
267 BranchInst
*NewBr
= Builder
.CreateCondBr(Cond
,
268 FirstCase
.getCaseSuccessor(),
269 SI
->getDefaultDest());
270 MDNode
*MD
= SI
->getMetadata(LLVMContext::MD_prof
);
271 if (MD
&& MD
->getNumOperands() == 3) {
272 ConstantInt
*SICase
=
273 mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(2));
275 mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(1));
276 assert(SICase
&& SIDef
);
277 // The TrueWeight should be the weight for the single case of SI.
278 NewBr
->setMetadata(LLVMContext::MD_prof
,
279 MDBuilder(BB
->getContext()).
280 createBranchWeights(SICase
->getValue().getZExtValue(),
281 SIDef
->getValue().getZExtValue()));
284 // Update make.implicit metadata to the newly-created conditional branch.
285 MDNode
*MakeImplicitMD
= SI
->getMetadata(LLVMContext::MD_make_implicit
);
287 NewBr
->setMetadata(LLVMContext::MD_make_implicit
, MakeImplicitMD
);
289 // Delete the old switch.
290 SI
->eraseFromParent();
296 if (auto *IBI
= dyn_cast
<IndirectBrInst
>(T
)) {
297 // indirectbr blockaddress(@F, @BB) -> br label @BB
299 dyn_cast
<BlockAddress
>(IBI
->getAddress()->stripPointerCasts())) {
300 BasicBlock
*TheOnlyDest
= BA
->getBasicBlock();
301 std::vector
<DominatorTree::UpdateType
> Updates
;
303 Updates
.reserve(IBI
->getNumDestinations() - 1);
305 // Insert the new branch.
306 Builder
.CreateBr(TheOnlyDest
);
308 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
309 if (IBI
->getDestination(i
) == TheOnlyDest
) {
310 TheOnlyDest
= nullptr;
312 BasicBlock
*ParentBB
= IBI
->getParent();
313 BasicBlock
*DestBB
= IBI
->getDestination(i
);
314 DestBB
->removePredecessor(ParentBB
);
316 Updates
.push_back({DominatorTree::Delete
, ParentBB
, DestBB
});
319 Value
*Address
= IBI
->getAddress();
320 IBI
->eraseFromParent();
321 if (DeleteDeadConditions
)
322 RecursivelyDeleteTriviallyDeadInstructions(Address
, TLI
);
324 // If we didn't find our destination in the IBI successor list, then we
325 // have undefined behavior. Replace the unconditional branch with an
326 // 'unreachable' instruction.
328 BB
->getTerminator()->eraseFromParent();
329 new UnreachableInst(BB
->getContext(), BB
);
333 DTU
->applyUpdates(Updates
, /*ForceRemoveDuplicates*/ true);
341 //===----------------------------------------------------------------------===//
342 // Local dead code elimination.
345 /// isInstructionTriviallyDead - Return true if the result produced by the
346 /// instruction is not used, and the instruction has no side effects.
348 bool llvm::isInstructionTriviallyDead(Instruction
*I
,
349 const TargetLibraryInfo
*TLI
) {
352 return wouldInstructionBeTriviallyDead(I
, TLI
);
355 bool llvm::wouldInstructionBeTriviallyDead(Instruction
*I
,
356 const TargetLibraryInfo
*TLI
) {
357 if (I
->isTerminator())
360 // We don't want the landingpad-like instructions removed by anything this
365 // We don't want debug info removed by anything this general, unless
366 // debug info is empty.
367 if (DbgDeclareInst
*DDI
= dyn_cast
<DbgDeclareInst
>(I
)) {
368 if (DDI
->getAddress())
372 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(I
)) {
377 if (DbgLabelInst
*DLI
= dyn_cast
<DbgLabelInst
>(I
)) {
383 if (!I
->mayHaveSideEffects())
386 // Special case intrinsics that "may have side effects" but can be deleted
388 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
389 // Safe to delete llvm.stacksave and launder.invariant.group if dead.
390 if (II
->getIntrinsicID() == Intrinsic::stacksave
||
391 II
->getIntrinsicID() == Intrinsic::launder_invariant_group
)
394 // Lifetime intrinsics are dead when their right-hand is undef.
395 if (II
->isLifetimeStartOrEnd())
396 return isa
<UndefValue
>(II
->getArgOperand(1));
398 // Assumptions are dead if their condition is trivially true. Guards on
399 // true are operationally no-ops. In the future we can consider more
400 // sophisticated tradeoffs for guards considering potential for check
401 // widening, but for now we keep things simple.
402 if (II
->getIntrinsicID() == Intrinsic::assume
||
403 II
->getIntrinsicID() == Intrinsic::experimental_guard
) {
404 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(II
->getArgOperand(0)))
405 return !Cond
->isZero();
411 if (isAllocLikeFn(I
, TLI
))
414 if (CallInst
*CI
= isFreeCall(I
, TLI
))
415 if (Constant
*C
= dyn_cast
<Constant
>(CI
->getArgOperand(0)))
416 return C
->isNullValue() || isa
<UndefValue
>(C
);
418 if (auto *Call
= dyn_cast
<CallBase
>(I
))
419 if (isMathLibCallNoop(Call
, TLI
))
425 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
426 /// trivially dead instruction, delete it. If that makes any of its operands
427 /// trivially dead, delete them too, recursively. Return true if any
428 /// instructions were deleted.
429 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
430 Value
*V
, const TargetLibraryInfo
*TLI
, MemorySSAUpdater
*MSSAU
) {
431 Instruction
*I
= dyn_cast
<Instruction
>(V
);
432 if (!I
|| !isInstructionTriviallyDead(I
, TLI
))
435 SmallVector
<Instruction
*, 16> DeadInsts
;
436 DeadInsts
.push_back(I
);
437 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts
, TLI
, MSSAU
);
442 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
443 SmallVectorImpl
<Instruction
*> &DeadInsts
, const TargetLibraryInfo
*TLI
,
444 MemorySSAUpdater
*MSSAU
) {
445 // Process the dead instruction list until empty.
446 while (!DeadInsts
.empty()) {
447 Instruction
&I
= *DeadInsts
.pop_back_val();
448 assert(I
.use_empty() && "Instructions with uses are not dead.");
449 assert(isInstructionTriviallyDead(&I
, TLI
) &&
450 "Live instruction found in dead worklist!");
452 // Don't lose the debug info while deleting the instructions.
455 // Null out all of the instruction's operands to see if any operand becomes
457 for (Use
&OpU
: I
.operands()) {
458 Value
*OpV
= OpU
.get();
461 if (!OpV
->use_empty())
464 // If the operand is an instruction that became dead as we nulled out the
465 // operand, and if it is 'trivially' dead, delete it in a future loop
467 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
468 if (isInstructionTriviallyDead(OpI
, TLI
))
469 DeadInsts
.push_back(OpI
);
472 MSSAU
->removeMemoryAccess(&I
);
478 bool llvm::replaceDbgUsesWithUndef(Instruction
*I
) {
479 SmallVector
<DbgVariableIntrinsic
*, 1> DbgUsers
;
480 findDbgUsers(DbgUsers
, I
);
481 for (auto *DII
: DbgUsers
) {
482 Value
*Undef
= UndefValue::get(I
->getType());
483 DII
->setOperand(0, MetadataAsValue::get(DII
->getContext(),
484 ValueAsMetadata::get(Undef
)));
486 return !DbgUsers
.empty();
489 /// areAllUsesEqual - Check whether the uses of a value are all the same.
490 /// This is similar to Instruction::hasOneUse() except this will also return
491 /// true when there are no uses or multiple uses that all refer to the same
493 static bool areAllUsesEqual(Instruction
*I
) {
494 Value::user_iterator UI
= I
->user_begin();
495 Value::user_iterator UE
= I
->user_end();
500 for (++UI
; UI
!= UE
; ++UI
) {
507 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
508 /// dead PHI node, due to being a def-use chain of single-use nodes that
509 /// either forms a cycle or is terminated by a trivially dead instruction,
510 /// delete it. If that makes any of its operands trivially dead, delete them
511 /// too, recursively. Return true if a change was made.
512 bool llvm::RecursivelyDeleteDeadPHINode(PHINode
*PN
,
513 const TargetLibraryInfo
*TLI
) {
514 SmallPtrSet
<Instruction
*, 4> Visited
;
515 for (Instruction
*I
= PN
; areAllUsesEqual(I
) && !I
->mayHaveSideEffects();
516 I
= cast
<Instruction
>(*I
->user_begin())) {
518 return RecursivelyDeleteTriviallyDeadInstructions(I
, TLI
);
520 // If we find an instruction more than once, we're on a cycle that
521 // won't prove fruitful.
522 if (!Visited
.insert(I
).second
) {
523 // Break the cycle and delete the instruction and its operands.
524 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
525 (void)RecursivelyDeleteTriviallyDeadInstructions(I
, TLI
);
533 simplifyAndDCEInstruction(Instruction
*I
,
534 SmallSetVector
<Instruction
*, 16> &WorkList
,
535 const DataLayout
&DL
,
536 const TargetLibraryInfo
*TLI
) {
537 if (isInstructionTriviallyDead(I
, TLI
)) {
538 salvageDebugInfo(*I
);
540 // Null out all of the instruction's operands to see if any operand becomes
542 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
543 Value
*OpV
= I
->getOperand(i
);
544 I
->setOperand(i
, nullptr);
546 if (!OpV
->use_empty() || I
== OpV
)
549 // If the operand is an instruction that became dead as we nulled out the
550 // operand, and if it is 'trivially' dead, delete it in a future loop
552 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
553 if (isInstructionTriviallyDead(OpI
, TLI
))
554 WorkList
.insert(OpI
);
557 I
->eraseFromParent();
562 if (Value
*SimpleV
= SimplifyInstruction(I
, DL
)) {
563 // Add the users to the worklist. CAREFUL: an instruction can use itself,
564 // in the case of a phi node.
565 for (User
*U
: I
->users()) {
567 WorkList
.insert(cast
<Instruction
>(U
));
571 // Replace the instruction with its simplified value.
572 bool Changed
= false;
573 if (!I
->use_empty()) {
574 I
->replaceAllUsesWith(SimpleV
);
577 if (isInstructionTriviallyDead(I
, TLI
)) {
578 I
->eraseFromParent();
586 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
587 /// simplify any instructions in it and recursively delete dead instructions.
589 /// This returns true if it changed the code, note that it can delete
590 /// instructions in other blocks as well in this block.
591 bool llvm::SimplifyInstructionsInBlock(BasicBlock
*BB
,
592 const TargetLibraryInfo
*TLI
) {
593 bool MadeChange
= false;
594 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
597 // In debug builds, ensure that the terminator of the block is never replaced
598 // or deleted by these simplifications. The idea of simplification is that it
599 // cannot introduce new instructions, and there is no way to replace the
600 // terminator of a block without introducing a new instruction.
601 AssertingVH
<Instruction
> TerminatorVH(&BB
->back());
604 SmallSetVector
<Instruction
*, 16> WorkList
;
605 // Iterate over the original function, only adding insts to the worklist
606 // if they actually need to be revisited. This avoids having to pre-init
607 // the worklist with the entire function's worth of instructions.
608 for (BasicBlock::iterator BI
= BB
->begin(), E
= std::prev(BB
->end());
610 assert(!BI
->isTerminator());
611 Instruction
*I
= &*BI
;
614 // We're visiting this instruction now, so make sure it's not in the
615 // worklist from an earlier visit.
616 if (!WorkList
.count(I
))
617 MadeChange
|= simplifyAndDCEInstruction(I
, WorkList
, DL
, TLI
);
620 while (!WorkList
.empty()) {
621 Instruction
*I
= WorkList
.pop_back_val();
622 MadeChange
|= simplifyAndDCEInstruction(I
, WorkList
, DL
, TLI
);
627 //===----------------------------------------------------------------------===//
628 // Control Flow Graph Restructuring.
631 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
632 /// method is called when we're about to delete Pred as a predecessor of BB. If
633 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
635 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
636 /// nodes that collapse into identity values. For example, if we have:
637 /// x = phi(1, 0, 0, 0)
640 /// .. and delete the predecessor corresponding to the '1', this will attempt to
641 /// recursively fold the and to 0.
642 void llvm::RemovePredecessorAndSimplify(BasicBlock
*BB
, BasicBlock
*Pred
,
643 DomTreeUpdater
*DTU
) {
644 // This only adjusts blocks with PHI nodes.
645 if (!isa
<PHINode
>(BB
->begin()))
648 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
649 // them down. This will leave us with single entry phi nodes and other phis
650 // that can be removed.
