Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / Utils / LoopUnrollAndJam.cpp
blobd5ccadde3f92f7f6b06377b4af8bbbd9845329e3
1 //===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements loop unroll and jam as a routine, much like
10 // LoopUnroll.cpp implements loop unroll.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/DependenceAnalysis.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopAnalysisManager.h"
20 #include "llvm/Analysis/LoopIterator.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpander.h"
25 #include "llvm/Analysis/Utils/Local.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/LoopSimplify.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
39 #include "llvm/Transforms/Utils/UnrollLoop.h"
40 using namespace llvm;
42 #define DEBUG_TYPE "loop-unroll-and-jam"
44 STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed");
45 STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed");
47 typedef SmallPtrSet<BasicBlock *, 4> BasicBlockSet;
49 // Partition blocks in an outer/inner loop pair into blocks before and after
50 // the loop
51 static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop,
52 BasicBlockSet &ForeBlocks,
53 BasicBlockSet &SubLoopBlocks,
54 BasicBlockSet &AftBlocks,
55 DominatorTree *DT) {
56 BasicBlock *SubLoopLatch = SubLoop->getLoopLatch();
57 SubLoopBlocks.insert(SubLoop->block_begin(), SubLoop->block_end());
59 for (BasicBlock *BB : L->blocks()) {
60 if (!SubLoop->contains(BB)) {
61 if (DT->dominates(SubLoopLatch, BB))
62 AftBlocks.insert(BB);
63 else
64 ForeBlocks.insert(BB);
68 // Check that all blocks in ForeBlocks together dominate the subloop
69 // TODO: This might ideally be done better with a dominator/postdominators.
70 BasicBlock *SubLoopPreHeader = SubLoop->getLoopPreheader();
71 for (BasicBlock *BB : ForeBlocks) {
72 if (BB == SubLoopPreHeader)
73 continue;
74 Instruction *TI = BB->getTerminator();
75 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
76 if (!ForeBlocks.count(TI->getSuccessor(i)))
77 return false;
80 return true;
83 // Looks at the phi nodes in Header for values coming from Latch. For these
84 // instructions and all their operands calls Visit on them, keeping going for
85 // all the operands in AftBlocks. Returns false if Visit returns false,
86 // otherwise returns true. This is used to process the instructions in the
87 // Aft blocks that need to be moved before the subloop. It is used in two
88 // places. One to check that the required set of instructions can be moved
89 // before the loop. Then to collect the instructions to actually move in
90 // moveHeaderPhiOperandsToForeBlocks.
91 template <typename T>
92 static bool processHeaderPhiOperands(BasicBlock *Header, BasicBlock *Latch,
93 BasicBlockSet &AftBlocks, T Visit) {
94 SmallVector<Instruction *, 8> Worklist;
95 for (auto &Phi : Header->phis()) {
96 Value *V = Phi.getIncomingValueForBlock(Latch);
97 if (Instruction *I = dyn_cast<Instruction>(V))
98 Worklist.push_back(I);
101 while (!Worklist.empty()) {
102 Instruction *I = Worklist.back();
103 Worklist.pop_back();
104 if (!Visit(I))
105 return false;
107 if (AftBlocks.count(I->getParent()))
108 for (auto &U : I->operands())
109 if (Instruction *II = dyn_cast<Instruction>(U))
110 Worklist.push_back(II);
113 return true;
116 // Move the phi operands of Header from Latch out of AftBlocks to InsertLoc.
117 static void moveHeaderPhiOperandsToForeBlocks(BasicBlock *Header,
118 BasicBlock *Latch,
119 Instruction *InsertLoc,
120 BasicBlockSet &AftBlocks) {
121 // We need to ensure we move the instructions in the correct order,
122 // starting with the earliest required instruction and moving forward.
