1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Peephole optimize the CFG.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/ConstantRange.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/NoFolder.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Use.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/ValueMapper.h"
82 using namespace PatternMatch
;
84 #define DEBUG_TYPE "simplifycfg"
86 // Chosen as 2 so as to be cheap, but still to have enough power to fold
87 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
88 // To catch this, we need to fold a compare and a select, hence '2' being the
89 // minimum reasonable default.
90 static cl::opt
<unsigned> PHINodeFoldingThreshold(
91 "phi-node-folding-threshold", cl::Hidden
, cl::init(2),
93 "Control the amount of phi node folding to perform (default = 2)"));
95 static cl::opt
<bool> DupRet(
96 "simplifycfg-dup-ret", cl::Hidden
, cl::init(false),
97 cl::desc("Duplicate return instructions into unconditional branches"));
100 SinkCommon("simplifycfg-sink-common", cl::Hidden
, cl::init(true),
101 cl::desc("Sink common instructions down to the end block"));
103 static cl::opt
<bool> HoistCondStores(
104 "simplifycfg-hoist-cond-stores", cl::Hidden
, cl::init(true),
105 cl::desc("Hoist conditional stores if an unconditional store precedes"));
107 static cl::opt
<bool> MergeCondStores(
108 "simplifycfg-merge-cond-stores", cl::Hidden
, cl::init(true),
109 cl::desc("Hoist conditional stores even if an unconditional store does not "
110 "precede - hoist multiple conditional stores into a single "
111 "predicated store"));
113 static cl::opt
<bool> MergeCondStoresAggressively(
114 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden
, cl::init(false),
115 cl::desc("When merging conditional stores, do so even if the resultant "
116 "basic blocks are unlikely to be if-converted as a result"));
118 static cl::opt
<bool> SpeculateOneExpensiveInst(
119 "speculate-one-expensive-inst", cl::Hidden
, cl::init(true),
120 cl::desc("Allow exactly one expensive instruction to be speculatively "
123 static cl::opt
<unsigned> MaxSpeculationDepth(
124 "max-speculation-depth", cl::Hidden
, cl::init(10),
125 cl::desc("Limit maximum recursion depth when calculating costs of "
126 "speculatively executed instructions"));
128 STATISTIC(NumBitMaps
, "Number of switch instructions turned into bitmaps");
129 STATISTIC(NumLinearMaps
,
130 "Number of switch instructions turned into linear mapping");
131 STATISTIC(NumLookupTables
,
132 "Number of switch instructions turned into lookup tables");
134 NumLookupTablesHoles
,
135 "Number of switch instructions turned into lookup tables (holes checked)");
136 STATISTIC(NumTableCmpReuses
, "Number of reused switch table lookup compares");
137 STATISTIC(NumSinkCommons
,
138 "Number of common instructions sunk down to the end block");
139 STATISTIC(NumSpeculations
, "Number of speculative executed instructions");
143 // The first field contains the value that the switch produces when a certain
144 // case group is selected, and the second field is a vector containing the
145 // cases composing the case group.
146 using SwitchCaseResultVectorTy
=
147 SmallVector
<std::pair
<Constant
*, SmallVector
<ConstantInt
*, 4>>, 2>;
149 // The first field contains the phi node that generates a result of the switch
150 // and the second field contains the value generated for a certain case in the
151 // switch for that PHI.
152 using SwitchCaseResultsTy
= SmallVector
<std::pair
<PHINode
*, Constant
*>, 4>;
154 /// ValueEqualityComparisonCase - Represents a case of a switch.
155 struct ValueEqualityComparisonCase
{
159 ValueEqualityComparisonCase(ConstantInt
*Value
, BasicBlock
*Dest
)
160 : Value(Value
), Dest(Dest
) {}
162 bool operator<(ValueEqualityComparisonCase RHS
) const {
163 // Comparing pointers is ok as we only rely on the order for uniquing.
164 return Value
< RHS
.Value
;
167 bool operator==(BasicBlock
*RHSDest
) const { return Dest
== RHSDest
; }
170 class SimplifyCFGOpt
{
171 const TargetTransformInfo
&TTI
;
172 const DataLayout
&DL
;
173 SmallPtrSetImpl
<BasicBlock
*> *LoopHeaders
;
174 const SimplifyCFGOptions
&Options
;
177 Value
*isValueEqualityComparison(Instruction
*TI
);
178 BasicBlock
*GetValueEqualityComparisonCases(
179 Instruction
*TI
, std::vector
<ValueEqualityComparisonCase
> &Cases
);
180 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction
*TI
,
182 IRBuilder
<> &Builder
);
183 bool FoldValueComparisonIntoPredecessors(Instruction
*TI
,
184 IRBuilder
<> &Builder
);
186 bool SimplifyReturn(ReturnInst
*RI
, IRBuilder
<> &Builder
);
187 bool SimplifyResume(ResumeInst
*RI
, IRBuilder
<> &Builder
);
188 bool SimplifySingleResume(ResumeInst
*RI
);
189 bool SimplifyCommonResume(ResumeInst
*RI
);
190 bool SimplifyCleanupReturn(CleanupReturnInst
*RI
);
191 bool SimplifyUnreachable(UnreachableInst
*UI
);
192 bool SimplifySwitch(SwitchInst
*SI
, IRBuilder
<> &Builder
);
193 bool SimplifyIndirectBr(IndirectBrInst
*IBI
);
194 bool SimplifyUncondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
);
195 bool SimplifyCondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
);
197 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst
*ICI
,
198 IRBuilder
<> &Builder
);
201 SimplifyCFGOpt(const TargetTransformInfo
&TTI
, const DataLayout
&DL
,
202 SmallPtrSetImpl
<BasicBlock
*> *LoopHeaders
,
203 const SimplifyCFGOptions
&Opts
)
204 : TTI(TTI
), DL(DL
), LoopHeaders(LoopHeaders
), Options(Opts
) {}
206 bool run(BasicBlock
*BB
);
207 bool simplifyOnce(BasicBlock
*BB
);
209 // Helper to set Resimplify and return change indication.
210 bool requestResimplify() {
216 } // end anonymous namespace
218 /// Return true if it is safe to merge these two
219 /// terminator instructions together.
221 SafeToMergeTerminators(Instruction
*SI1
, Instruction
*SI2
,
222 SmallSetVector
<BasicBlock
*, 4> *FailBlocks
= nullptr) {
224 return false; // Can't merge with self!
226 // It is not safe to merge these two switch instructions if they have a common
227 // successor, and if that successor has a PHI node, and if *that* PHI node has
228 // conflicting incoming values from the two switch blocks.
229 BasicBlock
*SI1BB
= SI1
->getParent();
230 BasicBlock
*SI2BB
= SI2
->getParent();
232 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
234 for (BasicBlock
*Succ
: successors(SI2BB
))
235 if (SI1Succs
.count(Succ
))
236 for (BasicBlock::iterator BBI
= Succ
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
237 PHINode
*PN
= cast
<PHINode
>(BBI
);
238 if (PN
->getIncomingValueForBlock(SI1BB
) !=
239 PN
->getIncomingValueForBlock(SI2BB
)) {
241 FailBlocks
->insert(Succ
);
249 /// Return true if it is safe and profitable to merge these two terminator
250 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
251 /// store all PHI nodes in common successors.
253 isProfitableToFoldUnconditional(BranchInst
*SI1
, BranchInst
*SI2
,
255 SmallVectorImpl
<PHINode
*> &PhiNodes
) {
257 return false; // Can't merge with self!
258 assert(SI1
->isUnconditional() && SI2
->isConditional());
260 // We fold the unconditional branch if we can easily update all PHI nodes in
261 // common successors:
262 // 1> We have a constant incoming value for the conditional branch;
263 // 2> We have "Cond" as the incoming value for the unconditional branch;
264 // 3> SI2->getCondition() and Cond have same operands.
265 CmpInst
*Ci2
= dyn_cast
<CmpInst
>(SI2
->getCondition());
268 if (!(Cond
->getOperand(0) == Ci2
->getOperand(0) &&
269 Cond
->getOperand(1) == Ci2
->getOperand(1)) &&
270 !(Cond
->getOperand(0) == Ci2
->getOperand(1) &&
271 Cond
->getOperand(1) == Ci2
->getOperand(0)))
274 BasicBlock
*SI1BB
= SI1
->getParent();
275 BasicBlock
*SI2BB
= SI2
->getParent();
276 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
277 for (BasicBlock
*Succ
: successors(SI2BB
))
278 if (SI1Succs
.count(Succ
))
279 for (BasicBlock::iterator BBI
= Succ
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
280 PHINode
*PN
= cast
<PHINode
>(BBI
);
281 if (PN
->getIncomingValueForBlock(SI1BB
) != Cond
||
282 !isa
<ConstantInt
>(PN
->getIncomingValueForBlock(SI2BB
)))
284 PhiNodes
.push_back(PN
);
289 /// Update PHI nodes in Succ to indicate that there will now be entries in it
290 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
291 /// will be the same as those coming in from ExistPred, an existing predecessor
293 static void AddPredecessorToBlock(BasicBlock
*Succ
, BasicBlock
*NewPred
,
294 BasicBlock
*ExistPred
) {
295 for (PHINode
&PN
: Succ
->phis())
296 PN
.addIncoming(PN
.getIncomingValueForBlock(ExistPred
), NewPred
);
299 /// Compute an abstract "cost" of speculating the given instruction,
300 /// which is assumed to be safe to speculate. TCC_Free means cheap,
301 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
303 static unsigned ComputeSpeculationCost(const User
*I
,
304 const TargetTransformInfo
&TTI
) {
305 assert(isSafeToSpeculativelyExecute(I
) &&
306 "Instruction is not safe to speculatively execute!");
307 return TTI
.getUserCost(I
);
310 /// If we have a merge point of an "if condition" as accepted above,
311 /// return true if the specified value dominates the block. We
312 /// don't handle the true generality of domination here, just a special case
313 /// which works well enough for us.
315 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
316 /// see if V (which must be an instruction) and its recursive operands
317 /// that do not dominate BB have a combined cost lower than CostRemaining and
318 /// are non-trapping. If both are true, the instruction is inserted into the
319 /// set and true is returned.
321 /// The cost for most non-trapping instructions is defined as 1 except for
322 /// Select whose cost is 2.
324 /// After this function returns, CostRemaining is decreased by the cost of
325 /// V plus its non-dominating operands. If that cost is greater than
326 /// CostRemaining, false is returned and CostRemaining is undefined.
327 static bool DominatesMergePoint(Value
*V
, BasicBlock
*BB
,
328 SmallPtrSetImpl
<Instruction
*> &AggressiveInsts
,
329 unsigned &CostRemaining
,
330 const TargetTransformInfo
&TTI
,
331 unsigned Depth
= 0) {
332 // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
333 // so limit the recursion depth.
334 // TODO: While this recursion limit does prevent pathological behavior, it
335 // would be better to track visited instructions to avoid cycles.
336 if (Depth
== MaxSpeculationDepth
)
339 Instruction
*I
= dyn_cast
<Instruction
>(V
);
341 // Non-instructions all dominate instructions, but not all constantexprs
342 // can be executed unconditionally.
343 if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
))
348 BasicBlock
*PBB
= I
->getParent();
350 // We don't want to allow weird loops that might have the "if condition" in
351 // the bottom of this block.
355 // If this instruction is defined in a block that contains an unconditional
356 // branch to BB, then it must be in the 'conditional' part of the "if
357 // statement". If not, it definitely dominates the region.
358 BranchInst
*BI
= dyn_cast
<BranchInst
>(PBB
->getTerminator());
359 if (!BI
|| BI
->isConditional() || BI
->getSuccessor(0) != BB
)
362 // If we have seen this instruction before, don't count it again.
363 if (AggressiveInsts
.count(I
))
366 // Okay, it looks like the instruction IS in the "condition". Check to
367 // see if it's a cheap instruction to unconditionally compute, and if it
368 // only uses stuff defined outside of the condition. If so, hoist it out.
369 if (!isSafeToSpeculativelyExecute(I
))
372 unsigned Cost
= ComputeSpeculationCost(I
, TTI
);
374 // Allow exactly one instruction to be speculated regardless of its cost
375 // (as long as it is safe to do so).
376 // This is intended to flatten the CFG even if the instruction is a division
377 // or other expensive operation. The speculation of an expensive instruction
378 // is expected to be undone in CodeGenPrepare if the speculation has not
379 // enabled further IR optimizations.
380 if (Cost
> CostRemaining
&&
381 (!SpeculateOneExpensiveInst
|| !AggressiveInsts
.empty() || Depth
> 0))
384 // Avoid unsigned wrap.
385 CostRemaining
= (Cost
> CostRemaining
) ? 0 : CostRemaining
- Cost
;
387 // Okay, we can only really hoist these out if their operands do
388 // not take us over the cost threshold.
389 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
390 if (!DominatesMergePoint(*i
, BB
, AggressiveInsts
, CostRemaining
, TTI
,
393 // Okay, it's safe to do this! Remember this instruction.
394 AggressiveInsts
.insert(I
);
398 /// Extract ConstantInt from value, looking through IntToPtr
399 /// and PointerNullValue. Return NULL if value is not a constant int.
400 static ConstantInt
*GetConstantInt(Value
*V
, const DataLayout
&DL
) {
401 // Normal constant int.
402 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
);
403 if (CI
|| !isa
<Constant
>(V
) || !V
->getType()->isPointerTy())
406 // This is some kind of pointer constant. Turn it into a pointer-sized
407 // ConstantInt if possible.
408 IntegerType
*PtrTy
= cast
<IntegerType
>(DL
.getIntPtrType(V
->getType()));
410 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
411 if (isa
<ConstantPointerNull
>(V
))
412 return ConstantInt::get(PtrTy
, 0);
414 // IntToPtr const int.
415 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
416 if (CE
->getOpcode() == Instruction::IntToPtr
)
417 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CE
->getOperand(0))) {
418 // The constant is very likely to have the right type already.
419 if (CI
->getType() == PtrTy
)
422 return cast
<ConstantInt
>(
423 ConstantExpr::getIntegerCast(CI
, PtrTy
, /*isSigned=*/false));
430 /// Given a chain of or (||) or and (&&) comparison of a value against a
431 /// constant, this will try to recover the information required for a switch
433 /// It will depth-first traverse the chain of comparison, seeking for patterns
434 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
435 /// representing the different cases for the switch.
436 /// Note that if the chain is composed of '||' it will build the set of elements
437 /// that matches the comparisons (i.e. any of this value validate the chain)
438 /// while for a chain of '&&' it will build the set elements that make the test
440 struct ConstantComparesGatherer
{
441 const DataLayout
&DL
;
443 /// Value found for the switch comparison
444 Value
*CompValue
= nullptr;
446 /// Extra clause to be checked before the switch
447 Value
*Extra
= nullptr;
449 /// Set of integers to match in switch
450 SmallVector
<ConstantInt
*, 8> Vals
;
452 /// Number of comparisons matched in the and/or chain
453 unsigned UsedICmps
= 0;
455 /// Construct and compute the result for the comparison instruction Cond
456 ConstantComparesGatherer(Instruction
*Cond
, const DataLayout
&DL
) : DL(DL
) {
460 ConstantComparesGatherer(const ConstantComparesGatherer
&) = delete;
461 ConstantComparesGatherer
&
462 operator=(const ConstantComparesGatherer
&) = delete;
465 /// Try to set the current value used for the comparison, it succeeds only if
466 /// it wasn't set before or if the new value is the same as the old one
467 bool setValueOnce(Value
*NewVal
) {
468 if (CompValue
&& CompValue
!= NewVal
)
471 return (CompValue
!= nullptr);
474 /// Try to match Instruction "I" as a comparison against a constant and
475 /// populates the array Vals with the set of values that match (or do not
476 /// match depending on isEQ).
477 /// Return false on failure. On success, the Value the comparison matched
478 /// against is placed in CompValue.
479 /// If CompValue is already set, the function is expected to fail if a match
480 /// is found but the value compared to is different.
481 bool matchInstruction(Instruction
*I
, bool isEQ
) {
482 // If this is an icmp against a constant, handle this as one of the cases.
485 if (!((ICI
= dyn_cast
<ICmpInst
>(I
)) &&
486 (C
= GetConstantInt(I
->getOperand(1), DL
)))) {
493 // Pattern match a special case
494 // (x & ~2^z) == y --> x == y || x == y|2^z
495 // This undoes a transformation done by instcombine to fuse 2 compares.
496 if (ICI
->getPredicate() == (isEQ
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
)) {
497 // It's a little bit hard to see why the following transformations are
498 // correct. Here is a CVC3 program to verify them for 64-bit values:
501 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
505 mask : BITVECTOR(64) = BVSHL(ONE, z);
506 QUERY( (y & ~mask = y) =>
507 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
509 QUERY( (y | mask = y) =>
510 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
514 // Please note that each pattern must be a dual implication (<--> or
515 // iff). One directional implication can create spurious matches. If the
516 // implication is only one-way, an unsatisfiable condition on the left
517 // side can imply a satisfiable condition on the right side. Dual
518 // implication ensures that satisfiable conditions are transformed to
519 // other satisfiable conditions and unsatisfiable conditions are
520 // transformed to other unsatisfiable conditions.
522 // Here is a concrete example of a unsatisfiable condition on the left
523 // implying a satisfiable condition on the right:
526 // (x & ~mask) == y --> (x == y || x == (y | mask))
528 // Substituting y = 3, z = 0 yields:
529 // (x & -2) == 3 --> (x == 3 || x == 2)
531 // Pattern match a special case:
533 QUERY( (y & ~mask = y) =>
534 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
537 if (match(ICI
->getOperand(0),
538 m_And(m_Value(RHSVal
), m_APInt(RHSC
)))) {
540 if (Mask
.isPowerOf2() && (C
->getValue() & ~Mask
) == C
->getValue()) {
541 // If we already have a value for the switch, it has to match!
542 if (!setValueOnce(RHSVal
))
547 ConstantInt::get(C
->getContext(),
548 C
->getValue() | Mask
));
554 // Pattern match a special case:
556 QUERY( (y | mask = y) =>
557 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
560 if (match(ICI
->getOperand(0),
561 m_Or(m_Value(RHSVal
), m_APInt(RHSC
)))) {
563 if (Mask
.isPowerOf2() && (C
->getValue() | Mask
) == C
->getValue()) {
564 // If we already have a value for the switch, it has to match!
565 if (!setValueOnce(RHSVal
))
569 Vals
.push_back(ConstantInt::get(C
->getContext(),
570 C
->getValue() & ~Mask
));
576 // If we already have a value for the switch, it has to match!
577 if (!setValueOnce(ICI
->getOperand(0)))
582 return ICI
->getOperand(0);
585 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
586 ConstantRange Span
= ConstantRange::makeAllowedICmpRegion(
587 ICI
->getPredicate(), C
->getValue());
589 // Shift the range if the compare is fed by an add. This is the range
590 // compare idiom as emitted by instcombine.
591 Value
*CandidateVal
= I
->getOperand(0);
592 if (match(I
->getOperand(0), m_Add(m_Value(RHSVal
), m_APInt(RHSC
)))) {
593 Span
= Span
.subtract(*RHSC
);
594 CandidateVal
= RHSVal
;
597 // If this is an and/!= check, then we are looking to build the set of
598 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
601 Span
= Span
.inverse();
603 // If there are a ton of values, we don't want to make a ginormous switch.
604 if (Span
.isSizeLargerThan(8) || Span
.isEmptySet()) {
608 // If we already have a value for the switch, it has to match!
609 if (!setValueOnce(CandidateVal
))
612 // Add all values from the range to the set
613 for (APInt Tmp
= Span
.getLower(); Tmp
!= Span
.getUpper(); ++Tmp
)
614 Vals
.push_back(ConstantInt::get(I
->getContext(), Tmp
));
620 /// Given a potentially 'or'd or 'and'd together collection of icmp
621 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
622 /// the value being compared, and stick the list constants into the Vals
624 /// One "Extra" case is allowed to differ from the other.
625 void gather(Value
*V
) {
626 Instruction
*I
= dyn_cast
<Instruction
>(V
);
627 bool isEQ
= (I
->getOpcode() == Instruction::Or
);
629 // Keep a stack (SmallVector for efficiency) for depth-first traversal
630 SmallVector
<Value
*, 8> DFT
;
631 SmallPtrSet
<Value
*, 8> Visited
;
637 while (!DFT
.empty()) {
638 V
= DFT
.pop_back_val();
640 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
641 // If it is a || (or && depending on isEQ), process the operands.
642 if (I
->getOpcode() == (isEQ
? Instruction::Or
: Instruction::And
)) {
643 if (Visited
.insert(I
->getOperand(1)).second
)
644 DFT
.push_back(I
->getOperand(1));
645 if (Visited
.insert(I
->getOperand(0)).second
)
646 DFT
.push_back(I
->getOperand(0));
650 // Try to match the current instruction
651 if (matchInstruction(I
, isEQ
))
652 // Match succeed, continue the loop
656 // One element of the sequence of || (or &&) could not be match as a
657 // comparison against the same value as the others.
658 // We allow only one "Extra" case to be checked before the switch
663 // Failed to parse a proper sequence, abort now
670 } // end anonymous namespace
672 static void EraseTerminatorAndDCECond(Instruction
*TI
) {
673 Instruction
*Cond
= nullptr;
674 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
675 Cond
= dyn_cast
<Instruction
>(SI
->getCondition());
676 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
677 if (BI
->isConditional())
678 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
679 } else if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(TI
)) {
680 Cond
= dyn_cast
<Instruction
>(IBI
->getAddress());
683 TI
->eraseFromParent();
685 RecursivelyDeleteTriviallyDeadInstructions(Cond
);
688 /// Return true if the specified terminator checks
689 /// to see if a value is equal to constant integer value.
690 Value
*SimplifyCFGOpt::isValueEqualityComparison(Instruction
*TI
) {
692 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
693 // Do not permit merging of large switch instructions into their
694 // predecessors unless there is only one predecessor.
695 if (!SI
->getParent()->hasNPredecessorsOrMore(128 / SI
->getNumSuccessors()))
696 CV
= SI
->getCondition();
697 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
))
698 if (BI
->isConditional() && BI
->getCondition()->hasOneUse())
699 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition())) {
700 if (ICI
->isEquality() && GetConstantInt(ICI
->getOperand(1), DL
))
701 CV
= ICI
->getOperand(0);
704 // Unwrap any lossless ptrtoint cast.
706 if (PtrToIntInst
*PTII
= dyn_cast
<PtrToIntInst
>(CV
)) {
707 Value
*Ptr
= PTII
->getPointerOperand();
708 if (PTII
->getType() == DL
.getIntPtrType(Ptr
->getType()))
715 /// Given a value comparison instruction,
716 /// decode all of the 'cases' that it represents and return the 'default' block.
717 BasicBlock
*SimplifyCFGOpt::GetValueEqualityComparisonCases(
718 Instruction
*TI
, std::vector
<ValueEqualityComparisonCase
> &Cases
) {
719 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
720 Cases
.reserve(SI
->getNumCases());
721 for (auto Case
: SI
->cases())
722 Cases
.push_back(ValueEqualityComparisonCase(Case
.getCaseValue(),
723 Case
.getCaseSuccessor()));
724 return SI
->getDefaultDest();
727 BranchInst
*BI
= cast
<BranchInst
>(TI
);
728 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
729 BasicBlock
*Succ
= BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_NE
);
730 Cases
.push_back(ValueEqualityComparisonCase(
731 GetConstantInt(ICI
->getOperand(1), DL
), Succ
));
732 return BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_EQ
);
735 /// Given a vector of bb/value pairs, remove any entries
736 /// in the list that match the specified block.
738 EliminateBlockCases(BasicBlock
*BB
,
739 std::vector
<ValueEqualityComparisonCase
> &Cases
) {
740 Cases
.erase(std::remove(Cases
.begin(), Cases
.end(), BB
), Cases
.end());
743 /// Return true if there are any keys in C1 that exist in C2 as well.
744 static bool ValuesOverlap(std::vector
<ValueEqualityComparisonCase
> &C1
,
745 std::vector
<ValueEqualityComparisonCase
> &C2
) {
746 std::vector
<ValueEqualityComparisonCase
> *V1
= &C1
, *V2
= &C2
;
748 // Make V1 be smaller than V2.
749 if (V1
->size() > V2
->size())
754 if (V1
->size() == 1) {
756 ConstantInt
*TheVal
= (*V1
)[0].Value
;
757 for (unsigned i
= 0, e
= V2
->size(); i
!= e
; ++i
)
758 if (TheVal
== (*V2
)[i
].Value
)
762 // Otherwise, just sort both lists and compare element by element.
763 array_pod_sort(V1
->begin(), V1
->end());
764 array_pod_sort(V2
->begin(), V2
->end());
765 unsigned i1
= 0, i2
= 0, e1
= V1
->size(), e2
= V2
->size();
766 while (i1
!= e1
&& i2
!= e2
) {
767 if ((*V1
)[i1
].Value
== (*V2
)[i2
].Value
)
769 if ((*V1
)[i1
].Value
< (*V2
)[i2
].Value
)
777 // Set branch weights on SwitchInst. This sets the metadata if there is at
778 // least one non-zero weight.
779 static void setBranchWeights(SwitchInst
*SI
, ArrayRef
<uint32_t> Weights
) {
780 // Check that there is at least one non-zero weight. Otherwise, pass
781 // nullptr to setMetadata which will erase the existing metadata.
783 if (llvm::any_of(Weights
, [](uint32_t W
) { return W
!= 0; }))
784 N
= MDBuilder(SI
->getParent()->getContext()).createBranchWeights(Weights
);
785 SI
->setMetadata(LLVMContext::MD_prof
, N
);
788 // Similar to the above, but for branch and select instructions that take
789 // exactly 2 weights.
790 static void setBranchWeights(Instruction
*I
, uint32_t TrueWeight
,
791 uint32_t FalseWeight
) {
792 assert(isa
<BranchInst
>(I
) || isa
<SelectInst
>(I
));
793 // Check that there is at least one non-zero weight. Otherwise, pass
794 // nullptr to setMetadata which will erase the existing metadata.
796 if (TrueWeight
|| FalseWeight
)
797 N
= MDBuilder(I
->getParent()->getContext())
798 .createBranchWeights(TrueWeight
, FalseWeight
);
799 I
->setMetadata(LLVMContext::MD_prof
, N
);
802 /// If TI is known to be a terminator instruction and its block is known to
803 /// only have a single predecessor block, check to see if that predecessor is
804 /// also a value comparison with the same value, and if that comparison
805 /// determines the outcome of this comparison. If so, simplify TI. This does a
806 /// very limited form of jump threading.
807 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
808 Instruction
*TI
, BasicBlock
*Pred
, IRBuilder
<> &Builder
) {
809 Value
*PredVal
= isValueEqualityComparison(Pred
->getTerminator());
811 return false; // Not a value comparison in predecessor.
813 Value
*ThisVal
= isValueEqualityComparison(TI
);
814 assert(ThisVal
&& "This isn't a value comparison!!");
815 if (ThisVal
!= PredVal
)
816 return false; // Different predicates.
818 // TODO: Preserve branch weight metadata, similarly to how
819 // FoldValueComparisonIntoPredecessors preserves it.
821 // Find out information about when control will move from Pred to TI's block.
822 std::vector
<ValueEqualityComparisonCase
> PredCases
;
823 BasicBlock
*PredDef
=
824 GetValueEqualityComparisonCases(Pred
->getTerminator(), PredCases
);
825 EliminateBlockCases(PredDef
, PredCases
); // Remove default from cases.
827 // Find information about how control leaves this block.
828 std::vector
<ValueEqualityComparisonCase
> ThisCases
;
829 BasicBlock
*ThisDef
= GetValueEqualityComparisonCases(TI
, ThisCases
);
830 EliminateBlockCases(ThisDef
, ThisCases
); // Remove default from cases.
832 // If TI's block is the default block from Pred's comparison, potentially
833 // simplify TI based on this knowledge.
834 if (PredDef
== TI
->getParent()) {
835 // If we are here, we know that the value is none of those cases listed in
836 // PredCases. If there are any cases in ThisCases that are in PredCases, we
838 if (!ValuesOverlap(PredCases
, ThisCases
))
841 if (isa
<BranchInst
>(TI
)) {
842 // Okay, one of the successors of this condbr is dead. Convert it to a
844 assert(ThisCases
.size() == 1 && "Branch can only have one case!");
845 // Insert the new branch.
846 Instruction
*NI
= Builder
.CreateBr(ThisDef
);
849 // Remove PHI node entries for the dead edge.
850 ThisCases
[0].Dest
->removePredecessor(TI
->getParent());
852 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
853 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
856 EraseTerminatorAndDCECond(TI
);
860 SwitchInst
*SI
= cast
<SwitchInst
>(TI
);
861 // Okay, TI has cases that are statically dead, prune them away.
862 SmallPtrSet
<Constant
*, 16> DeadCases
;
863 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
864 DeadCases
.insert(PredCases
[i
].Value
);
866 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
867 << "Through successor TI: " << *TI
);
869 // Collect branch weights into a vector.
