1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file promotes memory references to be register references. It promotes
10 // alloca instructions which only have loads and stores as uses. An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/TinyPtrVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
57 #define DEBUG_TYPE "mem2reg"
59 STATISTIC(NumLocalPromoted
, "Number of alloca's promoted within one block");
60 STATISTIC(NumSingleStore
, "Number of alloca's promoted with a single store");
61 STATISTIC(NumDeadAlloca
, "Number of dead alloca's removed");
62 STATISTIC(NumPHIInsert
, "Number of PHI nodes inserted");
64 bool llvm::isAllocaPromotable(const AllocaInst
*AI
) {
65 // FIXME: If the memory unit is of pointer or integer type, we can permit
66 // assignments to subsections of the memory unit.
67 unsigned AS
= AI
->getType()->getAddressSpace();
69 // Only allow direct and non-volatile loads and stores...
70 for (const User
*U
: AI
->users()) {
71 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
72 // Note that atomic loads can be transformed; atomic semantics do
73 // not have any meaning for a local alloca.
76 } else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
77 if (SI
->getOperand(0) == AI
)
78 return false; // Don't allow a store OF the AI, only INTO the AI.
79 // Note that atomic stores can be transformed; atomic semantics do
80 // not have any meaning for a local alloca.
83 } else if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(U
)) {
84 if (!II
->isLifetimeStartOrEnd())
86 } else if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(U
)) {
87 if (BCI
->getType() != Type::getInt8PtrTy(U
->getContext(), AS
))
89 if (!onlyUsedByLifetimeMarkers(BCI
))
91 } else if (const GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(U
)) {
92 if (GEPI
->getType() != Type::getInt8PtrTy(U
->getContext(), AS
))
94 if (!GEPI
->hasAllZeroIndices())
96 if (!onlyUsedByLifetimeMarkers(GEPI
))
109 SmallVector
<BasicBlock
*, 32> DefiningBlocks
;
110 SmallVector
<BasicBlock
*, 32> UsingBlocks
;
112 StoreInst
*OnlyStore
;
113 BasicBlock
*OnlyBlock
;
114 bool OnlyUsedInOneBlock
;
116 Value
*AllocaPointerVal
;
117 TinyPtrVector
<DbgVariableIntrinsic
*> DbgDeclares
;
120 DefiningBlocks
.clear();
124 OnlyUsedInOneBlock
= true;
125 AllocaPointerVal
= nullptr;
129 /// Scan the uses of the specified alloca, filling in the AllocaInfo used
130 /// by the rest of the pass to reason about the uses of this alloca.
131 void AnalyzeAlloca(AllocaInst
*AI
) {
134 // As we scan the uses of the alloca instruction, keep track of stores,
135 // and decide whether all of the loads and stores to the alloca are within
136 // the same basic block.
137 for (auto UI
= AI
->user_begin(), E
= AI
->user_end(); UI
!= E
;) {
138 Instruction
*User
= cast
<Instruction
>(*UI
++);
140 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
141 // Remember the basic blocks which define new values for the alloca
142 DefiningBlocks
.push_back(SI
->getParent());
143 AllocaPointerVal
= SI
->getOperand(0);
146 LoadInst
*LI
= cast
<LoadInst
>(User
);
147 // Otherwise it must be a load instruction, keep track of variable
149 UsingBlocks
.push_back(LI
->getParent());
150 AllocaPointerVal
= LI
;
153 if (OnlyUsedInOneBlock
) {
155 OnlyBlock
= User
->getParent();
156 else if (OnlyBlock
!= User
->getParent())
157 OnlyUsedInOneBlock
= false;
161 DbgDeclares
= FindDbgAddrUses(AI
);
165 /// Data package used by RenamePass().
166 struct RenamePassData
{
167 using ValVector
= std::vector
<Value
*>;
168 using LocationVector
= std::vector
<DebugLoc
>;
170 RenamePassData(BasicBlock
*B
, BasicBlock
*P
, ValVector V
, LocationVector L
)
171 : BB(B
), Pred(P
), Values(std::move(V
)), Locations(std::move(L
)) {}
176 LocationVector Locations
;
179 /// This assigns and keeps a per-bb relative ordering of load/store
180 /// instructions in the block that directly load or store an alloca.
182 /// This functionality is important because it avoids scanning large basic
183 /// blocks multiple times when promoting many allocas in the same block.
184 class LargeBlockInfo
{
185 /// For each instruction that we track, keep the index of the
188 /// The index starts out as the number of the instruction from the start of
190 DenseMap
<const Instruction
*, unsigned> InstNumbers
;
194 /// This code only looks at accesses to allocas.
195 static bool isInterestingInstruction(const Instruction
*I
) {
196 return (isa
<LoadInst
>(I
) && isa
<AllocaInst
>(I
->getOperand(0))) ||
197 (isa
<StoreInst
>(I
) && isa
<AllocaInst
>(I
->getOperand(1)));
200 /// Get or calculate the index of the specified instruction.
