Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / Utils / SimplifyCFG.cpp
blobdbd8fb720e4f35e2cad9f125baee95a9b148ad61
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/ConstantRange.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/NoFolder.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Use.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/ValueMapper.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <climits>
72 #include <cstddef>
73 #include <cstdint>
74 #include <iterator>
75 #include <map>
76 #include <set>
77 #include <tuple>
78 #include <utility>
79 #include <vector>
81 using namespace llvm;
82 using namespace PatternMatch;
84 #define DEBUG_TYPE "simplifycfg"
86 // Chosen as 2 so as to be cheap, but still to have enough power to fold
87 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
88 // To catch this, we need to fold a compare and a select, hence '2' being the
89 // minimum reasonable default.
90 static cl::opt<unsigned> PHINodeFoldingThreshold(
91 "phi-node-folding-threshold", cl::Hidden, cl::init(2),
92 cl::desc(
93 "Control the amount of phi node folding to perform (default = 2)"));
95 static cl::opt<bool> DupRet(
96 "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
97 cl::desc("Duplicate return instructions into unconditional branches"));
99 static cl::opt<bool>
100 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
101 cl::desc("Sink common instructions down to the end block"));
103 static cl::opt<bool> HoistCondStores(
104 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
105 cl::desc("Hoist conditional stores if an unconditional store precedes"));
107 static cl::opt<bool> MergeCondStores(
108 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
109 cl::desc("Hoist conditional stores even if an unconditional store does not "
110 "precede - hoist multiple conditional stores into a single "
111 "predicated store"));
113 static cl::opt<bool> MergeCondStoresAggressively(
114 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
115 cl::desc("When merging conditional stores, do so even if the resultant "
116 "basic blocks are unlikely to be if-converted as a result"));
118 static cl::opt<bool> SpeculateOneExpensiveInst(
119 "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
120 cl::desc("Allow exactly one expensive instruction to be speculatively "
121 "executed"));
123 static cl::opt<unsigned> MaxSpeculationDepth(
124 "max-speculation-depth", cl::Hidden, cl::init(10),
125 cl::desc("Limit maximum recursion depth when calculating costs of "
126 "speculatively executed instructions"));
128 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
129 STATISTIC(NumLinearMaps,
130 "Number of switch instructions turned into linear mapping");
131 STATISTIC(NumLookupTables,
132 "Number of switch instructions turned into lookup tables");
133 STATISTIC(
134 NumLookupTablesHoles,
135 "Number of switch instructions turned into lookup tables (holes checked)");
136 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
137 STATISTIC(NumSinkCommons,
138 "Number of common instructions sunk down to the end block");
139 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
141 namespace {
143 // The first field contains the value that the switch produces when a certain
144 // case group is selected, and the second field is a vector containing the
145 // cases composing the case group.
146 using SwitchCaseResultVectorTy =
147 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
149 // The first field contains the phi node that generates a result of the switch
150 // and the second field contains the value generated for a certain case in the
151 // switch for that PHI.
152 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
154 /// ValueEqualityComparisonCase - Represents a case of a switch.
155 struct ValueEqualityComparisonCase {
156 ConstantInt *Value;
157 BasicBlock *Dest;
159 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
160 : Value(Value), Dest(Dest) {}
162 bool operator<(ValueEqualityComparisonCase RHS) const {
163 // Comparing pointers is ok as we only rely on the order for uniquing.
164 return Value < RHS.Value;
167 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
170 class SimplifyCFGOpt {
171 const TargetTransformInfo &TTI;
172 const DataLayout &DL;
173 SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
174 const SimplifyCFGOptions &Options;
175 bool Resimplify;
177 Value *isValueEqualityComparison(Instruction *TI);
178 BasicBlock *GetValueEqualityComparisonCases(
179 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
180 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
181 BasicBlock *Pred,
182 IRBuilder<> &Builder);
183 bool FoldValueComparisonIntoPredecessors(Instruction *TI,
184 IRBuilder<> &Builder);
186 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
187 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
188 bool SimplifySingleResume(ResumeInst *RI);
189 bool SimplifyCommonResume(ResumeInst *RI);
190 bool SimplifyCleanupReturn(CleanupReturnInst *RI);
191 bool SimplifyUnreachable(UnreachableInst *UI);
192 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
193 bool SimplifyIndirectBr(IndirectBrInst *IBI);
194 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
195 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
197 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
198 IRBuilder<> &Builder);
200 public:
201 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
202 SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
203 const SimplifyCFGOptions &Opts)
204 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
206 bool run(BasicBlock *BB);
207 bool simplifyOnce(BasicBlock *BB);
209 // Helper to set Resimplify and return change indication.
210 bool requestResimplify() {
211 Resimplify = true;
212 return true;
216 } // end anonymous namespace
218 /// Return true if it is safe to merge these two
219 /// terminator instructions together.
220 static bool
221 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
222 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
223 if (SI1 == SI2)
224 return false; // Can't merge with self!
226 // It is not safe to merge these two switch instructions if they have a common
227 // successor, and if that successor has a PHI node, and if *that* PHI node has
228 // conflicting incoming values from the two switch blocks.
229 BasicBlock *SI1BB = SI1->getParent();
230 BasicBlock *SI2BB = SI2->getParent();
232 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
233 bool Fail = false;
234 for (BasicBlock *Succ : successors(SI2BB))
235 if (SI1Succs.count(Succ))
236 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
237 PHINode *PN = cast<PHINode>(BBI);
238 if (PN->getIncomingValueForBlock(SI1BB) !=
239 PN->getIncomingValueForBlock(SI2BB)) {
240 if (FailBlocks)
241 FailBlocks->insert(Succ);
242 Fail = true;
246 return !Fail;
249 /// Return true if it is safe and profitable to merge these two terminator
250 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
251 /// store all PHI nodes in common successors.
252 static bool
253 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
254 Instruction *Cond,
255 SmallVectorImpl<PHINode *> &PhiNodes) {
256 if (SI1 == SI2)
257 return false; // Can't merge with self!
258 assert(SI1->isUnconditional() && SI2->isConditional());
260 // We fold the unconditional branch if we can easily update all PHI nodes in
261 // common successors:
262 // 1> We have a constant incoming value for the conditional branch;
263 // 2> We have "Cond" as the incoming value for the unconditional branch;
264 // 3> SI2->getCondition() and Cond have same operands.
265 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
266 if (!Ci2)
267 return false;
268 if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
269 Cond->getOperand(1) == Ci2->getOperand(1)) &&
270 !(Cond->getOperand(0) == Ci2->getOperand(1) &&
271 Cond->getOperand(1) == Ci2->getOperand(0)))
272 return false;
274 BasicBlock *SI1BB = SI1->getParent();
275 BasicBlock *SI2BB = SI2->getParent();
276 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
277 for (BasicBlock *Succ : successors(SI2BB))
278 if (SI1Succs.count(Succ))
279 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
280 PHINode *PN = cast<PHINode>(BBI);
281 if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
282 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
283 return false;
284 PhiNodes.push_back(PN);
286 return true;
289 /// Update PHI nodes in Succ to indicate that there will now be entries in it
290 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
291 /// will be the same as those coming in from ExistPred, an existing predecessor
292 /// of Succ.
293 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
294 BasicBlock *ExistPred) {
295 for (PHINode &PN : Succ->phis())
296 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
299 /// Compute an abstract "cost" of speculating the given instruction,
300 /// which is assumed to be safe to speculate. TCC_Free means cheap,
301 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
302 /// expensive.
303 static unsigned ComputeSpeculationCost(const User *I,
304 const TargetTransformInfo &TTI) {
305 assert(isSafeToSpeculativelyExecute(I) &&
306 "Instruction is not safe to speculatively execute!");
307 return TTI.getUserCost(I);
310 /// If we have a merge point of an "if condition" as accepted above,
311 /// return true if the specified value dominates the block. We
312 /// don't handle the true generality of domination here, just a special case
313 /// which works well enough for us.
315 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
316 /// see if V (which must be an instruction) and its recursive operands
317 /// that do not dominate BB have a combined cost lower than CostRemaining and
318 /// are non-trapping. If both are true, the instruction is inserted into the
319 /// set and true is returned.
321 /// The cost for most non-trapping instructions is defined as 1 except for
322 /// Select whose cost is 2.
324 /// After this function returns, CostRemaining is decreased by the cost of
325 /// V plus its non-dominating operands. If that cost is greater than
326 /// CostRemaining, false is returned and CostRemaining is undefined.
327 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
328 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
329 unsigned &CostRemaining,
330 const TargetTransformInfo &TTI,
331 unsigned Depth = 0) {
332 // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
333 // so limit the recursion depth.
334 // TODO: While this recursion limit does prevent pathological behavior, it
335 // would be better to track visited instructions to avoid cycles.
336 if (Depth == MaxSpeculationDepth)
337 return false;
339 Instruction *I = dyn_cast<Instruction>(V);
340 if (!I) {
341 // Non-instructions all dominate instructions, but not all constantexprs
342 // can be executed unconditionally.
343 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
344 if (C->canTrap())
345 return false;
346 return true;
348 BasicBlock *PBB = I->getParent();
350 // We don't want to allow weird loops that might have the "if condition" in
351 // the bottom of this block.
352 if (PBB == BB)
353 return false;
355 // If this instruction is defined in a block that contains an unconditional
356 // branch to BB, then it must be in the 'conditional' part of the "if
357 // statement". If not, it definitely dominates the region.
358 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
359 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
360 return true;
362 // If we have seen this instruction before, don't count it again.
363 if (AggressiveInsts.count(I))
364 return true;
366 // Okay, it looks like the instruction IS in the "condition". Check to
367 // see if it's a cheap instruction to unconditionally compute, and if it
368 // only uses stuff defined outside of the condition. If so, hoist it out.
369 if (!isSafeToSpeculativelyExecute(I))
370 return false;
372 unsigned Cost = ComputeSpeculationCost(I, TTI);
374 // Allow exactly one instruction to be speculated regardless of its cost
375 // (as long as it is safe to do so).
376 // This is intended to flatten the CFG even if the instruction is a division
377 // or other expensive operation. The speculation of an expensive instruction
378 // is expected to be undone in CodeGenPrepare if the speculation has not
379 // enabled further IR optimizations.
380 if (Cost > CostRemaining &&
381 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
382 return false;
384 // Avoid unsigned wrap.
385 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
387 // Okay, we can only really hoist these out if their operands do
388 // not take us over the cost threshold.
389 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
390 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
391 Depth + 1))
392 return false;
393 // Okay, it's safe to do this! Remember this instruction.
394 AggressiveInsts.insert(I);
395 return true;
398 /// Extract ConstantInt from value, looking through IntToPtr
399 /// and PointerNullValue. Return NULL if value is not a constant int.
400 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
401 // Normal constant int.
402 ConstantInt *CI = dyn_cast<ConstantInt>(V);
403 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
404 return CI;
406 // This is some kind of pointer constant. Turn it into a pointer-sized
407 // ConstantInt if possible.
408 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
410 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
411 if (isa<ConstantPointerNull>(V))
412 return ConstantInt::get(PtrTy, 0);
414 // IntToPtr const int.
415 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
416 if (CE->getOpcode() == Instruction::IntToPtr)
417 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
418 // The constant is very likely to have the right type already.
419 if (CI->getType() == PtrTy)
420 return CI;
421 else
422 return cast<ConstantInt>(
423 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
425 return nullptr;
428 namespace {
430 /// Given a chain of or (||) or and (&&) comparison of a value against a
431 /// constant, this will try to recover the information required for a switch
432 /// structure.
433 /// It will depth-first traverse the chain of comparison, seeking for patterns
434 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
435 /// representing the different cases for the switch.
436 /// Note that if the chain is composed of '||' it will build the set of elements
437 /// that matches the comparisons (i.e. any of this value validate the chain)
438 /// while for a chain of '&&' it will build the set elements that make the test
439 /// fail.
440 struct ConstantComparesGatherer {
441 const DataLayout &DL;
443 /// Value found for the switch comparison
444 Value *CompValue = nullptr;
446 /// Extra clause to be checked before the switch
447 Value *Extra = nullptr;
449 /// Set of integers to match in switch
450 SmallVector<ConstantInt *, 8> Vals;
452 /// Number of comparisons matched in the and/or chain
453 unsigned UsedICmps = 0;
455 /// Construct and compute the result for the comparison instruction Cond
456 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
457 gather(Cond);
460 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
461 ConstantComparesGatherer &
462 operator=(const ConstantComparesGatherer &) = delete;
464 private:
465 /// Try to set the current value used for the comparison, it succeeds only if
466 /// it wasn't set before or if the new value is the same as the old one
467 bool setValueOnce(Value *NewVal) {
468 if (CompValue && CompValue != NewVal)
469 return false;
470 CompValue = NewVal;
471 return (CompValue != nullptr);
474 /// Try to match Instruction "I" as a comparison against a constant and
475 /// populates the array Vals with the set of values that match (or do not
476 /// match depending on isEQ).
477 /// Return false on failure. On success, the Value the comparison matched
478 /// against is placed in CompValue.
479 /// If CompValue is already set, the function is expected to fail if a match
480 /// is found but the value compared to is different.
481 bool matchInstruction(Instruction *I, bool isEQ) {
482 // If this is an icmp against a constant, handle this as one of the cases.
483 ICmpInst *ICI;
484 ConstantInt *C;
485 if (!((ICI = dyn_cast<ICmpInst>(I)) &&
486 (C = GetConstantInt(I->getOperand(1), DL)))) {
487 return false;
490 Value *RHSVal;
491 const APInt *RHSC;
493 // Pattern match a special case
494 // (x & ~2^z) == y --> x == y || x == y|2^z
495 // This undoes a transformation done by instcombine to fuse 2 compares.
496 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
497 // It's a little bit hard to see why the following transformations are
498 // correct. Here is a CVC3 program to verify them for 64-bit values:
501 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
502 x : BITVECTOR(64);
503 y : BITVECTOR(64);
504 z : BITVECTOR(64);
505 mask : BITVECTOR(64) = BVSHL(ONE, z);
506 QUERY( (y & ~mask = y) =>
507 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
509 QUERY( (y | mask = y) =>
510 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
514 // Please note that each pattern must be a dual implication (<--> or
515 // iff). One directional implication can create spurious matches. If the
516 // implication is only one-way, an unsatisfiable condition on the left
517 // side can imply a satisfiable condition on the right side. Dual
518 // implication ensures that satisfiable conditions are transformed to
519 // other satisfiable conditions and unsatisfiable conditions are
520 // transformed to other unsatisfiable conditions.
522 // Here is a concrete example of a unsatisfiable condition on the left
523 // implying a satisfiable condition on the right:
525 // mask = (1 << z)
526 // (x & ~mask) == y --> (x == y || x == (y | mask))
528 // Substituting y = 3, z = 0 yields:
529 // (x & -2) == 3 --> (x == 3 || x == 2)
531 // Pattern match a special case:
533 QUERY( (y & ~mask = y) =>
534 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
537 if (match(ICI->getOperand(0),
538 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
539 APInt Mask = ~*RHSC;
540 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
541 // If we already have a value for the switch, it has to match!
542 if (!setValueOnce(RHSVal))
543 return false;
545 Vals.push_back(C);
546 Vals.push_back(
547 ConstantInt::get(C->getContext(),
548 C->getValue() | Mask));
549 UsedICmps++;
550 return true;
554 // Pattern match a special case:
556 QUERY( (y | mask = y) =>
557 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
560 if (match(ICI->getOperand(0),
561 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
562 APInt Mask = *RHSC;
563 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
564 // If we already have a value for the switch, it has to match!
565 if (!setValueOnce(RHSVal))
566 return false;
568 Vals.push_back(C);
569 Vals.push_back(ConstantInt::get(C->getContext(),
570 C->getValue() & ~Mask));
571 UsedICmps++;
572 return true;
576 // If we already have a value for the switch, it has to match!
577 if (!setValueOnce(ICI->getOperand(0)))
578 return false;
580 UsedICmps++;
581 Vals.push_back(C);
582 return ICI->getOperand(0);
585 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
586 ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
587 ICI->getPredicate(), C->getValue());
589 // Shift the range if the compare is fed by an add. This is the range
590 // compare idiom as emitted by instcombine.
591 Value *CandidateVal = I->getOperand(0);
592 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
593 Span = Span.subtract(*RHSC);
594 CandidateVal = RHSVal;
597 // If this is an and/!= check, then we are looking to build the set of
598 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
599 // x != 0 && x != 1.
600 if (!isEQ)
601 Span = Span.inverse();
603 // If there are a ton of values, we don't want to make a ginormous switch.
604 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
605 return false;
608 // If we already have a value for the switch, it has to match!
609 if (!setValueOnce(CandidateVal))
610 return false;
612 // Add all values from the range to the set
613 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
614 Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
616 UsedICmps++;
617 return true;
620 /// Given a potentially 'or'd or 'and'd together collection of icmp
621 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
622 /// the value being compared, and stick the list constants into the Vals
623 /// vector.
624 /// One "Extra" case is allowed to differ from the other.
625 void gather(Value *V) {
626 Instruction *I = dyn_cast<Instruction>(V);
627 bool isEQ = (I->getOpcode() == Instruction::Or);
629 // Keep a stack (SmallVector for efficiency) for depth-first traversal
630 SmallVector<Value *, 8> DFT;
631 SmallPtrSet<Value *, 8> Visited;
633 // Initialize
634 Visited.insert(V);
635 DFT.push_back(V);
637 while (!DFT.empty()) {
638 V = DFT.pop_back_val();
640 if (Instruction *I = dyn_cast<Instruction>(V)) {
641 // If it is a || (or && depending on isEQ), process the operands.
642 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
643 if (Visited.insert(I->getOperand(1)).second)
644 DFT.push_back(I->getOperand(1));
645 if (Visited.insert(I->getOperand(0)).second)
646 DFT.push_back(I->getOperand(0));
647 continue;
650 // Try to match the current instruction
651 if (matchInstruction(I, isEQ))
652 // Match succeed, continue the loop
653 continue;
656 // One element of the sequence of || (or &&) could not be match as a
657 // comparison against the same value as the others.
658 // We allow only one "Extra" case to be checked before the switch
659 if (!Extra) {
660 Extra = V;
661 continue;
663 // Failed to parse a proper sequence, abort now
664 CompValue = nullptr;
665 break;
670 } // end anonymous namespace
672 static void EraseTerminatorAndDCECond(Instruction *TI) {
673 Instruction *Cond = nullptr;
674 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
675 Cond = dyn_cast<Instruction>(SI->getCondition());
676 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
677 if (BI->isConditional())
678 Cond = dyn_cast<Instruction>(BI->getCondition());
679 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
680 Cond = dyn_cast<Instruction>(IBI->getAddress());
683 TI->eraseFromParent();
684 if (Cond)
685 RecursivelyDeleteTriviallyDeadInstructions(Cond);
688 /// Return true if the specified terminator checks
689 /// to see if a value is equal to constant integer value.
690 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
691 Value *CV = nullptr;
692 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
693 // Do not permit merging of large switch instructions into their
694 // predecessors unless there is only one predecessor.
695 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
696 CV = SI->getCondition();
697 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
698 if (BI->isConditional() && BI->getCondition()->hasOneUse())
699 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
700 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
701 CV = ICI->getOperand(0);
704 // Unwrap any lossless ptrtoint cast.
705 if (CV) {
706 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
707 Value *Ptr = PTII->getPointerOperand();
708 if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
709 CV = Ptr;
712 return CV;
715 /// Given a value comparison instruction,
716 /// decode all of the 'cases' that it represents and return the 'default' block.
717 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
718 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
719 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
720 Cases.reserve(SI->getNumCases());
721 for (auto Case : SI->cases())
722 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
723 Case.getCaseSuccessor()));
724 return SI->getDefaultDest();
727 BranchInst *BI = cast<BranchInst>(TI);
728 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
729 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
730 Cases.push_back(ValueEqualityComparisonCase(
731 GetConstantInt(ICI->getOperand(1), DL), Succ));
732 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
735 /// Given a vector of bb/value pairs, remove any entries
736 /// in the list that match the specified block.
737 static void
738 EliminateBlockCases(BasicBlock *BB,
739 std::vector<ValueEqualityComparisonCase> &Cases) {
740 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
743 /// Return true if there are any keys in C1 that exist in C2 as well.
744 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
745 std::vector<ValueEqualityComparisonCase> &C2) {
746 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
748 // Make V1 be smaller than V2.
749 if (V1->size() > V2->size())
750 std::swap(V1, V2);
752 if (V1->empty())
753 return false;
754 if (V1->size() == 1) {
755 // Just scan V2.
756 ConstantInt *TheVal = (*V1)[0].Value;
757 for (unsigned i = 0, e = V2->size(); i != e; ++i)
758 if (TheVal == (*V2)[i].Value)
759 return true;
762 // Otherwise, just sort both lists and compare element by element.
763 array_pod_sort(V1->begin(), V1->end());
764 array_pod_sort(V2->begin(), V2->end());
765 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
766 while (i1 != e1 && i2 != e2) {
767 if ((*V1)[i1].Value == (*V2)[i2].Value)
768 return true;
769 if ((*V1)[i1].Value < (*V2)[i2].Value)
770 ++i1;
771 else
772 ++i2;
774 return false;
777 // Set branch weights on SwitchInst. This sets the metadata if there is at
778 // least one non-zero weight.
779 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
780 // Check that there is at least one non-zero weight. Otherwise, pass
781 // nullptr to setMetadata which will erase the existing metadata.
782 MDNode *N = nullptr;
783 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
784 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
785 SI->setMetadata(LLVMContext::MD_prof, N);
788 // Similar to the above, but for branch and select instructions that take
789 // exactly 2 weights.
790 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
791 uint32_t FalseWeight) {
792 assert(isa<BranchInst>(I) || isa<SelectInst>(I));
793 // Check that there is at least one non-zero weight. Otherwise, pass
794 // nullptr to setMetadata which will erase the existing metadata.
795 MDNode *N = nullptr;
796 if (TrueWeight || FalseWeight)
797 N = MDBuilder(I->getParent()->getContext())
798 .createBranchWeights(TrueWeight, FalseWeight);
799 I->setMetadata(LLVMContext::MD_prof, N);
802 /// If TI is known to be a terminator instruction and its block is known to
803 /// only have a single predecessor block, check to see if that predecessor is
804 /// also a value comparison with the same value, and if that comparison
805 /// determines the outcome of this comparison. If so, simplify TI. This does a
806 /// very limited form of jump threading.
807 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
808 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
809 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
810 if (!PredVal)
811 return false; // Not a value comparison in predecessor.
813 Value *ThisVal = isValueEqualityComparison(TI);
814 assert(ThisVal && "This isn't a value comparison!!");
815 if (ThisVal != PredVal)
816 return false; // Different predicates.
818 // TODO: Preserve branch weight metadata, similarly to how
819 // FoldValueComparisonIntoPredecessors preserves it.
821 // Find out information about when control will move from Pred to TI's block.
822 std::vector<ValueEqualityComparisonCase> PredCases;
823 BasicBlock *PredDef =
824 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
825 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
827 // Find information about how control leaves this block.
828 std::vector<ValueEqualityComparisonCase> ThisCases;
829 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
830 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
832 // If TI's block is the default block from Pred's comparison, potentially
833 // simplify TI based on this knowledge.
834 if (PredDef == TI->getParent()) {
835 // If we are here, we know that the value is none of those cases listed in
836 // PredCases. If there are any cases in ThisCases that are in PredCases, we
837 // can simplify TI.
838 if (!ValuesOverlap(PredCases, ThisCases))
839 return false;
841 if (isa<BranchInst>(TI)) {
842 // Okay, one of the successors of this condbr is dead. Convert it to a
843 // uncond br.