651 BB
->removePredecessor(Pred
, true);
653 WeakTrackingVH PhiIt
= &BB
->front();
654 while (PHINode
*PN
= dyn_cast
<PHINode
>(PhiIt
)) {
655 PhiIt
= &*++BasicBlock::iterator(cast
<Instruction
>(PhiIt
));
656 Value
*OldPhiIt
= PhiIt
;
658 if (!recursivelySimplifyInstruction(PN
))
661 // If recursive simplification ended up deleting the next PHI node we would
662 // iterate to, then our iterator is invalid, restart scanning from the top
664 if (PhiIt
!= OldPhiIt
) PhiIt
= &BB
->front();
667 DTU
->deleteEdgeRelaxed(Pred
, BB
);
670 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
671 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
672 /// between them, moving the instructions in the predecessor into DestBB and
673 /// deleting the predecessor block.
674 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock
*DestBB
,
675 DomTreeUpdater
*DTU
) {
677 // If BB has single-entry PHI nodes, fold them.
678 while (PHINode
*PN
= dyn_cast
<PHINode
>(DestBB
->begin())) {
679 Value
*NewVal
= PN
->getIncomingValue(0);
680 // Replace self referencing PHI with undef, it must be dead.
681 if (NewVal
== PN
) NewVal
= UndefValue::get(PN
->getType());
682 PN
->replaceAllUsesWith(NewVal
);
683 PN
->eraseFromParent();
686 BasicBlock
*PredBB
= DestBB
->getSinglePredecessor();
687 assert(PredBB
&& "Block doesn't have a single predecessor!");
689 bool ReplaceEntryBB
= false;
690 if (PredBB
== &DestBB
->getParent()->getEntryBlock())
691 ReplaceEntryBB
= true;
693 // DTU updates: Collect all the edges that enter
694 // PredBB. These dominator edges will be redirected to DestBB.
695 SmallVector
<DominatorTree::UpdateType
, 32> Updates
;
698 Updates
.push_back({DominatorTree::Delete
, PredBB
, DestBB
});
699 for (auto I
= pred_begin(PredBB
), E
= pred_end(PredBB
); I
!= E
; ++I
) {
700 Updates
.push_back({DominatorTree::Delete
, *I
, PredBB
});
701 // This predecessor of PredBB may already have DestBB as a successor.
702 if (llvm::find(successors(*I
), DestBB
) == succ_end(*I
))
703 Updates
.push_back({DominatorTree::Insert
, *I
, DestBB
});
707 // Zap anything that took the address of DestBB. Not doing this will give the
708 // address an invalid value.
709 if (DestBB
->hasAddressTaken()) {
710 BlockAddress
*BA
= BlockAddress::get(DestBB
);
711 Constant
*Replacement
=
712 ConstantInt::get(Type::getInt32Ty(BA
->getContext()), 1);
713 BA
->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement
,
715 BA
->destroyConstant();
718 // Anything that branched to PredBB now branches to DestBB.
719 PredBB
->replaceAllUsesWith(DestBB
);
721 // Splice all the instructions from PredBB to DestBB.
722 PredBB
->getTerminator()->eraseFromParent();
723 DestBB
->getInstList().splice(DestBB
->begin(), PredBB
->getInstList());
724 new UnreachableInst(PredBB
->getContext(), PredBB
);
726 // If the PredBB is the entry block of the function, move DestBB up to
727 // become the entry block after we erase PredBB.
729 DestBB
->moveAfter(PredBB
);
732 assert(PredBB
->getInstList().size() == 1 &&
733 isa
<UnreachableInst
>(PredBB
->getTerminator()) &&
734 "The successor list of PredBB isn't empty before "
735 "applying corresponding DTU updates.");
736 DTU
->applyUpdates(Updates
, /*ForceRemoveDuplicates*/ true);
737 DTU
->deleteBB(PredBB
);
738 // Recalculation of DomTree is needed when updating a forward DomTree and
739 // the Entry BB is replaced.
740 if (ReplaceEntryBB
&& DTU
->hasDomTree()) {
741 // The entry block was removed and there is no external interface for
742 // the dominator tree to be notified of this change. In this corner-case
743 // we recalculate the entire tree.
744 DTU
->recalculate(*(DestBB
->getParent()));
749 PredBB
->eraseFromParent(); // Nuke BB if DTU is nullptr.
753 /// CanMergeValues - Return true if we can choose one of these values to use
754 /// in place of the other. Note that we will always choose the non-undef
756 static bool CanMergeValues(Value
*First
, Value
*Second
) {
757 return First
== Second
|| isa
<UndefValue
>(First
) || isa
<UndefValue
>(Second
);
760 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
761 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
763 /// Assumption: Succ is the single successor for BB.
764 static bool CanPropagatePredecessorsForPHIs(BasicBlock
*BB
, BasicBlock
*Succ
) {
765 assert(*succ_begin(BB
) == Succ
&& "Succ is not successor of BB!");
767 LLVM_DEBUG(dbgs() << "Looking to fold " << BB
->getName() << " into "
768 << Succ
->getName() << "\n");
769 // Shortcut, if there is only a single predecessor it must be BB and merging
771 if (Succ
->getSinglePredecessor()) return true;
773 // Make a list of the predecessors of BB
774 SmallPtrSet
<BasicBlock
*, 16> BBPreds(pred_begin(BB
), pred_end(BB
));
776 // Look at all the phi nodes in Succ, to see if they present a conflict when
777 // merging these blocks
778 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
779 PHINode
*PN
= cast
<PHINode
>(I
);
781 // If the incoming value from BB is again a PHINode in
782 // BB which has the same incoming value for *PI as PN does, we can
783 // merge the phi nodes and then the blocks can still be merged
784 PHINode
*BBPN
= dyn_cast
<PHINode
>(PN
->getIncomingValueForBlock(BB
));
785 if (BBPN
&& BBPN
->getParent() == BB
) {
786 for (unsigned PI
= 0, PE
= PN
->getNumIncomingValues(); PI
!= PE
; ++PI
) {
787 BasicBlock
*IBB
= PN
->getIncomingBlock(PI
);
788 if (BBPreds
.count(IBB
) &&
789 !CanMergeValues(BBPN
->getIncomingValueForBlock(IBB
),
790 PN
->getIncomingValue(PI
))) {
792 << "Can't fold, phi node " << PN
->getName() << " in "
793 << Succ
->getName() << " is conflicting with "
794 << BBPN
->getName() << " with regard to common predecessor "
795 << IBB
->getName() << "\n");
800 Value
* Val
= PN
->getIncomingValueForBlock(BB
);
801 for (unsigned PI
= 0, PE
= PN
->getNumIncomingValues(); PI
!= PE
; ++PI
) {
802 // See if the incoming value for the common predecessor is equal to the
803 // one for BB, in which case this phi node will not prevent the merging
805 BasicBlock
*IBB
= PN
->getIncomingBlock(PI
);
806 if (BBPreds
.count(IBB
) &&
807 !CanMergeValues(Val
, PN
->getIncomingValue(PI
))) {
808 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN
->getName()
809 << " in " << Succ
->getName()
810 << " is conflicting with regard to common "
811 << "predecessor " << IBB
->getName() << "\n");
821 using PredBlockVector
= SmallVector
<BasicBlock
*, 16>;
822 using IncomingValueMap
= DenseMap
<BasicBlock
*, Value
*>;
824 /// Determines the value to use as the phi node input for a block.
826 /// Select between \p OldVal any value that we know flows from \p BB
827 /// to a particular phi on the basis of which one (if either) is not
828 /// undef. Update IncomingValues based on the selected value.
830 /// \param OldVal The value we are considering selecting.
831 /// \param BB The block that the value flows in from.
832 /// \param IncomingValues A map from block-to-value for other phi inputs
833 /// that we have examined.
835 /// \returns the selected value.
836 static Value
*selectIncomingValueForBlock(Value
*OldVal
, BasicBlock
*BB
,
837 IncomingValueMap
&IncomingValues
) {
838 if (!isa
<UndefValue
>(OldVal
)) {
839 assert((!IncomingValues
.count(BB
) ||
840 IncomingValues
.find(BB
)->second
== OldVal
) &&
841 "Expected OldVal to match incoming value from BB!");
843 IncomingValues
.insert(std::make_pair(BB
, OldVal
));
847 IncomingValueMap::const_iterator It
= IncomingValues
.find(BB
);
848 if (It
!= IncomingValues
.end()) return It
->second
;
853 /// Create a map from block to value for the operands of a
856 /// Create a map from block to value for each non-undef value flowing
859 /// \param PN The phi we are collecting the map for.
860 /// \param IncomingValues [out] The map from block to value for this phi.
861 static void gatherIncomingValuesToPhi(PHINode
*PN
,
862 IncomingValueMap
&IncomingValues
) {
863 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
864 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
865 Value
*V
= PN
->getIncomingValue(i
);
867 if (!isa
<UndefValue
>(V
))
868 IncomingValues
.insert(std::make_pair(BB
, V
));
872 /// Replace the incoming undef values to a phi with the values
873 /// from a block-to-value map.
875 /// \param PN The phi we are replacing the undefs in.
876 /// \param IncomingValues A map from block to value.
877 static void replaceUndefValuesInPhi(PHINode
*PN
,
878 const IncomingValueMap
&IncomingValues
) {
879 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
880 Value
*V
= PN
->getIncomingValue(i
);
882 if (!isa
<UndefValue
>(V
)) continue;
884 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
885 IncomingValueMap::const_iterator It
= IncomingValues
.find(BB
);
886 if (It
== IncomingValues
.end()) continue;
888 PN
->setIncomingValue(i
, It
->second
);
892 /// Replace a value flowing from a block to a phi with
893 /// potentially multiple instances of that value flowing from the
894 /// block's predecessors to the phi.
896 /// \param BB The block with the value flowing into the phi.
897 /// \param BBPreds The predecessors of BB.
898 /// \param PN The phi that we are updating.
899 static void redirectValuesFromPredecessorsToPhi(BasicBlock
*BB
,
900 const PredBlockVector
&BBPreds
,
902 Value
*OldVal
= PN
->removeIncomingValue(BB
, false);
903 assert(OldVal
&& "No entry in PHI for Pred BB!");
905 IncomingValueMap IncomingValues
;
907 // We are merging two blocks - BB, and the block containing PN - and
908 // as a result we need to redirect edges from the predecessors of BB
909 // to go to the block containing PN, and update PN
910 // accordingly. Since we allow merging blocks in the case where the
911 // predecessor and successor blocks both share some predecessors,
912 // and where some of those common predecessors might have undef
913 // values flowing into PN, we want to rewrite those values to be
914 // consistent with the non-undef values.
916 gatherIncomingValuesToPhi(PN
, IncomingValues
);
918 // If this incoming value is one of the PHI nodes in BB, the new entries
919 // in the PHI node are the entries from the old PHI.
920 if (isa
<PHINode
>(OldVal
) && cast
<PHINode
>(OldVal
)->getParent() == BB
) {
921 PHINode
*OldValPN
= cast
<PHINode
>(OldVal
);
922 for (unsigned i
= 0, e
= OldValPN
->getNumIncomingValues(); i
!= e
; ++i
) {
923 // Note that, since we are merging phi nodes and BB and Succ might
924 // have common predecessors, we could end up with a phi node with
925 // identical incoming branches. This will be cleaned up later (and
926 // will trigger asserts if we try to clean it up now, without also
927 // simplifying the corresponding conditional branch).
928 BasicBlock
*PredBB
= OldValPN
->getIncomingBlock(i
);
929 Value
*PredVal
= OldValPN
->getIncomingValue(i
);
930 Value
*Selected
= selectIncomingValueForBlock(PredVal
, PredBB
,
933 // And add a new incoming value for this predecessor for the
934 // newly retargeted branch.
935 PN
->addIncoming(Selected
, PredBB
);
938 for (unsigned i
= 0, e
= BBPreds
.size(); i
!= e
; ++i
) {
939 // Update existing incoming values in PN for this
940 // predecessor of BB.
941 BasicBlock
*PredBB
= BBPreds
[i
];
942 Value
*Selected
= selectIncomingValueForBlock(OldVal
, PredBB
,
945 // And add a new incoming value for this predecessor for the
946 // newly retargeted branch.
947 PN
->addIncoming(Selected
, PredBB
);
951 replaceUndefValuesInPhi(PN
, IncomingValues
);
954 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
955 /// unconditional branch, and contains no instructions other than PHI nodes,
956 /// potential side-effect free intrinsics and the branch. If possible,
957 /// eliminate BB by rewriting all the predecessors to branch to the successor
958 /// block and return true. If we can't transform, return false.
959 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock
*BB
,
960 DomTreeUpdater
*DTU
) {
961 assert(BB
!= &BB
->getParent()->getEntryBlock() &&
962 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
964 // We can't eliminate infinite loops.
965 BasicBlock
*Succ
= cast
<BranchInst
>(BB
->getTerminator())->getSuccessor(0);
966 if (BB
== Succ
) return false;
968 // Check to see if merging these blocks would cause conflicts for any of the
969 // phi nodes in BB or Succ. If not, we can safely merge.