123 std::vector<Instruction *> Visited;
124 processHeaderPhiOperands(Header, Latch, AftBlocks,
125 [&Visited, &AftBlocks](Instruction *I) {
126 if (AftBlocks.count(I->getParent()))
127 Visited.push_back(I);
128 return true;
131 // Move all instructions in program order to before the InsertLoc
132 BasicBlock *InsertLocBB = InsertLoc->getParent();
133 for (Instruction *I : reverse(Visited)) {
134 if (I->getParent() != InsertLocBB)
135 I->moveBefore(InsertLoc);
140 This method performs Unroll and Jam. For a simple loop like:
141 for (i = ..)
142 Fore(i)
143 for (j = ..)
144 SubLoop(i, j)
145 Aft(i)
147 Instead of doing normal inner or outer unrolling, we do:
148 for (i = .., i+=2)
149 Fore(i)
150 Fore(i+1)
151 for (j = ..)
152 SubLoop(i, j)
153 SubLoop(i+1, j)
154 Aft(i)
155 Aft(i+1)
157 So the outer loop is essetially unrolled and then the inner loops are fused
158 ("jammed") together into a single loop. This can increase speed when there
159 are loads in SubLoop that are invariant to i, as they become shared between
160 the now jammed inner loops.
162 We do this by spliting the blocks in the loop into Fore, Subloop and Aft.
163 Fore blocks are those before the inner loop, Aft are those after. Normal
164 Unroll code is used to copy each of these sets of blocks and the results are
165 combined together into the final form above.
167 isSafeToUnrollAndJam should be used prior to calling this to make sure the
168 unrolling will be valid. Checking profitablility is also advisable.
170 If EpilogueLoop is non-null, it receives the epilogue loop (if it was
171 necessary to create one and not fully unrolled).
173 LoopUnrollResult llvm::UnrollAndJamLoop(
174 Loop *L, unsigned Count, unsigned TripCount, unsigned TripMultiple,
175 bool UnrollRemainder, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
176 AssumptionCache *AC, OptimizationRemarkEmitter *ORE, Loop **EpilogueLoop) {
178 // When we enter here we should have already checked that it is safe
179 BasicBlock *Header = L->getHeader();
180 assert(L->getSubLoops().size() == 1);
181 Loop *SubLoop = *L->begin();
183 // Don't enter the unroll code if there is nothing to do.
184 if (TripCount == 0 && Count < 2) {
185 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; almost nothing to do\n");
186 return LoopUnrollResult::Unmodified;
189 assert(Count > 0);
190 assert(TripMultiple > 0);
191 assert(TripCount == 0 || TripCount % TripMultiple == 0);
193 // Are we eliminating the loop control altogether?
194 bool CompletelyUnroll = (Count == TripCount);
196 // We use the runtime remainder in cases where we don't know trip multiple
197 if (TripMultiple == 1 || TripMultiple % Count != 0) {
198 if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false,
199 /*UseEpilogRemainder*/ true,
200 UnrollRemainder, LI, SE, DT, AC, true,
201 EpilogueLoop)) {
202 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be "
203 "generated when assuming runtime trip count\n");
204 return LoopUnrollResult::Unmodified;
208 // Notify ScalarEvolution that the loop will be substantially changed,
209 // if not outright eliminated.
210 if (SE) {
211 SE->forgetLoop(L);
212 SE->forgetLoop(SubLoop);
215 using namespace ore;
216 // Report the unrolling decision.