844 assert(ThisCases.size() == 1 && "Branch can only have one case!");
845 // Insert the new branch.
846 Instruction *NI = Builder.CreateBr(ThisDef);
847 (void)NI;
849 // Remove PHI node entries for the dead edge.
850 ThisCases[0].Dest->removePredecessor(TI->getParent());
852 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
853 << "Through successor TI: " << *TI << "Leaving: " << *NI
854 << "\n");
856 EraseTerminatorAndDCECond(TI);
857 return true;
860 SwitchInst *SI = cast<SwitchInst>(TI);
861 // Okay, TI has cases that are statically dead, prune them away.
862 SmallPtrSet<Constant *, 16> DeadCases;
863 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
864 DeadCases.insert(PredCases[i].Value);
866 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
867 << "Through successor TI: " << *TI);
869 // Collect branch weights into a vector.
870 SmallVector<uint32_t, 8> Weights;
871 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
872 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
873 if (HasWeight)
874 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
875 ++MD_i) {
876 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
877 Weights.push_back(CI->getValue().getZExtValue());
879 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
880 --i;
881 if (DeadCases.count(i->getCaseValue())) {
882 if (HasWeight) {
883 std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
884 Weights.pop_back();
886 i->getCaseSuccessor()->removePredecessor(TI->getParent());
887 SI->removeCase(i);
890 if (HasWeight && Weights.size() >= 2)
891 setBranchWeights(SI, Weights);
893 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
894 return true;
897 // Otherwise, TI's block must correspond to some matched value. Find out
898 // which value (or set of values) this is.
899 ConstantInt *TIV = nullptr;
900 BasicBlock *TIBB = TI->getParent();
901 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
902 if (PredCases[i].Dest == TIBB) {
903 if (TIV)
904 return false; // Cannot handle multiple values coming to this block.
905 TIV = PredCases[i].Value;
907 assert(TIV && "No edge from pred to succ?");
909 // Okay, we found the one constant that our value can be if we get into TI's
910 // BB. Find out which successor will unconditionally be branched to.
911 BasicBlock *TheRealDest = nullptr;
912 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
913 if (ThisCases[i].Value == TIV) {
914 TheRealDest = ThisCases[i].Dest;
915 break;
918 // If not handled by any explicit cases, it is handled by the default case.
919 if (!TheRealDest)
920 TheRealDest = ThisDef;
922 // Remove PHI node entries for dead edges.
923 BasicBlock *CheckEdge = TheRealDest;
924 for (BasicBlock *Succ : successors(TIBB))
925 if (Succ != CheckEdge)
926 Succ->removePredecessor(TIBB);
927 else
928 CheckEdge = nullptr;
930 // Insert the new branch.
931 Instruction *NI = Builder.CreateBr(TheRealDest);
932 (void)NI;
934 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
935 << "Through successor TI: " << *TI << "Leaving: " << *NI
936 << "\n");
938 EraseTerminatorAndDCECond(TI);
939 return true;
942 namespace {
944 /// This class implements a stable ordering of constant
945 /// integers that does not depend on their address. This is important for
946 /// applications that sort ConstantInt's to ensure uniqueness.
947 struct ConstantIntOrdering {
948 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
949 return LHS->getValue().ult(RHS->getValue());
953 } // end anonymous namespace
955 static int ConstantIntSortPredicate(ConstantInt *const *P1,
956 ConstantInt *const *P2) {
957 const ConstantInt *LHS = *P1;
958 const ConstantInt *RHS = *P2;
959 if (LHS == RHS)
960 return 0;
961 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
964 static inline bool HasBranchWeights(const Instruction *I) {
965 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
966 if (ProfMD && ProfMD->getOperand(0))
967 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
968 return MDS->getString().equals("branch_weights");
970 return false;
973 /// Get Weights of a given terminator, the default weight is at the front
974 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
975 /// metadata.
976 static void GetBranchWeights(Instruction *TI,
977 SmallVectorImpl<uint64_t> &Weights) {
978 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
979 assert(MD);
980 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
981 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
982 Weights.push_back(CI->getValue().getZExtValue());
985 // If TI is a conditional eq, the default case is the false case,
986 // and the corresponding branch-weight data is at index 2. We swap the
987 // default weight to be the first entry.
988 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
989 assert(Weights.size() == 2);
990 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
991 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
992 std::swap(Weights.front(), Weights.back());
996 /// Keep halving the weights until all can fit in uint32_t.
997 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
998 uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
999 if (Max > UINT_MAX) {
1000 unsigned Offset = 32 - countLeadingZeros(Max);
1001 for (uint64_t &I : Weights)
1002 I >>= Offset;
1006 /// The specified terminator is a value equality comparison instruction
1007 /// (either a switch or a branch on "X == c").
1008 /// See if any of the predecessors of the terminator block are value comparisons
1009 /// on the same value. If so, and if safe to do so, fold them together.
1010 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1011 IRBuilder<> &Builder) {
1012 BasicBlock *BB = TI->getParent();
1013 Value *CV = isValueEqualityComparison(TI); // CondVal
1014 assert(CV && "Not a comparison?");
1015 bool Changed = false;
1017 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1018 while (!Preds.empty()) {
1019 BasicBlock *Pred = Preds.pop_back_val();
1021 // See if the predecessor is a comparison with the same value.
1022 Instruction *PTI = Pred->getTerminator();
1023 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1025 if (PCV == CV && TI != PTI) {
1026 SmallSetVector<BasicBlock*, 4> FailBlocks;
1027 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1028 for (auto *Succ : FailBlocks) {
1029 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1030 return false;
1034 // Figure out which 'cases' to copy from SI to PSI.
1035 std::vector<ValueEqualityComparisonCase> BBCases;
1036 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1038 std::vector<ValueEqualityComparisonCase> PredCases;
1039 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1041 // Based on whether the default edge from PTI goes to BB or not, fill in
1042 // PredCases and PredDefault with the new switch cases we would like to
1043 // build.
1044 SmallVector<BasicBlock *, 8> NewSuccessors;
1046 // Update the branch weight metadata along the way
1047 SmallVector<uint64_t, 8> Weights;
1048 bool PredHasWeights = HasBranchWeights(PTI);
1049 bool SuccHasWeights = HasBranchWeights(TI);
1051 if (PredHasWeights) {
1052 GetBranchWeights(PTI, Weights);
1053 // branch-weight metadata is inconsistent here.
1054 if (Weights.size() != 1 + PredCases.size())
1055 PredHasWeights = SuccHasWeights = false;
1056 } else if (SuccHasWeights)
1057 // If there are no predecessor weights but there are successor weights,
1058 // populate Weights with 1, which will later be scaled to the sum of
1059 // successor's weights
1060 Weights.assign(1 + PredCases.size(), 1);
1062 SmallVector<uint64_t, 8> SuccWeights;
1063 if (SuccHasWeights) {
1064 GetBranchWeights(TI, SuccWeights);
1065 // branch-weight metadata is inconsistent here.
1066 if (SuccWeights.size() != 1 + BBCases.size())
1067 PredHasWeights = SuccHasWeights = false;
1068 } else if (PredHasWeights)
1069 SuccWeights.assign(1 + BBCases.size(), 1);
1071 if (PredDefault == BB) {
1072 // If this is the default destination from PTI, only the edges in TI
1073 // that don't occur in PTI, or that branch to BB will be activated.
1074 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1075 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1076 if (PredCases[i].Dest != BB)
1077 PTIHandled.insert(PredCases[i].Value);
1078 else {
1079 // The default destination is BB, we don't need explicit targets.
1080 std::swap(PredCases[i], PredCases.back());
1082 if (PredHasWeights || SuccHasWeights) {
1083 // Increase weight for the default case.
1084 Weights[0] += Weights[i + 1];
1085 std::swap(Weights[i + 1], Weights.back());
1086 Weights.pop_back();
1089 PredCases.pop_back();
1090 --i;
1091 --e;
1094 // Reconstruct the new switch statement we will be building.
1095 if (PredDefault != BBDefault) {
1096 PredDefault->removePredecessor(Pred);
1097 PredDefault = BBDefault;
1098 NewSuccessors.push_back(BBDefault);
1101 unsigned CasesFromPred = Weights.size();
1102 uint64_t ValidTotalSuccWeight = 0;
1103 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1104 if (!PTIHandled.count(BBCases[i].Value) &&
1105 BBCases[i].Dest != BBDefault) {
1106 PredCases.push_back(BBCases[i]);
1107 NewSuccessors.push_back(BBCases[i].Dest);
1108 if (SuccHasWeights || PredHasWeights) {
1109 // The default weight is at index 0, so weight for the ith case
1110 // should be at index i+1. Scale the cases from successor by
1111 // PredDefaultWeight (Weights[0]).
1112 Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1113 ValidTotalSuccWeight += SuccWeights[i + 1];
1117 if (SuccHasWeights || PredHasWeights) {
1118 ValidTotalSuccWeight += SuccWeights[0];
1119 // Scale the cases from predecessor by ValidTotalSuccWeight.
1120 for (unsigned i = 1; i < CasesFromPred; ++i)
1121 Weights[i] *= ValidTotalSuccWeight;
1122 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1123 Weights[0] *= SuccWeights[0];
1125 } else {
1126 // If this is not the default destination from PSI, only the edges
1127 // in SI that occur in PSI with a destination of BB will be
1128 // activated.
1129 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1130 std::map<ConstantInt *, uint64_t> WeightsForHandled;
1131 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1132 if (PredCases[i].Dest == BB) {
1133 PTIHandled.insert(PredCases[i].Value);
1135 if (PredHasWeights || SuccHasWeights) {
1136 WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1137 std::swap(Weights[i + 1], Weights.back());
1138 Weights.pop_back();
1141 std::swap(PredCases[i], PredCases.back());
1142 PredCases.pop_back();
1143 --i;
1144 --e;
1147 // Okay, now we know which constants were sent to BB from the
1148 // predecessor. Figure out where they will all go now.
1149 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1150 if (PTIHandled.count(BBCases[i].Value)) {
1151 // If this is one we are capable of getting...
1152 if (PredHasWeights || SuccHasWeights)
1153 Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1154 PredCases.push_back(BBCases[i]);
1155 NewSuccessors.push_back(BBCases[i].Dest);
1156 PTIHandled.erase(
1157 BBCases[i].Value); // This constant is taken care of
1160 // If there are any constants vectored to BB that TI doesn't handle,
1161 // they must go to the default destination of TI.
1162 for (ConstantInt *I : PTIHandled) {
1163 if (PredHasWeights || SuccHasWeights)
1164 Weights.push_back(WeightsForHandled[I]);
1165 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1166 NewSuccessors.push_back(BBDefault);
1170 // Okay, at this point, we know which new successor Pred will get. Make
1171 // sure we update the number of entries in the PHI nodes for these
1172 // successors.
1173 for (BasicBlock *NewSuccessor : NewSuccessors)
1174 AddPredecessorToBlock(NewSuccessor, Pred, BB);
1176 Builder.SetInsertPoint(PTI);
1177 // Convert pointer to int before we switch.
1178 if (CV->getType()->isPointerTy()) {
1179 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1180 "magicptr");
1183 // Now that the successors are updated, create the new Switch instruction.
1184 SwitchInst *NewSI =
1185 Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1186 NewSI->setDebugLoc(PTI->getDebugLoc());
1187 for (ValueEqualityComparisonCase &V : PredCases)
1188 NewSI->addCase(V.Value, V.Dest);
1190 if (PredHasWeights || SuccHasWeights) {
1191 // Halve the weights if any of them cannot fit in an uint32_t
1192 FitWeights(Weights);
1194 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1196 setBranchWeights(NewSI, MDWeights);
1199 EraseTerminatorAndDCECond(PTI);
1201 // Okay, last check. If BB is still a successor of PSI, then we must
1202 // have an infinite loop case. If so, add an infinitely looping block
1203 // to handle the case to preserve the behavior of the code.
1204 BasicBlock *InfLoopBlock = nullptr;
1205 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1206 if (NewSI->getSuccessor(i) == BB) {
1207 if (!InfLoopBlock) {
1208 // Insert it at the end of the function, because it's either code,
1209 // or it won't matter if it's hot. :)
1210 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1211 BB->getParent());
1212 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1214 NewSI->setSuccessor(i, InfLoopBlock);
1217 Changed = true;
1220 return Changed;
1223 // If we would need to insert a select that uses the value of this invoke
1224 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1225 // can't hoist the invoke, as there is nowhere to put the select in this case.
1226 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1227 Instruction *I1, Instruction *I2) {
1228 for (BasicBlock *Succ : successors(BB1)) {
1229 for (const PHINode &PN : Succ->phis()) {
1230 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1231 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1232 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1233 return false;
1237 return true;
1240 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1242 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1243 /// in the two blocks up into the branch block. The caller of this function
1244 /// guarantees that BI's block dominates BB1 and BB2.
1245 static bool HoistThenElseCodeToIf(BranchInst *BI,
1246 const TargetTransformInfo &TTI) {
1247 // This does very trivial matching, with limited scanning, to find identical
1248 // instructions in the two blocks. In particular, we don't want to get into
1249 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1250 // such, we currently just scan for obviously identical instructions in an
1251 // identical order.
1252 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1253 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1255 BasicBlock::iterator BB1_Itr = BB1->begin();
1256 BasicBlock::iterator BB2_Itr = BB2->begin();
1258 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1259 // Skip debug info if it is not identical.
1260 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1261 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1262 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1263 while (isa<DbgInfoIntrinsic>(I1))
1264 I1 = &*BB1_Itr++;
1265 while (isa<DbgInfoIntrinsic>(I2))
1266 I2 = &*BB2_Itr++;
1268 // FIXME: Can we define a safety predicate for CallBr?
1269 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1270 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1271 isa<CallBrInst>(I1))
1272 return false;
1274 BasicBlock *BIParent = BI->getParent();
1276 bool Changed = false;
1277 do {
1278 // If we are hoisting the terminator instruction, don't move one (making a
1279 // broken BB), instead clone it, and remove BI.
1280 if (I1->isTerminator())
1281 goto HoistTerminator;
1283 // If we're going to hoist a call, make sure that the two instructions we're
1284 // commoning/hoisting are both marked with musttail, or neither of them is
1285 // marked as such. Otherwise, we might end up in a situation where we hoist
1286 // from a block where the terminator is a `ret` to a block where the terminator
1287 // is a `br`, and `musttail` calls expect to be followed by a return.
1288 auto *C1 = dyn_cast<CallInst>(I1);
1289 auto *C2 = dyn_cast<CallInst>(I2);
1290 if (C1 && C2)
1291 if (C1->isMustTailCall() != C2->isMustTailCall())
1292 return Changed;
1294 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1295 return Changed;
1297 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1298 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1299 // The debug location is an integral part of a debug info intrinsic
1300 // and can't be separated from it or replaced. Instead of attempting
1301 // to merge locations, simply hoist both copies of the intrinsic.
1302 BIParent->getInstList().splice(BI->getIterator(),
1303 BB1->getInstList(), I1);
1304 BIParent->getInstList().splice(BI->getIterator(),
1305 BB2->getInstList(), I2);
1306 Changed = true;
1307 } else {
1308 // For a normal instruction, we just move one to right before the branch,
1309 // then replace all uses of the other with the first. Finally, we remove
1310 // the now redundant second instruction.
1311 BIParent->getInstList().splice(BI->getIterator(),
1312 BB1->getInstList(), I1);
1313 if (!I2->use_empty())
1314 I2->replaceAllUsesWith(I1);
1315 I1->andIRFlags(I2);
1316 unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1317 LLVMContext::MD_range,
1318 LLVMContext::MD_fpmath,
1319 LLVMContext::MD_invariant_load,
1320 LLVMContext::MD_nonnull,
1321 LLVMContext::MD_invariant_group,
1322 LLVMContext::MD_align,
1323 LLVMContext::MD_dereferenceable,
1324 LLVMContext::MD_dereferenceable_or_null,
1325 LLVMContext::MD_mem_parallel_loop_access,
1326 LLVMContext::MD_access_group};
1327 combineMetadata(I1, I2, KnownIDs, true);
1329 // I1 and I2 are being combined into a single instruction. Its debug
1330 // location is the merged locations of the original instructions.
1331 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1333 I2->eraseFromParent();
1334 Changed = true;
1337 I1 = &*BB1_Itr++;
1338 I2 = &*BB2_Itr++;
1339 // Skip debug info if it is not identical.
1340 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1341 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1342 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1343 while (isa<DbgInfoIntrinsic>(I1))
1344 I1 = &*BB1_Itr++;
1345 while (isa<DbgInfoIntrinsic>(I2))
1346 I2 = &*BB2_Itr++;
1348 } while (I1->isIdenticalToWhenDefined(I2));
1350 return true;
1352 HoistTerminator:
1353 // It may not be possible to hoist an invoke.
1354 // FIXME: Can we define a safety predicate for CallBr?
1355 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1356 return Changed;
1358 // TODO: callbr hoisting currently disabled pending further study.
1359 if (isa<CallBrInst>(I1))
1360 return Changed;
1362 for (BasicBlock *Succ : successors(BB1)) {
1363 for (PHINode &PN : Succ->phis()) {
1364 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1365 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1366 if (BB1V == BB2V)
1367 continue;
1369 // Check for passingValueIsAlwaysUndefined here because we would rather
1370 // eliminate undefined control flow then converting it to a select.
1371 if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1372 passingValueIsAlwaysUndefined(BB2V, &PN))
1373 return Changed;
1375 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1376 return Changed;
1377 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1378 return Changed;
1382 // Okay, it is safe to hoist the terminator.
1383 Instruction *NT = I1->clone();
1384 BIParent->getInstList().insert(BI->getIterator(), NT);
1385 if (!NT->getType()->isVoidTy()) {
1386 I1->replaceAllUsesWith(NT);
1387 I2->replaceAllUsesWith(NT);
1388 NT->takeName(I1);
1391 // Ensure terminator gets a debug location, even an unknown one, in case
1392 // it involves inlinable calls.
1393 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1395 // PHIs created below will adopt NT's merged DebugLoc.
1396 IRBuilder<NoFolder> Builder(NT);
1398 // Hoisting one of the terminators from our successor is a great thing.
1399 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1400 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1401 // nodes, so we insert select instruction to compute the final result.
1402 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1403 for (BasicBlock *Succ : successors(BB1)) {
1404 for (PHINode &PN : Succ->phis()) {
1405 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1406 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1407 if (BB1V == BB2V)
1408 continue;
1410 // These values do not agree. Insert a select instruction before NT
1411 // that determines the right value.
1412 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1413 if (!SI)
1414 SI = cast<SelectInst>(
1415 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1416 BB1V->getName() + "." + BB2V->getName(), BI));
1418 // Make the PHI node use the select for all incoming values for BB1/BB2
1419 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1420 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1421 PN.setIncomingValue(i, SI);
1425 // Update any PHI nodes in our new successors.
1426 for (BasicBlock *Succ : successors(BB1))
1427 AddPredecessorToBlock(Succ, BIParent, BB1);
1429 EraseTerminatorAndDCECond(BI);
1430 return true;
1433 // All instructions in Insts belong to different blocks that all unconditionally
1434 // branch to a common successor. Analyze each instruction and return true if it
1435 // would be possible to sink them into their successor, creating one common
1436 // instruction instead. For every value that would be required to be provided by
1437 // PHI node (because an operand varies in each input block), add to PHIOperands.
1438 static bool canSinkInstructions(
1439 ArrayRef<Instruction *> Insts,
1440 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1441 // Prune out obviously bad instructions to move. Any non-store instruction
1442 // must have exactly one use, and we check later that use is by a single,
1443 // common PHI instruction in the successor.
1444 for (auto *I : Insts) {
1445 // These instructions may change or break semantics if moved.
1446 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1447 I->getType()->isTokenTy())
1448 return false;
1450 // Conservatively return false if I is an inline-asm instruction. Sinking
1451 // and merging inline-asm instructions can potentially create arguments
1452 // that cannot satisfy the inline-asm constraints.
1453 if (const auto *C = dyn_cast<CallBase>(I))
1454 if (C->isInlineAsm())
1455 return false;
1457 // Everything must have only one use too, apart from stores which
1458 // have no uses.
1459 if (!isa<StoreInst>(I) && !I->hasOneUse())
1460 return false;
1463 const Instruction *I0 = Insts.front();
1464 for (auto *I : Insts)
1465 if (!I->isSameOperationAs(I0))
1466 return false;
1468 // All instructions in Insts are known to be the same opcode. If they aren't
1469 // stores, check the only user of each is a PHI or in the same block as the
1470 // instruction, because if a user is in the same block as an instruction
1471 // we're contemplating sinking, it must already be determined to be sinkable.
1472 if (!isa<StoreInst>(I0)) {
1473 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1474 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1475 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1476 auto *U = cast<Instruction>(*I->user_begin());
1477 return (PNUse &&
1478 PNUse->getParent() == Succ &&
1479 PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1480 U->getParent() == I->getParent();
1482 return false;
1485 // Because SROA can't handle speculating stores of selects, try not
1486 // to sink loads or stores of allocas when we'd have to create a PHI for
1487 // the address operand. Also, because it is likely that loads or stores
1488 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1489 // This can cause code churn which can have unintended consequences down
1490 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1491 // FIXME: This is a workaround for a deficiency in SROA - see
1492 // https://llvm.org/bugs/show_bug.cgi?id=30188
1493 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1494 return isa<AllocaInst>(I->getOperand(1));
1496 return false;
1497 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1498 return isa<AllocaInst>(I->getOperand(0));
1500 return false;
1502 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1503 if (I0->getOperand(OI)->getType()->isTokenTy())
1504 // Don't touch any operand of token type.
1505 return false;
1507 auto SameAsI0 = [&I0, OI](const Instruction *I) {
1508 assert(I->getNumOperands() == I0->getNumOperands());
1509 return I->getOperand(OI) == I0->getOperand(OI);
1511 if (!all_of(Insts, SameAsI0)) {
1512 if (!canReplaceOperandWithVariable(I0, OI))
1513 // We can't create a PHI from this GEP.
1514 return false;
1515 // Don't create indirect calls! The called value is the final operand.
1516 if (isa<CallBase>(I0) && OI == OE - 1) {
1517 // FIXME: if the call was *already* indirect, we should do this.
1518 return false;
1520 for (auto *I : Insts)
1521 PHIOperands[I].push_back(I->getOperand(OI));
1524 return true;
1527 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1528 // instruction of every block in Blocks to their common successor, commoning
1529 // into one instruction.
1530 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1531 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1533 // canSinkLastInstruction returning true guarantees that every block has at
1534 // least one non-terminator instruction.
1535 SmallVector<Instruction*,4> Insts;
1536 for (auto *BB : Blocks) {
1537 Instruction *I = BB->getTerminator();
1538 do {
1539 I = I->getPrevNode();
1540 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1541 if (!isa<DbgInfoIntrinsic>(I))
1542 Insts.push_back(I);
1545 // The only checking we need to do now is that all users of all instructions
1546 // are the same PHI node. canSinkLastInstruction should have checked this but
1547 // it is slightly over-aggressive - it gets confused by commutative instructions
1548 // so double-check it here.
1549 Instruction *I0 = Insts.front();
1550 if (!isa<StoreInst>(I0)) {
1551 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1552 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1553 auto *U = cast<Instruction>(*I->user_begin());
1554 return U == PNUse;
1556 return false;
1559 // We don't need to do any more checking here; canSinkLastInstruction should
1560 // have done it all for us.
1561 SmallVector<Value*, 4> NewOperands;
1562 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1563 // This check is different to that in canSinkLastInstruction. There, we
1564 // cared about the global view once simplifycfg (and instcombine) have
1565 // completed - it takes into account PHIs that become trivially
1566 // simplifiable. However here we need a more local view; if an operand
1567 // differs we create a PHI and rely on instcombine to clean up the very
1568 // small mess we may make.