970 if (!CanPropagatePredecessorsForPHIs(BB
, Succ
)) return false;
972 // Check for cases where Succ has multiple predecessors and a PHI node in BB
973 // has uses which will not disappear when the PHI nodes are merged. It is
974 // possible to handle such cases, but difficult: it requires checking whether
975 // BB dominates Succ, which is non-trivial to calculate in the case where
976 // Succ has multiple predecessors. Also, it requires checking whether
977 // constructing the necessary self-referential PHI node doesn't introduce any
978 // conflicts; this isn't too difficult, but the previous code for doing this
981 // Note that if this check finds a live use, BB dominates Succ, so BB is
982 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
983 // folding the branch isn't profitable in that case anyway.
984 if (!Succ
->getSinglePredecessor()) {
985 BasicBlock::iterator BBI
= BB
->begin();
986 while (isa
<PHINode
>(*BBI
)) {
987 for (Use
&U
: BBI
->uses()) {
988 if (PHINode
* PN
= dyn_cast
<PHINode
>(U
.getUser())) {
989 if (PN
->getIncomingBlock(U
) != BB
)
999 // We cannot fold the block if it's a branch to an already present callbr
1000 // successor because that creates duplicate successors.
1001 for (auto I
= pred_begin(BB
), E
= pred_end(BB
); I
!= E
; ++I
) {
1002 if (auto *CBI
= dyn_cast
<CallBrInst
>((*I
)->getTerminator())) {
1003 if (Succ
== CBI
->getDefaultDest())
1005 for (unsigned i
= 0, e
= CBI
->getNumIndirectDests(); i
!= e
; ++i
)
1006 if (Succ
== CBI
->getIndirectDest(i
))
1011 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB
);
1013 SmallVector
<DominatorTree::UpdateType
, 32> Updates
;
1015 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
1016 // All predecessors of BB will be moved to Succ.
1017 for (auto I
= pred_begin(BB
), E
= pred_end(BB
); I
!= E
; ++I
) {
1018 Updates
.push_back({DominatorTree::Delete
, *I
, BB
});
1019 // This predecessor of BB may already have Succ as a successor.
1020 if (llvm::find(successors(*I
), Succ
) == succ_end(*I
))
1021 Updates
.push_back({DominatorTree::Insert
, *I
, Succ
});
1025 if (isa
<PHINode
>(Succ
->begin())) {
1026 // If there is more than one pred of succ, and there are PHI nodes in
1027 // the successor, then we need to add incoming edges for the PHI nodes
1029 const PredBlockVector
BBPreds(pred_begin(BB
), pred_end(BB
));
1031 // Loop over all of the PHI nodes in the successor of BB.
1032 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
1033 PHINode
*PN
= cast
<PHINode
>(I
);
1035 redirectValuesFromPredecessorsToPhi(BB
, BBPreds
, PN
);
1039 if (Succ
->getSinglePredecessor()) {
1040 // BB is the only predecessor of Succ, so Succ will end up with exactly
1041 // the same predecessors BB had.
1043 // Copy over any phi, debug or lifetime instruction.
1044 BB
->getTerminator()->eraseFromParent();
1045 Succ
->getInstList().splice(Succ
->getFirstNonPHI()->getIterator(),
1048 while (PHINode
*PN
= dyn_cast
<PHINode
>(&BB
->front())) {
1049 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1050 assert(PN
->use_empty() && "There shouldn't be any uses here!");
1051 PN
->eraseFromParent();
1055 // If the unconditional branch we replaced contains llvm.loop metadata, we
1056 // add the metadata to the branch instructions in the predecessors.
1057 unsigned LoopMDKind
= BB
->getContext().getMDKindID("llvm.loop");
1058 Instruction
*TI
= BB
->getTerminator();
1060 if (MDNode
*LoopMD
= TI
->getMetadata(LoopMDKind
))
1061 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1062 BasicBlock
*Pred
= *PI
;
1063 Pred
->getTerminator()->setMetadata(LoopMDKind
, LoopMD
);
1066 // Everything that jumped to BB now goes to Succ.
1067 BB
->replaceAllUsesWith(Succ
);
1068 if (!Succ
->hasName()) Succ
->takeName(BB
);
1070 // Clear the successor list of BB to match updates applying to DTU later.
1071 if (BB
->getTerminator())
1072 BB
->getInstList().pop_back();
1073 new UnreachableInst(BB
->getContext(), BB
);
1074 assert(succ_empty(BB
) && "The successor list of BB isn't empty before "
1075 "applying corresponding DTU updates.");
1078 DTU
->applyUpdates(Updates
, /*ForceRemoveDuplicates*/ true);
1081 BB
->eraseFromParent(); // Delete the old basic block.
1086 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1087 /// nodes in this block. This doesn't try to be clever about PHI nodes
1088 /// which differ only in the order of the incoming values, but instcombine
1089 /// orders them so it usually won't matter.
1090 bool llvm::EliminateDuplicatePHINodes(BasicBlock
*BB
) {
1091 // This implementation doesn't currently consider undef operands
1092 // specially. Theoretically, two phis which are identical except for
1093 // one having an undef where the other doesn't could be collapsed.
1095 struct PHIDenseMapInfo
{
1096 static PHINode
*getEmptyKey() {
1097 return DenseMapInfo
<PHINode
*>::getEmptyKey();
1100 static PHINode
*getTombstoneKey() {
1101 return DenseMapInfo
<PHINode
*>::getTombstoneKey();
1104 static unsigned getHashValue(PHINode
*PN
) {
1105 // Compute a hash value on the operands. Instcombine will likely have
1106 // sorted them, which helps expose duplicates, but we have to check all
1107 // the operands to be safe in case instcombine hasn't run.
1108 return static_cast<unsigned>(hash_combine(
1109 hash_combine_range(PN
->value_op_begin(), PN
->value_op_end()),
1110 hash_combine_range(PN
->block_begin(), PN
->block_end())));
1113 static bool isEqual(PHINode
*LHS
, PHINode
*RHS
) {
1114 if (LHS
== getEmptyKey() || LHS
== getTombstoneKey() ||
1115 RHS
== getEmptyKey() || RHS
== getTombstoneKey())
1117 return LHS
->isIdenticalTo(RHS
);
1121 // Set of unique PHINodes.
1122 DenseSet
<PHINode
*, PHIDenseMapInfo
> PHISet
;
1124 // Examine each PHI.
1125 bool Changed
= false;
1126 for (auto I
= BB
->begin(); PHINode
*PN
= dyn_cast
<PHINode
>(I
++);) {
1127 auto Inserted
= PHISet
.insert(PN
);
1128 if (!Inserted
.second
) {
1129 // A duplicate. Replace this PHI with its duplicate.
1130 PN
->replaceAllUsesWith(*Inserted
.first
);
1131 PN
->eraseFromParent();
1134 // The RAUW can change PHIs that we already visited. Start over from the
1144 /// enforceKnownAlignment - If the specified pointer points to an object that
1145 /// we control, modify the object's alignment to PrefAlign. This isn't
1146 /// often possible though. If alignment is important, a more reliable approach
1147 /// is to simply align all global variables and allocation instructions to
1148 /// their preferred alignment from the beginning.
1149 static unsigned enforceKnownAlignment(Value
*V
, unsigned Align
,
1151 const DataLayout
&DL
) {
1152 assert(PrefAlign
> Align
);
1154 V
= V
->stripPointerCasts();
1156 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1157 // TODO: ideally, computeKnownBits ought to have used
1158 // AllocaInst::getAlignment() in its computation already, making
1159 // the below max redundant. But, as it turns out,
1160 // stripPointerCasts recurses through infinite layers of bitcasts,
1161 // while computeKnownBits is not allowed to traverse more than 6
1163 Align
= std::max(AI
->getAlignment(), Align
);
1164 if (PrefAlign
<= Align
)
1167 // If the preferred alignment is greater than the natural stack alignment
1168 // then don't round up. This avoids dynamic stack realignment.
1169 if (DL
.exceedsNaturalStackAlignment(PrefAlign
))
1171 AI
->setAlignment(PrefAlign
);
1175 if (auto *GO
= dyn_cast
<GlobalObject
>(V
)) {
1176 // TODO: as above, this shouldn't be necessary.
1177 Align
= std::max(GO
->getAlignment(), Align
);
1178 if (PrefAlign
<= Align
)
1181 // If there is a large requested alignment and we can, bump up the alignment
1182 // of the global. If the memory we set aside for the global may not be the
1183 // memory used by the final program then it is impossible for us to reliably
1184 // enforce the preferred alignment.
1185 if (!GO
->canIncreaseAlignment())
1188 GO
->setAlignment(PrefAlign
);
1195 unsigned llvm::getOrEnforceKnownAlignment(Value
*V
, unsigned PrefAlign
,
1196 const DataLayout
&DL
,
1197 const Instruction
*CxtI
,
1198 AssumptionCache
*AC
,
1199 const DominatorTree
*DT
) {
1200 assert(V
->getType()->isPointerTy() &&
1201 "getOrEnforceKnownAlignment expects a pointer!");
1203 KnownBits Known
= computeKnownBits(V
, DL
, 0, AC
, CxtI
, DT
);
1204 unsigned TrailZ
= Known
.countMinTrailingZeros();
1206 // Avoid trouble with ridiculously large TrailZ values, such as
1207 // those computed from a null pointer.
1208 TrailZ
= std::min(TrailZ
, unsigned(sizeof(unsigned) * CHAR_BIT
- 1));
1210 unsigned Align
= 1u << std::min(Known
.getBitWidth() - 1, TrailZ
);
1212 // LLVM doesn't support alignments larger than this currently.
1213 Align
= std::min(Align
, +Value::MaximumAlignment
);
1215 if (PrefAlign
> Align
)
1216 Align
= enforceKnownAlignment(V
, Align
, PrefAlign
, DL
);
1218 // We don't need to make any adjustment.
1222 ///===---------------------------------------------------------------------===//
1223 /// Dbg Intrinsic utilities
1226 /// See if there is a dbg.value intrinsic for DIVar before I.
1227 static bool LdStHasDebugValue(DILocalVariable
*DIVar
, DIExpression
*DIExpr
,
1229 // Since we can't guarantee that the original dbg.declare instrinsic
1230 // is removed by LowerDbgDeclare(), we need to make sure that we are
1231 // not inserting the same dbg.value intrinsic over and over.
1232 BasicBlock::InstListType::iterator
PrevI(I
);
1233 if (PrevI
!= I
->getParent()->getInstList().begin()) {
1235 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(PrevI
))
1236 if (DVI
->getValue() == I
->getOperand(0) &&
1237 DVI
->getVariable() == DIVar
&&
1238 DVI
->getExpression() == DIExpr
)
1244 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1245 static bool PhiHasDebugValue(DILocalVariable
*DIVar
,
1246 DIExpression
*DIExpr
,
1248 // Since we can't guarantee that the original dbg.declare instrinsic
1249 // is removed by LowerDbgDeclare(), we need to make sure that we are
1250 // not inserting the same dbg.value intrinsic over and over.
1251 SmallVector
<DbgValueInst
*, 1> DbgValues
;
1252 findDbgValues(DbgValues
, APN
);
1253 for (auto *DVI
: DbgValues
) {
1254 assert(DVI
->getValue() == APN
);
1255 if ((DVI
->getVariable() == DIVar
) && (DVI
->getExpression() == DIExpr
))
1261 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1262 /// (or fragment of the variable) described by \p DII.
1264 /// This is primarily intended as a helper for the different
1265 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1266 /// converted describes an alloca'd variable, so we need to use the
1267 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1268 /// identified as covering an n-bit fragment, if the store size of i1 is at
1270 static bool valueCoversEntireFragment(Type
*ValTy
, DbgVariableIntrinsic
*DII
) {
1271 const DataLayout
&DL
= DII
->getModule()->getDataLayout();
1272 uint64_t ValueSize
= DL
.getTypeAllocSizeInBits(ValTy
);
1273 if (auto FragmentSize
= DII
->getFragmentSizeInBits())
1274 return ValueSize
>= *FragmentSize
;
1275 // We can't always calculate the size of the DI variable (e.g. if it is a
1276 // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1278 if (DII
->isAddressOfVariable())
1279 if (auto *AI
= dyn_cast_or_null
<AllocaInst
>(DII
->getVariableLocation()))
1280 if (auto FragmentSize
= AI
->getAllocationSizeInBits(DL
))
1281 return ValueSize
>= *FragmentSize
;
1282 // Could not determine size of variable. Conservatively return false.