217 if (CompletelyUnroll) {
218 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %"
219 << Header->getName() << " with trip count " << TripCount
220 << "!\n");
221 ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
222 L->getHeader())
223 << "completely unroll and jammed loop with "
224 << NV("UnrollCount", TripCount) << " iterations");
225 } else {
226 auto DiagBuilder = [&]() {
227 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
228 L->getHeader());
229 return Diag << "unroll and jammed loop by a factor of "
230 << NV("UnrollCount", Count);
233 LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName()
234 << " by " << Count);
235 if (TripMultiple != 1) {
236 LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
237 ORE->emit([&]() {
238 return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
239 << " trips per branch";
241 } else {
242 LLVM_DEBUG(dbgs() << " with run-time trip count");
243 ORE->emit([&]() { return DiagBuilder() << " with run-time trip count"; });
245 LLVM_DEBUG(dbgs() << "!\n");
248 BasicBlock *Preheader = L->getLoopPreheader();
249 BasicBlock *LatchBlock = L->getLoopLatch();
250 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
251 assert(Preheader && LatchBlock && Header);
252 assert(BI && !BI->isUnconditional());
253 bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
254 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
255 bool SubLoopContinueOnTrue = SubLoop->contains(
256 SubLoop->getLoopLatch()->getTerminator()->getSuccessor(0));
258 // Partition blocks in an outer/inner loop pair into blocks before and after
259 // the loop
260 BasicBlockSet SubLoopBlocks;
261 BasicBlockSet ForeBlocks;
262 BasicBlockSet AftBlocks;
263 partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks,
264 DT);
266 // We keep track of the entering/first and exiting/last block of each of
267 // Fore/SubLoop/Aft in each iteration. This helps make the stapling up of
268 // blocks easier.
269 std::vector<BasicBlock *> ForeBlocksFirst;
270 std::vector<BasicBlock *> ForeBlocksLast;
271 std::vector<BasicBlock *> SubLoopBlocksFirst;
272 std::vector<BasicBlock *> SubLoopBlocksLast;
273 std::vector<BasicBlock *> AftBlocksFirst;
274 std::vector<BasicBlock *> AftBlocksLast;
275 ForeBlocksFirst.push_back(Header);
276 ForeBlocksLast.push_back(SubLoop->getLoopPreheader());
277 SubLoopBlocksFirst.push_back(SubLoop->getHeader());
278 SubLoopBlocksLast.push_back(SubLoop->getExitingBlock());
279 AftBlocksFirst.push_back(SubLoop->getExitBlock());
280 AftBlocksLast.push_back(L->getExitingBlock());
281 // Maps Blocks[0] -> Blocks[It]
282 ValueToValueMapTy LastValueMap;
284 // Move any instructions from fore phi operands from AftBlocks into Fore.
285 moveHeaderPhiOperandsToForeBlocks(
286 Header, LatchBlock, SubLoop->getLoopPreheader()->getTerminator(),
287 AftBlocks);
289 // The current on-the-fly SSA update requires blocks to be processed in
290 // reverse postorder so that LastValueMap contains the correct value at each
291 // exit.
292 LoopBlocksDFS DFS(L);
293 DFS.perform(LI);
294 // Stash the DFS iterators before adding blocks to the loop.
295 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
296 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
298 if (Header->getParent()->isDebugInfoForProfiling())
299 for (BasicBlock *BB : L->getBlocks())
300 for (Instruction &I : *BB)
301 if (!isa<DbgInfoIntrinsic>(&I))
302 if (const DILocation *DIL = I.getDebugLoc()) {
303 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(Count);
304 if (NewDIL)