870 SmallVector
<uint32_t, 8> Weights
;
871 MDNode
*MD
= SI
->getMetadata(LLVMContext::MD_prof
);
872 bool HasWeight
= MD
&& (MD
->getNumOperands() == 2 + SI
->getNumCases());
874 for (unsigned MD_i
= 1, MD_e
= MD
->getNumOperands(); MD_i
< MD_e
;
876 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(MD_i
));
877 Weights
.push_back(CI
->getValue().getZExtValue());
879 for (SwitchInst::CaseIt i
= SI
->case_end(), e
= SI
->case_begin(); i
!= e
;) {
881 if (DeadCases
.count(i
->getCaseValue())) {
883 std::swap(Weights
[i
->getCaseIndex() + 1], Weights
.back());
886 i
->getCaseSuccessor()->removePredecessor(TI
->getParent());
890 if (HasWeight
&& Weights
.size() >= 2)
891 setBranchWeights(SI
, Weights
);
893 LLVM_DEBUG(dbgs() << "Leaving: " << *TI
<< "\n");
897 // Otherwise, TI's block must correspond to some matched value. Find out
898 // which value (or set of values) this is.
899 ConstantInt
*TIV
= nullptr;
900 BasicBlock
*TIBB
= TI
->getParent();
901 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
902 if (PredCases
[i
].Dest
== TIBB
) {
904 return false; // Cannot handle multiple values coming to this block.
905 TIV
= PredCases
[i
].Value
;
907 assert(TIV
&& "No edge from pred to succ?");
909 // Okay, we found the one constant that our value can be if we get into TI's
910 // BB. Find out which successor will unconditionally be branched to.
911 BasicBlock
*TheRealDest
= nullptr;
912 for (unsigned i
= 0, e
= ThisCases
.size(); i
!= e
; ++i
)
913 if (ThisCases
[i
].Value
== TIV
) {
914 TheRealDest
= ThisCases
[i
].Dest
;
918 // If not handled by any explicit cases, it is handled by the default case.
920 TheRealDest
= ThisDef
;
922 // Remove PHI node entries for dead edges.
923 BasicBlock
*CheckEdge
= TheRealDest
;
924 for (BasicBlock
*Succ
: successors(TIBB
))
925 if (Succ
!= CheckEdge
)
926 Succ
->removePredecessor(TIBB
);
930 // Insert the new branch.
931 Instruction
*NI
= Builder
.CreateBr(TheRealDest
);
934 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
935 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
938 EraseTerminatorAndDCECond(TI
);
944 /// This class implements a stable ordering of constant
945 /// integers that does not depend on their address. This is important for
946 /// applications that sort ConstantInt's to ensure uniqueness.
947 struct ConstantIntOrdering
{
948 bool operator()(const ConstantInt
*LHS
, const ConstantInt
*RHS
) const {
949 return LHS
->getValue().ult(RHS
->getValue());
953 } // end anonymous namespace
955 static int ConstantIntSortPredicate(ConstantInt
*const *P1
,
956 ConstantInt
*const *P2
) {
957 const ConstantInt
*LHS
= *P1
;
958 const ConstantInt
*RHS
= *P2
;
961 return LHS
->getValue().ult(RHS
->getValue()) ? 1 : -1;
964 static inline bool HasBranchWeights(const Instruction
*I
) {
965 MDNode
*ProfMD
= I
->getMetadata(LLVMContext::MD_prof
);
966 if (ProfMD
&& ProfMD
->getOperand(0))
967 if (MDString
*MDS
= dyn_cast
<MDString
>(ProfMD
->getOperand(0)))
968 return MDS
->getString().equals("branch_weights");
973 /// Get Weights of a given terminator, the default weight is at the front
974 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
976 static void GetBranchWeights(Instruction
*TI
,
977 SmallVectorImpl
<uint64_t> &Weights
) {
978 MDNode
*MD
= TI
->getMetadata(LLVMContext::MD_prof
);
980 for (unsigned i
= 1, e
= MD
->getNumOperands(); i
< e
; ++i
) {
981 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(i
));
982 Weights
.push_back(CI
->getValue().getZExtValue());
985 // If TI is a conditional eq, the default case is the false case,
986 // and the corresponding branch-weight data is at index 2. We swap the
987 // default weight to be the first entry.
988 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
989 assert(Weights
.size() == 2);
990 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
991 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
992 std::swap(Weights
.front(), Weights
.back());
996 /// Keep halving the weights until all can fit in uint32_t.
997 static void FitWeights(MutableArrayRef
<uint64_t> Weights
) {
998 uint64_t Max
= *std::max_element(Weights
.begin(), Weights
.end());
999 if (Max
> UINT_MAX
) {
1000 unsigned Offset
= 32 - countLeadingZeros(Max
);
1001 for (uint64_t &I
: Weights
)
1006 /// The specified terminator is a value equality comparison instruction
1007 /// (either a switch or a branch on "X == c").
1008 /// See if any of the predecessors of the terminator block are value comparisons
1009 /// on the same value. If so, and if safe to do so, fold them together.
1010 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction
*TI
,
1011 IRBuilder
<> &Builder
) {
1012 BasicBlock
*BB
= TI
->getParent();
1013 Value
*CV
= isValueEqualityComparison(TI
); // CondVal
1014 assert(CV
&& "Not a comparison?");
1015 bool Changed
= false;
1017 SmallVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
1018 while (!Preds
.empty()) {
1019 BasicBlock
*Pred
= Preds
.pop_back_val();
1021 // See if the predecessor is a comparison with the same value.
1022 Instruction
*PTI
= Pred
->getTerminator();
1023 Value
*PCV
= isValueEqualityComparison(PTI
); // PredCondVal
1025 if (PCV
== CV
&& TI
!= PTI
) {
1026 SmallSetVector
<BasicBlock
*, 4> FailBlocks
;
1027 if (!SafeToMergeTerminators(TI
, PTI
, &FailBlocks
)) {
1028 for (auto *Succ
: FailBlocks
) {
1029 if (!SplitBlockPredecessors(Succ
, TI
->getParent(), ".fold.split"))
1034 // Figure out which 'cases' to copy from SI to PSI.
1035 std::vector
<ValueEqualityComparisonCase
> BBCases
;
1036 BasicBlock
*BBDefault
= GetValueEqualityComparisonCases(TI
, BBCases
);
1038 std::vector
<ValueEqualityComparisonCase
> PredCases
;
1039 BasicBlock
*PredDefault
= GetValueEqualityComparisonCases(PTI
, PredCases
);
1041 // Based on whether the default edge from PTI goes to BB or not, fill in
1042 // PredCases and PredDefault with the new switch cases we would like to
1044 SmallVector
<BasicBlock
*, 8> NewSuccessors
;
1046 // Update the branch weight metadata along the way
1047 SmallVector
<uint64_t, 8> Weights
;
1048 bool PredHasWeights
= HasBranchWeights(PTI
);
1049 bool SuccHasWeights
= HasBranchWeights(TI
);
1051 if (PredHasWeights
) {
1052 GetBranchWeights(PTI
, Weights
);
1053 // branch-weight metadata is inconsistent here.
1054 if (Weights
.size() != 1 + PredCases
.size())
1055 PredHasWeights
= SuccHasWeights
= false;
1056 } else if (SuccHasWeights
)
1057 // If there are no predecessor weights but there are successor weights,
1058 // populate Weights with 1, which will later be scaled to the sum of
1059 // successor's weights
1060 Weights
.assign(1 + PredCases
.size(), 1);
1062 SmallVector
<uint64_t, 8> SuccWeights
;
1063 if (SuccHasWeights
) {
1064 GetBranchWeights(TI
, SuccWeights
);
1065 // branch-weight metadata is inconsistent here.
1066 if (SuccWeights
.size() != 1 + BBCases
.size())
1067 PredHasWeights
= SuccHasWeights
= false;
1068 } else if (PredHasWeights
)
1069 SuccWeights
.assign(1 + BBCases
.size(), 1);
1071 if (PredDefault
== BB
) {
1072 // If this is the default destination from PTI, only the edges in TI
1073 // that don't occur in PTI, or that branch to BB will be activated.
1074 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
1075 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
1076 if (PredCases
[i
].Dest
!= BB
)
1077 PTIHandled
.insert(PredCases
[i
].Value
);
1079 // The default destination is BB, we don't need explicit targets.
1080 std::swap(PredCases
[i
], PredCases
.back());
1082 if (PredHasWeights
|| SuccHasWeights
) {
1083 // Increase weight for the default case.
1084 Weights
[0] += Weights
[i
+ 1];
1085 std::swap(Weights
[i
+ 1], Weights
.back());
1089 PredCases
.pop_back();
1094 // Reconstruct the new switch statement we will be building.
1095 if (PredDefault
!= BBDefault
) {
1096 PredDefault
->removePredecessor(Pred
);
1097 PredDefault
= BBDefault
;
1098 NewSuccessors
.push_back(BBDefault
);
1101 unsigned CasesFromPred
= Weights
.size();
1102 uint64_t ValidTotalSuccWeight
= 0;
1103 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
1104 if (!PTIHandled
.count(BBCases
[i
].Value
) &&
1105 BBCases
[i
].Dest
!= BBDefault
) {
1106 PredCases
.push_back(BBCases
[i
]);
1107 NewSuccessors
.push_back(BBCases
[i
].Dest
);
1108 if (SuccHasWeights
|| PredHasWeights
) {
1109 // The default weight is at index 0, so weight for the ith case
1110 // should be at index i+1. Scale the cases from successor by
1111 // PredDefaultWeight (Weights[0]).
1112 Weights
.push_back(Weights
[0] * SuccWeights
[i
+ 1]);
1113 ValidTotalSuccWeight
+= SuccWeights
[i
+ 1];
1117 if (SuccHasWeights
|| PredHasWeights
) {
1118 ValidTotalSuccWeight
+= SuccWeights
[0];
1119 // Scale the cases from predecessor by ValidTotalSuccWeight.
1120 for (unsigned i
= 1; i
< CasesFromPred
; ++i
)
1121 Weights
[i
] *= ValidTotalSuccWeight
;
1122 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1123 Weights
[0] *= SuccWeights
[0];
1126 // If this is not the default destination from PSI, only the edges
1127 // in SI that occur in PSI with a destination of BB will be
1129 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
1130 std::map
<ConstantInt
*, uint64_t> WeightsForHandled
;
1131 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
1132 if (PredCases
[i
].Dest
== BB
) {
1133 PTIHandled
.insert(PredCases
[i
].Value
);
1135 if (PredHasWeights
|| SuccHasWeights
) {
1136 WeightsForHandled
[PredCases
[i
].Value
] = Weights
[i
+ 1];
1137 std::swap(Weights
[i
+ 1], Weights
.back());
1141 std::swap(PredCases
[i
], PredCases
.back());
1142 PredCases
.pop_back();
1147 // Okay, now we know which constants were sent to BB from the
1148 // predecessor. Figure out where they will all go now.
1149 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
1150 if (PTIHandled
.count(BBCases
[i
].Value
)) {
1151 // If this is one we are capable of getting...
1152 if (PredHasWeights
|| SuccHasWeights
)
1153 Weights
.push_back(WeightsForHandled
[BBCases
[i
].Value
]);
1154 PredCases
.push_back(BBCases
[i
]);
1155 NewSuccessors
.push_back(BBCases
[i
].Dest
);
1157 BBCases
[i
].Value
); // This constant is taken care of
1160 // If there are any constants vectored to BB that TI doesn't handle,
1161 // they must go to the default destination of TI.
1162 for (ConstantInt
*I
: PTIHandled
) {
1163 if (PredHasWeights
|| SuccHasWeights
)
1164 Weights
.push_back(WeightsForHandled
[I
]);
1165 PredCases
.push_back(ValueEqualityComparisonCase(I
, BBDefault
));
1166 NewSuccessors
.push_back(BBDefault
);
1170 // Okay, at this point, we know which new successor Pred will get. Make
1171 // sure we update the number of entries in the PHI nodes for these
1173 for (BasicBlock
*NewSuccessor
: NewSuccessors
)
1174 AddPredecessorToBlock(NewSuccessor
, Pred
, BB
);
1176 Builder
.SetInsertPoint(PTI
);
1177 // Convert pointer to int before we switch.
1178 if (CV
->getType()->isPointerTy()) {
1179 CV
= Builder
.CreatePtrToInt(CV
, DL
.getIntPtrType(CV
->getType()),
1183 // Now that the successors are updated, create the new Switch instruction.
1185 Builder
.CreateSwitch(CV
, PredDefault
, PredCases
.size());
1186 NewSI
->setDebugLoc(PTI
->getDebugLoc());
1187 for (ValueEqualityComparisonCase
&V
: PredCases
)
1188 NewSI
->addCase(V
.Value
, V
.Dest
);
1190 if (PredHasWeights
|| SuccHasWeights
) {
1191 // Halve the weights if any of them cannot fit in an uint32_t
1192 FitWeights(Weights
);
1194 SmallVector
<uint32_t, 8> MDWeights(Weights
.begin(), Weights
.end());
1196 setBranchWeights(NewSI
, MDWeights
);
1199 EraseTerminatorAndDCECond(PTI
);
1201 // Okay, last check. If BB is still a successor of PSI, then we must
1202 // have an infinite loop case. If so, add an infinitely looping block
1203 // to handle the case to preserve the behavior of the code.
1204 BasicBlock
*InfLoopBlock
= nullptr;
1205 for (unsigned i
= 0, e
= NewSI
->getNumSuccessors(); i
!= e
; ++i
)
1206 if (NewSI
->getSuccessor(i
) == BB
) {
1207 if (!InfLoopBlock
) {
1208 // Insert it at the end of the function, because it's either code,
1209 // or it won't matter if it's hot. :)
1210 InfLoopBlock
= BasicBlock::Create(BB
->getContext(), "infloop",
1212 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
1214 NewSI
->setSuccessor(i
, InfLoopBlock
);
1223 // If we would need to insert a select that uses the value of this invoke
1224 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1225 // can't hoist the invoke, as there is nowhere to put the select in this case.
1226 static bool isSafeToHoistInvoke(BasicBlock
*BB1
, BasicBlock
*BB2
,
1227 Instruction
*I1
, Instruction
*I2
) {
1228 for (BasicBlock
*Succ
: successors(BB1
)) {
1229 for (const PHINode
&PN
: Succ
->phis()) {
1230 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1231 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1232 if (BB1V
!= BB2V
&& (BB1V
== I1
|| BB2V
== I2
)) {
1240 static bool passingValueIsAlwaysUndefined(Value
*V
, Instruction
*I
);
1242 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1243 /// in the two blocks up into the branch block. The caller of this function
1244 /// guarantees that BI's block dominates BB1 and BB2.
1245 static bool HoistThenElseCodeToIf(BranchInst
*BI
,
1246 const TargetTransformInfo
&TTI
) {
1247 // This does very trivial matching, with limited scanning, to find identical
1248 // instructions in the two blocks. In particular, we don't want to get into
1249 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1250 // such, we currently just scan for obviously identical instructions in an
1252 BasicBlock
*BB1
= BI
->getSuccessor(0); // The true destination.
1253 BasicBlock
*BB2
= BI
->getSuccessor(1); // The false destination
1255 BasicBlock::iterator BB1_Itr
= BB1
->begin();
1256 BasicBlock::iterator BB2_Itr
= BB2
->begin();
1258 Instruction
*I1
= &*BB1_Itr
++, *I2
= &*BB2_Itr
++;
1259 // Skip debug info if it is not identical.
1260 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
1261 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
1262 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
1263 while (isa
<DbgInfoIntrinsic
>(I1
))
1265 while (isa
<DbgInfoIntrinsic
>(I2
))
1268 // FIXME: Can we define a safety predicate for CallBr?
1269 if (isa
<PHINode
>(I1
) || !I1
->isIdenticalToWhenDefined(I2
) ||
1270 (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
)) ||
1271 isa
<CallBrInst
>(I1
))
1274 BasicBlock
*BIParent
= BI
->getParent();
1276 bool Changed
= false;
1278 // If we are hoisting the terminator instruction, don't move one (making a
1279 // broken BB), instead clone it, and remove BI.
1280 if (I1
->isTerminator())
1281 goto HoistTerminator
;
1283 // If we're going to hoist a call, make sure that the two instructions we're
1284 // commoning/hoisting are both marked with musttail, or neither of them is
1285 // marked as such. Otherwise, we might end up in a situation where we hoist
1286 // from a block where the terminator is a `ret` to a block where the terminator
1287 // is a `br`, and `musttail` calls expect to be followed by a return.
1288 auto *C1
= dyn_cast
<CallInst
>(I1
);
1289 auto *C2
= dyn_cast
<CallInst
>(I2
);
1291 if (C1
->isMustTailCall() != C2
->isMustTailCall())
1294 if (!TTI
.isProfitableToHoist(I1
) || !TTI
.isProfitableToHoist(I2
))
1297 if (isa
<DbgInfoIntrinsic
>(I1
) || isa
<DbgInfoIntrinsic
>(I2
)) {
1298 assert (isa
<DbgInfoIntrinsic
>(I1
) && isa
<DbgInfoIntrinsic
>(I2
));
1299 // The debug location is an integral part of a debug info intrinsic
1300 // and can't be separated from it or replaced. Instead of attempting
1301 // to merge locations, simply hoist both copies of the intrinsic.
1302 BIParent
->getInstList().splice(BI
->getIterator(),
1303 BB1
->getInstList(), I1
);
1304 BIParent
->getInstList().splice(BI
->getIterator(),
1305 BB2
->getInstList(), I2
);
1308 // For a normal instruction, we just move one to right before the branch,
1309 // then replace all uses of the other with the first. Finally, we remove
1310 // the now redundant second instruction.
1311 BIParent
->getInstList().splice(BI
->getIterator(),
1312 BB1
->getInstList(), I1
);
1313 if (!I2
->use_empty())
1314 I2
->replaceAllUsesWith(I1
);
1316 unsigned KnownIDs
[] = {LLVMContext::MD_tbaa
,
1317 LLVMContext::MD_range
,
1318 LLVMContext::MD_fpmath
,
1319 LLVMContext::MD_invariant_load
,
1320 LLVMContext::MD_nonnull
,
1321 LLVMContext::MD_invariant_group
,
1322 LLVMContext::MD_align
,
1323 LLVMContext::MD_dereferenceable
,
1324 LLVMContext::MD_dereferenceable_or_null
,
1325 LLVMContext::MD_mem_parallel_loop_access
,
1326 LLVMContext::MD_access_group
};
1327 combineMetadata(I1
, I2
, KnownIDs
, true);
1329 // I1 and I2 are being combined into a single instruction. Its debug
1330 // location is the merged locations of the original instructions.
1331 I1
->applyMergedLocation(I1
->getDebugLoc(), I2
->getDebugLoc());
1333 I2
->eraseFromParent();
1339 // Skip debug info if it is not identical.
1340 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
1341 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
1342 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
1343 while (isa
<DbgInfoIntrinsic
>(I1
))
1345 while (isa
<DbgInfoIntrinsic
>(I2
))
1348 } while (I1
->isIdenticalToWhenDefined(I2
));
1353 // It may not be possible to hoist an invoke.
1354 // FIXME: Can we define a safety predicate for CallBr?
1355 if (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
))
1358 // TODO: callbr hoisting currently disabled pending further study.
1359 if (isa
<CallBrInst
>(I1
))
1362 for (BasicBlock
*Succ
: successors(BB1
)) {
1363 for (PHINode
&PN
: Succ
->phis()) {
1364 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1365 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1369 // Check for passingValueIsAlwaysUndefined here because we would rather
1370 // eliminate undefined control flow then converting it to a select.
1371 if (passingValueIsAlwaysUndefined(BB1V
, &PN
) ||
1372 passingValueIsAlwaysUndefined(BB2V
, &PN
))
1375 if (isa
<ConstantExpr
>(BB1V
) && !isSafeToSpeculativelyExecute(BB1V
))
1377 if (isa
<ConstantExpr
>(BB2V
) && !isSafeToSpeculativelyExecute(BB2V
))
1382 // Okay, it is safe to hoist the terminator.
1383 Instruction
*NT
= I1
->clone();
1384 BIParent
->getInstList().insert(BI
->getIterator(), NT
);
1385 if (!NT
->getType()->isVoidTy()) {
1386 I1
->replaceAllUsesWith(NT
);
1387 I2
->replaceAllUsesWith(NT
);
1391 // Ensure terminator gets a debug location, even an unknown one, in case
1392 // it involves inlinable calls.
1393 NT
->applyMergedLocation(I1
->getDebugLoc(), I2
->getDebugLoc());
1395 // PHIs created below will adopt NT's merged DebugLoc.
1396 IRBuilder
<NoFolder
> Builder(NT
);
1398 // Hoisting one of the terminators from our successor is a great thing.
1399 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1400 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1401 // nodes, so we insert select instruction to compute the final result.
1402 std::map
<std::pair
<Value
*, Value
*>, SelectInst
*> InsertedSelects
;
1403 for (BasicBlock
*Succ
: successors(BB1
)) {
1404 for (PHINode
&PN
: Succ
->phis()) {
1405 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1406 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1410 // These values do not agree. Insert a select instruction before NT
1411 // that determines the right value.
1412 SelectInst
*&SI
= InsertedSelects
[std::make_pair(BB1V
, BB2V
)];
1414 SI
= cast
<SelectInst
>(
1415 Builder
.CreateSelect(BI
->getCondition(), BB1V
, BB2V
,
1416 BB1V
->getName() + "." + BB2V
->getName(), BI
));
1418 // Make the PHI node use the select for all incoming values for BB1/BB2
1419 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
1420 if (PN
.getIncomingBlock(i
) == BB1
|| PN
.getIncomingBlock(i
) == BB2
)
1421 PN
.setIncomingValue(i
, SI
);
1425 // Update any PHI nodes in our new successors.
1426 for (BasicBlock
*Succ
: successors(BB1
))
1427 AddPredecessorToBlock(Succ
, BIParent
, BB1
);
1429 EraseTerminatorAndDCECond(BI
);
1433 // All instructions in Insts belong to different blocks that all unconditionally
1434 // branch to a common successor. Analyze each instruction and return true if it
1435 // would be possible to sink them into their successor, creating one common
1436 // instruction instead. For every value that would be required to be provided by
1437 // PHI node (because an operand varies in each input block), add to PHIOperands.
1438 static bool canSinkInstructions(
1439 ArrayRef
<Instruction
*> Insts
,
1440 DenseMap
<Instruction
*, SmallVector
<Value
*, 4>> &PHIOperands
) {
1441 // Prune out obviously bad instructions to move. Any non-store instruction
1442 // must have exactly one use, and we check later that use is by a single,
1443 // common PHI instruction in the successor.
1444 for (auto *I
: Insts
) {
1445 // These instructions may change or break semantics if moved.
1446 if (isa
<PHINode
>(I
) || I
->isEHPad() || isa
<AllocaInst
>(I
) ||
1447 I
->getType()->isTokenTy())
1450 // Conservatively return false if I is an inline-asm instruction. Sinking
1451 // and merging inline-asm instructions can potentially create arguments
1452 // that cannot satisfy the inline-asm constraints.
1453 if (const auto *C
= dyn_cast
<CallBase
>(I
))
1454 if (C
->isInlineAsm())
1457 // Everything must have only one use too, apart from stores which
1459 if (!isa
<StoreInst
>(I
) && !I
->hasOneUse())
1463 const Instruction
*I0
= Insts
.front();
1464 for (auto *I
: Insts
)
1465 if (!I
->isSameOperationAs(I0
))
1468 // All instructions in Insts are known to be the same opcode. If they aren't
1469 // stores, check the only user of each is a PHI or in the same block as the
1470 // instruction, because if a user is in the same block as an instruction
1471 // we're contemplating sinking, it must already be determined to be sinkable.
1472 if (!isa
<StoreInst
>(I0
)) {
1473 auto *PNUse
= dyn_cast
<PHINode
>(*I0
->user_begin());
1474 auto *Succ
= I0
->getParent()->getTerminator()->getSuccessor(0);
1475 if (!all_of(Insts
, [&PNUse
,&Succ
](const Instruction
*I
) -> bool {
1476 auto *U
= cast
<Instruction
>(*I
->user_begin());
1478 PNUse
->getParent() == Succ
&&
1479 PNUse
->getIncomingValueForBlock(I
->getParent()) == I
) ||
1480 U
->getParent() == I
->getParent();
1485 // Because SROA can't handle speculating stores of selects, try not
1486 // to sink loads or stores of allocas when we'd have to create a PHI for
1487 // the address operand. Also, because it is likely that loads or stores
1488 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1489 // This can cause code churn which can have unintended consequences down
1490 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1491 // FIXME: This is a workaround for a deficiency in SROA - see
1492 // https://llvm.org/bugs/show_bug.cgi?id=30188
1493 if (isa
<StoreInst
>(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1494 return isa
<AllocaInst
>(I
->getOperand(1));
1497 if (isa
<LoadInst
>(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1498 return isa
<AllocaInst
>(I
->getOperand(0));
1502 for (unsigned OI
= 0, OE
= I0
->getNumOperands(); OI
!= OE
; ++OI
) {
1503 if (I0
->getOperand(OI
)->getType()->isTokenTy())
1504 // Don't touch any operand of token type.
1507 auto SameAsI0
= [&I0
, OI
](const Instruction
*I
) {
1508 assert(I
->getNumOperands() == I0
->getNumOperands());
1509 return I
->getOperand(OI
) == I0
->getOperand(OI
);
1511 if (!all_of(Insts
, SameAsI0
)) {
1512 if (!canReplaceOperandWithVariable(I0
, OI
))
1513 // We can't create a PHI from this GEP.
1515 // Don't create indirect calls! The called value is the final operand.
1516 if (isa
<CallBase
>(I0
) && OI
== OE
- 1) {
1517 // FIXME: if the call was *already* indirect, we should do this.
1520 for (auto *I
: Insts
)
1521 PHIOperands
[I
].push_back(I
->getOperand(OI
));
1527 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1528 // instruction of every block in Blocks to their common successor, commoning
1529 // into one instruction.
1530 static bool sinkLastInstruction(ArrayRef
<BasicBlock
*> Blocks
) {
1531 auto *BBEnd
= Blocks
[0]->getTerminator()->getSuccessor(0);
1533 // canSinkLastInstruction returning true guarantees that every block has at
1534 // least one non-terminator instruction.
1535 SmallVector
<Instruction
*,4> Insts
;
1536 for (auto *BB
: Blocks
) {
1537 Instruction
*I
= BB
->getTerminator();
1539 I
= I
->getPrevNode();
1540 } while (isa
<DbgInfoIntrinsic
>(I
) && I
!= &BB
->front());
1541 if (!isa
<DbgInfoIntrinsic
>(I
))
1545 // The only checking we need to do now is that all users of all instructions
1546 // are the same PHI node. canSinkLastInstruction should have checked this but
1547 // it is slightly over-aggressive - it gets confused by commutative instructions
1548 // so double-check it here.
1549 Instruction
*I0
= Insts
.front();
1550 if (!isa
<StoreInst
>(I0
)) {
1551 auto *PNUse
= dyn_cast
<PHINode
>(*I0
->user_begin());
1552 if (!all_of(Insts
, [&PNUse
](const Instruction
*I
) -> bool {
1553 auto *U
= cast
<Instruction
>(*I
->user_begin());
1559 // We don't need to do any more checking here; canSinkLastInstruction should
1560 // have done it all for us.
1561 SmallVector
<Value
*, 4> NewOperands
;
1562 for (unsigned O
= 0, E
= I0
->getNumOperands(); O
!= E
; ++O
) {
1563 // This check is different to that in canSinkLastInstruction. There, we
1564 // cared about the global view once simplifycfg (and instcombine) have
1565 // completed - it takes into account PHIs that become trivially
1566 // simplifiable. However here we need a more local view; if an operand
1567 // differs we create a PHI and rely on instcombine to clean up the very
1568 // small mess we may make.
1569 bool NeedPHI
= any_of(Insts
, [&I0
, O
](const Instruction
*I
) {
1570 return I
->getOperand(O
) != I0
->getOperand(O
);
1573 NewOperands
.push_back(I0
->getOperand(O
));
1577 // Create a new PHI in the successor block and populate it.
1578 auto *Op
= I0
->getOperand(O
);
1579 assert(!Op
->getType()->isTokenTy() && "Can't PHI tokens!");
1580 auto *PN
= PHINode::Create(Op
->getType(), Insts
.size(),
1581 Op
->getName() + ".sink", &BBEnd
->front());
1582 for (auto *I
: Insts
)
1583 PN
->addIncoming(I
->getOperand(O
), I
->getParent());
1584 NewOperands
.push_back(PN
);
1587 // Arbitrarily use I0 as the new "common" instruction; remap its operands
1588 // and move it to the start of the successor block.
1589 for (unsigned O
= 0, E
= I0
->getNumOperands(); O
!= E
; ++O
)
1590 I0
->getOperandUse(O
).set(NewOperands
[O
]);
1591 I0
->moveBefore(&*BBEnd
->getFirstInsertionPt());
1593 // Update metadata and IR flags, and merge debug locations.
1594 for (auto *I
: Insts
)
1596 // The debug location for the "common" instruction is the merged locations
1597 // of all the commoned instructions. We start with the original location
1598 // of the "common" instruction and iteratively merge each location in the
1600 // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1601 // However, as N-way merge for CallInst is rare, so we use simplified API
1602 // instead of using complex API for N-way merge.
1603 I0
->applyMergedLocation(I0
->getDebugLoc(), I
->getDebugLoc());
1604 combineMetadataForCSE(I0
, I
, true);
1608 if (!isa
<StoreInst
>(I0
)) {
1609 // canSinkLastInstruction checked that all instructions were used by
1610 // one and only one PHI node. Find that now, RAUW it to our common
1611 // instruction and nuke it.
1612 assert(I0
->hasOneUse());
1613 auto *PN
= cast
<PHINode
>(*I0
->user_begin());
1614 PN
->replaceAllUsesWith(I0
);
1615 PN
->eraseFromParent();
1618 // Finally nuke all instructions apart from the common instruction.
