Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Transforms / Vectorize / LoopVectorizationLegality.cpp
blob1d030944815f0c212f3a5df2a2358a849b870dcd
1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
16 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
17 #include "llvm/Analysis/VectorUtils.h"
18 #include "llvm/IR/IntrinsicInst.h"
20 using namespace llvm;
22 #define LV_NAME "loop-vectorize"
23 #define DEBUG_TYPE LV_NAME
25 extern cl::opt<bool> EnableVPlanPredication;
27 static cl::opt<bool>
28 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
29 cl::desc("Enable if-conversion during vectorization."));
31 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
32 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
33 cl::desc("The maximum allowed number of runtime memory checks with a "
34 "vectorize(enable) pragma."));
36 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
37 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
38 cl::desc("The maximum number of SCEV checks allowed."));
40 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
41 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
42 cl::desc("The maximum number of SCEV checks allowed with a "
43 "vectorize(enable) pragma"));
45 /// Maximum vectorization interleave count.
46 static const unsigned MaxInterleaveFactor = 16;
48 namespace llvm {
50 OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
51 StringRef RemarkName,
52 Loop *TheLoop,
53 Instruction *I) {
54 Value *CodeRegion = TheLoop->getHeader();
55 DebugLoc DL = TheLoop->getStartLoc();
57 if (I) {
58 CodeRegion = I->getParent();
59 // If there is no debug location attached to the instruction, revert back to
60 // using the loop's.
61 if (I->getDebugLoc())
62 DL = I->getDebugLoc();
65 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
66 R << "loop not vectorized: ";
67 return R;
70 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
71 switch (Kind) {
72 case HK_WIDTH:
73 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
74 case HK_UNROLL:
75 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
76 case HK_FORCE:
77 return (Val <= 1);
78 case HK_ISVECTORIZED:
79 return (Val == 0 || Val == 1);
81 return false;
84 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
85 bool InterleaveOnlyWhenForced,
86 OptimizationRemarkEmitter &ORE)
87 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
88 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
89 Force("vectorize.enable", FK_Undefined, HK_FORCE),
90 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
91 // Populate values with existing loop metadata.
92 getHintsFromMetadata();
94 // force-vector-interleave overrides DisableInterleaving.
95 if (VectorizerParams::isInterleaveForced())
96 Interleave.Value = VectorizerParams::VectorizationInterleave;
98 if (IsVectorized.Value != 1)
99 // If the vectorization width and interleaving count are both 1 then
100 // consider the loop to have been already vectorized because there's
101 // nothing more that we can do.
102 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
103 LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
104 << "LV: Interleaving disabled by the pass manager\n");
107 void LoopVectorizeHints::setAlreadyVectorized() {
108 LLVMContext &Context = TheLoop->getHeader()->getContext();
110 MDNode *IsVectorizedMD = MDNode::get(
111 Context,
112 {MDString::get(Context, "llvm.loop.isvectorized"),
113 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
114 MDNode *LoopID = TheLoop->getLoopID();
115 MDNode *NewLoopID =
116 makePostTransformationMetadata(Context, LoopID,
117 {Twine(Prefix(), "vectorize.").str(),
118 Twine(Prefix(), "interleave.").str()},
119 {IsVectorizedMD});
120 TheLoop->setLoopID(NewLoopID);
122 // Update internal cache.
123 IsVectorized.Value = 1;
126 bool LoopVectorizeHints::allowVectorization(
127 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
128 if (getForce() == LoopVectorizeHints::FK_Disabled) {
129 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
130 emitRemarkWithHints();
131 return false;
134 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
135 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
136 emitRemarkWithHints();
137 return false;
140 if (getIsVectorized() == 1) {
141 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
142 // FIXME: Add interleave.disable metadata. This will allow
143 // vectorize.disable to be used without disabling the pass and errors
144 // to differentiate between disabled vectorization and a width of 1.
145 ORE.emit([&]() {
146 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
147 "AllDisabled", L->getStartLoc(),
148 L->getHeader())
149 << "loop not vectorized: vectorization and interleaving are "
150 "explicitly disabled, or the loop has already been "
151 "vectorized";
153 return false;
156 return true;
159 void LoopVectorizeHints::emitRemarkWithHints() const {
160 using namespace ore;
162 ORE.emit([&]() {
163 if (Force.Value == LoopVectorizeHints::FK_Disabled)
164 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
165 TheLoop->getStartLoc(),
166 TheLoop->getHeader())
167 << "loop not vectorized: vectorization is explicitly disabled";
168 else {
169 OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
170 TheLoop->getStartLoc(), TheLoop->getHeader());
171 R << "loop not vectorized";
172 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
173 R << " (Force=" << NV("Force", true);
174 if (Width.Value != 0)
175 R << ", Vector Width=" << NV("VectorWidth", Width.Value);
176 if (Interleave.Value != 0)
177 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
178 R << ")";
180 return R;
185 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
186 if (getWidth() == 1)
187 return LV_NAME;
188 if (getForce() == LoopVectorizeHints::FK_Disabled)
189 return LV_NAME;
190 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
191 return LV_NAME;
192 return OptimizationRemarkAnalysis::AlwaysPrint;
195 void LoopVectorizeHints::getHintsFromMetadata() {
196 MDNode *LoopID = TheLoop->getLoopID();
197 if (!LoopID)
198 return;
200 // First operand should refer to the loop id itself.