305 I.setDebugLoc(NewDIL.getValue());
306 else
307 LLVM_DEBUG(dbgs()
308 << "Failed to create new discriminator: "
309 << DIL->getFilename() << " Line: " << DIL->getLine());
312 // Copy all blocks
313 for (unsigned It = 1; It != Count; ++It) {
314 std::vector<BasicBlock *> NewBlocks;
315 // Maps Blocks[It] -> Blocks[It-1]
316 DenseMap<Value *, Value *> PrevItValueMap;
318 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
319 ValueToValueMapTy VMap;
320 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
321 Header->getParent()->getBasicBlockList().push_back(New);
323 if (ForeBlocks.count(*BB)) {
324 L->addBasicBlockToLoop(New, *LI);
326 if (*BB == ForeBlocksFirst[0])
327 ForeBlocksFirst.push_back(New);
328 if (*BB == ForeBlocksLast[0])
329 ForeBlocksLast.push_back(New);
330 } else if (SubLoopBlocks.count(*BB)) {
331 SubLoop->addBasicBlockToLoop(New, *LI);
333 if (*BB == SubLoopBlocksFirst[0])
334 SubLoopBlocksFirst.push_back(New);
335 if (*BB == SubLoopBlocksLast[0])
336 SubLoopBlocksLast.push_back(New);
337 } else if (AftBlocks.count(*BB)) {
338 L->addBasicBlockToLoop(New, *LI);
340 if (*BB == AftBlocksFirst[0])
341 AftBlocksFirst.push_back(New);
342 if (*BB == AftBlocksLast[0])
343 AftBlocksLast.push_back(New);
344 } else {
345 llvm_unreachable("BB being cloned should be in Fore/Sub/Aft");
348 // Update our running maps of newest clones
349 PrevItValueMap[New] = (It == 1 ? *BB : LastValueMap[*BB]);
350 LastValueMap[*BB] = New;
351 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
352 VI != VE; ++VI) {
353 PrevItValueMap[VI->second] =
354 const_cast<Value *>(It == 1 ? VI->first : LastValueMap[VI->first]);
355 LastValueMap[VI->first] = VI->second;
358 NewBlocks.push_back(New);
360 // Update DomTree:
361 if (*BB == ForeBlocksFirst[0])
362 DT->addNewBlock(New, ForeBlocksLast[It - 1]);
363 else if (*BB == SubLoopBlocksFirst[0])
364 DT->addNewBlock(New, SubLoopBlocksLast[It - 1]);
365 else if (*BB == AftBlocksFirst[0])
366 DT->addNewBlock(New, AftBlocksLast[It - 1]);
367 else {
368 // Each set of blocks (Fore/Sub/Aft) will have the same internal domtree
369 // structure.
370 auto BBDomNode = DT->getNode(*BB);
371 auto BBIDom = BBDomNode->getIDom();
372 BasicBlock *OriginalBBIDom = BBIDom->getBlock();
373 assert(OriginalBBIDom);
374 assert(LastValueMap[cast<Value>(OriginalBBIDom)]);
375 DT->addNewBlock(
376 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
380 // Remap all instructions in the most recent iteration
381 for (BasicBlock *NewBlock : NewBlocks) {
382 for (Instruction &I : *NewBlock) {
383 ::remapInstruction(&I, LastValueMap);
384 if (auto *II = dyn_cast<IntrinsicInst>(&I))
385 if (II->getIntrinsicID() == Intrinsic::assume)
386 AC->registerAssumption(II);
390 // Alter the ForeBlocks phi's, pointing them at the latest version of the
391 // value from the previous iteration's phis
392 for (PHINode &Phi : ForeBlocksFirst[It]->phis()) {
393 Value *OldValue = Phi.getIncomingValueForBlock(AftBlocksLast[It]);
394 assert(OldValue && "should have incoming edge from Aft[It]");
395 Value *NewValue = OldValue;
396 if (Value *PrevValue = PrevItValueMap[OldValue])
397 NewValue = PrevValue;
399 assert(Phi.getNumOperands() == 2);
400 Phi.setIncomingBlock(0, ForeBlocksLast[It - 1]);
401 Phi.setIncomingValue(0, NewValue);
402 Phi.removeIncomingValue(1);
406 // Now that all the basic blocks for the unrolled iterations are in place,
407 // finish up connecting the blocks and phi nodes. At this point LastValueMap
408 // is the last unrolled iterations values.