201 unsigned getInstructionIndex(const Instruction
*I
) {
202 assert(isInterestingInstruction(I
) &&
203 "Not a load/store to/from an alloca?");
205 // If we already have this instruction number, return it.
206 DenseMap
<const Instruction
*, unsigned>::iterator It
= InstNumbers
.find(I
);
207 if (It
!= InstNumbers
.end())
210 // Scan the whole block to get the instruction. This accumulates
211 // information for every interesting instruction in the block, in order to
212 // avoid gratuitus rescans.
213 const BasicBlock
*BB
= I
->getParent();
215 for (const Instruction
&BBI
: *BB
)
216 if (isInterestingInstruction(&BBI
))
217 InstNumbers
[&BBI
] = InstNo
++;
218 It
= InstNumbers
.find(I
);
220 assert(It
!= InstNumbers
.end() && "Didn't insert instruction?");
224 void deleteValue(const Instruction
*I
) { InstNumbers
.erase(I
); }
226 void clear() { InstNumbers
.clear(); }
229 struct PromoteMem2Reg
{
230 /// The alloca instructions being promoted.
231 std::vector
<AllocaInst
*> Allocas
;
236 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
239 const SimplifyQuery SQ
;
241 /// Reverse mapping of Allocas.
242 DenseMap
<AllocaInst
*, unsigned> AllocaLookup
;
244 /// The PhiNodes we're adding.
246 /// That map is used to simplify some Phi nodes as we iterate over it, so
247 /// it should have deterministic iterators. We could use a MapVector, but
248 /// since we already maintain a map from BasicBlock* to a stable numbering
249 /// (BBNumbers), the DenseMap is more efficient (also supports removal).
250 DenseMap
<std::pair
<unsigned, unsigned>, PHINode
*> NewPhiNodes
;
252 /// For each PHI node, keep track of which entry in Allocas it corresponds
254 DenseMap
<PHINode
*, unsigned> PhiToAllocaMap
;
256 /// If we are updating an AliasSetTracker, then for each alloca that is of
257 /// pointer type, we keep track of what to copyValue to the inserted PHI
259 std::vector
<Value
*> PointerAllocaValues
;
261 /// For each alloca, we keep track of the dbg.declare intrinsic that
262 /// describes it, if any, so that we can convert it to a dbg.value
263 /// intrinsic if the alloca gets promoted.
264 SmallVector
<TinyPtrVector
<DbgVariableIntrinsic
*>, 8> AllocaDbgDeclares
;
266 /// The set of basic blocks the renamer has already visited.
267 SmallPtrSet
<BasicBlock
*, 16> Visited
;
269 /// Contains a stable numbering of basic blocks to avoid non-determinstic
271 DenseMap
<BasicBlock
*, unsigned> BBNumbers
;
273 /// Lazily compute the number of predecessors a block has.
274 DenseMap
<const BasicBlock
*, unsigned> BBNumPreds
;
277 PromoteMem2Reg(ArrayRef
<AllocaInst
*> Allocas
, DominatorTree
&DT
,
279 : Allocas(Allocas
.begin(), Allocas
.end()), DT(DT
),
280 DIB(*DT
.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
281 AC(AC
), SQ(DT
.getRoot()->getParent()->getParent()->getDataLayout(),
287 void RemoveFromAllocasList(unsigned &AllocaIdx
) {
288 Allocas
[AllocaIdx
] = Allocas
.back();
293 unsigned getNumPreds(const BasicBlock
*BB
) {
294 unsigned &NP
= BBNumPreds
[BB
];
296 NP
= pred_size(BB
) + 1;
300 void ComputeLiveInBlocks(AllocaInst
*AI
, AllocaInfo
&Info
,
301 const SmallPtrSetImpl
<BasicBlock
*> &DefBlocks
,
302 SmallPtrSetImpl
<BasicBlock
*> &LiveInBlocks
);
303 void RenamePass(BasicBlock
*BB
, BasicBlock
*Pred
,
304 RenamePassData::ValVector
&IncVals
,
305 RenamePassData::LocationVector
&IncLocs
,
306 std::vector
<RenamePassData
> &Worklist
);
307 bool QueuePhiNode(BasicBlock
*BB
, unsigned AllocaIdx
, unsigned &Version
);
310 } // end anonymous namespace
312 /// Given a LoadInst LI this adds assume(LI != null) after it.