1569 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1570 return I->getOperand(O) != I0->getOperand(O);
1572 if (!NeedPHI) {
1573 NewOperands.push_back(I0->getOperand(O));
1574 continue;
1577 // Create a new PHI in the successor block and populate it.
1578 auto *Op = I0->getOperand(O);
1579 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1580 auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1581 Op->getName() + ".sink", &BBEnd->front());
1582 for (auto *I : Insts)
1583 PN->addIncoming(I->getOperand(O), I->getParent());
1584 NewOperands.push_back(PN);
1587 // Arbitrarily use I0 as the new "common" instruction; remap its operands
1588 // and move it to the start of the successor block.
1589 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1590 I0->getOperandUse(O).set(NewOperands[O]);
1591 I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1593 // Update metadata and IR flags, and merge debug locations.
1594 for (auto *I : Insts)
1595 if (I != I0) {
1596 // The debug location for the "common" instruction is the merged locations
1597 // of all the commoned instructions. We start with the original location
1598 // of the "common" instruction and iteratively merge each location in the
1599 // loop below.
1600 // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1601 // However, as N-way merge for CallInst is rare, so we use simplified API
1602 // instead of using complex API for N-way merge.
1603 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1604 combineMetadataForCSE(I0, I, true);
1605 I0->andIRFlags(I);
1608 if (!isa<StoreInst>(I0)) {
1609 // canSinkLastInstruction checked that all instructions were used by
1610 // one and only one PHI node. Find that now, RAUW it to our common
1611 // instruction and nuke it.
1612 assert(I0->hasOneUse());
1613 auto *PN = cast<PHINode>(*I0->user_begin());
1614 PN->replaceAllUsesWith(I0);
1615 PN->eraseFromParent();
1618 // Finally nuke all instructions apart from the common instruction.
1619 for (auto *I : Insts)
1620 if (I != I0)
1621 I->eraseFromParent();
1623 return true;
1626 namespace {
1628 // LockstepReverseIterator - Iterates through instructions
1629 // in a set of blocks in reverse order from the first non-terminator.
1630 // For example (assume all blocks have size n):
1631 // LockstepReverseIterator I([B1, B2, B3]);
1632 // *I-- = [B1[n], B2[n], B3[n]];
1633 // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1634 // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1635 // ...
1636 class LockstepReverseIterator {
1637 ArrayRef<BasicBlock*> Blocks;
1638 SmallVector<Instruction*,4> Insts;
1639 bool Fail;
1641 public:
1642 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1643 reset();
1646 void reset() {
1647 Fail = false;
1648 Insts.clear();
1649 for (auto *BB : Blocks) {
1650 Instruction *Inst = BB->getTerminator();
1651 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1652 Inst = Inst->getPrevNode();
1653 if (!Inst) {
1654 // Block wasn't big enough.
1655 Fail = true;
1656 return;
1658 Insts.push_back(Inst);
1662 bool isValid() const {
1663 return !Fail;
1666 void operator--() {
1667 if (Fail)
1668 return;
1669 for (auto *&Inst : Insts) {
1670 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1671 Inst = Inst->getPrevNode();
1672 // Already at beginning of block.
1673 if (!Inst) {
1674 Fail = true;
1675 return;
1680 ArrayRef<Instruction*> operator * () const {
1681 return Insts;
1685 } // end anonymous namespace
1687 /// Check whether BB's predecessors end with unconditional branches. If it is
1688 /// true, sink any common code from the predecessors to BB.
1689 /// We also allow one predecessor to end with conditional branch (but no more
1690 /// than one).
1691 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1692 // We support two situations:
1693 // (1) all incoming arcs are unconditional
1694 // (2) one incoming arc is conditional
1696 // (2) is very common in switch defaults and
1697 // else-if patterns;
1699 // if (a) f(1);
1700 // else if (b) f(2);
1702 // produces:
1704 // [if]
1705 // / \
1706 // [f(1)] [if]
1707 // | | \
1708 // | | |
1709 // | [f(2)]|
1710 // \ | /
1711 // [ end ]
1713 // [end] has two unconditional predecessor arcs and one conditional. The
1714 // conditional refers to the implicit empty 'else' arc. This conditional
1715 // arc can also be caused by an empty default block in a switch.
1717 // In this case, we attempt to sink code from all *unconditional* arcs.
1718 // If we can sink instructions from these arcs (determined during the scan
1719 // phase below) we insert a common successor for all unconditional arcs and
1720 // connect that to [end], to enable sinking:
1722 // [if]
1723 // / \
1724 // [x(1)] [if]
1725 // | | \
1726 // | | \
1727 // | [x(2)] |
1728 // \ / |
1729 // [sink.split] |
1730 // \ /
1731 // [ end ]
1733 SmallVector<BasicBlock*,4> UnconditionalPreds;
1734 Instruction *Cond = nullptr;
1735 for (auto *B : predecessors(BB)) {
1736 auto *T = B->getTerminator();
1737 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1738 UnconditionalPreds.push_back(B);
1739 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1740 Cond = T;
1741 else
1742 return false;
1744 if (UnconditionalPreds.size() < 2)
1745 return false;
1747 bool Changed = false;
1748 // We take a two-step approach to tail sinking. First we scan from the end of
1749 // each block upwards in lockstep. If the n'th instruction from the end of each
1750 // block can be sunk, those instructions are added to ValuesToSink and we
1751 // carry on. If we can sink an instruction but need to PHI-merge some operands
1752 // (because they're not identical in each instruction) we add these to
1753 // PHIOperands.
1754 unsigned ScanIdx = 0;
1755 SmallPtrSet<Value*,4> InstructionsToSink;
1756 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1757 LockstepReverseIterator LRI(UnconditionalPreds);
1758 while (LRI.isValid() &&
1759 canSinkInstructions(*LRI, PHIOperands)) {
1760 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1761 << "\n");
1762 InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1763 ++ScanIdx;
1764 --LRI;
1767 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1768 unsigned NumPHIdValues = 0;
1769 for (auto *I : *LRI)
1770 for (auto *V : PHIOperands[I])
1771 if (InstructionsToSink.count(V) == 0)
1772 ++NumPHIdValues;
1773 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1774 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1775 if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1776 NumPHIInsts++;
1778 return NumPHIInsts <= 1;
1781 if (ScanIdx > 0 && Cond) {
1782 // Check if we would actually sink anything first! This mutates the CFG and
1783 // adds an extra block. The goal in doing this is to allow instructions that
1784 // couldn't be sunk before to be sunk - obviously, speculatable instructions
1785 // (such as trunc, add) can be sunk and predicated already. So we check that
1786 // we're going to sink at least one non-speculatable instruction.
1787 LRI.reset();
1788 unsigned Idx = 0;
1789 bool Profitable = false;
1790 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1791 if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1792 Profitable = true;
1793 break;
1795 --LRI;
1796 ++Idx;
1798 if (!Profitable)
1799 return false;
1801 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1802 // We have a conditional edge and we're going to sink some instructions.
1803 // Insert a new block postdominating all blocks we're going to sink from.
1804 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1805 // Edges couldn't be split.
1806 return false;
1807 Changed = true;
1810 // Now that we've analyzed all potential sinking candidates, perform the
1811 // actual sink. We iteratively sink the last non-terminator of the source
1812 // blocks into their common successor unless doing so would require too
1813 // many PHI instructions to be generated (currently only one PHI is allowed
1814 // per sunk instruction).
1816 // We can use InstructionsToSink to discount values needing PHI-merging that will
1817 // actually be sunk in a later iteration. This allows us to be more
1818 // aggressive in what we sink. This does allow a false positive where we
1819 // sink presuming a later value will also be sunk, but stop half way through
1820 // and never actually sink it which means we produce more PHIs than intended.
1821 // This is unlikely in practice though.
1822 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1823 LLVM_DEBUG(dbgs() << "SINK: Sink: "
1824 << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1825 << "\n");
1827 // Because we've sunk every instruction in turn, the current instruction to
1828 // sink is always at index 0.
1829 LRI.reset();
1830 if (!ProfitableToSinkInstruction(LRI)) {
1831 // Too many PHIs would be created.
1832 LLVM_DEBUG(
1833 dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1834 break;
1837 if (!sinkLastInstruction(UnconditionalPreds))
1838 return Changed;
1839 NumSinkCommons++;
1840 Changed = true;
1842 return Changed;
1845 /// Determine if we can hoist sink a sole store instruction out of a
1846 /// conditional block.
1848 /// We are looking for code like the following:
1849 /// BrBB:
1850 /// store i32 %add, i32* %arrayidx2
1851 /// ... // No other stores or function calls (we could be calling a memory
1852 /// ... // function).
1853 /// %cmp = icmp ult %x, %y
1854 /// br i1 %cmp, label %EndBB, label %ThenBB
1855 /// ThenBB:
1856 /// store i32 %add5, i32* %arrayidx2
1857 /// br label EndBB
1858 /// EndBB:
1859 /// ...
1860 /// We are going to transform this into:
1861 /// BrBB:
1862 /// store i32 %add, i32* %arrayidx2
1863 /// ... //
1864 /// %cmp = icmp ult %x, %y
1865 /// %add.add5 = select i1 %cmp, i32 %add, %add5
1866 /// store i32 %add.add5, i32* %arrayidx2
1867 /// ...
1869 /// \return The pointer to the value of the previous store if the store can be
1870 /// hoisted into the predecessor block. 0 otherwise.
1871 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1872 BasicBlock *StoreBB, BasicBlock *EndBB) {
1873 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1874 if (!StoreToHoist)
1875 return nullptr;
1877 // Volatile or atomic.
1878 if (!StoreToHoist->isSimple())
1879 return nullptr;
1881 Value *StorePtr = StoreToHoist->getPointerOperand();
1883 // Look for a store to the same pointer in BrBB.
1884 unsigned MaxNumInstToLookAt = 9;
1885 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1886 if (!MaxNumInstToLookAt)
1887 break;
1888 --MaxNumInstToLookAt;
1890 // Could be calling an instruction that affects memory like free().
1891 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1892 return nullptr;
1894 if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1895 // Found the previous store make sure it stores to the same location.
1896 if (SI->getPointerOperand() == StorePtr)
1897 // Found the previous store, return its value operand.
1898 return SI->getValueOperand();
1899 return nullptr; // Unknown store.
1903 return nullptr;
1906 /// Speculate a conditional basic block flattening the CFG.
1908 /// Note that this is a very risky transform currently. Speculating
1909 /// instructions like this is most often not desirable. Instead, there is an MI
1910 /// pass which can do it with full awareness of the resource constraints.
1911 /// However, some cases are "obvious" and we should do directly. An example of
1912 /// this is speculating a single, reasonably cheap instruction.
1914 /// There is only one distinct advantage to flattening the CFG at the IR level:
1915 /// it makes very common but simplistic optimizations such as are common in
1916 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1917 /// modeling their effects with easier to reason about SSA value graphs.
1920 /// An illustration of this transform is turning this IR:
1921 /// \code
1922 /// BB:
1923 /// %cmp = icmp ult %x, %y
1924 /// br i1 %cmp, label %EndBB, label %ThenBB
1925 /// ThenBB:
1926 /// %sub = sub %x, %y
1927 /// br label BB2
1928 /// EndBB:
1929 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1930 /// ...
1931 /// \endcode
1933 /// Into this IR:
1934 /// \code
1935 /// BB:
1936 /// %cmp = icmp ult %x, %y
1937 /// %sub = sub %x, %y
1938 /// %cond = select i1 %cmp, 0, %sub
1939 /// ...
1940 /// \endcode
1942 /// \returns true if the conditional block is removed.
1943 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1944 const TargetTransformInfo &TTI) {
1945 // Be conservative for now. FP select instruction can often be expensive.
1946 Value *BrCond = BI->getCondition();
1947 if (isa<FCmpInst>(BrCond))
1948 return false;
1950 BasicBlock *BB = BI->getParent();
1951 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1953 // If ThenBB is actually on the false edge of the conditional branch, remember
1954 // to swap the select operands later.
1955 bool Invert = false;
1956 if (ThenBB != BI->getSuccessor(0)) {
1957 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1958 Invert = true;
1960 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1962 // Keep a count of how many times instructions are used within ThenBB when
1963 // they are candidates for sinking into ThenBB. Specifically:
1964 // - They are defined in BB, and
1965 // - They have no side effects, and
1966 // - All of their uses are in ThenBB.
1967 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1969 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1971 unsigned SpeculationCost = 0;
1972 Value *SpeculatedStoreValue = nullptr;
1973 StoreInst *SpeculatedStore = nullptr;
1974 for (BasicBlock::iterator BBI = ThenBB->begin(),
1975 BBE = std::prev(ThenBB->end());
1976 BBI != BBE; ++BBI) {
1977 Instruction *I = &*BBI;
1978 // Skip debug info.
1979 if (isa<DbgInfoIntrinsic>(I)) {
1980 SpeculatedDbgIntrinsics.push_back(I);
1981 continue;
1984 // Only speculatively execute a single instruction (not counting the
1985 // terminator) for now.
1986 ++SpeculationCost;
1987 if (SpeculationCost > 1)
1988 return false;
1990 // Don't hoist the instruction if it's unsafe or expensive.
1991 if (!isSafeToSpeculativelyExecute(I) &&
1992 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1993 I, BB, ThenBB, EndBB))))
1994 return false;
1995 if (!SpeculatedStoreValue &&
1996 ComputeSpeculationCost(I, TTI) >
1997 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1998 return false;
2000 // Store the store speculation candidate.
2001 if (SpeculatedStoreValue)
2002 SpeculatedStore = cast<StoreInst>(I);
2004 // Do not hoist the instruction if any of its operands are defined but not
2005 // used in BB. The transformation will prevent the operand from
2006 // being sunk into the use block.
2007 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2008 Instruction *OpI = dyn_cast<Instruction>(*i);
2009 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2010 continue; // Not a candidate for sinking.
2012 ++SinkCandidateUseCounts[OpI];
2016 // Consider any sink candidates which are only used in ThenBB as costs for
2017 // speculation. Note, while we iterate over a DenseMap here, we are summing
2018 // and so iteration order isn't significant.
2019 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2020 I = SinkCandidateUseCounts.begin(),
2021 E = SinkCandidateUseCounts.end();
2022 I != E; ++I)
2023 if (I->first->hasNUses(I->second)) {
2024 ++SpeculationCost;
2025 if (SpeculationCost > 1)
2026 return false;
2029 // Check that the PHI nodes can be converted to selects.
2030 bool HaveRewritablePHIs = false;
2031 for (PHINode &PN : EndBB->phis()) {
2032 Value *OrigV = PN.getIncomingValueForBlock(BB);
2033 Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2035 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2036 // Skip PHIs which are trivial.
2037 if (ThenV == OrigV)
2038 continue;
2040 // Don't convert to selects if we could remove undefined behavior instead.
2041 if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2042 passingValueIsAlwaysUndefined(ThenV, &PN))
2043 return false;
2045 HaveRewritablePHIs = true;
2046 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2047 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2048 if (!OrigCE && !ThenCE)
2049 continue; // Known safe and cheap.
2051 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2052 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2053 return false;
2054 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2055 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2056 unsigned MaxCost =
2057 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2058 if (OrigCost + ThenCost > MaxCost)
2059 return false;
2061 // Account for the cost of an unfolded ConstantExpr which could end up
2062 // getting expanded into Instructions.
2063 // FIXME: This doesn't account for how many operations are combined in the
2064 // constant expression.
2065 ++SpeculationCost;
2066 if (SpeculationCost > 1)
2067 return false;
2070 // If there are no PHIs to process, bail early. This helps ensure idempotence
2071 // as well.
2072 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2073 return false;
2075 // If we get here, we can hoist the instruction and if-convert.
2076 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2078 // Insert a select of the value of the speculated store.
2079 if (SpeculatedStoreValue) {
2080 IRBuilder<NoFolder> Builder(BI);
2081 Value *TrueV = SpeculatedStore->getValueOperand();
2082 Value *FalseV = SpeculatedStoreValue;
2083 if (Invert)
2084 std::swap(TrueV, FalseV);
2085 Value *S = Builder.CreateSelect(
2086 BrCond, TrueV, FalseV, "spec.store.select", BI);
2087 SpeculatedStore->setOperand(0, S);
2088 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2089 SpeculatedStore->getDebugLoc());
2092 // Metadata can be dependent on the condition we are hoisting above.
2093 // Conservatively strip all metadata on the instruction.
2094 for (auto &I : *ThenBB)
2095 I.dropUnknownNonDebugMetadata();
2097 // Hoist the instructions.
2098 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2099 ThenBB->begin(), std::prev(ThenBB->end()));
2101 // Insert selects and rewrite the PHI operands.
2102 IRBuilder<NoFolder> Builder(BI);
2103 for (PHINode &PN : EndBB->phis()) {
2104 unsigned OrigI = PN.getBasicBlockIndex(BB);
2105 unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2106 Value *OrigV = PN.getIncomingValue(OrigI);
2107 Value *ThenV = PN.getIncomingValue(ThenI);
2109 // Skip PHIs which are trivial.
2110 if (OrigV == ThenV)
2111 continue;
2113 // Create a select whose true value is the speculatively executed value and
2114 // false value is the preexisting value. Swap them if the branch
2115 // destinations were inverted.
2116 Value *TrueV = ThenV, *FalseV = OrigV;
2117 if (Invert)
2118 std::swap(TrueV, FalseV);
2119 Value *V = Builder.CreateSelect(
2120 BrCond, TrueV, FalseV, "spec.select", BI);
2121 PN.setIncomingValue(OrigI, V);
2122 PN.setIncomingValue(ThenI, V);
2125 // Remove speculated dbg intrinsics.
2126 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2127 // dbg value for the different flows and inserting it after the select.
2128 for (Instruction *I : SpeculatedDbgIntrinsics)
2129 I->eraseFromParent();
2131 ++NumSpeculations;
2132 return true;
2135 /// Return true if we can thread a branch across this block.
2136 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2137 unsigned Size = 0;
2139 for (Instruction &I : BB->instructionsWithoutDebug()) {
2140 if (Size > 10)
2141 return false; // Don't clone large BB's.
2142 ++Size;
2144 // We can only support instructions that do not define values that are
2145 // live outside of the current basic block.
2146 for (User *U : I.users()) {
2147 Instruction *UI = cast<Instruction>(U);
2148 if (UI->getParent() != BB || isa<PHINode>(UI))
2149 return false;
2152 // Looks ok, continue checking.
2155 return true;
2158 /// If we have a conditional branch on a PHI node value that is defined in the
2159 /// same block as the branch and if any PHI entries are constants, thread edges
2160 /// corresponding to that entry to be branches to their ultimate destination.
2161 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2162 AssumptionCache *AC) {
2163 BasicBlock *BB = BI->getParent();
2164 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2165 // NOTE: we currently cannot transform this case if the PHI node is used
2166 // outside of the block.
2167 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2168 return false;
2170 // Degenerate case of a single entry PHI.
2171 if (PN->getNumIncomingValues() == 1) {
2172 FoldSingleEntryPHINodes(PN->getParent());
2173 return true;
2176 // Now we know that this block has multiple preds and two succs.
2177 if (!BlockIsSimpleEnoughToThreadThrough(BB))
2178 return false;
2180 // Can't fold blocks that contain noduplicate or convergent calls.
2181 if (any_of(*BB, [](const Instruction &I) {
2182 const CallInst *CI = dyn_cast<CallInst>(&I);
2183 return CI && (CI->cannotDuplicate() || CI->isConvergent());
2185 return false;
2187 // Okay, this is a simple enough basic block. See if any phi values are
2188 // constants.
2189 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2190 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2191 if (!CB || !CB->getType()->isIntegerTy(1))
2192 continue;
2194 // Okay, we now know that all edges from PredBB should be revectored to
2195 // branch to RealDest.
2196 BasicBlock *PredBB = PN->getIncomingBlock(i);
2197 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2199 if (RealDest == BB)
2200 continue; // Skip self loops.
2201 // Skip if the predecessor's terminator is an indirect branch.
2202 if (isa<IndirectBrInst>(PredBB->getTerminator()))
2203 continue;
2205 // The dest block might have PHI nodes, other predecessors and other
2206 // difficult cases. Instead of being smart about this, just insert a new
2207 // block that jumps to the destination block, effectively splitting
2208 // the edge we are about to create.
2209 BasicBlock *EdgeBB =
2210 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2211 RealDest->getParent(), RealDest);
2212 BranchInst::Create(RealDest, EdgeBB);
2214 // Update PHI nodes.
2215 AddPredecessorToBlock(RealDest, EdgeBB, BB);
2217 // BB may have instructions that are being threaded over. Clone these
2218 // instructions into EdgeBB. We know that there will be no uses of the
2219 // cloned instructions outside of EdgeBB.
2220 BasicBlock::iterator InsertPt = EdgeBB->begin();
2221 DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2222 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2223 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2224 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2225 continue;
2227 // Clone the instruction.
2228 Instruction *N = BBI->clone();
2229 if (BBI->hasName())
2230 N->setName(BBI->getName() + ".c");
2232 // Update operands due to translation.
2233 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2234 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2235 if (PI != TranslateMap.end())
2236 *i = PI->second;
2239 // Check for trivial simplification.
2240 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2241 if (!BBI->use_empty())
2242 TranslateMap[&*BBI] = V;
2243 if (!N->mayHaveSideEffects()) {
2244 N->deleteValue(); // Instruction folded away, don't need actual inst
2245 N = nullptr;
2247 } else {
2248 if (!BBI->use_empty())
2249 TranslateMap[&*BBI] = N;
2251 // Insert the new instruction into its new home.
2252 if (N)
2253 EdgeBB->getInstList().insert(InsertPt, N);
2255 // Register the new instruction with the assumption cache if necessary.
2256 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2257 if (II->getIntrinsicID() == Intrinsic::assume)
2258 AC->registerAssumption(II);
2261 // Loop over all of the edges from PredBB to BB, changing them to branch
2262 // to EdgeBB instead.
2263 Instruction *PredBBTI = PredBB->getTerminator();
2264 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2265 if (PredBBTI->getSuccessor(i) == BB) {
2266 BB->removePredecessor(PredBB);
2267 PredBBTI->setSuccessor(i, EdgeBB);
2270 // Recurse, simplifying any other constants.
2271 return FoldCondBranchOnPHI(BI, DL, AC) || true;
2274 return false;
2277 /// Given a BB that starts with the specified two-entry PHI node,
2278 /// see if we can eliminate it.
2279 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2280 const DataLayout &DL) {
2281 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
2282 // statement", which has a very simple dominance structure. Basically, we
2283 // are trying to find the condition that is being branched on, which
2284 // subsequently causes this merge to happen. We really want control
2285 // dependence information for this check, but simplifycfg can't keep it up
2286 // to date, and this catches most of the cases we care about anyway.
2287 BasicBlock *BB = PN->getParent();
2288 const Function *Fn = BB->getParent();
2289 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2290 return false;
2292 BasicBlock *IfTrue, *IfFalse;
2293 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2294 if (!IfCond ||
2295 // Don't bother if the branch will be constant folded trivially.
2296 isa<ConstantInt>(IfCond))
2297 return false;
2299 // Okay, we found that we can merge this two-entry phi node into a select.
2300 // Doing so would require us to fold *all* two entry phi nodes in this block.
2301 // At some point this becomes non-profitable (particularly if the target
2302 // doesn't support cmov's). Only do this transformation if there are two or
2303 // fewer PHI nodes in this block.