1286 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1287 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1288 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic
*DII
,
1289 StoreInst
*SI
, DIBuilder
&Builder
) {
1290 assert(DII
->isAddressOfVariable());
1291 auto *DIVar
= DII
->getVariable();
1292 assert(DIVar
&& "Missing variable");
1293 auto *DIExpr
= DII
->getExpression();
1294 Value
*DV
= SI
->getOperand(0);
1296 if (!valueCoversEntireFragment(SI
->getValueOperand()->getType(), DII
)) {
1297 // FIXME: If storing to a part of the variable described by the dbg.declare,
1298 // then we want to insert a dbg.value for the corresponding fragment.
1299 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1301 // For now, when there is a store to parts of the variable (but we do not
1302 // know which part) we insert an dbg.value instrinsic to indicate that we
1303 // know nothing about the variable's content.
1304 DV
= UndefValue::get(DV
->getType());
1305 if (!LdStHasDebugValue(DIVar
, DIExpr
, SI
))
1306 Builder
.insertDbgValueIntrinsic(DV
, DIVar
, DIExpr
, DII
->getDebugLoc(),
1311 if (!LdStHasDebugValue(DIVar
, DIExpr
, SI
))
1312 Builder
.insertDbgValueIntrinsic(DV
, DIVar
, DIExpr
, DII
->getDebugLoc(),
1316 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1317 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1318 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic
*DII
,
1319 LoadInst
*LI
, DIBuilder
&Builder
) {
1320 auto *DIVar
= DII
->getVariable();
1321 auto *DIExpr
= DII
->getExpression();
1322 assert(DIVar
&& "Missing variable");
1324 if (LdStHasDebugValue(DIVar
, DIExpr
, LI
))
1327 if (!valueCoversEntireFragment(LI
->getType(), DII
)) {
1328 // FIXME: If only referring to a part of the variable described by the
1329 // dbg.declare, then we want to insert a dbg.value for the corresponding
1331 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1336 // We are now tracking the loaded value instead of the address. In the
1337 // future if multi-location support is added to the IR, it might be
1338 // preferable to keep tracking both the loaded value and the original
1339 // address in case the alloca can not be elided.
1340 Instruction
*DbgValue
= Builder
.insertDbgValueIntrinsic(
1341 LI
, DIVar
, DIExpr
, DII
->getDebugLoc(), (Instruction
*)nullptr);
1342 DbgValue
->insertAfter(LI
);
1345 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1346 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1347 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic
*DII
,
1348 PHINode
*APN
, DIBuilder
&Builder
) {
1349 auto *DIVar
= DII
->getVariable();
1350 auto *DIExpr
= DII
->getExpression();
1351 assert(DIVar
&& "Missing variable");
1353 if (PhiHasDebugValue(DIVar
, DIExpr
, APN
))
1356 if (!valueCoversEntireFragment(APN
->getType(), DII
)) {
1357 // FIXME: If only referring to a part of the variable described by the
1358 // dbg.declare, then we want to insert a dbg.value for the corresponding
1360 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1365 BasicBlock
*BB
= APN
->getParent();
1366 auto InsertionPt
= BB
->getFirstInsertionPt();
1368 // The block may be a catchswitch block, which does not have a valid
1370 // FIXME: Insert dbg.value markers in the successors when appropriate.
1371 if (InsertionPt
!= BB
->end())
1372 Builder
.insertDbgValueIntrinsic(APN
, DIVar
, DIExpr
, DII
->getDebugLoc(),
1376 /// Determine whether this alloca is either a VLA or an array.
1377 static bool isArray(AllocaInst
*AI
) {
1378 return AI
->isArrayAllocation() ||
1379 AI
->getType()->getElementType()->isArrayTy();
1382 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1383 /// of llvm.dbg.value intrinsics.
1384 bool llvm::LowerDbgDeclare(Function
&F
) {
1385 DIBuilder
DIB(*F
.getParent(), /*AllowUnresolved*/ false);
1386 SmallVector
<DbgDeclareInst
*, 4> Dbgs
;
1388 for (Instruction
&BI
: FI
)
1389 if (auto DDI
= dyn_cast
<DbgDeclareInst
>(&BI
))
1390 Dbgs
.push_back(DDI
);
1395 for (auto &I
: Dbgs
) {
1396 DbgDeclareInst
*DDI
= I
;
1397 AllocaInst
*AI
= dyn_cast_or_null
<AllocaInst
>(DDI
->getAddress());
1398 // If this is an alloca for a scalar variable, insert a dbg.value
1399 // at each load and store to the alloca and erase the dbg.declare.
1400 // The dbg.values allow tracking a variable even if it is not
1401 // stored on the stack, while the dbg.declare can only describe
1402 // the stack slot (and at a lexical-scope granularity). Later
1403 // passes will attempt to elide the stack slot.
1404 if (!AI
|| isArray(AI
))
1407 // A volatile load/store means that the alloca can't be elided anyway.
1408 if (llvm::any_of(AI
->users(), [](User
*U
) -> bool {
1409 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
))
1410 return LI
->isVolatile();
1411 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
))
1412 return SI
->isVolatile();
1417 for (auto &AIUse
: AI
->uses()) {
1418 User
*U
= AIUse
.getUser();
1419 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
1420 if (AIUse
.getOperandNo() == 1)
1421 ConvertDebugDeclareToDebugValue(DDI
, SI
, DIB
);
1422 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
1423 ConvertDebugDeclareToDebugValue(DDI
, LI
, DIB
);
1424 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(U
)) {
1425 // This is a call by-value or some other instruction that takes a
1426 // pointer to the variable. Insert a *value* intrinsic that describes
1427 // the variable by dereferencing the alloca.
1429 DIExpression::append(DDI
->getExpression(), dwarf::DW_OP_deref
);
1430 DIB
.insertDbgValueIntrinsic(AI
, DDI
->getVariable(), DerefExpr
,
1431 DDI
->getDebugLoc(), CI
);
1434 DDI
->eraseFromParent();
1439 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1440 void llvm::insertDebugValuesForPHIs(BasicBlock
*BB
,
1441 SmallVectorImpl
<PHINode
*> &InsertedPHIs
) {
1442 assert(BB
&& "No BasicBlock to clone dbg.value(s) from.");
1443 if (InsertedPHIs
.size() == 0)
1446 // Map existing PHI nodes to their dbg.values.
1447 ValueToValueMapTy DbgValueMap
;
1448 for (auto &I
: *BB
) {
1449 if (auto DbgII
= dyn_cast
<DbgVariableIntrinsic
>(&I
)) {
1450 if (auto *Loc
= dyn_cast_or_null
<PHINode
>(DbgII
->getVariableLocation()))
1451 DbgValueMap
.insert({Loc
, DbgII
});
1454 if (DbgValueMap
.size() == 0)
1457 // Then iterate through the new PHIs and look to see if they use one of the
1458 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1459 // propagate the info through the new PHI.
1460 LLVMContext
&C
= BB
->getContext();
1461 for (auto PHI
: InsertedPHIs
) {
1462 BasicBlock
*Parent
= PHI
->getParent();
1463 // Avoid inserting an intrinsic into an EH block.
1464 if (Parent
->getFirstNonPHI()->isEHPad())
1466 auto PhiMAV
= MetadataAsValue::get(C
, ValueAsMetadata::get(PHI
));
1467 for (auto VI
: PHI
->operand_values()) {
1468 auto V
= DbgValueMap
.find(VI
);
1469 if (V
!= DbgValueMap
.end()) {
1470 auto *DbgII
= cast
<DbgVariableIntrinsic
>(V
->second
);
1471 Instruction
*NewDbgII
= DbgII
->clone();
1472 NewDbgII
->setOperand(0, PhiMAV
);
1473 auto InsertionPt
= Parent
->getFirstInsertionPt();
1474 assert(InsertionPt
!= Parent
->end() && "Ill-formed basic block");
1475 NewDbgII
->insertBefore(&*InsertionPt
);
1481 /// Finds all intrinsics declaring local variables as living in the memory that
1482 /// 'V' points to. This may include a mix of dbg.declare and
1483 /// dbg.addr intrinsics.
1484 TinyPtrVector
<DbgVariableIntrinsic
*> llvm::FindDbgAddrUses(Value
*V
) {
1485 // This function is hot. Check whether the value has any metadata to avoid a
1487 if (!V
->isUsedByMetadata())
1489 auto *L
= LocalAsMetadata::getIfExists(V
);
1492 auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
);
1496 TinyPtrVector
<DbgVariableIntrinsic
*> Declares
;
1497 for (User
*U
: MDV
->users()) {
1498 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(U
))
1499 if (DII
->isAddressOfVariable())
1500 Declares
.push_back(DII
);
1506 void llvm::findDbgValues(SmallVectorImpl
<DbgValueInst
*> &DbgValues
, Value
*V
) {
1507 // This function is hot. Check whether the value has any metadata to avoid a
1509 if (!V
->isUsedByMetadata())
1511 if (auto *L
= LocalAsMetadata::getIfExists(V
))
1512 if (auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
))
1513 for (User
*U
: MDV
->users())
1514 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(U
))
1515 DbgValues
.push_back(DVI
);
1518 void llvm::findDbgUsers(SmallVectorImpl
<DbgVariableIntrinsic
*> &DbgUsers
,
1520 // This function is hot. Check whether the value has any metadata to avoid a
1522 if (!V
->isUsedByMetadata())
1524 if (auto *L
= LocalAsMetadata::getIfExists(V
))
1525 if (auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
))
1526 for (User
*U
: MDV
->users())
1527 if (DbgVariableIntrinsic
*DII
= dyn_cast
<DbgVariableIntrinsic
>(U
))
1528 DbgUsers
.push_back(DII
);
1531 bool llvm::replaceDbgDeclare(Value
*Address
, Value
*NewAddress
,
1532 Instruction
*InsertBefore
, DIBuilder
&Builder
,
1533 bool DerefBefore
, int Offset
, bool DerefAfter
) {
1534 auto DbgAddrs
= FindDbgAddrUses(Address
);
1535 for (DbgVariableIntrinsic
*DII
: DbgAddrs
) {
1536 DebugLoc Loc
= DII
->getDebugLoc();
1537 auto *DIVar
= DII
->getVariable();
1538 auto *DIExpr
= DII
->getExpression();
1539 assert(DIVar
&& "Missing variable");
1540 DIExpr
= DIExpression::prepend(DIExpr
, DerefBefore
, Offset
, DerefAfter
);
1541 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1542 // llvm.dbg.declare.
1543 Builder
.insertDeclare(NewAddress
, DIVar
, DIExpr
, Loc
, InsertBefore
);
1544 if (DII
== InsertBefore
)
1545 InsertBefore
= InsertBefore
->getNextNode();
1546 DII
->eraseFromParent();
1548 return !DbgAddrs
.empty();
1551 bool llvm::replaceDbgDeclareForAlloca(AllocaInst
*AI
, Value
*NewAllocaAddress
,
1552 DIBuilder
&Builder
, bool DerefBefore
,
1553 int Offset
, bool DerefAfter
) {
1554 return replaceDbgDeclare(AI
, NewAllocaAddress
, AI
->getNextNode(), Builder
,
1555 DerefBefore
, Offset
, DerefAfter
);
1558 static void replaceOneDbgValueForAlloca(DbgValueInst
*DVI
, Value
*NewAddress
,
1559 DIBuilder
&Builder
, int Offset
) {
1560 DebugLoc Loc
= DVI
->getDebugLoc();
1561 auto *DIVar
= DVI
->getVariable();
1562 auto *DIExpr
= DVI
->getExpression();
1563 assert(DIVar
&& "Missing variable");
1565 // This is an alloca-based llvm.dbg.value. The first thing it should do with
1566 // the alloca pointer is dereference it. Otherwise we don't know how to handle
1568 if (!DIExpr
|| DIExpr
->getNumElements() < 1 ||
1569 DIExpr
->getElement(0) != dwarf::DW_OP_deref
)
1572 // Insert the offset immediately after the first deref.
1573 // We could just change the offset argument of dbg.value, but it's unsigned...
1575 SmallVector
<uint64_t, 4> Ops
;
1576 Ops
.push_back(dwarf::DW_OP_deref
);
1577 DIExpression::appendOffset(Ops
, Offset
);
1578 Ops
.append(DIExpr
->elements_begin() + 1, DIExpr
->elements_end());
1579 DIExpr
= Builder
.createExpression(Ops
);
1582 Builder
.insertDbgValueIntrinsic(NewAddress
, DIVar
, DIExpr
, Loc
, DVI
);
1583 DVI
->eraseFromParent();
1586 void llvm::replaceDbgValueForAlloca(AllocaInst
*AI
, Value
*NewAllocaAddress
,
1587 DIBuilder
&Builder
, int Offset
) {
1588 if (auto *L
= LocalAsMetadata::getIfExists(AI
))
1589 if (auto *MDV
= MetadataAsValue::getIfExists(AI
->getContext(), L
))
1590 for (auto UI
= MDV
->use_begin(), UE
= MDV
->use_end(); UI
!= UE
;) {
1592 if (auto *DVI
= dyn_cast
<DbgValueInst
>(U
.getUser()))
1593 replaceOneDbgValueForAlloca(DVI
, NewAllocaAddress
, Builder
, Offset
);
1597 /// Wrap \p V in a ValueAsMetadata instance.
