Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / Utils / PromoteMemoryToRegister.cpp
blob5748b06a76b296767ea0b3fc0d106031c9d633ab
1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file promotes memory references to be register references. It promotes
10 // alloca instructions which only have loads and stores as uses. An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
13 // appropriate.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/TinyPtrVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <iterator>
52 #include <utility>
53 #include <vector>
55 using namespace llvm;
57 #define DEBUG_TYPE "mem2reg"
59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
60 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
61 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
62 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
64 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
65 // FIXME: If the memory unit is of pointer or integer type, we can permit
66 // assignments to subsections of the memory unit.
67 unsigned AS = AI->getType()->getAddressSpace();
69 // Only allow direct and non-volatile loads and stores...
70 for (const User *U : AI->users()) {
71 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
72 // Note that atomic loads can be transformed; atomic semantics do
73 // not have any meaning for a local alloca.
74 if (LI->isVolatile())
75 return false;
76 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
77 if (SI->getOperand(0) == AI)
78 return false; // Don't allow a store OF the AI, only INTO the AI.
79 // Note that atomic stores can be transformed; atomic semantics do
80 // not have any meaning for a local alloca.
81 if (SI->isVolatile())
82 return false;
83 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
84 if (!II->isLifetimeStartOrEnd())
85 return false;
86 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
87 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
88 return false;
89 if (!onlyUsedByLifetimeMarkers(BCI))
90 return false;
91 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
92 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
93 return false;
94 if (!GEPI->hasAllZeroIndices())
95 return false;
96 if (!onlyUsedByLifetimeMarkers(GEPI))
97 return false;
98 } else {
99 return false;
103 return true;
106 namespace {
108 struct AllocaInfo {
109 SmallVector<BasicBlock *, 32> DefiningBlocks;
110 SmallVector<BasicBlock *, 32> UsingBlocks;
112 StoreInst *OnlyStore;
113 BasicBlock *OnlyBlock;
114 bool OnlyUsedInOneBlock;
116 Value *AllocaPointerVal;
117 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares;
119 void clear() {
120 DefiningBlocks.clear();
121 UsingBlocks.clear();
122 OnlyStore = nullptr;
123 OnlyBlock = nullptr;
124 OnlyUsedInOneBlock = true;
125 AllocaPointerVal = nullptr;
126 DbgDeclares.clear();
129 /// Scan the uses of the specified alloca, filling in the AllocaInfo used
130 /// by the rest of the pass to reason about the uses of this alloca.
131 void AnalyzeAlloca(AllocaInst *AI) {
132 clear();
134 // As we scan the uses of the alloca instruction, keep track of stores,
135 // and decide whether all of the loads and stores to the alloca are within
136 // the same basic block.
137 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
138 Instruction *User = cast<Instruction>(*UI++);
140 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
141 // Remember the basic blocks which define new values for the alloca
142 DefiningBlocks.push_back(SI->getParent());
143 AllocaPointerVal = SI->getOperand(0);
144 OnlyStore = SI;
145 } else {
146 LoadInst *LI = cast<LoadInst>(User);
147 // Otherwise it must be a load instruction, keep track of variable
148 // reads.
149 UsingBlocks.push_back(LI->getParent());
150 AllocaPointerVal = LI;
153 if (OnlyUsedInOneBlock) {
154 if (!OnlyBlock)
155 OnlyBlock = User->getParent();
156 else if (OnlyBlock != User->getParent())
157 OnlyUsedInOneBlock = false;
161 DbgDeclares = FindDbgAddrUses(AI);
165 /// Data package used by RenamePass().
166 struct RenamePassData {
167 using ValVector = std::vector<Value *>;
168 using LocationVector = std::vector<DebugLoc>;
170 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
171 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
173 BasicBlock *BB;
174 BasicBlock *Pred;
175 ValVector Values;
176 LocationVector Locations;
179 /// This assigns and keeps a per-bb relative ordering of load/store
180 /// instructions in the block that directly load or store an alloca.