2304 unsigned NumPhis = 0;
2305 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2306 if (NumPhis > 2)
2307 return false;
2309 // Loop over the PHI's seeing if we can promote them all to select
2310 // instructions. While we are at it, keep track of the instructions
2311 // that need to be moved to the dominating block.
2312 SmallPtrSet<Instruction *, 4> AggressiveInsts;
2313 unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2314 MaxCostVal1 = PHINodeFoldingThreshold;
2315 MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2316 MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2318 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2319 PHINode *PN = cast<PHINode>(II++);
2320 if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2321 PN->replaceAllUsesWith(V);
2322 PN->eraseFromParent();
2323 continue;
2326 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2327 MaxCostVal0, TTI) ||
2328 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2329 MaxCostVal1, TTI))
2330 return false;
2333 // If we folded the first phi, PN dangles at this point. Refresh it. If
2334 // we ran out of PHIs then we simplified them all.
2335 PN = dyn_cast<PHINode>(BB->begin());
2336 if (!PN)
2337 return true;
2339 // Don't fold i1 branches on PHIs which contain binary operators. These can
2340 // often be turned into switches and other things.
2341 if (PN->getType()->isIntegerTy(1) &&
2342 (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2343 isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2344 isa<BinaryOperator>(IfCond)))
2345 return false;
2347 // If all PHI nodes are promotable, check to make sure that all instructions
2348 // in the predecessor blocks can be promoted as well. If not, we won't be able
2349 // to get rid of the control flow, so it's not worth promoting to select
2350 // instructions.
2351 BasicBlock *DomBlock = nullptr;
2352 BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2353 BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2354 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2355 IfBlock1 = nullptr;
2356 } else {
2357 DomBlock = *pred_begin(IfBlock1);
2358 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2359 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2360 // This is not an aggressive instruction that we can promote.
2361 // Because of this, we won't be able to get rid of the control flow, so
2362 // the xform is not worth it.
2363 return false;
2367 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2368 IfBlock2 = nullptr;
2369 } else {
2370 DomBlock = *pred_begin(IfBlock2);
2371 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2372 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2373 // This is not an aggressive instruction that we can promote.
2374 // Because of this, we won't be able to get rid of the control flow, so
2375 // the xform is not worth it.
2376 return false;
2380 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
2381 << " T: " << IfTrue->getName()
2382 << " F: " << IfFalse->getName() << "\n");
2384 // If we can still promote the PHI nodes after this gauntlet of tests,
2385 // do all of the PHI's now.
2386 Instruction *InsertPt = DomBlock->getTerminator();
2387 IRBuilder<NoFolder> Builder(InsertPt);
2389 // Move all 'aggressive' instructions, which are defined in the
2390 // conditional parts of the if's up to the dominating block.
2391 if (IfBlock1)
2392 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2393 if (IfBlock2)
2394 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2396 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2397 // Change the PHI node into a select instruction.
2398 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2399 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2401 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2402 PN->replaceAllUsesWith(Sel);
2403 Sel->takeName(PN);
2404 PN->eraseFromParent();
2407 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2408 // has been flattened. Change DomBlock to jump directly to our new block to
2409 // avoid other simplifycfg's kicking in on the diamond.
2410 Instruction *OldTI = DomBlock->getTerminator();
2411 Builder.SetInsertPoint(OldTI);
2412 Builder.CreateBr(BB);
2413 OldTI->eraseFromParent();
2414 return true;
2417 /// If we found a conditional branch that goes to two returning blocks,
2418 /// try to merge them together into one return,
2419 /// introducing a select if the return values disagree.
2420 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2421 IRBuilder<> &Builder) {
2422 assert(BI->isConditional() && "Must be a conditional branch");
2423 BasicBlock *TrueSucc = BI->getSuccessor(0);
2424 BasicBlock *FalseSucc = BI->getSuccessor(1);
2425 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2426 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2428 // Check to ensure both blocks are empty (just a return) or optionally empty
2429 // with PHI nodes. If there are other instructions, merging would cause extra
2430 // computation on one path or the other.
2431 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2432 return false;
2433 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2434 return false;
2436 Builder.SetInsertPoint(BI);
2437 // Okay, we found a branch that is going to two return nodes. If
2438 // there is no return value for this function, just change the
2439 // branch into a return.
2440 if (FalseRet->getNumOperands() == 0) {
2441 TrueSucc->removePredecessor(BI->getParent());
2442 FalseSucc->removePredecessor(BI->getParent());
2443 Builder.CreateRetVoid();
2444 EraseTerminatorAndDCECond(BI);
2445 return true;
2448 // Otherwise, figure out what the true and false return values are
2449 // so we can insert a new select instruction.
2450 Value *TrueValue = TrueRet->getReturnValue();
2451 Value *FalseValue = FalseRet->getReturnValue();
2453 // Unwrap any PHI nodes in the return blocks.
2454 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2455 if (TVPN->getParent() == TrueSucc)
2456 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2457 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2458 if (FVPN->getParent() == FalseSucc)
2459 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2461 // In order for this transformation to be safe, we must be able to
2462 // unconditionally execute both operands to the return. This is
2463 // normally the case, but we could have a potentially-trapping
2464 // constant expression that prevents this transformation from being
2465 // safe.
2466 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2467 if (TCV->canTrap())
2468 return false;
2469 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2470 if (FCV->canTrap())
2471 return false;
2473 // Okay, we collected all the mapped values and checked them for sanity, and
2474 // defined to really do this transformation. First, update the CFG.
2475 TrueSucc->removePredecessor(BI->getParent());
2476 FalseSucc->removePredecessor(BI->getParent());
2478 // Insert select instructions where needed.
2479 Value *BrCond = BI->getCondition();
2480 if (TrueValue) {
2481 // Insert a select if the results differ.
2482 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2483 } else if (isa<UndefValue>(TrueValue)) {
2484 TrueValue = FalseValue;
2485 } else {
2486 TrueValue =
2487 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2491 Value *RI =
2492 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2494 (void)RI;
2496 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2497 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2498 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2500 EraseTerminatorAndDCECond(BI);
2502 return true;
2505 /// Return true if the given instruction is available
2506 /// in its predecessor block. If yes, the instruction will be removed.
2507 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2508 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2509 return false;
2510 for (Instruction &I : *PB) {
2511 Instruction *PBI = &I;
2512 // Check whether Inst and PBI generate the same value.
2513 if (Inst->isIdenticalTo(PBI)) {
2514 Inst->replaceAllUsesWith(PBI);
2515 Inst->eraseFromParent();
2516 return true;
2519 return false;
2522 /// Return true if either PBI or BI has branch weight available, and store
2523 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2524 /// not have branch weight, use 1:1 as its weight.
2525 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2526 uint64_t &PredTrueWeight,
2527 uint64_t &PredFalseWeight,
2528 uint64_t &SuccTrueWeight,
2529 uint64_t &SuccFalseWeight) {
2530 bool PredHasWeights =
2531 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2532 bool SuccHasWeights =
2533 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2534 if (PredHasWeights || SuccHasWeights) {
2535 if (!PredHasWeights)
2536 PredTrueWeight = PredFalseWeight = 1;
2537 if (!SuccHasWeights)
2538 SuccTrueWeight = SuccFalseWeight = 1;
2539 return true;
2540 } else {
2541 return false;
2545 /// If this basic block is simple enough, and if a predecessor branches to us
2546 /// and one of our successors, fold the block into the predecessor and use
2547 /// logical operations to pick the right destination.
2548 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2549 BasicBlock *BB = BI->getParent();
2551 const unsigned PredCount = pred_size(BB);
2553 Instruction *Cond = nullptr;
2554 if (BI->isConditional())
2555 Cond = dyn_cast<Instruction>(BI->getCondition());
2556 else {
2557 // For unconditional branch, check for a simple CFG pattern, where
2558 // BB has a single predecessor and BB's successor is also its predecessor's
2559 // successor. If such pattern exists, check for CSE between BB and its
2560 // predecessor.
2561 if (BasicBlock *PB = BB->getSinglePredecessor())
2562 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2563 if (PBI->isConditional() &&
2564 (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2565 BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2566 for (auto I = BB->instructionsWithoutDebug().begin(),
2567 E = BB->instructionsWithoutDebug().end();
2568 I != E;) {
2569 Instruction *Curr = &*I++;
2570 if (isa<CmpInst>(Curr)) {
2571 Cond = Curr;
2572 break;
2574 // Quit if we can't remove this instruction.
2575 if (!tryCSEWithPredecessor(Curr, PB))
2576 return false;
2580 if (!Cond)
2581 return false;
2584 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2585 Cond->getParent() != BB || !Cond->hasOneUse())
2586 return false;
2588 // Make sure the instruction after the condition is the cond branch.
2589 BasicBlock::iterator CondIt = ++Cond->getIterator();
2591 // Ignore dbg intrinsics.
2592 while (isa<DbgInfoIntrinsic>(CondIt))
2593 ++CondIt;
2595 if (&*CondIt != BI)
2596 return false;
2598 // Only allow this transformation if computing the condition doesn't involve
2599 // too many instructions and these involved instructions can be executed
2600 // unconditionally. We denote all involved instructions except the condition
2601 // as "bonus instructions", and only allow this transformation when the
2602 // number of the bonus instructions we'll need to create when cloning into
2603 // each predecessor does not exceed a certain threshold.
2604 unsigned NumBonusInsts = 0;
2605 for (auto I = BB->begin(); Cond != &*I; ++I) {
2606 // Ignore dbg intrinsics.
2607 if (isa<DbgInfoIntrinsic>(I))
2608 continue;
2609 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2610 return false;
2611 // I has only one use and can be executed unconditionally.
2612 Instruction *User = dyn_cast<Instruction>(I->user_back());
2613 if (User == nullptr || User->getParent() != BB)
2614 return false;
2615 // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2616 // to use any other instruction, User must be an instruction between next(I)
2617 // and Cond.
2619 // Account for the cost of duplicating this instruction into each
2620 // predecessor.
2621 NumBonusInsts += PredCount;
2622 // Early exits once we reach the limit.
2623 if (NumBonusInsts > BonusInstThreshold)
2624 return false;
2627 // Cond is known to be a compare or binary operator. Check to make sure that
2628 // neither operand is a potentially-trapping constant expression.
2629 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2630 if (CE->canTrap())
2631 return false;
2632 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2633 if (CE->canTrap())
2634 return false;
2636 // Finally, don't infinitely unroll conditional loops.
2637 BasicBlock *TrueDest = BI->getSuccessor(0);
2638 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2639 if (TrueDest == BB || FalseDest == BB)
2640 return false;
2642 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2643 BasicBlock *PredBlock = *PI;
2644 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2646 // Check that we have two conditional branches. If there is a PHI node in
2647 // the common successor, verify that the same value flows in from both
2648 // blocks.
2649 SmallVector<PHINode *, 4> PHIs;
2650 if (!PBI || PBI->isUnconditional() ||
2651 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2652 (!BI->isConditional() &&
2653 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2654 continue;
2656 // Determine if the two branches share a common destination.
2657 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2658 bool InvertPredCond = false;
2660 if (BI->isConditional()) {
2661 if (PBI->getSuccessor(0) == TrueDest) {
2662 Opc = Instruction::Or;
2663 } else if (PBI->getSuccessor(1) == FalseDest) {
2664 Opc = Instruction::And;
2665 } else if (PBI->getSuccessor(0) == FalseDest) {
2666 Opc = Instruction::And;
2667 InvertPredCond = true;
2668 } else if (PBI->getSuccessor(1) == TrueDest) {
2669 Opc = Instruction::Or;
2670 InvertPredCond = true;
2671 } else {
2672 continue;
2674 } else {
2675 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2676 continue;
2679 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2680 IRBuilder<> Builder(PBI);
2682 // If we need to invert the condition in the pred block to match, do so now.
2683 if (InvertPredCond) {
2684 Value *NewCond = PBI->getCondition();
2686 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2687 CmpInst *CI = cast<CmpInst>(NewCond);
2688 CI->setPredicate(CI->getInversePredicate());
2689 } else {
2690 NewCond =
2691 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2694 PBI->setCondition(NewCond);
2695 PBI->swapSuccessors();
2698 // If we have bonus instructions, clone them into the predecessor block.
2699 // Note that there may be multiple predecessor blocks, so we cannot move
2700 // bonus instructions to a predecessor block.
2701 ValueToValueMapTy VMap; // maps original values to cloned values
2702 // We already make sure Cond is the last instruction before BI. Therefore,
2703 // all instructions before Cond other than DbgInfoIntrinsic are bonus
2704 // instructions.
2705 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2706 if (isa<DbgInfoIntrinsic>(BonusInst))
2707 continue;
2708 Instruction *NewBonusInst = BonusInst->clone();
2709 RemapInstruction(NewBonusInst, VMap,
2710 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2711 VMap[&*BonusInst] = NewBonusInst;
2713 // If we moved a load, we cannot any longer claim any knowledge about
2714 // its potential value. The previous information might have been valid
2715 // only given the branch precondition.
2716 // For an analogous reason, we must also drop all the metadata whose
2717 // semantics we don't understand.
2718 NewBonusInst->dropUnknownNonDebugMetadata();
2720 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2721 NewBonusInst->takeName(&*BonusInst);
2722 BonusInst->setName(BonusInst->getName() + ".old");
2725 // Clone Cond into the predecessor basic block, and or/and the
2726 // two conditions together.
2727 Instruction *CondInPred = Cond->clone();
2728 RemapInstruction(CondInPred, VMap,
2729 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2730 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2731 CondInPred->takeName(Cond);
2732 Cond->setName(CondInPred->getName() + ".old");
2734 if (BI->isConditional()) {
2735 Instruction *NewCond = cast<Instruction>(
2736 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2737 PBI->setCondition(NewCond);
2739 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2740 bool HasWeights =
2741 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2742 SuccTrueWeight, SuccFalseWeight);
2743 SmallVector<uint64_t, 8> NewWeights;
2745 if (PBI->getSuccessor(0) == BB) {
2746 if (HasWeights) {
2747 // PBI: br i1 %x, BB, FalseDest
2748 // BI: br i1 %y, TrueDest, FalseDest
2749 // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2750 NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2751 // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2752 // TrueWeight for PBI * FalseWeight for BI.
2753 // We assume that total weights of a BranchInst can fit into 32 bits.
2754 // Therefore, we will not have overflow using 64-bit arithmetic.
2755 NewWeights.push_back(PredFalseWeight *
2756 (SuccFalseWeight + SuccTrueWeight) +
2757 PredTrueWeight * SuccFalseWeight);
2759 AddPredecessorToBlock(TrueDest, PredBlock, BB);
2760 PBI->setSuccessor(0, TrueDest);
2762 if (PBI->getSuccessor(1) == BB) {
2763 if (HasWeights) {
2764 // PBI: br i1 %x, TrueDest, BB
2765 // BI: br i1 %y, TrueDest, FalseDest
2766 // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2767 // FalseWeight for PBI * TrueWeight for BI.
2768 NewWeights.push_back(PredTrueWeight *
2769 (SuccFalseWeight + SuccTrueWeight) +
2770 PredFalseWeight * SuccTrueWeight);
2771 // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2772 NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2774 AddPredecessorToBlock(FalseDest, PredBlock, BB);
2775 PBI->setSuccessor(1, FalseDest);
2777 if (NewWeights.size() == 2) {
2778 // Halve the weights if any of them cannot fit in an uint32_t
2779 FitWeights(NewWeights);
2781 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2782 NewWeights.end());
2783 setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2784 } else
2785 PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2786 } else {
2787 // Update PHI nodes in the common successors.
2788 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2789 ConstantInt *PBI_C = cast<ConstantInt>(
2790 PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2791 assert(PBI_C->getType()->isIntegerTy(1));
2792 Instruction *MergedCond = nullptr;
2793 if (PBI->getSuccessor(0) == TrueDest) {
2794 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2795 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2796 // is false: !PBI_Cond and BI_Value
2797 Instruction *NotCond = cast<Instruction>(
2798 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2799 MergedCond = cast<Instruction>(
2800 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2801 "and.cond"));
2802 if (PBI_C->isOne())
2803 MergedCond = cast<Instruction>(Builder.CreateBinOp(
2804 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2805 } else {
2806 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2807 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2808 // is false: PBI_Cond and BI_Value
2809 MergedCond = cast<Instruction>(Builder.CreateBinOp(
2810 Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2811 if (PBI_C->isOne()) {
2812 Instruction *NotCond = cast<Instruction>(
2813 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2814 MergedCond = cast<Instruction>(Builder.CreateBinOp(
2815 Instruction::Or, NotCond, MergedCond, "or.cond"));
2818 // Update PHI Node.
2819 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2820 MergedCond);
2822 // Change PBI from Conditional to Unconditional.
2823 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2824 EraseTerminatorAndDCECond(PBI);
2825 PBI = New_PBI;
2828 // If BI was a loop latch, it may have had associated loop metadata.
2829 // We need to copy it to the new latch, that is, PBI.
2830 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2831 PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2833 // TODO: If BB is reachable from all paths through PredBlock, then we
2834 // could replace PBI's branch probabilities with BI's.
2836 // Copy any debug value intrinsics into the end of PredBlock.
2837 for (Instruction &I : *BB)
2838 if (isa<DbgInfoIntrinsic>(I))
2839 I.clone()->insertBefore(PBI);
2841 return true;
2843 return false;
2846 // If there is only one store in BB1 and BB2, return it, otherwise return
2847 // nullptr.
2848 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2849 StoreInst *S = nullptr;
2850 for (auto *BB : {BB1, BB2}) {
2851 if (!BB)
2852 continue;
2853 for (auto &I : *BB)
2854 if (auto *SI = dyn_cast<StoreInst>(&I)) {
2855 if (S)
2856 // Multiple stores seen.
2857 return nullptr;
2858 else
2859 S = SI;
2862 return S;
2865 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2866 Value *AlternativeV = nullptr) {
2867 // PHI is going to be a PHI node that allows the value V that is defined in
2868 // BB to be referenced in BB's only successor.
2870 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2871 // doesn't matter to us what the other operand is (it'll never get used). We
2872 // could just create a new PHI with an undef incoming value, but that could
2873 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2874 // other PHI. So here we directly look for some PHI in BB's successor with V
2875 // as an incoming operand. If we find one, we use it, else we create a new
2876 // one.
2878 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2879 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2880 // where OtherBB is the single other predecessor of BB's only successor.
2881 PHINode *PHI = nullptr;
2882 BasicBlock *Succ = BB->getSingleSuccessor();
2884 for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2885 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2886 PHI = cast<PHINode>(I);
2887 if (!AlternativeV)
2888 break;
2890 assert(Succ->hasNPredecessors(2));
2891 auto PredI = pred_begin(Succ);
2892 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2893 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2894 break;
2895 PHI = nullptr;
2897 if (PHI)
2898 return PHI;
2900 // If V is not an instruction defined in BB, just return it.
2901 if (!AlternativeV &&
2902 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2903 return V;
2905 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2906 PHI->addIncoming(V, BB);
2907 for (BasicBlock *PredBB : predecessors(Succ))
2908 if (PredBB != BB)
2909 PHI->addIncoming(
2910 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2911 return PHI;
2914 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2915 BasicBlock *QTB, BasicBlock *QFB,
2916 BasicBlock *PostBB, Value *Address,
2917 bool InvertPCond, bool InvertQCond,
2918 const DataLayout &DL) {
2919 auto IsaBitcastOfPointerType = [](const Instruction &I) {
2920 return Operator::getOpcode(&I) == Instruction::BitCast &&
2921 I.getType()->isPointerTy();
2924 // If we're not in aggressive mode, we only optimize if we have some
2925 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2926 auto IsWorthwhile = [&](BasicBlock *BB) {
2927 if (!BB)
2928 return true;
2929 // Heuristic: if the block can be if-converted/phi-folded and the
2930 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2931 // thread this store.
2932 unsigned N = 0;
2933 for (auto &I : BB->instructionsWithoutDebug()) {
2934 // Cheap instructions viable for folding.
2935 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2936 isa<StoreInst>(I))
2937 ++N;
2938 // Free instructions.
2939 else if (I.isTerminator() || IsaBitcastOfPointerType(I))
2940 continue;
2941 else
2942 return false;
2944 // The store we want to merge is counted in N, so add 1 to make sure
2945 // we're counting the instructions that would be left.
2946 return N <= (PHINodeFoldingThreshold + 1);
2949 if (!MergeCondStoresAggressively &&
2950 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2951 !IsWorthwhile(QFB)))
2952 return false;
2954 // For every pointer, there must be exactly two stores, one coming from
2955 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2956 // store (to any address) in PTB,PFB or QTB,QFB.
2957 // FIXME: We could relax this restriction with a bit more work and performance
2958 // testing.
2959 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2960 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2961 if (!PStore || !QStore)
2962 return false;
2964 // Now check the stores are compatible.
2965 if (!QStore->isUnordered() || !PStore->isUnordered())
2966 return false;
2968 // Check that sinking the store won't cause program behavior changes. Sinking
2969 // the store out of the Q blocks won't change any behavior as we're sinking
2970 // from a block to its unconditional successor. But we're moving a store from
2971 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2972 // So we need to check that there are no aliasing loads or stores in
2973 // QBI, QTB and QFB. We also need to check there are no conflicting memory
2974 // operations between PStore and the end of its parent block.
2976 // The ideal way to do this is to query AliasAnalysis, but we don't
2977 // preserve AA currently so that is dangerous. Be super safe and just
2978 // check there are no other memory operations at all.
2979 for (auto &I : *QFB->getSinglePredecessor())
2980 if (I.mayReadOrWriteMemory())
2981 return false;
2982 for (auto &I : *QFB)
2983 if (&I != QStore && I.mayReadOrWriteMemory())
2984 return false;
2985 if (QTB)
2986 for (auto &I : *QTB)
2987 if (&I != QStore && I.mayReadOrWriteMemory())
2988 return false;
2989 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2990 I != E; ++I)
2991 if (&*I != PStore && I->mayReadOrWriteMemory())
2992 return false;
2994 // If PostBB has more than two predecessors, we need to split it so we can
2995 // sink the store.
2996 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
2997 // We know that QFB's only successor is PostBB. And QFB has a single
2998 // predecessor. If QTB exists, then its only successor is also PostBB.
2999 // If QTB does not exist, then QFB's only predecessor has a conditional
3000 // branch to QFB and PostBB.
3001 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3002 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3003 "condstore.split");
3004 if (!NewBB)
3005 return false;
3006 PostBB = NewBB;
3009 // OK, we're going to sink the stores to PostBB. The store has to be
3010 // conditional though, so first create the predicate.
3011 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3012 ->getCondition();
3013 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3014 ->getCondition();
3016 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3017 PStore->getParent());
3018 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3019 QStore->getParent(), PPHI);
3021 IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3023 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3024 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3026 if (InvertPCond)
3027 PPred = QB.CreateNot(PPred);
3028 if (InvertQCond)
3029 QPred = QB.CreateNot(QPred);
3030 Value *CombinedPred = QB.CreateOr(PPred, QPred);
3032 auto *T =
3033 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3034 QB.SetInsertPoint(T);
3035 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3036 AAMDNodes AAMD;
3037 PStore->getAAMetadata(AAMD, /*Merge=*/false);
3038 PStore->getAAMetadata(AAMD, /*Merge=*/true);
3039 SI->setAAMetadata(AAMD);
3040 unsigned PAlignment = PStore->getAlignment();
3041 unsigned QAlignment = QStore->getAlignment();
3042 unsigned TypeAlignment =
3043 DL.getABITypeAlignment(SI->getValueOperand()->getType());
3044 unsigned MinAlignment;
3045 unsigned MaxAlignment;
3046 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3047 // Choose the minimum alignment. If we could prove both stores execute, we
3048 // could use biggest one. In this case, though, we only know that one of the
3049 // stores executes. And we don't know it's safe to take the alignment from a
3050 // store that doesn't execute.
