Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / Utils / Local.cpp
blob12c4ff1e37c23519628401c0692d2d09af7166f9
1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <utility>
87 using namespace llvm;
88 using namespace llvm::PatternMatch;
90 #define DEBUG_TYPE "local"
92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94 //===----------------------------------------------------------------------===//
95 // Local constant propagation.
98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
99 /// constant value, convert it into an unconditional branch to the constant
100 /// destination. This is a nontrivial operation because the successors of this
101 /// basic block must have their PHI nodes updated.
102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
103 /// conditions and indirectbr addresses this might make dead if
104 /// DeleteDeadConditions is true.
105 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
106 const TargetLibraryInfo *TLI,
107 DomTreeUpdater *DTU) {
108 Instruction *T = BB->getTerminator();
109 IRBuilder<> Builder(T);
111 // Branch - See if we are conditional jumping on constant
112 if (auto *BI = dyn_cast<BranchInst>(T)) {
113 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
114 BasicBlock *Dest1 = BI->getSuccessor(0);
115 BasicBlock *Dest2 = BI->getSuccessor(1);
117 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
118 // Are we branching on constant?
119 // YES. Change to unconditional branch...
120 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
121 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
123 // Let the basic block know that we are letting go of it. Based on this,
124 // it will adjust it's PHI nodes.
125 OldDest->removePredecessor(BB);
127 // Replace the conditional branch with an unconditional one.
128 Builder.CreateBr(Destination);
129 BI->eraseFromParent();
130 if (DTU)
131 DTU->deleteEdgeRelaxed(BB, OldDest);
132 return true;
135 if (Dest2 == Dest1) { // Conditional branch to same location?
136 // This branch matches something like this:
137 // br bool %cond, label %Dest, label %Dest
138 // and changes it into: br label %Dest
140 // Let the basic block know that we are letting go of one copy of it.
141 assert(BI->getParent() && "Terminator not inserted in block!");
142 Dest1->removePredecessor(BI->getParent());
144 // Replace the conditional branch with an unconditional one.
145 Builder.CreateBr(Dest1);
146 Value *Cond = BI->getCondition();
147 BI->eraseFromParent();
148 if (DeleteDeadConditions)
149 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
150 return true;
152 return false;
155 if (auto *SI = dyn_cast<SwitchInst>(T)) {
156 // If we are switching on a constant, we can convert the switch to an
157 // unconditional branch.
158 auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
159 BasicBlock *DefaultDest = SI->getDefaultDest();
160 BasicBlock *TheOnlyDest = DefaultDest;
162 // If the default is unreachable, ignore it when searching for TheOnlyDest.
163 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
164 SI->getNumCases() > 0) {
165 TheOnlyDest = SI->case_begin()->getCaseSuccessor();
168 // Figure out which case it goes to.
169 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
170 // Found case matching a constant operand?
171 if (i->getCaseValue() == CI) {
172 TheOnlyDest = i->getCaseSuccessor();
173 break;
176 // Check to see if this branch is going to the same place as the default
177 // dest. If so, eliminate it as an explicit compare.
178 if (i->getCaseSuccessor() == DefaultDest) {
179 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
180 unsigned NCases = SI->getNumCases();
181 // Fold the case metadata into the default if there will be any branches
182 // left, unless the metadata doesn't match the switch.
183 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
184 // Collect branch weights into a vector.
185 SmallVector<uint32_t, 8> Weights;
186 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
187 ++MD_i) {
188 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
189 Weights.push_back(CI->getValue().getZExtValue());
191 // Merge weight of this case to the default weight.
192 unsigned idx = i->getCaseIndex();
193 Weights[0] += Weights[idx+1];
194 // Remove weight for this case.
195 std::swap(Weights[idx+1], Weights.back());
196 Weights.pop_back();
197 SI->setMetadata(LLVMContext::MD_prof,
198 MDBuilder(BB->getContext()).
199 createBranchWeights(Weights));
201 // Remove this entry.
202 BasicBlock *ParentBB = SI->getParent();
203 DefaultDest->removePredecessor(ParentBB);
204 i = SI->removeCase(i);
205 e = SI->case_end();
206 if (DTU)
207 DTU->deleteEdgeRelaxed(ParentBB, DefaultDest);
208 continue;
211 // Otherwise, check to see if the switch only branches to one destination.
212 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
213 // destinations.
214 if (i->getCaseSuccessor() != TheOnlyDest)
215 TheOnlyDest = nullptr;
217 // Increment this iterator as we haven't removed the case.
218 ++i;
221 if (CI && !TheOnlyDest) {
222 // Branching on a constant, but not any of the cases, go to the default
223 // successor.
224 TheOnlyDest = SI->getDefaultDest();
227 // If we found a single destination that we can fold the switch into, do so
228 // now.
229 if (TheOnlyDest) {
230 // Insert the new branch.
231 Builder.CreateBr(TheOnlyDest);
232 BasicBlock *BB = SI->getParent();
233 std::vector <DominatorTree::UpdateType> Updates;
234 if (DTU)
235 Updates.reserve(SI->getNumSuccessors() - 1);
237 // Remove entries from PHI nodes which we no longer branch to...
238 for (BasicBlock *Succ : successors(SI)) {
239 // Found case matching a constant operand?
240 if (Succ == TheOnlyDest) {
241 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
242 } else {
243 Succ->removePredecessor(BB);
244 if (DTU)
245 Updates.push_back({DominatorTree::Delete, BB, Succ});
249 // Delete the old switch.
250 Value *Cond = SI->getCondition();
251 SI->eraseFromParent();
252 if (DeleteDeadConditions)
253 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
254 if (DTU)
255 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
256 return true;
259 if (SI->getNumCases() == 1) {
260 // Otherwise, we can fold this switch into a conditional branch
261 // instruction if it has only one non-default destination.
262 auto FirstCase = *SI->case_begin();
263 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
264 FirstCase.getCaseValue(), "cond");
266 // Insert the new branch.
267 BranchInst *NewBr = Builder.CreateCondBr(Cond,
268 FirstCase.getCaseSuccessor(),
269 SI->getDefaultDest());
270 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
271 if (MD && MD->getNumOperands() == 3) {
272 ConstantInt *SICase =
273 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
274 ConstantInt *SIDef =
275 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
276 assert(SICase && SIDef);
277 // The TrueWeight should be the weight for the single case of SI.
278 NewBr->setMetadata(LLVMContext::MD_prof,
279 MDBuilder(BB->getContext()).
280 createBranchWeights(SICase->getValue().getZExtValue(),
281 SIDef->getValue().getZExtValue()));
284 // Update make.implicit metadata to the newly-created conditional branch.
285 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
286 if (MakeImplicitMD)
287 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
289 // Delete the old switch.
290 SI->eraseFromParent();
291 return true;
293 return false;
296 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
297 // indirectbr blockaddress(@F, @BB) -> br label @BB
298 if (auto *BA =
299 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
300 BasicBlock *TheOnlyDest = BA->getBasicBlock();
301 std::vector <DominatorTree::UpdateType> Updates;
302 if (DTU)
303 Updates.reserve(IBI->getNumDestinations() - 1);
305 // Insert the new branch.
306 Builder.CreateBr(TheOnlyDest);
308 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
309 if (IBI->getDestination(i) == TheOnlyDest) {
310 TheOnlyDest = nullptr;
311 } else {
312 BasicBlock *ParentBB = IBI->getParent();
313 BasicBlock *DestBB = IBI->getDestination(i);
314 DestBB->removePredecessor(ParentBB);
315 if (DTU)
316 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
319 Value *Address = IBI->getAddress();
320 IBI->eraseFromParent();
321 if (DeleteDeadConditions)
322 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
324 // If we didn't find our destination in the IBI successor list, then we
325 // have undefined behavior. Replace the unconditional branch with an
326 // 'unreachable' instruction.
327 if (TheOnlyDest) {
328 BB->getTerminator()->eraseFromParent();
329 new UnreachableInst(BB->getContext(), BB);
332 if (DTU)
333 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
334 return true;
338 return false;
341 //===----------------------------------------------------------------------===//
342 // Local dead code elimination.
345 /// isInstructionTriviallyDead - Return true if the result produced by the
346 /// instruction is not used, and the instruction has no side effects.
348 bool llvm::isInstructionTriviallyDead(Instruction *I,
349 const TargetLibraryInfo *TLI) {
350 if (!I->use_empty())
351 return false;
352 return wouldInstructionBeTriviallyDead(I, TLI);
355 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
356 const TargetLibraryInfo *TLI) {
357 if (I->isTerminator())
358 return false;
360 // We don't want the landingpad-like instructions removed by anything this
361 // general.
362 if (I->isEHPad())
363 return false;
365 // We don't want debug info removed by anything this general, unless
366 // debug info is empty.
367 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
368 if (DDI->getAddress())
369 return false;
370 return true;
372 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
373 if (DVI->getValue())
374 return false;
375 return true;
377 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
378 if (DLI->getLabel())
379 return false;
380 return true;
383 if (!I->mayHaveSideEffects())
384 return true;
386 // Special case intrinsics that "may have side effects" but can be deleted
387 // when dead.
388 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
389 // Safe to delete llvm.stacksave and launder.invariant.group if dead.
390 if (II->getIntrinsicID() == Intrinsic::stacksave ||
391 II->getIntrinsicID() == Intrinsic::launder_invariant_group)
392 return true;
394 // Lifetime intrinsics are dead when their right-hand is undef.
395 if (II->isLifetimeStartOrEnd())
396 return isa<UndefValue>(II->getArgOperand(1));
398 // Assumptions are dead if their condition is trivially true. Guards on
399 // true are operationally no-ops. In the future we can consider more
400 // sophisticated tradeoffs for guards considering potential for check
401 // widening, but for now we keep things simple.
402 if (II->getIntrinsicID() == Intrinsic::assume ||
403 II->getIntrinsicID() == Intrinsic::experimental_guard) {
404 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
405 return !Cond->isZero();
407 return false;
411 if (isAllocLikeFn(I, TLI))
412 return true;
414 if (CallInst *CI = isFreeCall(I, TLI))
415 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
416 return C->isNullValue() || isa<UndefValue>(C);
418 if (auto *Call = dyn_cast<CallBase>(I))
419 if (isMathLibCallNoop(Call, TLI))
420 return true;
422 return false;
425 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
426 /// trivially dead instruction, delete it. If that makes any of its operands
427 /// trivially dead, delete them too, recursively. Return true if any
428 /// instructions were deleted.
429 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
430 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
431 Instruction *I = dyn_cast<Instruction>(V);
432 if (!I || !isInstructionTriviallyDead(I, TLI))
433 return false;
435 SmallVector<Instruction*, 16> DeadInsts;
436 DeadInsts.push_back(I);
437 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
439 return true;
442 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
443 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
444 MemorySSAUpdater *MSSAU) {
445 // Process the dead instruction list until empty.