182 /// This functionality is important because it avoids scanning large basic
183 /// blocks multiple times when promoting many allocas in the same block.
184 class LargeBlockInfo {
185 /// For each instruction that we track, keep the index of the
186 /// instruction.
188 /// The index starts out as the number of the instruction from the start of
189 /// the block.
190 DenseMap<const Instruction *, unsigned> InstNumbers;
192 public:
194 /// This code only looks at accesses to allocas.
195 static bool isInterestingInstruction(const Instruction *I) {
196 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
197 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
200 /// Get or calculate the index of the specified instruction.
201 unsigned getInstructionIndex(const Instruction *I) {
202 assert(isInterestingInstruction(I) &&
203 "Not a load/store to/from an alloca?");
205 // If we already have this instruction number, return it.
206 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
207 if (It != InstNumbers.end())
208 return It->second;
210 // Scan the whole block to get the instruction. This accumulates
211 // information for every interesting instruction in the block, in order to
212 // avoid gratuitus rescans.
213 const BasicBlock *BB = I->getParent();
214 unsigned InstNo = 0;
215 for (const Instruction &BBI : *BB)
216 if (isInterestingInstruction(&BBI))
217 InstNumbers[&BBI] = InstNo++;
218 It = InstNumbers.find(I);
220 assert(It != InstNumbers.end() && "Didn't insert instruction?");
221 return It->second;
224 void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
226 void clear() { InstNumbers.clear(); }
229 struct PromoteMem2Reg {
230 /// The alloca instructions being promoted.
231 std::vector<AllocaInst *> Allocas;
233 DominatorTree &DT;
234 DIBuilder DIB;
236 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
237 AssumptionCache *AC;
239 const SimplifyQuery SQ;
241 /// Reverse mapping of Allocas.
242 DenseMap<AllocaInst *, unsigned> AllocaLookup;
244 /// The PhiNodes we're adding.
246 /// That map is used to simplify some Phi nodes as we iterate over it, so
247 /// it should have deterministic iterators. We could use a MapVector, but
248 /// since we already maintain a map from BasicBlock* to a stable numbering
249 /// (BBNumbers), the DenseMap is more efficient (also supports removal).
250 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
252 /// For each PHI node, keep track of which entry in Allocas it corresponds
253 /// to.
254 DenseMap<PHINode *, unsigned> PhiToAllocaMap;
256 /// If we are updating an AliasSetTracker, then for each alloca that is of
257 /// pointer type, we keep track of what to copyValue to the inserted PHI
258 /// nodes here.
259 std::vector<Value *> PointerAllocaValues;
261 /// For each alloca, we keep track of the dbg.declare intrinsic that
262 /// describes it, if any, so that we can convert it to a dbg.value
263 /// intrinsic if the alloca gets promoted.
264 SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares;
266 /// The set of basic blocks the renamer has already visited.
267 SmallPtrSet<BasicBlock *, 16> Visited;
269 /// Contains a stable numbering of basic blocks to avoid non-determinstic
270 /// behavior.
271 DenseMap<BasicBlock *, unsigned> BBNumbers;
273 /// Lazily compute the number of predecessors a block has.
274 DenseMap<const BasicBlock *, unsigned> BBNumPreds;
276 public:
277 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
278 AssumptionCache *AC)
279 : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
280 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
281 AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
282 nullptr, &DT, AC) {}
284 void run();
286 private:
287 void RemoveFromAllocasList(unsigned &AllocaIdx) {
288 Allocas[AllocaIdx] = Allocas.back();
289 Allocas.pop_back();
290 --AllocaIdx;
293 unsigned getNumPreds(const BasicBlock *BB) {
294 unsigned &NP = BBNumPreds[BB];
295 if (NP == 0)
296 NP = pred_size(BB) + 1;
297 return NP - 1;
300 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
301 const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
302 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
303 void RenamePass(BasicBlock *BB, BasicBlock *Pred,
304 RenamePassData::ValVector &IncVals,
305 RenamePassData::LocationVector &IncLocs,
306 std::vector<RenamePassData> &Worklist);
307 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
310 } // end anonymous namespace
312 /// Given a LoadInst LI this adds assume(LI != null) after it.