3051 if (MinAlignment != 0) {
3052 // Choose the minimum of all non-zero alignments.
3053 SI->setAlignment(MinAlignment);
3054 } else if (MaxAlignment != 0) {
3055 // Choose the minimal alignment between the non-zero alignment and the ABI
3056 // default alignment for the type of the stored value.
3057 SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3058 } else {
3059 // If both alignments are zero, use ABI default alignment for the type of
3060 // the stored value.
3061 SI->setAlignment(TypeAlignment);
3064 QStore->eraseFromParent();
3065 PStore->eraseFromParent();
3067 return true;
3070 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3071 const DataLayout &DL) {
3072 // The intention here is to find diamonds or triangles (see below) where each
3073 // conditional block contains a store to the same address. Both of these
3074 // stores are conditional, so they can't be unconditionally sunk. But it may
3075 // be profitable to speculatively sink the stores into one merged store at the
3076 // end, and predicate the merged store on the union of the two conditions of
3077 // PBI and QBI.
3079 // This can reduce the number of stores executed if both of the conditions are
3080 // true, and can allow the blocks to become small enough to be if-converted.
3081 // This optimization will also chain, so that ladders of test-and-set
3082 // sequences can be if-converted away.
3084 // We only deal with simple diamonds or triangles:
3086 // PBI or PBI or a combination of the two
3087 // / \ | \
3088 // PTB PFB | PFB
3089 // \ / | /
3090 // QBI QBI
3091 // / \ | \
3092 // QTB QFB | QFB
3093 // \ / | /
3094 // PostBB PostBB
3096 // We model triangles as a type of diamond with a nullptr "true" block.
3097 // Triangles are canonicalized so that the fallthrough edge is represented by
3098 // a true condition, as in the diagram above.
3099 BasicBlock *PTB = PBI->getSuccessor(0);
3100 BasicBlock *PFB = PBI->getSuccessor(1);
3101 BasicBlock *QTB = QBI->getSuccessor(0);
3102 BasicBlock *QFB = QBI->getSuccessor(1);
3103 BasicBlock *PostBB = QFB->getSingleSuccessor();
3105 // Make sure we have a good guess for PostBB. If QTB's only successor is
3106 // QFB, then QFB is a better PostBB.
3107 if (QTB->getSingleSuccessor() == QFB)
3108 PostBB = QFB;
3110 // If we couldn't find a good PostBB, stop.
3111 if (!PostBB)
3112 return false;
3114 bool InvertPCond = false, InvertQCond = false;
3115 // Canonicalize fallthroughs to the true branches.
3116 if (PFB == QBI->getParent()) {
3117 std::swap(PFB, PTB);
3118 InvertPCond = true;
3120 if (QFB == PostBB) {
3121 std::swap(QFB, QTB);
3122 InvertQCond = true;
3125 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3126 // and QFB may not. Model fallthroughs as a nullptr block.
3127 if (PTB == QBI->getParent())
3128 PTB = nullptr;
3129 if (QTB == PostBB)
3130 QTB = nullptr;
3132 // Legality bailouts. We must have at least the non-fallthrough blocks and
3133 // the post-dominating block, and the non-fallthroughs must only have one
3134 // predecessor.
3135 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3136 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3138 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3139 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3140 return false;
3141 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3142 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3143 return false;
3144 if (!QBI->getParent()->hasNUses(2))
3145 return false;
3147 // OK, this is a sequence of two diamonds or triangles.
3148 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3149 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3150 for (auto *BB : {PTB, PFB}) {
3151 if (!BB)
3152 continue;
3153 for (auto &I : *BB)
3154 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3155 PStoreAddresses.insert(SI->getPointerOperand());
3157 for (auto *BB : {QTB, QFB}) {
3158 if (!BB)
3159 continue;
3160 for (auto &I : *BB)
3161 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3162 QStoreAddresses.insert(SI->getPointerOperand());
3165 set_intersect(PStoreAddresses, QStoreAddresses);
3166 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3167 // clear what it contains.
3168 auto &CommonAddresses = PStoreAddresses;
3170 bool Changed = false;
3171 for (auto *Address : CommonAddresses)
3172 Changed |= mergeConditionalStoreToAddress(
3173 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3174 return Changed;
3177 /// If we have a conditional branch as a predecessor of another block,
3178 /// this function tries to simplify it. We know
3179 /// that PBI and BI are both conditional branches, and BI is in one of the
3180 /// successor blocks of PBI - PBI branches to BI.
3181 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3182 const DataLayout &DL) {
3183 assert(PBI->isConditional() && BI->isConditional());
3184 BasicBlock *BB = BI->getParent();
3186 // If this block ends with a branch instruction, and if there is a
3187 // predecessor that ends on a branch of the same condition, make
3188 // this conditional branch redundant.
3189 if (PBI->getCondition() == BI->getCondition() &&
3190 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3191 // Okay, the outcome of this conditional branch is statically
3192 // knowable. If this block had a single pred, handle specially.
3193 if (BB->getSinglePredecessor()) {
3194 // Turn this into a branch on constant.
3195 bool CondIsTrue = PBI->getSuccessor(0) == BB;
3196 BI->setCondition(
3197 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3198 return true; // Nuke the branch on constant.
3201 // Otherwise, if there are multiple predecessors, insert a PHI that merges
3202 // in the constant and simplify the block result. Subsequent passes of
3203 // simplifycfg will thread the block.
3204 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3205 pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3206 PHINode *NewPN = PHINode::Create(
3207 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3208 BI->getCondition()->getName() + ".pr", &BB->front());
3209 // Okay, we're going to insert the PHI node. Since PBI is not the only
3210 // predecessor, compute the PHI'd conditional value for all of the preds.
3211 // Any predecessor where the condition is not computable we keep symbolic.
3212 for (pred_iterator PI = PB; PI != PE; ++PI) {
3213 BasicBlock *P = *PI;
3214 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3215 PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3216 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3217 bool CondIsTrue = PBI->getSuccessor(0) == BB;
3218 NewPN->addIncoming(
3219 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3221 } else {
3222 NewPN->addIncoming(BI->getCondition(), P);
3226 BI->setCondition(NewPN);
3227 return true;
3231 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3232 if (CE->canTrap())
3233 return false;
3235 // If both branches are conditional and both contain stores to the same
3236 // address, remove the stores from the conditionals and create a conditional
3237 // merged store at the end.
3238 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3239 return true;
3241 // If this is a conditional branch in an empty block, and if any
3242 // predecessors are a conditional branch to one of our destinations,
3243 // fold the conditions into logical ops and one cond br.
3245 // Ignore dbg intrinsics.
3246 if (&*BB->instructionsWithoutDebug().begin() != BI)
3247 return false;
3249 int PBIOp, BIOp;
3250 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3251 PBIOp = 0;
3252 BIOp = 0;
3253 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3254 PBIOp = 0;
3255 BIOp = 1;
3256 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3257 PBIOp = 1;
3258 BIOp = 0;
3259 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3260 PBIOp = 1;
3261 BIOp = 1;
3262 } else {
3263 return false;
3266 // Check to make sure that the other destination of this branch
3267 // isn't BB itself. If so, this is an infinite loop that will
3268 // keep getting unwound.
3269 if (PBI->getSuccessor(PBIOp) == BB)
3270 return false;
3272 // Do not perform this transformation if it would require
3273 // insertion of a large number of select instructions. For targets
3274 // without predication/cmovs, this is a big pessimization.
3276 // Also do not perform this transformation if any phi node in the common
3277 // destination block can trap when reached by BB or PBB (PR17073). In that
3278 // case, it would be unsafe to hoist the operation into a select instruction.
3280 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3281 unsigned NumPhis = 0;
3282 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3283 ++II, ++NumPhis) {
3284 if (NumPhis > 2) // Disable this xform.
3285 return false;
3287 PHINode *PN = cast<PHINode>(II);
3288 Value *BIV = PN->getIncomingValueForBlock(BB);
3289 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3290 if (CE->canTrap())
3291 return false;
3293 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3294 Value *PBIV = PN->getIncomingValue(PBBIdx);
3295 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3296 if (CE->canTrap())
3297 return false;
3300 // Finally, if everything is ok, fold the branches to logical ops.
3301 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3303 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3304 << "AND: " << *BI->getParent());
3306 // If OtherDest *is* BB, then BB is a basic block with a single conditional
3307 // branch in it, where one edge (OtherDest) goes back to itself but the other
3308 // exits. We don't *know* that the program avoids the infinite loop
3309 // (even though that seems likely). If we do this xform naively, we'll end up
3310 // recursively unpeeling the loop. Since we know that (after the xform is
3311 // done) that the block *is* infinite if reached, we just make it an obviously
3312 // infinite loop with no cond branch.
3313 if (OtherDest == BB) {
3314 // Insert it at the end of the function, because it's either code,
3315 // or it won't matter if it's hot. :)
3316 BasicBlock *InfLoopBlock =
3317 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3318 BranchInst::Create(InfLoopBlock, InfLoopBlock);
3319 OtherDest = InfLoopBlock;
3322 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3324 // BI may have other predecessors. Because of this, we leave
3325 // it alone, but modify PBI.
3327 // Make sure we get to CommonDest on True&True directions.
3328 Value *PBICond = PBI->getCondition();
3329 IRBuilder<NoFolder> Builder(PBI);
3330 if (PBIOp)
3331 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3333 Value *BICond = BI->getCondition();
3334 if (BIOp)
3335 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3337 // Merge the conditions.
3338 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3340 // Modify PBI to branch on the new condition to the new dests.
3341 PBI->setCondition(Cond);
3342 PBI->setSuccessor(0, CommonDest);
3343 PBI->setSuccessor(1, OtherDest);
3345 // Update branch weight for PBI.
3346 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3347 uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3348 bool HasWeights =
3349 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3350 SuccTrueWeight, SuccFalseWeight);
3351 if (HasWeights) {
3352 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3353 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3354 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3355 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3356 // The weight to CommonDest should be PredCommon * SuccTotal +
3357 // PredOther * SuccCommon.
3358 // The weight to OtherDest should be PredOther * SuccOther.
3359 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3360 PredOther * SuccCommon,
3361 PredOther * SuccOther};
3362 // Halve the weights if any of them cannot fit in an uint32_t
3363 FitWeights(NewWeights);
3365 setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3368 // OtherDest may have phi nodes. If so, add an entry from PBI's
3369 // block that are identical to the entries for BI's block.
3370 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3372 // We know that the CommonDest already had an edge from PBI to
3373 // it. If it has PHIs though, the PHIs may have different
3374 // entries for BB and PBI's BB. If so, insert a select to make
3375 // them agree.
3376 for (PHINode &PN : CommonDest->phis()) {
3377 Value *BIV = PN.getIncomingValueForBlock(BB);
3378 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3379 Value *PBIV = PN.getIncomingValue(PBBIdx);
3380 if (BIV != PBIV) {
3381 // Insert a select in PBI to pick the right value.
3382 SelectInst *NV = cast<SelectInst>(
3383 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3384 PN.setIncomingValue(PBBIdx, NV);
3385 // Although the select has the same condition as PBI, the original branch
3386 // weights for PBI do not apply to the new select because the select's
3387 // 'logical' edges are incoming edges of the phi that is eliminated, not
3388 // the outgoing edges of PBI.
3389 if (HasWeights) {
3390 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3391 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3392 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3393 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3394 // The weight to PredCommonDest should be PredCommon * SuccTotal.
3395 // The weight to PredOtherDest should be PredOther * SuccCommon.
3396 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3397 PredOther * SuccCommon};
3399 FitWeights(NewWeights);
3401 setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3406 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3407 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3409 // This basic block is probably dead. We know it has at least
3410 // one fewer predecessor.
3411 return true;
3414 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3415 // true or to FalseBB if Cond is false.
3416 // Takes care of updating the successors and removing the old terminator.
3417 // Also makes sure not to introduce new successors by assuming that edges to
3418 // non-successor TrueBBs and FalseBBs aren't reachable.
3419 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3420 BasicBlock *TrueBB, BasicBlock *FalseBB,
3421 uint32_t TrueWeight,
3422 uint32_t FalseWeight) {
3423 // Remove any superfluous successor edges from the CFG.
3424 // First, figure out which successors to preserve.
3425 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3426 // successor.
3427 BasicBlock *KeepEdge1 = TrueBB;
3428 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3430 // Then remove the rest.
3431 for (BasicBlock *Succ : successors(OldTerm)) {
3432 // Make sure only to keep exactly one copy of each edge.
3433 if (Succ == KeepEdge1)
3434 KeepEdge1 = nullptr;
3435 else if (Succ == KeepEdge2)
3436 KeepEdge2 = nullptr;
3437 else
3438 Succ->removePredecessor(OldTerm->getParent(),
3439 /*KeepOneInputPHIs=*/true);
3442 IRBuilder<> Builder(OldTerm);
3443 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3445 // Insert an appropriate new terminator.
3446 if (!KeepEdge1 && !KeepEdge2) {
3447 if (TrueBB == FalseBB)
3448 // We were only looking for one successor, and it was present.
3449 // Create an unconditional branch to it.
3450 Builder.CreateBr(TrueBB);
3451 else {
3452 // We found both of the successors we were looking for.
3453 // Create a conditional branch sharing the condition of the select.
3454 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3455 if (TrueWeight != FalseWeight)
3456 setBranchWeights(NewBI, TrueWeight, FalseWeight);
3458 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3459 // Neither of the selected blocks were successors, so this
3460 // terminator must be unreachable.
3461 new UnreachableInst(OldTerm->getContext(), OldTerm);
3462 } else {
3463 // One of the selected values was a successor, but the other wasn't.
3464 // Insert an unconditional branch to the one that was found;
3465 // the edge to the one that wasn't must be unreachable.
3466 if (!KeepEdge1)
3467 // Only TrueBB was found.
3468 Builder.CreateBr(TrueBB);
3469 else
3470 // Only FalseBB was found.
3471 Builder.CreateBr(FalseBB);
3474 EraseTerminatorAndDCECond(OldTerm);
3475 return true;
3478 // Replaces
3479 // (switch (select cond, X, Y)) on constant X, Y
3480 // with a branch - conditional if X and Y lead to distinct BBs,
3481 // unconditional otherwise.
3482 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3483 // Check for constant integer values in the select.
3484 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3485 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3486 if (!TrueVal || !FalseVal)
3487 return false;
3489 // Find the relevant condition and destinations.
3490 Value *Condition = Select->getCondition();
3491 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3492 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3494 // Get weight for TrueBB and FalseBB.
3495 uint32_t TrueWeight = 0, FalseWeight = 0;
3496 SmallVector<uint64_t, 8> Weights;
3497 bool HasWeights = HasBranchWeights(SI);
3498 if (HasWeights) {
3499 GetBranchWeights(SI, Weights);
3500 if (Weights.size() == 1 + SI->getNumCases()) {
3501 TrueWeight =
3502 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3503 FalseWeight =
3504 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3508 // Perform the actual simplification.
3509 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3510 FalseWeight);
3513 // Replaces
3514 // (indirectbr (select cond, blockaddress(@fn, BlockA),
3515 // blockaddress(@fn, BlockB)))
3516 // with
3517 // (br cond, BlockA, BlockB).
3518 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3519 // Check that both operands of the select are block addresses.
3520 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3521 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3522 if (!TBA || !FBA)
3523 return false;
3525 // Extract the actual blocks.
3526 BasicBlock *TrueBB = TBA->getBasicBlock();
3527 BasicBlock *FalseBB = FBA->getBasicBlock();
3529 // Perform the actual simplification.
3530 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3534 /// This is called when we find an icmp instruction
3535 /// (a seteq/setne with a constant) as the only instruction in a
3536 /// block that ends with an uncond branch. We are looking for a very specific
3537 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
3538 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3539 /// default value goes to an uncond block with a seteq in it, we get something
3540 /// like:
3542 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
3543 /// DEFAULT:
3544 /// %tmp = icmp eq i8 %A, 92
3545 /// br label %end
3546 /// end:
3547 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3549 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3550 /// the PHI, merging the third icmp into the switch.
3551 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3552 ICmpInst *ICI, IRBuilder<> &Builder) {
3553 BasicBlock *BB = ICI->getParent();
3555 // If the block has any PHIs in it or the icmp has multiple uses, it is too
3556 // complex.
3557 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3558 return false;
3560 Value *V = ICI->getOperand(0);
3561 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3563 // The pattern we're looking for is where our only predecessor is a switch on
3564 // 'V' and this block is the default case for the switch. In this case we can
3565 // fold the compared value into the switch to simplify things.
3566 BasicBlock *Pred = BB->getSinglePredecessor();
3567 if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3568 return false;
3570 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3571 if (SI->getCondition() != V)
3572 return false;
3574 // If BB is reachable on a non-default case, then we simply know the value of
3575 // V in this block. Substitute it and constant fold the icmp instruction
3576 // away.
3577 if (SI->getDefaultDest() != BB) {
3578 ConstantInt *VVal = SI->findCaseDest(BB);
3579 assert(VVal && "Should have a unique destination value");
3580 ICI->setOperand(0, VVal);
3582 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3583 ICI->replaceAllUsesWith(V);
3584 ICI->eraseFromParent();
3586 // BB is now empty, so it is likely to simplify away.
3587 return requestResimplify();
3590 // Ok, the block is reachable from the default dest. If the constant we're
3591 // comparing exists in one of the other edges, then we can constant fold ICI
3592 // and zap it.
3593 if (SI->findCaseValue(Cst) != SI->case_default()) {
3594 Value *V;
3595 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3596 V = ConstantInt::getFalse(BB->getContext());
3597 else
3598 V = ConstantInt::getTrue(BB->getContext());
3600 ICI->replaceAllUsesWith(V);
3601 ICI->eraseFromParent();
3602 // BB is now empty, so it is likely to simplify away.
3603 return requestResimplify();
3606 // The use of the icmp has to be in the 'end' block, by the only PHI node in
3607 // the block.
3608 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3609 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3610 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3611 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3612 return false;
3614 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3615 // true in the PHI.
3616 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3617 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3619 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3620 std::swap(DefaultCst, NewCst);
3622 // Replace ICI (which is used by the PHI for the default value) with true or
3623 // false depending on if it is EQ or NE.
3624 ICI->replaceAllUsesWith(DefaultCst);
3625 ICI->eraseFromParent();
3627 // Okay, the switch goes to this block on a default value. Add an edge from
3628 // the switch to the merge point on the compared value.
3629 BasicBlock *NewBB =
3630 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3631 SmallVector<uint64_t, 8> Weights;
3632 bool HasWeights = HasBranchWeights(SI);
3633 if (HasWeights) {
3634 GetBranchWeights(SI, Weights);
3635 if (Weights.size() == 1 + SI->getNumCases()) {
3636 // Split weight for default case to case for "Cst".
3637 Weights[0] = (Weights[0] + 1) >> 1;
3638 Weights.push_back(Weights[0]);
3640 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3641 setBranchWeights(SI, MDWeights);
3644 SI->addCase(Cst, NewBB);
3646 // NewBB branches to the phi block, add the uncond branch and the phi entry.
3647 Builder.SetInsertPoint(NewBB);
3648 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3649 Builder.CreateBr(SuccBlock);
3650 PHIUse->addIncoming(NewCst, NewBB);
3651 return true;
3654 /// The specified branch is a conditional branch.
3655 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3656 /// fold it into a switch instruction if so.
3657 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3658 const DataLayout &DL) {
3659 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3660 if (!Cond)
3661 return false;
3663 // Change br (X == 0 | X == 1), T, F into a switch instruction.
3664 // If this is a bunch of seteq's or'd together, or if it's a bunch of
3665 // 'setne's and'ed together, collect them.
3667 // Try to gather values from a chain of and/or to be turned into a switch
3668 ConstantComparesGatherer ConstantCompare(Cond, DL);
3669 // Unpack the result
3670 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3671 Value *CompVal = ConstantCompare.CompValue;
3672 unsigned UsedICmps = ConstantCompare.UsedICmps;
3673 Value *ExtraCase = ConstantCompare.Extra;
3675 // If we didn't have a multiply compared value, fail.
3676 if (!CompVal)
3677 return false;
3679 // Avoid turning single icmps into a switch.
3680 if (UsedICmps <= 1)
3681 return false;
3683 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3685 // There might be duplicate constants in the list, which the switch
3686 // instruction can't handle, remove them now.
3687 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3688 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3690 // If Extra was used, we require at least two switch values to do the
3691 // transformation. A switch with one value is just a conditional branch.
3692 if (ExtraCase && Values.size() < 2)
3693 return false;
3695 // TODO: Preserve branch weight metadata, similarly to how
3696 // FoldValueComparisonIntoPredecessors preserves it.
3698 // Figure out which block is which destination.
3699 BasicBlock *DefaultBB = BI->getSuccessor(1);
3700 BasicBlock *EdgeBB = BI->getSuccessor(0);
3701 if (!TrueWhenEqual)
3702 std::swap(DefaultBB, EdgeBB);
3704 BasicBlock *BB = BI->getParent();
3706 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3707 << " cases into SWITCH. BB is:\n"
3708 << *BB);
3710 // If there are any extra values that couldn't be folded into the switch
3711 // then we evaluate them with an explicit branch first. Split the block
3712 // right before the condbr to handle it.
3713 if (ExtraCase) {
3714 BasicBlock *NewBB =
3715 BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3716 // Remove the uncond branch added to the old block.
3717 Instruction *OldTI = BB->getTerminator();
3718 Builder.SetInsertPoint(OldTI);
3720 if (TrueWhenEqual)
3721 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3722 else
3723 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3725 OldTI->eraseFromParent();
3727 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3728 // for the edge we just added.
3729 AddPredecessorToBlock(EdgeBB, BB, NewBB);
3731 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
3732 << "\nEXTRABB = " << *BB);
3733 BB = NewBB;
3736 Builder.SetInsertPoint(BI);
3737 // Convert pointer to int before we switch.
3738 if (CompVal->getType()->isPointerTy()) {
3739 CompVal = Builder.CreatePtrToInt(
3740 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3743 // Create the new switch instruction now.
3744 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3746 // Add all of the 'cases' to the switch instruction.
3747 for (unsigned i = 0, e = Values.size(); i != e; ++i)
3748 New->addCase(Values[i], EdgeBB);
3750 // We added edges from PI to the EdgeBB. As such, if there were any
3751 // PHI nodes in EdgeBB, they need entries to be added corresponding to
3752 // the number of edges added.
3753 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3754 PHINode *PN = cast<PHINode>(BBI);
3755 Value *InVal = PN->getIncomingValueForBlock(BB);
3756 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3757 PN->addIncoming(InVal, BB);
3760 // Erase the old branch instruction.
3761 EraseTerminatorAndDCECond(BI);
3763 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
3764 return true;
3767 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3768 if (isa<PHINode>(RI->getValue()))
3769 return SimplifyCommonResume(RI);
3770 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3771 RI->getValue() == RI->getParent()->getFirstNonPHI())
3772 // The resume must unwind the exception that caused control to branch here.
3773 return SimplifySingleResume(RI);
3775 return false;
3778 // Simplify resume that is shared by several landing pads (phi of landing pad).
3779 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3780 BasicBlock *BB = RI->getParent();
3782 // Check that there are no other instructions except for debug intrinsics
3783 // between the phi of landing pads (RI->getValue()) and resume instruction.
3784 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3785 E = RI->getIterator();
3786 while (++I != E)
3787 if (!isa<DbgInfoIntrinsic>(I))
3788 return false;
3790 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3791 auto *PhiLPInst = cast<PHINode>(RI->getValue());
3793 // Check incoming blocks to see if any of them are trivial.
3794 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3795 Idx++) {
3796 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3797 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3799 // If the block has other successors, we can not delete it because
3800 // it has other dependents.