313 static void addAssumeNonNull(AssumptionCache
*AC
, LoadInst
*LI
) {
314 Function
*AssumeIntrinsic
=
315 Intrinsic::getDeclaration(LI
->getModule(), Intrinsic::assume
);
316 ICmpInst
*LoadNotNull
= new ICmpInst(ICmpInst::ICMP_NE
, LI
,
317 Constant::getNullValue(LI
->getType()));
318 LoadNotNull
->insertAfter(LI
);
319 CallInst
*CI
= CallInst::Create(AssumeIntrinsic
, {LoadNotNull
});
320 CI
->insertAfter(LoadNotNull
);
321 AC
->registerAssumption(CI
);
324 static void removeLifetimeIntrinsicUsers(AllocaInst
*AI
) {
325 // Knowing that this alloca is promotable, we know that it's safe to kill all
326 // instructions except for load and store.
328 for (auto UI
= AI
->user_begin(), UE
= AI
->user_end(); UI
!= UE
;) {
329 Instruction
*I
= cast
<Instruction
>(*UI
);
331 if (isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
))
334 if (!I
->getType()->isVoidTy()) {
335 // The only users of this bitcast/GEP instruction are lifetime intrinsics.
336 // Follow the use/def chain to erase them now instead of leaving it for
337 // dead code elimination later.
338 for (auto UUI
= I
->user_begin(), UUE
= I
->user_end(); UUI
!= UUE
;) {
339 Instruction
*Inst
= cast
<Instruction
>(*UUI
);
341 Inst
->eraseFromParent();
344 I
->eraseFromParent();
348 /// Rewrite as many loads as possible given a single store.
350 /// When there is only a single store, we can use the domtree to trivially
351 /// replace all of the dominated loads with the stored value. Do so, and return
352 /// true if this has successfully promoted the alloca entirely. If this returns
353 /// false there were some loads which were not dominated by the single store
354 /// and thus must be phi-ed with undef. We fall back to the standard alloca
355 /// promotion algorithm in that case.
356 static bool rewriteSingleStoreAlloca(AllocaInst
*AI
, AllocaInfo
&Info
,
357 LargeBlockInfo
&LBI
, const DataLayout
&DL
,
358 DominatorTree
&DT
, AssumptionCache
*AC
) {
359 StoreInst
*OnlyStore
= Info
.OnlyStore
;
360 bool StoringGlobalVal
= !isa
<Instruction
>(OnlyStore
->getOperand(0));
361 BasicBlock
*StoreBB
= OnlyStore
->getParent();
364 // Clear out UsingBlocks. We will reconstruct it here if needed.
365 Info
.UsingBlocks
.clear();
367 for (auto UI
= AI
->user_begin(), E
= AI
->user_end(); UI
!= E
;) {
368 Instruction
*UserInst
= cast
<Instruction
>(*UI
++);
369 if (!isa
<LoadInst
>(UserInst
)) {
370 assert(UserInst
== OnlyStore
&& "Should only have load/stores");
373 LoadInst
*LI
= cast
<LoadInst
>(UserInst
);
375 // Okay, if we have a load from the alloca, we want to replace it with the
376 // only value stored to the alloca. We can do this if the value is
377 // dominated by the store. If not, we use the rest of the mem2reg machinery
378 // to insert the phi nodes as needed.
379 if (!StoringGlobalVal
) { // Non-instructions are always dominated.
380 if (LI
->getParent() == StoreBB
) {
381 // If we have a use that is in the same block as the store, compare the
382 // indices of the two instructions to see which one came first. If the
383 // load came before the store, we can't handle it.
384 if (StoreIndex
== -1)
385 StoreIndex
= LBI
.getInstructionIndex(OnlyStore
);
387 if (unsigned(StoreIndex
) > LBI
.getInstructionIndex(LI
)) {
388 // Can't handle this load, bail out.
389 Info
.UsingBlocks
.push_back(StoreBB
);
392 } else if (LI
->getParent() != StoreBB
&&
393 !DT
.dominates(StoreBB
, LI
->getParent())) {
394 // If the load and store are in different blocks, use BB dominance to
395 // check their relationships. If the store doesn't dom the use, bail
397 Info
.UsingBlocks
.push_back(LI
->getParent());
402 // Otherwise, we *can* safely rewrite this load.
403 Value
*ReplVal
= OnlyStore
->getOperand(0);
404 // If the replacement value is the load, this must occur in unreachable
407 ReplVal
= UndefValue::get(LI
->getType());
409 // If the load was marked as nonnull we don't want to lose
410 // that information when we erase this Load. So we preserve
411 // it with an assume.
412 if (AC
&& LI
->getMetadata(LLVMContext::MD_nonnull
) &&
413 !isKnownNonZero(ReplVal
, DL
, 0, AC
, LI
, &DT
))
414 addAssumeNonNull(AC
, LI
);
416 LI
->replaceAllUsesWith(ReplVal
);
417 LI
->eraseFromParent();
421 // Finally, after the scan, check to see if the store is all that is left.
422 if (!Info
.UsingBlocks
.empty())
423 return false; // If not, we'll have to fall back for the remainder.