313 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
314 Function *AssumeIntrinsic =
315 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
316 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
317 Constant::getNullValue(LI->getType()));
318 LoadNotNull->insertAfter(LI);
319 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
320 CI->insertAfter(LoadNotNull);
321 AC->registerAssumption(CI);
324 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
325 // Knowing that this alloca is promotable, we know that it's safe to kill all
326 // instructions except for load and store.
328 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
329 Instruction *I = cast<Instruction>(*UI);
330 ++UI;
331 if (isa<LoadInst>(I) || isa<StoreInst>(I))
332 continue;
334 if (!I->getType()->isVoidTy()) {
335 // The only users of this bitcast/GEP instruction are lifetime intrinsics.
336 // Follow the use/def chain to erase them now instead of leaving it for
337 // dead code elimination later.
338 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
339 Instruction *Inst = cast<Instruction>(*UUI);
340 ++UUI;
341 Inst->eraseFromParent();
344 I->eraseFromParent();
348 /// Rewrite as many loads as possible given a single store.
350 /// When there is only a single store, we can use the domtree to trivially
351 /// replace all of the dominated loads with the stored value. Do so, and return
352 /// true if this has successfully promoted the alloca entirely. If this returns
353 /// false there were some loads which were not dominated by the single store
354 /// and thus must be phi-ed with undef. We fall back to the standard alloca
355 /// promotion algorithm in that case.
356 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
357 LargeBlockInfo &LBI, const DataLayout &DL,
358 DominatorTree &DT, AssumptionCache *AC) {
359 StoreInst *OnlyStore = Info.OnlyStore;
360 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
361 BasicBlock *StoreBB = OnlyStore->getParent();
362 int StoreIndex = -1;
364 // Clear out UsingBlocks. We will reconstruct it here if needed.
365 Info.UsingBlocks.clear();
367 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
368 Instruction *UserInst = cast<Instruction>(*UI++);
369 if (!isa<LoadInst>(UserInst)) {
370 assert(UserInst == OnlyStore && "Should only have load/stores");
371 continue;
373 LoadInst *LI = cast<LoadInst>(UserInst);
375 // Okay, if we have a load from the alloca, we want to replace it with the
376 // only value stored to the alloca. We can do this if the value is
377 // dominated by the store. If not, we use the rest of the mem2reg machinery
378 // to insert the phi nodes as needed.
379 if (!StoringGlobalVal) { // Non-instructions are always dominated.
380 if (LI->getParent() == StoreBB) {
381 // If we have a use that is in the same block as the store, compare the
382 // indices of the two instructions to see which one came first. If the
383 // load came before the store, we can't handle it.
384 if (StoreIndex == -1)
385 StoreIndex = LBI.getInstructionIndex(OnlyStore);
387 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
388 // Can't handle this load, bail out.
389 Info.UsingBlocks.push_back(StoreBB);
390 continue;
392 } else if (LI->getParent() != StoreBB &&
393 !DT.dominates(StoreBB, LI->getParent())) {
394 // If the load and store are in different blocks, use BB dominance to
395 // check their relationships. If the store doesn't dom the use, bail
396 // out.
397 Info.UsingBlocks.push_back(LI->getParent());
398 continue;
402 // Otherwise, we *can* safely rewrite this load.
403 Value *ReplVal = OnlyStore->getOperand(0);
404 // If the replacement value is the load, this must occur in unreachable
405 // code.
406 if (ReplVal == LI)
407 ReplVal = UndefValue::get(LI->getType());
409 // If the load was marked as nonnull we don't want to lose
410 // that information when we erase this Load. So we preserve
411 // it with an assume.
412 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
413 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
414 addAssumeNonNull(AC, LI);
416 LI->replaceAllUsesWith(ReplVal);
417 LI->eraseFromParent();
418 LBI.deleteValue(LI);
421 // Finally, after the scan, check to see if the store is all that is left.