1619 for (auto *I
: Insts
)
1621 I
->eraseFromParent();
1628 // LockstepReverseIterator - Iterates through instructions
1629 // in a set of blocks in reverse order from the first non-terminator.
1630 // For example (assume all blocks have size n):
1631 // LockstepReverseIterator I([B1, B2, B3]);
1632 // *I-- = [B1[n], B2[n], B3[n]];
1633 // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1634 // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1636 class LockstepReverseIterator
{
1637 ArrayRef
<BasicBlock
*> Blocks
;
1638 SmallVector
<Instruction
*,4> Insts
;
1642 LockstepReverseIterator(ArrayRef
<BasicBlock
*> Blocks
) : Blocks(Blocks
) {
1649 for (auto *BB
: Blocks
) {
1650 Instruction
*Inst
= BB
->getTerminator();
1651 for (Inst
= Inst
->getPrevNode(); Inst
&& isa
<DbgInfoIntrinsic
>(Inst
);)
1652 Inst
= Inst
->getPrevNode();
1654 // Block wasn't big enough.
1658 Insts
.push_back(Inst
);
1662 bool isValid() const {
1669 for (auto *&Inst
: Insts
) {
1670 for (Inst
= Inst
->getPrevNode(); Inst
&& isa
<DbgInfoIntrinsic
>(Inst
);)
1671 Inst
= Inst
->getPrevNode();
1672 // Already at beginning of block.
1680 ArrayRef
<Instruction
*> operator * () const {
1685 } // end anonymous namespace
1687 /// Check whether BB's predecessors end with unconditional branches. If it is
1688 /// true, sink any common code from the predecessors to BB.
1689 /// We also allow one predecessor to end with conditional branch (but no more
1691 static bool SinkCommonCodeFromPredecessors(BasicBlock
*BB
) {
1692 // We support two situations:
1693 // (1) all incoming arcs are unconditional
1694 // (2) one incoming arc is conditional
1696 // (2) is very common in switch defaults and
1697 // else-if patterns;
1700 // else if (b) f(2);
1713 // [end] has two unconditional predecessor arcs and one conditional. The
1714 // conditional refers to the implicit empty 'else' arc. This conditional
1715 // arc can also be caused by an empty default block in a switch.
1717 // In this case, we attempt to sink code from all *unconditional* arcs.
1718 // If we can sink instructions from these arcs (determined during the scan
1719 // phase below) we insert a common successor for all unconditional arcs and
1720 // connect that to [end], to enable sinking:
1733 SmallVector
<BasicBlock
*,4> UnconditionalPreds
;
1734 Instruction
*Cond
= nullptr;
1735 for (auto *B
: predecessors(BB
)) {
1736 auto *T
= B
->getTerminator();
1737 if (isa
<BranchInst
>(T
) && cast
<BranchInst
>(T
)->isUnconditional())
1738 UnconditionalPreds
.push_back(B
);
1739 else if ((isa
<BranchInst
>(T
) || isa
<SwitchInst
>(T
)) && !Cond
)
1744 if (UnconditionalPreds
.size() < 2)
1747 bool Changed
= false;
1748 // We take a two-step approach to tail sinking. First we scan from the end of
1749 // each block upwards in lockstep. If the n'th instruction from the end of each
1750 // block can be sunk, those instructions are added to ValuesToSink and we
1751 // carry on. If we can sink an instruction but need to PHI-merge some operands
1752 // (because they're not identical in each instruction) we add these to
1754 unsigned ScanIdx
= 0;
1755 SmallPtrSet
<Value
*,4> InstructionsToSink
;
1756 DenseMap
<Instruction
*, SmallVector
<Value
*,4>> PHIOperands
;
1757 LockstepReverseIterator
LRI(UnconditionalPreds
);
1758 while (LRI
.isValid() &&
1759 canSinkInstructions(*LRI
, PHIOperands
)) {
1760 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI
)[0]
1762 InstructionsToSink
.insert((*LRI
).begin(), (*LRI
).end());
1767 auto ProfitableToSinkInstruction
= [&](LockstepReverseIterator
&LRI
) {
1768 unsigned NumPHIdValues
= 0;
1769 for (auto *I
: *LRI
)
1770 for (auto *V
: PHIOperands
[I
])
1771 if (InstructionsToSink
.count(V
) == 0)
1773 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues
<< "\n");
1774 unsigned NumPHIInsts
= NumPHIdValues
/ UnconditionalPreds
.size();
1775 if ((NumPHIdValues
% UnconditionalPreds
.size()) != 0)
1778 return NumPHIInsts
<= 1;
1781 if (ScanIdx
> 0 && Cond
) {
1782 // Check if we would actually sink anything first! This mutates the CFG and
1783 // adds an extra block. The goal in doing this is to allow instructions that
1784 // couldn't be sunk before to be sunk - obviously, speculatable instructions
1785 // (such as trunc, add) can be sunk and predicated already. So we check that
1786 // we're going to sink at least one non-speculatable instruction.
1789 bool Profitable
= false;
1790 while (ProfitableToSinkInstruction(LRI
) && Idx
< ScanIdx
) {
1791 if (!isSafeToSpeculativelyExecute((*LRI
)[0])) {
1801 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1802 // We have a conditional edge and we're going to sink some instructions.
1803 // Insert a new block postdominating all blocks we're going to sink from.
1804 if (!SplitBlockPredecessors(BB
, UnconditionalPreds
, ".sink.split"))
1805 // Edges couldn't be split.
1810 // Now that we've analyzed all potential sinking candidates, perform the
1811 // actual sink. We iteratively sink the last non-terminator of the source
1812 // blocks into their common successor unless doing so would require too
1813 // many PHI instructions to be generated (currently only one PHI is allowed
1814 // per sunk instruction).
1816 // We can use InstructionsToSink to discount values needing PHI-merging that will
1817 // actually be sunk in a later iteration. This allows us to be more
1818 // aggressive in what we sink. This does allow a false positive where we
1819 // sink presuming a later value will also be sunk, but stop half way through
1820 // and never actually sink it which means we produce more PHIs than intended.
1821 // This is unlikely in practice though.
1822 for (unsigned SinkIdx
= 0; SinkIdx
!= ScanIdx
; ++SinkIdx
) {
1823 LLVM_DEBUG(dbgs() << "SINK: Sink: "
1824 << *UnconditionalPreds
[0]->getTerminator()->getPrevNode()
1827 // Because we've sunk every instruction in turn, the current instruction to
1828 // sink is always at index 0.
1830 if (!ProfitableToSinkInstruction(LRI
)) {
1831 // Too many PHIs would be created.
1833 dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1837 if (!sinkLastInstruction(UnconditionalPreds
))
1845 /// Determine if we can hoist sink a sole store instruction out of a
1846 /// conditional block.
1848 /// We are looking for code like the following:
1850 /// store i32 %add, i32* %arrayidx2
1851 /// ... // No other stores or function calls (we could be calling a memory
1852 /// ... // function).
1853 /// %cmp = icmp ult %x, %y
1854 /// br i1 %cmp, label %EndBB, label %ThenBB
1856 /// store i32 %add5, i32* %arrayidx2
1860 /// We are going to transform this into:
1862 /// store i32 %add, i32* %arrayidx2
1864 /// %cmp = icmp ult %x, %y
1865 /// %add.add5 = select i1 %cmp, i32 %add, %add5
1866 /// store i32 %add.add5, i32* %arrayidx2
1869 /// \return The pointer to the value of the previous store if the store can be
1870 /// hoisted into the predecessor block. 0 otherwise.
1871 static Value
*isSafeToSpeculateStore(Instruction
*I
, BasicBlock
*BrBB
,
1872 BasicBlock
*StoreBB
, BasicBlock
*EndBB
) {
1873 StoreInst
*StoreToHoist
= dyn_cast
<StoreInst
>(I
);
1877 // Volatile or atomic.
1878 if (!StoreToHoist
->isSimple())
1881 Value
*StorePtr
= StoreToHoist
->getPointerOperand();
1883 // Look for a store to the same pointer in BrBB.
1884 unsigned MaxNumInstToLookAt
= 9;
1885 for (Instruction
&CurI
: reverse(BrBB
->instructionsWithoutDebug())) {
1886 if (!MaxNumInstToLookAt
)
1888 --MaxNumInstToLookAt
;
1890 // Could be calling an instruction that affects memory like free().
1891 if (CurI
.mayHaveSideEffects() && !isa
<StoreInst
>(CurI
))
1894 if (auto *SI
= dyn_cast
<StoreInst
>(&CurI
)) {
1895 // Found the previous store make sure it stores to the same location.
1896 if (SI
->getPointerOperand() == StorePtr
)
1897 // Found the previous store, return its value operand.
1898 return SI
->getValueOperand();
1899 return nullptr; // Unknown store.
1906 /// Speculate a conditional basic block flattening the CFG.
1908 /// Note that this is a very risky transform currently. Speculating
1909 /// instructions like this is most often not desirable. Instead, there is an MI
1910 /// pass which can do it with full awareness of the resource constraints.
1911 /// However, some cases are "obvious" and we should do directly. An example of
1912 /// this is speculating a single, reasonably cheap instruction.
1914 /// There is only one distinct advantage to flattening the CFG at the IR level:
1915 /// it makes very common but simplistic optimizations such as are common in
1916 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1917 /// modeling their effects with easier to reason about SSA value graphs.
1920 /// An illustration of this transform is turning this IR:
1923 /// %cmp = icmp ult %x, %y
1924 /// br i1 %cmp, label %EndBB, label %ThenBB
1926 /// %sub = sub %x, %y
1929 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1936 /// %cmp = icmp ult %x, %y
1937 /// %sub = sub %x, %y
1938 /// %cond = select i1 %cmp, 0, %sub
1942 /// \returns true if the conditional block is removed.
1943 static bool SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*ThenBB
,
1944 const TargetTransformInfo
&TTI
) {
1945 // Be conservative for now. FP select instruction can often be expensive.
1946 Value
*BrCond
= BI
->getCondition();
1947 if (isa
<FCmpInst
>(BrCond
))
1950 BasicBlock
*BB
= BI
->getParent();
1951 BasicBlock
*EndBB
= ThenBB
->getTerminator()->getSuccessor(0);
1953 // If ThenBB is actually on the false edge of the conditional branch, remember
1954 // to swap the select operands later.
1955 bool Invert
= false;
1956 if (ThenBB
!= BI
->getSuccessor(0)) {
1957 assert(ThenBB
== BI
->getSuccessor(1) && "No edge from 'if' block?");
1960 assert(EndBB
== BI
->getSuccessor(!Invert
) && "No edge from to end block");
1962 // Keep a count of how many times instructions are used within ThenBB when
1963 // they are candidates for sinking into ThenBB. Specifically:
1964 // - They are defined in BB, and
1965 // - They have no side effects, and
1966 // - All of their uses are in ThenBB.
1967 SmallDenseMap
<Instruction
*, unsigned, 4> SinkCandidateUseCounts
;
1969 SmallVector
<Instruction
*, 4> SpeculatedDbgIntrinsics
;
1971 unsigned SpeculationCost
= 0;
1972 Value
*SpeculatedStoreValue
= nullptr;
1973 StoreInst
*SpeculatedStore
= nullptr;
1974 for (BasicBlock::iterator BBI
= ThenBB
->begin(),
1975 BBE
= std::prev(ThenBB
->end());
1976 BBI
!= BBE
; ++BBI
) {
1977 Instruction
*I
= &*BBI
;
1979 if (isa
<DbgInfoIntrinsic
>(I
)) {
1980 SpeculatedDbgIntrinsics
.push_back(I
);
1984 // Only speculatively execute a single instruction (not counting the
1985 // terminator) for now.
1987 if (SpeculationCost
> 1)
1990 // Don't hoist the instruction if it's unsafe or expensive.
1991 if (!isSafeToSpeculativelyExecute(I
) &&
1992 !(HoistCondStores
&& (SpeculatedStoreValue
= isSafeToSpeculateStore(
1993 I
, BB
, ThenBB
, EndBB
))))
1995 if (!SpeculatedStoreValue
&&
1996 ComputeSpeculationCost(I
, TTI
) >
1997 PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
)
2000 // Store the store speculation candidate.
2001 if (SpeculatedStoreValue
)
2002 SpeculatedStore
= cast
<StoreInst
>(I
);
2004 // Do not hoist the instruction if any of its operands are defined but not
2005 // used in BB. The transformation will prevent the operand from
2006 // being sunk into the use block.
2007 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
) {
2008 Instruction
*OpI
= dyn_cast
<Instruction
>(*i
);
2009 if (!OpI
|| OpI
->getParent() != BB
|| OpI
->mayHaveSideEffects())
2010 continue; // Not a candidate for sinking.
2012 ++SinkCandidateUseCounts
[OpI
];
2016 // Consider any sink candidates which are only used in ThenBB as costs for
2017 // speculation. Note, while we iterate over a DenseMap here, we are summing
2018 // and so iteration order isn't significant.
2019 for (SmallDenseMap
<Instruction
*, unsigned, 4>::iterator
2020 I
= SinkCandidateUseCounts
.begin(),
2021 E
= SinkCandidateUseCounts
.end();
2023 if (I
->first
->hasNUses(I
->second
)) {
2025 if (SpeculationCost
> 1)
2029 // Check that the PHI nodes can be converted to selects.
2030 bool HaveRewritablePHIs
= false;
2031 for (PHINode
&PN
: EndBB
->phis()) {
2032 Value
*OrigV
= PN
.getIncomingValueForBlock(BB
);
2033 Value
*ThenV
= PN
.getIncomingValueForBlock(ThenBB
);
2035 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2036 // Skip PHIs which are trivial.
2040 // Don't convert to selects if we could remove undefined behavior instead.
2041 if (passingValueIsAlwaysUndefined(OrigV
, &PN
) ||
2042 passingValueIsAlwaysUndefined(ThenV
, &PN
))
2045 HaveRewritablePHIs
= true;
2046 ConstantExpr
*OrigCE
= dyn_cast
<ConstantExpr
>(OrigV
);
2047 ConstantExpr
*ThenCE
= dyn_cast
<ConstantExpr
>(ThenV
);
2048 if (!OrigCE
&& !ThenCE
)
2049 continue; // Known safe and cheap.
2051 if ((ThenCE
&& !isSafeToSpeculativelyExecute(ThenCE
)) ||
2052 (OrigCE
&& !isSafeToSpeculativelyExecute(OrigCE
)))
2054 unsigned OrigCost
= OrigCE
? ComputeSpeculationCost(OrigCE
, TTI
) : 0;
2055 unsigned ThenCost
= ThenCE
? ComputeSpeculationCost(ThenCE
, TTI
) : 0;
2057 2 * PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
2058 if (OrigCost
+ ThenCost
> MaxCost
)
2061 // Account for the cost of an unfolded ConstantExpr which could end up
2062 // getting expanded into Instructions.
2063 // FIXME: This doesn't account for how many operations are combined in the
2064 // constant expression.
2066 if (SpeculationCost
> 1)
2070 // If there are no PHIs to process, bail early. This helps ensure idempotence
2072 if (!HaveRewritablePHIs
&& !(HoistCondStores
&& SpeculatedStoreValue
))
2075 // If we get here, we can hoist the instruction and if-convert.
2076 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB
<< "\n";);
2078 // Insert a select of the value of the speculated store.
2079 if (SpeculatedStoreValue
) {
2080 IRBuilder
<NoFolder
> Builder(BI
);
2081 Value
*TrueV
= SpeculatedStore
->getValueOperand();
2082 Value
*FalseV
= SpeculatedStoreValue
;
2084 std::swap(TrueV
, FalseV
);
2085 Value
*S
= Builder
.CreateSelect(
2086 BrCond
, TrueV
, FalseV
, "spec.store.select", BI
);
2087 SpeculatedStore
->setOperand(0, S
);
2088 SpeculatedStore
->applyMergedLocation(BI
->getDebugLoc(),
2089 SpeculatedStore
->getDebugLoc());
2092 // Metadata can be dependent on the condition we are hoisting above.
2093 // Conservatively strip all metadata on the instruction.
2094 for (auto &I
: *ThenBB
)
2095 I
.dropUnknownNonDebugMetadata();
2097 // Hoist the instructions.
2098 BB
->getInstList().splice(BI
->getIterator(), ThenBB
->getInstList(),
2099 ThenBB
->begin(), std::prev(ThenBB
->end()));
2101 // Insert selects and rewrite the PHI operands.
2102 IRBuilder
<NoFolder
> Builder(BI
);
2103 for (PHINode
&PN
: EndBB
->phis()) {
2104 unsigned OrigI
= PN
.getBasicBlockIndex(BB
);
2105 unsigned ThenI
= PN
.getBasicBlockIndex(ThenBB
);
2106 Value
*OrigV
= PN
.getIncomingValue(OrigI
);
2107 Value
*ThenV
= PN
.getIncomingValue(ThenI
);
2109 // Skip PHIs which are trivial.
2113 // Create a select whose true value is the speculatively executed value and
2114 // false value is the preexisting value. Swap them if the branch
2115 // destinations were inverted.
2116 Value
*TrueV
= ThenV
, *FalseV
= OrigV
;
2118 std::swap(TrueV
, FalseV
);
2119 Value
*V
= Builder
.CreateSelect(
2120 BrCond
, TrueV
, FalseV
, "spec.select", BI
);
2121 PN
.setIncomingValue(OrigI
, V
);
2122 PN
.setIncomingValue(ThenI
, V
);
2125 // Remove speculated dbg intrinsics.
2126 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2127 // dbg value for the different flows and inserting it after the select.
2128 for (Instruction
*I
: SpeculatedDbgIntrinsics
)
2129 I
->eraseFromParent();
2135 /// Return true if we can thread a branch across this block.
2136 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock
*BB
) {
2139 for (Instruction
&I
: BB
->instructionsWithoutDebug()) {
2141 return false; // Don't clone large BB's.
2144 // We can only support instructions that do not define values that are
2145 // live outside of the current basic block.
2146 for (User
*U
: I
.users()) {
2147 Instruction
*UI
= cast
<Instruction
>(U
);
2148 if (UI
->getParent() != BB
|| isa
<PHINode
>(UI
))
2152 // Looks ok, continue checking.
2158 /// If we have a conditional branch on a PHI node value that is defined in the
2159 /// same block as the branch and if any PHI entries are constants, thread edges
2160 /// corresponding to that entry to be branches to their ultimate destination.
2161 static bool FoldCondBranchOnPHI(BranchInst
*BI
, const DataLayout
&DL
,
2162 AssumptionCache
*AC
) {
2163 BasicBlock
*BB
= BI
->getParent();
2164 PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition());
2165 // NOTE: we currently cannot transform this case if the PHI node is used
2166 // outside of the block.
2167 if (!PN
|| PN
->getParent() != BB
|| !PN
->hasOneUse())
2170 // Degenerate case of a single entry PHI.
2171 if (PN
->getNumIncomingValues() == 1) {
2172 FoldSingleEntryPHINodes(PN
->getParent());
2176 // Now we know that this block has multiple preds and two succs.
2177 if (!BlockIsSimpleEnoughToThreadThrough(BB
))
2180 // Can't fold blocks that contain noduplicate or convergent calls.
2181 if (any_of(*BB
, [](const Instruction
&I
) {
2182 const CallInst
*CI
= dyn_cast
<CallInst
>(&I
);
2183 return CI
&& (CI
->cannotDuplicate() || CI
->isConvergent());
2187 // Okay, this is a simple enough basic block. See if any phi values are
2189 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
2190 ConstantInt
*CB
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(i
));
2191 if (!CB
|| !CB
->getType()->isIntegerTy(1))
2194 // Okay, we now know that all edges from PredBB should be revectored to
2195 // branch to RealDest.
2196 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
2197 BasicBlock
*RealDest
= BI
->getSuccessor(!CB
->getZExtValue());
2200 continue; // Skip self loops.
2201 // Skip if the predecessor's terminator is an indirect branch.
2202 if (isa
<IndirectBrInst
>(PredBB
->getTerminator()))
2205 // The dest block might have PHI nodes, other predecessors and other
2206 // difficult cases. Instead of being smart about this, just insert a new
2207 // block that jumps to the destination block, effectively splitting
2208 // the edge we are about to create.
2209 BasicBlock
*EdgeBB
=
2210 BasicBlock::Create(BB
->getContext(), RealDest
->getName() + ".critedge",
2211 RealDest
->getParent(), RealDest
);
2212 BranchInst::Create(RealDest
, EdgeBB
);
2214 // Update PHI nodes.
2215 AddPredecessorToBlock(RealDest
, EdgeBB
, BB
);
2217 // BB may have instructions that are being threaded over. Clone these
2218 // instructions into EdgeBB. We know that there will be no uses of the
2219 // cloned instructions outside of EdgeBB.
2220 BasicBlock::iterator InsertPt
= EdgeBB
->begin();
2221 DenseMap
<Value
*, Value
*> TranslateMap
; // Track translated values.
2222 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
2223 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
)) {
2224 TranslateMap
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
2227 // Clone the instruction.
2228 Instruction
*N
= BBI
->clone();
2230 N
->setName(BBI
->getName() + ".c");
2232 // Update operands due to translation.
2233 for (User::op_iterator i
= N
->op_begin(), e
= N
->op_end(); i
!= e
; ++i
) {
2234 DenseMap
<Value
*, Value
*>::iterator PI
= TranslateMap
.find(*i
);
2235 if (PI
!= TranslateMap
.end())
2239 // Check for trivial simplification.
2240 if (Value
*V
= SimplifyInstruction(N
, {DL
, nullptr, nullptr, AC
})) {
2241 if (!BBI
->use_empty())
2242 TranslateMap
[&*BBI
] = V
;
2243 if (!N
->mayHaveSideEffects()) {
2244 N
->deleteValue(); // Instruction folded away, don't need actual inst
2248 if (!BBI
->use_empty())
2249 TranslateMap
[&*BBI
] = N
;
2251 // Insert the new instruction into its new home.
2253 EdgeBB
->getInstList().insert(InsertPt
, N
);
2255 // Register the new instruction with the assumption cache if necessary.
2256 if (auto *II
= dyn_cast_or_null
<IntrinsicInst
>(N
))
2257 if (II
->getIntrinsicID() == Intrinsic::assume
)
2258 AC
->registerAssumption(II
);
2261 // Loop over all of the edges from PredBB to BB, changing them to branch
2262 // to EdgeBB instead.
2263 Instruction
*PredBBTI
= PredBB
->getTerminator();
2264 for (unsigned i
= 0, e
= PredBBTI
->getNumSuccessors(); i
!= e
; ++i
)
2265 if (PredBBTI
->getSuccessor(i
) == BB
) {
2266 BB
->removePredecessor(PredBB
);
2267 PredBBTI
->setSuccessor(i
, EdgeBB
);
2270 // Recurse, simplifying any other constants.
2271 return FoldCondBranchOnPHI(BI
, DL
, AC
) || true;
2277 /// Given a BB that starts with the specified two-entry PHI node,
2278 /// see if we can eliminate it.
2279 static bool FoldTwoEntryPHINode(PHINode
*PN
, const TargetTransformInfo
&TTI
,
2280 const DataLayout
&DL
) {
2281 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
2282 // statement", which has a very simple dominance structure. Basically, we
2283 // are trying to find the condition that is being branched on, which
2284 // subsequently causes this merge to happen. We really want control
2285 // dependence information for this check, but simplifycfg can't keep it up
2286 // to date, and this catches most of the cases we care about anyway.
2287 BasicBlock
*BB
= PN
->getParent();
2288 const Function
*Fn
= BB
->getParent();
2289 if (Fn
&& Fn
->hasFnAttribute(Attribute::OptForFuzzing
))
2292 BasicBlock
*IfTrue
, *IfFalse
;
2293 Value
*IfCond
= GetIfCondition(BB
, IfTrue
, IfFalse
);
2295 // Don't bother if the branch will be constant folded trivially.
2296 isa
<ConstantInt
>(IfCond
))
2299 // Okay, we found that we can merge this two-entry phi node into a select.
2300 // Doing so would require us to fold *all* two entry phi nodes in this block.
2301 // At some point this becomes non-profitable (particularly if the target
2302 // doesn't support cmov's). Only do this transformation if there are two or
2303 // fewer PHI nodes in this block.
2304 unsigned NumPhis
= 0;
2305 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++NumPhis
, ++I
)
2309 // Loop over the PHI's seeing if we can promote them all to select
2310 // instructions. While we are at it, keep track of the instructions
2311 // that need to be moved to the dominating block.
2312 SmallPtrSet
<Instruction
*, 4> AggressiveInsts
;
2313 unsigned MaxCostVal0
= PHINodeFoldingThreshold
,
2314 MaxCostVal1
= PHINodeFoldingThreshold
;
2315 MaxCostVal0
*= TargetTransformInfo::TCC_Basic
;
2316 MaxCostVal1
*= TargetTransformInfo::TCC_Basic
;
2318 for (BasicBlock::iterator II
= BB
->begin(); isa
<PHINode
>(II
);) {
2319 PHINode
*PN
= cast
<PHINode
>(II
++);
2320 if (Value
*V
= SimplifyInstruction(PN
, {DL
, PN
})) {
2321 PN
->replaceAllUsesWith(V
);
2322 PN
->eraseFromParent();
2326 if (!DominatesMergePoint(PN
->getIncomingValue(0), BB
, AggressiveInsts
,
2327 MaxCostVal0
, TTI
) ||
2328 !DominatesMergePoint(PN
->getIncomingValue(1), BB
, AggressiveInsts
,
2333 // If we folded the first phi, PN dangles at this point. Refresh it. If
2334 // we ran out of PHIs then we simplified them all.
2335 PN
= dyn_cast
<PHINode
>(BB
->begin());
2339 // Don't fold i1 branches on PHIs which contain binary operators. These can
2340 // often be turned into switches and other things.
2341 if (PN
->getType()->isIntegerTy(1) &&
2342 (isa
<BinaryOperator
>(PN
->getIncomingValue(0)) ||
2343 isa
<BinaryOperator
>(PN
->getIncomingValue(1)) ||
2344 isa
<BinaryOperator
>(IfCond
)))
2347 // If all PHI nodes are promotable, check to make sure that all instructions
2348 // in the predecessor blocks can be promoted as well. If not, we won't be able
2349 // to get rid of the control flow, so it's not worth promoting to select
2351 BasicBlock
*DomBlock
= nullptr;
2352 BasicBlock
*IfBlock1
= PN
->getIncomingBlock(0);
2353 BasicBlock
*IfBlock2
= PN
->getIncomingBlock(1);
2354 if (cast
<BranchInst
>(IfBlock1
->getTerminator())->isConditional()) {
2357 DomBlock
= *pred_begin(IfBlock1
);
2358 for (BasicBlock::iterator I
= IfBlock1
->begin(); !I
->isTerminator(); ++I
)
2359 if (!AggressiveInsts
.count(&*I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
2360 // This is not an aggressive instruction that we can promote.
2361 // Because of this, we won't be able to get rid of the control flow, so
2362 // the xform is not worth it.
2367 if (cast
<BranchInst
>(IfBlock2
->getTerminator())->isConditional()) {
2370 DomBlock
= *pred_begin(IfBlock2
);
2371 for (BasicBlock::iterator I
= IfBlock2
->begin(); !I
->isTerminator(); ++I
)
2372 if (!AggressiveInsts
.count(&*I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
2373 // This is not an aggressive instruction that we can promote.
2374 // Because of this, we won't be able to get rid of the control flow, so
2375 // the xform is not worth it.
2380 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
2381 << " T: " << IfTrue
->getName()
2382 << " F: " << IfFalse
->getName() << "\n");
2384 // If we can still promote the PHI nodes after this gauntlet of tests,
2385 // do all of the PHI's now.
2386 Instruction
*InsertPt
= DomBlock
->getTerminator();
2387 IRBuilder
<NoFolder
> Builder(InsertPt
);
2389 // Move all 'aggressive' instructions, which are defined in the
2390 // conditional parts of the if's up to the dominating block.
2392 hoistAllInstructionsInto(DomBlock
, InsertPt
, IfBlock1
);
2394 hoistAllInstructionsInto(DomBlock
, InsertPt
, IfBlock2
);
2396 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
2397 // Change the PHI node into a select instruction.
2398 Value
*TrueVal
= PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfFalse
);
2399 Value
*FalseVal
= PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfTrue
);
2401 Value
*Sel
= Builder
.CreateSelect(IfCond
, TrueVal
, FalseVal
, "", InsertPt
);
2402 PN
->replaceAllUsesWith(Sel
);
2404 PN
->eraseFromParent();
2407 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2408 // has been flattened. Change DomBlock to jump directly to our new block to
2409 // avoid other simplifycfg's kicking in on the diamond.
2410 Instruction
*OldTI
= DomBlock
->getTerminator();
2411 Builder
.SetInsertPoint(OldTI
);
2412 Builder
.CreateBr(BB
);
2413 OldTI
->eraseFromParent();
2417 /// If we found a conditional branch that goes to two returning blocks,
2418 /// try to merge them together into one return,
2419 /// introducing a select if the return values disagree.
2420 static bool SimplifyCondBranchToTwoReturns(BranchInst
*BI
,
2421 IRBuilder
<> &Builder
) {
2422 assert(BI
->isConditional() && "Must be a conditional branch");
2423 BasicBlock
*TrueSucc
= BI
->getSuccessor(0);
2424 BasicBlock
*FalseSucc
= BI
->getSuccessor(1);
2425 ReturnInst
*TrueRet
= cast
<ReturnInst
>(TrueSucc
->getTerminator());
2426 ReturnInst
*FalseRet
= cast
<ReturnInst
>(FalseSucc
->getTerminator());
2428 // Check to ensure both blocks are empty (just a return) or optionally empty
2429 // with PHI nodes. If there are other instructions, merging would cause extra
2430 // computation on one path or the other.