3801 if (IncomingBB->getUniqueSuccessor() != BB)
3802 continue;
3804 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3805 // Not the landing pad that caused the control to branch here.
3806 if (IncomingValue != LandingPad)
3807 continue;
3809 bool isTrivial = true;
3811 I = IncomingBB->getFirstNonPHI()->getIterator();
3812 E = IncomingBB->getTerminator()->getIterator();
3813 while (++I != E)
3814 if (!isa<DbgInfoIntrinsic>(I)) {
3815 isTrivial = false;
3816 break;
3819 if (isTrivial)
3820 TrivialUnwindBlocks.insert(IncomingBB);
3823 // If no trivial unwind blocks, don't do any simplifications.
3824 if (TrivialUnwindBlocks.empty())
3825 return false;
3827 // Turn all invokes that unwind here into calls.
3828 for (auto *TrivialBB : TrivialUnwindBlocks) {
3829 // Blocks that will be simplified should be removed from the phi node.
3830 // Note there could be multiple edges to the resume block, and we need
3831 // to remove them all.
3832 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3833 BB->removePredecessor(TrivialBB, true);
3835 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3836 PI != PE;) {
3837 BasicBlock *Pred = *PI++;
3838 removeUnwindEdge(Pred);
3841 // In each SimplifyCFG run, only the current processed block can be erased.
3842 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3843 // of erasing TrivialBB, we only remove the branch to the common resume
3844 // block so that we can later erase the resume block since it has no
3845 // predecessors.
3846 TrivialBB->getTerminator()->eraseFromParent();
3847 new UnreachableInst(RI->getContext(), TrivialBB);
3850 // Delete the resume block if all its predecessors have been removed.
3851 if (pred_empty(BB))
3852 BB->eraseFromParent();
3854 return !TrivialUnwindBlocks.empty();
3857 // Simplify resume that is only used by a single (non-phi) landing pad.
3858 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3859 BasicBlock *BB = RI->getParent();
3860 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3861 assert(RI->getValue() == LPInst &&
3862 "Resume must unwind the exception that caused control to here");
3864 // Check that there are no other instructions except for debug intrinsics.
3865 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3866 while (++I != E)
3867 if (!isa<DbgInfoIntrinsic>(I))
3868 return false;
3870 // Turn all invokes that unwind here into calls and delete the basic block.
3871 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3872 BasicBlock *Pred = *PI++;
3873 removeUnwindEdge(Pred);
3876 // The landingpad is now unreachable. Zap it.
3877 if (LoopHeaders)
3878 LoopHeaders->erase(BB);
3879 BB->eraseFromParent();
3880 return true;
3883 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3884 // If this is a trivial cleanup pad that executes no instructions, it can be
3885 // eliminated. If the cleanup pad continues to the caller, any predecessor
3886 // that is an EH pad will be updated to continue to the caller and any
3887 // predecessor that terminates with an invoke instruction will have its invoke
3888 // instruction converted to a call instruction. If the cleanup pad being
3889 // simplified does not continue to the caller, each predecessor will be
3890 // updated to continue to the unwind destination of the cleanup pad being
3891 // simplified.
3892 BasicBlock *BB = RI->getParent();
3893 CleanupPadInst *CPInst = RI->getCleanupPad();
3894 if (CPInst->getParent() != BB)
3895 // This isn't an empty cleanup.
3896 return false;
3898 // We cannot kill the pad if it has multiple uses. This typically arises
3899 // from unreachable basic blocks.
3900 if (!CPInst->hasOneUse())
3901 return false;
3903 // Check that there are no other instructions except for benign intrinsics.
3904 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3905 while (++I != E) {
3906 auto *II = dyn_cast<IntrinsicInst>(I);
3907 if (!II)
3908 return false;
3910 Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3911 switch (IntrinsicID) {
3912 case Intrinsic::dbg_declare:
3913 case Intrinsic::dbg_value:
3914 case Intrinsic::dbg_label:
3915 case Intrinsic::lifetime_end:
3916 break;
3917 default:
3918 return false;
3922 // If the cleanup return we are simplifying unwinds to the caller, this will
3923 // set UnwindDest to nullptr.
3924 BasicBlock *UnwindDest = RI->getUnwindDest();
3925 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3927 // We're about to remove BB from the control flow. Before we do, sink any
3928 // PHINodes into the unwind destination. Doing this before changing the
3929 // control flow avoids some potentially slow checks, since we can currently
3930 // be certain that UnwindDest and BB have no common predecessors (since they
3931 // are both EH pads).
3932 if (UnwindDest) {
3933 // First, go through the PHI nodes in UnwindDest and update any nodes that
3934 // reference the block we are removing
3935 for (BasicBlock::iterator I = UnwindDest->begin(),
3936 IE = DestEHPad->getIterator();
3937 I != IE; ++I) {
3938 PHINode *DestPN = cast<PHINode>(I);
3940 int Idx = DestPN->getBasicBlockIndex(BB);
3941 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3942 assert(Idx != -1);
3943 // This PHI node has an incoming value that corresponds to a control
3944 // path through the cleanup pad we are removing. If the incoming
3945 // value is in the cleanup pad, it must be a PHINode (because we
3946 // verified above that the block is otherwise empty). Otherwise, the
3947 // value is either a constant or a value that dominates the cleanup
3948 // pad being removed.
3950 // Because BB and UnwindDest are both EH pads, all of their
3951 // predecessors must unwind to these blocks, and since no instruction
3952 // can have multiple unwind destinations, there will be no overlap in
3953 // incoming blocks between SrcPN and DestPN.
3954 Value *SrcVal = DestPN->getIncomingValue(Idx);
3955 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3957 // Remove the entry for the block we are deleting.
3958 DestPN->removeIncomingValue(Idx, false);
3960 if (SrcPN && SrcPN->getParent() == BB) {
3961 // If the incoming value was a PHI node in the cleanup pad we are
3962 // removing, we need to merge that PHI node's incoming values into
3963 // DestPN.
3964 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3965 SrcIdx != SrcE; ++SrcIdx) {
3966 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3967 SrcPN->getIncomingBlock(SrcIdx));
3969 } else {
3970 // Otherwise, the incoming value came from above BB and
3971 // so we can just reuse it. We must associate all of BB's
3972 // predecessors with this value.
3973 for (auto *pred : predecessors(BB)) {
3974 DestPN->addIncoming(SrcVal, pred);
3979 // Sink any remaining PHI nodes directly into UnwindDest.
3980 Instruction *InsertPt = DestEHPad;
3981 for (BasicBlock::iterator I = BB->begin(),
3982 IE = BB->getFirstNonPHI()->getIterator();
3983 I != IE;) {
3984 // The iterator must be incremented here because the instructions are
3985 // being moved to another block.
3986 PHINode *PN = cast<PHINode>(I++);
3987 if (PN->use_empty())
3988 // If the PHI node has no uses, just leave it. It will be erased
3989 // when we erase BB below.
3990 continue;
3992 // Otherwise, sink this PHI node into UnwindDest.
3993 // Any predecessors to UnwindDest which are not already represented
3994 // must be back edges which inherit the value from the path through
3995 // BB. In this case, the PHI value must reference itself.
3996 for (auto *pred : predecessors(UnwindDest))
3997 if (pred != BB)
3998 PN->addIncoming(PN, pred);
3999 PN->moveBefore(InsertPt);
4003 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4004 // The iterator must be updated here because we are removing this pred.
4005 BasicBlock *PredBB = *PI++;
4006 if (UnwindDest == nullptr) {
4007 removeUnwindEdge(PredBB);
4008 } else {
4009 Instruction *TI = PredBB->getTerminator();
4010 TI->replaceUsesOfWith(BB, UnwindDest);
4014 // The cleanup pad is now unreachable. Zap it.
4015 BB->eraseFromParent();
4016 return true;
4019 // Try to merge two cleanuppads together.
4020 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4021 // Skip any cleanuprets which unwind to caller, there is nothing to merge
4022 // with.
4023 BasicBlock *UnwindDest = RI->getUnwindDest();
4024 if (!UnwindDest)
4025 return false;
4027 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4028 // be safe to merge without code duplication.
4029 if (UnwindDest->getSinglePredecessor() != RI->getParent())
4030 return false;
4032 // Verify that our cleanuppad's unwind destination is another cleanuppad.
4033 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4034 if (!SuccessorCleanupPad)
4035 return false;
4037 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4038 // Replace any uses of the successor cleanupad with the predecessor pad
4039 // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4040 // funclet bundle operands.
4041 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4042 // Remove the old cleanuppad.
4043 SuccessorCleanupPad->eraseFromParent();
4044 // Now, we simply replace the cleanupret with a branch to the unwind
4045 // destination.
4046 BranchInst::Create(UnwindDest, RI->getParent());
4047 RI->eraseFromParent();
4049 return true;
4052 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4053 // It is possible to transiantly have an undef cleanuppad operand because we
4054 // have deleted some, but not all, dead blocks.
4055 // Eventually, this block will be deleted.
4056 if (isa<UndefValue>(RI->getOperand(0)))
4057 return false;
4059 if (mergeCleanupPad(RI))
4060 return true;
4062 if (removeEmptyCleanup(RI))
4063 return true;
4065 return false;
4068 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4069 BasicBlock *BB = RI->getParent();
4070 if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4071 return false;
4073 // Find predecessors that end with branches.
4074 SmallVector<BasicBlock *, 8> UncondBranchPreds;
4075 SmallVector<BranchInst *, 8> CondBranchPreds;
4076 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4077 BasicBlock *P = *PI;
4078 Instruction *PTI = P->getTerminator();
4079 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4080 if (BI->isUnconditional())
4081 UncondBranchPreds.push_back(P);
4082 else
4083 CondBranchPreds.push_back(BI);
4087 // If we found some, do the transformation!
4088 if (!UncondBranchPreds.empty() && DupRet) {
4089 while (!UncondBranchPreds.empty()) {
4090 BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4091 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4092 << "INTO UNCOND BRANCH PRED: " << *Pred);
4093 (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4096 // If we eliminated all predecessors of the block, delete the block now.
4097 if (pred_empty(BB)) {
4098 // We know there are no successors, so just nuke the block.
4099 if (LoopHeaders)
4100 LoopHeaders->erase(BB);
4101 BB->eraseFromParent();
4104 return true;
4107 // Check out all of the conditional branches going to this return
4108 // instruction. If any of them just select between returns, change the
4109 // branch itself into a select/return pair.
4110 while (!CondBranchPreds.empty()) {
4111 BranchInst *BI = CondBranchPreds.pop_back_val();
4113 // Check to see if the non-BB successor is also a return block.
4114 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4115 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4116 SimplifyCondBranchToTwoReturns(BI, Builder))
4117 return true;
4119 return false;
4122 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4123 BasicBlock *BB = UI->getParent();
4125 bool Changed = false;
4127 // If there are any instructions immediately before the unreachable that can
4128 // be removed, do so.
4129 while (UI->getIterator() != BB->begin()) {
4130 BasicBlock::iterator BBI = UI->getIterator();
4131 --BBI;
4132 // Do not delete instructions that can have side effects which might cause
4133 // the unreachable to not be reachable; specifically, calls and volatile
4134 // operations may have this effect.
4135 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4136 break;
4138 if (BBI->mayHaveSideEffects()) {
4139 if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4140 if (SI->isVolatile())
4141 break;
4142 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4143 if (LI->isVolatile())
4144 break;
4145 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4146 if (RMWI->isVolatile())
4147 break;
4148 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4149 if (CXI->isVolatile())
4150 break;
4151 } else if (isa<CatchPadInst>(BBI)) {
4152 // A catchpad may invoke exception object constructors and such, which
4153 // in some languages can be arbitrary code, so be conservative by
4154 // default.
4155 // For CoreCLR, it just involves a type test, so can be removed.
4156 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4157 EHPersonality::CoreCLR)
4158 break;
4159 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4160 !isa<LandingPadInst>(BBI)) {
4161 break;
4163 // Note that deleting LandingPad's here is in fact okay, although it
4164 // involves a bit of subtle reasoning. If this inst is a LandingPad,
4165 // all the predecessors of this block will be the unwind edges of Invokes,
4166 // and we can therefore guarantee this block will be erased.
4169 // Delete this instruction (any uses are guaranteed to be dead)
4170 if (!BBI->use_empty())
4171 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4172 BBI->eraseFromParent();
4173 Changed = true;
4176 // If the unreachable instruction is the first in the block, take a gander
4177 // at all of the predecessors of this instruction, and simplify them.
4178 if (&BB->front() != UI)
4179 return Changed;
4181 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4182 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4183 Instruction *TI = Preds[i]->getTerminator();
4184 IRBuilder<> Builder(TI);
4185 if (auto *BI = dyn_cast<BranchInst>(TI)) {
4186 if (BI->isUnconditional()) {
4187 if (BI->getSuccessor(0) == BB) {
4188 new UnreachableInst(TI->getContext(), TI);
4189 TI->eraseFromParent();
4190 Changed = true;
4192 } else {
4193 if (BI->getSuccessor(0) == BB) {
4194 Builder.CreateBr(BI->getSuccessor(1));
4195 EraseTerminatorAndDCECond(BI);
4196 } else if (BI->getSuccessor(1) == BB) {
4197 Builder.CreateBr(BI->getSuccessor(0));
4198 EraseTerminatorAndDCECond(BI);
4199 Changed = true;
4202 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4203 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4204 if (i->getCaseSuccessor() != BB) {
4205 ++i;
4206 continue;
4208 BB->removePredecessor(SI->getParent());
4209 i = SI->removeCase(i);
4210 e = SI->case_end();
4211 Changed = true;
4213 } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4214 if (II->getUnwindDest() == BB) {
4215 removeUnwindEdge(TI->getParent());
4216 Changed = true;
4218 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4219 if (CSI->getUnwindDest() == BB) {
4220 removeUnwindEdge(TI->getParent());
4221 Changed = true;
4222 continue;
4225 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4226 E = CSI->handler_end();
4227 I != E; ++I) {
4228 if (*I == BB) {
4229 CSI->removeHandler(I);
4230 --I;
4231 --E;
4232 Changed = true;
4235 if (CSI->getNumHandlers() == 0) {
4236 BasicBlock *CatchSwitchBB = CSI->getParent();
4237 if (CSI->hasUnwindDest()) {
4238 // Redirect preds to the unwind dest
4239 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4240 } else {
4241 // Rewrite all preds to unwind to caller (or from invoke to call).
4242 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4243 for (BasicBlock *EHPred : EHPreds)
4244 removeUnwindEdge(EHPred);
4246 // The catchswitch is no longer reachable.
4247 new UnreachableInst(CSI->getContext(), CSI);
4248 CSI->eraseFromParent();
4249 Changed = true;
4251 } else if (isa<CleanupReturnInst>(TI)) {
4252 new UnreachableInst(TI->getContext(), TI);
4253 TI->eraseFromParent();
4254 Changed = true;
4258 // If this block is now dead, remove it.
4259 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4260 // We know there are no successors, so just nuke the block.
4261 if (LoopHeaders)
4262 LoopHeaders->erase(BB);
4263 BB->eraseFromParent();
4264 return true;
4267 return Changed;
4270 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4271 assert(Cases.size() >= 1);
4273 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4274 for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4275 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4276 return false;
4278 return true;
4281 /// Turn a switch with two reachable destinations into an integer range
4282 /// comparison and branch.
4283 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4284 assert(SI->getNumCases() > 1 && "Degenerate switch?");
4286 bool HasDefault =
4287 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4289 // Partition the cases into two sets with different destinations.
4290 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4291 BasicBlock *DestB = nullptr;
4292 SmallVector<ConstantInt *, 16> CasesA;
4293 SmallVector<ConstantInt *, 16> CasesB;
4295 for (auto Case : SI->cases()) {
4296 BasicBlock *Dest = Case.getCaseSuccessor();
4297 if (!DestA)
4298 DestA = Dest;
4299 if (Dest == DestA) {
4300 CasesA.push_back(Case.getCaseValue());
4301 continue;
4303 if (!DestB)
4304 DestB = Dest;
4305 if (Dest == DestB) {
4306 CasesB.push_back(Case.getCaseValue());
4307 continue;
4309 return false; // More than two destinations.
4312 assert(DestA && DestB &&
4313 "Single-destination switch should have been folded.");
4314 assert(DestA != DestB);
4315 assert(DestB != SI->getDefaultDest());
4316 assert(!CasesB.empty() && "There must be non-default cases.");
4317 assert(!CasesA.empty() || HasDefault);
4319 // Figure out if one of the sets of cases form a contiguous range.
4320 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4321 BasicBlock *ContiguousDest = nullptr;
4322 BasicBlock *OtherDest = nullptr;
4323 if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4324 ContiguousCases = &CasesA;
4325 ContiguousDest = DestA;
4326 OtherDest = DestB;
4327 } else if (CasesAreContiguous(CasesB)) {
4328 ContiguousCases = &CasesB;
4329 ContiguousDest = DestB;
4330 OtherDest = DestA;
4331 } else
4332 return false;
4334 // Start building the compare and branch.
4336 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4337 Constant *NumCases =
4338 ConstantInt::get(Offset->getType(), ContiguousCases->size());
4340 Value *Sub = SI->getCondition();
4341 if (!Offset->isNullValue())
4342 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4344 Value *Cmp;
4345 // If NumCases overflowed, then all possible values jump to the successor.
4346 if (NumCases->isNullValue() && !ContiguousCases->empty())
4347 Cmp = ConstantInt::getTrue(SI->getContext());
4348 else
4349 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4350 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4352 // Update weight for the newly-created conditional branch.
4353 if (HasBranchWeights(SI)) {
4354 SmallVector<uint64_t, 8> Weights;
4355 GetBranchWeights(SI, Weights);
4356 if (Weights.size() == 1 + SI->getNumCases()) {
4357 uint64_t TrueWeight = 0;
4358 uint64_t FalseWeight = 0;
4359 for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4360 if (SI->getSuccessor(I) == ContiguousDest)
4361 TrueWeight += Weights[I];
4362 else
4363 FalseWeight += Weights[I];
4365 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4366 TrueWeight /= 2;
4367 FalseWeight /= 2;
4369 setBranchWeights(NewBI, TrueWeight, FalseWeight);
4373 // Prune obsolete incoming values off the successors' PHI nodes.
4374 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4375 unsigned PreviousEdges = ContiguousCases->size();
4376 if (ContiguousDest == SI->getDefaultDest())
4377 ++PreviousEdges;
4378 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4379 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4381 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4382 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4383 if (OtherDest == SI->getDefaultDest())
4384 ++PreviousEdges;
4385 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4386 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4389 // Drop the switch.
4390 SI->eraseFromParent();
4392 return true;
4395 /// Compute masked bits for the condition of a switch
4396 /// and use it to remove dead cases.
4397 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4398 const DataLayout &DL) {
4399 Value *Cond = SI->getCondition();
4400 unsigned Bits = Cond->getType()->getIntegerBitWidth();
4401 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4403 // We can also eliminate cases by determining that their values are outside of
4404 // the limited range of the condition based on how many significant (non-sign)
4405 // bits are in the condition value.
4406 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4407 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4409 // Gather dead cases.
4410 SmallVector<ConstantInt *, 8> DeadCases;
4411 for (auto &Case : SI->cases()) {
4412 const APInt &CaseVal = Case.getCaseValue()->getValue();
4413 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4414 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4415 DeadCases.push_back(Case.getCaseValue());
4416 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4417 << " is dead.\n");
4421 // If we can prove that the cases must cover all possible values, the
4422 // default destination becomes dead and we can remove it. If we know some
4423 // of the bits in the value, we can use that to more precisely compute the
4424 // number of possible unique case values.
4425 bool HasDefault =
4426 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4427 const unsigned NumUnknownBits =
4428 Bits - (Known.Zero | Known.One).countPopulation();
4429 assert(NumUnknownBits <= Bits);
4430 if (HasDefault && DeadCases.empty() &&
4431 NumUnknownBits < 64 /* avoid overflow */ &&
4432 SI->getNumCases() == (1ULL << NumUnknownBits)) {
4433 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4434 BasicBlock *NewDefault =
4435 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4436 SI->setDefaultDest(&*NewDefault);
4437 SplitBlock(&*NewDefault, &NewDefault->front());
4438 auto *OldTI = NewDefault->getTerminator();
4439 new UnreachableInst(SI->getContext(), OldTI);
4440 EraseTerminatorAndDCECond(OldTI);
4441 return true;
4444 SmallVector<uint64_t, 8> Weights;
4445 bool HasWeight = HasBranchWeights(SI);
4446 if (HasWeight) {
4447 GetBranchWeights(SI, Weights);
4448 HasWeight = (Weights.size() == 1 + SI->getNumCases());
4451 // Remove dead cases from the switch.
4452 for (ConstantInt *DeadCase : DeadCases) {
4453 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4454 assert(CaseI != SI->case_default() &&
4455 "Case was not found. Probably mistake in DeadCases forming.");
4456 if (HasWeight) {
4457 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4458 Weights.pop_back();
4461 // Prune unused values from PHI nodes.
4462 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4463 SI->removeCase(CaseI);
4465 if (HasWeight && Weights.size() >= 2) {
4466 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4467 setBranchWeights(SI, MDWeights);
4470 return !DeadCases.empty();
4473 /// If BB would be eligible for simplification by
4474 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4475 /// by an unconditional branch), look at the phi node for BB in the successor
4476 /// block and see if the incoming value is equal to CaseValue. If so, return
4477 /// the phi node, and set PhiIndex to BB's index in the phi node.
4478 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4479 BasicBlock *BB, int *PhiIndex) {
4480 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4481 return nullptr; // BB must be empty to be a candidate for simplification.
4482 if (!BB->getSinglePredecessor())
4483 return nullptr; // BB must be dominated by the switch.
4485 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4486 if (!Branch || !Branch->isUnconditional())
4487 return nullptr; // Terminator must be unconditional branch.
4489 BasicBlock *Succ = Branch->getSuccessor(0);
4491 for (PHINode &PHI : Succ->phis()) {
4492 int Idx = PHI.getBasicBlockIndex(BB);
4493 assert(Idx >= 0 && "PHI has no entry for predecessor?");
4495 Value *InValue = PHI.getIncomingValue(Idx);
4496 if (InValue != CaseValue)
4497 continue;
4499 *PhiIndex = Idx;
4500 return &PHI;
4503 return nullptr;
4506 /// Try to forward the condition of a switch instruction to a phi node
4507 /// dominated by the switch, if that would mean that some of the destination
4508 /// blocks of the switch can be folded away. Return true if a change is made.
4509 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4510 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4512 ForwardingNodesMap ForwardingNodes;
4513 BasicBlock *SwitchBlock = SI->getParent();
4514 bool Changed = false;
4515 for (auto &Case : SI->cases()) {
4516 ConstantInt *CaseValue = Case.getCaseValue();
4517 BasicBlock *CaseDest = Case.getCaseSuccessor();
4519 // Replace phi operands in successor blocks that are using the constant case
4520 // value rather than the switch condition variable:
4521 // switchbb:
4522 // switch i32 %x, label %default [
4523 // i32 17, label %succ
4524 // ...
4525 // succ:
4526 // %r = phi i32 ... [ 17, %switchbb ] ...
4527 // -->
4528 // %r = phi i32 ... [ %x, %switchbb ] ...
4530 for (PHINode &Phi : CaseDest->phis()) {
4531 // This only works if there is exactly 1 incoming edge from the switch to
4532 // a phi. If there is >1, that means multiple cases of the switch map to 1
4533 // value in the phi, and that phi value is not the switch condition. Thus,
4534 // this transform would not make sense (the phi would be invalid because
4535 // a phi can't have different incoming values from the same block).