410 // Update Phis in BB from OldBB to point to NewBB
411 auto updatePHIBlocks = [](BasicBlock *BB, BasicBlock *OldBB,
412 BasicBlock *NewBB) {
413 for (PHINode &Phi : BB->phis()) {
414 int I = Phi.getBasicBlockIndex(OldBB);
415 Phi.setIncomingBlock(I, NewBB);
418 // Update Phis in BB from OldBB to point to NewBB and use the latest value
419 // from LastValueMap
420 auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB,
421 BasicBlock *NewBB,
422 ValueToValueMapTy &LastValueMap) {
423 for (PHINode &Phi : BB->phis()) {
424 for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) {
425 if (Phi.getIncomingBlock(b) == OldBB) {
426 Value *OldValue = Phi.getIncomingValue(b);
427 if (Value *LastValue = LastValueMap[OldValue])
428 Phi.setIncomingValue(b, LastValue);
429 Phi.setIncomingBlock(b, NewBB);
430 break;
435 // Move all the phis from Src into Dest
436 auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) {
437 Instruction *insertPoint = Dest->getFirstNonPHI();
438 while (PHINode *Phi = dyn_cast<PHINode>(Src->begin()))
439 Phi->moveBefore(insertPoint);
442 // Update the PHI values outside the loop to point to the last block
443 updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(),
444 LastValueMap);
446 // Update ForeBlocks successors and phi nodes
447 BranchInst *ForeTerm =
448 cast<BranchInst>(ForeBlocksLast.back()->getTerminator());
449 BasicBlock *Dest = SubLoopBlocksFirst[0];
450 ForeTerm->setSuccessor(0, Dest);
452 if (CompletelyUnroll) {
453 while (PHINode *Phi = dyn_cast<PHINode>(ForeBlocksFirst[0]->begin())) {
454 Phi->replaceAllUsesWith(Phi->getIncomingValueForBlock(Preheader));
455 Phi->getParent()->getInstList().erase(Phi);
457 } else {
458 // Update the PHI values to point to the last aft block
459 updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0],
460 AftBlocksLast.back(), LastValueMap);
463 for (unsigned It = 1; It != Count; It++) {
464 // Remap ForeBlock successors from previous iteration to this
465 BranchInst *ForeTerm =
466 cast<BranchInst>(ForeBlocksLast[It - 1]->getTerminator());
467 BasicBlock *Dest = ForeBlocksFirst[It];
468 ForeTerm->setSuccessor(0, Dest);
471 // Subloop successors and phis
472 BranchInst *SubTerm =
473 cast<BranchInst>(SubLoopBlocksLast.back()->getTerminator());
474 SubTerm->setSuccessor(!SubLoopContinueOnTrue, SubLoopBlocksFirst[0]);
475 SubTerm->setSuccessor(SubLoopContinueOnTrue, AftBlocksFirst[0]);
476 updatePHIBlocks(SubLoopBlocksFirst[0], ForeBlocksLast[0],
477 ForeBlocksLast.back());
478 updatePHIBlocks(SubLoopBlocksFirst[0], SubLoopBlocksLast[0],
479 SubLoopBlocksLast.back());
481 for (unsigned It = 1; It != Count; It++) {
482 // Replace the conditional branch of the previous iteration subloop with an
483 // unconditional one to this one
484 BranchInst *SubTerm =
485 cast<BranchInst>(SubLoopBlocksLast[It - 1]->getTerminator());
486 BranchInst::Create(SubLoopBlocksFirst[It], SubTerm);
487 SubTerm->eraseFromParent();
489 updatePHIBlocks(SubLoopBlocksFirst[It], ForeBlocksLast[It],
490 ForeBlocksLast.back());
491 updatePHIBlocks(SubLoopBlocksFirst[It], SubLoopBlocksLast[It],
492 SubLoopBlocksLast.back());
493 movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]);
496 // Aft blocks successors and phis
497 BranchInst *Term = cast<BranchInst>(AftBlocksLast.back()->getTerminator());
498 if (CompletelyUnroll) {
499 BranchInst::Create(LoopExit, Term);
500 Term->eraseFromParent();
501 } else {
502 Term->setSuccessor(!ContinueOnTrue, ForeBlocksFirst[0]);
504 updatePHIBlocks(AftBlocksFirst[0], SubLoopBlocksLast[0],
505 SubLoopBlocksLast.back());
507 for (unsigned It = 1; It != Count; It++) {
508 // Replace the conditional branch of the previous iteration subloop with an
509 // unconditional one to this one
510 BranchInst *AftTerm =
511 cast<BranchInst>(AftBlocksLast[It - 1]->getTerminator());
512 BranchInst::Create(AftBlocksFirst[It], AftTerm);
513 AftTerm->eraseFromParent();
515 updatePHIBlocks(AftBlocksFirst[It], SubLoopBlocksLast[It],
516 SubLoopBlocksLast.back());
517 movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]);
520 // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the
521 // new ones required.