2431 if (!TrueSucc
->getFirstNonPHIOrDbg()->isTerminator())
2433 if (!FalseSucc
->getFirstNonPHIOrDbg()->isTerminator())
2436 Builder
.SetInsertPoint(BI
);
2437 // Okay, we found a branch that is going to two return nodes. If
2438 // there is no return value for this function, just change the
2439 // branch into a return.
2440 if (FalseRet
->getNumOperands() == 0) {
2441 TrueSucc
->removePredecessor(BI
->getParent());
2442 FalseSucc
->removePredecessor(BI
->getParent());
2443 Builder
.CreateRetVoid();
2444 EraseTerminatorAndDCECond(BI
);
2448 // Otherwise, figure out what the true and false return values are
2449 // so we can insert a new select instruction.
2450 Value
*TrueValue
= TrueRet
->getReturnValue();
2451 Value
*FalseValue
= FalseRet
->getReturnValue();
2453 // Unwrap any PHI nodes in the return blocks.
2454 if (PHINode
*TVPN
= dyn_cast_or_null
<PHINode
>(TrueValue
))
2455 if (TVPN
->getParent() == TrueSucc
)
2456 TrueValue
= TVPN
->getIncomingValueForBlock(BI
->getParent());
2457 if (PHINode
*FVPN
= dyn_cast_or_null
<PHINode
>(FalseValue
))
2458 if (FVPN
->getParent() == FalseSucc
)
2459 FalseValue
= FVPN
->getIncomingValueForBlock(BI
->getParent());
2461 // In order for this transformation to be safe, we must be able to
2462 // unconditionally execute both operands to the return. This is
2463 // normally the case, but we could have a potentially-trapping
2464 // constant expression that prevents this transformation from being
2466 if (ConstantExpr
*TCV
= dyn_cast_or_null
<ConstantExpr
>(TrueValue
))
2469 if (ConstantExpr
*FCV
= dyn_cast_or_null
<ConstantExpr
>(FalseValue
))
2473 // Okay, we collected all the mapped values and checked them for sanity, and
2474 // defined to really do this transformation. First, update the CFG.
2475 TrueSucc
->removePredecessor(BI
->getParent());
2476 FalseSucc
->removePredecessor(BI
->getParent());
2478 // Insert select instructions where needed.
2479 Value
*BrCond
= BI
->getCondition();
2481 // Insert a select if the results differ.
2482 if (TrueValue
== FalseValue
|| isa
<UndefValue
>(FalseValue
)) {
2483 } else if (isa
<UndefValue
>(TrueValue
)) {
2484 TrueValue
= FalseValue
;
2487 Builder
.CreateSelect(BrCond
, TrueValue
, FalseValue
, "retval", BI
);
2492 !TrueValue
? Builder
.CreateRetVoid() : Builder
.CreateRet(TrueValue
);
2496 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2497 << "\n " << *BI
<< "NewRet = " << *RI
<< "TRUEBLOCK: "
2498 << *TrueSucc
<< "FALSEBLOCK: " << *FalseSucc
);
2500 EraseTerminatorAndDCECond(BI
);
2505 /// Return true if the given instruction is available
2506 /// in its predecessor block. If yes, the instruction will be removed.
2507 static bool tryCSEWithPredecessor(Instruction
*Inst
, BasicBlock
*PB
) {
2508 if (!isa
<BinaryOperator
>(Inst
) && !isa
<CmpInst
>(Inst
))
2510 for (Instruction
&I
: *PB
) {
2511 Instruction
*PBI
= &I
;
2512 // Check whether Inst and PBI generate the same value.
2513 if (Inst
->isIdenticalTo(PBI
)) {
2514 Inst
->replaceAllUsesWith(PBI
);
2515 Inst
->eraseFromParent();
2522 /// Return true if either PBI or BI has branch weight available, and store
2523 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2524 /// not have branch weight, use 1:1 as its weight.
2525 static bool extractPredSuccWeights(BranchInst
*PBI
, BranchInst
*BI
,
2526 uint64_t &PredTrueWeight
,
2527 uint64_t &PredFalseWeight
,
2528 uint64_t &SuccTrueWeight
,
2529 uint64_t &SuccFalseWeight
) {
2530 bool PredHasWeights
=
2531 PBI
->extractProfMetadata(PredTrueWeight
, PredFalseWeight
);
2532 bool SuccHasWeights
=
2533 BI
->extractProfMetadata(SuccTrueWeight
, SuccFalseWeight
);
2534 if (PredHasWeights
|| SuccHasWeights
) {
2535 if (!PredHasWeights
)
2536 PredTrueWeight
= PredFalseWeight
= 1;
2537 if (!SuccHasWeights
)
2538 SuccTrueWeight
= SuccFalseWeight
= 1;
2545 /// If this basic block is simple enough, and if a predecessor branches to us
2546 /// and one of our successors, fold the block into the predecessor and use
2547 /// logical operations to pick the right destination.
2548 bool llvm::FoldBranchToCommonDest(BranchInst
*BI
, unsigned BonusInstThreshold
) {
2549 BasicBlock
*BB
= BI
->getParent();
2551 const unsigned PredCount
= pred_size(BB
);
2553 Instruction
*Cond
= nullptr;
2554 if (BI
->isConditional())
2555 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
2557 // For unconditional branch, check for a simple CFG pattern, where
2558 // BB has a single predecessor and BB's successor is also its predecessor's
2559 // successor. If such pattern exists, check for CSE between BB and its
2561 if (BasicBlock
*PB
= BB
->getSinglePredecessor())
2562 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>(PB
->getTerminator()))
2563 if (PBI
->isConditional() &&
2564 (BI
->getSuccessor(0) == PBI
->getSuccessor(0) ||
2565 BI
->getSuccessor(0) == PBI
->getSuccessor(1))) {
2566 for (auto I
= BB
->instructionsWithoutDebug().begin(),
2567 E
= BB
->instructionsWithoutDebug().end();
2569 Instruction
*Curr
= &*I
++;
2570 if (isa
<CmpInst
>(Curr
)) {
2574 // Quit if we can't remove this instruction.
2575 if (!tryCSEWithPredecessor(Curr
, PB
))
2584 if (!Cond
|| (!isa
<CmpInst
>(Cond
) && !isa
<BinaryOperator
>(Cond
)) ||
2585 Cond
->getParent() != BB
|| !Cond
->hasOneUse())
2588 // Make sure the instruction after the condition is the cond branch.
2589 BasicBlock::iterator CondIt
= ++Cond
->getIterator();
2591 // Ignore dbg intrinsics.
2592 while (isa
<DbgInfoIntrinsic
>(CondIt
))
2598 // Only allow this transformation if computing the condition doesn't involve
2599 // too many instructions and these involved instructions can be executed
2600 // unconditionally. We denote all involved instructions except the condition
2601 // as "bonus instructions", and only allow this transformation when the
2602 // number of the bonus instructions we'll need to create when cloning into
2603 // each predecessor does not exceed a certain threshold.
2604 unsigned NumBonusInsts
= 0;
2605 for (auto I
= BB
->begin(); Cond
!= &*I
; ++I
) {
2606 // Ignore dbg intrinsics.
2607 if (isa
<DbgInfoIntrinsic
>(I
))
2609 if (!I
->hasOneUse() || !isSafeToSpeculativelyExecute(&*I
))
2611 // I has only one use and can be executed unconditionally.
2612 Instruction
*User
= dyn_cast
<Instruction
>(I
->user_back());
2613 if (User
== nullptr || User
->getParent() != BB
)
2615 // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2616 // to use any other instruction, User must be an instruction between next(I)
2619 // Account for the cost of duplicating this instruction into each
2621 NumBonusInsts
+= PredCount
;
2622 // Early exits once we reach the limit.
2623 if (NumBonusInsts
> BonusInstThreshold
)
2627 // Cond is known to be a compare or binary operator. Check to make sure that
2628 // neither operand is a potentially-trapping constant expression.
2629 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(0)))
2632 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(1)))
2636 // Finally, don't infinitely unroll conditional loops.
2637 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
2638 BasicBlock
*FalseDest
= (BI
->isConditional()) ? BI
->getSuccessor(1) : nullptr;
2639 if (TrueDest
== BB
|| FalseDest
== BB
)
2642 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
2643 BasicBlock
*PredBlock
= *PI
;
2644 BranchInst
*PBI
= dyn_cast
<BranchInst
>(PredBlock
->getTerminator());
2646 // Check that we have two conditional branches. If there is a PHI node in
2647 // the common successor, verify that the same value flows in from both
2649 SmallVector
<PHINode
*, 4> PHIs
;
2650 if (!PBI
|| PBI
->isUnconditional() ||
2651 (BI
->isConditional() && !SafeToMergeTerminators(BI
, PBI
)) ||
2652 (!BI
->isConditional() &&
2653 !isProfitableToFoldUnconditional(BI
, PBI
, Cond
, PHIs
)))
2656 // Determine if the two branches share a common destination.
2657 Instruction::BinaryOps Opc
= Instruction::BinaryOpsEnd
;
2658 bool InvertPredCond
= false;
2660 if (BI
->isConditional()) {
2661 if (PBI
->getSuccessor(0) == TrueDest
) {
2662 Opc
= Instruction::Or
;
2663 } else if (PBI
->getSuccessor(1) == FalseDest
) {
2664 Opc
= Instruction::And
;
2665 } else if (PBI
->getSuccessor(0) == FalseDest
) {
2666 Opc
= Instruction::And
;
2667 InvertPredCond
= true;
2668 } else if (PBI
->getSuccessor(1) == TrueDest
) {
2669 Opc
= Instruction::Or
;
2670 InvertPredCond
= true;
2675 if (PBI
->getSuccessor(0) != TrueDest
&& PBI
->getSuccessor(1) != TrueDest
)
2679 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI
<< *BB
);
2680 IRBuilder
<> Builder(PBI
);
2682 // If we need to invert the condition in the pred block to match, do so now.
2683 if (InvertPredCond
) {
2684 Value
*NewCond
= PBI
->getCondition();
2686 if (NewCond
->hasOneUse() && isa
<CmpInst
>(NewCond
)) {
2687 CmpInst
*CI
= cast
<CmpInst
>(NewCond
);
2688 CI
->setPredicate(CI
->getInversePredicate());
2691 Builder
.CreateNot(NewCond
, PBI
->getCondition()->getName() + ".not");
2694 PBI
->setCondition(NewCond
);
2695 PBI
->swapSuccessors();
2698 // If we have bonus instructions, clone them into the predecessor block.
2699 // Note that there may be multiple predecessor blocks, so we cannot move
2700 // bonus instructions to a predecessor block.
2701 ValueToValueMapTy VMap
; // maps original values to cloned values
2702 // We already make sure Cond is the last instruction before BI. Therefore,
2703 // all instructions before Cond other than DbgInfoIntrinsic are bonus
2705 for (auto BonusInst
= BB
->begin(); Cond
!= &*BonusInst
; ++BonusInst
) {
2706 if (isa
<DbgInfoIntrinsic
>(BonusInst
))
2708 Instruction
*NewBonusInst
= BonusInst
->clone();
2709 RemapInstruction(NewBonusInst
, VMap
,
2710 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
2711 VMap
[&*BonusInst
] = NewBonusInst
;
2713 // If we moved a load, we cannot any longer claim any knowledge about
2714 // its potential value. The previous information might have been valid
2715 // only given the branch precondition.
2716 // For an analogous reason, we must also drop all the metadata whose
2717 // semantics we don't understand.
2718 NewBonusInst
->dropUnknownNonDebugMetadata();
2720 PredBlock
->getInstList().insert(PBI
->getIterator(), NewBonusInst
);
2721 NewBonusInst
->takeName(&*BonusInst
);
2722 BonusInst
->setName(BonusInst
->getName() + ".old");
2725 // Clone Cond into the predecessor basic block, and or/and the
2726 // two conditions together.
2727 Instruction
*CondInPred
= Cond
->clone();
2728 RemapInstruction(CondInPred
, VMap
,
2729 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
2730 PredBlock
->getInstList().insert(PBI
->getIterator(), CondInPred
);
2731 CondInPred
->takeName(Cond
);
2732 Cond
->setName(CondInPred
->getName() + ".old");
2734 if (BI
->isConditional()) {
2735 Instruction
*NewCond
= cast
<Instruction
>(
2736 Builder
.CreateBinOp(Opc
, PBI
->getCondition(), CondInPred
, "or.cond"));
2737 PBI
->setCondition(NewCond
);
2739 uint64_t PredTrueWeight
, PredFalseWeight
, SuccTrueWeight
, SuccFalseWeight
;
2741 extractPredSuccWeights(PBI
, BI
, PredTrueWeight
, PredFalseWeight
,
2742 SuccTrueWeight
, SuccFalseWeight
);
2743 SmallVector
<uint64_t, 8> NewWeights
;
2745 if (PBI
->getSuccessor(0) == BB
) {
2747 // PBI: br i1 %x, BB, FalseDest
2748 // BI: br i1 %y, TrueDest, FalseDest
2749 // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2750 NewWeights
.push_back(PredTrueWeight
* SuccTrueWeight
);
2751 // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2752 // TrueWeight for PBI * FalseWeight for BI.
2753 // We assume that total weights of a BranchInst can fit into 32 bits.
2754 // Therefore, we will not have overflow using 64-bit arithmetic.
2755 NewWeights
.push_back(PredFalseWeight
*
2756 (SuccFalseWeight
+ SuccTrueWeight
) +
2757 PredTrueWeight
* SuccFalseWeight
);
2759 AddPredecessorToBlock(TrueDest
, PredBlock
, BB
);
2760 PBI
->setSuccessor(0, TrueDest
);
2762 if (PBI
->getSuccessor(1) == BB
) {
2764 // PBI: br i1 %x, TrueDest, BB
2765 // BI: br i1 %y, TrueDest, FalseDest
2766 // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2767 // FalseWeight for PBI * TrueWeight for BI.
2768 NewWeights
.push_back(PredTrueWeight
*
2769 (SuccFalseWeight
+ SuccTrueWeight
) +
2770 PredFalseWeight
* SuccTrueWeight
);
2771 // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2772 NewWeights
.push_back(PredFalseWeight
* SuccFalseWeight
);
2774 AddPredecessorToBlock(FalseDest
, PredBlock
, BB
);
2775 PBI
->setSuccessor(1, FalseDest
);
2777 if (NewWeights
.size() == 2) {
2778 // Halve the weights if any of them cannot fit in an uint32_t
2779 FitWeights(NewWeights
);
2781 SmallVector
<uint32_t, 8> MDWeights(NewWeights
.begin(),
2783 setBranchWeights(PBI
, MDWeights
[0], MDWeights
[1]);
2785 PBI
->setMetadata(LLVMContext::MD_prof
, nullptr);
2787 // Update PHI nodes in the common successors.
2788 for (unsigned i
= 0, e
= PHIs
.size(); i
!= e
; ++i
) {
2789 ConstantInt
*PBI_C
= cast
<ConstantInt
>(
2790 PHIs
[i
]->getIncomingValueForBlock(PBI
->getParent()));
2791 assert(PBI_C
->getType()->isIntegerTy(1));
2792 Instruction
*MergedCond
= nullptr;
2793 if (PBI
->getSuccessor(0) == TrueDest
) {
2794 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2795 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2796 // is false: !PBI_Cond and BI_Value
2797 Instruction
*NotCond
= cast
<Instruction
>(
2798 Builder
.CreateNot(PBI
->getCondition(), "not.cond"));
2799 MergedCond
= cast
<Instruction
>(
2800 Builder
.CreateBinOp(Instruction::And
, NotCond
, CondInPred
,
2803 MergedCond
= cast
<Instruction
>(Builder
.CreateBinOp(
2804 Instruction::Or
, PBI
->getCondition(), MergedCond
, "or.cond"));
2806 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2807 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2808 // is false: PBI_Cond and BI_Value
2809 MergedCond
= cast
<Instruction
>(Builder
.CreateBinOp(
2810 Instruction::And
, PBI
->getCondition(), CondInPred
, "and.cond"));
2811 if (PBI_C
->isOne()) {
2812 Instruction
*NotCond
= cast
<Instruction
>(
2813 Builder
.CreateNot(PBI
->getCondition(), "not.cond"));
2814 MergedCond
= cast
<Instruction
>(Builder
.CreateBinOp(
2815 Instruction::Or
, NotCond
, MergedCond
, "or.cond"));
2819 PHIs
[i
]->setIncomingValue(PHIs
[i
]->getBasicBlockIndex(PBI
->getParent()),
2822 // Change PBI from Conditional to Unconditional.
2823 BranchInst
*New_PBI
= BranchInst::Create(TrueDest
, PBI
);
2824 EraseTerminatorAndDCECond(PBI
);
2828 // If BI was a loop latch, it may have had associated loop metadata.
2829 // We need to copy it to the new latch, that is, PBI.
2830 if (MDNode
*LoopMD
= BI
->getMetadata(LLVMContext::MD_loop
))
2831 PBI
->setMetadata(LLVMContext::MD_loop
, LoopMD
);
2833 // TODO: If BB is reachable from all paths through PredBlock, then we
2834 // could replace PBI's branch probabilities with BI's.
2836 // Copy any debug value intrinsics into the end of PredBlock.
2837 for (Instruction
&I
: *BB
)
2838 if (isa
<DbgInfoIntrinsic
>(I
))
2839 I
.clone()->insertBefore(PBI
);
2846 // If there is only one store in BB1 and BB2, return it, otherwise return
2848 static StoreInst
*findUniqueStoreInBlocks(BasicBlock
*BB1
, BasicBlock
*BB2
) {
2849 StoreInst
*S
= nullptr;
2850 for (auto *BB
: {BB1
, BB2
}) {
2854 if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
2856 // Multiple stores seen.
2865 static Value
*ensureValueAvailableInSuccessor(Value
*V
, BasicBlock
*BB
,
2866 Value
*AlternativeV
= nullptr) {
2867 // PHI is going to be a PHI node that allows the value V that is defined in
2868 // BB to be referenced in BB's only successor.
2870 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2871 // doesn't matter to us what the other operand is (it'll never get used). We
2872 // could just create a new PHI with an undef incoming value, but that could
2873 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2874 // other PHI. So here we directly look for some PHI in BB's successor with V
2875 // as an incoming operand. If we find one, we use it, else we create a new
2878 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2879 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2880 // where OtherBB is the single other predecessor of BB's only successor.
2881 PHINode
*PHI
= nullptr;
2882 BasicBlock
*Succ
= BB
->getSingleSuccessor();
2884 for (auto I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
)
2885 if (cast
<PHINode
>(I
)->getIncomingValueForBlock(BB
) == V
) {
2886 PHI
= cast
<PHINode
>(I
);
2890 assert(Succ
->hasNPredecessors(2));
2891 auto PredI
= pred_begin(Succ
);
2892 BasicBlock
*OtherPredBB
= *PredI
== BB
? *++PredI
: *PredI
;
2893 if (PHI
->getIncomingValueForBlock(OtherPredBB
) == AlternativeV
)
2900 // If V is not an instruction defined in BB, just return it.
2901 if (!AlternativeV
&&
2902 (!isa
<Instruction
>(V
) || cast
<Instruction
>(V
)->getParent() != BB
))
2905 PHI
= PHINode::Create(V
->getType(), 2, "simplifycfg.merge", &Succ
->front());
2906 PHI
->addIncoming(V
, BB
);
2907 for (BasicBlock
*PredBB
: predecessors(Succ
))
2910 AlternativeV
? AlternativeV
: UndefValue::get(V
->getType()), PredBB
);
2914 static bool mergeConditionalStoreToAddress(BasicBlock
*PTB
, BasicBlock
*PFB
,
2915 BasicBlock
*QTB
, BasicBlock
*QFB
,
2916 BasicBlock
*PostBB
, Value
*Address
,
2917 bool InvertPCond
, bool InvertQCond
,
2918 const DataLayout
&DL
) {
2919 auto IsaBitcastOfPointerType
= [](const Instruction
&I
) {
2920 return Operator::getOpcode(&I
) == Instruction::BitCast
&&
2921 I
.getType()->isPointerTy();
2924 // If we're not in aggressive mode, we only optimize if we have some
2925 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2926 auto IsWorthwhile
= [&](BasicBlock
*BB
) {
2929 // Heuristic: if the block can be if-converted/phi-folded and the
2930 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2931 // thread this store.
2933 for (auto &I
: BB
->instructionsWithoutDebug()) {
2934 // Cheap instructions viable for folding.
2935 if (isa
<BinaryOperator
>(I
) || isa
<GetElementPtrInst
>(I
) ||
2938 // Free instructions.
2939 else if (I
.isTerminator() || IsaBitcastOfPointerType(I
))
2944 // The store we want to merge is counted in N, so add 1 to make sure
2945 // we're counting the instructions that would be left.
2946 return N
<= (PHINodeFoldingThreshold
+ 1);
2949 if (!MergeCondStoresAggressively
&&
2950 (!IsWorthwhile(PTB
) || !IsWorthwhile(PFB
) || !IsWorthwhile(QTB
) ||
2951 !IsWorthwhile(QFB
)))
2954 // For every pointer, there must be exactly two stores, one coming from
2955 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2956 // store (to any address) in PTB,PFB or QTB,QFB.
2957 // FIXME: We could relax this restriction with a bit more work and performance
2959 StoreInst
*PStore
= findUniqueStoreInBlocks(PTB
, PFB
);
2960 StoreInst
*QStore
= findUniqueStoreInBlocks(QTB
, QFB
);
2961 if (!PStore
|| !QStore
)
2964 // Now check the stores are compatible.
2965 if (!QStore
->isUnordered() || !PStore
->isUnordered())
2968 // Check that sinking the store won't cause program behavior changes. Sinking
2969 // the store out of the Q blocks won't change any behavior as we're sinking
2970 // from a block to its unconditional successor. But we're moving a store from
2971 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2972 // So we need to check that there are no aliasing loads or stores in
2973 // QBI, QTB and QFB. We also need to check there are no conflicting memory
2974 // operations between PStore and the end of its parent block.
2976 // The ideal way to do this is to query AliasAnalysis, but we don't
2977 // preserve AA currently so that is dangerous. Be super safe and just
2978 // check there are no other memory operations at all.
2979 for (auto &I
: *QFB
->getSinglePredecessor())
2980 if (I
.mayReadOrWriteMemory())
2982 for (auto &I
: *QFB
)
2983 if (&I
!= QStore
&& I
.mayReadOrWriteMemory())
2986 for (auto &I
: *QTB
)
2987 if (&I
!= QStore
&& I
.mayReadOrWriteMemory())
2989 for (auto I
= BasicBlock::iterator(PStore
), E
= PStore
->getParent()->end();
2991 if (&*I
!= PStore
&& I
->mayReadOrWriteMemory())
2994 // If PostBB has more than two predecessors, we need to split it so we can
2996 if (std::next(pred_begin(PostBB
), 2) != pred_end(PostBB
)) {
2997 // We know that QFB's only successor is PostBB. And QFB has a single
2998 // predecessor. If QTB exists, then its only successor is also PostBB.
2999 // If QTB does not exist, then QFB's only predecessor has a conditional
3000 // branch to QFB and PostBB.
3001 BasicBlock
*TruePred
= QTB
? QTB
: QFB
->getSinglePredecessor();
3002 BasicBlock
*NewBB
= SplitBlockPredecessors(PostBB
, { QFB
, TruePred
},
3009 // OK, we're going to sink the stores to PostBB. The store has to be
3010 // conditional though, so first create the predicate.
3011 Value
*PCond
= cast
<BranchInst
>(PFB
->getSinglePredecessor()->getTerminator())
3013 Value
*QCond
= cast
<BranchInst
>(QFB
->getSinglePredecessor()->getTerminator())
3016 Value
*PPHI
= ensureValueAvailableInSuccessor(PStore
->getValueOperand(),
3017 PStore
->getParent());
3018 Value
*QPHI
= ensureValueAvailableInSuccessor(QStore
->getValueOperand(),
3019 QStore
->getParent(), PPHI
);
3021 IRBuilder
<> QB(&*PostBB
->getFirstInsertionPt());
3023 Value
*PPred
= PStore
->getParent() == PTB
? PCond
: QB
.CreateNot(PCond
);
3024 Value
*QPred
= QStore
->getParent() == QTB
? QCond
: QB
.CreateNot(QCond
);
3027 PPred
= QB
.CreateNot(PPred
);
3029 QPred
= QB
.CreateNot(QPred
);
3030 Value
*CombinedPred
= QB
.CreateOr(PPred
, QPred
);
3033 SplitBlockAndInsertIfThen(CombinedPred
, &*QB
.GetInsertPoint(), false);
3034 QB
.SetInsertPoint(T
);
3035 StoreInst
*SI
= cast
<StoreInst
>(QB
.CreateStore(QPHI
, Address
));
3037 PStore
->getAAMetadata(AAMD
, /*Merge=*/false);
3038 PStore
->getAAMetadata(AAMD
, /*Merge=*/true);
3039 SI
->setAAMetadata(AAMD
);
3040 unsigned PAlignment
= PStore
->getAlignment();
3041 unsigned QAlignment
= QStore
->getAlignment();
3042 unsigned TypeAlignment
=
3043 DL
.getABITypeAlignment(SI
->getValueOperand()->getType());
3044 unsigned MinAlignment
;
3045 unsigned MaxAlignment
;
3046 std::tie(MinAlignment
, MaxAlignment
) = std::minmax(PAlignment
, QAlignment
);
3047 // Choose the minimum alignment. If we could prove both stores execute, we
3048 // could use biggest one. In this case, though, we only know that one of the
3049 // stores executes. And we don't know it's safe to take the alignment from a
3050 // store that doesn't execute.
3051 if (MinAlignment
!= 0) {
3052 // Choose the minimum of all non-zero alignments.
3053 SI
->setAlignment(MinAlignment
);
3054 } else if (MaxAlignment
!= 0) {
3055 // Choose the minimal alignment between the non-zero alignment and the ABI
3056 // default alignment for the type of the stored value.
3057 SI
->setAlignment(std::min(MaxAlignment
, TypeAlignment
));
3059 // If both alignments are zero, use ABI default alignment for the type of
3060 // the stored value.
3061 SI
->setAlignment(TypeAlignment
);
3064 QStore
->eraseFromParent();
3065 PStore
->eraseFromParent();
3070 static bool mergeConditionalStores(BranchInst
*PBI
, BranchInst
*QBI
,
3071 const DataLayout
&DL
) {
3072 // The intention here is to find diamonds or triangles (see below) where each
3073 // conditional block contains a store to the same address. Both of these
3074 // stores are conditional, so they can't be unconditionally sunk. But it may
3075 // be profitable to speculatively sink the stores into one merged store at the
3076 // end, and predicate the merged store on the union of the two conditions of
3079 // This can reduce the number of stores executed if both of the conditions are
3080 // true, and can allow the blocks to become small enough to be if-converted.
3081 // This optimization will also chain, so that ladders of test-and-set
3082 // sequences can be if-converted away.
3084 // We only deal with simple diamonds or triangles:
3086 // PBI or PBI or a combination of the two
3096 // We model triangles as a type of diamond with a nullptr "true" block.
3097 // Triangles are canonicalized so that the fallthrough edge is represented by
3098 // a true condition, as in the diagram above.
3099 BasicBlock
*PTB
= PBI
->getSuccessor(0);
3100 BasicBlock
*PFB
= PBI
->getSuccessor(1);
3101 BasicBlock
*QTB
= QBI
->getSuccessor(0);
3102 BasicBlock
*QFB
= QBI
->getSuccessor(1);
3103 BasicBlock
*PostBB
= QFB
->getSingleSuccessor();
3105 // Make sure we have a good guess for PostBB. If QTB's only successor is
3106 // QFB, then QFB is a better PostBB.
3107 if (QTB
->getSingleSuccessor() == QFB
)
3110 // If we couldn't find a good PostBB, stop.
3114 bool InvertPCond
= false, InvertQCond
= false;
3115 // Canonicalize fallthroughs to the true branches.
3116 if (PFB
== QBI
->getParent()) {
3117 std::swap(PFB
, PTB
);
3120 if (QFB
== PostBB
) {
3121 std::swap(QFB
, QTB
);
3125 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3126 // and QFB may not. Model fallthroughs as a nullptr block.
3127 if (PTB
== QBI
->getParent())
3132 // Legality bailouts. We must have at least the non-fallthrough blocks and
3133 // the post-dominating block, and the non-fallthroughs must only have one
3135 auto HasOnePredAndOneSucc
= [](BasicBlock
*BB
, BasicBlock
*P
, BasicBlock
*S
) {
3136 return BB
->getSinglePredecessor() == P
&& BB
->getSingleSuccessor() == S
;
3138 if (!HasOnePredAndOneSucc(PFB
, PBI
->getParent(), QBI
->getParent()) ||
3139 !HasOnePredAndOneSucc(QFB
, QBI
->getParent(), PostBB
))
3141 if ((PTB
&& !HasOnePredAndOneSucc(PTB
, PBI
->getParent(), QBI
->getParent())) ||
3142 (QTB
&& !HasOnePredAndOneSucc(QTB
, QBI
->getParent(), PostBB
)))
3144 if (!QBI
->getParent()->hasNUses(2))
3147 // OK, this is a sequence of two diamonds or triangles.