422 if (!Info.UsingBlocks.empty())
423 return false; // If not, we'll have to fall back for the remainder.
425 // Record debuginfo for the store and remove the declaration's
426 // debuginfo.
427 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
428 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
429 ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
430 DII->eraseFromParent();
431 LBI.deleteValue(DII);
433 // Remove the (now dead) store and alloca.
434 Info.OnlyStore->eraseFromParent();
435 LBI.deleteValue(Info.OnlyStore);
437 AI->eraseFromParent();
438 LBI.deleteValue(AI);
439 return true;
442 /// Many allocas are only used within a single basic block. If this is the
443 /// case, avoid traversing the CFG and inserting a lot of potentially useless
444 /// PHI nodes by just performing a single linear pass over the basic block
445 /// using the Alloca.
447 /// If we cannot promote this alloca (because it is read before it is written),
448 /// return false. This is necessary in cases where, due to control flow, the
449 /// alloca is undefined only on some control flow paths. e.g. code like
450 /// this is correct in LLVM IR:
451 /// // A is an alloca with no stores so far
452 /// for (...) {
453 /// int t = *A;
454 /// if (!first_iteration)
455 /// use(t);
456 /// *A = 42;
457 /// }
458 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
459 LargeBlockInfo &LBI,
460 const DataLayout &DL,
461 DominatorTree &DT,
462 AssumptionCache *AC) {
463 // The trickiest case to handle is when we have large blocks. Because of this,
464 // this code is optimized assuming that large blocks happen. This does not
465 // significantly pessimize the small block case. This uses LargeBlockInfo to
466 // make it efficient to get the index of various operations in the block.
468 // Walk the use-def list of the alloca, getting the locations of all stores.
469 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
470 StoresByIndexTy StoresByIndex;
472 for (User *U : AI->users())
473 if (StoreInst *SI = dyn_cast<StoreInst>(U))
474 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
476 // Sort the stores by their index, making it efficient to do a lookup with a
477 // binary search.
478 llvm::sort(StoresByIndex, less_first());
480 // Walk all of the loads from this alloca, replacing them with the nearest
481 // store above them, if any.
482 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
483 LoadInst *LI = dyn_cast<LoadInst>(*UI++);
484 if (!LI)
485 continue;
487 unsigned LoadIdx = LBI.getInstructionIndex(LI);
489 // Find the nearest store that has a lower index than this load.
490 StoresByIndexTy::iterator I =
491 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
492 std::make_pair(LoadIdx,
493 static_cast<StoreInst *>(nullptr)),
494 less_first());
495 if (I == StoresByIndex.begin()) {
496 if (StoresByIndex.empty())
497 // If there are no stores, the load takes the undef value.
498 LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
499 else
500 // There is no store before this load, bail out (load may be affected
501 // by the following stores - see main comment).
502 return false;
503 } else {
504 // Otherwise, there was a store before this load, the load takes its value.
505 // Note, if the load was marked as nonnull we don't want to lose that
506 // information when we erase it. So we preserve it with an assume.
507 Value *ReplVal = std::prev(I)->second->getOperand(0);
508 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
509 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
510 addAssumeNonNull(AC, LI);
512 // If the replacement value is the load, this must occur in unreachable
513 // code.
514 if (ReplVal == LI)
515 ReplVal = UndefValue::get(LI->getType());
517 LI->replaceAllUsesWith(ReplVal);
520 LI->eraseFromParent();
521 LBI.deleteValue(LI);
524 // Remove the (now dead) stores and alloca.
525 while (!AI->use_empty()) {
526 StoreInst *SI = cast<StoreInst>(AI->user_back());
527 // Record debuginfo for the store before removing it.
528 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
529 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
530 ConvertDebugDeclareToDebugValue(DII, SI, DIB);
532 SI->eraseFromParent();
533 LBI.deleteValue(SI);
536 AI->eraseFromParent();
537 LBI.deleteValue(AI);
539 // The alloca's debuginfo can be removed as well.