1598 static MetadataAsValue
*wrapValueInMetadata(LLVMContext
&C
, Value
*V
) {
1599 return MetadataAsValue::get(C
, ValueAsMetadata::get(V
));
1602 bool llvm::salvageDebugInfo(Instruction
&I
) {
1603 SmallVector
<DbgVariableIntrinsic
*, 1> DbgUsers
;
1604 findDbgUsers(DbgUsers
, &I
);
1605 if (DbgUsers
.empty())
1608 return salvageDebugInfoForDbgValues(I
, DbgUsers
);
1611 bool llvm::salvageDebugInfoForDbgValues(
1612 Instruction
&I
, ArrayRef
<DbgVariableIntrinsic
*> DbgUsers
) {
1613 auto &Ctx
= I
.getContext();
1614 auto wrapMD
= [&](Value
*V
) { return wrapValueInMetadata(Ctx
, V
); };
1616 for (auto *DII
: DbgUsers
) {
1617 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1618 // are implicitly pointing out the value as a DWARF memory location
1620 bool StackValue
= isa
<DbgValueInst
>(DII
);
1622 DIExpression
*DIExpr
=
1623 salvageDebugInfoImpl(I
, DII
->getExpression(), StackValue
);
1625 // salvageDebugInfoImpl should fail on examining the first element of
1626 // DbgUsers, or none of them.
1630 DII
->setOperand(0, wrapMD(I
.getOperand(0)));
1631 DII
->setOperand(2, MetadataAsValue::get(Ctx
, DIExpr
));
1632 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII
<< '\n');
1638 DIExpression
*llvm::salvageDebugInfoImpl(Instruction
&I
,
1639 DIExpression
*SrcDIExpr
,
1640 bool WithStackValue
) {
1641 auto &M
= *I
.getModule();
1642 auto &DL
= M
.getDataLayout();
1644 // Apply a vector of opcodes to the source DIExpression.
1645 auto doSalvage
= [&](SmallVectorImpl
<uint64_t> &Ops
) -> DIExpression
* {
1646 DIExpression
*DIExpr
= SrcDIExpr
;
1648 DIExpr
= DIExpression::prependOpcodes(DIExpr
, Ops
, WithStackValue
);
1653 // Apply the given offset to the source DIExpression.
1654 auto applyOffset
= [&](uint64_t Offset
) -> DIExpression
* {
1655 SmallVector
<uint64_t, 8> Ops
;
1656 DIExpression::appendOffset(Ops
, Offset
);
1657 return doSalvage(Ops
);
1660 // initializer-list helper for applying operators to the source DIExpression.
1662 [&](std::initializer_list
<uint64_t> Opcodes
) -> DIExpression
* {
1663 SmallVector
<uint64_t, 8> Ops(Opcodes
);
1664 return doSalvage(Ops
);
1667 if (auto *CI
= dyn_cast
<CastInst
>(&I
)) {
1668 if (!CI
->isNoopCast(DL
))
1671 // No-op casts are irrelevant for debug info.
1673 } else if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
1675 M
.getDataLayout().getIndexSizeInBits(GEP
->getPointerAddressSpace());
1676 // Rewrite a constant GEP into a DIExpression.
1677 APInt
Offset(BitWidth
, 0);
1678 if (GEP
->accumulateConstantOffset(M
.getDataLayout(), Offset
)) {
1679 return applyOffset(Offset
.getSExtValue());
1683 } else if (auto *BI
= dyn_cast
<BinaryOperator
>(&I
)) {
1684 // Rewrite binary operations with constant integer operands.
1685 auto *ConstInt
= dyn_cast
<ConstantInt
>(I
.getOperand(1));
1686 if (!ConstInt
|| ConstInt
->getBitWidth() > 64)
1689 uint64_t Val
= ConstInt
->getSExtValue();
1690 switch (BI
->getOpcode()) {
1691 case Instruction::Add
:
1692 return applyOffset(Val
);
1693 case Instruction::Sub
:
1694 return applyOffset(-int64_t(Val
));
1695 case Instruction::Mul
:
1696 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_mul
});
1697 case Instruction::SDiv
:
1698 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_div
});
1699 case Instruction::SRem
:
1700 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_mod
});
1701 case Instruction::Or
:
1702 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_or
});
1703 case Instruction::And
:
1704 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_and
});
1705 case Instruction::Xor
:
1706 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_xor
});
1707 case Instruction::Shl
:
1708 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shl
});
1709 case Instruction::LShr
:
1710 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shr
});
1711 case Instruction::AShr
:
1712 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shra
});
1714 // TODO: Salvage constants from each kind of binop we know about.
1717 // *Not* to do: we should not attempt to salvage load instructions,
1718 // because the validity and lifetime of a dbg.value containing
1719 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1724 /// A replacement for a dbg.value expression.
1725 using DbgValReplacement
= Optional
<DIExpression
*>;
1727 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1728 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1729 /// changes are made.
1730 static bool rewriteDebugUsers(
1731 Instruction
&From
, Value
&To
, Instruction
&DomPoint
, DominatorTree
&DT
,
1732 function_ref
<DbgValReplacement(DbgVariableIntrinsic
&DII
)> RewriteExpr
) {
1733 // Find debug users of From.
1734 SmallVector
<DbgVariableIntrinsic
*, 1> Users
;
1735 findDbgUsers(Users
, &From
);
1739 // Prevent use-before-def of To.
1740 bool Changed
= false;
1741 SmallPtrSet
<DbgVariableIntrinsic
*, 1> DeleteOrSalvage
;
1742 if (isa
<Instruction
>(&To
)) {
1743 bool DomPointAfterFrom
= From
.getNextNonDebugInstruction() == &DomPoint
;
1745 for (auto *DII
: Users
) {
1746 // It's common to see a debug user between From and DomPoint. Move it
1747 // after DomPoint to preserve the variable update without any reordering.
1748 if (DomPointAfterFrom
&& DII
->getNextNonDebugInstruction() == &DomPoint
) {
1749 LLVM_DEBUG(dbgs() << "MOVE: " << *DII
<< '\n');
1750 DII
->moveAfter(&DomPoint
);
1753 // Users which otherwise aren't dominated by the replacement value must
1754 // be salvaged or deleted.
1755 } else if (!DT
.dominates(&DomPoint
, DII
)) {
1756 DeleteOrSalvage
.insert(DII
);
1761 // Update debug users without use-before-def risk.
1762 for (auto *DII
: Users
) {
1763 if (DeleteOrSalvage
.count(DII
))
1766 LLVMContext
&Ctx
= DII
->getContext();
1767 DbgValReplacement DVR
= RewriteExpr(*DII
);
1771 DII
->setOperand(0, wrapValueInMetadata(Ctx
, &To
));
1772 DII
->setOperand(2, MetadataAsValue::get(Ctx
, *DVR
));
1773 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII
<< '\n');
1777 if (!DeleteOrSalvage
.empty()) {
1778 // Try to salvage the remaining debug users.
1779 Changed
|= salvageDebugInfo(From
);
1781 // Delete the debug users which weren't salvaged.
1782 for (auto *DII
: DeleteOrSalvage
) {
1783 if (DII
->getVariableLocation() == &From
) {
1784 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII
<< '\n');
1785 DII
->eraseFromParent();
1794 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1795 /// losslessly preserve the bits and semantics of the value. This predicate is
1796 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1798 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1799 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1800 /// and also does not allow lossless pointer <-> integer conversions.
1801 static bool isBitCastSemanticsPreserving(const DataLayout
&DL
, Type
*FromTy
,
1803 // Trivially compatible types.
1807 // Handle compatible pointer <-> integer conversions.
1808 if (FromTy
->isIntOrPtrTy() && ToTy
->isIntOrPtrTy()) {
1809 bool SameSize
= DL
.getTypeSizeInBits(FromTy
) == DL
.getTypeSizeInBits(ToTy
);
1810 bool LosslessConversion
= !DL
.isNonIntegralPointerType(FromTy
) &&
1811 !DL
.isNonIntegralPointerType(ToTy
);
1812 return SameSize
&& LosslessConversion
;
1815 // TODO: This is not exhaustive.
1819 bool llvm::replaceAllDbgUsesWith(Instruction
&From
, Value
&To
,
1820 Instruction
&DomPoint
, DominatorTree
&DT
) {
1821 // Exit early if From has no debug users.
1822 if (!From
.isUsedByMetadata())
1825 assert(&From
!= &To
&& "Can't replace something with itself");
1827 Type
*FromTy
= From
.getType();
1828 Type
*ToTy
= To
.getType();
1830 auto Identity
= [&](DbgVariableIntrinsic
&DII
) -> DbgValReplacement
{
1831 return DII
.getExpression();
1834 // Handle no-op conversions.
1835 Module
&M
= *From
.getModule();
1836 const DataLayout
&DL
= M
.getDataLayout();
1837 if (isBitCastSemanticsPreserving(DL
, FromTy
, ToTy
))
1838 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, Identity
);
1840 // Handle integer-to-integer widening and narrowing.
1841 // FIXME: Use DW_OP_convert when it's available everywhere.
1842 if (FromTy
->isIntegerTy() && ToTy
->isIntegerTy()) {
1843 uint64_t FromBits
= FromTy
->getPrimitiveSizeInBits();
1844 uint64_t ToBits
= ToTy
->getPrimitiveSizeInBits();
1845 assert(FromBits
!= ToBits
&& "Unexpected no-op conversion");
1847 // When the width of the result grows, assume that a debugger will only
1848 // access the low `FromBits` bits when inspecting the source variable.
1849 if (FromBits
< ToBits
)
1850 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, Identity
);
1852 // The width of the result has shrunk. Use sign/zero extension to describe
1853 // the source variable's high bits.
1854 auto SignOrZeroExt
= [&](DbgVariableIntrinsic
&DII
) -> DbgValReplacement
{
1855 DILocalVariable
*Var
= DII
.getVariable();
1857 // Without knowing signedness, sign/zero extension isn't possible.
1858 auto Signedness
= Var
->getSignedness();
1862 bool Signed
= *Signedness
== DIBasicType::Signedness::Signed
;
1865 // In the unsigned case, assume that a debugger will initialize the
1866 // high bits to 0 and do a no-op conversion.
1867 return Identity(DII
);
1869 // In the signed case, the high bits are given by sign extension, i.e:
1870 // (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1)
1871 // Calculate the high bits and OR them together with the low bits.
1872 SmallVector
<uint64_t, 8> Ops({dwarf::DW_OP_dup
, dwarf::DW_OP_constu
,
1873 (ToBits
- 1), dwarf::DW_OP_shr
,
1874 dwarf::DW_OP_lit0
, dwarf::DW_OP_not
,
1875 dwarf::DW_OP_mul
, dwarf::DW_OP_or
});
1876 return DIExpression::appendToStack(DII
.getExpression(), Ops
);
1879 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, SignOrZeroExt
);
1882 // TODO: Floating-point conversions, vectors.
1886 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock
*BB
) {
1887 unsigned NumDeadInst
= 0;
1888 // Delete the instructions backwards, as it has a reduced likelihood of
1889 // having to update as many def-use and use-def chains.
1890 Instruction
*EndInst
= BB
->getTerminator(); // Last not to be deleted.
1891 while (EndInst
!= &BB
->front()) {
1892 // Delete the next to last instruction.
1893 Instruction
*Inst
= &*--EndInst
->getIterator();
1894 if (!Inst
->use_empty() && !Inst
->getType()->isTokenTy())
1895 Inst
->replaceAllUsesWith(UndefValue::get(Inst
->getType()));
1896 if (Inst
->isEHPad() || Inst
->getType()->isTokenTy()) {
1900 if (!isa
<DbgInfoIntrinsic
>(Inst
))
1902 Inst
->eraseFromParent();
1907 unsigned llvm::changeToUnreachable(Instruction
*I
, bool UseLLVMTrap
,
1908 bool PreserveLCSSA
, DomTreeUpdater
*DTU
) {
1909 BasicBlock
*BB
= I
->getParent();
1910 std::vector
<DominatorTree::UpdateType
> Updates
;
1912 // Loop over all of the successors, removing BB's entry from any PHI
1915 Updates
.reserve(BB
->getTerminator()->getNumSuccessors());
1916 for (BasicBlock
*Successor
: successors(BB
)) {
1917 Successor
->removePredecessor(BB
, PreserveLCSSA
);
1919 Updates
.push_back({DominatorTree::Delete
, BB
, Successor
});
1921 // Insert a call to llvm.trap right before this. This turns the undefined
1922 // behavior into a hard fail instead of falling through into random code.