425 // Record debuginfo for the store and remove the declaration's
427 for (DbgVariableIntrinsic
*DII
: Info
.DbgDeclares
) {
428 DIBuilder
DIB(*AI
->getModule(), /*AllowUnresolved*/ false);
429 ConvertDebugDeclareToDebugValue(DII
, Info
.OnlyStore
, DIB
);
430 DII
->eraseFromParent();
431 LBI
.deleteValue(DII
);
433 // Remove the (now dead) store and alloca.
434 Info
.OnlyStore
->eraseFromParent();
435 LBI
.deleteValue(Info
.OnlyStore
);
437 AI
->eraseFromParent();
442 /// Many allocas are only used within a single basic block. If this is the
443 /// case, avoid traversing the CFG and inserting a lot of potentially useless
444 /// PHI nodes by just performing a single linear pass over the basic block
445 /// using the Alloca.
447 /// If we cannot promote this alloca (because it is read before it is written),
448 /// return false. This is necessary in cases where, due to control flow, the
449 /// alloca is undefined only on some control flow paths. e.g. code like
450 /// this is correct in LLVM IR:
451 /// // A is an alloca with no stores so far
454 /// if (!first_iteration)
458 static bool promoteSingleBlockAlloca(AllocaInst
*AI
, const AllocaInfo
&Info
,
460 const DataLayout
&DL
,
462 AssumptionCache
*AC
) {
463 // The trickiest case to handle is when we have large blocks. Because of this,
464 // this code is optimized assuming that large blocks happen. This does not
465 // significantly pessimize the small block case. This uses LargeBlockInfo to
466 // make it efficient to get the index of various operations in the block.
468 // Walk the use-def list of the alloca, getting the locations of all stores.
469 using StoresByIndexTy
= SmallVector
<std::pair
<unsigned, StoreInst
*>, 64>;
470 StoresByIndexTy StoresByIndex
;
472 for (User
*U
: AI
->users())
473 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
))
474 StoresByIndex
.push_back(std::make_pair(LBI
.getInstructionIndex(SI
), SI
));
476 // Sort the stores by their index, making it efficient to do a lookup with a
478 llvm::sort(StoresByIndex
, less_first());
480 // Walk all of the loads from this alloca, replacing them with the nearest
481 // store above them, if any.
482 for (auto UI
= AI
->user_begin(), E
= AI
->user_end(); UI
!= E
;) {
483 LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
++);
487 unsigned LoadIdx
= LBI
.getInstructionIndex(LI
);
489 // Find the nearest store that has a lower index than this load.
490 StoresByIndexTy::iterator I
=
491 std::lower_bound(StoresByIndex
.begin(), StoresByIndex
.end(),
492 std::make_pair(LoadIdx
,
493 static_cast<StoreInst
*>(nullptr)),
495 if (I
== StoresByIndex
.begin()) {
496 if (StoresByIndex
.empty())
497 // If there are no stores, the load takes the undef value.
498 LI
->replaceAllUsesWith(UndefValue::get(LI
->getType()));
500 // There is no store before this load, bail out (load may be affected
501 // by the following stores - see main comment).
504 // Otherwise, there was a store before this load, the load takes its value.
505 // Note, if the load was marked as nonnull we don't want to lose that
506 // information when we erase it. So we preserve it with an assume.
507 Value
*ReplVal
= std::prev(I
)->second
->getOperand(0);
508 if (AC
&& LI
->getMetadata(LLVMContext::MD_nonnull
) &&
509 !isKnownNonZero(ReplVal
, DL
, 0, AC
, LI
, &DT
))
510 addAssumeNonNull(AC
, LI
);
512 // If the replacement value is the load, this must occur in unreachable
515 ReplVal
= UndefValue::get(LI
->getType());
517 LI
->replaceAllUsesWith(ReplVal
);
520 LI
->eraseFromParent();
524 // Remove the (now dead) stores and alloca.
525 while (!AI
->use_empty()) {
526 StoreInst
*SI
= cast
<StoreInst
>(AI
->user_back());
527 // Record debuginfo for the store before removing it.
528 for (DbgVariableIntrinsic
*DII
: Info
.DbgDeclares
) {
529 DIBuilder
DIB(*AI
->getModule(), /*AllowUnresolved*/ false);
530 ConvertDebugDeclareToDebugValue(DII
, SI
, DIB
);
532 SI
->eraseFromParent();
536 AI
->eraseFromParent();
539 // The alloca's debuginfo can be removed as well.