446 while (!DeadInsts.empty()) {
447 Instruction &I = *DeadInsts.pop_back_val();
448 assert(I.use_empty() && "Instructions with uses are not dead.");
449 assert(isInstructionTriviallyDead(&I, TLI) &&
450 "Live instruction found in dead worklist!");
452 // Don't lose the debug info while deleting the instructions.
453 salvageDebugInfo(I);
455 // Null out all of the instruction's operands to see if any operand becomes
456 // dead as we go.
457 for (Use &OpU : I.operands()) {
458 Value *OpV = OpU.get();
459 OpU.set(nullptr);
461 if (!OpV->use_empty())
462 continue;
464 // If the operand is an instruction that became dead as we nulled out the
465 // operand, and if it is 'trivially' dead, delete it in a future loop
466 // iteration.
467 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
468 if (isInstructionTriviallyDead(OpI, TLI))
469 DeadInsts.push_back(OpI);
471 if (MSSAU)
472 MSSAU->removeMemoryAccess(&I);
474 I.eraseFromParent();
478 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
479 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
480 findDbgUsers(DbgUsers, I);
481 for (auto *DII : DbgUsers) {
482 Value *Undef = UndefValue::get(I->getType());
483 DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
484 ValueAsMetadata::get(Undef)));
486 return !DbgUsers.empty();
489 /// areAllUsesEqual - Check whether the uses of a value are all the same.
490 /// This is similar to Instruction::hasOneUse() except this will also return
491 /// true when there are no uses or multiple uses that all refer to the same
492 /// value.
493 static bool areAllUsesEqual(Instruction *I) {
494 Value::user_iterator UI = I->user_begin();
495 Value::user_iterator UE = I->user_end();
496 if (UI == UE)
497 return true;
499 User *TheUse = *UI;
500 for (++UI; UI != UE; ++UI) {
501 if (*UI != TheUse)
502 return false;
504 return true;
507 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
508 /// dead PHI node, due to being a def-use chain of single-use nodes that
509 /// either forms a cycle or is terminated by a trivially dead instruction,
510 /// delete it. If that makes any of its operands trivially dead, delete them
511 /// too, recursively. Return true if a change was made.
512 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
513 const TargetLibraryInfo *TLI) {
514 SmallPtrSet<Instruction*, 4> Visited;
515 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
516 I = cast<Instruction>(*I->user_begin())) {
517 if (I->use_empty())
518 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
520 // If we find an instruction more than once, we're on a cycle that
521 // won't prove fruitful.
522 if (!Visited.insert(I).second) {
523 // Break the cycle and delete the instruction and its operands.
524 I->replaceAllUsesWith(UndefValue::get(I->getType()));
525 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
526 return true;
529 return false;
532 static bool
533 simplifyAndDCEInstruction(Instruction *I,
534 SmallSetVector<Instruction *, 16> &WorkList,
535 const DataLayout &DL,
536 const TargetLibraryInfo *TLI) {
537 if (isInstructionTriviallyDead(I, TLI)) {
538 salvageDebugInfo(*I);
540 // Null out all of the instruction's operands to see if any operand becomes
541 // dead as we go.
542 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
543 Value *OpV = I->getOperand(i);
544 I->setOperand(i, nullptr);
546 if (!OpV->use_empty() || I == OpV)
547 continue;
549 // If the operand is an instruction that became dead as we nulled out the
550 // operand, and if it is 'trivially' dead, delete it in a future loop
551 // iteration.
552 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
553 if (isInstructionTriviallyDead(OpI, TLI))
554 WorkList.insert(OpI);
557 I->eraseFromParent();
559 return true;
562 if (Value *SimpleV = SimplifyInstruction(I, DL)) {
563 // Add the users to the worklist. CAREFUL: an instruction can use itself,
564 // in the case of a phi node.
565 for (User *U : I->users()) {
566 if (U != I) {
567 WorkList.insert(cast<Instruction>(U));
571 // Replace the instruction with its simplified value.
572 bool Changed = false;
573 if (!I->use_empty()) {
574 I->replaceAllUsesWith(SimpleV);
575 Changed = true;
577 if (isInstructionTriviallyDead(I, TLI)) {
578 I->eraseFromParent();
579 Changed = true;
581 return Changed;
583 return false;
586 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
587 /// simplify any instructions in it and recursively delete dead instructions.
589 /// This returns true if it changed the code, note that it can delete
590 /// instructions in other blocks as well in this block.
591 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
592 const TargetLibraryInfo *TLI) {
593 bool MadeChange = false;
594 const DataLayout &DL = BB->getModule()->getDataLayout();
596 #ifndef NDEBUG
597 // In debug builds, ensure that the terminator of the block is never replaced
598 // or deleted by these simplifications. The idea of simplification is that it
599 // cannot introduce new instructions, and there is no way to replace the
600 // terminator of a block without introducing a new instruction.
601 AssertingVH<Instruction> TerminatorVH(&BB->back());
602 #endif
604 SmallSetVector<Instruction *, 16> WorkList;
605 // Iterate over the original function, only adding insts to the worklist
606 // if they actually need to be revisited. This avoids having to pre-init
607 // the worklist with the entire function's worth of instructions.
608 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
609 BI != E;) {
610 assert(!BI->isTerminator());
611 Instruction *I = &*BI;
612 ++BI;
614 // We're visiting this instruction now, so make sure it's not in the
615 // worklist from an earlier visit.
616 if (!WorkList.count(I))
617 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
620 while (!WorkList.empty()) {
621 Instruction *I = WorkList.pop_back_val();
622 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
624 return MadeChange;
627 //===----------------------------------------------------------------------===//
628 // Control Flow Graph Restructuring.
631 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
632 /// method is called when we're about to delete Pred as a predecessor of BB. If
633 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
635 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
636 /// nodes that collapse into identity values. For example, if we have:
637 /// x = phi(1, 0, 0, 0)
638 /// y = and x, z
640 /// .. and delete the predecessor corresponding to the '1', this will attempt to
641 /// recursively fold the and to 0.
642 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
643 DomTreeUpdater *DTU) {
644 // This only adjusts blocks with PHI nodes.
645 if (!isa<PHINode>(BB->begin()))
646 return;
648 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
649 // them down. This will leave us with single entry phi nodes and other phis
650 // that can be removed.
651 BB->removePredecessor(Pred, true);
653 WeakTrackingVH PhiIt = &BB->front();
654 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
655 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
656 Value *OldPhiIt = PhiIt;
658 if (!recursivelySimplifyInstruction(PN))
659 continue;
661 // If recursive simplification ended up deleting the next PHI node we would
662 // iterate to, then our iterator is invalid, restart scanning from the top
663 // of the block.
664 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
666 if (DTU)
667 DTU->deleteEdgeRelaxed(Pred, BB);
670 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
671 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
672 /// between them, moving the instructions in the predecessor into DestBB and
673 /// deleting the predecessor block.
674 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
675 DomTreeUpdater *DTU) {
677 // If BB has single-entry PHI nodes, fold them.
678 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
679 Value *NewVal = PN->getIncomingValue(0);
680 // Replace self referencing PHI with undef, it must be dead.
681 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
682 PN->replaceAllUsesWith(NewVal);
683 PN->eraseFromParent();
686 BasicBlock *PredBB = DestBB->getSinglePredecessor();
687 assert(PredBB && "Block doesn't have a single predecessor!");
689 bool ReplaceEntryBB = false;
690 if (PredBB == &DestBB->getParent()->getEntryBlock())
691 ReplaceEntryBB = true;
693 // DTU updates: Collect all the edges that enter
694 // PredBB. These dominator edges will be redirected to DestBB.
695 SmallVector<DominatorTree::UpdateType, 32> Updates;
697 if (DTU) {
698 Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
699 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
700 Updates.push_back({DominatorTree::Delete, *I, PredBB});
701 // This predecessor of PredBB may already have DestBB as a successor.
702 if (llvm::find(successors(*I), DestBB) == succ_end(*I))
703 Updates.push_back({DominatorTree::Insert, *I, DestBB});
707 // Zap anything that took the address of DestBB. Not doing this will give the
708 // address an invalid value.
709 if (DestBB->hasAddressTaken()) {
710 BlockAddress *BA = BlockAddress::get(DestBB);
711 Constant *Replacement =
712 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
713 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
714 BA->getType()));
715 BA->destroyConstant();
718 // Anything that branched to PredBB now branches to DestBB.
719 PredBB->replaceAllUsesWith(DestBB);
721 // Splice all the instructions from PredBB to DestBB.
722 PredBB->getTerminator()->eraseFromParent();
723 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
724 new UnreachableInst(PredBB->getContext(), PredBB);
726 // If the PredBB is the entry block of the function, move DestBB up to
727 // become the entry block after we erase PredBB.
728 if (ReplaceEntryBB)
729 DestBB->moveAfter(PredBB);
731 if (DTU) {
732 assert(PredBB->getInstList().size() == 1 &&
733 isa<UnreachableInst>(PredBB->getTerminator()) &&
734 "The successor list of PredBB isn't empty before "
735 "applying corresponding DTU updates.");
736 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
737 DTU->deleteBB(PredBB);
738 // Recalculation of DomTree is needed when updating a forward DomTree and
739 // the Entry BB is replaced.
740 if (ReplaceEntryBB && DTU->hasDomTree()) {
741 // The entry block was removed and there is no external interface for
742 // the dominator tree to be notified of this change. In this corner-case
743 // we recalculate the entire tree.
744 DTU->recalculate(*(DestBB->getParent()));
748 else {
749 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
753 /// CanMergeValues - Return true if we can choose one of these values to use
754 /// in place of the other. Note that we will always choose the non-undef
755 /// value to keep.
756 static bool CanMergeValues(Value *First, Value *Second) {
757 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
760 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
761 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
763 /// Assumption: Succ is the single successor for BB.
764 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
765 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
767 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
768 << Succ->getName() << "\n");
769 // Shortcut, if there is only a single predecessor it must be BB and merging
770 // is always safe
771 if (Succ->getSinglePredecessor()) return true;
773 // Make a list of the predecessors of BB
774 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
776 // Look at all the phi nodes in Succ, to see if they present a conflict when
777 // merging these blocks
778 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
779 PHINode *PN = cast<PHINode>(I);
781 // If the incoming value from BB is again a PHINode in
782 // BB which has the same incoming value for *PI as PN does, we can
783 // merge the phi nodes and then the blocks can still be merged
784 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
785 if (BBPN && BBPN->getParent() == BB) {
786 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
787 BasicBlock *IBB = PN->getIncomingBlock(PI);
788 if (BBPreds.count(IBB) &&
789 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
790 PN->getIncomingValue(PI))) {
791 LLVM_DEBUG(dbgs()
792 << "Can't fold, phi node " << PN->getName() << " in "
793 << Succ->getName() << " is conflicting with "
794 << BBPN->getName() << " with regard to common predecessor "
795 << IBB->getName() << "\n");
796 return false;
799 } else {
800 Value* Val = PN->getIncomingValueForBlock(BB);
801 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
802 // See if the incoming value for the common predecessor is equal to the
803 // one for BB, in which case this phi node will not prevent the merging
804 // of the block.