522 if (Count != 1) {
523 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
524 DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, ForeBlocksLast[0],
525 SubLoopBlocksFirst[0]);
526 DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
527 SubLoopBlocksLast[0], AftBlocksFirst[0]);
529 DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
530 ForeBlocksLast.back(), SubLoopBlocksFirst[0]);
531 DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
532 SubLoopBlocksLast.back(), AftBlocksFirst[0]);
533 DT->applyUpdates(DTUpdates);
536 // Merge adjacent basic blocks, if possible.
537 SmallPtrSet<BasicBlock *, 16> MergeBlocks;
538 MergeBlocks.insert(ForeBlocksLast.begin(), ForeBlocksLast.end());
539 MergeBlocks.insert(SubLoopBlocksLast.begin(), SubLoopBlocksLast.end());
540 MergeBlocks.insert(AftBlocksLast.begin(), AftBlocksLast.end());
541 while (!MergeBlocks.empty()) {
542 BasicBlock *BB = *MergeBlocks.begin();
543 BranchInst *Term = dyn_cast<BranchInst>(BB->getTerminator());
544 if (Term && Term->isUnconditional() && L->contains(Term->getSuccessor(0))) {
545 BasicBlock *Dest = Term->getSuccessor(0);
546 if (BasicBlock *Fold = foldBlockIntoPredecessor(Dest, LI, SE, DT)) {
547 // Don't remove BB and add Fold as they are the same BB
548 assert(Fold == BB);
549 (void)Fold;
550 MergeBlocks.erase(Dest);
551 } else
552 MergeBlocks.erase(BB);
553 } else
554 MergeBlocks.erase(BB);
557 // At this point, the code is well formed. We now do a quick sweep over the
558 // inserted code, doing constant propagation and dead code elimination as we
559 // go.
560 simplifyLoopAfterUnroll(SubLoop, true, LI, SE, DT, AC);
561 simplifyLoopAfterUnroll(L, !CompletelyUnroll && Count > 1, LI, SE, DT, AC);
563 NumCompletelyUnrolledAndJammed += CompletelyUnroll;
564 ++NumUnrolledAndJammed;
566 #ifndef NDEBUG
567 // We shouldn't have done anything to break loop simplify form or LCSSA.
568 Loop *OuterL = L->getParentLoop();
569 Loop *OutestLoop = OuterL ? OuterL : (!CompletelyUnroll ? L : SubLoop);
570 assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI));
571 if (!CompletelyUnroll)
572 assert(L->isLoopSimplifyForm());
573 assert(SubLoop->isLoopSimplifyForm());
574 assert(DT->verify());
575 #endif
577 // Update LoopInfo if the loop is completely removed.
578 if (CompletelyUnroll)
579 LI->erase(L);
581 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
582 : LoopUnrollResult::PartiallyUnrolled;
585 static bool getLoadsAndStores(BasicBlockSet &Blocks,
586 SmallVector<Value *, 4> &MemInstr) {
587 // Scan the BBs and collect legal loads and stores.
588 // Returns false if non-simple loads/stores are found.
589 for (BasicBlock *BB : Blocks) {
590 for (Instruction &I : *BB) {
591 if (auto *Ld = dyn_cast<LoadInst>(&I)) {
592 if (!Ld->isSimple())
593 return false;
594 MemInstr.push_back(&I);
595 } else if (auto *St = dyn_cast<StoreInst>(&I)) {
596 if (!St->isSimple())
597 return false;
598 MemInstr.push_back(&I);
599 } else if (I.mayReadOrWriteMemory()) {
600 return false;
604 return true;
607 static bool checkDependencies(SmallVector<Value *, 4> &Earlier,
608 SmallVector<Value *, 4> &Later,
609 unsigned LoopDepth, bool InnerLoop,
610 DependenceInfo &DI) {
611 // Use DA to check for dependencies between loads and stores that make unroll
612 // and jam invalid
613 for (Value *I : Earlier) {
614 for (Value *J : Later) {
615 Instruction *Src = cast<Instruction>(I);
616 Instruction *Dst = cast<Instruction>(J);
617 if (Src == Dst)
618 continue;
619 // Ignore Input dependencies.