540 for (DbgVariableIntrinsic
*DII
: Info
.DbgDeclares
) {
541 DII
->eraseFromParent();
542 LBI
.deleteValue(DII
);
549 void PromoteMem2Reg::run() {
550 Function
&F
= *DT
.getRoot()->getParent();
552 AllocaDbgDeclares
.resize(Allocas
.size());
556 ForwardIDFCalculator
IDF(DT
);
558 for (unsigned AllocaNum
= 0; AllocaNum
!= Allocas
.size(); ++AllocaNum
) {
559 AllocaInst
*AI
= Allocas
[AllocaNum
];
561 assert(isAllocaPromotable(AI
) && "Cannot promote non-promotable alloca!");
562 assert(AI
->getParent()->getParent() == &F
&&
563 "All allocas should be in the same function, which is same as DF!");
565 removeLifetimeIntrinsicUsers(AI
);
567 if (AI
->use_empty()) {
568 // If there are no uses of the alloca, just delete it now.
569 AI
->eraseFromParent();
571 // Remove the alloca from the Allocas list, since it has been processed
572 RemoveFromAllocasList(AllocaNum
);
577 // Calculate the set of read and write-locations for each alloca. This is
578 // analogous to finding the 'uses' and 'definitions' of each variable.
579 Info
.AnalyzeAlloca(AI
);
581 // If there is only a single store to this value, replace any loads of
582 // it that are directly dominated by the definition with the value stored.
583 if (Info
.DefiningBlocks
.size() == 1) {
584 if (rewriteSingleStoreAlloca(AI
, Info
, LBI
, SQ
.DL
, DT
, AC
)) {
585 // The alloca has been processed, move on.
586 RemoveFromAllocasList(AllocaNum
);
592 // If the alloca is only read and written in one basic block, just perform a
593 // linear sweep over the block to eliminate it.
594 if (Info
.OnlyUsedInOneBlock
&&
595 promoteSingleBlockAlloca(AI
, Info
, LBI
, SQ
.DL
, DT
, AC
)) {
596 // The alloca has been processed, move on.
597 RemoveFromAllocasList(AllocaNum
);
601 // If we haven't computed a numbering for the BB's in the function, do so
603 if (BBNumbers
.empty()) {
606 BBNumbers
[&BB
] = ID
++;
609 // Remember the dbg.declare intrinsic describing this alloca, if any.
610 if (!Info
.DbgDeclares
.empty())
611 AllocaDbgDeclares
[AllocaNum
] = Info
.DbgDeclares
;
613 // Keep the reverse mapping of the 'Allocas' array for the rename pass.
614 AllocaLookup
[Allocas
[AllocaNum
]] = AllocaNum
;
616 // At this point, we're committed to promoting the alloca using IDF's, and
617 // the standard SSA construction algorithm. Determine which blocks need PHI
618 // nodes and see if we can optimize out some work by avoiding insertion of
621 // Unique the set of defining blocks for efficient lookup.
622 SmallPtrSet
<BasicBlock
*, 32> DefBlocks
;
623 DefBlocks
.insert(Info
.DefiningBlocks
.begin(), Info
.DefiningBlocks
.end());
625 // Determine which blocks the value is live in. These are blocks which lead
627 SmallPtrSet
<BasicBlock
*, 32> LiveInBlocks
;
628 ComputeLiveInBlocks(AI
, Info
, DefBlocks
, LiveInBlocks
);
630 // At this point, we're committed to promoting the alloca using IDF's, and
631 // the standard SSA construction algorithm. Determine which blocks need phi
632 // nodes and see if we can optimize out some work by avoiding insertion of
634 IDF
.setLiveInBlocks(LiveInBlocks
);
635 IDF
.setDefiningBlocks(DefBlocks
);
636 SmallVector
<BasicBlock
*, 32> PHIBlocks
;
637 IDF
.calculate(PHIBlocks
);
638 if (PHIBlocks
.size() > 1)
639 llvm::sort(PHIBlocks
, [this](BasicBlock
*A
, BasicBlock
*B
) {
640 return BBNumbers
.lookup(A
) < BBNumbers
.lookup(B
);
643 unsigned CurrentVersion
= 0;
644 for (BasicBlock
*BB
: PHIBlocks
)
645 QueuePhiNode(BB
, AllocaNum
, CurrentVersion
);
649 return; // All of the allocas must have been trivial!
653 // Set the incoming values for the basic block to be null values for all of
654 // the alloca's. We do this in case there is a load of a value that has not
655 // been stored yet. In this case, it will get this null value.
656 RenamePassData::ValVector
Values(Allocas
.size());
657 for (unsigned i
= 0, e
= Allocas
.size(); i
!= e
; ++i
)
658 Values
[i
] = UndefValue::get(Allocas
[i
]->getAllocatedType());
660 // When handling debug info, treat all incoming values as if they have unknown
661 // locations until proven otherwise.
662 RenamePassData::LocationVector
Locations(Allocas
.size());
664 // Walks all basic blocks in the function performing the SSA rename algorithm
665 // and inserting the phi nodes we marked as necessary
666 std::vector
<RenamePassData
> RenamePassWorkList
;
667 RenamePassWorkList
.emplace_back(&F
.front(), nullptr, std::move(Values
),
668 std::move(Locations
));
670 RenamePassData RPD
= std::move(RenamePassWorkList
.back());
671 RenamePassWorkList
.pop_back();
672 // RenamePass may add new worklist entries.