805 BasicBlock *IBB = PN->getIncomingBlock(PI);
806 if (BBPreds.count(IBB) &&
807 !CanMergeValues(Val, PN->getIncomingValue(PI))) {
808 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
809 << " in " << Succ->getName()
810 << " is conflicting with regard to common "
811 << "predecessor " << IBB->getName() << "\n");
812 return false;
818 return true;
821 using PredBlockVector = SmallVector<BasicBlock *, 16>;
822 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
824 /// Determines the value to use as the phi node input for a block.
826 /// Select between \p OldVal any value that we know flows from \p BB
827 /// to a particular phi on the basis of which one (if either) is not
828 /// undef. Update IncomingValues based on the selected value.
830 /// \param OldVal The value we are considering selecting.
831 /// \param BB The block that the value flows in from.
832 /// \param IncomingValues A map from block-to-value for other phi inputs
833 /// that we have examined.
835 /// \returns the selected value.
836 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
837 IncomingValueMap &IncomingValues) {
838 if (!isa<UndefValue>(OldVal)) {
839 assert((!IncomingValues.count(BB) ||
840 IncomingValues.find(BB)->second == OldVal) &&
841 "Expected OldVal to match incoming value from BB!");
843 IncomingValues.insert(std::make_pair(BB, OldVal));
844 return OldVal;
847 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
848 if (It != IncomingValues.end()) return It->second;
850 return OldVal;
853 /// Create a map from block to value for the operands of a
854 /// given phi.
856 /// Create a map from block to value for each non-undef value flowing
857 /// into \p PN.
859 /// \param PN The phi we are collecting the map for.
860 /// \param IncomingValues [out] The map from block to value for this phi.
861 static void gatherIncomingValuesToPhi(PHINode *PN,
862 IncomingValueMap &IncomingValues) {
863 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
864 BasicBlock *BB = PN->getIncomingBlock(i);
865 Value *V = PN->getIncomingValue(i);
867 if (!isa<UndefValue>(V))
868 IncomingValues.insert(std::make_pair(BB, V));
872 /// Replace the incoming undef values to a phi with the values
873 /// from a block-to-value map.
875 /// \param PN The phi we are replacing the undefs in.
876 /// \param IncomingValues A map from block to value.
877 static void replaceUndefValuesInPhi(PHINode *PN,
878 const IncomingValueMap &IncomingValues) {
879 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
880 Value *V = PN->getIncomingValue(i);
882 if (!isa<UndefValue>(V)) continue;
884 BasicBlock *BB = PN->getIncomingBlock(i);
885 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
886 if (It == IncomingValues.end()) continue;
888 PN->setIncomingValue(i, It->second);
892 /// Replace a value flowing from a block to a phi with
893 /// potentially multiple instances of that value flowing from the
894 /// block's predecessors to the phi.
896 /// \param BB The block with the value flowing into the phi.
897 /// \param BBPreds The predecessors of BB.
898 /// \param PN The phi that we are updating.
899 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
900 const PredBlockVector &BBPreds,
901 PHINode *PN) {
902 Value *OldVal = PN->removeIncomingValue(BB, false);
903 assert(OldVal && "No entry in PHI for Pred BB!");
905 IncomingValueMap IncomingValues;
907 // We are merging two blocks - BB, and the block containing PN - and
908 // as a result we need to redirect edges from the predecessors of BB
909 // to go to the block containing PN, and update PN
910 // accordingly. Since we allow merging blocks in the case where the
911 // predecessor and successor blocks both share some predecessors,
912 // and where some of those common predecessors might have undef
913 // values flowing into PN, we want to rewrite those values to be
914 // consistent with the non-undef values.
916 gatherIncomingValuesToPhi(PN, IncomingValues);
918 // If this incoming value is one of the PHI nodes in BB, the new entries
919 // in the PHI node are the entries from the old PHI.
920 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
921 PHINode *OldValPN = cast<PHINode>(OldVal);
922 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
923 // Note that, since we are merging phi nodes and BB and Succ might
924 // have common predecessors, we could end up with a phi node with
925 // identical incoming branches. This will be cleaned up later (and
926 // will trigger asserts if we try to clean it up now, without also
927 // simplifying the corresponding conditional branch).
928 BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
929 Value *PredVal = OldValPN->getIncomingValue(i);
930 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
931 IncomingValues);
933 // And add a new incoming value for this predecessor for the
934 // newly retargeted branch.
935 PN->addIncoming(Selected, PredBB);
937 } else {
938 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
939 // Update existing incoming values in PN for this
940 // predecessor of BB.
941 BasicBlock *PredBB = BBPreds[i];
942 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
943 IncomingValues);
945 // And add a new incoming value for this predecessor for the
946 // newly retargeted branch.
947 PN->addIncoming(Selected, PredBB);
951 replaceUndefValuesInPhi(PN, IncomingValues);
954 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
955 /// unconditional branch, and contains no instructions other than PHI nodes,
956 /// potential side-effect free intrinsics and the branch. If possible,
957 /// eliminate BB by rewriting all the predecessors to branch to the successor
958 /// block and return true. If we can't transform, return false.
959 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
960 DomTreeUpdater *DTU) {
961 assert(BB != &BB->getParent()->getEntryBlock() &&
962 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
964 // We can't eliminate infinite loops.
965 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
966 if (BB == Succ) return false;
968 // Check to see if merging these blocks would cause conflicts for any of the
969 // phi nodes in BB or Succ. If not, we can safely merge.
970 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
972 // Check for cases where Succ has multiple predecessors and a PHI node in BB
973 // has uses which will not disappear when the PHI nodes are merged. It is
974 // possible to handle such cases, but difficult: it requires checking whether
975 // BB dominates Succ, which is non-trivial to calculate in the case where
976 // Succ has multiple predecessors. Also, it requires checking whether
977 // constructing the necessary self-referential PHI node doesn't introduce any
978 // conflicts; this isn't too difficult, but the previous code for doing this
979 // was incorrect.
981 // Note that if this check finds a live use, BB dominates Succ, so BB is
982 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
983 // folding the branch isn't profitable in that case anyway.
984 if (!Succ->getSinglePredecessor()) {
985 BasicBlock::iterator BBI = BB->begin();
986 while (isa<PHINode>(*BBI)) {
987 for (Use &U : BBI->uses()) {
988 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
989 if (PN->getIncomingBlock(U) != BB)
990 return false;
991 } else {
992 return false;
995 ++BBI;
999 // We cannot fold the block if it's a branch to an already present callbr
1000 // successor because that creates duplicate successors.
1001 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1002 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
1003 if (Succ == CBI->getDefaultDest())
1004 return false;
1005 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1006 if (Succ == CBI->getIndirectDest(i))
1007 return false;
1011 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1013 SmallVector<DominatorTree::UpdateType, 32> Updates;
1014 if (DTU) {
1015 Updates.push_back({DominatorTree::Delete, BB, Succ});
1016 // All predecessors of BB will be moved to Succ.
1017 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1018 Updates.push_back({DominatorTree::Delete, *I, BB});
1019 // This predecessor of BB may already have Succ as a successor.
1020 if (llvm::find(successors(*I), Succ) == succ_end(*I))
1021 Updates.push_back({DominatorTree::Insert, *I, Succ});
1025 if (isa<PHINode>(Succ->begin())) {
1026 // If there is more than one pred of succ, and there are PHI nodes in
1027 // the successor, then we need to add incoming edges for the PHI nodes
1029 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1031 // Loop over all of the PHI nodes in the successor of BB.
1032 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1033 PHINode *PN = cast<PHINode>(I);
1035 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1039 if (Succ->getSinglePredecessor()) {
1040 // BB is the only predecessor of Succ, so Succ will end up with exactly
1041 // the same predecessors BB had.
1043 // Copy over any phi, debug or lifetime instruction.
1044 BB->getTerminator()->eraseFromParent();
1045 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1046 BB->getInstList());
1047 } else {
1048 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1049 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1050 assert(PN->use_empty() && "There shouldn't be any uses here!");
1051 PN->eraseFromParent();
1055 // If the unconditional branch we replaced contains llvm.loop metadata, we
1056 // add the metadata to the branch instructions in the predecessors.
1057 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1058 Instruction *TI = BB->getTerminator();
1059 if (TI)
1060 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1061 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1062 BasicBlock *Pred = *PI;
1063 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1066 // Everything that jumped to BB now goes to Succ.
1067 BB->replaceAllUsesWith(Succ);
1068 if (!Succ->hasName()) Succ->takeName(BB);
1070 // Clear the successor list of BB to match updates applying to DTU later.
1071 if (BB->getTerminator())
1072 BB->getInstList().pop_back();
1073 new UnreachableInst(BB->getContext(), BB);
1074 assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1075 "applying corresponding DTU updates.");
1077 if (DTU) {
1078 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1079 DTU->deleteBB(BB);
1080 } else {
1081 BB->eraseFromParent(); // Delete the old basic block.
1083 return true;
1086 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1087 /// nodes in this block. This doesn't try to be clever about PHI nodes
1088 /// which differ only in the order of the incoming values, but instcombine
1089 /// orders them so it usually won't matter.
1090 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1091 // This implementation doesn't currently consider undef operands
1092 // specially. Theoretically, two phis which are identical except for
1093 // one having an undef where the other doesn't could be collapsed.
1095 struct PHIDenseMapInfo {
1096 static PHINode *getEmptyKey() {
1097 return DenseMapInfo<PHINode *>::getEmptyKey();
1100 static PHINode *getTombstoneKey() {
1101 return DenseMapInfo<PHINode *>::getTombstoneKey();
1104 static unsigned getHashValue(PHINode *PN) {
1105 // Compute a hash value on the operands. Instcombine will likely have
1106 // sorted them, which helps expose duplicates, but we have to check all
1107 // the operands to be safe in case instcombine hasn't run.
1108 return static_cast<unsigned>(hash_combine(
1109 hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1110 hash_combine_range(PN->block_begin(), PN->block_end())));
1113 static bool isEqual(PHINode *LHS, PHINode *RHS) {
1114 if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1115 RHS == getEmptyKey() || RHS == getTombstoneKey())
1116 return LHS == RHS;
1117 return LHS->isIdenticalTo(RHS);
1121 // Set of unique PHINodes.
1122 DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1124 // Examine each PHI.
1125 bool Changed = false;
1126 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1127 auto Inserted = PHISet.insert(PN);
1128 if (!Inserted.second) {
1129 // A duplicate. Replace this PHI with its duplicate.
1130 PN->replaceAllUsesWith(*Inserted.first);
1131 PN->eraseFromParent();
1132 Changed = true;
1134 // The RAUW can change PHIs that we already visited. Start over from the
1135 // beginning.
1136 PHISet.clear();
1137 I = BB->begin();
1141 return Changed;
1144 /// enforceKnownAlignment - If the specified pointer points to an object that
1145 /// we control, modify the object's alignment to PrefAlign. This isn't
1146 /// often possible though. If alignment is important, a more reliable approach
1147 /// is to simply align all global variables and allocation instructions to
1148 /// their preferred alignment from the beginning.