4536 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4537 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4538 count(Phi.blocks(), SwitchBlock) == 1) {
4539 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4540 Changed = true;
4544 // Collect phi nodes that are indirectly using this switch's case constants.
4545 int PhiIdx;
4546 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4547 ForwardingNodes[Phi].push_back(PhiIdx);
4550 for (auto &ForwardingNode : ForwardingNodes) {
4551 PHINode *Phi = ForwardingNode.first;
4552 SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4553 if (Indexes.size() < 2)
4554 continue;
4556 for (int Index : Indexes)
4557 Phi->setIncomingValue(Index, SI->getCondition());
4558 Changed = true;
4561 return Changed;
4564 /// Return true if the backend will be able to handle
4565 /// initializing an array of constants like C.
4566 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4567 if (C->isThreadDependent())
4568 return false;
4569 if (C->isDLLImportDependent())
4570 return false;
4572 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4573 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4574 !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4575 return false;
4577 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4578 if (!CE->isGEPWithNoNotionalOverIndexing())
4579 return false;
4580 if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4581 return false;
4584 if (!TTI.shouldBuildLookupTablesForConstant(C))
4585 return false;
4587 return true;
4590 /// If V is a Constant, return it. Otherwise, try to look up
4591 /// its constant value in ConstantPool, returning 0 if it's not there.
4592 static Constant *
4593 LookupConstant(Value *V,
4594 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4595 if (Constant *C = dyn_cast<Constant>(V))
4596 return C;
4597 return ConstantPool.lookup(V);
4600 /// Try to fold instruction I into a constant. This works for
4601 /// simple instructions such as binary operations where both operands are
4602 /// constant or can be replaced by constants from the ConstantPool. Returns the
4603 /// resulting constant on success, 0 otherwise.
4604 static Constant *
4605 ConstantFold(Instruction *I, const DataLayout &DL,
4606 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4607 if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4608 Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4609 if (!A)
4610 return nullptr;
4611 if (A->isAllOnesValue())
4612 return LookupConstant(Select->getTrueValue(), ConstantPool);
4613 if (A->isNullValue())
4614 return LookupConstant(Select->getFalseValue(), ConstantPool);
4615 return nullptr;
4618 SmallVector<Constant *, 4> COps;
4619 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4620 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4621 COps.push_back(A);
4622 else
4623 return nullptr;
4626 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4627 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4628 COps[1], DL);
4631 return ConstantFoldInstOperands(I, COps, DL);
4634 /// Try to determine the resulting constant values in phi nodes
4635 /// at the common destination basic block, *CommonDest, for one of the case
4636 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4637 /// case), of a switch instruction SI.
4638 static bool
4639 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4640 BasicBlock **CommonDest,
4641 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4642 const DataLayout &DL, const TargetTransformInfo &TTI) {
4643 // The block from which we enter the common destination.
4644 BasicBlock *Pred = SI->getParent();
4646 // If CaseDest is empty except for some side-effect free instructions through
4647 // which we can constant-propagate the CaseVal, continue to its successor.
4648 SmallDenseMap<Value *, Constant *> ConstantPool;
4649 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4650 for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4651 if (I.isTerminator()) {
4652 // If the terminator is a simple branch, continue to the next block.
4653 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4654 return false;
4655 Pred = CaseDest;
4656 CaseDest = I.getSuccessor(0);
4657 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4658 // Instruction is side-effect free and constant.
4660 // If the instruction has uses outside this block or a phi node slot for
4661 // the block, it is not safe to bypass the instruction since it would then
4662 // no longer dominate all its uses.
4663 for (auto &Use : I.uses()) {
4664 User *User = Use.getUser();
4665 if (Instruction *I = dyn_cast<Instruction>(User))
4666 if (I->getParent() == CaseDest)
4667 continue;
4668 if (PHINode *Phi = dyn_cast<PHINode>(User))
4669 if (Phi->getIncomingBlock(Use) == CaseDest)
4670 continue;
4671 return false;
4674 ConstantPool.insert(std::make_pair(&I, C));
4675 } else {
4676 break;
4680 // If we did not have a CommonDest before, use the current one.
4681 if (!*CommonDest)
4682 *CommonDest = CaseDest;
4683 // If the destination isn't the common one, abort.
4684 if (CaseDest != *CommonDest)
4685 return false;
4687 // Get the values for this case from phi nodes in the destination block.
4688 for (PHINode &PHI : (*CommonDest)->phis()) {
4689 int Idx = PHI.getBasicBlockIndex(Pred);
4690 if (Idx == -1)
4691 continue;
4693 Constant *ConstVal =
4694 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4695 if (!ConstVal)
4696 return false;
4698 // Be conservative about which kinds of constants we support.
4699 if (!ValidLookupTableConstant(ConstVal, TTI))
4700 return false;
4702 Res.push_back(std::make_pair(&PHI, ConstVal));
4705 return Res.size() > 0;
4708 // Helper function used to add CaseVal to the list of cases that generate
4709 // Result. Returns the updated number of cases that generate this result.
4710 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4711 SwitchCaseResultVectorTy &UniqueResults,
4712 Constant *Result) {
4713 for (auto &I : UniqueResults) {
4714 if (I.first == Result) {
4715 I.second.push_back(CaseVal);
4716 return I.second.size();
4719 UniqueResults.push_back(
4720 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4721 return 1;
4724 // Helper function that initializes a map containing
4725 // results for the PHI node of the common destination block for a switch
4726 // instruction. Returns false if multiple PHI nodes have been found or if
4727 // there is not a common destination block for the switch.
4728 static bool
4729 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4730 SwitchCaseResultVectorTy &UniqueResults,
4731 Constant *&DefaultResult, const DataLayout &DL,
4732 const TargetTransformInfo &TTI,
4733 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4734 for (auto &I : SI->cases()) {
4735 ConstantInt *CaseVal = I.getCaseValue();
4737 // Resulting value at phi nodes for this case value.
4738 SwitchCaseResultsTy Results;
4739 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4740 DL, TTI))
4741 return false;
4743 // Only one value per case is permitted.
4744 if (Results.size() > 1)
4745 return false;
4747 // Add the case->result mapping to UniqueResults.
4748 const uintptr_t NumCasesForResult =
4749 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4751 // Early out if there are too many cases for this result.
4752 if (NumCasesForResult > MaxCasesPerResult)
4753 return false;
4755 // Early out if there are too many unique results.
4756 if (UniqueResults.size() > MaxUniqueResults)
4757 return false;
4759 // Check the PHI consistency.
4760 if (!PHI)
4761 PHI = Results[0].first;
4762 else if (PHI != Results[0].first)
4763 return false;
4765 // Find the default result value.
4766 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4767 BasicBlock *DefaultDest = SI->getDefaultDest();
4768 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4769 DL, TTI);
4770 // If the default value is not found abort unless the default destination
4771 // is unreachable.
4772 DefaultResult =
4773 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4774 if ((!DefaultResult &&
4775 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4776 return false;
4778 return true;
4781 // Helper function that checks if it is possible to transform a switch with only
4782 // two cases (or two cases + default) that produces a result into a select.
4783 // Example:
4784 // switch (a) {
4785 // case 10: %0 = icmp eq i32 %a, 10
4786 // return 10; %1 = select i1 %0, i32 10, i32 4
4787 // case 20: ----> %2 = icmp eq i32 %a, 20
4788 // return 2; %3 = select i1 %2, i32 2, i32 %1
4789 // default:
4790 // return 4;
4791 // }
4792 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4793 Constant *DefaultResult, Value *Condition,
4794 IRBuilder<> &Builder) {
4795 assert(ResultVector.size() == 2 &&
4796 "We should have exactly two unique results at this point");
4797 // If we are selecting between only two cases transform into a simple
4798 // select or a two-way select if default is possible.
4799 if (ResultVector[0].second.size() == 1 &&
4800 ResultVector[1].second.size() == 1) {
4801 ConstantInt *const FirstCase = ResultVector[0].second[0];
4802 ConstantInt *const SecondCase = ResultVector[1].second[0];
4804 bool DefaultCanTrigger = DefaultResult;
4805 Value *SelectValue = ResultVector[1].first;
4806 if (DefaultCanTrigger) {
4807 Value *const ValueCompare =
4808 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4809 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4810 DefaultResult, "switch.select");
4812 Value *const ValueCompare =
4813 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4814 return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4815 SelectValue, "switch.select");
4818 return nullptr;
4821 // Helper function to cleanup a switch instruction that has been converted into
4822 // a select, fixing up PHI nodes and basic blocks.
4823 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4824 Value *SelectValue,
4825 IRBuilder<> &Builder) {
4826 BasicBlock *SelectBB = SI->getParent();
4827 while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4828 PHI->removeIncomingValue(SelectBB);
4829 PHI->addIncoming(SelectValue, SelectBB);
4831 Builder.CreateBr(PHI->getParent());
4833 // Remove the switch.
4834 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4835 BasicBlock *Succ = SI->getSuccessor(i);
4837 if (Succ == PHI->getParent())
4838 continue;
4839 Succ->removePredecessor(SelectBB);
4841 SI->eraseFromParent();
4844 /// If the switch is only used to initialize one or more
4845 /// phi nodes in a common successor block with only two different
4846 /// constant values, replace the switch with select.
4847 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4848 const DataLayout &DL,
4849 const TargetTransformInfo &TTI) {
4850 Value *const Cond = SI->getCondition();
4851 PHINode *PHI = nullptr;
4852 BasicBlock *CommonDest = nullptr;
4853 Constant *DefaultResult;
4854 SwitchCaseResultVectorTy UniqueResults;
4855 // Collect all the cases that will deliver the same value from the switch.
4856 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4857 DL, TTI, 2, 1))
4858 return false;
4859 // Selects choose between maximum two values.
4860 if (UniqueResults.size() != 2)
4861 return false;
4862 assert(PHI != nullptr && "PHI for value select not found");
4864 Builder.SetInsertPoint(SI);
4865 Value *SelectValue =
4866 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4867 if (SelectValue) {
4868 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4869 return true;
4871 // The switch couldn't be converted into a select.
4872 return false;
4875 namespace {
4877 /// This class represents a lookup table that can be used to replace a switch.
4878 class SwitchLookupTable {
4879 public:
4880 /// Create a lookup table to use as a switch replacement with the contents
4881 /// of Values, using DefaultValue to fill any holes in the table.
4882 SwitchLookupTable(
4883 Module &M, uint64_t TableSize, ConstantInt *Offset,
4884 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4885 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4887 /// Build instructions with Builder to retrieve the value at
4888 /// the position given by Index in the lookup table.
4889 Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4891 /// Return true if a table with TableSize elements of
4892 /// type ElementType would fit in a target-legal register.
4893 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4894 Type *ElementType);
4896 private:
4897 // Depending on the contents of the table, it can be represented in
4898 // different ways.
4899 enum {
4900 // For tables where each element contains the same value, we just have to
4901 // store that single value and return it for each lookup.
4902 SingleValueKind,
4904 // For tables where there is a linear relationship between table index
4905 // and values. We calculate the result with a simple multiplication
4906 // and addition instead of a table lookup.
4907 LinearMapKind,
4909 // For small tables with integer elements, we can pack them into a bitmap
4910 // that fits into a target-legal register. Values are retrieved by
4911 // shift and mask operations.
4912 BitMapKind,
4914 // The table is stored as an array of values. Values are retrieved by load
4915 // instructions from the table.
4916 ArrayKind
4917 } Kind;
4919 // For SingleValueKind, this is the single value.
4920 Constant *SingleValue = nullptr;
4922 // For BitMapKind, this is the bitmap.
4923 ConstantInt *BitMap = nullptr;
4924 IntegerType *BitMapElementTy = nullptr;
4926 // For LinearMapKind, these are the constants used to derive the value.
4927 ConstantInt *LinearOffset = nullptr;
4928 ConstantInt *LinearMultiplier = nullptr;
4930 // For ArrayKind, this is the array.
4931 GlobalVariable *Array = nullptr;
4934 } // end anonymous namespace
4936 SwitchLookupTable::SwitchLookupTable(
4937 Module &M, uint64_t TableSize, ConstantInt *Offset,
4938 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4939 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4940 assert(Values.size() && "Can't build lookup table without values!");
4941 assert(TableSize >= Values.size() && "Can't fit values in table!");
4943 // If all values in the table are equal, this is that value.
4944 SingleValue = Values.begin()->second;
4946 Type *ValueType = Values.begin()->second->getType();
4948 // Build up the table contents.
4949 SmallVector<Constant *, 64> TableContents(TableSize);
4950 for (size_t I = 0, E = Values.size(); I != E; ++I) {
4951 ConstantInt *CaseVal = Values[I].first;
4952 Constant *CaseRes = Values[I].second;
4953 assert(CaseRes->getType() == ValueType);
4955 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4956 TableContents[Idx] = CaseRes;
4958 if (CaseRes != SingleValue)
4959 SingleValue = nullptr;
4962 // Fill in any holes in the table with the default result.
4963 if (Values.size() < TableSize) {
4964 assert(DefaultValue &&
4965 "Need a default value to fill the lookup table holes.");
4966 assert(DefaultValue->getType() == ValueType);
4967 for (uint64_t I = 0; I < TableSize; ++I) {
4968 if (!TableContents[I])
4969 TableContents[I] = DefaultValue;
4972 if (DefaultValue != SingleValue)
4973 SingleValue = nullptr;
4976 // If each element in the table contains the same value, we only need to store
4977 // that single value.
4978 if (SingleValue) {
4979 Kind = SingleValueKind;
4980 return;
4983 // Check if we can derive the value with a linear transformation from the
4984 // table index.
4985 if (isa<IntegerType>(ValueType)) {
4986 bool LinearMappingPossible = true;
4987 APInt PrevVal;
4988 APInt DistToPrev;
4989 assert(TableSize >= 2 && "Should be a SingleValue table.");
4990 // Check if there is the same distance between two consecutive values.
4991 for (uint64_t I = 0; I < TableSize; ++I) {
4992 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4993 if (!ConstVal) {
4994 // This is an undef. We could deal with it, but undefs in lookup tables
4995 // are very seldom. It's probably not worth the additional complexity.
4996 LinearMappingPossible = false;
4997 break;
4999 const APInt &Val = ConstVal->getValue();
5000 if (I != 0) {
5001 APInt Dist = Val - PrevVal;
5002 if (I == 1) {
5003 DistToPrev = Dist;
5004 } else if (Dist != DistToPrev) {
5005 LinearMappingPossible = false;
5006 break;
5009 PrevVal = Val;
5011 if (LinearMappingPossible) {
5012 LinearOffset = cast<ConstantInt>(TableContents[0]);
5013 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5014 Kind = LinearMapKind;
5015 ++NumLinearMaps;
5016 return;
5020 // If the type is integer and the table fits in a register, build a bitmap.
5021 if (WouldFitInRegister(DL, TableSize, ValueType)) {
5022 IntegerType *IT = cast<IntegerType>(ValueType);
5023 APInt TableInt(TableSize * IT->getBitWidth(), 0);
5024 for (uint64_t I = TableSize; I > 0; --I) {
5025 TableInt <<= IT->getBitWidth();
5026 // Insert values into the bitmap. Undef values are set to zero.
5027 if (!isa<UndefValue>(TableContents[I - 1])) {
5028 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5029 TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5032 BitMap = ConstantInt::get(M.getContext(), TableInt);
5033 BitMapElementTy = IT;
5034 Kind = BitMapKind;
5035 ++NumBitMaps;
5036 return;
5039 // Store the table in an array.
5040 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5041 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5043 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5044 GlobalVariable::PrivateLinkage, Initializer,
5045 "switch.table." + FuncName);
5046 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5047 // Set the alignment to that of an array items. We will be only loading one
5048 // value out of it.
5049 Array->setAlignment(DL.getPrefTypeAlignment(ValueType));
5050 Kind = ArrayKind;
5053 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5054 switch (Kind) {
5055 case SingleValueKind:
5056 return SingleValue;
5057 case LinearMapKind: {
5058 // Derive the result value from the input value.
5059 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5060 false, "switch.idx.cast");
5061 if (!LinearMultiplier->isOne())
5062 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5063 if (!LinearOffset->isZero())
5064 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5065 return Result;
5067 case BitMapKind: {
5068 // Type of the bitmap (e.g. i59).
5069 IntegerType *MapTy = BitMap->getType();
5071 // Cast Index to the same type as the bitmap.
5072 // Note: The Index is <= the number of elements in the table, so
5073 // truncating it to the width of the bitmask is safe.
5074 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5076 // Multiply the shift amount by the element width.
5077 ShiftAmt = Builder.CreateMul(
5078 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5079 "switch.shiftamt");
5081 // Shift down.
5082 Value *DownShifted =
5083 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5084 // Mask off.
5085 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5087 case ArrayKind: {
5088 // Make sure the table index will not overflow when treated as signed.
5089 IntegerType *IT = cast<IntegerType>(Index->getType());
5090 uint64_t TableSize =
5091 Array->getInitializer()->getType()->getArrayNumElements();
5092 if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5093 Index = Builder.CreateZExt(
5094 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5095 "switch.tableidx.zext");
5097 Value *GEPIndices[] = {Builder.getInt32(0), Index};
5098 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5099 GEPIndices, "switch.gep");
5100 return Builder.CreateLoad(
5101 cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5102 "switch.load");
5105 llvm_unreachable("Unknown lookup table kind!");
5108 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5109 uint64_t TableSize,
5110 Type *ElementType) {
5111 auto *IT = dyn_cast<IntegerType>(ElementType);
5112 if (!IT)
5113 return false;
5114 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5115 // are <= 15, we could try to narrow the type.
5117 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5118 if (TableSize >= UINT_MAX / IT->getBitWidth())
5119 return false;
5120 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5123 /// Determine whether a lookup table should be built for this switch, based on
5124 /// the number of cases, size of the table, and the types of the results.
5125 static bool
5126 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5127 const TargetTransformInfo &TTI, const DataLayout &DL,
5128 const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5129 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5130 return false; // TableSize overflowed, or mul below might overflow.
5132 bool AllTablesFitInRegister = true;
5133 bool HasIllegalType = false;
5134 for (const auto &I : ResultTypes) {
5135 Type *Ty = I.second;
5137 // Saturate this flag to true.
5138 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5140 // Saturate this flag to false.
5141 AllTablesFitInRegister =
5142 AllTablesFitInRegister &&
5143 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5145 // If both flags saturate, we're done. NOTE: This *only* works with
5146 // saturating flags, and all flags have to saturate first due to the
5147 // non-deterministic behavior of iterating over a dense map.
5148 if (HasIllegalType && !AllTablesFitInRegister)
5149 break;
5152 // If each table would fit in a register, we should build it anyway.
5153 if (AllTablesFitInRegister)
5154 return true;
5156 // Don't build a table that doesn't fit in-register if it has illegal types.
5157 if (HasIllegalType)
5158 return false;
5160 // The table density should be at least 40%. This is the same criterion as for
5161 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5162 // FIXME: Find the best cut-off.
5163 return SI->getNumCases() * 10 >= TableSize * 4;
5166 /// Try to reuse the switch table index compare. Following pattern:
5167 /// \code
5168 /// if (idx < tablesize)
5169 /// r = table[idx]; // table does not contain default_value
5170 /// else
5171 /// r = default_value;
5172 /// if (r != default_value)
5173 /// ...
5174 /// \endcode
5175 /// Is optimized to:
5176 /// \code
5177 /// cond = idx < tablesize;
5178 /// if (cond)
5179 /// r = table[idx];
5180 /// else
5181 /// r = default_value;
5182 /// if (cond)
5183 /// ...
5184 /// \endcode
5185 /// Jump threading will then eliminate the second if(cond).
5186 static void reuseTableCompare(
5187 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5188 Constant *DefaultValue,
5189 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5190 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5191 if (!CmpInst)
5192 return;
5194 // We require that the compare is in the same block as the phi so that jump
5195 // threading can do its work afterwards.
5196 if (CmpInst->getParent() != PhiBlock)
5197 return;
5199 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5200 if (!CmpOp1)
5201 return;
5203 Value *RangeCmp = RangeCheckBranch->getCondition();
5204 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5205 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5207 // Check if the compare with the default value is constant true or false.
5208 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5209 DefaultValue, CmpOp1, true);
5210 if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5211 return;
5213 // Check if the compare with the case values is distinct from the default
5214 // compare result.
5215 for (auto ValuePair : Values) {
5216 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5217 ValuePair.second, CmpOp1, true);
5218 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5219 return;
5220 assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5221 "Expect true or false as compare result.");
5224 // Check if the branch instruction dominates the phi node. It's a simple
5225 // dominance check, but sufficient for our needs.
5226 // Although this check is invariant in the calling loops, it's better to do it
5227 // at this late stage. Practically we do it at most once for a switch.
5228 BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5229 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5230 BasicBlock *Pred = *PI;
5231 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5232 return;
5235 if (DefaultConst == FalseConst) {
5236 // The compare yields the same result. We can replace it.
5237 CmpInst->replaceAllUsesWith(RangeCmp);
5238 ++NumTableCmpReuses;
5239 } else {
5240 // The compare yields the same result, just inverted. We can replace it.
5241 Value *InvertedTableCmp = BinaryOperator::CreateXor(
5242 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5243 RangeCheckBranch);
5244 CmpInst->replaceAllUsesWith(InvertedTableCmp);
5245 ++NumTableCmpReuses;
5249 /// If the switch is only used to initialize one or more phi nodes in a common
5250 /// successor block with different constant values, replace the switch with
5251 /// lookup tables.
5252 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5253 const DataLayout &DL,
5254 const TargetTransformInfo &TTI) {
5255 assert(SI->getNumCases() > 1 && "Degenerate switch?");
5257 Function *Fn = SI->getParent()->getParent();
5258 // Only build lookup table when we have a target that supports it or the
5259 // attribute is not set.
5260 if (!TTI.shouldBuildLookupTables() ||
5261 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5262 return false;
5264 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5265 // split off a dense part and build a lookup table for that.
5267 // FIXME: This creates arrays of GEPs to constant strings, which means each
5268 // GEP needs a runtime relocation in PIC code. We should just build one big
5269 // string and lookup indices into that.
5271 // Ignore switches with less than three cases. Lookup tables will not make
5272 // them faster, so we don't analyze them.
5273 if (SI->getNumCases() < 3)
5274 return false;
5276 // Figure out the corresponding result for each case value and phi node in the
5277 // common destination, as well as the min and max case values.
5278 assert(!empty(SI->cases()));
5279 SwitchInst::CaseIt CI = SI->case_begin();
5280 ConstantInt *MinCaseVal = CI->getCaseValue();
5281 ConstantInt *MaxCaseVal = CI->getCaseValue();
5283 BasicBlock *CommonDest = nullptr;
5285 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5286 SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5288 SmallDenseMap<PHINode *, Constant *> DefaultResults;
5289 SmallDenseMap<PHINode *, Type *> ResultTypes;
5290 SmallVector<PHINode *, 4> PHIs;
5292 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5293 ConstantInt *CaseVal = CI->getCaseValue();
5294 if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5295 MinCaseVal = CaseVal;
5296 if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5297 MaxCaseVal = CaseVal;
5299 // Resulting value at phi nodes for this case value.
5300 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5301 ResultsTy Results;
5302 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5303 Results, DL, TTI))
5304 return false;
5306 // Append the result from this case to the list for each phi.
5307 for (const auto &I : Results) {
5308 PHINode *PHI = I.first;
5309 Constant *Value = I.second;
5310 if (!ResultLists.count(PHI))
5311 PHIs.push_back(PHI);
5312 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5316 // Keep track of the result types.