1925 Intrinsic::getDeclaration(BB
->getParent()->getParent(), Intrinsic::trap
);
1926 CallInst
*CallTrap
= CallInst::Create(TrapFn
, "", I
);
1927 CallTrap
->setDebugLoc(I
->getDebugLoc());
1929 auto *UI
= new UnreachableInst(I
->getContext(), I
);
1930 UI
->setDebugLoc(I
->getDebugLoc());
1932 // All instructions after this are dead.
1933 unsigned NumInstrsRemoved
= 0;
1934 BasicBlock::iterator BBI
= I
->getIterator(), BBE
= BB
->end();
1935 while (BBI
!= BBE
) {
1936 if (!BBI
->use_empty())
1937 BBI
->replaceAllUsesWith(UndefValue::get(BBI
->getType()));
1938 BB
->getInstList().erase(BBI
++);
1942 DTU
->applyUpdates(Updates
, /*ForceRemoveDuplicates*/ true);
1943 return NumInstrsRemoved
;
1946 /// changeToCall - Convert the specified invoke into a normal call.
1947 static void changeToCall(InvokeInst
*II
, DomTreeUpdater
*DTU
= nullptr) {
1948 SmallVector
<Value
*, 8> Args(II
->arg_begin(), II
->arg_end());
1949 SmallVector
<OperandBundleDef
, 1> OpBundles
;
1950 II
->getOperandBundlesAsDefs(OpBundles
);
1951 CallInst
*NewCall
= CallInst::Create(
1952 II
->getFunctionType(), II
->getCalledValue(), Args
, OpBundles
, "", II
);
1953 NewCall
->takeName(II
);
1954 NewCall
->setCallingConv(II
->getCallingConv());
1955 NewCall
->setAttributes(II
->getAttributes());
1956 NewCall
->setDebugLoc(II
->getDebugLoc());
1957 NewCall
->copyMetadata(*II
);
1958 II
->replaceAllUsesWith(NewCall
);
1960 // Follow the call by a branch to the normal destination.
1961 BasicBlock
*NormalDestBB
= II
->getNormalDest();
1962 BranchInst::Create(NormalDestBB
, II
);
1964 // Update PHI nodes in the unwind destination
1965 BasicBlock
*BB
= II
->getParent();
1966 BasicBlock
*UnwindDestBB
= II
->getUnwindDest();
1967 UnwindDestBB
->removePredecessor(BB
);
1968 II
->eraseFromParent();
1970 DTU
->deleteEdgeRelaxed(BB
, UnwindDestBB
);
1973 BasicBlock
*llvm::changeToInvokeAndSplitBasicBlock(CallInst
*CI
,
1974 BasicBlock
*UnwindEdge
) {
1975 BasicBlock
*BB
= CI
->getParent();
1977 // Convert this function call into an invoke instruction. First, split the
1980 BB
->splitBasicBlock(CI
->getIterator(), CI
->getName() + ".noexc");
1982 // Delete the unconditional branch inserted by splitBasicBlock
1983 BB
->getInstList().pop_back();
1985 // Create the new invoke instruction.
1986 SmallVector
<Value
*, 8> InvokeArgs(CI
->arg_begin(), CI
->arg_end());
1987 SmallVector
<OperandBundleDef
, 1> OpBundles
;
1989 CI
->getOperandBundlesAsDefs(OpBundles
);
1991 // Note: we're round tripping operand bundles through memory here, and that
1992 // can potentially be avoided with a cleverer API design that we do not have
1996 InvokeInst::Create(CI
->getFunctionType(), CI
->getCalledValue(), Split
,
1997 UnwindEdge
, InvokeArgs
, OpBundles
, CI
->getName(), BB
);
1998 II
->setDebugLoc(CI
->getDebugLoc());
1999 II
->setCallingConv(CI
->getCallingConv());
2000 II
->setAttributes(CI
->getAttributes());
2002 // Make sure that anything using the call now uses the invoke! This also
2003 // updates the CallGraph if present, because it uses a WeakTrackingVH.
2004 CI
->replaceAllUsesWith(II
);
2006 // Delete the original call
2007 Split
->getInstList().pop_front();
2011 static bool markAliveBlocks(Function
&F
,
2012 SmallPtrSetImpl
<BasicBlock
*> &Reachable
,
2013 DomTreeUpdater
*DTU
= nullptr) {
2014 SmallVector
<BasicBlock
*, 128> Worklist
;
2015 BasicBlock
*BB
= &F
.front();
2016 Worklist
.push_back(BB
);
2017 Reachable
.insert(BB
);
2018 bool Changed
= false;
2020 BB
= Worklist
.pop_back_val();
2022 // Do a quick scan of the basic block, turning any obviously unreachable
2023 // instructions into LLVM unreachable insts. The instruction combining pass
2024 // canonicalizes unreachable insts into stores to null or undef.
2025 for (Instruction
&I
: *BB
) {
2026 if (auto *CI
= dyn_cast
<CallInst
>(&I
)) {
2027 Value
*Callee
= CI
->getCalledValue();
2028 // Handle intrinsic calls.
2029 if (Function
*F
= dyn_cast
<Function
>(Callee
)) {
2030 auto IntrinsicID
= F
->getIntrinsicID();
2031 // Assumptions that are known to be false are equivalent to
2032 // unreachable. Also, if the condition is undefined, then we make the
2033 // choice most beneficial to the optimizer, and choose that to also be
2035 if (IntrinsicID
== Intrinsic::assume
) {
2036 if (match(CI
->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2037 // Don't insert a call to llvm.trap right before the unreachable.
2038 changeToUnreachable(CI
, false, false, DTU
);
2042 } else if (IntrinsicID
== Intrinsic::experimental_guard
) {
2043 // A call to the guard intrinsic bails out of the current
2044 // compilation unit if the predicate passed to it is false. If the
2045 // predicate is a constant false, then we know the guard will bail
2046 // out of the current compile unconditionally, so all code following
2049 // Note: unlike in llvm.assume, it is not "obviously profitable" for
2050 // guards to treat `undef` as `false` since a guard on `undef` can
2051 // still be useful for widening.
2052 if (match(CI
->getArgOperand(0), m_Zero()))
2053 if (!isa
<UnreachableInst
>(CI
->getNextNode())) {
2054 changeToUnreachable(CI
->getNextNode(), /*UseLLVMTrap=*/false,
2060 } else if ((isa
<ConstantPointerNull
>(Callee
) &&
2061 !NullPointerIsDefined(CI
->getFunction())) ||
2062 isa
<UndefValue
>(Callee
)) {
2063 changeToUnreachable(CI
, /*UseLLVMTrap=*/false, false, DTU
);
2067 if (CI
->doesNotReturn()) {
2068 // If we found a call to a no-return function, insert an unreachable
2069 // instruction after it. Make sure there isn't *already* one there
2071 if (!isa
<UnreachableInst
>(CI
->getNextNode())) {
2072 // Don't insert a call to llvm.trap right before the unreachable.
2073 changeToUnreachable(CI
->getNextNode(), false, false, DTU
);
2078 } else if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
2079 // Store to undef and store to null are undefined and used to signal
2080 // that they should be changed to unreachable by passes that can't
2083 // Don't touch volatile stores.
2084 if (SI
->isVolatile()) continue;
2086 Value
*Ptr
= SI
->getOperand(1);
2088 if (isa
<UndefValue
>(Ptr
) ||
2089 (isa
<ConstantPointerNull
>(Ptr
) &&
2090 !NullPointerIsDefined(SI
->getFunction(),
2091 SI
->getPointerAddressSpace()))) {
2092 changeToUnreachable(SI
, true, false, DTU
);
2099 Instruction
*Terminator
= BB
->getTerminator();
2100 if (auto *II
= dyn_cast
<InvokeInst
>(Terminator
)) {
2101 // Turn invokes that call 'nounwind' functions into ordinary calls.
2102 Value
*Callee
= II
->getCalledValue();
2103 if ((isa
<ConstantPointerNull
>(Callee
) &&
2104 !NullPointerIsDefined(BB
->getParent())) ||
2105 isa
<UndefValue
>(Callee
)) {
2106 changeToUnreachable(II
, true, false, DTU
);
2108 } else if (II
->doesNotThrow() && canSimplifyInvokeNoUnwind(&F
)) {
2109 if (II
->use_empty() && II
->onlyReadsMemory()) {
2110 // jump to the normal destination branch.
2111 BasicBlock
*NormalDestBB
= II
->getNormalDest();
2112 BasicBlock
*UnwindDestBB
= II
->getUnwindDest();
2113 BranchInst::Create(NormalDestBB
, II
);
2114 UnwindDestBB
->removePredecessor(II
->getParent());
2115 II
->eraseFromParent();
2117 DTU
->deleteEdgeRelaxed(BB
, UnwindDestBB
);
2119 changeToCall(II
, DTU
);
2122 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Terminator
)) {
2123 // Remove catchpads which cannot be reached.
2124 struct CatchPadDenseMapInfo
{
2125 static CatchPadInst
*getEmptyKey() {
2126 return DenseMapInfo
<CatchPadInst
*>::getEmptyKey();
2129 static CatchPadInst
*getTombstoneKey() {
2130 return DenseMapInfo
<CatchPadInst
*>::getTombstoneKey();
2133 static unsigned getHashValue(CatchPadInst
*CatchPad
) {
2134 return static_cast<unsigned>(hash_combine_range(
2135 CatchPad
->value_op_begin(), CatchPad
->value_op_end()));
2138 static bool isEqual(CatchPadInst
*LHS
, CatchPadInst
*RHS
) {
2139 if (LHS
== getEmptyKey() || LHS
== getTombstoneKey() ||
2140 RHS
== getEmptyKey() || RHS
== getTombstoneKey())
2142 return LHS
->isIdenticalTo(RHS
);
2146 // Set of unique CatchPads.
2147 SmallDenseMap
<CatchPadInst
*, detail::DenseSetEmpty
, 4,
2148 CatchPadDenseMapInfo
, detail::DenseSetPair
<CatchPadInst
*>>
2150 detail::DenseSetEmpty Empty
;
2151 for (CatchSwitchInst::handler_iterator I
= CatchSwitch
->handler_begin(),
2152 E
= CatchSwitch
->handler_end();
2154 BasicBlock
*HandlerBB
= *I
;
2155 auto *CatchPad
= cast
<CatchPadInst
>(HandlerBB
->getFirstNonPHI());
2156 if (!HandlerSet
.insert({CatchPad
, Empty
}).second
) {
2157 CatchSwitch
->removeHandler(I
);
2165 Changed
|= ConstantFoldTerminator(BB
, true, nullptr, DTU
);
2166 for (BasicBlock
*Successor
: successors(BB
))
2167 if (Reachable
.insert(Successor
).second
)
2168 Worklist
.push_back(Successor
);
2169 } while (!Worklist
.empty());
2173 void llvm::removeUnwindEdge(BasicBlock
*BB
, DomTreeUpdater
*DTU
) {
2174 Instruction
*TI
= BB
->getTerminator();
2176 if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
2177 changeToCall(II
, DTU
);
2182 BasicBlock
*UnwindDest
;
2184 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
)) {
2185 NewTI
= CleanupReturnInst::Create(CRI
->getCleanupPad(), nullptr, CRI
);
2186 UnwindDest
= CRI
->getUnwindDest();
2187 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(TI
)) {
2188 auto *NewCatchSwitch
= CatchSwitchInst::Create(
2189 CatchSwitch
->getParentPad(), nullptr, CatchSwitch
->getNumHandlers(),
2190 CatchSwitch
->getName(), CatchSwitch
);
2191 for (BasicBlock
*PadBB
: CatchSwitch
->handlers())
2192 NewCatchSwitch
->addHandler(PadBB
);
2194 NewTI
= NewCatchSwitch
;
2195 UnwindDest
= CatchSwitch
->getUnwindDest();
2197 llvm_unreachable("Could not find unwind successor");
2200 NewTI
->takeName(TI
);
2201 NewTI
->setDebugLoc(TI
->getDebugLoc());
2202 UnwindDest
->removePredecessor(BB
);
2203 TI
->replaceAllUsesWith(NewTI
);
2204 TI
->eraseFromParent();
2206 DTU
->deleteEdgeRelaxed(BB
, UnwindDest
);
2209 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2210 /// if they are in a dead cycle. Return true if a change was made, false
2211 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2212 /// after modifying the CFG.
2213 bool llvm::removeUnreachableBlocks(Function
&F
, LazyValueInfo
*LVI
,
2214 DomTreeUpdater
*DTU
,
2215 MemorySSAUpdater
*MSSAU
) {
2216 SmallPtrSet
<BasicBlock
*, 16> Reachable
;
2217 bool Changed
= markAliveBlocks(F
, Reachable
, DTU
);
2219 // If there are unreachable blocks in the CFG...