3148 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3149 SmallPtrSet
<Value
*, 4> PStoreAddresses
, QStoreAddresses
;
3150 for (auto *BB
: {PTB
, PFB
}) {
3154 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
3155 PStoreAddresses
.insert(SI
->getPointerOperand());
3157 for (auto *BB
: {QTB
, QFB
}) {
3161 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
3162 QStoreAddresses
.insert(SI
->getPointerOperand());
3165 set_intersect(PStoreAddresses
, QStoreAddresses
);
3166 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3167 // clear what it contains.
3168 auto &CommonAddresses
= PStoreAddresses
;
3170 bool Changed
= false;
3171 for (auto *Address
: CommonAddresses
)
3172 Changed
|= mergeConditionalStoreToAddress(
3173 PTB
, PFB
, QTB
, QFB
, PostBB
, Address
, InvertPCond
, InvertQCond
, DL
);
3177 /// If we have a conditional branch as a predecessor of another block,
3178 /// this function tries to simplify it. We know
3179 /// that PBI and BI are both conditional branches, and BI is in one of the
3180 /// successor blocks of PBI - PBI branches to BI.
3181 static bool SimplifyCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
,
3182 const DataLayout
&DL
) {
3183 assert(PBI
->isConditional() && BI
->isConditional());
3184 BasicBlock
*BB
= BI
->getParent();
3186 // If this block ends with a branch instruction, and if there is a
3187 // predecessor that ends on a branch of the same condition, make
3188 // this conditional branch redundant.
3189 if (PBI
->getCondition() == BI
->getCondition() &&
3190 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
3191 // Okay, the outcome of this conditional branch is statically
3192 // knowable. If this block had a single pred, handle specially.
3193 if (BB
->getSinglePredecessor()) {
3194 // Turn this into a branch on constant.
3195 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
3197 ConstantInt::get(Type::getInt1Ty(BB
->getContext()), CondIsTrue
));
3198 return true; // Nuke the branch on constant.
3201 // Otherwise, if there are multiple predecessors, insert a PHI that merges
3202 // in the constant and simplify the block result. Subsequent passes of
3203 // simplifycfg will thread the block.
3204 if (BlockIsSimpleEnoughToThreadThrough(BB
)) {
3205 pred_iterator PB
= pred_begin(BB
), PE
= pred_end(BB
);
3206 PHINode
*NewPN
= PHINode::Create(
3207 Type::getInt1Ty(BB
->getContext()), std::distance(PB
, PE
),
3208 BI
->getCondition()->getName() + ".pr", &BB
->front());
3209 // Okay, we're going to insert the PHI node. Since PBI is not the only
3210 // predecessor, compute the PHI'd conditional value for all of the preds.
3211 // Any predecessor where the condition is not computable we keep symbolic.
3212 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
3213 BasicBlock
*P
= *PI
;
3214 if ((PBI
= dyn_cast
<BranchInst
>(P
->getTerminator())) && PBI
!= BI
&&
3215 PBI
->isConditional() && PBI
->getCondition() == BI
->getCondition() &&
3216 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
3217 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
3219 ConstantInt::get(Type::getInt1Ty(BB
->getContext()), CondIsTrue
),
3222 NewPN
->addIncoming(BI
->getCondition(), P
);
3226 BI
->setCondition(NewPN
);
3231 if (auto *CE
= dyn_cast
<ConstantExpr
>(BI
->getCondition()))
3235 // If both branches are conditional and both contain stores to the same
3236 // address, remove the stores from the conditionals and create a conditional
3237 // merged store at the end.
3238 if (MergeCondStores
&& mergeConditionalStores(PBI
, BI
, DL
))
3241 // If this is a conditional branch in an empty block, and if any
3242 // predecessors are a conditional branch to one of our destinations,
3243 // fold the conditions into logical ops and one cond br.
3245 // Ignore dbg intrinsics.
3246 if (&*BB
->instructionsWithoutDebug().begin() != BI
)
3250 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0)) {
3253 } else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1)) {
3256 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0)) {
3259 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1)) {
3266 // Check to make sure that the other destination of this branch
3267 // isn't BB itself. If so, this is an infinite loop that will
3268 // keep getting unwound.
3269 if (PBI
->getSuccessor(PBIOp
) == BB
)
3272 // Do not perform this transformation if it would require
3273 // insertion of a large number of select instructions. For targets
3274 // without predication/cmovs, this is a big pessimization.
3276 // Also do not perform this transformation if any phi node in the common
3277 // destination block can trap when reached by BB or PBB (PR17073). In that
3278 // case, it would be unsafe to hoist the operation into a select instruction.
3280 BasicBlock
*CommonDest
= PBI
->getSuccessor(PBIOp
);
3281 unsigned NumPhis
= 0;
3282 for (BasicBlock::iterator II
= CommonDest
->begin(); isa
<PHINode
>(II
);
3284 if (NumPhis
> 2) // Disable this xform.
3287 PHINode
*PN
= cast
<PHINode
>(II
);
3288 Value
*BIV
= PN
->getIncomingValueForBlock(BB
);
3289 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(BIV
))
3293 unsigned PBBIdx
= PN
->getBasicBlockIndex(PBI
->getParent());
3294 Value
*PBIV
= PN
->getIncomingValue(PBBIdx
);
3295 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(PBIV
))
3300 // Finally, if everything is ok, fold the branches to logical ops.
3301 BasicBlock
*OtherDest
= BI
->getSuccessor(BIOp
^ 1);
3303 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI
->getParent()
3304 << "AND: " << *BI
->getParent());
3306 // If OtherDest *is* BB, then BB is a basic block with a single conditional
3307 // branch in it, where one edge (OtherDest) goes back to itself but the other
3308 // exits. We don't *know* that the program avoids the infinite loop
3309 // (even though that seems likely). If we do this xform naively, we'll end up
3310 // recursively unpeeling the loop. Since we know that (after the xform is
3311 // done) that the block *is* infinite if reached, we just make it an obviously
3312 // infinite loop with no cond branch.
3313 if (OtherDest
== BB
) {
3314 // Insert it at the end of the function, because it's either code,
3315 // or it won't matter if it's hot. :)
3316 BasicBlock
*InfLoopBlock
=
3317 BasicBlock::Create(BB
->getContext(), "infloop", BB
->getParent());
3318 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
3319 OtherDest
= InfLoopBlock
;
3322 LLVM_DEBUG(dbgs() << *PBI
->getParent()->getParent());
3324 // BI may have other predecessors. Because of this, we leave
3325 // it alone, but modify PBI.
3327 // Make sure we get to CommonDest on True&True directions.
3328 Value
*PBICond
= PBI
->getCondition();
3329 IRBuilder
<NoFolder
> Builder(PBI
);
3331 PBICond
= Builder
.CreateNot(PBICond
, PBICond
->getName() + ".not");
3333 Value
*BICond
= BI
->getCondition();
3335 BICond
= Builder
.CreateNot(BICond
, BICond
->getName() + ".not");
3337 // Merge the conditions.
3338 Value
*Cond
= Builder
.CreateOr(PBICond
, BICond
, "brmerge");
3340 // Modify PBI to branch on the new condition to the new dests.
3341 PBI
->setCondition(Cond
);
3342 PBI
->setSuccessor(0, CommonDest
);
3343 PBI
->setSuccessor(1, OtherDest
);
3345 // Update branch weight for PBI.
3346 uint64_t PredTrueWeight
, PredFalseWeight
, SuccTrueWeight
, SuccFalseWeight
;
3347 uint64_t PredCommon
, PredOther
, SuccCommon
, SuccOther
;
3349 extractPredSuccWeights(PBI
, BI
, PredTrueWeight
, PredFalseWeight
,
3350 SuccTrueWeight
, SuccFalseWeight
);
3352 PredCommon
= PBIOp
? PredFalseWeight
: PredTrueWeight
;
3353 PredOther
= PBIOp
? PredTrueWeight
: PredFalseWeight
;
3354 SuccCommon
= BIOp
? SuccFalseWeight
: SuccTrueWeight
;
3355 SuccOther
= BIOp
? SuccTrueWeight
: SuccFalseWeight
;
3356 // The weight to CommonDest should be PredCommon * SuccTotal +
3357 // PredOther * SuccCommon.
3358 // The weight to OtherDest should be PredOther * SuccOther.
3359 uint64_t NewWeights
[2] = {PredCommon
* (SuccCommon
+ SuccOther
) +
3360 PredOther
* SuccCommon
,
3361 PredOther
* SuccOther
};
3362 // Halve the weights if any of them cannot fit in an uint32_t
3363 FitWeights(NewWeights
);
3365 setBranchWeights(PBI
, NewWeights
[0], NewWeights
[1]);
3368 // OtherDest may have phi nodes. If so, add an entry from PBI's
3369 // block that are identical to the entries for BI's block.
3370 AddPredecessorToBlock(OtherDest
, PBI
->getParent(), BB
);
3372 // We know that the CommonDest already had an edge from PBI to
3373 // it. If it has PHIs though, the PHIs may have different
3374 // entries for BB and PBI's BB. If so, insert a select to make
3376 for (PHINode
&PN
: CommonDest
->phis()) {
3377 Value
*BIV
= PN
.getIncomingValueForBlock(BB
);
3378 unsigned PBBIdx
= PN
.getBasicBlockIndex(PBI
->getParent());
3379 Value
*PBIV
= PN
.getIncomingValue(PBBIdx
);
3381 // Insert a select in PBI to pick the right value.
3382 SelectInst
*NV
= cast
<SelectInst
>(
3383 Builder
.CreateSelect(PBICond
, PBIV
, BIV
, PBIV
->getName() + ".mux"));
3384 PN
.setIncomingValue(PBBIdx
, NV
);
3385 // Although the select has the same condition as PBI, the original branch
3386 // weights for PBI do not apply to the new select because the select's
3387 // 'logical' edges are incoming edges of the phi that is eliminated, not
3388 // the outgoing edges of PBI.
3390 uint64_t PredCommon
= PBIOp
? PredFalseWeight
: PredTrueWeight
;
3391 uint64_t PredOther
= PBIOp
? PredTrueWeight
: PredFalseWeight
;
3392 uint64_t SuccCommon
= BIOp
? SuccFalseWeight
: SuccTrueWeight
;
3393 uint64_t SuccOther
= BIOp
? SuccTrueWeight
: SuccFalseWeight
;
3394 // The weight to PredCommonDest should be PredCommon * SuccTotal.
3395 // The weight to PredOtherDest should be PredOther * SuccCommon.
3396 uint64_t NewWeights
[2] = {PredCommon
* (SuccCommon
+ SuccOther
),
3397 PredOther
* SuccCommon
};
3399 FitWeights(NewWeights
);
3401 setBranchWeights(NV
, NewWeights
[0], NewWeights
[1]);
3406 LLVM_DEBUG(dbgs() << "INTO: " << *PBI
->getParent());
3407 LLVM_DEBUG(dbgs() << *PBI
->getParent()->getParent());
3409 // This basic block is probably dead. We know it has at least
3410 // one fewer predecessor.
3414 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3415 // true or to FalseBB if Cond is false.
3416 // Takes care of updating the successors and removing the old terminator.
3417 // Also makes sure not to introduce new successors by assuming that edges to
3418 // non-successor TrueBBs and FalseBBs aren't reachable.
3419 static bool SimplifyTerminatorOnSelect(Instruction
*OldTerm
, Value
*Cond
,
3420 BasicBlock
*TrueBB
, BasicBlock
*FalseBB
,
3421 uint32_t TrueWeight
,
3422 uint32_t FalseWeight
) {
3423 // Remove any superfluous successor edges from the CFG.
3424 // First, figure out which successors to preserve.
3425 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3427 BasicBlock
*KeepEdge1
= TrueBB
;
3428 BasicBlock
*KeepEdge2
= TrueBB
!= FalseBB
? FalseBB
: nullptr;
3430 // Then remove the rest.
3431 for (BasicBlock
*Succ
: successors(OldTerm
)) {
3432 // Make sure only to keep exactly one copy of each edge.
3433 if (Succ
== KeepEdge1
)
3434 KeepEdge1
= nullptr;
3435 else if (Succ
== KeepEdge2
)
3436 KeepEdge2
= nullptr;
3438 Succ
->removePredecessor(OldTerm
->getParent(),
3439 /*KeepOneInputPHIs=*/true);
3442 IRBuilder
<> Builder(OldTerm
);
3443 Builder
.SetCurrentDebugLocation(OldTerm
->getDebugLoc());
3445 // Insert an appropriate new terminator.
3446 if (!KeepEdge1
&& !KeepEdge2
) {
3447 if (TrueBB
== FalseBB
)
3448 // We were only looking for one successor, and it was present.
3449 // Create an unconditional branch to it.
3450 Builder
.CreateBr(TrueBB
);
3452 // We found both of the successors we were looking for.
3453 // Create a conditional branch sharing the condition of the select.
3454 BranchInst
*NewBI
= Builder
.CreateCondBr(Cond
, TrueBB
, FalseBB
);
3455 if (TrueWeight
!= FalseWeight
)
3456 setBranchWeights(NewBI
, TrueWeight
, FalseWeight
);
3458 } else if (KeepEdge1
&& (KeepEdge2
|| TrueBB
== FalseBB
)) {
3459 // Neither of the selected blocks were successors, so this
3460 // terminator must be unreachable.
3461 new UnreachableInst(OldTerm
->getContext(), OldTerm
);
3463 // One of the selected values was a successor, but the other wasn't.
3464 // Insert an unconditional branch to the one that was found;
3465 // the edge to the one that wasn't must be unreachable.
3467 // Only TrueBB was found.
3468 Builder
.CreateBr(TrueBB
);
3470 // Only FalseBB was found.
3471 Builder
.CreateBr(FalseBB
);
3474 EraseTerminatorAndDCECond(OldTerm
);
3479 // (switch (select cond, X, Y)) on constant X, Y
3480 // with a branch - conditional if X and Y lead to distinct BBs,
3481 // unconditional otherwise.
3482 static bool SimplifySwitchOnSelect(SwitchInst
*SI
, SelectInst
*Select
) {
3483 // Check for constant integer values in the select.
3484 ConstantInt
*TrueVal
= dyn_cast
<ConstantInt
>(Select
->getTrueValue());
3485 ConstantInt
*FalseVal
= dyn_cast
<ConstantInt
>(Select
->getFalseValue());
3486 if (!TrueVal
|| !FalseVal
)
3489 // Find the relevant condition and destinations.
3490 Value
*Condition
= Select
->getCondition();
3491 BasicBlock
*TrueBB
= SI
->findCaseValue(TrueVal
)->getCaseSuccessor();
3492 BasicBlock
*FalseBB
= SI
->findCaseValue(FalseVal
)->getCaseSuccessor();
3494 // Get weight for TrueBB and FalseBB.
3495 uint32_t TrueWeight
= 0, FalseWeight
= 0;
3496 SmallVector
<uint64_t, 8> Weights
;
3497 bool HasWeights
= HasBranchWeights(SI
);
3499 GetBranchWeights(SI
, Weights
);
3500 if (Weights
.size() == 1 + SI
->getNumCases()) {
3502 (uint32_t)Weights
[SI
->findCaseValue(TrueVal
)->getSuccessorIndex()];
3504 (uint32_t)Weights
[SI
->findCaseValue(FalseVal
)->getSuccessorIndex()];
3508 // Perform the actual simplification.
3509 return SimplifyTerminatorOnSelect(SI
, Condition
, TrueBB
, FalseBB
, TrueWeight
,
3514 // (indirectbr (select cond, blockaddress(@fn, BlockA),
3515 // blockaddress(@fn, BlockB)))
3517 // (br cond, BlockA, BlockB).
3518 static bool SimplifyIndirectBrOnSelect(IndirectBrInst
*IBI
, SelectInst
*SI
) {
3519 // Check that both operands of the select are block addresses.
3520 BlockAddress
*TBA
= dyn_cast
<BlockAddress
>(SI
->getTrueValue());
3521 BlockAddress
*FBA
= dyn_cast
<BlockAddress
>(SI
->getFalseValue());
3525 // Extract the actual blocks.
3526 BasicBlock
*TrueBB
= TBA
->getBasicBlock();
3527 BasicBlock
*FalseBB
= FBA
->getBasicBlock();
3529 // Perform the actual simplification.
3530 return SimplifyTerminatorOnSelect(IBI
, SI
->getCondition(), TrueBB
, FalseBB
, 0,
3534 /// This is called when we find an icmp instruction
3535 /// (a seteq/setne with a constant) as the only instruction in a
3536 /// block that ends with an uncond branch. We are looking for a very specific
3537 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
3538 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3539 /// default value goes to an uncond block with a seteq in it, we get something
3542 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
3544 /// %tmp = icmp eq i8 %A, 92
3547 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3549 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3550 /// the PHI, merging the third icmp into the switch.
3551 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3552 ICmpInst
*ICI
, IRBuilder
<> &Builder
) {
3553 BasicBlock
*BB
= ICI
->getParent();
3555 // If the block has any PHIs in it or the icmp has multiple uses, it is too
3557 if (isa
<PHINode
>(BB
->begin()) || !ICI
->hasOneUse())
3560 Value
*V
= ICI
->getOperand(0);
3561 ConstantInt
*Cst
= cast
<ConstantInt
>(ICI
->getOperand(1));
3563 // The pattern we're looking for is where our only predecessor is a switch on
3564 // 'V' and this block is the default case for the switch. In this case we can
3565 // fold the compared value into the switch to simplify things.
3566 BasicBlock
*Pred
= BB
->getSinglePredecessor();
3567 if (!Pred
|| !isa
<SwitchInst
>(Pred
->getTerminator()))
3570 SwitchInst
*SI
= cast
<SwitchInst
>(Pred
->getTerminator());
3571 if (SI
->getCondition() != V
)
3574 // If BB is reachable on a non-default case, then we simply know the value of
3575 // V in this block. Substitute it and constant fold the icmp instruction
3577 if (SI
->getDefaultDest() != BB
) {
3578 ConstantInt
*VVal
= SI
->findCaseDest(BB
);
3579 assert(VVal
&& "Should have a unique destination value");
3580 ICI
->setOperand(0, VVal
);
3582 if (Value
*V
= SimplifyInstruction(ICI
, {DL
, ICI
})) {
3583 ICI
->replaceAllUsesWith(V
);
3584 ICI
->eraseFromParent();
3586 // BB is now empty, so it is likely to simplify away.
3587 return requestResimplify();
3590 // Ok, the block is reachable from the default dest. If the constant we're
3591 // comparing exists in one of the other edges, then we can constant fold ICI
3593 if (SI
->findCaseValue(Cst
) != SI
->case_default()) {
3595 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
3596 V
= ConstantInt::getFalse(BB
->getContext());
3598 V
= ConstantInt::getTrue(BB
->getContext());
3600 ICI
->replaceAllUsesWith(V
);
3601 ICI
->eraseFromParent();
3602 // BB is now empty, so it is likely to simplify away.
3603 return requestResimplify();
3606 // The use of the icmp has to be in the 'end' block, by the only PHI node in
3608 BasicBlock
*SuccBlock
= BB
->getTerminator()->getSuccessor(0);
3609 PHINode
*PHIUse
= dyn_cast
<PHINode
>(ICI
->user_back());
3610 if (PHIUse
== nullptr || PHIUse
!= &SuccBlock
->front() ||
3611 isa
<PHINode
>(++BasicBlock::iterator(PHIUse
)))
3614 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3616 Constant
*DefaultCst
= ConstantInt::getTrue(BB
->getContext());
3617 Constant
*NewCst
= ConstantInt::getFalse(BB
->getContext());
3619 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
3620 std::swap(DefaultCst
, NewCst
);
3622 // Replace ICI (which is used by the PHI for the default value) with true or
3623 // false depending on if it is EQ or NE.
3624 ICI
->replaceAllUsesWith(DefaultCst
);
3625 ICI
->eraseFromParent();
3627 // Okay, the switch goes to this block on a default value. Add an edge from
3628 // the switch to the merge point on the compared value.
3630 BasicBlock::Create(BB
->getContext(), "switch.edge", BB
->getParent(), BB
);
3631 SmallVector
<uint64_t, 8> Weights
;
3632 bool HasWeights
= HasBranchWeights(SI
);
3634 GetBranchWeights(SI
, Weights
);
3635 if (Weights
.size() == 1 + SI
->getNumCases()) {
3636 // Split weight for default case to case for "Cst".
3637 Weights
[0] = (Weights
[0] + 1) >> 1;
3638 Weights
.push_back(Weights
[0]);
3640 SmallVector
<uint32_t, 8> MDWeights(Weights
.begin(), Weights
.end());
3641 setBranchWeights(SI
, MDWeights
);
3644 SI
->addCase(Cst
, NewBB
);
3646 // NewBB branches to the phi block, add the uncond branch and the phi entry.
3647 Builder
.SetInsertPoint(NewBB
);
3648 Builder
.SetCurrentDebugLocation(SI
->getDebugLoc());
3649 Builder
.CreateBr(SuccBlock
);
3650 PHIUse
->addIncoming(NewCst
, NewBB
);
3654 /// The specified branch is a conditional branch.
3655 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3656 /// fold it into a switch instruction if so.
3657 static bool SimplifyBranchOnICmpChain(BranchInst
*BI
, IRBuilder
<> &Builder
,
3658 const DataLayout
&DL
) {
3659 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
3663 // Change br (X == 0 | X == 1), T, F into a switch instruction.
3664 // If this is a bunch of seteq's or'd together, or if it's a bunch of
3665 // 'setne's and'ed together, collect them.
3667 // Try to gather values from a chain of and/or to be turned into a switch
3668 ConstantComparesGatherer
ConstantCompare(Cond
, DL
);
3669 // Unpack the result
3670 SmallVectorImpl
<ConstantInt
*> &Values
= ConstantCompare
.Vals
;
3671 Value
*CompVal
= ConstantCompare
.CompValue
;
3672 unsigned UsedICmps
= ConstantCompare
.UsedICmps
;
3673 Value
*ExtraCase
= ConstantCompare
.Extra
;
3675 // If we didn't have a multiply compared value, fail.
3679 // Avoid turning single icmps into a switch.
3683 bool TrueWhenEqual
= (Cond
->getOpcode() == Instruction::Or
);
3685 // There might be duplicate constants in the list, which the switch
3686 // instruction can't handle, remove them now.
3687 array_pod_sort(Values
.begin(), Values
.end(), ConstantIntSortPredicate
);
3688 Values
.erase(std::unique(Values
.begin(), Values
.end()), Values
.end());
3690 // If Extra was used, we require at least two switch values to do the
3691 // transformation. A switch with one value is just a conditional branch.
3692 if (ExtraCase
&& Values
.size() < 2)
3695 // TODO: Preserve branch weight metadata, similarly to how
3696 // FoldValueComparisonIntoPredecessors preserves it.
3698 // Figure out which block is which destination.
3699 BasicBlock
*DefaultBB
= BI
->getSuccessor(1);
3700 BasicBlock
*EdgeBB
= BI
->getSuccessor(0);
3702 std::swap(DefaultBB
, EdgeBB
);
3704 BasicBlock
*BB
= BI
->getParent();
3706 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values
.size()
3707 << " cases into SWITCH. BB is:\n"
3710 // If there are any extra values that couldn't be folded into the switch
3711 // then we evaluate them with an explicit branch first. Split the block
3712 // right before the condbr to handle it.
3715 BB
->splitBasicBlock(BI
->getIterator(), "switch.early.test");
3716 // Remove the uncond branch added to the old block.
3717 Instruction
*OldTI
= BB
->getTerminator();
3718 Builder
.SetInsertPoint(OldTI
);
3721 Builder
.CreateCondBr(ExtraCase
, EdgeBB
, NewBB
);
3723 Builder
.CreateCondBr(ExtraCase
, NewBB
, EdgeBB
);
3725 OldTI
->eraseFromParent();
3727 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3728 // for the edge we just added.
3729 AddPredecessorToBlock(EdgeBB
, BB
, NewBB
);
3731 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
3732 << "\nEXTRABB = " << *BB
);
3736 Builder
.SetInsertPoint(BI
);
3737 // Convert pointer to int before we switch.
3738 if (CompVal
->getType()->isPointerTy()) {
3739 CompVal
= Builder
.CreatePtrToInt(
3740 CompVal
, DL
.getIntPtrType(CompVal
->getType()), "magicptr");
3743 // Create the new switch instruction now.
3744 SwitchInst
*New
= Builder
.CreateSwitch(CompVal
, DefaultBB
, Values
.size());
3746 // Add all of the 'cases' to the switch instruction.
3747 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
)
3748 New
->addCase(Values
[i
], EdgeBB
);
3750 // We added edges from PI to the EdgeBB. As such, if there were any
3751 // PHI nodes in EdgeBB, they need entries to be added corresponding to
3752 // the number of edges added.
3753 for (BasicBlock::iterator BBI
= EdgeBB
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
3754 PHINode
*PN
= cast
<PHINode
>(BBI
);
3755 Value
*InVal
= PN
->getIncomingValueForBlock(BB
);
3756 for (unsigned i
= 0, e
= Values
.size() - 1; i
!= e
; ++i
)
3757 PN
->addIncoming(InVal
, BB
);
3760 // Erase the old branch instruction.
3761 EraseTerminatorAndDCECond(BI
);
3763 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB
<< '\n');
3767 bool SimplifyCFGOpt::SimplifyResume(ResumeInst
*RI
, IRBuilder
<> &Builder
) {
3768 if (isa
<PHINode
>(RI
->getValue()))
3769 return SimplifyCommonResume(RI
);
3770 else if (isa
<LandingPadInst
>(RI
->getParent()->getFirstNonPHI()) &&
3771 RI
->getValue() == RI
->getParent()->getFirstNonPHI())
3772 // The resume must unwind the exception that caused control to branch here.
3773 return SimplifySingleResume(RI
);
3778 // Simplify resume that is shared by several landing pads (phi of landing pad).
3779 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst
*RI
) {
3780 BasicBlock
*BB
= RI
->getParent();
3782 // Check that there are no other instructions except for debug intrinsics
3783 // between the phi of landing pads (RI->getValue()) and resume instruction.
3784 BasicBlock::iterator I
= cast
<Instruction
>(RI
->getValue())->getIterator(),
3785 E
= RI
->getIterator();
3787 if (!isa
<DbgInfoIntrinsic
>(I
))
3790 SmallSetVector
<BasicBlock
*, 4> TrivialUnwindBlocks
;
3791 auto *PhiLPInst
= cast
<PHINode
>(RI
->getValue());
3793 // Check incoming blocks to see if any of them are trivial.
3794 for (unsigned Idx
= 0, End
= PhiLPInst
->getNumIncomingValues(); Idx
!= End
;
3796 auto *IncomingBB
= PhiLPInst
->getIncomingBlock(Idx
);
3797 auto *IncomingValue
= PhiLPInst
->getIncomingValue(Idx
);
3799 // If the block has other successors, we can not delete it because
3800 // it has other dependents.
3801 if (IncomingBB
->getUniqueSuccessor() != BB
)
3804 auto *LandingPad
= dyn_cast
<LandingPadInst
>(IncomingBB
->getFirstNonPHI());
3805 // Not the landing pad that caused the control to branch here.
3806 if (IncomingValue
!= LandingPad
)
3809 bool isTrivial
= true;
3811 I
= IncomingBB
->getFirstNonPHI()->getIterator();
3812 E
= IncomingBB
->getTerminator()->getIterator();
3814 if (!isa
<DbgInfoIntrinsic
>(I
)) {
3820 TrivialUnwindBlocks
.insert(IncomingBB
);
3823 // If no trivial unwind blocks, don't do any simplifications.
3824 if (TrivialUnwindBlocks
.empty())
3827 // Turn all invokes that unwind here into calls.
3828 for (auto *TrivialBB
: TrivialUnwindBlocks
) {
3829 // Blocks that will be simplified should be removed from the phi node.
3830 // Note there could be multiple edges to the resume block, and we need
3831 // to remove them all.
3832 while (PhiLPInst
->getBasicBlockIndex(TrivialBB
) != -1)
3833 BB
->removePredecessor(TrivialBB
, true);
3835 for (pred_iterator PI
= pred_begin(TrivialBB
), PE
= pred_end(TrivialBB
);
3837 BasicBlock
*Pred
= *PI
++;
3838 removeUnwindEdge(Pred
);
3841 // In each SimplifyCFG run, only the current processed block can be erased.
3842 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3843 // of erasing TrivialBB, we only remove the branch to the common resume
3844 // block so that we can later erase the resume block since it has no
3846 TrivialBB
->getTerminator()->eraseFromParent();
3847 new UnreachableInst(RI
->getContext(), TrivialBB
);
3850 // Delete the resume block if all its predecessors have been removed.
3852 BB
->eraseFromParent();
3854 return !TrivialUnwindBlocks
.empty();
3857 // Simplify resume that is only used by a single (non-phi) landing pad.
3858 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst
*RI
) {
3859 BasicBlock
*BB
= RI
->getParent();
3860 LandingPadInst
*LPInst
= dyn_cast
<LandingPadInst
>(BB
->getFirstNonPHI());
3861 assert(RI
->getValue() == LPInst
&&
3862 "Resume must unwind the exception that caused control to here");
3864 // Check that there are no other instructions except for debug intrinsics.
3865 BasicBlock::iterator I
= LPInst
->getIterator(), E
= RI
->getIterator();
3867 if (!isa
<DbgInfoIntrinsic
>(I
))
3870 // Turn all invokes that unwind here into calls and delete the basic block.
3871 for (pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
); PI
!= PE
;) {
3872 BasicBlock
*Pred
= *PI
++;
3873 removeUnwindEdge(Pred
);
3876 // The landingpad is now unreachable. Zap it.