540 for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
541 DII->eraseFromParent();
542 LBI.deleteValue(DII);
545 ++NumLocalPromoted;
546 return true;
549 void PromoteMem2Reg::run() {
550 Function &F = *DT.getRoot()->getParent();
552 AllocaDbgDeclares.resize(Allocas.size());
554 AllocaInfo Info;
555 LargeBlockInfo LBI;
556 ForwardIDFCalculator IDF(DT);
558 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
559 AllocaInst *AI = Allocas[AllocaNum];
561 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
562 assert(AI->getParent()->getParent() == &F &&
563 "All allocas should be in the same function, which is same as DF!");
565 removeLifetimeIntrinsicUsers(AI);
567 if (AI->use_empty()) {
568 // If there are no uses of the alloca, just delete it now.
569 AI->eraseFromParent();
571 // Remove the alloca from the Allocas list, since it has been processed
572 RemoveFromAllocasList(AllocaNum);
573 ++NumDeadAlloca;
574 continue;
577 // Calculate the set of read and write-locations for each alloca. This is
578 // analogous to finding the 'uses' and 'definitions' of each variable.
579 Info.AnalyzeAlloca(AI);
581 // If there is only a single store to this value, replace any loads of
582 // it that are directly dominated by the definition with the value stored.
583 if (Info.DefiningBlocks.size() == 1) {
584 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
585 // The alloca has been processed, move on.
586 RemoveFromAllocasList(AllocaNum);
587 ++NumSingleStore;
588 continue;
592 // If the alloca is only read and written in one basic block, just perform a
593 // linear sweep over the block to eliminate it.
594 if (Info.OnlyUsedInOneBlock &&
595 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
596 // The alloca has been processed, move on.
597 RemoveFromAllocasList(AllocaNum);
598 continue;
601 // If we haven't computed a numbering for the BB's in the function, do so
602 // now.
603 if (BBNumbers.empty()) {
604 unsigned ID = 0;
605 for (auto &BB : F)
606 BBNumbers[&BB] = ID++;
609 // Remember the dbg.declare intrinsic describing this alloca, if any.
610 if (!Info.DbgDeclares.empty())
611 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares;
613 // Keep the reverse mapping of the 'Allocas' array for the rename pass.
614 AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
616 // At this point, we're committed to promoting the alloca using IDF's, and
617 // the standard SSA construction algorithm. Determine which blocks need PHI
618 // nodes and see if we can optimize out some work by avoiding insertion of
619 // dead phi nodes.
621 // Unique the set of defining blocks for efficient lookup.
622 SmallPtrSet<BasicBlock *, 32> DefBlocks;
623 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
625 // Determine which blocks the value is live in. These are blocks which lead
626 // to uses.
627 SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
628 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
630 // At this point, we're committed to promoting the alloca using IDF's, and
631 // the standard SSA construction algorithm. Determine which blocks need phi
632 // nodes and see if we can optimize out some work by avoiding insertion of
633 // dead phi nodes.
634 IDF.setLiveInBlocks(LiveInBlocks);
635 IDF.setDefiningBlocks(DefBlocks);
636 SmallVector<BasicBlock *, 32> PHIBlocks;
637 IDF.calculate(PHIBlocks);
638 if (PHIBlocks.size() > 1)
639 llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
640 return BBNumbers.lookup(A) < BBNumbers.lookup(B);
643 unsigned CurrentVersion = 0;
644 for (BasicBlock *BB : PHIBlocks)
645 QueuePhiNode(BB, AllocaNum, CurrentVersion);
648 if (Allocas.empty())
649 return; // All of the allocas must have been trivial!
651 LBI.clear();
653 // Set the incoming values for the basic block to be null values for all of
654 // the alloca's. We do this in case there is a load of a value that has not
655 // been stored yet. In this case, it will get this null value.
656 RenamePassData::ValVector Values(Allocas.size());
657 for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
658 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
660 // When handling debug info, treat all incoming values as if they have unknown
661 // locations until proven otherwise.