1149 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1150 unsigned PrefAlign,
1151 const DataLayout &DL) {
1152 assert(PrefAlign > Align);
1154 V = V->stripPointerCasts();
1156 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1157 // TODO: ideally, computeKnownBits ought to have used
1158 // AllocaInst::getAlignment() in its computation already, making
1159 // the below max redundant. But, as it turns out,
1160 // stripPointerCasts recurses through infinite layers of bitcasts,
1161 // while computeKnownBits is not allowed to traverse more than 6
1162 // levels.
1163 Align = std::max(AI->getAlignment(), Align);
1164 if (PrefAlign <= Align)
1165 return Align;
1167 // If the preferred alignment is greater than the natural stack alignment
1168 // then don't round up. This avoids dynamic stack realignment.
1169 if (DL.exceedsNaturalStackAlignment(PrefAlign))
1170 return Align;
1171 AI->setAlignment(PrefAlign);
1172 return PrefAlign;
1175 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1176 // TODO: as above, this shouldn't be necessary.
1177 Align = std::max(GO->getAlignment(), Align);
1178 if (PrefAlign <= Align)
1179 return Align;
1181 // If there is a large requested alignment and we can, bump up the alignment
1182 // of the global. If the memory we set aside for the global may not be the
1183 // memory used by the final program then it is impossible for us to reliably
1184 // enforce the preferred alignment.
1185 if (!GO->canIncreaseAlignment())
1186 return Align;
1188 GO->setAlignment(PrefAlign);
1189 return PrefAlign;
1192 return Align;
1195 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1196 const DataLayout &DL,
1197 const Instruction *CxtI,
1198 AssumptionCache *AC,
1199 const DominatorTree *DT) {
1200 assert(V->getType()->isPointerTy() &&
1201 "getOrEnforceKnownAlignment expects a pointer!");
1203 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1204 unsigned TrailZ = Known.countMinTrailingZeros();
1206 // Avoid trouble with ridiculously large TrailZ values, such as
1207 // those computed from a null pointer.
1208 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1210 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1212 // LLVM doesn't support alignments larger than this currently.
1213 Align = std::min(Align, +Value::MaximumAlignment);
1215 if (PrefAlign > Align)
1216 Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1218 // We don't need to make any adjustment.
1219 return Align;
1222 ///===---------------------------------------------------------------------===//
1223 /// Dbg Intrinsic utilities
1226 /// See if there is a dbg.value intrinsic for DIVar before I.
1227 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1228 Instruction *I) {
1229 // Since we can't guarantee that the original dbg.declare instrinsic
1230 // is removed by LowerDbgDeclare(), we need to make sure that we are
1231 // not inserting the same dbg.value intrinsic over and over.
1232 BasicBlock::InstListType::iterator PrevI(I);
1233 if (PrevI != I->getParent()->getInstList().begin()) {
1234 --PrevI;
1235 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1236 if (DVI->getValue() == I->getOperand(0) &&
1237 DVI->getVariable() == DIVar &&
1238 DVI->getExpression() == DIExpr)
1239 return true;
1241 return false;
1244 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1245 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1246 DIExpression *DIExpr,
1247 PHINode *APN) {
1248 // Since we can't guarantee that the original dbg.declare instrinsic
1249 // is removed by LowerDbgDeclare(), we need to make sure that we are
1250 // not inserting the same dbg.value intrinsic over and over.
1251 SmallVector<DbgValueInst *, 1> DbgValues;
1252 findDbgValues(DbgValues, APN);
1253 for (auto *DVI : DbgValues) {
1254 assert(DVI->getValue() == APN);
1255 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1256 return true;
1258 return false;
1261 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1262 /// (or fragment of the variable) described by \p DII.
1264 /// This is primarily intended as a helper for the different
1265 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1266 /// converted describes an alloca'd variable, so we need to use the
1267 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1268 /// identified as covering an n-bit fragment, if the store size of i1 is at
1269 /// least n bits.
1270 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1271 const DataLayout &DL = DII->getModule()->getDataLayout();
1272 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1273 if (auto FragmentSize = DII->getFragmentSizeInBits())
1274 return ValueSize >= *FragmentSize;
1275 // We can't always calculate the size of the DI variable (e.g. if it is a
1276 // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1277 // intead.
1278 if (DII->isAddressOfVariable())
1279 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1280 if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1281 return ValueSize >= *FragmentSize;
1282 // Could not determine size of variable. Conservatively return false.
1283 return false;
1286 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1287 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1288 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1289 StoreInst *SI, DIBuilder &Builder) {
1290 assert(DII->isAddressOfVariable());
1291 auto *DIVar = DII->getVariable();
1292 assert(DIVar && "Missing variable");
1293 auto *DIExpr = DII->getExpression();
1294 Value *DV = SI->getOperand(0);
1296 if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) {
1297 // FIXME: If storing to a part of the variable described by the dbg.declare,
1298 // then we want to insert a dbg.value for the corresponding fragment.
1299 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1300 << *DII << '\n');
1301 // For now, when there is a store to parts of the variable (but we do not
1302 // know which part) we insert an dbg.value instrinsic to indicate that we
1303 // know nothing about the variable's content.
1304 DV = UndefValue::get(DV->getType());
1305 if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1306 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1307 SI);
1308 return;
1311 if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1312 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1313 SI);
1316 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1317 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1318 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1319 LoadInst *LI, DIBuilder &Builder) {
1320 auto *DIVar = DII->getVariable();
1321 auto *DIExpr = DII->getExpression();
1322 assert(DIVar && "Missing variable");
1324 if (LdStHasDebugValue(DIVar, DIExpr, LI))
1325 return;
1327 if (!valueCoversEntireFragment(LI->getType(), DII)) {
1328 // FIXME: If only referring to a part of the variable described by the
1329 // dbg.declare, then we want to insert a dbg.value for the corresponding
1330 // fragment.
1331 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1332 << *DII << '\n');
1333 return;
1336 // We are now tracking the loaded value instead of the address. In the
1337 // future if multi-location support is added to the IR, it might be
1338 // preferable to keep tracking both the loaded value and the original
1339 // address in case the alloca can not be elided.
1340 Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1341 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1342 DbgValue->insertAfter(LI);
1345 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1346 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1347 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1348 PHINode *APN, DIBuilder &Builder) {
1349 auto *DIVar = DII->getVariable();
1350 auto *DIExpr = DII->getExpression();
1351 assert(DIVar && "Missing variable");
1353 if (PhiHasDebugValue(DIVar, DIExpr, APN))
1354 return;
1356 if (!valueCoversEntireFragment(APN->getType(), DII)) {
1357 // FIXME: If only referring to a part of the variable described by the
1358 // dbg.declare, then we want to insert a dbg.value for the corresponding
1359 // fragment.
1360 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1361 << *DII << '\n');
1362 return;
1365 BasicBlock *BB = APN->getParent();
1366 auto InsertionPt = BB->getFirstInsertionPt();
1368 // The block may be a catchswitch block, which does not have a valid
1369 // insertion point.
1370 // FIXME: Insert dbg.value markers in the successors when appropriate.
1371 if (InsertionPt != BB->end())
1372 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1373 &*InsertionPt);
1376 /// Determine whether this alloca is either a VLA or an array.
1377 static bool isArray(AllocaInst *AI) {
1378 return AI->isArrayAllocation() ||
1379 AI->getType()->getElementType()->isArrayTy();
1382 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1383 /// of llvm.dbg.value intrinsics.
1384 bool llvm::LowerDbgDeclare(Function &F) {
1385 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1386 SmallVector<DbgDeclareInst *, 4> Dbgs;
1387 for (auto &FI : F)
1388 for (Instruction &BI : FI)
1389 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1390 Dbgs.push_back(DDI);
1392 if (Dbgs.empty())
1393 return false;
1395 for (auto &I : Dbgs) {
1396 DbgDeclareInst *DDI = I;
1397 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1398 // If this is an alloca for a scalar variable, insert a dbg.value
1399 // at each load and store to the alloca and erase the dbg.declare.
1400 // The dbg.values allow tracking a variable even if it is not
1401 // stored on the stack, while the dbg.declare can only describe
1402 // the stack slot (and at a lexical-scope granularity). Later
1403 // passes will attempt to elide the stack slot.
1404 if (!AI || isArray(AI))
1405 continue;
1407 // A volatile load/store means that the alloca can't be elided anyway.
1408 if (llvm::any_of(AI->users(), [](User *U) -> bool {
1409 if (LoadInst *LI = dyn_cast<LoadInst>(U))
1410 return LI->isVolatile();
1411 if (StoreInst *SI = dyn_cast<StoreInst>(U))
1412 return SI->isVolatile();
1413 return false;
1415 continue;
1417 for (auto &AIUse : AI->uses()) {
1418 User *U = AIUse.getUser();
1419 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1420 if (AIUse.getOperandNo() == 1)
1421 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1422 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1423 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1424 } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1425 // This is a call by-value or some other instruction that takes a
1426 // pointer to the variable. Insert a *value* intrinsic that describes
1427 // the variable by dereferencing the alloca.
1428 auto *DerefExpr =
1429 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1430 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1431 DDI->getDebugLoc(), CI);
1434 DDI->eraseFromParent();
1436 return true;
1439 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1440 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1441 SmallVectorImpl<PHINode *> &InsertedPHIs) {
1442 assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1443 if (InsertedPHIs.size() == 0)
1444 return;
1446 // Map existing PHI nodes to their dbg.values.
1447 ValueToValueMapTy DbgValueMap;
1448 for (auto &I : *BB) {
1449 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1450 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1451 DbgValueMap.insert({Loc, DbgII});
1454 if (DbgValueMap.size() == 0)
1455 return;
1457 // Then iterate through the new PHIs and look to see if they use one of the
1458 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1459 // propagate the info through the new PHI.
1460 LLVMContext &C = BB->getContext();
1461 for (auto PHI : InsertedPHIs) {
1462 BasicBlock *Parent = PHI->getParent();
1463 // Avoid inserting an intrinsic into an EH block.
1464 if (Parent->getFirstNonPHI()->isEHPad())
1465 continue;
1466 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1467 for (auto VI : PHI->operand_values()) {
1468 auto V = DbgValueMap.find(VI);
1469 if (V != DbgValueMap.end()) {
1470 auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1471 Instruction *NewDbgII = DbgII->clone();
1472 NewDbgII->setOperand(0, PhiMAV);
1473 auto InsertionPt = Parent->getFirstInsertionPt();
1474 assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1475 NewDbgII->insertBefore(&*InsertionPt);
1481 /// Finds all intrinsics declaring local variables as living in the memory that
1482 /// 'V' points to. This may include a mix of dbg.declare and
1483 /// dbg.addr intrinsics.
1484 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1485 // This function is hot. Check whether the value has any metadata to avoid a
1486 // DenseMap lookup.