2220 if (Reachable
.size() == F
.size())
2223 assert(Reachable
.size() < F
.size());
2224 NumRemoved
+= F
.size()-Reachable
.size();
2226 SmallPtrSet
<BasicBlock
*, 16> DeadBlockSet
;
2227 for (Function::iterator I
= ++F
.begin(), E
= F
.end(); I
!= E
; ++I
) {
2229 if (Reachable
.count(BB
))
2231 DeadBlockSet
.insert(BB
);
2235 MSSAU
->removeBlocks(DeadBlockSet
);
2237 // Loop over all of the basic blocks that are not reachable, dropping all of
2238 // their internal references. Update DTU and LVI if available.
2239 std::vector
<DominatorTree::UpdateType
> Updates
;
2240 for (auto *BB
: DeadBlockSet
) {
2241 for (BasicBlock
*Successor
: successors(BB
)) {
2242 if (!DeadBlockSet
.count(Successor
))
2243 Successor
->removePredecessor(BB
);
2245 Updates
.push_back({DominatorTree::Delete
, BB
, Successor
});
2248 LVI
->eraseBlock(BB
);
2249 BB
->dropAllReferences();
2251 for (Function::iterator I
= ++F
.begin(); I
!= F
.end();) {
2253 if (Reachable
.count(BB
)) {
2258 // Remove the terminator of BB to clear the successor list of BB.
2259 if (BB
->getTerminator())
2260 BB
->getInstList().pop_back();
2261 new UnreachableInst(BB
->getContext(), BB
);
2262 assert(succ_empty(BB
) && "The successor list of BB isn't empty before "
2263 "applying corresponding DTU updates.");
2266 I
= F
.getBasicBlockList().erase(I
);
2271 DTU
->applyUpdates(Updates
, /*ForceRemoveDuplicates*/ true);
2272 bool Deleted
= false;
2273 for (auto *BB
: DeadBlockSet
) {
2274 if (DTU
->isBBPendingDeletion(BB
))
2286 void llvm::combineMetadata(Instruction
*K
, const Instruction
*J
,
2287 ArrayRef
<unsigned> KnownIDs
, bool DoesKMove
) {
2288 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> Metadata
;
2289 K
->dropUnknownNonDebugMetadata(KnownIDs
);
2290 K
->getAllMetadataOtherThanDebugLoc(Metadata
);
2291 for (const auto &MD
: Metadata
) {
2292 unsigned Kind
= MD
.first
;
2293 MDNode
*JMD
= J
->getMetadata(Kind
);
2294 MDNode
*KMD
= MD
.second
;
2298 K
->setMetadata(Kind
, nullptr); // Remove unknown metadata
2300 case LLVMContext::MD_dbg
:
2301 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2302 case LLVMContext::MD_tbaa
:
2303 K
->setMetadata(Kind
, MDNode::getMostGenericTBAA(JMD
, KMD
));
2305 case LLVMContext::MD_alias_scope
:
2306 K
->setMetadata(Kind
, MDNode::getMostGenericAliasScope(JMD
, KMD
));
2308 case LLVMContext::MD_noalias
:
2309 case LLVMContext::MD_mem_parallel_loop_access
:
2310 K
->setMetadata(Kind
, MDNode::intersect(JMD
, KMD
));
2312 case LLVMContext::MD_access_group
:
2313 K
->setMetadata(LLVMContext::MD_access_group
,
2314 intersectAccessGroups(K
, J
));
2316 case LLVMContext::MD_range
:
2318 // If K does move, use most generic range. Otherwise keep the range of
2321 // FIXME: If K does move, we should drop the range info and nonnull.
2322 // Currently this function is used with DoesKMove in passes
2323 // doing hoisting/sinking and the current behavior of using the
2324 // most generic range is correct in those cases.
2325 K
->setMetadata(Kind
, MDNode::getMostGenericRange(JMD
, KMD
));
2327 case LLVMContext::MD_fpmath
:
2328 K
->setMetadata(Kind
, MDNode::getMostGenericFPMath(JMD
, KMD
));
2330 case LLVMContext::MD_invariant_load
:
2331 // Only set the !invariant.load if it is present in both instructions.
2332 K
->setMetadata(Kind
, JMD
);
2334 case LLVMContext::MD_nonnull
:
2335 // If K does move, keep nonull if it is present in both instructions.
2337 K
->setMetadata(Kind
, JMD
);
2339 case LLVMContext::MD_invariant_group
:
2340 // Preserve !invariant.group in K.
2342 case LLVMContext::MD_align
:
2343 K
->setMetadata(Kind
,
2344 MDNode::getMostGenericAlignmentOrDereferenceable(JMD
, KMD
));
2346 case LLVMContext::MD_dereferenceable
:
2347 case LLVMContext::MD_dereferenceable_or_null
:
2348 K
->setMetadata(Kind
,
2349 MDNode::getMostGenericAlignmentOrDereferenceable(JMD
, KMD
));
2353 // Set !invariant.group from J if J has it. If both instructions have it
2354 // then we will just pick it from J - even when they are different.
2355 // Also make sure that K is load or store - f.e. combining bitcast with load
2356 // could produce bitcast with invariant.group metadata, which is invalid.
2357 // FIXME: we should try to preserve both invariant.group md if they are
2358 // different, but right now instruction can only have one invariant.group.
2359 if (auto *JMD
= J
->getMetadata(LLVMContext::MD_invariant_group
))
2360 if (isa
<LoadInst
>(K
) || isa
<StoreInst
>(K
))
2361 K
->setMetadata(LLVMContext::MD_invariant_group
, JMD
);
2364 void llvm::combineMetadataForCSE(Instruction
*K
, const Instruction
*J
,
2366 unsigned KnownIDs
[] = {
2367 LLVMContext::MD_tbaa
, LLVMContext::MD_alias_scope
,
2368 LLVMContext::MD_noalias
, LLVMContext::MD_range
,
2369 LLVMContext::MD_invariant_load
, LLVMContext::MD_nonnull
,
2370 LLVMContext::MD_invariant_group
, LLVMContext::MD_align
,
2371 LLVMContext::MD_dereferenceable
,
2372 LLVMContext::MD_dereferenceable_or_null
,
2373 LLVMContext::MD_access_group
};
2374 combineMetadata(K
, J
, KnownIDs
, KDominatesJ
);
2377 void llvm::patchReplacementInstruction(Instruction
*I
, Value
*Repl
) {
2378 auto *ReplInst
= dyn_cast
<Instruction
>(Repl
);
2382 // Patch the replacement so that it is not more restrictive than the value
2384 // Note that if 'I' is a load being replaced by some operation,
2385 // for example, by an arithmetic operation, then andIRFlags()
2386 // would just erase all math flags from the original arithmetic
2387 // operation, which is clearly not wanted and not needed.
2388 if (!isa
<LoadInst
>(I
))
2389 ReplInst
->andIRFlags(I
);
2391 // FIXME: If both the original and replacement value are part of the
2392 // same control-flow region (meaning that the execution of one
2393 // guarantees the execution of the other), then we can combine the
2394 // noalias scopes here and do better than the general conservative
2395 // answer used in combineMetadata().
2397 // In general, GVN unifies expressions over different control-flow
2398 // regions, and so we need a conservative combination of the noalias
2400 static const unsigned KnownIDs
[] = {
2401 LLVMContext::MD_tbaa
, LLVMContext::MD_alias_scope
,
2402 LLVMContext::MD_noalias
, LLVMContext::MD_range
,
2403 LLVMContext::MD_fpmath
, LLVMContext::MD_invariant_load
,
2404 LLVMContext::MD_invariant_group
, LLVMContext::MD_nonnull
,
2405 LLVMContext::MD_access_group
};
2406 combineMetadata(ReplInst
, I
, KnownIDs
, false);
2409 template <typename RootType
, typename DominatesFn
>
2410 static unsigned replaceDominatedUsesWith(Value
*From
, Value
*To
,
2411 const RootType
&Root
,
2412 const DominatesFn
&Dominates
) {
2413 assert(From
->getType() == To
->getType());
2416 for (Value::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
2419 if (!Dominates(Root
, U
))
2422 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From
->getName()
2423 << "' as " << *To
<< " in " << *U
<< "\n");
2429 unsigned llvm::replaceNonLocalUsesWith(Instruction
*From
, Value
*To
) {
2430 assert(From
->getType() == To
->getType());
2431 auto *BB
= From
->getParent();
2434 for (Value::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
2437 auto *I
= cast
<Instruction
>(U
.getUser());
2438 if (I
->getParent() == BB
)
2446 unsigned llvm::replaceDominatedUsesWith(Value
*From
, Value
*To
,
2448 const BasicBlockEdge
&Root
) {
2449 auto Dominates
= [&DT
](const BasicBlockEdge
&Root
, const Use
&U
) {
2450 return DT
.dominates(Root
, U
);
2452 return ::replaceDominatedUsesWith(From
, To
, Root
, Dominates
);
2455 unsigned llvm::replaceDominatedUsesWith(Value
*From
, Value
*To
,
2457 const BasicBlock
*BB
) {
2458 auto ProperlyDominates
= [&DT
](const BasicBlock
*BB
, const Use
&U
) {
2459 auto *I
= cast
<Instruction
>(U
.getUser())->getParent();
2460 return DT
.properlyDominates(BB
, I
);
2462 return ::replaceDominatedUsesWith(From
, To
, BB
, ProperlyDominates
);
2465 bool llvm::callsGCLeafFunction(const CallBase
*Call
,
2466 const TargetLibraryInfo
&TLI
) {
2467 // Check if the function is specifically marked as a gc leaf function.
2468 if (Call
->hasFnAttr("gc-leaf-function"))
2470 if (const Function
*F
= Call
->getCalledFunction()) {
2471 if (F
->hasFnAttribute("gc-leaf-function"))
2474 if (auto IID
= F
->getIntrinsicID())
2475 // Most LLVM intrinsics do not take safepoints.
2476 return IID
!= Intrinsic::experimental_gc_statepoint
&&
2477 IID
!= Intrinsic::experimental_deoptimize
;
2480 // Lib calls can be materialized by some passes, and won't be
2481 // marked as 'gc-leaf-function.' All available Libcalls are
2484 if (TLI
.getLibFunc(ImmutableCallSite(Call
), LF
)) {
2491 void llvm::copyNonnullMetadata(const LoadInst
&OldLI
, MDNode
*N
,
2493 auto *NewTy
= NewLI
.getType();
2495 // This only directly applies if the new type is also a pointer.
2496 if (NewTy
->isPointerTy()) {
2497 NewLI
.setMetadata(LLVMContext::MD_nonnull
, N
);
2501 // The only other translation we can do is to integral loads with !range
2503 if (!NewTy
->isIntegerTy())
2506 MDBuilder
MDB(NewLI
.getContext());
2507 const Value
*Ptr
= OldLI
.getPointerOperand();
2508 auto *ITy
= cast
<IntegerType
>(NewTy
);
2509 auto *NullInt
= ConstantExpr::getPtrToInt(
2510 ConstantPointerNull::get(cast
<PointerType
>(Ptr
->getType())), ITy
);
2511 auto *NonNullInt
= ConstantExpr::getAdd(NullInt
, ConstantInt::get(ITy
, 1));
2512 NewLI
.setMetadata(LLVMContext::MD_range
,
2513 MDB
.createRange(NonNullInt
, NullInt
));
2516 void llvm::copyRangeMetadata(const DataLayout
&DL
, const LoadInst
&OldLI
,
2517 MDNode
*N
, LoadInst
&NewLI
) {
2518 auto *NewTy
= NewLI
.getType();
2520 // Give up unless it is converted to a pointer where there is a single very
2521 // valuable mapping we can do reliably.
2522 // FIXME: It would be nice to propagate this in more ways, but the type
2523 // conversions make it hard.
2524 if (!NewTy
->isPointerTy())
2527 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(NewTy
);
2528 if (!getConstantRangeFromMetadata(*N
).contains(APInt(BitWidth
, 0))) {
2529 MDNode
*NN
= MDNode::get(OldLI
.getContext(), None
);
2530 NewLI
.setMetadata(LLVMContext::MD_nonnull
, NN
);
2534 void llvm::dropDebugUsers(Instruction
&I
) {
2535 SmallVector
<DbgVariableIntrinsic
*, 1> DbgUsers
;
2536 findDbgUsers(DbgUsers
, &I
);
2537 for (auto *DII
: DbgUsers
)
2538 DII
->eraseFromParent();
2541 void llvm::hoistAllInstructionsInto(BasicBlock
*DomBlock
, Instruction
*InsertPt
,
2543 // Since we are moving the instructions out of its basic block, we do not
2544 // retain their original debug locations (DILocations) and debug intrinsic
2547 // Doing so would degrade the debugging experience and adversely affect the
2548 // accuracy of profiling information.
2550 // Currently, when hoisting the instructions, we take the following actions:
2551 // - Remove their debug intrinsic instructions.