662 RenamePassData::LocationVector Locations(Allocas.size());
664 // Walks all basic blocks in the function performing the SSA rename algorithm
665 // and inserting the phi nodes we marked as necessary
666 std::vector<RenamePassData> RenamePassWorkList;
667 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
668 std::move(Locations));
669 do {
670 RenamePassData RPD = std::move(RenamePassWorkList.back());
671 RenamePassWorkList.pop_back();
672 // RenamePass may add new worklist entries.
673 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
674 } while (!RenamePassWorkList.empty());
676 // The renamer uses the Visited set to avoid infinite loops. Clear it now.
677 Visited.clear();
679 // Remove the allocas themselves from the function.
680 for (Instruction *A : Allocas) {
681 // If there are any uses of the alloca instructions left, they must be in
682 // unreachable basic blocks that were not processed by walking the dominator
683 // tree. Just delete the users now.
684 if (!A->use_empty())
685 A->replaceAllUsesWith(UndefValue::get(A->getType()));
686 A->eraseFromParent();
689 // Remove alloca's dbg.declare instrinsics from the function.
690 for (auto &Declares : AllocaDbgDeclares)
691 for (auto *DII : Declares)
692 DII->eraseFromParent();
694 // Loop over all of the PHI nodes and see if there are any that we can get
695 // rid of because they merge all of the same incoming values. This can
696 // happen due to undef values coming into the PHI nodes. This process is
697 // iterative, because eliminating one PHI node can cause others to be removed.
698 bool EliminatedAPHI = true;
699 while (EliminatedAPHI) {
700 EliminatedAPHI = false;
702 // Iterating over NewPhiNodes is deterministic, so it is safe to try to
703 // simplify and RAUW them as we go. If it was not, we could add uses to
704 // the values we replace with in a non-deterministic order, thus creating
705 // non-deterministic def->use chains.
706 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
707 I = NewPhiNodes.begin(),
708 E = NewPhiNodes.end();
709 I != E;) {
710 PHINode *PN = I->second;
712 // If this PHI node merges one value and/or undefs, get the value.
713 if (Value *V = SimplifyInstruction(PN, SQ)) {
714 PN->replaceAllUsesWith(V);
715 PN->eraseFromParent();
716 NewPhiNodes.erase(I++);
717 EliminatedAPHI = true;
718 continue;
720 ++I;
724 // At this point, the renamer has added entries to PHI nodes for all reachable
725 // code. Unfortunately, there may be unreachable blocks which the renamer
726 // hasn't traversed. If this is the case, the PHI nodes may not
727 // have incoming values for all predecessors. Loop over all PHI nodes we have
728 // created, inserting undef values if they are missing any incoming values.
729 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
730 I = NewPhiNodes.begin(),
731 E = NewPhiNodes.end();
732 I != E; ++I) {
733 // We want to do this once per basic block. As such, only process a block
734 // when we find the PHI that is the first entry in the block.
735 PHINode *SomePHI = I->second;
736 BasicBlock *BB = SomePHI->getParent();
737 if (&BB->front() != SomePHI)
738 continue;
740 // Only do work here if there the PHI nodes are missing incoming values. We
741 // know that all PHI nodes that were inserted in a block will have the same
742 // number of incoming values, so we can just check any of them.
743 if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
744 continue;
746 // Get the preds for BB.
747 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
749 // Ok, now we know that all of the PHI nodes are missing entries for some
750 // basic blocks. Start by sorting the incoming predecessors for efficient
751 // access.
752 auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
753 return BBNumbers.lookup(A) < BBNumbers.lookup(B);
755 llvm::sort(Preds, CompareBBNumbers);
757 // Now we loop through all BB's which have entries in SomePHI and remove
758 // them from the Preds list.
759 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
760 // Do a log(n) search of the Preds list for the entry we want.
761 SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
762 Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i),
763 CompareBBNumbers);
764 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
765 "PHI node has entry for a block which is not a predecessor!");
767 // Remove the entry
768 Preds.erase(EntIt);
771 // At this point, the blocks left in the preds list must have dummy
772 // entries inserted into every PHI nodes for the block. Update all the phi
773 // nodes in this block that we are inserting (there could be phis before
774 // mem2reg runs).