1487 if (!V->isUsedByMetadata())
1488 return {};
1489 auto *L = LocalAsMetadata::getIfExists(V);
1490 if (!L)
1491 return {};
1492 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1493 if (!MDV)
1494 return {};
1496 TinyPtrVector<DbgVariableIntrinsic *> Declares;
1497 for (User *U : MDV->users()) {
1498 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1499 if (DII->isAddressOfVariable())
1500 Declares.push_back(DII);
1503 return Declares;
1506 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1507 // This function is hot. Check whether the value has any metadata to avoid a
1508 // DenseMap lookup.
1509 if (!V->isUsedByMetadata())
1510 return;
1511 if (auto *L = LocalAsMetadata::getIfExists(V))
1512 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1513 for (User *U : MDV->users())
1514 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1515 DbgValues.push_back(DVI);
1518 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1519 Value *V) {
1520 // This function is hot. Check whether the value has any metadata to avoid a
1521 // DenseMap lookup.
1522 if (!V->isUsedByMetadata())
1523 return;
1524 if (auto *L = LocalAsMetadata::getIfExists(V))
1525 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1526 for (User *U : MDV->users())
1527 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1528 DbgUsers.push_back(DII);
1531 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1532 Instruction *InsertBefore, DIBuilder &Builder,
1533 bool DerefBefore, int Offset, bool DerefAfter) {
1534 auto DbgAddrs = FindDbgAddrUses(Address);
1535 for (DbgVariableIntrinsic *DII : DbgAddrs) {
1536 DebugLoc Loc = DII->getDebugLoc();
1537 auto *DIVar = DII->getVariable();
1538 auto *DIExpr = DII->getExpression();
1539 assert(DIVar && "Missing variable");
1540 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1541 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1542 // llvm.dbg.declare.
1543 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1544 if (DII == InsertBefore)
1545 InsertBefore = InsertBefore->getNextNode();
1546 DII->eraseFromParent();
1548 return !DbgAddrs.empty();
1551 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1552 DIBuilder &Builder, bool DerefBefore,
1553 int Offset, bool DerefAfter) {
1554 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1555 DerefBefore, Offset, DerefAfter);
1558 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1559 DIBuilder &Builder, int Offset) {
1560 DebugLoc Loc = DVI->getDebugLoc();
1561 auto *DIVar = DVI->getVariable();
1562 auto *DIExpr = DVI->getExpression();
1563 assert(DIVar && "Missing variable");
1565 // This is an alloca-based llvm.dbg.value. The first thing it should do with
1566 // the alloca pointer is dereference it. Otherwise we don't know how to handle
1567 // it and give up.
1568 if (!DIExpr || DIExpr->getNumElements() < 1 ||
1569 DIExpr->getElement(0) != dwarf::DW_OP_deref)
1570 return;
1572 // Insert the offset immediately after the first deref.
1573 // We could just change the offset argument of dbg.value, but it's unsigned...
1574 if (Offset) {
1575 SmallVector<uint64_t, 4> Ops;
1576 Ops.push_back(dwarf::DW_OP_deref);
1577 DIExpression::appendOffset(Ops, Offset);
1578 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1579 DIExpr = Builder.createExpression(Ops);
1582 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1583 DVI->eraseFromParent();
1586 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1587 DIBuilder &Builder, int Offset) {
1588 if (auto *L = LocalAsMetadata::getIfExists(AI))
1589 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1590 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1591 Use &U = *UI++;
1592 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1593 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1597 /// Wrap \p V in a ValueAsMetadata instance.
1598 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1599 return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1602 bool llvm::salvageDebugInfo(Instruction &I) {
1603 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1604 findDbgUsers(DbgUsers, &I);
1605 if (DbgUsers.empty())
1606 return false;
1608 return salvageDebugInfoForDbgValues(I, DbgUsers);
1611 bool llvm::salvageDebugInfoForDbgValues(
1612 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1613 auto &Ctx = I.getContext();
1614 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1616 for (auto *DII : DbgUsers) {
1617 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1618 // are implicitly pointing out the value as a DWARF memory location
1619 // description.
1620 bool StackValue = isa<DbgValueInst>(DII);
1622 DIExpression *DIExpr =
1623 salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1625 // salvageDebugInfoImpl should fail on examining the first element of
1626 // DbgUsers, or none of them.
1627 if (!DIExpr)
1628 return false;
1630 DII->setOperand(0, wrapMD(I.getOperand(0)));
1631 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1632 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1635 return true;
1638 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1639 DIExpression *SrcDIExpr,
1640 bool WithStackValue) {
1641 auto &M = *I.getModule();
1642 auto &DL = M.getDataLayout();
1644 // Apply a vector of opcodes to the source DIExpression.
1645 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1646 DIExpression *DIExpr = SrcDIExpr;
1647 if (!Ops.empty()) {
1648 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1650 return DIExpr;
1653 // Apply the given offset to the source DIExpression.
1654 auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1655 SmallVector<uint64_t, 8> Ops;
1656 DIExpression::appendOffset(Ops, Offset);
1657 return doSalvage(Ops);
1660 // initializer-list helper for applying operators to the source DIExpression.
1661 auto applyOps =
1662 [&](std::initializer_list<uint64_t> Opcodes) -> DIExpression * {
1663 SmallVector<uint64_t, 8> Ops(Opcodes);
1664 return doSalvage(Ops);
1667 if (auto *CI = dyn_cast<CastInst>(&I)) {
1668 if (!CI->isNoopCast(DL))
1669 return nullptr;
1671 // No-op casts are irrelevant for debug info.
1672 return SrcDIExpr;
1673 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1674 unsigned BitWidth =
1675 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1676 // Rewrite a constant GEP into a DIExpression.
1677 APInt Offset(BitWidth, 0);
1678 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1679 return applyOffset(Offset.getSExtValue());
1680 } else {
1681 return nullptr;
1683 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1684 // Rewrite binary operations with constant integer operands.
1685 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1686 if (!ConstInt || ConstInt->getBitWidth() > 64)
1687 return nullptr;
1689 uint64_t Val = ConstInt->getSExtValue();
1690 switch (BI->getOpcode()) {
1691 case Instruction::Add:
1692 return applyOffset(Val);
1693 case Instruction::Sub:
1694 return applyOffset(-int64_t(Val));
1695 case Instruction::Mul:
1696 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1697 case Instruction::SDiv:
1698 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1699 case Instruction::SRem:
1700 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1701 case Instruction::Or:
1702 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1703 case Instruction::And:
1704 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1705 case Instruction::Xor:
1706 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1707 case Instruction::Shl:
1708 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1709 case Instruction::LShr:
1710 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1711 case Instruction::AShr:
1712 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1713 default:
1714 // TODO: Salvage constants from each kind of binop we know about.
1715 return nullptr;
1717 // *Not* to do: we should not attempt to salvage load instructions,
1718 // because the validity and lifetime of a dbg.value containing
1719 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1721 return nullptr;
1724 /// A replacement for a dbg.value expression.
1725 using DbgValReplacement = Optional<DIExpression *>;
1727 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1728 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1729 /// changes are made.
1730 static bool rewriteDebugUsers(
1731 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1732 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1733 // Find debug users of From.
1734 SmallVector<DbgVariableIntrinsic *, 1> Users;
1735 findDbgUsers(Users, &From);
1736 if (Users.empty())
1737 return false;
1739 // Prevent use-before-def of To.
1740 bool Changed = false;
1741 SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage;
1742 if (isa<Instruction>(&To)) {
1743 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1745 for (auto *DII : Users) {
1746 // It's common to see a debug user between From and DomPoint. Move it
1747 // after DomPoint to preserve the variable update without any reordering.
1748 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1749 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n');
1750 DII->moveAfter(&DomPoint);
1751 Changed = true;
1753 // Users which otherwise aren't dominated by the replacement value must
1754 // be salvaged or deleted.
1755 } else if (!DT.dominates(&DomPoint, DII)) {
1756 DeleteOrSalvage.insert(DII);
1761 // Update debug users without use-before-def risk.
1762 for (auto *DII : Users) {
1763 if (DeleteOrSalvage.count(DII))
1764 continue;
1766 LLVMContext &Ctx = DII->getContext();
1767 DbgValReplacement DVR = RewriteExpr(*DII);
1768 if (!DVR)
1769 continue;
1771 DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1772 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1773 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n');
1774 Changed = true;
1777 if (!DeleteOrSalvage.empty()) {
1778 // Try to salvage the remaining debug users.
1779 Changed |= salvageDebugInfo(From);
1781 // Delete the debug users which weren't salvaged.
1782 for (auto *DII : DeleteOrSalvage) {
1783 if (DII->getVariableLocation() == &From) {
1784 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n');
1785 DII->eraseFromParent();
1786 Changed = true;
1791 return Changed;
1794 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1795 /// losslessly preserve the bits and semantics of the value. This predicate is
1796 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1798 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1799 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1800 /// and also does not allow lossless pointer <-> integer conversions.
1801 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1802 Type *ToTy) {
1803 // Trivially compatible types.
1804 if (FromTy == ToTy)
1805 return true;
1807 // Handle compatible pointer <-> integer conversions.
1808 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1809 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1810 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1811 !DL.isNonIntegralPointerType(ToTy);
1812 return SameSize && LosslessConversion;
1815 // TODO: This is not exhaustive.
1816 return false;
1819 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1820 Instruction &DomPoint, DominatorTree &DT) {
1821 // Exit early if From has no debug users.
1822 if (!From.isUsedByMetadata())
1823 return false;
1825 assert(&From != &To && "Can't replace something with itself");
1827 Type *FromTy = From.getType();
1828 Type *ToTy = To.getType();
1830 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1831 return DII.getExpression();
1834 // Handle no-op conversions.
1835 Module &M = *From.getModule();
1836 const DataLayout &DL = M.getDataLayout();
1837 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1838 return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1840 // Handle integer-to-integer widening and narrowing.
1841 // FIXME: Use DW_OP_convert when it's available everywhere.
1842 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1843 uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1844 uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1845 assert(FromBits != ToBits && "Unexpected no-op conversion");
1847 // When the width of the result grows, assume that a debugger will only
1848 // access the low `FromBits` bits when inspecting the source variable.
1849 if (FromBits < ToBits)
1850 return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1852 // The width of the result has shrunk. Use sign/zero extension to describe
1853 // the source variable's high bits.
1854 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1855 DILocalVariable *Var = DII.getVariable();
1857 // Without knowing signedness, sign/zero extension isn't possible.
1858 auto Signedness = Var->getSignedness();
1859 if (!Signedness)
1860 return None;
1862 bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1864 if (!Signed) {
1865 // In the unsigned case, assume that a debugger will initialize the
1866 // high bits to 0 and do a no-op conversion.
1867 return Identity(DII);
1868 } else {
1869 // In the signed case, the high bits are given by sign extension, i.e:
1870 // (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1)
1871 // Calculate the high bits and OR them together with the low bits.