2552 // - Set their debug locations to the values from the insertion point.
2554 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2555 // need to be deleted, is because there will not be any instructions with a
2556 // DILocation in either branch left after performing the transformation. We
2557 // can only insert a dbg.value after the two branches are joined again.
2559 // See PR38762, PR39243 for more details.
2561 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2562 // encode predicated DIExpressions that yield different results on different
2564 for (BasicBlock::iterator II
= BB
->begin(), IE
= BB
->end(); II
!= IE
;) {
2565 Instruction
*I
= &*II
;
2566 I
->dropUnknownNonDebugMetadata();
2567 if (I
->isUsedByMetadata())
2569 if (isa
<DbgInfoIntrinsic
>(I
)) {
2570 // Remove DbgInfo Intrinsics.
2571 II
= I
->eraseFromParent();
2574 I
->setDebugLoc(InsertPt
->getDebugLoc());
2577 DomBlock
->getInstList().splice(InsertPt
->getIterator(), BB
->getInstList(),
2579 BB
->getTerminator()->getIterator());
2584 /// A potential constituent of a bitreverse or bswap expression. See
2585 /// collectBitParts for a fuller explanation.
2587 BitPart(Value
*P
, unsigned BW
) : Provider(P
) {
2588 Provenance
.resize(BW
);
2591 /// The Value that this is a bitreverse/bswap of.
2594 /// The "provenance" of each bit. Provenance[A] = B means that bit A
2595 /// in Provider becomes bit B in the result of this expression.
2596 SmallVector
<int8_t, 32> Provenance
; // int8_t means max size is i128.
2598 enum { Unset
= -1 };
2601 } // end anonymous namespace
2603 /// Analyze the specified subexpression and see if it is capable of providing
2604 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2605 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2606 /// the output of the expression came from a corresponding bit in some other
2607 /// value. This function is recursive, and the end result is a mapping of
2608 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2609 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2611 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2612 /// that the expression deposits the low byte of %X into the high byte of the
2613 /// result and that all other bits are zero. This expression is accepted and a
2614 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2617 /// To avoid revisiting values, the BitPart results are memoized into the
2618 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2619 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2620 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2621 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2622 /// type instead to provide the same functionality.
2624 /// Because we pass around references into \c BPS, we must use a container that
2625 /// does not invalidate internal references (std::map instead of DenseMap).
2626 static const Optional
<BitPart
> &
2627 collectBitParts(Value
*V
, bool MatchBSwaps
, bool MatchBitReversals
,
2628 std::map
<Value
*, Optional
<BitPart
>> &BPS
) {
2629 auto I
= BPS
.find(V
);
2633 auto &Result
= BPS
[V
] = None
;
2634 auto BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
2636 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
2637 // If this is an or instruction, it may be an inner node of the bswap.
2638 if (I
->getOpcode() == Instruction::Or
) {
2639 auto &A
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2640 MatchBitReversals
, BPS
);
2641 auto &B
= collectBitParts(I
->getOperand(1), MatchBSwaps
,
2642 MatchBitReversals
, BPS
);
2646 // Try and merge the two together.
2647 if (!A
->Provider
|| A
->Provider
!= B
->Provider
)
2650 Result
= BitPart(A
->Provider
, BitWidth
);
2651 for (unsigned i
= 0; i
< A
->Provenance
.size(); ++i
) {
2652 if (A
->Provenance
[i
] != BitPart::Unset
&&
2653 B
->Provenance
[i
] != BitPart::Unset
&&
2654 A
->Provenance
[i
] != B
->Provenance
[i
])
2655 return Result
= None
;
2657 if (A
->Provenance
[i
] == BitPart::Unset
)
2658 Result
->Provenance
[i
] = B
->Provenance
[i
];
2660 Result
->Provenance
[i
] = A
->Provenance
[i
];
2666 // If this is a logical shift by a constant, recurse then shift the result.
2667 if (I
->isLogicalShift() && isa
<ConstantInt
>(I
->getOperand(1))) {
2669 cast
<ConstantInt
>(I
->getOperand(1))->getLimitedValue(~0U);
2670 // Ensure the shift amount is defined.
2671 if (BitShift
> BitWidth
)
2674 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2675 MatchBitReversals
, BPS
);
2680 // Perform the "shift" on BitProvenance.
2681 auto &P
= Result
->Provenance
;
2682 if (I
->getOpcode() == Instruction::Shl
) {
2683 P
.erase(std::prev(P
.end(), BitShift
), P
.end());
2684 P
.insert(P
.begin(), BitShift
, BitPart::Unset
);
2686 P
.erase(P
.begin(), std::next(P
.begin(), BitShift
));
2687 P
.insert(P
.end(), BitShift
, BitPart::Unset
);
2693 // If this is a logical 'and' with a mask that clears bits, recurse then
2694 // unset the appropriate bits.
2695 if (I
->getOpcode() == Instruction::And
&&
2696 isa
<ConstantInt
>(I
->getOperand(1))) {
2697 APInt
Bit(I
->getType()->getPrimitiveSizeInBits(), 1);
2698 const APInt
&AndMask
= cast
<ConstantInt
>(I
->getOperand(1))->getValue();
2700 // Check that the mask allows a multiple of 8 bits for a bswap, for an
2702 unsigned NumMaskedBits
= AndMask
.countPopulation();
2703 if (!MatchBitReversals
&& NumMaskedBits
% 8 != 0)
2706 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2707 MatchBitReversals
, BPS
);
2712 for (unsigned i
= 0; i
< BitWidth
; ++i
, Bit
<<= 1)
2713 // If the AndMask is zero for this bit, clear the bit.
2714 if ((AndMask
& Bit
) == 0)
2715 Result
->Provenance
[i
] = BitPart::Unset
;
2719 // If this is a zext instruction zero extend the result.
2720 if (I
->getOpcode() == Instruction::ZExt
) {
2721 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2722 MatchBitReversals
, BPS
);
2726 Result
= BitPart(Res
->Provider
, BitWidth
);
2727 auto NarrowBitWidth
=
2728 cast
<IntegerType
>(cast
<ZExtInst
>(I
)->getSrcTy())->getBitWidth();
2729 for (unsigned i
= 0; i
< NarrowBitWidth
; ++i
)
2730 Result
->Provenance
[i
] = Res
->Provenance
[i
];
2731 for (unsigned i
= NarrowBitWidth
; i
< BitWidth
; ++i
)
2732 Result
->Provenance
[i
] = BitPart::Unset
;
2737 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
2738 // the input value to the bswap/bitreverse.
2739 Result
= BitPart(V
, BitWidth
);
2740 for (unsigned i
= 0; i
< BitWidth
; ++i
)
2741 Result
->Provenance
[i
] = i
;
2745 static bool bitTransformIsCorrectForBSwap(unsigned From
, unsigned To
,
2746 unsigned BitWidth
) {
2747 if (From
% 8 != To
% 8)
2749 // Convert from bit indices to byte indices and check for a byte reversal.
2753 return From
== BitWidth
- To
- 1;
2756 static bool bitTransformIsCorrectForBitReverse(unsigned From
, unsigned To
,
2757 unsigned BitWidth
) {
2758 return From
== BitWidth
- To
- 1;
2761 bool llvm::recognizeBSwapOrBitReverseIdiom(
2762 Instruction
*I
, bool MatchBSwaps
, bool MatchBitReversals
,
2763 SmallVectorImpl
<Instruction
*> &InsertedInsts
) {
2764 if (Operator::getOpcode(I
) != Instruction::Or
)
2766 if (!MatchBSwaps
&& !MatchBitReversals
)
2768 IntegerType
*ITy
= dyn_cast
<IntegerType
>(I
->getType());
2769 if (!ITy
|| ITy
->getBitWidth() > 128)
2770 return false; // Can't do vectors or integers > 128 bits.
2771 unsigned BW
= ITy
->getBitWidth();
2773 unsigned DemandedBW
= BW
;
2774 IntegerType
*DemandedTy
= ITy
;
2775 if (I
->hasOneUse()) {
2776 if (TruncInst
*Trunc
= dyn_cast
<TruncInst
>(I
->user_back())) {
2777 DemandedTy
= cast
<IntegerType
>(Trunc
->getType());
2778 DemandedBW
= DemandedTy
->getBitWidth();
2782 // Try to find all the pieces corresponding to the bswap.
2783 std::map
<Value
*, Optional
<BitPart
>> BPS
;
2784 auto Res
= collectBitParts(I
, MatchBSwaps
, MatchBitReversals
, BPS
);
2787 auto &BitProvenance
= Res
->Provenance
;
2789 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2790 // only byteswap values with an even number of bytes.
2791 bool OKForBSwap
= DemandedBW
% 16 == 0, OKForBitReverse
= true;
2792 for (unsigned i
= 0; i
< DemandedBW
; ++i
) {
2794 bitTransformIsCorrectForBSwap(BitProvenance
[i
], i
, DemandedBW
);
2796 bitTransformIsCorrectForBitReverse(BitProvenance
[i
], i
, DemandedBW
);
2799 Intrinsic::ID Intrin
;
2800 if (OKForBSwap
&& MatchBSwaps
)
2801 Intrin
= Intrinsic::bswap
;
2802 else if (OKForBitReverse
&& MatchBitReversals
)
2803 Intrin
= Intrinsic::bitreverse
;
2807 if (ITy
!= DemandedTy
) {
2808 Function
*F
= Intrinsic::getDeclaration(I
->getModule(), Intrin
, DemandedTy
);
2809 Value
*Provider
= Res
->Provider
;
2810 IntegerType
*ProviderTy
= cast
<IntegerType
>(Provider
->getType());
2811 // We may need to truncate the provider.
2812 if (DemandedTy
!= ProviderTy
) {
2813 auto *Trunc
= CastInst::Create(Instruction::Trunc
, Provider
, DemandedTy
,
2815 InsertedInsts
.push_back(Trunc
);
2818 auto *CI
= CallInst::Create(F
, Provider
, "rev", I
);
2819 InsertedInsts
.push_back(CI
);
2820 auto *ExtInst
= CastInst::Create(Instruction::ZExt
, CI
, ITy
, "zext", I
);
2821 InsertedInsts
.push_back(ExtInst
);
2825 Function
*F
= Intrinsic::getDeclaration(I
->getModule(), Intrin
, ITy
);
2826 InsertedInsts
.push_back(CallInst::Create(F
, Res
->Provider
, "rev", I
));
2830 // CodeGen has special handling for some string functions that may replace
2831 // them with target-specific intrinsics. Since that'd skip our interceptors
2832 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2833 // we mark affected calls as NoBuiltin, which will disable optimization
2835 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2836 CallInst
*CI
, const TargetLibraryInfo
*TLI
) {
2837 Function
*F
= CI
->getCalledFunction();
2839 if (F
&& !F
->hasLocalLinkage() && F
->hasName() &&
2840 TLI
->getLibFunc(F
->getName(), Func
) && TLI
->hasOptimizedCodeGen(Func
) &&
2841 !F
->doesNotAccessMemory())
2842 CI
->addAttribute(AttributeList::FunctionIndex
, Attribute::NoBuiltin
);
2845 bool llvm::canReplaceOperandWithVariable(const Instruction
*I
, unsigned OpIdx
) {
2846 // We can't have a PHI with a metadata type.
2847 if (I
->getOperand(OpIdx
)->getType()->isMetadataTy())
2851 if (!isa
<Constant
>(I
->getOperand(OpIdx
)))
2854 switch (I
->getOpcode()) {
2857 case Instruction::Call
:
2858 case Instruction::Invoke
:
2859 // Can't handle inline asm. Skip it.
2860 if (isa
<InlineAsm
>(ImmutableCallSite(I
).getCalledValue()))
2862 // Many arithmetic intrinsics have no issue taking a
2863 // variable, however it's hard to distingish these from
2864 // specials such as @llvm.frameaddress that require a constant.
2865 if (isa
<IntrinsicInst
>(I
))
2868 // Constant bundle operands may need to retain their constant-ness for
2870 if (ImmutableCallSite(I
).isBundleOperand(OpIdx
))
2873 case Instruction::ShuffleVector
:
2874 // Shufflevector masks are constant.
2876 case Instruction::Switch
:
2877 case Instruction::ExtractValue
:
2878 // All operands apart from the first are constant.
2880 case Instruction::InsertValue
:
2881 // All operands apart from the first and the second are constant.
2883 case Instruction::Alloca
:
2884 // Static allocas (constant size in the entry block) are handled by
2885 // prologue/epilogue insertion so they're free anyway. We definitely don't
2886 // want to make them non-constant.
2887 return !cast
<AllocaInst
>(I
)->isStaticAlloca();
2888 case Instruction::GetElementPtr
:
2891 gep_type_iterator It
= gep_type_begin(I
);
2892 for (auto E
= std::next(It
, OpIdx
); It
!= E
; ++It
)