775 unsigned NumBadPreds = SomePHI->getNumIncomingValues();
776 BasicBlock::iterator BBI = BB->begin();
777 while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
778 SomePHI->getNumIncomingValues() == NumBadPreds) {
779 Value *UndefVal = UndefValue::get(SomePHI->getType());
780 for (BasicBlock *Pred : Preds)
781 SomePHI->addIncoming(UndefVal, Pred);
785 NewPhiNodes.clear();
788 /// Determine which blocks the value is live in.
790 /// These are blocks which lead to uses. Knowing this allows us to avoid
791 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
792 /// inserted phi nodes would be dead).
793 void PromoteMem2Reg::ComputeLiveInBlocks(
794 AllocaInst *AI, AllocaInfo &Info,
795 const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
796 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
797 // To determine liveness, we must iterate through the predecessors of blocks
798 // where the def is live. Blocks are added to the worklist if we need to
799 // check their predecessors. Start with all the using blocks.
800 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
801 Info.UsingBlocks.end());
803 // If any of the using blocks is also a definition block, check to see if the
804 // definition occurs before or after the use. If it happens before the use,
805 // the value isn't really live-in.
806 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
807 BasicBlock *BB = LiveInBlockWorklist[i];
808 if (!DefBlocks.count(BB))
809 continue;
811 // Okay, this is a block that both uses and defines the value. If the first
812 // reference to the alloca is a def (store), then we know it isn't live-in.
813 for (BasicBlock::iterator I = BB->begin();; ++I) {
814 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
815 if (SI->getOperand(1) != AI)
816 continue;
818 // We found a store to the alloca before a load. The alloca is not
819 // actually live-in here.
820 LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
821 LiveInBlockWorklist.pop_back();
822 --i;
823 --e;
824 break;
827 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
828 if (LI->getOperand(0) != AI)
829 continue;
831 // Okay, we found a load before a store to the alloca. It is actually
832 // live into this block.
833 break;
838 // Now that we have a set of blocks where the phi is live-in, recursively add
839 // their predecessors until we find the full region the value is live.
840 while (!LiveInBlockWorklist.empty()) {
841 BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
843 // The block really is live in here, insert it into the set. If already in
844 // the set, then it has already been processed.
845 if (!LiveInBlocks.insert(BB).second)
846 continue;
848 // Since the value is live into BB, it is either defined in a predecessor or
849 // live into it to. Add the preds to the worklist unless they are a
850 // defining block.
851 for (BasicBlock *P : predecessors(BB)) {
852 // The value is not live into a predecessor if it defines the value.
853 if (DefBlocks.count(P))
854 continue;
856 // Otherwise it is, add to the worklist.
857 LiveInBlockWorklist.push_back(P);
862 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
864 /// Returns true if there wasn't already a phi-node for that variable
865 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
866 unsigned &Version) {
867 // Look up the basic-block in question.
868 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
870 // If the BB already has a phi node added for the i'th alloca then we're done!
871 if (PN)
872 return false;
874 // Create a PhiNode using the dereferenced type... and add the phi-node to the
875 // BasicBlock.
876 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
877 Allocas[AllocaNo]->getName() + "." + Twine(Version++),
878 &BB->front());
879 ++NumPHIInsert;
880 PhiToAllocaMap[PN] = AllocaNo;
881 return true;
884 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
885 /// create a merged location incorporating \p DL, or to set \p DL directly.
886 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
887 bool ApplyMergedLoc) {
888 if (ApplyMergedLoc)
889 PN->applyMergedLocation(PN->getDebugLoc(), DL);
890 else
891 PN->setDebugLoc(DL);
894 /// Recursively traverse the CFG of the function, renaming loads and
895 /// stores to the allocas which we are promoting.
897 /// IncomingVals indicates what value each Alloca contains on exit from the
898 /// predecessor block Pred.