1872 SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu,
1873 (ToBits - 1), dwarf::DW_OP_shr,
1874 dwarf::DW_OP_lit0, dwarf::DW_OP_not,
1875 dwarf::DW_OP_mul, dwarf::DW_OP_or});
1876 return DIExpression::appendToStack(DII.getExpression(), Ops);
1879 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1882 // TODO: Floating-point conversions, vectors.
1883 return false;
1886 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1887 unsigned NumDeadInst = 0;
1888 // Delete the instructions backwards, as it has a reduced likelihood of
1889 // having to update as many def-use and use-def chains.
1890 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1891 while (EndInst != &BB->front()) {
1892 // Delete the next to last instruction.
1893 Instruction *Inst = &*--EndInst->getIterator();
1894 if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1895 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1896 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1897 EndInst = Inst;
1898 continue;
1900 if (!isa<DbgInfoIntrinsic>(Inst))
1901 ++NumDeadInst;
1902 Inst->eraseFromParent();
1904 return NumDeadInst;
1907 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1908 bool PreserveLCSSA, DomTreeUpdater *DTU) {
1909 BasicBlock *BB = I->getParent();
1910 std::vector <DominatorTree::UpdateType> Updates;
1912 // Loop over all of the successors, removing BB's entry from any PHI
1913 // nodes.
1914 if (DTU)
1915 Updates.reserve(BB->getTerminator()->getNumSuccessors());
1916 for (BasicBlock *Successor : successors(BB)) {
1917 Successor->removePredecessor(BB, PreserveLCSSA);
1918 if (DTU)
1919 Updates.push_back({DominatorTree::Delete, BB, Successor});
1921 // Insert a call to llvm.trap right before this. This turns the undefined
1922 // behavior into a hard fail instead of falling through into random code.
1923 if (UseLLVMTrap) {
1924 Function *TrapFn =
1925 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1926 CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1927 CallTrap->setDebugLoc(I->getDebugLoc());
1929 auto *UI = new UnreachableInst(I->getContext(), I);
1930 UI->setDebugLoc(I->getDebugLoc());
1932 // All instructions after this are dead.
1933 unsigned NumInstrsRemoved = 0;
1934 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1935 while (BBI != BBE) {
1936 if (!BBI->use_empty())
1937 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1938 BB->getInstList().erase(BBI++);
1939 ++NumInstrsRemoved;
1941 if (DTU)
1942 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1943 return NumInstrsRemoved;
1946 /// changeToCall - Convert the specified invoke into a normal call.
1947 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) {
1948 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1949 SmallVector<OperandBundleDef, 1> OpBundles;
1950 II->getOperandBundlesAsDefs(OpBundles);
1951 CallInst *NewCall = CallInst::Create(
1952 II->getFunctionType(), II->getCalledValue(), Args, OpBundles, "", II);
1953 NewCall->takeName(II);
1954 NewCall->setCallingConv(II->getCallingConv());
1955 NewCall->setAttributes(II->getAttributes());
1956 NewCall->setDebugLoc(II->getDebugLoc());
1957 NewCall->copyMetadata(*II);
1958 II->replaceAllUsesWith(NewCall);
1960 // Follow the call by a branch to the normal destination.
1961 BasicBlock *NormalDestBB = II->getNormalDest();
1962 BranchInst::Create(NormalDestBB, II);
1964 // Update PHI nodes in the unwind destination
1965 BasicBlock *BB = II->getParent();
1966 BasicBlock *UnwindDestBB = II->getUnwindDest();
1967 UnwindDestBB->removePredecessor(BB);
1968 II->eraseFromParent();
1969 if (DTU)
1970 DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
1973 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1974 BasicBlock *UnwindEdge) {
1975 BasicBlock *BB = CI->getParent();
1977 // Convert this function call into an invoke instruction. First, split the
1978 // basic block.
1979 BasicBlock *Split =
1980 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1982 // Delete the unconditional branch inserted by splitBasicBlock
1983 BB->getInstList().pop_back();
1985 // Create the new invoke instruction.
1986 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1987 SmallVector<OperandBundleDef, 1> OpBundles;
1989 CI->getOperandBundlesAsDefs(OpBundles);
1991 // Note: we're round tripping operand bundles through memory here, and that
1992 // can potentially be avoided with a cleverer API design that we do not have
1993 // as of this time.
1995 InvokeInst *II =
1996 InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split,
1997 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
1998 II->setDebugLoc(CI->getDebugLoc());
1999 II->setCallingConv(CI->getCallingConv());
2000 II->setAttributes(CI->getAttributes());
2002 // Make sure that anything using the call now uses the invoke! This also
2003 // updates the CallGraph if present, because it uses a WeakTrackingVH.
2004 CI->replaceAllUsesWith(II);
2006 // Delete the original call
2007 Split->getInstList().pop_front();
2008 return Split;
2011 static bool markAliveBlocks(Function &F,
2012 SmallPtrSetImpl<BasicBlock *> &Reachable,
2013 DomTreeUpdater *DTU = nullptr) {
2014 SmallVector<BasicBlock*, 128> Worklist;
2015 BasicBlock *BB = &F.front();
2016 Worklist.push_back(BB);
2017 Reachable.insert(BB);
2018 bool Changed = false;
2019 do {
2020 BB = Worklist.pop_back_val();
2022 // Do a quick scan of the basic block, turning any obviously unreachable
2023 // instructions into LLVM unreachable insts. The instruction combining pass
2024 // canonicalizes unreachable insts into stores to null or undef.
2025 for (Instruction &I : *BB) {
2026 if (auto *CI = dyn_cast<CallInst>(&I)) {
2027 Value *Callee = CI->getCalledValue();
2028 // Handle intrinsic calls.
2029 if (Function *F = dyn_cast<Function>(Callee)) {
2030 auto IntrinsicID = F->getIntrinsicID();
2031 // Assumptions that are known to be false are equivalent to
2032 // unreachable. Also, if the condition is undefined, then we make the
2033 // choice most beneficial to the optimizer, and choose that to also be
2034 // unreachable.
2035 if (IntrinsicID == Intrinsic::assume) {
2036 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2037 // Don't insert a call to llvm.trap right before the unreachable.
2038 changeToUnreachable(CI, false, false, DTU);
2039 Changed = true;
2040 break;
2042 } else if (IntrinsicID == Intrinsic::experimental_guard) {
2043 // A call to the guard intrinsic bails out of the current
2044 // compilation unit if the predicate passed to it is false. If the
2045 // predicate is a constant false, then we know the guard will bail
2046 // out of the current compile unconditionally, so all code following
2047 // it is dead.
2049 // Note: unlike in llvm.assume, it is not "obviously profitable" for
2050 // guards to treat `undef` as `false` since a guard on `undef` can
2051 // still be useful for widening.
2052 if (match(CI->getArgOperand(0), m_Zero()))
2053 if (!isa<UnreachableInst>(CI->getNextNode())) {
2054 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2055 false, DTU);
2056 Changed = true;
2057 break;
2060 } else if ((isa<ConstantPointerNull>(Callee) &&
2061 !NullPointerIsDefined(CI->getFunction())) ||
2062 isa<UndefValue>(Callee)) {
2063 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2064 Changed = true;
2065 break;
2067 if (CI->doesNotReturn()) {
2068 // If we found a call to a no-return function, insert an unreachable
2069 // instruction after it. Make sure there isn't *already* one there
2070 // though.
2071 if (!isa<UnreachableInst>(CI->getNextNode())) {
2072 // Don't insert a call to llvm.trap right before the unreachable.
2073 changeToUnreachable(CI->getNextNode(), false, false, DTU);
2074 Changed = true;
2076 break;
2078 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2079 // Store to undef and store to null are undefined and used to signal
2080 // that they should be changed to unreachable by passes that can't
2081 // modify the CFG.
2083 // Don't touch volatile stores.
2084 if (SI->isVolatile()) continue;
2086 Value *Ptr = SI->getOperand(1);
2088 if (isa<UndefValue>(Ptr) ||
2089 (isa<ConstantPointerNull>(Ptr) &&
2090 !NullPointerIsDefined(SI->getFunction(),
2091 SI->getPointerAddressSpace()))) {
2092 changeToUnreachable(SI, true, false, DTU);
2093 Changed = true;
2094 break;
2099 Instruction *Terminator = BB->getTerminator();
2100 if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2101 // Turn invokes that call 'nounwind' functions into ordinary calls.
2102 Value *Callee = II->getCalledValue();
2103 if ((isa<ConstantPointerNull>(Callee) &&
2104 !NullPointerIsDefined(BB->getParent())) ||
2105 isa<UndefValue>(Callee)) {
2106 changeToUnreachable(II, true, false, DTU);
2107 Changed = true;
2108 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2109 if (II->use_empty() && II->onlyReadsMemory()) {
2110 // jump to the normal destination branch.
2111 BasicBlock *NormalDestBB = II->getNormalDest();
2112 BasicBlock *UnwindDestBB = II->getUnwindDest();
2113 BranchInst::Create(NormalDestBB, II);
2114 UnwindDestBB->removePredecessor(II->getParent());
2115 II->eraseFromParent();
2116 if (DTU)
2117 DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
2118 } else
2119 changeToCall(II, DTU);
2120 Changed = true;
2122 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2123 // Remove catchpads which cannot be reached.
2124 struct CatchPadDenseMapInfo {
2125 static CatchPadInst *getEmptyKey() {
2126 return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2129 static CatchPadInst *getTombstoneKey() {
2130 return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2133 static unsigned getHashValue(CatchPadInst *CatchPad) {
2134 return static_cast<unsigned>(hash_combine_range(
2135 CatchPad->value_op_begin(), CatchPad->value_op_end()));
2138 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2139 if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2140 RHS == getEmptyKey() || RHS == getTombstoneKey())
2141 return LHS == RHS;
2142 return LHS->isIdenticalTo(RHS);
2146 // Set of unique CatchPads.
2147 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2148 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2149 HandlerSet;
2150 detail::DenseSetEmpty Empty;
2151 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2152 E = CatchSwitch->handler_end();
2153 I != E; ++I) {
2154 BasicBlock *HandlerBB = *I;
2155 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2156 if (!HandlerSet.insert({CatchPad, Empty}).second) {
2157 CatchSwitch->removeHandler(I);
2158 --I;
2159 --E;
2160 Changed = true;
2165 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2166 for (BasicBlock *Successor : successors(BB))
2167 if (Reachable.insert(Successor).second)
2168 Worklist.push_back(Successor);
2169 } while (!Worklist.empty());
2170 return Changed;
2173 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2174 Instruction *TI = BB->getTerminator();
2176 if (auto *II = dyn_cast<InvokeInst>(TI)) {
2177 changeToCall(II, DTU);
2178 return;
2181 Instruction *NewTI;
2182 BasicBlock *UnwindDest;
2184 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2185 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2186 UnwindDest = CRI->getUnwindDest();
2187 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2188 auto *NewCatchSwitch = CatchSwitchInst::Create(
2189 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2190 CatchSwitch->getName(), CatchSwitch);
2191 for (BasicBlock *PadBB : CatchSwitch->handlers())
2192 NewCatchSwitch->addHandler(PadBB);
2194 NewTI = NewCatchSwitch;
2195 UnwindDest = CatchSwitch->getUnwindDest();
2196 } else {
2197 llvm_unreachable("Could not find unwind successor");
2200 NewTI->takeName(TI);
2201 NewTI->setDebugLoc(TI->getDebugLoc());
2202 UnwindDest->removePredecessor(BB);
2203 TI->replaceAllUsesWith(NewTI);
2204 TI->eraseFromParent();
2205 if (DTU)
2206 DTU->deleteEdgeRelaxed(BB, UnwindDest);
2209 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2210 /// if they are in a dead cycle. Return true if a change was made, false
2211 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2212 /// after modifying the CFG.