3878 LoopHeaders
->erase(BB
);
3879 BB
->eraseFromParent();
3883 static bool removeEmptyCleanup(CleanupReturnInst
*RI
) {
3884 // If this is a trivial cleanup pad that executes no instructions, it can be
3885 // eliminated. If the cleanup pad continues to the caller, any predecessor
3886 // that is an EH pad will be updated to continue to the caller and any
3887 // predecessor that terminates with an invoke instruction will have its invoke
3888 // instruction converted to a call instruction. If the cleanup pad being
3889 // simplified does not continue to the caller, each predecessor will be
3890 // updated to continue to the unwind destination of the cleanup pad being
3892 BasicBlock
*BB
= RI
->getParent();
3893 CleanupPadInst
*CPInst
= RI
->getCleanupPad();
3894 if (CPInst
->getParent() != BB
)
3895 // This isn't an empty cleanup.
3898 // We cannot kill the pad if it has multiple uses. This typically arises
3899 // from unreachable basic blocks.
3900 if (!CPInst
->hasOneUse())
3903 // Check that there are no other instructions except for benign intrinsics.
3904 BasicBlock::iterator I
= CPInst
->getIterator(), E
= RI
->getIterator();
3906 auto *II
= dyn_cast
<IntrinsicInst
>(I
);
3910 Intrinsic::ID IntrinsicID
= II
->getIntrinsicID();
3911 switch (IntrinsicID
) {
3912 case Intrinsic::dbg_declare
:
3913 case Intrinsic::dbg_value
:
3914 case Intrinsic::dbg_label
:
3915 case Intrinsic::lifetime_end
:
3922 // If the cleanup return we are simplifying unwinds to the caller, this will
3923 // set UnwindDest to nullptr.
3924 BasicBlock
*UnwindDest
= RI
->getUnwindDest();
3925 Instruction
*DestEHPad
= UnwindDest
? UnwindDest
->getFirstNonPHI() : nullptr;
3927 // We're about to remove BB from the control flow. Before we do, sink any
3928 // PHINodes into the unwind destination. Doing this before changing the
3929 // control flow avoids some potentially slow checks, since we can currently
3930 // be certain that UnwindDest and BB have no common predecessors (since they
3931 // are both EH pads).
3933 // First, go through the PHI nodes in UnwindDest and update any nodes that
3934 // reference the block we are removing
3935 for (BasicBlock::iterator I
= UnwindDest
->begin(),
3936 IE
= DestEHPad
->getIterator();
3938 PHINode
*DestPN
= cast
<PHINode
>(I
);
3940 int Idx
= DestPN
->getBasicBlockIndex(BB
);
3941 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3943 // This PHI node has an incoming value that corresponds to a control
3944 // path through the cleanup pad we are removing. If the incoming
3945 // value is in the cleanup pad, it must be a PHINode (because we
3946 // verified above that the block is otherwise empty). Otherwise, the
3947 // value is either a constant or a value that dominates the cleanup
3948 // pad being removed.
3950 // Because BB and UnwindDest are both EH pads, all of their
3951 // predecessors must unwind to these blocks, and since no instruction
3952 // can have multiple unwind destinations, there will be no overlap in
3953 // incoming blocks between SrcPN and DestPN.
3954 Value
*SrcVal
= DestPN
->getIncomingValue(Idx
);
3955 PHINode
*SrcPN
= dyn_cast
<PHINode
>(SrcVal
);
3957 // Remove the entry for the block we are deleting.
3958 DestPN
->removeIncomingValue(Idx
, false);
3960 if (SrcPN
&& SrcPN
->getParent() == BB
) {
3961 // If the incoming value was a PHI node in the cleanup pad we are
3962 // removing, we need to merge that PHI node's incoming values into
3964 for (unsigned SrcIdx
= 0, SrcE
= SrcPN
->getNumIncomingValues();
3965 SrcIdx
!= SrcE
; ++SrcIdx
) {
3966 DestPN
->addIncoming(SrcPN
->getIncomingValue(SrcIdx
),
3967 SrcPN
->getIncomingBlock(SrcIdx
));
3970 // Otherwise, the incoming value came from above BB and
3971 // so we can just reuse it. We must associate all of BB's
3972 // predecessors with this value.
3973 for (auto *pred
: predecessors(BB
)) {
3974 DestPN
->addIncoming(SrcVal
, pred
);
3979 // Sink any remaining PHI nodes directly into UnwindDest.
3980 Instruction
*InsertPt
= DestEHPad
;
3981 for (BasicBlock::iterator I
= BB
->begin(),
3982 IE
= BB
->getFirstNonPHI()->getIterator();
3984 // The iterator must be incremented here because the instructions are
3985 // being moved to another block.
3986 PHINode
*PN
= cast
<PHINode
>(I
++);
3987 if (PN
->use_empty())
3988 // If the PHI node has no uses, just leave it. It will be erased
3989 // when we erase BB below.
3992 // Otherwise, sink this PHI node into UnwindDest.
3993 // Any predecessors to UnwindDest which are not already represented
3994 // must be back edges which inherit the value from the path through
3995 // BB. In this case, the PHI value must reference itself.
3996 for (auto *pred
: predecessors(UnwindDest
))
3998 PN
->addIncoming(PN
, pred
);
3999 PN
->moveBefore(InsertPt
);
4003 for (pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
); PI
!= PE
;) {
4004 // The iterator must be updated here because we are removing this pred.
4005 BasicBlock
*PredBB
= *PI
++;
4006 if (UnwindDest
== nullptr) {
4007 removeUnwindEdge(PredBB
);
4009 Instruction
*TI
= PredBB
->getTerminator();
4010 TI
->replaceUsesOfWith(BB
, UnwindDest
);
4014 // The cleanup pad is now unreachable. Zap it.
4015 BB
->eraseFromParent();
4019 // Try to merge two cleanuppads together.
4020 static bool mergeCleanupPad(CleanupReturnInst
*RI
) {
4021 // Skip any cleanuprets which unwind to caller, there is nothing to merge
4023 BasicBlock
*UnwindDest
= RI
->getUnwindDest();
4027 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4028 // be safe to merge without code duplication.
4029 if (UnwindDest
->getSinglePredecessor() != RI
->getParent())
4032 // Verify that our cleanuppad's unwind destination is another cleanuppad.
4033 auto *SuccessorCleanupPad
= dyn_cast
<CleanupPadInst
>(&UnwindDest
->front());
4034 if (!SuccessorCleanupPad
)
4037 CleanupPadInst
*PredecessorCleanupPad
= RI
->getCleanupPad();
4038 // Replace any uses of the successor cleanupad with the predecessor pad
4039 // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4040 // funclet bundle operands.
4041 SuccessorCleanupPad
->replaceAllUsesWith(PredecessorCleanupPad
);
4042 // Remove the old cleanuppad.
4043 SuccessorCleanupPad
->eraseFromParent();
4044 // Now, we simply replace the cleanupret with a branch to the unwind
4046 BranchInst::Create(UnwindDest
, RI
->getParent());
4047 RI
->eraseFromParent();
4052 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst
*RI
) {
4053 // It is possible to transiantly have an undef cleanuppad operand because we
4054 // have deleted some, but not all, dead blocks.
4055 // Eventually, this block will be deleted.
4056 if (isa
<UndefValue
>(RI
->getOperand(0)))
4059 if (mergeCleanupPad(RI
))
4062 if (removeEmptyCleanup(RI
))
4068 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst
*RI
, IRBuilder
<> &Builder
) {
4069 BasicBlock
*BB
= RI
->getParent();
4070 if (!BB
->getFirstNonPHIOrDbg()->isTerminator())
4073 // Find predecessors that end with branches.
4074 SmallVector
<BasicBlock
*, 8> UncondBranchPreds
;
4075 SmallVector
<BranchInst
*, 8> CondBranchPreds
;
4076 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
4077 BasicBlock
*P
= *PI
;
4078 Instruction
*PTI
= P
->getTerminator();
4079 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
)) {
4080 if (BI
->isUnconditional())
4081 UncondBranchPreds
.push_back(P
);
4083 CondBranchPreds
.push_back(BI
);
4087 // If we found some, do the transformation!
4088 if (!UncondBranchPreds
.empty() && DupRet
) {
4089 while (!UncondBranchPreds
.empty()) {
4090 BasicBlock
*Pred
= UncondBranchPreds
.pop_back_val();
4091 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4092 << "INTO UNCOND BRANCH PRED: " << *Pred
);
4093 (void)FoldReturnIntoUncondBranch(RI
, BB
, Pred
);
4096 // If we eliminated all predecessors of the block, delete the block now.
4097 if (pred_empty(BB
)) {
4098 // We know there are no successors, so just nuke the block.
4100 LoopHeaders
->erase(BB
);
4101 BB
->eraseFromParent();
4107 // Check out all of the conditional branches going to this return
4108 // instruction. If any of them just select between returns, change the
4109 // branch itself into a select/return pair.
4110 while (!CondBranchPreds
.empty()) {
4111 BranchInst
*BI
= CondBranchPreds
.pop_back_val();
4113 // Check to see if the non-BB successor is also a return block.
4114 if (isa
<ReturnInst
>(BI
->getSuccessor(0)->getTerminator()) &&
4115 isa
<ReturnInst
>(BI
->getSuccessor(1)->getTerminator()) &&
4116 SimplifyCondBranchToTwoReturns(BI
, Builder
))
4122 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst
*UI
) {
4123 BasicBlock
*BB
= UI
->getParent();
4125 bool Changed
= false;
4127 // If there are any instructions immediately before the unreachable that can
4128 // be removed, do so.
4129 while (UI
->getIterator() != BB
->begin()) {
4130 BasicBlock::iterator BBI
= UI
->getIterator();
4132 // Do not delete instructions that can have side effects which might cause
4133 // the unreachable to not be reachable; specifically, calls and volatile
4134 // operations may have this effect.
4135 if (isa
<CallInst
>(BBI
) && !isa
<DbgInfoIntrinsic
>(BBI
))
4138 if (BBI
->mayHaveSideEffects()) {
4139 if (auto *SI
= dyn_cast
<StoreInst
>(BBI
)) {
4140 if (SI
->isVolatile())
4142 } else if (auto *LI
= dyn_cast
<LoadInst
>(BBI
)) {
4143 if (LI
->isVolatile())
4145 } else if (auto *RMWI
= dyn_cast
<AtomicRMWInst
>(BBI
)) {
4146 if (RMWI
->isVolatile())
4148 } else if (auto *CXI
= dyn_cast
<AtomicCmpXchgInst
>(BBI
)) {
4149 if (CXI
->isVolatile())
4151 } else if (isa
<CatchPadInst
>(BBI
)) {
4152 // A catchpad may invoke exception object constructors and such, which
4153 // in some languages can be arbitrary code, so be conservative by
4155 // For CoreCLR, it just involves a type test, so can be removed.
4156 if (classifyEHPersonality(BB
->getParent()->getPersonalityFn()) !=
4157 EHPersonality::CoreCLR
)
4159 } else if (!isa
<FenceInst
>(BBI
) && !isa
<VAArgInst
>(BBI
) &&
4160 !isa
<LandingPadInst
>(BBI
)) {
4163 // Note that deleting LandingPad's here is in fact okay, although it
4164 // involves a bit of subtle reasoning. If this inst is a LandingPad,
4165 // all the predecessors of this block will be the unwind edges of Invokes,
4166 // and we can therefore guarantee this block will be erased.
4169 // Delete this instruction (any uses are guaranteed to be dead)
4170 if (!BBI
->use_empty())
4171 BBI
->replaceAllUsesWith(UndefValue::get(BBI
->getType()));
4172 BBI
->eraseFromParent();
4176 // If the unreachable instruction is the first in the block, take a gander
4177 // at all of the predecessors of this instruction, and simplify them.
4178 if (&BB
->front() != UI
)
4181 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
4182 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
) {
4183 Instruction
*TI
= Preds
[i
]->getTerminator();
4184 IRBuilder
<> Builder(TI
);
4185 if (auto *BI
= dyn_cast
<BranchInst
>(TI
)) {
4186 if (BI
->isUnconditional()) {
4187 if (BI
->getSuccessor(0) == BB
) {
4188 new UnreachableInst(TI
->getContext(), TI
);
4189 TI
->eraseFromParent();
4193 if (BI
->getSuccessor(0) == BB
) {
4194 Builder
.CreateBr(BI
->getSuccessor(1));
4195 EraseTerminatorAndDCECond(BI
);
4196 } else if (BI
->getSuccessor(1) == BB
) {
4197 Builder
.CreateBr(BI
->getSuccessor(0));
4198 EraseTerminatorAndDCECond(BI
);
4202 } else if (auto *SI
= dyn_cast
<SwitchInst
>(TI
)) {
4203 for (auto i
= SI
->case_begin(), e
= SI
->case_end(); i
!= e
;) {
4204 if (i
->getCaseSuccessor() != BB
) {
4208 BB
->removePredecessor(SI
->getParent());
4209 i
= SI
->removeCase(i
);
4213 } else if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
4214 if (II
->getUnwindDest() == BB
) {
4215 removeUnwindEdge(TI
->getParent());
4218 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(TI
)) {
4219 if (CSI
->getUnwindDest() == BB
) {
4220 removeUnwindEdge(TI
->getParent());
4225 for (CatchSwitchInst::handler_iterator I
= CSI
->handler_begin(),
4226 E
= CSI
->handler_end();
4229 CSI
->removeHandler(I
);
4235 if (CSI
->getNumHandlers() == 0) {
4236 BasicBlock
*CatchSwitchBB
= CSI
->getParent();
4237 if (CSI
->hasUnwindDest()) {
4238 // Redirect preds to the unwind dest
4239 CatchSwitchBB
->replaceAllUsesWith(CSI
->getUnwindDest());
4241 // Rewrite all preds to unwind to caller (or from invoke to call).
4242 SmallVector
<BasicBlock
*, 8> EHPreds(predecessors(CatchSwitchBB
));
4243 for (BasicBlock
*EHPred
: EHPreds
)
4244 removeUnwindEdge(EHPred
);
4246 // The catchswitch is no longer reachable.
4247 new UnreachableInst(CSI
->getContext(), CSI
);
4248 CSI
->eraseFromParent();
4251 } else if (isa
<CleanupReturnInst
>(TI
)) {
4252 new UnreachableInst(TI
->getContext(), TI
);
4253 TI
->eraseFromParent();
4258 // If this block is now dead, remove it.
4259 if (pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()) {
4260 // We know there are no successors, so just nuke the block.
4262 LoopHeaders
->erase(BB
);
4263 BB
->eraseFromParent();
4270 static bool CasesAreContiguous(SmallVectorImpl
<ConstantInt
*> &Cases
) {
4271 assert(Cases
.size() >= 1);
4273 array_pod_sort(Cases
.begin(), Cases
.end(), ConstantIntSortPredicate
);
4274 for (size_t I
= 1, E
= Cases
.size(); I
!= E
; ++I
) {
4275 if (Cases
[I
- 1]->getValue() != Cases
[I
]->getValue() + 1)
4281 /// Turn a switch with two reachable destinations into an integer range
4282 /// comparison and branch.
4283 static bool TurnSwitchRangeIntoICmp(SwitchInst
*SI
, IRBuilder
<> &Builder
) {
4284 assert(SI
->getNumCases() > 1 && "Degenerate switch?");
4287 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
4289 // Partition the cases into two sets with different destinations.
4290 BasicBlock
*DestA
= HasDefault
? SI
->getDefaultDest() : nullptr;
4291 BasicBlock
*DestB
= nullptr;
4292 SmallVector
<ConstantInt
*, 16> CasesA
;
4293 SmallVector
<ConstantInt
*, 16> CasesB
;
4295 for (auto Case
: SI
->cases()) {
4296 BasicBlock
*Dest
= Case
.getCaseSuccessor();
4299 if (Dest
== DestA
) {
4300 CasesA
.push_back(Case
.getCaseValue());
4305 if (Dest
== DestB
) {
4306 CasesB
.push_back(Case
.getCaseValue());
4309 return false; // More than two destinations.
4312 assert(DestA
&& DestB
&&
4313 "Single-destination switch should have been folded.");
4314 assert(DestA
!= DestB
);
4315 assert(DestB
!= SI
->getDefaultDest());
4316 assert(!CasesB
.empty() && "There must be non-default cases.");
4317 assert(!CasesA
.empty() || HasDefault
);
4319 // Figure out if one of the sets of cases form a contiguous range.
4320 SmallVectorImpl
<ConstantInt
*> *ContiguousCases
= nullptr;
4321 BasicBlock
*ContiguousDest
= nullptr;
4322 BasicBlock
*OtherDest
= nullptr;
4323 if (!CasesA
.empty() && CasesAreContiguous(CasesA
)) {
4324 ContiguousCases
= &CasesA
;
4325 ContiguousDest
= DestA
;
4327 } else if (CasesAreContiguous(CasesB
)) {
4328 ContiguousCases
= &CasesB
;
4329 ContiguousDest
= DestB
;
4334 // Start building the compare and branch.
4336 Constant
*Offset
= ConstantExpr::getNeg(ContiguousCases
->back());
4337 Constant
*NumCases
=
4338 ConstantInt::get(Offset
->getType(), ContiguousCases
->size());
4340 Value
*Sub
= SI
->getCondition();
4341 if (!Offset
->isNullValue())
4342 Sub
= Builder
.CreateAdd(Sub
, Offset
, Sub
->getName() + ".off");
4345 // If NumCases overflowed, then all possible values jump to the successor.
4346 if (NumCases
->isNullValue() && !ContiguousCases
->empty())
4347 Cmp
= ConstantInt::getTrue(SI
->getContext());
4349 Cmp
= Builder
.CreateICmpULT(Sub
, NumCases
, "switch");
4350 BranchInst
*NewBI
= Builder
.CreateCondBr(Cmp
, ContiguousDest
, OtherDest
);
4352 // Update weight for the newly-created conditional branch.
4353 if (HasBranchWeights(SI
)) {
4354 SmallVector
<uint64_t, 8> Weights
;
4355 GetBranchWeights(SI
, Weights
);
4356 if (Weights
.size() == 1 + SI
->getNumCases()) {
4357 uint64_t TrueWeight
= 0;
4358 uint64_t FalseWeight
= 0;
4359 for (size_t I
= 0, E
= Weights
.size(); I
!= E
; ++I
) {
4360 if (SI
->getSuccessor(I
) == ContiguousDest
)
4361 TrueWeight
+= Weights
[I
];
4363 FalseWeight
+= Weights
[I
];
4365 while (TrueWeight
> UINT32_MAX
|| FalseWeight
> UINT32_MAX
) {
4369 setBranchWeights(NewBI
, TrueWeight
, FalseWeight
);
4373 // Prune obsolete incoming values off the successors' PHI nodes.
4374 for (auto BBI
= ContiguousDest
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
4375 unsigned PreviousEdges
= ContiguousCases
->size();
4376 if (ContiguousDest
== SI
->getDefaultDest())
4378 for (unsigned I
= 0, E
= PreviousEdges
- 1; I
!= E
; ++I
)
4379 cast
<PHINode
>(BBI
)->removeIncomingValue(SI
->getParent());
4381 for (auto BBI
= OtherDest
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
4382 unsigned PreviousEdges
= SI
->getNumCases() - ContiguousCases
->size();
4383 if (OtherDest
== SI
->getDefaultDest())
4385 for (unsigned I
= 0, E
= PreviousEdges
- 1; I
!= E
; ++I
)
4386 cast
<PHINode
>(BBI
)->removeIncomingValue(SI
->getParent());
4390 SI
->eraseFromParent();
4395 /// Compute masked bits for the condition of a switch
4396 /// and use it to remove dead cases.
4397 static bool eliminateDeadSwitchCases(SwitchInst
*SI
, AssumptionCache
*AC
,
4398 const DataLayout
&DL
) {
4399 Value
*Cond
= SI
->getCondition();
4400 unsigned Bits
= Cond
->getType()->getIntegerBitWidth();
4401 KnownBits Known
= computeKnownBits(Cond
, DL
, 0, AC
, SI
);
4403 // We can also eliminate cases by determining that their values are outside of
4404 // the limited range of the condition based on how many significant (non-sign)
4405 // bits are in the condition value.
4406 unsigned ExtraSignBits
= ComputeNumSignBits(Cond
, DL
, 0, AC
, SI
) - 1;
4407 unsigned MaxSignificantBitsInCond
= Bits
- ExtraSignBits
;
4409 // Gather dead cases.
4410 SmallVector
<ConstantInt
*, 8> DeadCases
;
4411 for (auto &Case
: SI
->cases()) {
4412 const APInt
&CaseVal
= Case
.getCaseValue()->getValue();
4413 if (Known
.Zero
.intersects(CaseVal
) || !Known
.One
.isSubsetOf(CaseVal
) ||
4414 (CaseVal
.getMinSignedBits() > MaxSignificantBitsInCond
)) {
4415 DeadCases
.push_back(Case
.getCaseValue());
4416 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4421 // If we can prove that the cases must cover all possible values, the
4422 // default destination becomes dead and we can remove it. If we know some
4423 // of the bits in the value, we can use that to more precisely compute the
4424 // number of possible unique case values.
4426 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
4427 const unsigned NumUnknownBits
=
4428 Bits
- (Known
.Zero
| Known
.One
).countPopulation();
4429 assert(NumUnknownBits
<= Bits
);
4430 if (HasDefault
&& DeadCases
.empty() &&
4431 NumUnknownBits
< 64 /* avoid overflow */ &&
4432 SI
->getNumCases() == (1ULL << NumUnknownBits
)) {
4433 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4434 BasicBlock
*NewDefault
=
4435 SplitBlockPredecessors(SI
->getDefaultDest(), SI
->getParent(), "");
4436 SI
->setDefaultDest(&*NewDefault
);
4437 SplitBlock(&*NewDefault
, &NewDefault
->front());
4438 auto *OldTI
= NewDefault
->getTerminator();
4439 new UnreachableInst(SI
->getContext(), OldTI
);
4440 EraseTerminatorAndDCECond(OldTI
);
4444 SmallVector
<uint64_t, 8> Weights
;
4445 bool HasWeight
= HasBranchWeights(SI
);
4447 GetBranchWeights(SI
, Weights
);
4448 HasWeight
= (Weights
.size() == 1 + SI
->getNumCases());
4451 // Remove dead cases from the switch.
4452 for (ConstantInt
*DeadCase
: DeadCases
) {
4453 SwitchInst::CaseIt CaseI
= SI
->findCaseValue(DeadCase
);
4454 assert(CaseI
!= SI
->case_default() &&
4455 "Case was not found. Probably mistake in DeadCases forming.");
4457 std::swap(Weights
[CaseI
->getCaseIndex() + 1], Weights
.back());
4461 // Prune unused values from PHI nodes.
4462 CaseI
->getCaseSuccessor()->removePredecessor(SI
->getParent());
4463 SI
->removeCase(CaseI
);
4465 if (HasWeight
&& Weights
.size() >= 2) {
4466 SmallVector
<uint32_t, 8> MDWeights(Weights
.begin(), Weights
.end());
4467 setBranchWeights(SI
, MDWeights
);
4470 return !DeadCases
.empty();
4473 /// If BB would be eligible for simplification by
4474 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4475 /// by an unconditional branch), look at the phi node for BB in the successor
4476 /// block and see if the incoming value is equal to CaseValue. If so, return
4477 /// the phi node, and set PhiIndex to BB's index in the phi node.
4478 static PHINode
*FindPHIForConditionForwarding(ConstantInt
*CaseValue
,
4479 BasicBlock
*BB
, int *PhiIndex
) {
4480 if (BB
->getFirstNonPHIOrDbg() != BB
->getTerminator())
4481 return nullptr; // BB must be empty to be a candidate for simplification.
4482 if (!BB
->getSinglePredecessor())
4483 return nullptr; // BB must be dominated by the switch.
4485 BranchInst
*Branch
= dyn_cast
<BranchInst
>(BB
->getTerminator());
4486 if (!Branch
|| !Branch
->isUnconditional())
4487 return nullptr; // Terminator must be unconditional branch.
4489 BasicBlock
*Succ
= Branch
->getSuccessor(0);
4491 for (PHINode
&PHI
: Succ
->phis()) {
4492 int Idx
= PHI
.getBasicBlockIndex(BB
);
4493 assert(Idx
>= 0 && "PHI has no entry for predecessor?");
4495 Value
*InValue
= PHI
.getIncomingValue(Idx
);
4496 if (InValue
!= CaseValue
)
4506 /// Try to forward the condition of a switch instruction to a phi node
4507 /// dominated by the switch, if that would mean that some of the destination
4508 /// blocks of the switch can be folded away. Return true if a change is made.
4509 static bool ForwardSwitchConditionToPHI(SwitchInst
*SI
) {
4510 using ForwardingNodesMap
= DenseMap
<PHINode
*, SmallVector
<int, 4>>;
4512 ForwardingNodesMap ForwardingNodes
;
4513 BasicBlock
*SwitchBlock
= SI
->getParent();
4514 bool Changed
= false;
4515 for (auto &Case
: SI
->cases()) {
4516 ConstantInt
*CaseValue
= Case
.getCaseValue();
4517 BasicBlock
*CaseDest
= Case
.getCaseSuccessor();
4519 // Replace phi operands in successor blocks that are using the constant case
4520 // value rather than the switch condition variable:
4522 // switch i32 %x, label %default [
4523 // i32 17, label %succ
4526 // %r = phi i32 ... [ 17, %switchbb ] ...
4528 // %r = phi i32 ... [ %x, %switchbb ] ...
4530 for (PHINode
&Phi
: CaseDest
->phis()) {
4531 // This only works if there is exactly 1 incoming edge from the switch to
4532 // a phi. If there is >1, that means multiple cases of the switch map to 1
4533 // value in the phi, and that phi value is not the switch condition. Thus,
4534 // this transform would not make sense (the phi would be invalid because
4535 // a phi can't have different incoming values from the same block).
4536 int SwitchBBIdx
= Phi
.getBasicBlockIndex(SwitchBlock
);
4537 if (Phi
.getIncomingValue(SwitchBBIdx
) == CaseValue
&&
4538 count(Phi
.blocks(), SwitchBlock
) == 1) {
4539 Phi
.setIncomingValue(SwitchBBIdx
, SI
->getCondition());
4544 // Collect phi nodes that are indirectly using this switch's case constants.
4546 if (auto *Phi
= FindPHIForConditionForwarding(CaseValue
, CaseDest
, &PhiIdx
))
4547 ForwardingNodes
[Phi
].push_back(PhiIdx
);
4550 for (auto &ForwardingNode
: ForwardingNodes
) {
4551 PHINode
*Phi
= ForwardingNode
.first
;
4552 SmallVectorImpl
<int> &Indexes
= ForwardingNode
.second
;
4553 if (Indexes
.size() < 2)
4556 for (int Index
: Indexes
)
4557 Phi
->setIncomingValue(Index
, SI
->getCondition());
4564 /// Return true if the backend will be able to handle
4565 /// initializing an array of constants like C.
4566 static bool ValidLookupTableConstant(Constant
*C
, const TargetTransformInfo
&TTI
) {
4567 if (C
->isThreadDependent())
4569 if (C
->isDLLImportDependent())
4572 if (!isa
<ConstantFP
>(C
) && !isa
<ConstantInt
>(C
) &&
4573 !isa
<ConstantPointerNull
>(C
) && !isa
<GlobalValue
>(C
) &&
4574 !isa
<UndefValue
>(C
) && !isa
<ConstantExpr
>(C
))
4577 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
4578 if (!CE
->isGEPWithNoNotionalOverIndexing())
4580 if (!ValidLookupTableConstant(CE
->getOperand(0), TTI
))
4584 if (!TTI
.shouldBuildLookupTablesForConstant(C
))
4590 /// If V is a Constant, return it. Otherwise, try to look up
4591 /// its constant value in ConstantPool, returning 0 if it's not there.
4593 LookupConstant(Value
*V
,
4594 const SmallDenseMap
<Value
*, Constant
*> &ConstantPool
) {
4595 if (Constant
*C
= dyn_cast
<Constant
>(V
))
4597 return ConstantPool
.lookup(V
);
4600 /// Try to fold instruction I into a constant. This works for
4601 /// simple instructions such as binary operations where both operands are
4602 /// constant or can be replaced by constants from the ConstantPool. Returns the
4603 /// resulting constant on success, 0 otherwise.
4605 ConstantFold(Instruction
*I
, const DataLayout
&DL
,
4606 const SmallDenseMap
<Value
*, Constant
*> &ConstantPool
) {
4607 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(I
)) {
4608 Constant
*A
= LookupConstant(Select
->getCondition(), ConstantPool
);
4611 if (A
->isAllOnesValue())
4612 return LookupConstant(Select
->getTrueValue(), ConstantPool
);
4613 if (A
->isNullValue())
4614 return LookupConstant(Select
->getFalseValue(), ConstantPool
);
4618 SmallVector
<Constant
*, 4> COps
;
4619 for (unsigned N
= 0, E
= I
->getNumOperands(); N
!= E
; ++N
) {
4620 if (Constant
*A
= LookupConstant(I
->getOperand(N
), ConstantPool
))
4626 if (CmpInst
*Cmp
= dyn_cast
<CmpInst
>(I
)) {
4627 return ConstantFoldCompareInstOperands(Cmp
->getPredicate(), COps
[0],
4631 return ConstantFoldInstOperands(I
, COps
, DL
);
4634 /// Try to determine the resulting constant values in phi nodes
4635 /// at the common destination basic block, *CommonDest, for one of the case
4636 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4637 /// case), of a switch instruction SI.