673 RenamePass(RPD
.BB
, RPD
.Pred
, RPD
.Values
, RPD
.Locations
, RenamePassWorkList
);
674 } while (!RenamePassWorkList
.empty());
676 // The renamer uses the Visited set to avoid infinite loops. Clear it now.
679 // Remove the allocas themselves from the function.
680 for (Instruction
*A
: Allocas
) {
681 // If there are any uses of the alloca instructions left, they must be in
682 // unreachable basic blocks that were not processed by walking the dominator
683 // tree. Just delete the users now.
685 A
->replaceAllUsesWith(UndefValue::get(A
->getType()));
686 A
->eraseFromParent();
689 // Remove alloca's dbg.declare instrinsics from the function.
690 for (auto &Declares
: AllocaDbgDeclares
)
691 for (auto *DII
: Declares
)
692 DII
->eraseFromParent();
694 // Loop over all of the PHI nodes and see if there are any that we can get
695 // rid of because they merge all of the same incoming values. This can
696 // happen due to undef values coming into the PHI nodes. This process is
697 // iterative, because eliminating one PHI node can cause others to be removed.
698 bool EliminatedAPHI
= true;
699 while (EliminatedAPHI
) {
700 EliminatedAPHI
= false;
702 // Iterating over NewPhiNodes is deterministic, so it is safe to try to
703 // simplify and RAUW them as we go. If it was not, we could add uses to
704 // the values we replace with in a non-deterministic order, thus creating
705 // non-deterministic def->use chains.
706 for (DenseMap
<std::pair
<unsigned, unsigned>, PHINode
*>::iterator
707 I
= NewPhiNodes
.begin(),
708 E
= NewPhiNodes
.end();
710 PHINode
*PN
= I
->second
;
712 // If this PHI node merges one value and/or undefs, get the value.
713 if (Value
*V
= SimplifyInstruction(PN
, SQ
)) {
714 PN
->replaceAllUsesWith(V
);
715 PN
->eraseFromParent();
716 NewPhiNodes
.erase(I
++);
717 EliminatedAPHI
= true;
724 // At this point, the renamer has added entries to PHI nodes for all reachable
725 // code. Unfortunately, there may be unreachable blocks which the renamer
726 // hasn't traversed. If this is the case, the PHI nodes may not
727 // have incoming values for all predecessors. Loop over all PHI nodes we have
728 // created, inserting undef values if they are missing any incoming values.
729 for (DenseMap
<std::pair
<unsigned, unsigned>, PHINode
*>::iterator
730 I
= NewPhiNodes
.begin(),
731 E
= NewPhiNodes
.end();
733 // We want to do this once per basic block. As such, only process a block
734 // when we find the PHI that is the first entry in the block.
735 PHINode
*SomePHI
= I
->second
;
736 BasicBlock
*BB
= SomePHI
->getParent();
737 if (&BB
->front() != SomePHI
)
740 // Only do work here if there the PHI nodes are missing incoming values. We
741 // know that all PHI nodes that were inserted in a block will have the same
742 // number of incoming values, so we can just check any of them.
743 if (SomePHI
->getNumIncomingValues() == getNumPreds(BB
))
746 // Get the preds for BB.
747 SmallVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
749 // Ok, now we know that all of the PHI nodes are missing entries for some
750 // basic blocks. Start by sorting the incoming predecessors for efficient
752 auto CompareBBNumbers
= [this](BasicBlock
*A
, BasicBlock
*B
) {
753 return BBNumbers
.lookup(A
) < BBNumbers
.lookup(B
);
755 llvm::sort(Preds
, CompareBBNumbers
);
757 // Now we loop through all BB's which have entries in SomePHI and remove
758 // them from the Preds list.
759 for (unsigned i
= 0, e
= SomePHI
->getNumIncomingValues(); i
!= e
; ++i
) {
760 // Do a log(n) search of the Preds list for the entry we want.
761 SmallVectorImpl
<BasicBlock
*>::iterator EntIt
= std::lower_bound(
762 Preds
.begin(), Preds
.end(), SomePHI
->getIncomingBlock(i
),
764 assert(EntIt
!= Preds
.end() && *EntIt
== SomePHI
->getIncomingBlock(i
) &&
765 "PHI node has entry for a block which is not a predecessor!");
771 // At this point, the blocks left in the preds list must have dummy
772 // entries inserted into every PHI nodes for the block. Update all the phi
773 // nodes in this block that we are inserting (there could be phis before
775 unsigned NumBadPreds
= SomePHI
->getNumIncomingValues();
776 BasicBlock::iterator BBI
= BB
->begin();
777 while ((SomePHI
= dyn_cast
<PHINode
>(BBI
++)) &&
778 SomePHI
->getNumIncomingValues() == NumBadPreds
) {
779 Value
*UndefVal
= UndefValue::get(SomePHI
->getType());
780 for (BasicBlock
*Pred
: Preds
)
781 SomePHI
->addIncoming(UndefVal
, Pred
);
788 /// Determine which blocks the value is live in.