5317 for (PHINode *PHI : PHIs) {
5318 ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5321 uint64_t NumResults = ResultLists[PHIs[0]].size();
5322 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5323 uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5324 bool TableHasHoles = (NumResults < TableSize);
5326 // If the table has holes, we need a constant result for the default case
5327 // or a bitmask that fits in a register.
5328 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5329 bool HasDefaultResults =
5330 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5331 DefaultResultsList, DL, TTI);
5333 bool NeedMask = (TableHasHoles && !HasDefaultResults);
5334 if (NeedMask) {
5335 // As an extra penalty for the validity test we require more cases.
5336 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5337 return false;
5338 if (!DL.fitsInLegalInteger(TableSize))
5339 return false;
5342 for (const auto &I : DefaultResultsList) {
5343 PHINode *PHI = I.first;
5344 Constant *Result = I.second;
5345 DefaultResults[PHI] = Result;
5348 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5349 return false;
5351 // Create the BB that does the lookups.
5352 Module &Mod = *CommonDest->getParent()->getParent();
5353 BasicBlock *LookupBB = BasicBlock::Create(
5354 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5356 // Compute the table index value.
5357 Builder.SetInsertPoint(SI);
5358 Value *TableIndex;
5359 if (MinCaseVal->isNullValue())
5360 TableIndex = SI->getCondition();
5361 else
5362 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5363 "switch.tableidx");
5365 // Compute the maximum table size representable by the integer type we are
5366 // switching upon.
5367 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5368 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5369 assert(MaxTableSize >= TableSize &&
5370 "It is impossible for a switch to have more entries than the max "
5371 "representable value of its input integer type's size.");
5373 // If the default destination is unreachable, or if the lookup table covers
5374 // all values of the conditional variable, branch directly to the lookup table
5375 // BB. Otherwise, check that the condition is within the case range.
5376 const bool DefaultIsReachable =
5377 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5378 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5379 BranchInst *RangeCheckBranch = nullptr;
5381 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5382 Builder.CreateBr(LookupBB);
5383 // Note: We call removeProdecessor later since we need to be able to get the
5384 // PHI value for the default case in case we're using a bit mask.
5385 } else {
5386 Value *Cmp = Builder.CreateICmpULT(
5387 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5388 RangeCheckBranch =
5389 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5392 // Populate the BB that does the lookups.
5393 Builder.SetInsertPoint(LookupBB);
5395 if (NeedMask) {
5396 // Before doing the lookup, we do the hole check. The LookupBB is therefore
5397 // re-purposed to do the hole check, and we create a new LookupBB.
5398 BasicBlock *MaskBB = LookupBB;
5399 MaskBB->setName("switch.hole_check");
5400 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5401 CommonDest->getParent(), CommonDest);
5403 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5404 // unnecessary illegal types.
5405 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5406 APInt MaskInt(TableSizePowOf2, 0);
5407 APInt One(TableSizePowOf2, 1);
5408 // Build bitmask; fill in a 1 bit for every case.
5409 const ResultListTy &ResultList = ResultLists[PHIs[0]];
5410 for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5411 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5412 .getLimitedValue();
5413 MaskInt |= One << Idx;
5415 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5417 // Get the TableIndex'th bit of the bitmask.
5418 // If this bit is 0 (meaning hole) jump to the default destination,
5419 // else continue with table lookup.
5420 IntegerType *MapTy = TableMask->getType();
5421 Value *MaskIndex =
5422 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5423 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5424 Value *LoBit = Builder.CreateTrunc(
5425 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5426 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5428 Builder.SetInsertPoint(LookupBB);
5429 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5432 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5433 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5434 // do not delete PHINodes here.
5435 SI->getDefaultDest()->removePredecessor(SI->getParent(),
5436 /*KeepOneInputPHIs=*/true);
5439 bool ReturnedEarly = false;
5440 for (PHINode *PHI : PHIs) {
5441 const ResultListTy &ResultList = ResultLists[PHI];
5443 // If using a bitmask, use any value to fill the lookup table holes.
5444 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5445 StringRef FuncName = Fn->getName();
5446 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5447 FuncName);
5449 Value *Result = Table.BuildLookup(TableIndex, Builder);
5451 // If the result is used to return immediately from the function, we want to
5452 // do that right here.
5453 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5454 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5455 Builder.CreateRet(Result);
5456 ReturnedEarly = true;
5457 break;
5460 // Do a small peephole optimization: re-use the switch table compare if
5461 // possible.
5462 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5463 BasicBlock *PhiBlock = PHI->getParent();
5464 // Search for compare instructions which use the phi.
5465 for (auto *User : PHI->users()) {
5466 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5470 PHI->addIncoming(Result, LookupBB);
5473 if (!ReturnedEarly)
5474 Builder.CreateBr(CommonDest);
5476 // Remove the switch.
5477 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5478 BasicBlock *Succ = SI->getSuccessor(i);
5480 if (Succ == SI->getDefaultDest())
5481 continue;
5482 Succ->removePredecessor(SI->getParent());
5484 SI->eraseFromParent();
5486 ++NumLookupTables;
5487 if (NeedMask)
5488 ++NumLookupTablesHoles;
5489 return true;
5492 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5493 // See also SelectionDAGBuilder::isDense(), which this function was based on.
5494 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5495 uint64_t Range = Diff + 1;
5496 uint64_t NumCases = Values.size();
5497 // 40% is the default density for building a jump table in optsize/minsize mode.
5498 uint64_t MinDensity = 40;
5500 return NumCases * 100 >= Range * MinDensity;
5503 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5504 /// of cases.
5506 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5507 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5509 /// This converts a sparse switch into a dense switch which allows better
5510 /// lowering and could also allow transforming into a lookup table.
5511 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5512 const DataLayout &DL,
5513 const TargetTransformInfo &TTI) {
5514 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5515 if (CondTy->getIntegerBitWidth() > 64 ||
5516 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5517 return false;
5518 // Only bother with this optimization if there are more than 3 switch cases;
5519 // SDAG will only bother creating jump tables for 4 or more cases.
5520 if (SI->getNumCases() < 4)
5521 return false;
5523 // This transform is agnostic to the signedness of the input or case values. We
5524 // can treat the case values as signed or unsigned. We can optimize more common
5525 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5526 // as signed.
5527 SmallVector<int64_t,4> Values;
5528 for (auto &C : SI->cases())
5529 Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5530 llvm::sort(Values);
5532 // If the switch is already dense, there's nothing useful to do here.
5533 if (isSwitchDense(Values))
5534 return false;
5536 // First, transform the values such that they start at zero and ascend.
5537 int64_t Base = Values[0];
5538 for (auto &V : Values)
5539 V -= (uint64_t)(Base);
5541 // Now we have signed numbers that have been shifted so that, given enough
5542 // precision, there are no negative values. Since the rest of the transform
5543 // is bitwise only, we switch now to an unsigned representation.
5544 uint64_t GCD = 0;
5545 for (auto &V : Values)
5546 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5548 // This transform can be done speculatively because it is so cheap - it results
5549 // in a single rotate operation being inserted. This can only happen if the
5550 // factor extracted is a power of 2.
5551 // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5552 // inverse of GCD and then perform this transform.
5553 // FIXME: It's possible that optimizing a switch on powers of two might also
5554 // be beneficial - flag values are often powers of two and we could use a CLZ
5555 // as the key function.
5556 if (GCD <= 1 || !isPowerOf2_64(GCD))
5557 // No common divisor found or too expensive to compute key function.
5558 return false;
5560 unsigned Shift = Log2_64(GCD);
5561 for (auto &V : Values)
5562 V = (int64_t)((uint64_t)V >> Shift);
5564 if (!isSwitchDense(Values))
5565 // Transform didn't create a dense switch.
5566 return false;
5568 // The obvious transform is to shift the switch condition right and emit a
5569 // check that the condition actually cleanly divided by GCD, i.e.
5570 // C & (1 << Shift - 1) == 0
5571 // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5573 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5574 // shift and puts the shifted-off bits in the uppermost bits. If any of these
5575 // are nonzero then the switch condition will be very large and will hit the
5576 // default case.
5578 auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5579 Builder.SetInsertPoint(SI);
5580 auto *ShiftC = ConstantInt::get(Ty, Shift);
5581 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5582 auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5583 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5584 auto *Rot = Builder.CreateOr(LShr, Shl);
5585 SI->replaceUsesOfWith(SI->getCondition(), Rot);
5587 for (auto Case : SI->cases()) {
5588 auto *Orig = Case.getCaseValue();
5589 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5590 Case.setValue(
5591 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5593 return true;
5596 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5597 BasicBlock *BB = SI->getParent();
5599 if (isValueEqualityComparison(SI)) {
5600 // If we only have one predecessor, and if it is a branch on this value,
5601 // see if that predecessor totally determines the outcome of this switch.
5602 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5603 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5604 return requestResimplify();
5606 Value *Cond = SI->getCondition();
5607 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5608 if (SimplifySwitchOnSelect(SI, Select))
5609 return requestResimplify();
5611 // If the block only contains the switch, see if we can fold the block
5612 // away into any preds.
5613 if (SI == &*BB->instructionsWithoutDebug().begin())
5614 if (FoldValueComparisonIntoPredecessors(SI, Builder))
5615 return requestResimplify();
5618 // Try to transform the switch into an icmp and a branch.
5619 if (TurnSwitchRangeIntoICmp(SI, Builder))
5620 return requestResimplify();
5622 // Remove unreachable cases.
5623 if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5624 return requestResimplify();
5626 if (switchToSelect(SI, Builder, DL, TTI))
5627 return requestResimplify();
5629 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5630 return requestResimplify();
5632 // The conversion from switch to lookup tables results in difficult-to-analyze
5633 // code and makes pruning branches much harder. This is a problem if the
5634 // switch expression itself can still be restricted as a result of inlining or
5635 // CVP. Therefore, only apply this transformation during late stages of the
5636 // optimisation pipeline.
5637 if (Options.ConvertSwitchToLookupTable &&
5638 SwitchToLookupTable(SI, Builder, DL, TTI))
5639 return requestResimplify();
5641 if (ReduceSwitchRange(SI, Builder, DL, TTI))
5642 return requestResimplify();
5644 return false;
5647 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5648 BasicBlock *BB = IBI->getParent();
5649 bool Changed = false;
5651 // Eliminate redundant destinations.
5652 SmallPtrSet<Value *, 8> Succs;
5653 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5654 BasicBlock *Dest = IBI->getDestination(i);
5655 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5656 Dest->removePredecessor(BB);
5657 IBI->removeDestination(i);
5658 --i;
5659 --e;
5660 Changed = true;
5664 if (IBI->getNumDestinations() == 0) {
5665 // If the indirectbr has no successors, change it to unreachable.
5666 new UnreachableInst(IBI->getContext(), IBI);
5667 EraseTerminatorAndDCECond(IBI);
5668 return true;
5671 if (IBI->getNumDestinations() == 1) {
5672 // If the indirectbr has one successor, change it to a direct branch.
5673 BranchInst::Create(IBI->getDestination(0), IBI);
5674 EraseTerminatorAndDCECond(IBI);
5675 return true;
5678 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5679 if (SimplifyIndirectBrOnSelect(IBI, SI))
5680 return requestResimplify();
5682 return Changed;
5685 /// Given an block with only a single landing pad and a unconditional branch
5686 /// try to find another basic block which this one can be merged with. This
5687 /// handles cases where we have multiple invokes with unique landing pads, but
5688 /// a shared handler.
5690 /// We specifically choose to not worry about merging non-empty blocks
5691 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
5692 /// practice, the optimizer produces empty landing pad blocks quite frequently
5693 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
5694 /// sinking in this file)
5696 /// This is primarily a code size optimization. We need to avoid performing
5697 /// any transform which might inhibit optimization (such as our ability to
5698 /// specialize a particular handler via tail commoning). We do this by not
5699 /// merging any blocks which require us to introduce a phi. Since the same
5700 /// values are flowing through both blocks, we don't lose any ability to
5701 /// specialize. If anything, we make such specialization more likely.
5703 /// TODO - This transformation could remove entries from a phi in the target
5704 /// block when the inputs in the phi are the same for the two blocks being
5705 /// merged. In some cases, this could result in removal of the PHI entirely.
5706 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5707 BasicBlock *BB) {
5708 auto Succ = BB->getUniqueSuccessor();
5709 assert(Succ);
5710 // If there's a phi in the successor block, we'd likely have to introduce
5711 // a phi into the merged landing pad block.
5712 if (isa<PHINode>(*Succ->begin()))
5713 return false;
5715 for (BasicBlock *OtherPred : predecessors(Succ)) {
5716 if (BB == OtherPred)
5717 continue;
5718 BasicBlock::iterator I = OtherPred->begin();
5719 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5720 if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5721 continue;
5722 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5724 BranchInst *BI2 = dyn_cast<BranchInst>(I);
5725 if (!BI2 || !BI2->isIdenticalTo(BI))
5726 continue;
5728 // We've found an identical block. Update our predecessors to take that
5729 // path instead and make ourselves dead.
5730 SmallPtrSet<BasicBlock *, 16> Preds;
5731 Preds.insert(pred_begin(BB), pred_end(BB));
5732 for (BasicBlock *Pred : Preds) {
5733 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5734 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5735 "unexpected successor");
5736 II->setUnwindDest(OtherPred);
5739 // The debug info in OtherPred doesn't cover the merged control flow that
5740 // used to go through BB. We need to delete it or update it.
5741 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5742 Instruction &Inst = *I;
5743 I++;
5744 if (isa<DbgInfoIntrinsic>(Inst))
5745 Inst.eraseFromParent();
5748 SmallPtrSet<BasicBlock *, 16> Succs;
5749 Succs.insert(succ_begin(BB), succ_end(BB));
5750 for (BasicBlock *Succ : Succs) {
5751 Succ->removePredecessor(BB);
5754 IRBuilder<> Builder(BI);
5755 Builder.CreateUnreachable();
5756 BI->eraseFromParent();
5757 return true;
5759 return false;
5762 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5763 IRBuilder<> &Builder) {
5764 BasicBlock *BB = BI->getParent();
5765 BasicBlock *Succ = BI->getSuccessor(0);
5767 // If the Terminator is the only non-phi instruction, simplify the block.
5768 // If LoopHeader is provided, check if the block or its successor is a loop
5769 // header. (This is for early invocations before loop simplify and
5770 // vectorization to keep canonical loop forms for nested loops. These blocks
5771 // can be eliminated when the pass is invoked later in the back-end.)
5772 // Note that if BB has only one predecessor then we do not introduce new
5773 // backedge, so we can eliminate BB.
5774 bool NeedCanonicalLoop =
5775 Options.NeedCanonicalLoop &&
5776 (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5777 (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5778 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5779 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5780 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5781 return true;
5783 // If the only instruction in the block is a seteq/setne comparison against a
5784 // constant, try to simplify the block.
5785 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5786 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5787 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5789 if (I->isTerminator() &&
5790 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5791 return true;
5794 // See if we can merge an empty landing pad block with another which is
5795 // equivalent.
5796 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5797 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5799 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5800 return true;
5803 // If this basic block is ONLY a compare and a branch, and if a predecessor
5804 // branches to us and our successor, fold the comparison into the
5805 // predecessor and use logical operations to update the incoming value
5806 // for PHI nodes in common successor.
5807 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5808 return requestResimplify();
5809 return false;
5812 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5813 BasicBlock *PredPred = nullptr;
5814 for (auto *P : predecessors(BB)) {
5815 BasicBlock *PPred = P->getSinglePredecessor();
5816 if (!PPred || (PredPred && PredPred != PPred))
5817 return nullptr;
5818 PredPred = PPred;
5820 return PredPred;
5823 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5824 BasicBlock *BB = BI->getParent();
5825 const Function *Fn = BB->getParent();
5826 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5827 return false;
5829 // Conditional branch
5830 if (isValueEqualityComparison(BI)) {
5831 // If we only have one predecessor, and if it is a branch on this value,
5832 // see if that predecessor totally determines the outcome of this
5833 // switch.
5834 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5835 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5836 return requestResimplify();
5838 // This block must be empty, except for the setcond inst, if it exists.
5839 // Ignore dbg intrinsics.
5840 auto I = BB->instructionsWithoutDebug().begin();
5841 if (&*I == BI) {
5842 if (FoldValueComparisonIntoPredecessors(BI, Builder))
5843 return requestResimplify();
5844 } else if (&*I == cast<Instruction>(BI->getCondition())) {
5845 ++I;
5846 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5847 return requestResimplify();
5851 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5852 if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5853 return true;
5855 // If this basic block has dominating predecessor blocks and the dominating
5856 // blocks' conditions imply BI's condition, we know the direction of BI.
5857 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
5858 if (Imp) {
5859 // Turn this into a branch on constant.
5860 auto *OldCond = BI->getCondition();
5861 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
5862 : ConstantInt::getFalse(BB->getContext());
5863 BI->setCondition(TorF);
5864 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5865 return requestResimplify();
5868 // If this basic block is ONLY a compare and a branch, and if a predecessor
5869 // branches to us and one of our successors, fold the comparison into the
5870 // predecessor and use logical operations to pick the right destination.
5871 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5872 return requestResimplify();
5874 // We have a conditional branch to two blocks that are only reachable
5875 // from BI. We know that the condbr dominates the two blocks, so see if
5876 // there is any identical code in the "then" and "else" blocks. If so, we
5877 // can hoist it up to the branching block.
5878 if (BI->getSuccessor(0)->getSinglePredecessor()) {
5879 if (BI->getSuccessor(1)->getSinglePredecessor()) {
5880 if (HoistThenElseCodeToIf(BI, TTI))
5881 return requestResimplify();
5882 } else {
5883 // If Successor #1 has multiple preds, we may be able to conditionally
5884 // execute Successor #0 if it branches to Successor #1.
5885 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
5886 if (Succ0TI->getNumSuccessors() == 1 &&
5887 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5888 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5889 return requestResimplify();
5891 } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5892 // If Successor #0 has multiple preds, we may be able to conditionally
5893 // execute Successor #1 if it branches to Successor #0.
5894 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
5895 if (Succ1TI->getNumSuccessors() == 1 &&
5896 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5897 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5898 return requestResimplify();
5901 // If this is a branch on a phi node in the current block, thread control
5902 // through this block if any PHI node entries are constants.
5903 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5904 if (PN->getParent() == BI->getParent())
5905 if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5906 return requestResimplify();
5908 // Scan predecessor blocks for conditional branches.
5909 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5910 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5911 if (PBI != BI && PBI->isConditional())
5912 if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5913 return requestResimplify();
5915 // Look for diamond patterns.
5916 if (MergeCondStores)
5917 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5918 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5919 if (PBI != BI && PBI->isConditional())
5920 if (mergeConditionalStores(PBI, BI, DL))
5921 return requestResimplify();
5923 return false;
5926 /// Check if passing a value to an instruction will cause undefined behavior.
5927 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5928 Constant *C = dyn_cast<Constant>(V);
5929 if (!C)
5930 return false;
5932 if (I->use_empty())
5933 return false;
5935 if (C->isNullValue() || isa<UndefValue>(C)) {
5936 // Only look at the first use, avoid hurting compile time with long uselists
5937 User *Use = *I->user_begin();
5939 // Now make sure that there are no instructions in between that can alter
5940 // control flow (eg. calls)
5941 for (BasicBlock::iterator
5942 i = ++BasicBlock::iterator(I),
5943 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5944 i != UI; ++i)
5945 if (i == I->getParent()->end() || i->mayHaveSideEffects())
5946 return false;
5948 // Look through GEPs. A load from a GEP derived from NULL is still undefined
5949 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5950 if (GEP->getPointerOperand() == I)
5951 return passingValueIsAlwaysUndefined(V, GEP);
5953 // Look through bitcasts.
5954 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5955 return passingValueIsAlwaysUndefined(V, BC);
5957 // Load from null is undefined.
5958 if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5959 if (!LI->isVolatile())
5960 return !NullPointerIsDefined(LI->getFunction(),
5961 LI->getPointerAddressSpace());
5963 // Store to null is undefined.
5964 if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5965 if (!SI->isVolatile())
5966 return (!NullPointerIsDefined(SI->getFunction(),
5967 SI->getPointerAddressSpace())) &&
5968 SI->getPointerOperand() == I;
5970 // A call to null is undefined.
5971 if (auto CS = CallSite(Use))
5972 return !NullPointerIsDefined(CS->getFunction()) &&
5973 CS.getCalledValue() == I;
5975 return false;
5978 /// If BB has an incoming value that will always trigger undefined behavior
5979 /// (eg. null pointer dereference), remove the branch leading here.
5980 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5981 for (PHINode &PHI : BB->phis())
5982 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5983 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5984 Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
5985 IRBuilder<> Builder(T);
5986 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5987 BB->removePredecessor(PHI.getIncomingBlock(i));
5988 // Turn uncoditional branches into unreachables and remove the dead
5989 // destination from conditional branches.
5990 if (BI->isUnconditional())
5991 Builder.CreateUnreachable();
5992 else
5993 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5994 : BI->getSuccessor(0));
5995 BI->eraseFromParent();
5996 return true;
5998 // TODO: SwitchInst.
6001 return false;
6004 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6005 bool Changed = false;
6007 assert(BB && BB->getParent() && "Block not embedded in function!");
6008 assert(BB->getTerminator() && "Degenerate basic block encountered!");
6010 // Remove basic blocks that have no predecessors (except the entry block)...
6011 // or that just have themself as a predecessor. These are unreachable.
6012 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6013 BB->getSinglePredecessor() == BB) {
6014 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6015 DeleteDeadBlock(BB);
6016 return true;
6019 // Check to see if we can constant propagate this terminator instruction
6020 // away...
6021 Changed |= ConstantFoldTerminator(BB, true);
6023 // Check for and eliminate duplicate PHI nodes in this block.
6024 Changed |= EliminateDuplicatePHINodes(BB);
6026 // Check for and remove branches that will always cause undefined behavior.
6027 Changed |= removeUndefIntroducingPredecessor(BB);
6029 // Merge basic blocks into their predecessor if there is only one distinct
6030 // pred, and if there is only one distinct successor of the predecessor, and
6031 // if there are no PHI nodes.
6032 if (MergeBlockIntoPredecessor(BB))
6033 return true;
6035 if (SinkCommon && Options.SinkCommonInsts)
6036 Changed |= SinkCommonCodeFromPredecessors(BB);
6038 IRBuilder<> Builder(BB);
6040 // If there is a trivial two-entry PHI node in this basic block, and we can
6041 // eliminate it, do so now.
6042 if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6043 if (PN->getNumIncomingValues() == 2)
6044 Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6046 Builder.SetInsertPoint(BB->getTerminator());
6047 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6048 if (BI->isUnconditional()) {
6049 if (SimplifyUncondBranch(BI, Builder))
6050 return true;
6051 } else {
6052 if (SimplifyCondBranch(BI, Builder))
6053 return true;
6055 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6056 if (SimplifyReturn(RI, Builder))
6057 return true;
6058 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6059 if (SimplifyResume(RI, Builder))
6060 return true;
6061 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6062 if (SimplifyCleanupReturn(RI))
6063 return true;
6064 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6065 if (SimplifySwitch(SI, Builder))
6066 return true;
6067 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6068 if (SimplifyUnreachable(UI))
6069 return true;
6070 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6071 if (SimplifyIndirectBr(IBI))
6072 return true;
6075 return Changed;
6078 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6079 bool Changed = false;
6081 // Repeated simplify BB as long as resimplification is requested.
6082 do {
6083 Resimplify = false;
6085 // Perform one round of simplifcation. Resimplify flag will be set if
6086 // another iteration is requested.
6087 Changed |= simplifyOnce(BB);
6088 } while (Resimplify);
6090 return Changed;
6093 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6094 const SimplifyCFGOptions &Options,
6095 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6096 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6097 Options)
6098 .run(BB);