620 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
621 continue;
623 // Track dependencies, and if we find them take a conservative approach
624 // by allowing only = or < (not >), altough some > would be safe
625 // (depending upon unroll width).
626 // For the inner loop, we need to disallow any (> <) dependencies
627 // FIXME: Allow > so long as distance is less than unroll width
628 if (auto D = DI.depends(Src, Dst, true)) {
629 assert(D->isOrdered() && "Expected an output, flow or anti dep.");
631 if (D->isConfused()) {
632 LLVM_DEBUG(dbgs() << " Confused dependency between:\n"
633 << " " << *Src << "\n"
634 << " " << *Dst << "\n");
635 return false;
637 if (!InnerLoop) {
638 if (D->getDirection(LoopDepth) & Dependence::DVEntry::GT) {
639 LLVM_DEBUG(dbgs() << " > dependency between:\n"
640 << " " << *Src << "\n"
641 << " " << *Dst << "\n");
642 return false;
644 } else {
645 assert(LoopDepth + 1 <= D->getLevels());
646 if (D->getDirection(LoopDepth) & Dependence::DVEntry::GT &&
647 D->getDirection(LoopDepth + 1) & Dependence::DVEntry::LT) {
648 LLVM_DEBUG(dbgs() << " < > dependency between:\n"
649 << " " << *Src << "\n"
650 << " " << *Dst << "\n");
651 return false;
657 return true;
660 static bool checkDependencies(Loop *L, BasicBlockSet &ForeBlocks,
661 BasicBlockSet &SubLoopBlocks,
662 BasicBlockSet &AftBlocks, DependenceInfo &DI) {
663 // Get all loads/store pairs for each blocks
664 SmallVector<Value *, 4> ForeMemInstr;
665 SmallVector<Value *, 4> SubLoopMemInstr;
666 SmallVector<Value *, 4> AftMemInstr;
667 if (!getLoadsAndStores(ForeBlocks, ForeMemInstr) ||
668 !getLoadsAndStores(SubLoopBlocks, SubLoopMemInstr) ||
669 !getLoadsAndStores(AftBlocks, AftMemInstr))
670 return false;
672 // Check for dependencies between any blocks that may change order
673 unsigned LoopDepth = L->getLoopDepth();
674 return checkDependencies(ForeMemInstr, SubLoopMemInstr, LoopDepth, false,
675 DI) &&
676 checkDependencies(ForeMemInstr, AftMemInstr, LoopDepth, false, DI) &&
677 checkDependencies(SubLoopMemInstr, AftMemInstr, LoopDepth, false,
678 DI) &&
679 checkDependencies(SubLoopMemInstr, SubLoopMemInstr, LoopDepth, true,
680 DI);
683 bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
684 DependenceInfo &DI) {
685 /* We currently handle outer loops like this:
687 ForeFirst <----\ }
688 Blocks | } ForeBlocks
689 ForeLast | }
691 SubLoopFirst <\ | }
692 Blocks | | } SubLoopBlocks
693 SubLoopLast -/ | }
695 AftFirst | }
696 Blocks | } AftBlocks
697 AftLast ------/ }
700 There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks
701 and AftBlocks, providing that there is one edge from Fores to SubLoops,
702 one edge from SubLoops to Afts and a single outer loop exit (from Afts).
703 In practice we currently limit Aft blocks to a single block, and limit
704 things further in the profitablility checks of the unroll and jam pass.
706 Because of the way we rearrange basic blocks, we also require that
707 the Fore blocks on all unrolled iterations are safe to move before the
708 SubLoop blocks of all iterations. So we require that the phi node looping
709 operands of ForeHeader can be moved to at least the end of ForeEnd, so that
710 we can arrange cloned Fore Blocks before the subloop and match up Phi's
711 correctly.