790 /// These are blocks which lead to uses. Knowing this allows us to avoid
791 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
792 /// inserted phi nodes would be dead).
793 void PromoteMem2Reg::ComputeLiveInBlocks(
794 AllocaInst
*AI
, AllocaInfo
&Info
,
795 const SmallPtrSetImpl
<BasicBlock
*> &DefBlocks
,
796 SmallPtrSetImpl
<BasicBlock
*> &LiveInBlocks
) {
797 // To determine liveness, we must iterate through the predecessors of blocks
798 // where the def is live. Blocks are added to the worklist if we need to
799 // check their predecessors. Start with all the using blocks.
800 SmallVector
<BasicBlock
*, 64> LiveInBlockWorklist(Info
.UsingBlocks
.begin(),
801 Info
.UsingBlocks
.end());
803 // If any of the using blocks is also a definition block, check to see if the
804 // definition occurs before or after the use. If it happens before the use,
805 // the value isn't really live-in.
806 for (unsigned i
= 0, e
= LiveInBlockWorklist
.size(); i
!= e
; ++i
) {
807 BasicBlock
*BB
= LiveInBlockWorklist
[i
];
808 if (!DefBlocks
.count(BB
))
811 // Okay, this is a block that both uses and defines the value. If the first
812 // reference to the alloca is a def (store), then we know it isn't live-in.
813 for (BasicBlock::iterator I
= BB
->begin();; ++I
) {
814 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
815 if (SI
->getOperand(1) != AI
)
818 // We found a store to the alloca before a load. The alloca is not
819 // actually live-in here.
820 LiveInBlockWorklist
[i
] = LiveInBlockWorklist
.back();
821 LiveInBlockWorklist
.pop_back();
827 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
828 if (LI
->getOperand(0) != AI
)
831 // Okay, we found a load before a store to the alloca. It is actually
832 // live into this block.
838 // Now that we have a set of blocks where the phi is live-in, recursively add
839 // their predecessors until we find the full region the value is live.
840 while (!LiveInBlockWorklist
.empty()) {
841 BasicBlock
*BB
= LiveInBlockWorklist
.pop_back_val();
843 // The block really is live in here, insert it into the set. If already in
844 // the set, then it has already been processed.
845 if (!LiveInBlocks
.insert(BB
).second
)
848 // Since the value is live into BB, it is either defined in a predecessor or
849 // live into it to. Add the preds to the worklist unless they are a
851 for (BasicBlock
*P
: predecessors(BB
)) {
852 // The value is not live into a predecessor if it defines the value.
853 if (DefBlocks
.count(P
))
856 // Otherwise it is, add to the worklist.
857 LiveInBlockWorklist
.push_back(P
);
862 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
864 /// Returns true if there wasn't already a phi-node for that variable
865 bool PromoteMem2Reg::QueuePhiNode(BasicBlock
*BB
, unsigned AllocaNo
,
867 // Look up the basic-block in question.
868 PHINode
*&PN
= NewPhiNodes
[std::make_pair(BBNumbers
[BB
], AllocaNo
)];
870 // If the BB already has a phi node added for the i'th alloca then we're done!
874 // Create a PhiNode using the dereferenced type... and add the phi-node to the
876 PN
= PHINode::Create(Allocas
[AllocaNo
]->getAllocatedType(), getNumPreds(BB
),
877 Allocas
[AllocaNo
]->getName() + "." + Twine(Version
++),
880 PhiToAllocaMap
[PN
] = AllocaNo
;
884 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
885 /// create a merged location incorporating \p DL, or to set \p DL directly.
886 static void updateForIncomingValueLocation(PHINode
*PN
, DebugLoc DL
,
887 bool ApplyMergedLoc
) {
889 PN
->applyMergedLocation(PN
->getDebugLoc(), DL
);
894 /// Recursively traverse the CFG of the function, renaming loads and
895 /// stores to the allocas which we are promoting.
897 /// IncomingVals indicates what value each Alloca contains on exit from the
898 /// predecessor block Pred.