2213 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
2214 DomTreeUpdater *DTU,
2215 MemorySSAUpdater *MSSAU) {
2216 SmallPtrSet<BasicBlock*, 16> Reachable;
2217 bool Changed = markAliveBlocks(F, Reachable, DTU);
2219 // If there are unreachable blocks in the CFG...
2220 if (Reachable.size() == F.size())
2221 return Changed;
2223 assert(Reachable.size() < F.size());
2224 NumRemoved += F.size()-Reachable.size();
2226 SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
2227 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
2228 auto *BB = &*I;
2229 if (Reachable.count(BB))
2230 continue;
2231 DeadBlockSet.insert(BB);
2234 if (MSSAU)
2235 MSSAU->removeBlocks(DeadBlockSet);
2237 // Loop over all of the basic blocks that are not reachable, dropping all of
2238 // their internal references. Update DTU and LVI if available.
2239 std::vector<DominatorTree::UpdateType> Updates;
2240 for (auto *BB : DeadBlockSet) {
2241 for (BasicBlock *Successor : successors(BB)) {
2242 if (!DeadBlockSet.count(Successor))
2243 Successor->removePredecessor(BB);
2244 if (DTU)
2245 Updates.push_back({DominatorTree::Delete, BB, Successor});
2247 if (LVI)
2248 LVI->eraseBlock(BB);
2249 BB->dropAllReferences();
2251 for (Function::iterator I = ++F.begin(); I != F.end();) {
2252 auto *BB = &*I;
2253 if (Reachable.count(BB)) {
2254 ++I;
2255 continue;
2257 if (DTU) {
2258 // Remove the terminator of BB to clear the successor list of BB.
2259 if (BB->getTerminator())
2260 BB->getInstList().pop_back();
2261 new UnreachableInst(BB->getContext(), BB);
2262 assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2263 "applying corresponding DTU updates.");
2264 ++I;
2265 } else {
2266 I = F.getBasicBlockList().erase(I);
2270 if (DTU) {
2271 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
2272 bool Deleted = false;
2273 for (auto *BB : DeadBlockSet) {
2274 if (DTU->isBBPendingDeletion(BB))
2275 --NumRemoved;
2276 else
2277 Deleted = true;
2278 DTU->deleteBB(BB);
2280 if (!Deleted)
2281 return false;
2283 return true;
2286 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2287 ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2288 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2289 K->dropUnknownNonDebugMetadata(KnownIDs);
2290 K->getAllMetadataOtherThanDebugLoc(Metadata);
2291 for (const auto &MD : Metadata) {
2292 unsigned Kind = MD.first;
2293 MDNode *JMD = J->getMetadata(Kind);
2294 MDNode *KMD = MD.second;
2296 switch (Kind) {
2297 default:
2298 K->setMetadata(Kind, nullptr); // Remove unknown metadata
2299 break;
2300 case LLVMContext::MD_dbg:
2301 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2302 case LLVMContext::MD_tbaa:
2303 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2304 break;
2305 case LLVMContext::MD_alias_scope:
2306 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2307 break;
2308 case LLVMContext::MD_noalias:
2309 case LLVMContext::MD_mem_parallel_loop_access:
2310 K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2311 break;
2312 case LLVMContext::MD_access_group:
2313 K->setMetadata(LLVMContext::MD_access_group,
2314 intersectAccessGroups(K, J));
2315 break;
2316 case LLVMContext::MD_range:
2318 // If K does move, use most generic range. Otherwise keep the range of
2319 // K.
2320 if (DoesKMove)
2321 // FIXME: If K does move, we should drop the range info and nonnull.
2322 // Currently this function is used with DoesKMove in passes
2323 // doing hoisting/sinking and the current behavior of using the
2324 // most generic range is correct in those cases.
2325 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2326 break;
2327 case LLVMContext::MD_fpmath:
2328 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2329 break;
2330 case LLVMContext::MD_invariant_load:
2331 // Only set the !invariant.load if it is present in both instructions.
2332 K->setMetadata(Kind, JMD);
2333 break;
2334 case LLVMContext::MD_nonnull:
2335 // If K does move, keep nonull if it is present in both instructions.
2336 if (DoesKMove)
2337 K->setMetadata(Kind, JMD);
2338 break;
2339 case LLVMContext::MD_invariant_group:
2340 // Preserve !invariant.group in K.
2341 break;
2342 case LLVMContext::MD_align:
2343 K->setMetadata(Kind,
2344 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2345 break;
2346 case LLVMContext::MD_dereferenceable:
2347 case LLVMContext::MD_dereferenceable_or_null:
2348 K->setMetadata(Kind,
2349 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2350 break;
2353 // Set !invariant.group from J if J has it. If both instructions have it
2354 // then we will just pick it from J - even when they are different.
2355 // Also make sure that K is load or store - f.e. combining bitcast with load
2356 // could produce bitcast with invariant.group metadata, which is invalid.
2357 // FIXME: we should try to preserve both invariant.group md if they are
2358 // different, but right now instruction can only have one invariant.group.
2359 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2360 if (isa<LoadInst>(K) || isa<StoreInst>(K))
2361 K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2364 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2365 bool KDominatesJ) {
2366 unsigned KnownIDs[] = {
2367 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
2368 LLVMContext::MD_noalias, LLVMContext::MD_range,
2369 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull,
2370 LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2371 LLVMContext::MD_dereferenceable,
2372 LLVMContext::MD_dereferenceable_or_null,
2373 LLVMContext::MD_access_group};
2374 combineMetadata(K, J, KnownIDs, KDominatesJ);
2377 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2378 auto *ReplInst = dyn_cast<Instruction>(Repl);
2379 if (!ReplInst)
2380 return;
2382 // Patch the replacement so that it is not more restrictive than the value
2383 // being replaced.
2384 // Note that if 'I' is a load being replaced by some operation,
2385 // for example, by an arithmetic operation, then andIRFlags()
2386 // would just erase all math flags from the original arithmetic
2387 // operation, which is clearly not wanted and not needed.
2388 if (!isa<LoadInst>(I))
2389 ReplInst->andIRFlags(I);
2391 // FIXME: If both the original and replacement value are part of the
2392 // same control-flow region (meaning that the execution of one
2393 // guarantees the execution of the other), then we can combine the
2394 // noalias scopes here and do better than the general conservative
2395 // answer used in combineMetadata().
2397 // In general, GVN unifies expressions over different control-flow
2398 // regions, and so we need a conservative combination of the noalias
2399 // scopes.
2400 static const unsigned KnownIDs[] = {
2401 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
2402 LLVMContext::MD_noalias, LLVMContext::MD_range,
2403 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
2404 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2405 LLVMContext::MD_access_group};
2406 combineMetadata(ReplInst, I, KnownIDs, false);
2409 template <typename RootType, typename DominatesFn>
2410 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2411 const RootType &Root,
2412 const DominatesFn &Dominates) {
2413 assert(From->getType() == To->getType());
2415 unsigned Count = 0;
2416 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2417 UI != UE;) {
2418 Use &U = *UI++;
2419 if (!Dominates(Root, U))
2420 continue;
2421 U.set(To);
2422 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2423 << "' as " << *To << " in " << *U << "\n");
2424 ++Count;
2426 return Count;
2429 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2430 assert(From->getType() == To->getType());
2431 auto *BB = From->getParent();
2432 unsigned Count = 0;
2434 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2435 UI != UE;) {
2436 Use &U = *UI++;
2437 auto *I = cast<Instruction>(U.getUser());
2438 if (I->getParent() == BB)
2439 continue;
2440 U.set(To);
2441 ++Count;
2443 return Count;
2446 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2447 DominatorTree &DT,
2448 const BasicBlockEdge &Root) {
2449 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2450 return DT.dominates(Root, U);
2452 return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2455 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2456 DominatorTree &DT,
2457 const BasicBlock *BB) {
2458 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2459 auto *I = cast<Instruction>(U.getUser())->getParent();
2460 return DT.properlyDominates(BB, I);
2462 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2465 bool llvm::callsGCLeafFunction(const CallBase *Call,
2466 const TargetLibraryInfo &TLI) {
2467 // Check if the function is specifically marked as a gc leaf function.
2468 if (Call->hasFnAttr("gc-leaf-function"))
2469 return true;
2470 if (const Function *F = Call->getCalledFunction()) {
2471 if (F->hasFnAttribute("gc-leaf-function"))
2472 return true;
2474 if (auto IID = F->getIntrinsicID())
2475 // Most LLVM intrinsics do not take safepoints.
2476 return IID != Intrinsic::experimental_gc_statepoint &&
2477 IID != Intrinsic::experimental_deoptimize;
2480 // Lib calls can be materialized by some passes, and won't be
2481 // marked as 'gc-leaf-function.' All available Libcalls are
2482 // GC-leaf.
2483 LibFunc LF;
2484 if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) {
2485 return TLI.has(LF);
2488 return false;
2491 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2492 LoadInst &NewLI) {
2493 auto *NewTy = NewLI.getType();
2495 // This only directly applies if the new type is also a pointer.
2496 if (NewTy->isPointerTy()) {
2497 NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2498 return;
2501 // The only other translation we can do is to integral loads with !range
2502 // metadata.
2503 if (!NewTy->isIntegerTy())
2504 return;
2506 MDBuilder MDB(NewLI.getContext());
2507 const Value *Ptr = OldLI.getPointerOperand();
2508 auto *ITy = cast<IntegerType>(NewTy);
2509 auto *NullInt = ConstantExpr::getPtrToInt(
2510 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2511 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2512 NewLI.setMetadata(LLVMContext::MD_range,
2513 MDB.createRange(NonNullInt, NullInt));
2516 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2517 MDNode *N, LoadInst &NewLI) {
2518 auto *NewTy = NewLI.getType();
2520 // Give up unless it is converted to a pointer where there is a single very
2521 // valuable mapping we can do reliably.
2522 // FIXME: It would be nice to propagate this in more ways, but the type
2523 // conversions make it hard.
2524 if (!NewTy->isPointerTy())
2525 return;
2527 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2528 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2529 MDNode *NN = MDNode::get(OldLI.getContext(), None);
2530 NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2534 void llvm::dropDebugUsers(Instruction &I) {
2535 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2536 findDbgUsers(DbgUsers, &I);
2537 for (auto *DII : DbgUsers)
2538 DII->eraseFromParent();
2541 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2542 BasicBlock *BB) {
2543 // Since we are moving the instructions out of its basic block, we do not
2544 // retain their original debug locations (DILocations) and debug intrinsic
2545 // instructions.