713 i.e. The old order of blocks used to be F1 S1_1 S1_2 A1 F2 S2_1 S2_2 A2.
714 It needs to be safe to tranform this to F1 F2 S1_1 S2_1 S1_2 S2_2 A1 A2.
716 There are then a number of checks along the lines of no calls, no
717 exceptions, inner loop IV is consistent, etc. Note that for loops requiring
718 runtime unrolling, UnrollRuntimeLoopRemainder can also fail in
719 UnrollAndJamLoop if the trip count cannot be easily calculated.
722 if (!L->isLoopSimplifyForm() || L->getSubLoops().size() != 1)
723 return false;
724 Loop *SubLoop = L->getSubLoops()[0];
725 if (!SubLoop->isLoopSimplifyForm())
726 return false;
728 BasicBlock *Header = L->getHeader();
729 BasicBlock *Latch = L->getLoopLatch();
730 BasicBlock *Exit = L->getExitingBlock();
731 BasicBlock *SubLoopHeader = SubLoop->getHeader();
732 BasicBlock *SubLoopLatch = SubLoop->getLoopLatch();
733 BasicBlock *SubLoopExit = SubLoop->getExitingBlock();
735 if (Latch != Exit)
736 return false;
737 if (SubLoopLatch != SubLoopExit)
738 return false;
740 if (Header->hasAddressTaken() || SubLoopHeader->hasAddressTaken()) {
741 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Address taken\n");
742 return false;
745 // Split blocks into Fore/SubLoop/Aft based on dominators
746 BasicBlockSet SubLoopBlocks;
747 BasicBlockSet ForeBlocks;
748 BasicBlockSet AftBlocks;
749 if (!partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks,
750 AftBlocks, &DT)) {
751 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Incompatible loop layout\n");
752 return false;
755 // Aft blocks may need to move instructions to fore blocks, which becomes more
756 // difficult if there are multiple (potentially conditionally executed)
757 // blocks. For now we just exclude loops with multiple aft blocks.
758 if (AftBlocks.size() != 1) {
759 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Can't currently handle "
760 "multiple blocks after the loop\n");
761 return false;
764 // Check inner loop backedge count is consistent on all iterations of the
765 // outer loop
766 if (!hasIterationCountInvariantInParent(SubLoop, SE)) {
767 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Inner loop iteration count is "
768 "not consistent on each iteration\n");
769 return false;
772 // Check the loop safety info for exceptions.
773 SimpleLoopSafetyInfo LSI;
774 LSI.computeLoopSafetyInfo(L);
775 if (LSI.anyBlockMayThrow()) {
776 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Something may throw\n");
777 return false;
780 // We've ruled out the easy stuff and now need to check that there are no
781 // interdependencies which may prevent us from moving the:
782 // ForeBlocks before Subloop and AftBlocks.
783 // Subloop before AftBlocks.
784 // ForeBlock phi operands before the subloop
786 // Make sure we can move all instructions we need to before the subloop
787 if (!processHeaderPhiOperands(
788 Header, Latch, AftBlocks, [&AftBlocks, &SubLoop](Instruction *I) {
789 if (SubLoop->contains(I->getParent()))
790 return false;
791 if (AftBlocks.count(I->getParent())) {
792 // If we hit a phi node in afts we know we are done (probably
793 // LCSSA)
794 if (isa<PHINode>(I))
795 return false;
796 // Can't move instructions with side effects or memory
797 // reads/writes
798 if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory())
799 return false;
801 // Keep going
802 return true;
803 })) {
804 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't move required "
805 "instructions after subloop to before it\n");
806 return false;
809 // Check for memory dependencies which prohibit the unrolling we are doing.
810 // Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check
811 // there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub.
812 if (!checkDependencies(L, ForeBlocks, SubLoopBlocks, AftBlocks, DI)) {
813 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; failed dependency check\n");
814 return false;
817 return true;