899 void PromoteMem2Reg::RenamePass(BasicBlock
*BB
, BasicBlock
*Pred
,
900 RenamePassData::ValVector
&IncomingVals
,
901 RenamePassData::LocationVector
&IncomingLocs
,
902 std::vector
<RenamePassData
> &Worklist
) {
904 // If we are inserting any phi nodes into this BB, they will already be in the
906 if (PHINode
*APN
= dyn_cast
<PHINode
>(BB
->begin())) {
907 // If we have PHI nodes to update, compute the number of edges from Pred to
909 if (PhiToAllocaMap
.count(APN
)) {
910 // We want to be able to distinguish between PHI nodes being inserted by
911 // this invocation of mem2reg from those phi nodes that already existed in
912 // the IR before mem2reg was run. We determine that APN is being inserted
913 // because it is missing incoming edges. All other PHI nodes being
914 // inserted by this pass of mem2reg will have the same number of incoming
915 // operands so far. Remember this count.
916 unsigned NewPHINumOperands
= APN
->getNumOperands();
918 unsigned NumEdges
= std::count(succ_begin(Pred
), succ_end(Pred
), BB
);
919 assert(NumEdges
&& "Must be at least one edge from Pred to BB!");
921 // Add entries for all the phis.
922 BasicBlock::iterator PNI
= BB
->begin();
924 unsigned AllocaNo
= PhiToAllocaMap
[APN
];
926 // Update the location of the phi node.
927 updateForIncomingValueLocation(APN
, IncomingLocs
[AllocaNo
],
928 APN
->getNumIncomingValues() > 0);
930 // Add N incoming values to the PHI node.
931 for (unsigned i
= 0; i
!= NumEdges
; ++i
)
932 APN
->addIncoming(IncomingVals
[AllocaNo
], Pred
);
934 // The currently active variable for this block is now the PHI.
935 IncomingVals
[AllocaNo
] = APN
;
936 for (DbgVariableIntrinsic
*DII
: AllocaDbgDeclares
[AllocaNo
])
937 ConvertDebugDeclareToDebugValue(DII
, APN
, DIB
);
939 // Get the next phi node.
941 APN
= dyn_cast
<PHINode
>(PNI
);
945 // Verify that it is missing entries. If not, it is not being inserted
946 // by this mem2reg invocation so we want to ignore it.
947 } while (APN
->getNumOperands() == NewPHINumOperands
);
951 // Don't revisit blocks.
952 if (!Visited
.insert(BB
).second
)
955 for (BasicBlock::iterator II
= BB
->begin(); !II
->isTerminator();) {
956 Instruction
*I
= &*II
++; // get the instruction, increment iterator
958 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
959 AllocaInst
*Src
= dyn_cast
<AllocaInst
>(LI
->getPointerOperand());
963 DenseMap
<AllocaInst
*, unsigned>::iterator AI
= AllocaLookup
.find(Src
);
964 if (AI
== AllocaLookup
.end())
967 Value
*V
= IncomingVals
[AI
->second
];
969 // If the load was marked as nonnull we don't want to lose
970 // that information when we erase this Load. So we preserve
971 // it with an assume.
972 if (AC
&& LI
->getMetadata(LLVMContext::MD_nonnull
) &&
973 !isKnownNonZero(V
, SQ
.DL
, 0, AC
, LI
, &DT
))
974 addAssumeNonNull(AC
, LI
);
976 // Anything using the load now uses the current value.
977 LI
->replaceAllUsesWith(V
);
978 BB
->getInstList().erase(LI
);
979 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
980 // Delete this instruction and mark the name as the current holder of the
982 AllocaInst
*Dest
= dyn_cast
<AllocaInst
>(SI
->getPointerOperand());
986 DenseMap
<AllocaInst
*, unsigned>::iterator ai
= AllocaLookup
.find(Dest
);
987 if (ai
== AllocaLookup
.end())
990 // what value were we writing?
991 unsigned AllocaNo
= ai
->second
;
992 IncomingVals
[AllocaNo
] = SI
->getOperand(0);
994 // Record debuginfo for the store before removing it.
995 IncomingLocs
[AllocaNo
] = SI
->getDebugLoc();
996 for (DbgVariableIntrinsic
*DII
: AllocaDbgDeclares
[ai
->second
])
997 ConvertDebugDeclareToDebugValue(DII
, SI
, DIB
);
998 BB
->getInstList().erase(SI
);
1002 // 'Recurse' to our successors.
1003 succ_iterator I
= succ_begin(BB
), E
= succ_end(BB
);
1007 // Keep track of the successors so we don't visit the same successor twice
1008 SmallPtrSet
<BasicBlock
*, 8> VisitedSuccs
;
1010 // Handle the first successor without using the worklist.
1011 VisitedSuccs
.insert(*I
);
1017 if (VisitedSuccs
.insert(*I
).second
)
1018 Worklist
.emplace_back(*I
, Pred
, IncomingVals
, IncomingLocs
);
1023 void llvm::PromoteMemToReg(ArrayRef
<AllocaInst
*> Allocas
, DominatorTree
&DT
,
1024 AssumptionCache
*AC
) {
1025 // If there is nothing to do, bail out...
1026 if (Allocas
.empty())
1029 PromoteMem2Reg(Allocas
, DT
, AC
).run();