4639 GetCaseResults(SwitchInst
*SI
, ConstantInt
*CaseVal
, BasicBlock
*CaseDest
,
4640 BasicBlock
**CommonDest
,
4641 SmallVectorImpl
<std::pair
<PHINode
*, Constant
*>> &Res
,
4642 const DataLayout
&DL
, const TargetTransformInfo
&TTI
) {
4643 // The block from which we enter the common destination.
4644 BasicBlock
*Pred
= SI
->getParent();
4646 // If CaseDest is empty except for some side-effect free instructions through
4647 // which we can constant-propagate the CaseVal, continue to its successor.
4648 SmallDenseMap
<Value
*, Constant
*> ConstantPool
;
4649 ConstantPool
.insert(std::make_pair(SI
->getCondition(), CaseVal
));
4650 for (Instruction
&I
:CaseDest
->instructionsWithoutDebug()) {
4651 if (I
.isTerminator()) {
4652 // If the terminator is a simple branch, continue to the next block.
4653 if (I
.getNumSuccessors() != 1 || I
.isExceptionalTerminator())
4656 CaseDest
= I
.getSuccessor(0);
4657 } else if (Constant
*C
= ConstantFold(&I
, DL
, ConstantPool
)) {
4658 // Instruction is side-effect free and constant.
4660 // If the instruction has uses outside this block or a phi node slot for
4661 // the block, it is not safe to bypass the instruction since it would then
4662 // no longer dominate all its uses.
4663 for (auto &Use
: I
.uses()) {
4664 User
*User
= Use
.getUser();
4665 if (Instruction
*I
= dyn_cast
<Instruction
>(User
))
4666 if (I
->getParent() == CaseDest
)
4668 if (PHINode
*Phi
= dyn_cast
<PHINode
>(User
))
4669 if (Phi
->getIncomingBlock(Use
) == CaseDest
)
4674 ConstantPool
.insert(std::make_pair(&I
, C
));
4680 // If we did not have a CommonDest before, use the current one.
4682 *CommonDest
= CaseDest
;
4683 // If the destination isn't the common one, abort.
4684 if (CaseDest
!= *CommonDest
)
4687 // Get the values for this case from phi nodes in the destination block.
4688 for (PHINode
&PHI
: (*CommonDest
)->phis()) {
4689 int Idx
= PHI
.getBasicBlockIndex(Pred
);
4693 Constant
*ConstVal
=
4694 LookupConstant(PHI
.getIncomingValue(Idx
), ConstantPool
);
4698 // Be conservative about which kinds of constants we support.
4699 if (!ValidLookupTableConstant(ConstVal
, TTI
))
4702 Res
.push_back(std::make_pair(&PHI
, ConstVal
));
4705 return Res
.size() > 0;
4708 // Helper function used to add CaseVal to the list of cases that generate
4709 // Result. Returns the updated number of cases that generate this result.
4710 static uintptr_t MapCaseToResult(ConstantInt
*CaseVal
,
4711 SwitchCaseResultVectorTy
&UniqueResults
,
4713 for (auto &I
: UniqueResults
) {
4714 if (I
.first
== Result
) {
4715 I
.second
.push_back(CaseVal
);
4716 return I
.second
.size();
4719 UniqueResults
.push_back(
4720 std::make_pair(Result
, SmallVector
<ConstantInt
*, 4>(1, CaseVal
)));
4724 // Helper function that initializes a map containing
4725 // results for the PHI node of the common destination block for a switch
4726 // instruction. Returns false if multiple PHI nodes have been found or if
4727 // there is not a common destination block for the switch.
4729 InitializeUniqueCases(SwitchInst
*SI
, PHINode
*&PHI
, BasicBlock
*&CommonDest
,
4730 SwitchCaseResultVectorTy
&UniqueResults
,
4731 Constant
*&DefaultResult
, const DataLayout
&DL
,
4732 const TargetTransformInfo
&TTI
,
4733 uintptr_t MaxUniqueResults
, uintptr_t MaxCasesPerResult
) {
4734 for (auto &I
: SI
->cases()) {
4735 ConstantInt
*CaseVal
= I
.getCaseValue();
4737 // Resulting value at phi nodes for this case value.
4738 SwitchCaseResultsTy Results
;
4739 if (!GetCaseResults(SI
, CaseVal
, I
.getCaseSuccessor(), &CommonDest
, Results
,
4743 // Only one value per case is permitted.
4744 if (Results
.size() > 1)
4747 // Add the case->result mapping to UniqueResults.
4748 const uintptr_t NumCasesForResult
=
4749 MapCaseToResult(CaseVal
, UniqueResults
, Results
.begin()->second
);
4751 // Early out if there are too many cases for this result.
4752 if (NumCasesForResult
> MaxCasesPerResult
)
4755 // Early out if there are too many unique results.
4756 if (UniqueResults
.size() > MaxUniqueResults
)
4759 // Check the PHI consistency.
4761 PHI
= Results
[0].first
;
4762 else if (PHI
!= Results
[0].first
)
4765 // Find the default result value.
4766 SmallVector
<std::pair
<PHINode
*, Constant
*>, 1> DefaultResults
;
4767 BasicBlock
*DefaultDest
= SI
->getDefaultDest();
4768 GetCaseResults(SI
, nullptr, SI
->getDefaultDest(), &CommonDest
, DefaultResults
,
4770 // If the default value is not found abort unless the default destination
4773 DefaultResults
.size() == 1 ? DefaultResults
.begin()->second
: nullptr;
4774 if ((!DefaultResult
&&
4775 !isa
<UnreachableInst
>(DefaultDest
->getFirstNonPHIOrDbg())))
4781 // Helper function that checks if it is possible to transform a switch with only
4782 // two cases (or two cases + default) that produces a result into a select.
4785 // case 10: %0 = icmp eq i32 %a, 10
4786 // return 10; %1 = select i1 %0, i32 10, i32 4
4787 // case 20: ----> %2 = icmp eq i32 %a, 20
4788 // return 2; %3 = select i1 %2, i32 2, i32 %1
4792 static Value
*ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy
&ResultVector
,
4793 Constant
*DefaultResult
, Value
*Condition
,
4794 IRBuilder
<> &Builder
) {
4795 assert(ResultVector
.size() == 2 &&
4796 "We should have exactly two unique results at this point");
4797 // If we are selecting between only two cases transform into a simple
4798 // select or a two-way select if default is possible.
4799 if (ResultVector
[0].second
.size() == 1 &&
4800 ResultVector
[1].second
.size() == 1) {
4801 ConstantInt
*const FirstCase
= ResultVector
[0].second
[0];
4802 ConstantInt
*const SecondCase
= ResultVector
[1].second
[0];
4804 bool DefaultCanTrigger
= DefaultResult
;
4805 Value
*SelectValue
= ResultVector
[1].first
;
4806 if (DefaultCanTrigger
) {
4807 Value
*const ValueCompare
=
4808 Builder
.CreateICmpEQ(Condition
, SecondCase
, "switch.selectcmp");
4809 SelectValue
= Builder
.CreateSelect(ValueCompare
, ResultVector
[1].first
,
4810 DefaultResult
, "switch.select");
4812 Value
*const ValueCompare
=
4813 Builder
.CreateICmpEQ(Condition
, FirstCase
, "switch.selectcmp");
4814 return Builder
.CreateSelect(ValueCompare
, ResultVector
[0].first
,
4815 SelectValue
, "switch.select");
4821 // Helper function to cleanup a switch instruction that has been converted into
4822 // a select, fixing up PHI nodes and basic blocks.
4823 static void RemoveSwitchAfterSelectConversion(SwitchInst
*SI
, PHINode
*PHI
,
4825 IRBuilder
<> &Builder
) {
4826 BasicBlock
*SelectBB
= SI
->getParent();
4827 while (PHI
->getBasicBlockIndex(SelectBB
) >= 0)
4828 PHI
->removeIncomingValue(SelectBB
);
4829 PHI
->addIncoming(SelectValue
, SelectBB
);
4831 Builder
.CreateBr(PHI
->getParent());
4833 // Remove the switch.
4834 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
< e
; ++i
) {
4835 BasicBlock
*Succ
= SI
->getSuccessor(i
);
4837 if (Succ
== PHI
->getParent())
4839 Succ
->removePredecessor(SelectBB
);
4841 SI
->eraseFromParent();
4844 /// If the switch is only used to initialize one or more
4845 /// phi nodes in a common successor block with only two different
4846 /// constant values, replace the switch with select.
4847 static bool switchToSelect(SwitchInst
*SI
, IRBuilder
<> &Builder
,
4848 const DataLayout
&DL
,
4849 const TargetTransformInfo
&TTI
) {
4850 Value
*const Cond
= SI
->getCondition();
4851 PHINode
*PHI
= nullptr;
4852 BasicBlock
*CommonDest
= nullptr;
4853 Constant
*DefaultResult
;
4854 SwitchCaseResultVectorTy UniqueResults
;
4855 // Collect all the cases that will deliver the same value from the switch.
4856 if (!InitializeUniqueCases(SI
, PHI
, CommonDest
, UniqueResults
, DefaultResult
,
4859 // Selects choose between maximum two values.
4860 if (UniqueResults
.size() != 2)
4862 assert(PHI
!= nullptr && "PHI for value select not found");
4864 Builder
.SetInsertPoint(SI
);
4865 Value
*SelectValue
=
4866 ConvertTwoCaseSwitch(UniqueResults
, DefaultResult
, Cond
, Builder
);
4868 RemoveSwitchAfterSelectConversion(SI
, PHI
, SelectValue
, Builder
);
4871 // The switch couldn't be converted into a select.
4877 /// This class represents a lookup table that can be used to replace a switch.
4878 class SwitchLookupTable
{
4880 /// Create a lookup table to use as a switch replacement with the contents
4881 /// of Values, using DefaultValue to fill any holes in the table.
4883 Module
&M
, uint64_t TableSize
, ConstantInt
*Offset
,
4884 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
,
4885 Constant
*DefaultValue
, const DataLayout
&DL
, const StringRef
&FuncName
);
4887 /// Build instructions with Builder to retrieve the value at
4888 /// the position given by Index in the lookup table.
4889 Value
*BuildLookup(Value
*Index
, IRBuilder
<> &Builder
);
4891 /// Return true if a table with TableSize elements of
4892 /// type ElementType would fit in a target-legal register.
4893 static bool WouldFitInRegister(const DataLayout
&DL
, uint64_t TableSize
,
4897 // Depending on the contents of the table, it can be represented in
4900 // For tables where each element contains the same value, we just have to
4901 // store that single value and return it for each lookup.
4904 // For tables where there is a linear relationship between table index
4905 // and values. We calculate the result with a simple multiplication
4906 // and addition instead of a table lookup.
4909 // For small tables with integer elements, we can pack them into a bitmap
4910 // that fits into a target-legal register. Values are retrieved by
4911 // shift and mask operations.
4914 // The table is stored as an array of values. Values are retrieved by load
4915 // instructions from the table.
4919 // For SingleValueKind, this is the single value.
4920 Constant
*SingleValue
= nullptr;
4922 // For BitMapKind, this is the bitmap.
4923 ConstantInt
*BitMap
= nullptr;
4924 IntegerType
*BitMapElementTy
= nullptr;
4926 // For LinearMapKind, these are the constants used to derive the value.
4927 ConstantInt
*LinearOffset
= nullptr;
4928 ConstantInt
*LinearMultiplier
= nullptr;
4930 // For ArrayKind, this is the array.
4931 GlobalVariable
*Array
= nullptr;
4934 } // end anonymous namespace
4936 SwitchLookupTable::SwitchLookupTable(
4937 Module
&M
, uint64_t TableSize
, ConstantInt
*Offset
,
4938 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
,
4939 Constant
*DefaultValue
, const DataLayout
&DL
, const StringRef
&FuncName
) {
4940 assert(Values
.size() && "Can't build lookup table without values!");
4941 assert(TableSize
>= Values
.size() && "Can't fit values in table!");
4943 // If all values in the table are equal, this is that value.
4944 SingleValue
= Values
.begin()->second
;
4946 Type
*ValueType
= Values
.begin()->second
->getType();
4948 // Build up the table contents.
4949 SmallVector
<Constant
*, 64> TableContents(TableSize
);
4950 for (size_t I
= 0, E
= Values
.size(); I
!= E
; ++I
) {
4951 ConstantInt
*CaseVal
= Values
[I
].first
;
4952 Constant
*CaseRes
= Values
[I
].second
;
4953 assert(CaseRes
->getType() == ValueType
);
4955 uint64_t Idx
= (CaseVal
->getValue() - Offset
->getValue()).getLimitedValue();
4956 TableContents
[Idx
] = CaseRes
;
4958 if (CaseRes
!= SingleValue
)
4959 SingleValue
= nullptr;
4962 // Fill in any holes in the table with the default result.
4963 if (Values
.size() < TableSize
) {
4964 assert(DefaultValue
&&
4965 "Need a default value to fill the lookup table holes.");
4966 assert(DefaultValue
->getType() == ValueType
);
4967 for (uint64_t I
= 0; I
< TableSize
; ++I
) {
4968 if (!TableContents
[I
])
4969 TableContents
[I
] = DefaultValue
;
4972 if (DefaultValue
!= SingleValue
)
4973 SingleValue
= nullptr;
4976 // If each element in the table contains the same value, we only need to store
4977 // that single value.
4979 Kind
= SingleValueKind
;
4983 // Check if we can derive the value with a linear transformation from the
4985 if (isa
<IntegerType
>(ValueType
)) {
4986 bool LinearMappingPossible
= true;
4989 assert(TableSize
>= 2 && "Should be a SingleValue table.");
4990 // Check if there is the same distance between two consecutive values.
4991 for (uint64_t I
= 0; I
< TableSize
; ++I
) {
4992 ConstantInt
*ConstVal
= dyn_cast
<ConstantInt
>(TableContents
[I
]);
4994 // This is an undef. We could deal with it, but undefs in lookup tables
4995 // are very seldom. It's probably not worth the additional complexity.
4996 LinearMappingPossible
= false;
4999 const APInt
&Val
= ConstVal
->getValue();
5001 APInt Dist
= Val
- PrevVal
;
5004 } else if (Dist
!= DistToPrev
) {
5005 LinearMappingPossible
= false;
5011 if (LinearMappingPossible
) {
5012 LinearOffset
= cast
<ConstantInt
>(TableContents
[0]);
5013 LinearMultiplier
= ConstantInt::get(M
.getContext(), DistToPrev
);
5014 Kind
= LinearMapKind
;
5020 // If the type is integer and the table fits in a register, build a bitmap.
5021 if (WouldFitInRegister(DL
, TableSize
, ValueType
)) {
5022 IntegerType
*IT
= cast
<IntegerType
>(ValueType
);
5023 APInt
TableInt(TableSize
* IT
->getBitWidth(), 0);
5024 for (uint64_t I
= TableSize
; I
> 0; --I
) {
5025 TableInt
<<= IT
->getBitWidth();
5026 // Insert values into the bitmap. Undef values are set to zero.
5027 if (!isa
<UndefValue
>(TableContents
[I
- 1])) {
5028 ConstantInt
*Val
= cast
<ConstantInt
>(TableContents
[I
- 1]);
5029 TableInt
|= Val
->getValue().zext(TableInt
.getBitWidth());
5032 BitMap
= ConstantInt::get(M
.getContext(), TableInt
);
5033 BitMapElementTy
= IT
;
5039 // Store the table in an array.
5040 ArrayType
*ArrayTy
= ArrayType::get(ValueType
, TableSize
);
5041 Constant
*Initializer
= ConstantArray::get(ArrayTy
, TableContents
);
5043 Array
= new GlobalVariable(M
, ArrayTy
, /*constant=*/true,
5044 GlobalVariable::PrivateLinkage
, Initializer
,
5045 "switch.table." + FuncName
);
5046 Array
->setUnnamedAddr(GlobalValue::UnnamedAddr::Global
);
5047 // Set the alignment to that of an array items. We will be only loading one
5049 Array
->setAlignment(DL
.getPrefTypeAlignment(ValueType
));
5053 Value
*SwitchLookupTable::BuildLookup(Value
*Index
, IRBuilder
<> &Builder
) {
5055 case SingleValueKind
:
5057 case LinearMapKind
: {
5058 // Derive the result value from the input value.
5059 Value
*Result
= Builder
.CreateIntCast(Index
, LinearMultiplier
->getType(),
5060 false, "switch.idx.cast");
5061 if (!LinearMultiplier
->isOne())
5062 Result
= Builder
.CreateMul(Result
, LinearMultiplier
, "switch.idx.mult");
5063 if (!LinearOffset
->isZero())
5064 Result
= Builder
.CreateAdd(Result
, LinearOffset
, "switch.offset");
5068 // Type of the bitmap (e.g. i59).
5069 IntegerType
*MapTy
= BitMap
->getType();
5071 // Cast Index to the same type as the bitmap.
5072 // Note: The Index is <= the number of elements in the table, so
5073 // truncating it to the width of the bitmask is safe.
5074 Value
*ShiftAmt
= Builder
.CreateZExtOrTrunc(Index
, MapTy
, "switch.cast");
5076 // Multiply the shift amount by the element width.
5077 ShiftAmt
= Builder
.CreateMul(
5078 ShiftAmt
, ConstantInt::get(MapTy
, BitMapElementTy
->getBitWidth()),
5082 Value
*DownShifted
=
5083 Builder
.CreateLShr(BitMap
, ShiftAmt
, "switch.downshift");
5085 return Builder
.CreateTrunc(DownShifted
, BitMapElementTy
, "switch.masked");
5088 // Make sure the table index will not overflow when treated as signed.
5089 IntegerType
*IT
= cast
<IntegerType
>(Index
->getType());
5090 uint64_t TableSize
=
5091 Array
->getInitializer()->getType()->getArrayNumElements();
5092 if (TableSize
> (1ULL << (IT
->getBitWidth() - 1)))
5093 Index
= Builder
.CreateZExt(
5094 Index
, IntegerType::get(IT
->getContext(), IT
->getBitWidth() + 1),
5095 "switch.tableidx.zext");
5097 Value
*GEPIndices
[] = {Builder
.getInt32(0), Index
};
5098 Value
*GEP
= Builder
.CreateInBoundsGEP(Array
->getValueType(), Array
,
5099 GEPIndices
, "switch.gep");
5100 return Builder
.CreateLoad(
5101 cast
<ArrayType
>(Array
->getValueType())->getElementType(), GEP
,
5105 llvm_unreachable("Unknown lookup table kind!");
5108 bool SwitchLookupTable::WouldFitInRegister(const DataLayout
&DL
,
5110 Type
*ElementType
) {
5111 auto *IT
= dyn_cast
<IntegerType
>(ElementType
);
5114 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5115 // are <= 15, we could try to narrow the type.
5117 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5118 if (TableSize
>= UINT_MAX
/ IT
->getBitWidth())
5120 return DL
.fitsInLegalInteger(TableSize
* IT
->getBitWidth());
5123 /// Determine whether a lookup table should be built for this switch, based on
5124 /// the number of cases, size of the table, and the types of the results.
5126 ShouldBuildLookupTable(SwitchInst
*SI
, uint64_t TableSize
,
5127 const TargetTransformInfo
&TTI
, const DataLayout
&DL
,
5128 const SmallDenseMap
<PHINode
*, Type
*> &ResultTypes
) {
5129 if (SI
->getNumCases() > TableSize
|| TableSize
>= UINT64_MAX
/ 10)
5130 return false; // TableSize overflowed, or mul below might overflow.
5132 bool AllTablesFitInRegister
= true;
5133 bool HasIllegalType
= false;
5134 for (const auto &I
: ResultTypes
) {
5135 Type
*Ty
= I
.second
;
5137 // Saturate this flag to true.
5138 HasIllegalType
= HasIllegalType
|| !TTI
.isTypeLegal(Ty
);
5140 // Saturate this flag to false.
5141 AllTablesFitInRegister
=
5142 AllTablesFitInRegister
&&
5143 SwitchLookupTable::WouldFitInRegister(DL
, TableSize
, Ty
);
5145 // If both flags saturate, we're done. NOTE: This *only* works with
5146 // saturating flags, and all flags have to saturate first due to the
5147 // non-deterministic behavior of iterating over a dense map.
5148 if (HasIllegalType
&& !AllTablesFitInRegister
)
5152 // If each table would fit in a register, we should build it anyway.
5153 if (AllTablesFitInRegister
)
5156 // Don't build a table that doesn't fit in-register if it has illegal types.
5160 // The table density should be at least 40%. This is the same criterion as for
5161 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5162 // FIXME: Find the best cut-off.
5163 return SI
->getNumCases() * 10 >= TableSize
* 4;
5166 /// Try to reuse the switch table index compare. Following pattern:
5168 /// if (idx < tablesize)
5169 /// r = table[idx]; // table does not contain default_value
5171 /// r = default_value;
5172 /// if (r != default_value)
5175 /// Is optimized to:
5177 /// cond = idx < tablesize;
5181 /// r = default_value;
5185 /// Jump threading will then eliminate the second if(cond).
5186 static void reuseTableCompare(
5187 User
*PhiUser
, BasicBlock
*PhiBlock
, BranchInst
*RangeCheckBranch
,
5188 Constant
*DefaultValue
,
5189 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
) {
5190 ICmpInst
*CmpInst
= dyn_cast
<ICmpInst
>(PhiUser
);
5194 // We require that the compare is in the same block as the phi so that jump
5195 // threading can do its work afterwards.
5196 if (CmpInst
->getParent() != PhiBlock
)
5199 Constant
*CmpOp1
= dyn_cast
<Constant
>(CmpInst
->getOperand(1));
5203 Value
*RangeCmp
= RangeCheckBranch
->getCondition();
5204 Constant
*TrueConst
= ConstantInt::getTrue(RangeCmp
->getType());
5205 Constant
*FalseConst
= ConstantInt::getFalse(RangeCmp
->getType());
5207 // Check if the compare with the default value is constant true or false.
5208 Constant
*DefaultConst
= ConstantExpr::getICmp(CmpInst
->getPredicate(),
5209 DefaultValue
, CmpOp1
, true);
5210 if (DefaultConst
!= TrueConst
&& DefaultConst
!= FalseConst
)
5213 // Check if the compare with the case values is distinct from the default
5215 for (auto ValuePair
: Values
) {
5216 Constant
*CaseConst
= ConstantExpr::getICmp(CmpInst
->getPredicate(),
5217 ValuePair
.second
, CmpOp1
, true);
5218 if (!CaseConst
|| CaseConst
== DefaultConst
|| isa
<UndefValue
>(CaseConst
))
5220 assert((CaseConst
== TrueConst
|| CaseConst
== FalseConst
) &&
5221 "Expect true or false as compare result.");
5224 // Check if the branch instruction dominates the phi node. It's a simple
5225 // dominance check, but sufficient for our needs.
5226 // Although this check is invariant in the calling loops, it's better to do it
5227 // at this late stage. Practically we do it at most once for a switch.
5228 BasicBlock
*BranchBlock
= RangeCheckBranch
->getParent();
5229 for (auto PI
= pred_begin(PhiBlock
), E
= pred_end(PhiBlock
); PI
!= E
; ++PI
) {
5230 BasicBlock
*Pred
= *PI
;
5231 if (Pred
!= BranchBlock
&& Pred
->getUniquePredecessor() != BranchBlock
)
5235 if (DefaultConst
== FalseConst
) {
5236 // The compare yields the same result. We can replace it.
5237 CmpInst
->replaceAllUsesWith(RangeCmp
);
5238 ++NumTableCmpReuses
;
5240 // The compare yields the same result, just inverted. We can replace it.
5241 Value
*InvertedTableCmp
= BinaryOperator::CreateXor(
5242 RangeCmp
, ConstantInt::get(RangeCmp
->getType(), 1), "inverted.cmp",
5244 CmpInst
->replaceAllUsesWith(InvertedTableCmp
);
5245 ++NumTableCmpReuses
;
5249 /// If the switch is only used to initialize one or more phi nodes in a common
5250 /// successor block with different constant values, replace the switch with
5252 static bool SwitchToLookupTable(SwitchInst
*SI
, IRBuilder
<> &Builder
,
5253 const DataLayout
&DL
,
5254 const TargetTransformInfo
&TTI
) {
5255 assert(SI
->getNumCases() > 1 && "Degenerate switch?");
5257 Function
*Fn
= SI
->getParent()->getParent();
5258 // Only build lookup table when we have a target that supports it or the
5259 // attribute is not set.
5260 if (!TTI
.shouldBuildLookupTables() ||
5261 (Fn
->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5264 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5265 // split off a dense part and build a lookup table for that.
5267 // FIXME: This creates arrays of GEPs to constant strings, which means each
5268 // GEP needs a runtime relocation in PIC code. We should just build one big
5269 // string and lookup indices into that.
5271 // Ignore switches with less than three cases. Lookup tables will not make
5272 // them faster, so we don't analyze them.
5273 if (SI
->getNumCases() < 3)
5276 // Figure out the corresponding result for each case value and phi node in the
5277 // common destination, as well as the min and max case values.
5278 assert(!empty(SI
->cases()));
5279 SwitchInst::CaseIt CI
= SI
->case_begin();
5280 ConstantInt
*MinCaseVal
= CI
->getCaseValue();
5281 ConstantInt
*MaxCaseVal
= CI
->getCaseValue();
5283 BasicBlock
*CommonDest
= nullptr;
5285 using ResultListTy
= SmallVector
<std::pair
<ConstantInt
*, Constant
*>, 4>;
5286 SmallDenseMap
<PHINode
*, ResultListTy
> ResultLists
;
5288 SmallDenseMap
<PHINode
*, Constant
*> DefaultResults
;
5289 SmallDenseMap
<PHINode
*, Type
*> ResultTypes
;
5290 SmallVector
<PHINode
*, 4> PHIs
;
5292 for (SwitchInst::CaseIt E
= SI
->case_end(); CI
!= E
; ++CI
) {
5293 ConstantInt
*CaseVal
= CI
->getCaseValue();
5294 if (CaseVal
->getValue().slt(MinCaseVal
->getValue()))
5295 MinCaseVal
= CaseVal
;
5296 if (CaseVal
->getValue().sgt(MaxCaseVal
->getValue()))
5297 MaxCaseVal
= CaseVal
;
5299 // Resulting value at phi nodes for this case value.
5300 using ResultsTy
= SmallVector
<std::pair
<PHINode
*, Constant
*>, 4>;
5302 if (!GetCaseResults(SI
, CaseVal
, CI
->getCaseSuccessor(), &CommonDest
,
5306 // Append the result from this case to the list for each phi.
5307 for (const auto &I
: Results
) {
5308 PHINode
*PHI
= I
.first
;
5309 Constant
*Value
= I
.second
;
5310 if (!ResultLists
.count(PHI
))
5311 PHIs
.push_back(PHI
);
5312 ResultLists
[PHI
].push_back(std::make_pair(CaseVal
, Value
));
5316 // Keep track of the result types.
5317 for (PHINode
*PHI
: PHIs
) {
5318 ResultTypes
[PHI
] = ResultLists
[PHI
][0].second
->getType();
5321 uint64_t NumResults
= ResultLists
[PHIs
[0]].size();
5322 APInt RangeSpread
= MaxCaseVal
->getValue() - MinCaseVal
->getValue();
5323 uint64_t TableSize
= RangeSpread
.getLimitedValue() + 1;
5324 bool TableHasHoles
= (NumResults
< TableSize
);
5326 // If the table has holes, we need a constant result for the default case
5327 // or a bitmask that fits in a register.
5328 SmallVector
<std::pair
<PHINode
*, Constant
*>, 4> DefaultResultsList
;
5329 bool HasDefaultResults
=
5330 GetCaseResults(SI
, nullptr, SI
->getDefaultDest(), &CommonDest
,
5331 DefaultResultsList
, DL
, TTI
);
5333 bool NeedMask
= (TableHasHoles
&& !HasDefaultResults
);
5335 // As an extra penalty for the validity test we require more cases.
5336 if (SI
->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5338 if (!DL
.fitsInLegalInteger(TableSize
))
5342 for (const auto &I
: DefaultResultsList
) {
5343 PHINode
*PHI
= I
.first
;
5344 Constant
*Result
= I
.second
;
5345 DefaultResults
[PHI
] = Result
;
5348 if (!ShouldBuildLookupTable(SI
, TableSize
, TTI
, DL
, ResultTypes
))
5351 // Create the BB that does the lookups.
5352 Module
&Mod
= *CommonDest
->getParent()->getParent();
5353 BasicBlock
*LookupBB
= BasicBlock::Create(
5354 Mod
.getContext(), "switch.lookup", CommonDest
->getParent(), CommonDest
);
5356 // Compute the table index value.
5357 Builder
.SetInsertPoint(SI
);
5359 if (MinCaseVal
->isNullValue())
5360 TableIndex
= SI
->getCondition();
5362 TableIndex
= Builder
.CreateSub(SI
->getCondition(), MinCaseVal
,
5365 // Compute the maximum table size representable by the integer type we are
5367 unsigned CaseSize
= MinCaseVal
->getType()->getPrimitiveSizeInBits();
5368 uint64_t MaxTableSize
= CaseSize
> 63 ? UINT64_MAX
: 1ULL << CaseSize
;
5369 assert(MaxTableSize
>= TableSize
&&
5370 "It is impossible for a switch to have more entries than the max "
5371 "representable value of its input integer type's size.");
5373 // If the default destination is unreachable, or if the lookup table covers
5374 // all values of the conditional variable, branch directly to the lookup table
5375 // BB. Otherwise, check that the condition is within the case range.