899 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
900 RenamePassData::ValVector &IncomingVals,
901 RenamePassData::LocationVector &IncomingLocs,
902 std::vector<RenamePassData> &Worklist) {
903 NextIteration:
904 // If we are inserting any phi nodes into this BB, they will already be in the
905 // block.
906 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
907 // If we have PHI nodes to update, compute the number of edges from Pred to
908 // BB.
909 if (PhiToAllocaMap.count(APN)) {
910 // We want to be able to distinguish between PHI nodes being inserted by
911 // this invocation of mem2reg from those phi nodes that already existed in
912 // the IR before mem2reg was run. We determine that APN is being inserted
913 // because it is missing incoming edges. All other PHI nodes being
914 // inserted by this pass of mem2reg will have the same number of incoming
915 // operands so far. Remember this count.
916 unsigned NewPHINumOperands = APN->getNumOperands();
918 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
919 assert(NumEdges && "Must be at least one edge from Pred to BB!");
921 // Add entries for all the phis.
922 BasicBlock::iterator PNI = BB->begin();
923 do {
924 unsigned AllocaNo = PhiToAllocaMap[APN];
926 // Update the location of the phi node.
927 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
928 APN->getNumIncomingValues() > 0);
930 // Add N incoming values to the PHI node.
931 for (unsigned i = 0; i != NumEdges; ++i)
932 APN->addIncoming(IncomingVals[AllocaNo], Pred);
934 // The currently active variable for this block is now the PHI.
935 IncomingVals[AllocaNo] = APN;
936 for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo])
937 ConvertDebugDeclareToDebugValue(DII, APN, DIB);
939 // Get the next phi node.
940 ++PNI;
941 APN = dyn_cast<PHINode>(PNI);
942 if (!APN)
943 break;
945 // Verify that it is missing entries. If not, it is not being inserted
946 // by this mem2reg invocation so we want to ignore it.
947 } while (APN->getNumOperands() == NewPHINumOperands);
951 // Don't revisit blocks.
952 if (!Visited.insert(BB).second)
953 return;
955 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
956 Instruction *I = &*II++; // get the instruction, increment iterator
958 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
959 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
960 if (!Src)
961 continue;
963 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
964 if (AI == AllocaLookup.end())
965 continue;
967 Value *V = IncomingVals[AI->second];
969 // If the load was marked as nonnull we don't want to lose
970 // that information when we erase this Load. So we preserve
971 // it with an assume.
972 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
973 !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT))
974 addAssumeNonNull(AC, LI);
976 // Anything using the load now uses the current value.
977 LI->replaceAllUsesWith(V);
978 BB->getInstList().erase(LI);
979 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
980 // Delete this instruction and mark the name as the current holder of the
981 // value
982 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
983 if (!Dest)
984 continue;
986 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
987 if (ai == AllocaLookup.end())
988 continue;
990 // what value were we writing?
991 unsigned AllocaNo = ai->second;
992 IncomingVals[AllocaNo] = SI->getOperand(0);
994 // Record debuginfo for the store before removing it.
995 IncomingLocs[AllocaNo] = SI->getDebugLoc();
996 for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second])
997 ConvertDebugDeclareToDebugValue(DII, SI, DIB);
998 BB->getInstList().erase(SI);
1002 // 'Recurse' to our successors.
1003 succ_iterator I = succ_begin(BB), E = succ_end(BB);
1004 if (I == E)
1005 return;
1007 // Keep track of the successors so we don't visit the same successor twice
1008 SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1010 // Handle the first successor without using the worklist.
1011 VisitedSuccs.insert(*I);
1012 Pred = BB;
1013 BB = *I;
1014 ++I;
1016 for (; I != E; ++I)
1017 if (VisitedSuccs.insert(*I).second)
1018 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
1020 goto NextIteration;
1023 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1024 AssumptionCache *AC) {
1025 // If there is nothing to do, bail out...
1026 if (Allocas.empty())
1027 return;
1029 PromoteMem2Reg(Allocas, DT, AC).run();