2547 // Doing so would degrade the debugging experience and adversely affect the
2548 // accuracy of profiling information.
2550 // Currently, when hoisting the instructions, we take the following actions:
2551 // - Remove their debug intrinsic instructions.
2552 // - Set their debug locations to the values from the insertion point.
2554 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2555 // need to be deleted, is because there will not be any instructions with a
2556 // DILocation in either branch left after performing the transformation. We
2557 // can only insert a dbg.value after the two branches are joined again.
2559 // See PR38762, PR39243 for more details.
2561 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2562 // encode predicated DIExpressions that yield different results on different
2563 // code paths.
2564 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2565 Instruction *I = &*II;
2566 I->dropUnknownNonDebugMetadata();
2567 if (I->isUsedByMetadata())
2568 dropDebugUsers(*I);
2569 if (isa<DbgInfoIntrinsic>(I)) {
2570 // Remove DbgInfo Intrinsics.
2571 II = I->eraseFromParent();
2572 continue;
2574 I->setDebugLoc(InsertPt->getDebugLoc());
2575 ++II;
2577 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2578 BB->begin(),
2579 BB->getTerminator()->getIterator());
2582 namespace {
2584 /// A potential constituent of a bitreverse or bswap expression. See
2585 /// collectBitParts for a fuller explanation.
2586 struct BitPart {
2587 BitPart(Value *P, unsigned BW) : Provider(P) {
2588 Provenance.resize(BW);
2591 /// The Value that this is a bitreverse/bswap of.
2592 Value *Provider;
2594 /// The "provenance" of each bit. Provenance[A] = B means that bit A
2595 /// in Provider becomes bit B in the result of this expression.
2596 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2598 enum { Unset = -1 };
2601 } // end anonymous namespace
2603 /// Analyze the specified subexpression and see if it is capable of providing
2604 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2605 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2606 /// the output of the expression came from a corresponding bit in some other
2607 /// value. This function is recursive, and the end result is a mapping of
2608 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2609 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2611 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2612 /// that the expression deposits the low byte of %X into the high byte of the
2613 /// result and that all other bits are zero. This expression is accepted and a
2614 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2615 /// [0-7].
2617 /// To avoid revisiting values, the BitPart results are memoized into the
2618 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2619 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2620 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2621 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2622 /// type instead to provide the same functionality.
2624 /// Because we pass around references into \c BPS, we must use a container that
2625 /// does not invalidate internal references (std::map instead of DenseMap).
2626 static const Optional<BitPart> &
2627 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2628 std::map<Value *, Optional<BitPart>> &BPS) {
2629 auto I = BPS.find(V);
2630 if (I != BPS.end())
2631 return I->second;
2633 auto &Result = BPS[V] = None;
2634 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2636 if (Instruction *I = dyn_cast<Instruction>(V)) {
2637 // If this is an or instruction, it may be an inner node of the bswap.
2638 if (I->getOpcode() == Instruction::Or) {
2639 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2640 MatchBitReversals, BPS);
2641 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2642 MatchBitReversals, BPS);
2643 if (!A || !B)
2644 return Result;
2646 // Try and merge the two together.
2647 if (!A->Provider || A->Provider != B->Provider)
2648 return Result;
2650 Result = BitPart(A->Provider, BitWidth);
2651 for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2652 if (A->Provenance[i] != BitPart::Unset &&
2653 B->Provenance[i] != BitPart::Unset &&
2654 A->Provenance[i] != B->Provenance[i])
2655 return Result = None;
2657 if (A->Provenance[i] == BitPart::Unset)
2658 Result->Provenance[i] = B->Provenance[i];
2659 else
2660 Result->Provenance[i] = A->Provenance[i];
2663 return Result;
2666 // If this is a logical shift by a constant, recurse then shift the result.
2667 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2668 unsigned BitShift =
2669 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2670 // Ensure the shift amount is defined.
2671 if (BitShift > BitWidth)
2672 return Result;
2674 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2675 MatchBitReversals, BPS);
2676 if (!Res)
2677 return Result;
2678 Result = Res;
2680 // Perform the "shift" on BitProvenance.
2681 auto &P = Result->Provenance;
2682 if (I->getOpcode() == Instruction::Shl) {
2683 P.erase(std::prev(P.end(), BitShift), P.end());
2684 P.insert(P.begin(), BitShift, BitPart::Unset);
2685 } else {
2686 P.erase(P.begin(), std::next(P.begin(), BitShift));
2687 P.insert(P.end(), BitShift, BitPart::Unset);
2690 return Result;
2693 // If this is a logical 'and' with a mask that clears bits, recurse then
2694 // unset the appropriate bits.
2695 if (I->getOpcode() == Instruction::And &&
2696 isa<ConstantInt>(I->getOperand(1))) {
2697 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2698 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2700 // Check that the mask allows a multiple of 8 bits for a bswap, for an
2701 // early exit.
2702 unsigned NumMaskedBits = AndMask.countPopulation();
2703 if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2704 return Result;
2706 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2707 MatchBitReversals, BPS);
2708 if (!Res)
2709 return Result;
2710 Result = Res;
2712 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2713 // If the AndMask is zero for this bit, clear the bit.
2714 if ((AndMask & Bit) == 0)
2715 Result->Provenance[i] = BitPart::Unset;
2716 return Result;
2719 // If this is a zext instruction zero extend the result.
2720 if (I->getOpcode() == Instruction::ZExt) {
2721 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2722 MatchBitReversals, BPS);
2723 if (!Res)
2724 return Result;
2726 Result = BitPart(Res->Provider, BitWidth);
2727 auto NarrowBitWidth =
2728 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2729 for (unsigned i = 0; i < NarrowBitWidth; ++i)
2730 Result->Provenance[i] = Res->Provenance[i];
2731 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2732 Result->Provenance[i] = BitPart::Unset;
2733 return Result;
2737 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
2738 // the input value to the bswap/bitreverse.
2739 Result = BitPart(V, BitWidth);
2740 for (unsigned i = 0; i < BitWidth; ++i)
2741 Result->Provenance[i] = i;
2742 return Result;
2745 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2746 unsigned BitWidth) {
2747 if (From % 8 != To % 8)
2748 return false;
2749 // Convert from bit indices to byte indices and check for a byte reversal.
2750 From >>= 3;
2751 To >>= 3;
2752 BitWidth >>= 3;
2753 return From == BitWidth - To - 1;
2756 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2757 unsigned BitWidth) {
2758 return From == BitWidth - To - 1;
2761 bool llvm::recognizeBSwapOrBitReverseIdiom(
2762 Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2763 SmallVectorImpl<Instruction *> &InsertedInsts) {
2764 if (Operator::getOpcode(I) != Instruction::Or)
2765 return false;
2766 if (!MatchBSwaps && !MatchBitReversals)
2767 return false;
2768 IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2769 if (!ITy || ITy->getBitWidth() > 128)
2770 return false; // Can't do vectors or integers > 128 bits.
2771 unsigned BW = ITy->getBitWidth();
2773 unsigned DemandedBW = BW;
2774 IntegerType *DemandedTy = ITy;
2775 if (I->hasOneUse()) {
2776 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2777 DemandedTy = cast<IntegerType>(Trunc->getType());
2778 DemandedBW = DemandedTy->getBitWidth();
2782 // Try to find all the pieces corresponding to the bswap.
2783 std::map<Value *, Optional<BitPart>> BPS;
2784 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2785 if (!Res)
2786 return false;
2787 auto &BitProvenance = Res->Provenance;
2789 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2790 // only byteswap values with an even number of bytes.
2791 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2792 for (unsigned i = 0; i < DemandedBW; ++i) {
2793 OKForBSwap &=
2794 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2795 OKForBitReverse &=
2796 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2799 Intrinsic::ID Intrin;
2800 if (OKForBSwap && MatchBSwaps)
2801 Intrin = Intrinsic::bswap;
2802 else if (OKForBitReverse && MatchBitReversals)
2803 Intrin = Intrinsic::bitreverse;
2804 else
2805 return false;
2807 if (ITy != DemandedTy) {
2808 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2809 Value *Provider = Res->Provider;
2810 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2811 // We may need to truncate the provider.
2812 if (DemandedTy != ProviderTy) {
2813 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2814 "trunc", I);
2815 InsertedInsts.push_back(Trunc);
2816 Provider = Trunc;
2818 auto *CI = CallInst::Create(F, Provider, "rev", I);
2819 InsertedInsts.push_back(CI);
2820 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2821 InsertedInsts.push_back(ExtInst);
2822 return true;
2825 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2826 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2827 return true;
2830 // CodeGen has special handling for some string functions that may replace
2831 // them with target-specific intrinsics. Since that'd skip our interceptors
2832 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2833 // we mark affected calls as NoBuiltin, which will disable optimization
2834 // in CodeGen.
2835 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2836 CallInst *CI, const TargetLibraryInfo *TLI) {
2837 Function *F = CI->getCalledFunction();
2838 LibFunc Func;
2839 if (F && !F->hasLocalLinkage() && F->hasName() &&
2840 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2841 !F->doesNotAccessMemory())
2842 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2845 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2846 // We can't have a PHI with a metadata type.
2847 if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2848 return false;
2850 // Early exit.
2851 if (!isa<Constant>(I->getOperand(OpIdx)))
2852 return true;
2854 switch (I->getOpcode()) {
2855 default:
2856 return true;
2857 case Instruction::Call:
2858 case Instruction::Invoke:
2859 // Can't handle inline asm. Skip it.
2860 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2861 return false;
2862 // Many arithmetic intrinsics have no issue taking a
2863 // variable, however it's hard to distingish these from
2864 // specials such as @llvm.frameaddress that require a constant.
2865 if (isa<IntrinsicInst>(I))
2866 return false;
2868 // Constant bundle operands may need to retain their constant-ness for
2869 // correctness.
2870 if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2871 return false;
2872 return true;
2873 case Instruction::ShuffleVector:
2874 // Shufflevector masks are constant.
2875 return OpIdx != 2;
2876 case Instruction::Switch:
2877 case Instruction::ExtractValue:
2878 // All operands apart from the first are constant.
2879 return OpIdx == 0;
2880 case Instruction::InsertValue:
2881 // All operands apart from the first and the second are constant.
2882 return OpIdx < 2;
2883 case Instruction::Alloca:
2884 // Static allocas (constant size in the entry block) are handled by
2885 // prologue/epilogue insertion so they're free anyway. We definitely don't
2886 // want to make them non-constant.
2887 return !cast<AllocaInst>(I)->isStaticAlloca();
2888 case Instruction::GetElementPtr:
2889 if (OpIdx == 0)
2890 return true;
2891 gep_type_iterator It = gep_type_begin(I);
2892 for (auto E = std::next(It, OpIdx); It != E; ++It)
2893 if (It.isStruct())
2894 return false;
2895 return true;