5376 const bool DefaultIsReachable
=
5377 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
5378 const bool GeneratingCoveredLookupTable
= (MaxTableSize
== TableSize
);
5379 BranchInst
*RangeCheckBranch
= nullptr;
5381 if (!DefaultIsReachable
|| GeneratingCoveredLookupTable
) {
5382 Builder
.CreateBr(LookupBB
);
5383 // Note: We call removeProdecessor later since we need to be able to get the
5384 // PHI value for the default case in case we're using a bit mask.
5386 Value
*Cmp
= Builder
.CreateICmpULT(
5387 TableIndex
, ConstantInt::get(MinCaseVal
->getType(), TableSize
));
5389 Builder
.CreateCondBr(Cmp
, LookupBB
, SI
->getDefaultDest());
5392 // Populate the BB that does the lookups.
5393 Builder
.SetInsertPoint(LookupBB
);
5396 // Before doing the lookup, we do the hole check. The LookupBB is therefore
5397 // re-purposed to do the hole check, and we create a new LookupBB.
5398 BasicBlock
*MaskBB
= LookupBB
;
5399 MaskBB
->setName("switch.hole_check");
5400 LookupBB
= BasicBlock::Create(Mod
.getContext(), "switch.lookup",
5401 CommonDest
->getParent(), CommonDest
);
5403 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5404 // unnecessary illegal types.
5405 uint64_t TableSizePowOf2
= NextPowerOf2(std::max(7ULL, TableSize
- 1ULL));
5406 APInt
MaskInt(TableSizePowOf2
, 0);
5407 APInt
One(TableSizePowOf2
, 1);
5408 // Build bitmask; fill in a 1 bit for every case.
5409 const ResultListTy
&ResultList
= ResultLists
[PHIs
[0]];
5410 for (size_t I
= 0, E
= ResultList
.size(); I
!= E
; ++I
) {
5411 uint64_t Idx
= (ResultList
[I
].first
->getValue() - MinCaseVal
->getValue())
5413 MaskInt
|= One
<< Idx
;
5415 ConstantInt
*TableMask
= ConstantInt::get(Mod
.getContext(), MaskInt
);
5417 // Get the TableIndex'th bit of the bitmask.
5418 // If this bit is 0 (meaning hole) jump to the default destination,
5419 // else continue with table lookup.
5420 IntegerType
*MapTy
= TableMask
->getType();
5422 Builder
.CreateZExtOrTrunc(TableIndex
, MapTy
, "switch.maskindex");
5423 Value
*Shifted
= Builder
.CreateLShr(TableMask
, MaskIndex
, "switch.shifted");
5424 Value
*LoBit
= Builder
.CreateTrunc(
5425 Shifted
, Type::getInt1Ty(Mod
.getContext()), "switch.lobit");
5426 Builder
.CreateCondBr(LoBit
, LookupBB
, SI
->getDefaultDest());
5428 Builder
.SetInsertPoint(LookupBB
);
5429 AddPredecessorToBlock(SI
->getDefaultDest(), MaskBB
, SI
->getParent());
5432 if (!DefaultIsReachable
|| GeneratingCoveredLookupTable
) {
5433 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5434 // do not delete PHINodes here.
5435 SI
->getDefaultDest()->removePredecessor(SI
->getParent(),
5436 /*KeepOneInputPHIs=*/true);
5439 bool ReturnedEarly
= false;
5440 for (PHINode
*PHI
: PHIs
) {
5441 const ResultListTy
&ResultList
= ResultLists
[PHI
];
5443 // If using a bitmask, use any value to fill the lookup table holes.
5444 Constant
*DV
= NeedMask
? ResultLists
[PHI
][0].second
: DefaultResults
[PHI
];
5445 StringRef FuncName
= Fn
->getName();
5446 SwitchLookupTable
Table(Mod
, TableSize
, MinCaseVal
, ResultList
, DV
, DL
,
5449 Value
*Result
= Table
.BuildLookup(TableIndex
, Builder
);
5451 // If the result is used to return immediately from the function, we want to
5452 // do that right here.
5453 if (PHI
->hasOneUse() && isa
<ReturnInst
>(*PHI
->user_begin()) &&
5454 PHI
->user_back() == CommonDest
->getFirstNonPHIOrDbg()) {
5455 Builder
.CreateRet(Result
);
5456 ReturnedEarly
= true;
5460 // Do a small peephole optimization: re-use the switch table compare if
5462 if (!TableHasHoles
&& HasDefaultResults
&& RangeCheckBranch
) {
5463 BasicBlock
*PhiBlock
= PHI
->getParent();
5464 // Search for compare instructions which use the phi.
5465 for (auto *User
: PHI
->users()) {
5466 reuseTableCompare(User
, PhiBlock
, RangeCheckBranch
, DV
, ResultList
);
5470 PHI
->addIncoming(Result
, LookupBB
);
5474 Builder
.CreateBr(CommonDest
);
5476 // Remove the switch.
5477 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
< e
; ++i
) {
5478 BasicBlock
*Succ
= SI
->getSuccessor(i
);
5480 if (Succ
== SI
->getDefaultDest())
5482 Succ
->removePredecessor(SI
->getParent());
5484 SI
->eraseFromParent();
5488 ++NumLookupTablesHoles
;
5492 static bool isSwitchDense(ArrayRef
<int64_t> Values
) {
5493 // See also SelectionDAGBuilder::isDense(), which this function was based on.
5494 uint64_t Diff
= (uint64_t)Values
.back() - (uint64_t)Values
.front();
5495 uint64_t Range
= Diff
+ 1;
5496 uint64_t NumCases
= Values
.size();
5497 // 40% is the default density for building a jump table in optsize/minsize mode.
5498 uint64_t MinDensity
= 40;
5500 return NumCases
* 100 >= Range
* MinDensity
;
5503 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5506 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5507 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5509 /// This converts a sparse switch into a dense switch which allows better
5510 /// lowering and could also allow transforming into a lookup table.
5511 static bool ReduceSwitchRange(SwitchInst
*SI
, IRBuilder
<> &Builder
,
5512 const DataLayout
&DL
,
5513 const TargetTransformInfo
&TTI
) {
5514 auto *CondTy
= cast
<IntegerType
>(SI
->getCondition()->getType());
5515 if (CondTy
->getIntegerBitWidth() > 64 ||
5516 !DL
.fitsInLegalInteger(CondTy
->getIntegerBitWidth()))
5518 // Only bother with this optimization if there are more than 3 switch cases;
5519 // SDAG will only bother creating jump tables for 4 or more cases.
5520 if (SI
->getNumCases() < 4)
5523 // This transform is agnostic to the signedness of the input or case values. We
5524 // can treat the case values as signed or unsigned. We can optimize more common
5525 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5527 SmallVector
<int64_t,4> Values
;
5528 for (auto &C
: SI
->cases())
5529 Values
.push_back(C
.getCaseValue()->getValue().getSExtValue());
5532 // If the switch is already dense, there's nothing useful to do here.
5533 if (isSwitchDense(Values
))
5536 // First, transform the values such that they start at zero and ascend.
5537 int64_t Base
= Values
[0];
5538 for (auto &V
: Values
)
5539 V
-= (uint64_t)(Base
);
5541 // Now we have signed numbers that have been shifted so that, given enough
5542 // precision, there are no negative values. Since the rest of the transform
5543 // is bitwise only, we switch now to an unsigned representation.
5545 for (auto &V
: Values
)
5546 GCD
= GreatestCommonDivisor64(GCD
, (uint64_t)V
);
5548 // This transform can be done speculatively because it is so cheap - it results
5549 // in a single rotate operation being inserted. This can only happen if the
5550 // factor extracted is a power of 2.
5551 // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5552 // inverse of GCD and then perform this transform.
5553 // FIXME: It's possible that optimizing a switch on powers of two might also
5554 // be beneficial - flag values are often powers of two and we could use a CLZ
5555 // as the key function.
5556 if (GCD
<= 1 || !isPowerOf2_64(GCD
))
5557 // No common divisor found or too expensive to compute key function.
5560 unsigned Shift
= Log2_64(GCD
);
5561 for (auto &V
: Values
)
5562 V
= (int64_t)((uint64_t)V
>> Shift
);
5564 if (!isSwitchDense(Values
))
5565 // Transform didn't create a dense switch.
5568 // The obvious transform is to shift the switch condition right and emit a
5569 // check that the condition actually cleanly divided by GCD, i.e.
5570 // C & (1 << Shift - 1) == 0
5571 // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5573 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5574 // shift and puts the shifted-off bits in the uppermost bits. If any of these
5575 // are nonzero then the switch condition will be very large and will hit the
5578 auto *Ty
= cast
<IntegerType
>(SI
->getCondition()->getType());
5579 Builder
.SetInsertPoint(SI
);
5580 auto *ShiftC
= ConstantInt::get(Ty
, Shift
);
5581 auto *Sub
= Builder
.CreateSub(SI
->getCondition(), ConstantInt::get(Ty
, Base
));
5582 auto *LShr
= Builder
.CreateLShr(Sub
, ShiftC
);
5583 auto *Shl
= Builder
.CreateShl(Sub
, Ty
->getBitWidth() - Shift
);
5584 auto *Rot
= Builder
.CreateOr(LShr
, Shl
);
5585 SI
->replaceUsesOfWith(SI
->getCondition(), Rot
);
5587 for (auto Case
: SI
->cases()) {
5588 auto *Orig
= Case
.getCaseValue();
5589 auto Sub
= Orig
->getValue() - APInt(Ty
->getBitWidth(), Base
);
5591 cast
<ConstantInt
>(ConstantInt::get(Ty
, Sub
.lshr(ShiftC
->getValue()))));
5596 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst
*SI
, IRBuilder
<> &Builder
) {
5597 BasicBlock
*BB
= SI
->getParent();
5599 if (isValueEqualityComparison(SI
)) {
5600 // If we only have one predecessor, and if it is a branch on this value,
5601 // see if that predecessor totally determines the outcome of this switch.
5602 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
5603 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI
, OnlyPred
, Builder
))
5604 return requestResimplify();
5606 Value
*Cond
= SI
->getCondition();
5607 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(Cond
))
5608 if (SimplifySwitchOnSelect(SI
, Select
))
5609 return requestResimplify();
5611 // If the block only contains the switch, see if we can fold the block
5612 // away into any preds.
5613 if (SI
== &*BB
->instructionsWithoutDebug().begin())
5614 if (FoldValueComparisonIntoPredecessors(SI
, Builder
))
5615 return requestResimplify();
5618 // Try to transform the switch into an icmp and a branch.
5619 if (TurnSwitchRangeIntoICmp(SI
, Builder
))
5620 return requestResimplify();
5622 // Remove unreachable cases.
5623 if (eliminateDeadSwitchCases(SI
, Options
.AC
, DL
))
5624 return requestResimplify();
5626 if (switchToSelect(SI
, Builder
, DL
, TTI
))
5627 return requestResimplify();
5629 if (Options
.ForwardSwitchCondToPhi
&& ForwardSwitchConditionToPHI(SI
))
5630 return requestResimplify();
5632 // The conversion from switch to lookup tables results in difficult-to-analyze
5633 // code and makes pruning branches much harder. This is a problem if the
5634 // switch expression itself can still be restricted as a result of inlining or
5635 // CVP. Therefore, only apply this transformation during late stages of the
5636 // optimisation pipeline.
5637 if (Options
.ConvertSwitchToLookupTable
&&
5638 SwitchToLookupTable(SI
, Builder
, DL
, TTI
))
5639 return requestResimplify();
5641 if (ReduceSwitchRange(SI
, Builder
, DL
, TTI
))
5642 return requestResimplify();
5647 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst
*IBI
) {
5648 BasicBlock
*BB
= IBI
->getParent();
5649 bool Changed
= false;
5651 // Eliminate redundant destinations.
5652 SmallPtrSet
<Value
*, 8> Succs
;
5653 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
5654 BasicBlock
*Dest
= IBI
->getDestination(i
);
5655 if (!Dest
->hasAddressTaken() || !Succs
.insert(Dest
).second
) {
5656 Dest
->removePredecessor(BB
);
5657 IBI
->removeDestination(i
);
5664 if (IBI
->getNumDestinations() == 0) {
5665 // If the indirectbr has no successors, change it to unreachable.
5666 new UnreachableInst(IBI
->getContext(), IBI
);
5667 EraseTerminatorAndDCECond(IBI
);
5671 if (IBI
->getNumDestinations() == 1) {
5672 // If the indirectbr has one successor, change it to a direct branch.
5673 BranchInst::Create(IBI
->getDestination(0), IBI
);
5674 EraseTerminatorAndDCECond(IBI
);
5678 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(IBI
->getAddress())) {
5679 if (SimplifyIndirectBrOnSelect(IBI
, SI
))
5680 return requestResimplify();
5685 /// Given an block with only a single landing pad and a unconditional branch
5686 /// try to find another basic block which this one can be merged with. This
5687 /// handles cases where we have multiple invokes with unique landing pads, but
5688 /// a shared handler.
5690 /// We specifically choose to not worry about merging non-empty blocks
5691 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
5692 /// practice, the optimizer produces empty landing pad blocks quite frequently
5693 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
5694 /// sinking in this file)
5696 /// This is primarily a code size optimization. We need to avoid performing
5697 /// any transform which might inhibit optimization (such as our ability to
5698 /// specialize a particular handler via tail commoning). We do this by not
5699 /// merging any blocks which require us to introduce a phi. Since the same
5700 /// values are flowing through both blocks, we don't lose any ability to
5701 /// specialize. If anything, we make such specialization more likely.
5703 /// TODO - This transformation could remove entries from a phi in the target
5704 /// block when the inputs in the phi are the same for the two blocks being
5705 /// merged. In some cases, this could result in removal of the PHI entirely.
5706 static bool TryToMergeLandingPad(LandingPadInst
*LPad
, BranchInst
*BI
,
5708 auto Succ
= BB
->getUniqueSuccessor();
5710 // If there's a phi in the successor block, we'd likely have to introduce
5711 // a phi into the merged landing pad block.
5712 if (isa
<PHINode
>(*Succ
->begin()))
5715 for (BasicBlock
*OtherPred
: predecessors(Succ
)) {
5716 if (BB
== OtherPred
)
5718 BasicBlock::iterator I
= OtherPred
->begin();
5719 LandingPadInst
*LPad2
= dyn_cast
<LandingPadInst
>(I
);
5720 if (!LPad2
|| !LPad2
->isIdenticalTo(LPad
))
5722 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
5724 BranchInst
*BI2
= dyn_cast
<BranchInst
>(I
);
5725 if (!BI2
|| !BI2
->isIdenticalTo(BI
))
5728 // We've found an identical block. Update our predecessors to take that
5729 // path instead and make ourselves dead.
5730 SmallPtrSet
<BasicBlock
*, 16> Preds
;
5731 Preds
.insert(pred_begin(BB
), pred_end(BB
));
5732 for (BasicBlock
*Pred
: Preds
) {
5733 InvokeInst
*II
= cast
<InvokeInst
>(Pred
->getTerminator());
5734 assert(II
->getNormalDest() != BB
&& II
->getUnwindDest() == BB
&&
5735 "unexpected successor");
5736 II
->setUnwindDest(OtherPred
);
5739 // The debug info in OtherPred doesn't cover the merged control flow that
5740 // used to go through BB. We need to delete it or update it.
5741 for (auto I
= OtherPred
->begin(), E
= OtherPred
->end(); I
!= E
;) {
5742 Instruction
&Inst
= *I
;
5744 if (isa
<DbgInfoIntrinsic
>(Inst
))
5745 Inst
.eraseFromParent();
5748 SmallPtrSet
<BasicBlock
*, 16> Succs
;
5749 Succs
.insert(succ_begin(BB
), succ_end(BB
));
5750 for (BasicBlock
*Succ
: Succs
) {
5751 Succ
->removePredecessor(BB
);
5754 IRBuilder
<> Builder(BI
);
5755 Builder
.CreateUnreachable();
5756 BI
->eraseFromParent();
5762 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst
*BI
,
5763 IRBuilder
<> &Builder
) {
5764 BasicBlock
*BB
= BI
->getParent();
5765 BasicBlock
*Succ
= BI
->getSuccessor(0);
5767 // If the Terminator is the only non-phi instruction, simplify the block.
5768 // If LoopHeader is provided, check if the block or its successor is a loop
5769 // header. (This is for early invocations before loop simplify and
5770 // vectorization to keep canonical loop forms for nested loops. These blocks
5771 // can be eliminated when the pass is invoked later in the back-end.)
5772 // Note that if BB has only one predecessor then we do not introduce new
5773 // backedge, so we can eliminate BB.
5774 bool NeedCanonicalLoop
=
5775 Options
.NeedCanonicalLoop
&&
5776 (LoopHeaders
&& BB
->hasNPredecessorsOrMore(2) &&
5777 (LoopHeaders
->count(BB
) || LoopHeaders
->count(Succ
)));
5778 BasicBlock::iterator I
= BB
->getFirstNonPHIOrDbg()->getIterator();
5779 if (I
->isTerminator() && BB
!= &BB
->getParent()->getEntryBlock() &&
5780 !NeedCanonicalLoop
&& TryToSimplifyUncondBranchFromEmptyBlock(BB
))
5783 // If the only instruction in the block is a seteq/setne comparison against a
5784 // constant, try to simplify the block.
5785 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(I
))
5786 if (ICI
->isEquality() && isa
<ConstantInt
>(ICI
->getOperand(1))) {
5787 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
5789 if (I
->isTerminator() &&
5790 tryToSimplifyUncondBranchWithICmpInIt(ICI
, Builder
))
5794 // See if we can merge an empty landing pad block with another which is
5796 if (LandingPadInst
*LPad
= dyn_cast
<LandingPadInst
>(I
)) {
5797 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
5799 if (I
->isTerminator() && TryToMergeLandingPad(LPad
, BI
, BB
))
5803 // If this basic block is ONLY a compare and a branch, and if a predecessor
5804 // branches to us and our successor, fold the comparison into the
5805 // predecessor and use logical operations to update the incoming value
5806 // for PHI nodes in common successor.
5807 if (FoldBranchToCommonDest(BI
, Options
.BonusInstThreshold
))
5808 return requestResimplify();
5812 static BasicBlock
*allPredecessorsComeFromSameSource(BasicBlock
*BB
) {
5813 BasicBlock
*PredPred
= nullptr;
5814 for (auto *P
: predecessors(BB
)) {
5815 BasicBlock
*PPred
= P
->getSinglePredecessor();
5816 if (!PPred
|| (PredPred
&& PredPred
!= PPred
))
5823 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
) {
5824 BasicBlock
*BB
= BI
->getParent();
5825 const Function
*Fn
= BB
->getParent();
5826 if (Fn
&& Fn
->hasFnAttribute(Attribute::OptForFuzzing
))
5829 // Conditional branch
5830 if (isValueEqualityComparison(BI
)) {
5831 // If we only have one predecessor, and if it is a branch on this value,
5832 // see if that predecessor totally determines the outcome of this
5834 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
5835 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI
, OnlyPred
, Builder
))
5836 return requestResimplify();
5838 // This block must be empty, except for the setcond inst, if it exists.
5839 // Ignore dbg intrinsics.
5840 auto I
= BB
->instructionsWithoutDebug().begin();
5842 if (FoldValueComparisonIntoPredecessors(BI
, Builder
))
5843 return requestResimplify();
5844 } else if (&*I
== cast
<Instruction
>(BI
->getCondition())) {
5846 if (&*I
== BI
&& FoldValueComparisonIntoPredecessors(BI
, Builder
))
5847 return requestResimplify();
5851 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5852 if (SimplifyBranchOnICmpChain(BI
, Builder
, DL
))
5855 // If this basic block has dominating predecessor blocks and the dominating
5856 // blocks' conditions imply BI's condition, we know the direction of BI.
5857 Optional
<bool> Imp
= isImpliedByDomCondition(BI
->getCondition(), BI
, DL
);
5859 // Turn this into a branch on constant.
5860 auto *OldCond
= BI
->getCondition();
5861 ConstantInt
*TorF
= *Imp
? ConstantInt::getTrue(BB
->getContext())
5862 : ConstantInt::getFalse(BB
->getContext());
5863 BI
->setCondition(TorF
);
5864 RecursivelyDeleteTriviallyDeadInstructions(OldCond
);
5865 return requestResimplify();
5868 // If this basic block is ONLY a compare and a branch, and if a predecessor
5869 // branches to us and one of our successors, fold the comparison into the
5870 // predecessor and use logical operations to pick the right destination.
5871 if (FoldBranchToCommonDest(BI
, Options
.BonusInstThreshold
))
5872 return requestResimplify();
5874 // We have a conditional branch to two blocks that are only reachable
5875 // from BI. We know that the condbr dominates the two blocks, so see if
5876 // there is any identical code in the "then" and "else" blocks. If so, we
5877 // can hoist it up to the branching block.
5878 if (BI
->getSuccessor(0)->getSinglePredecessor()) {
5879 if (BI
->getSuccessor(1)->getSinglePredecessor()) {
5880 if (HoistThenElseCodeToIf(BI
, TTI
))
5881 return requestResimplify();
5883 // If Successor #1 has multiple preds, we may be able to conditionally
5884 // execute Successor #0 if it branches to Successor #1.
5885 Instruction
*Succ0TI
= BI
->getSuccessor(0)->getTerminator();
5886 if (Succ0TI
->getNumSuccessors() == 1 &&
5887 Succ0TI
->getSuccessor(0) == BI
->getSuccessor(1))
5888 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(0), TTI
))
5889 return requestResimplify();
5891 } else if (BI
->getSuccessor(1)->getSinglePredecessor()) {
5892 // If Successor #0 has multiple preds, we may be able to conditionally
5893 // execute Successor #1 if it branches to Successor #0.
5894 Instruction
*Succ1TI
= BI
->getSuccessor(1)->getTerminator();
5895 if (Succ1TI
->getNumSuccessors() == 1 &&
5896 Succ1TI
->getSuccessor(0) == BI
->getSuccessor(0))
5897 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(1), TTI
))
5898 return requestResimplify();
5901 // If this is a branch on a phi node in the current block, thread control
5902 // through this block if any PHI node entries are constants.
5903 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition()))
5904 if (PN
->getParent() == BI
->getParent())
5905 if (FoldCondBranchOnPHI(BI
, DL
, Options
.AC
))
5906 return requestResimplify();
5908 // Scan predecessor blocks for conditional branches.
5909 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
5910 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
5911 if (PBI
!= BI
&& PBI
->isConditional())
5912 if (SimplifyCondBranchToCondBranch(PBI
, BI
, DL
))
5913 return requestResimplify();
5915 // Look for diamond patterns.
5916 if (MergeCondStores
)
5917 if (BasicBlock
*PrevBB
= allPredecessorsComeFromSameSource(BB
))
5918 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>(PrevBB
->getTerminator()))
5919 if (PBI
!= BI
&& PBI
->isConditional())
5920 if (mergeConditionalStores(PBI
, BI
, DL
))
5921 return requestResimplify();
5926 /// Check if passing a value to an instruction will cause undefined behavior.
5927 static bool passingValueIsAlwaysUndefined(Value
*V
, Instruction
*I
) {
5928 Constant
*C
= dyn_cast
<Constant
>(V
);
5935 if (C
->isNullValue() || isa
<UndefValue
>(C
)) {
5936 // Only look at the first use, avoid hurting compile time with long uselists
5937 User
*Use
= *I
->user_begin();
5939 // Now make sure that there are no instructions in between that can alter
5940 // control flow (eg. calls)
5941 for (BasicBlock::iterator
5942 i
= ++BasicBlock::iterator(I
),
5943 UI
= BasicBlock::iterator(dyn_cast
<Instruction
>(Use
));
5945 if (i
== I
->getParent()->end() || i
->mayHaveSideEffects())
5948 // Look through GEPs. A load from a GEP derived from NULL is still undefined
5949 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Use
))
5950 if (GEP
->getPointerOperand() == I
)
5951 return passingValueIsAlwaysUndefined(V
, GEP
);
5953 // Look through bitcasts.
5954 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(Use
))
5955 return passingValueIsAlwaysUndefined(V
, BC
);
5957 // Load from null is undefined.
5958 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Use
))
5959 if (!LI
->isVolatile())
5960 return !NullPointerIsDefined(LI
->getFunction(),
5961 LI
->getPointerAddressSpace());
5963 // Store to null is undefined.
5964 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Use
))
5965 if (!SI
->isVolatile())
5966 return (!NullPointerIsDefined(SI
->getFunction(),
5967 SI
->getPointerAddressSpace())) &&
5968 SI
->getPointerOperand() == I
;
5970 // A call to null is undefined.
5971 if (auto CS
= CallSite(Use
))
5972 return !NullPointerIsDefined(CS
->getFunction()) &&
5973 CS
.getCalledValue() == I
;
5978 /// If BB has an incoming value that will always trigger undefined behavior
5979 /// (eg. null pointer dereference), remove the branch leading here.
5980 static bool removeUndefIntroducingPredecessor(BasicBlock
*BB
) {
5981 for (PHINode
&PHI
: BB
->phis())
5982 for (unsigned i
= 0, e
= PHI
.getNumIncomingValues(); i
!= e
; ++i
)
5983 if (passingValueIsAlwaysUndefined(PHI
.getIncomingValue(i
), &PHI
)) {
5984 Instruction
*T
= PHI
.getIncomingBlock(i
)->getTerminator();
5985 IRBuilder
<> Builder(T
);
5986 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(T
)) {
5987 BB
->removePredecessor(PHI
.getIncomingBlock(i
));
5988 // Turn uncoditional branches into unreachables and remove the dead
5989 // destination from conditional branches.
5990 if (BI
->isUnconditional())
5991 Builder
.CreateUnreachable();
5993 Builder
.CreateBr(BI
->getSuccessor(0) == BB
? BI
->getSuccessor(1)
5994 : BI
->getSuccessor(0));
5995 BI
->eraseFromParent();
5998 // TODO: SwitchInst.
6004 bool SimplifyCFGOpt::simplifyOnce(BasicBlock
*BB
) {
6005 bool Changed
= false;
6007 assert(BB
&& BB
->getParent() && "Block not embedded in function!");
6008 assert(BB
->getTerminator() && "Degenerate basic block encountered!");
6010 // Remove basic blocks that have no predecessors (except the entry block)...
6011 // or that just have themself as a predecessor. These are unreachable.
6012 if ((pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()) ||
6013 BB
->getSinglePredecessor() == BB
) {
6014 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB
);
6015 DeleteDeadBlock(BB
);
6019 // Check to see if we can constant propagate this terminator instruction
6021 Changed
|= ConstantFoldTerminator(BB
, true);
6023 // Check for and eliminate duplicate PHI nodes in this block.
6024 Changed
|= EliminateDuplicatePHINodes(BB
);
6026 // Check for and remove branches that will always cause undefined behavior.
6027 Changed
|= removeUndefIntroducingPredecessor(BB
);
6029 // Merge basic blocks into their predecessor if there is only one distinct
6030 // pred, and if there is only one distinct successor of the predecessor, and
6031 // if there are no PHI nodes.
6032 if (MergeBlockIntoPredecessor(BB
))
6035 if (SinkCommon
&& Options
.SinkCommonInsts
)
6036 Changed
|= SinkCommonCodeFromPredecessors(BB
);
6038 IRBuilder
<> Builder(BB
);
6040 // If there is a trivial two-entry PHI node in this basic block, and we can
6041 // eliminate it, do so now.
6042 if (auto *PN
= dyn_cast
<PHINode
>(BB
->begin()))
6043 if (PN
->getNumIncomingValues() == 2)
6044 Changed
|= FoldTwoEntryPHINode(PN
, TTI
, DL
);
6046 Builder
.SetInsertPoint(BB
->getTerminator());
6047 if (auto *BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
6048 if (BI
->isUnconditional()) {
6049 if (SimplifyUncondBranch(BI
, Builder
))
6052 if (SimplifyCondBranch(BI
, Builder
))
6055 } else if (auto *RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
6056 if (SimplifyReturn(RI
, Builder
))
6058 } else if (auto *RI
= dyn_cast
<ResumeInst
>(BB
->getTerminator())) {
6059 if (SimplifyResume(RI
, Builder
))
6061 } else if (auto *RI
= dyn_cast
<CleanupReturnInst
>(BB
->getTerminator())) {
6062 if (SimplifyCleanupReturn(RI
))
6064 } else if (auto *SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
6065 if (SimplifySwitch(SI
, Builder
))
6067 } else if (auto *UI
= dyn_cast
<UnreachableInst
>(BB
->getTerminator())) {
6068 if (SimplifyUnreachable(UI
))
6070 } else if (auto *IBI
= dyn_cast
<IndirectBrInst
>(BB
->getTerminator())) {
6071 if (SimplifyIndirectBr(IBI
))
6078 bool SimplifyCFGOpt::run(BasicBlock
*BB
) {
6079 bool Changed
= false;
6081 // Repeated simplify BB as long as resimplification is requested.
6085 // Perform one round of simplifcation. Resimplify flag will be set if
6086 // another iteration is requested.
6087 Changed
|= simplifyOnce(BB
);
6088 } while (Resimplify
);
6093 bool llvm::simplifyCFG(BasicBlock
*BB
, const TargetTransformInfo
&TTI
,
6094 const SimplifyCFGOptions
&Options
,
6095 SmallPtrSetImpl
<BasicBlock
*> *LoopHeaders
) {
6096 return SimplifyCFGOpt(TTI
, BB
->getModule()->getDataLayout(), LoopHeaders
,