201 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
202 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
204 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
205 const MDString *S = nullptr;
206 SmallVector<Metadata *, 4> Args;
208 // The expected hint is either a MDString or a MDNode with the first
209 // operand a MDString.
210 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
211 if (!MD || MD->getNumOperands() == 0)
212 continue;
213 S = dyn_cast<MDString>(MD->getOperand(0));
214 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
215 Args.push_back(MD->getOperand(i));
216 } else {
217 S = dyn_cast<MDString>(LoopID->getOperand(i));
218 assert(Args.size() == 0 && "too many arguments for MDString");
221 if (!S)
222 continue;
224 // Check if the hint starts with the loop metadata prefix.
225 StringRef Name = S->getString();
226 if (Args.size() == 1)
227 setHint(Name, Args[0]);
231 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
232 if (!Name.startswith(Prefix()))
233 return;
234 Name = Name.substr(Prefix().size(), StringRef::npos);
236 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
237 if (!C)
238 return;
239 unsigned Val = C->getZExtValue();
241 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
242 for (auto H : Hints) {
243 if (Name == H->Name) {
244 if (H->validate(Val))
245 H->Value = Val;
246 else
247 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
248 break;
253 bool LoopVectorizationRequirements::doesNotMeet(
254 Function *F, Loop *L, const LoopVectorizeHints &Hints) {
255 const char *PassName = Hints.vectorizeAnalysisPassName();
256 bool Failed = false;
257 if (UnsafeAlgebraInst && !Hints.allowReordering()) {
258 ORE.emit([&]() {
259 return OptimizationRemarkAnalysisFPCommute(
260 PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
261 UnsafeAlgebraInst->getParent())
262 << "loop not vectorized: cannot prove it is safe to reorder "
263 "floating-point operations";
265 Failed = true;
268 // Test if runtime memcheck thresholds are exceeded.
269 bool PragmaThresholdReached =
270 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
271 bool ThresholdReached =
272 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
273 if ((ThresholdReached && !Hints.allowReordering()) ||
274 PragmaThresholdReached) {
275 ORE.emit([&]() {
276 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
277 L->getStartLoc(),
278 L->getHeader())
279 << "loop not vectorized: cannot prove it is safe to reorder "
280 "memory operations";
282 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
283 Failed = true;
286 return Failed;
289 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
290 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
291 // executing the inner loop will execute the same iterations). This check is
292 // very constrained for now but it will be relaxed in the future. \p Lp is
293 // considered uniform if it meets all the following conditions:
294 // 1) it has a canonical IV (starting from 0 and with stride 1),
295 // 2) its latch terminator is a conditional branch and,
296 // 3) its latch condition is a compare instruction whose operands are the
297 // canonical IV and an OuterLp invariant.
298 // This check doesn't take into account the uniformity of other conditions not
299 // related to the loop latch because they don't affect the loop uniformity.
301 // NOTE: We decided to keep all these checks and its associated documentation
302 // together so that we can easily have a picture of the current supported loop
303 // nests. However, some of the current checks don't depend on \p OuterLp and
304 // would be redundantly executed for each \p Lp if we invoked this function for
305 // different candidate outer loops. This is not the case for now because we
306 // don't currently have the infrastructure to evaluate multiple candidate outer
307 // loops and \p OuterLp will be a fixed parameter while we only support explicit
308 // outer loop vectorization. It's also very likely that these checks go away
309 // before introducing the aforementioned infrastructure. However, if this is not
310 // the case, we should move the \p OuterLp independent checks to a separate
311 // function that is only executed once for each \p Lp.
312 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
313 assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
315 // If Lp is the outer loop, it's uniform by definition.
316 if (Lp == OuterLp)
317 return true;
318 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
320 // 1.
321 PHINode *IV = Lp->getCanonicalInductionVariable();
322 if (!IV) {
323 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
324 return false;
327 // 2.
328 BasicBlock *Latch = Lp->getLoopLatch();
329 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
330 if (!LatchBr || LatchBr->isUnconditional()) {
331 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
332 return false;
335 // 3.
336 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
337 if (!LatchCmp) {
338 LLVM_DEBUG(
339 dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
340 return false;
343 Value *CondOp0 = LatchCmp->getOperand(0);
344 Value *CondOp1 = LatchCmp->getOperand(1);
345 Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
346 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
347 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
348 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
349 return false;
352 return true;
355 // Return true if \p Lp and all its nested loops are uniform with regard to \p
356 // OuterLp.
357 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
358 if (!isUniformLoop(Lp, OuterLp))
359 return false;
361 // Check if nested loops are uniform.
362 for (Loop *SubLp : *Lp)
363 if (!isUniformLoopNest(SubLp, OuterLp))
364 return false;
366 return true;
369 /// Check whether it is safe to if-convert this phi node.
371 /// Phi nodes with constant expressions that can trap are not safe to if
372 /// convert.
373 static bool canIfConvertPHINodes(BasicBlock *BB) {
374 for (PHINode &Phi : BB->phis()) {
375 for (Value *V : Phi.incoming_values())
376 if (auto *C = dyn_cast<Constant>(V))
377 if (C->canTrap())
378 return false;
380 return true;
383 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
384 if (Ty->isPointerTy())
385 return DL.getIntPtrType(Ty);
387 // It is possible that char's or short's overflow when we ask for the loop's
388 // trip count, work around this by changing the type size.
389 if (Ty->getScalarSizeInBits() < 32)
390 return Type::getInt32Ty(Ty->getContext());
392 return Ty;
395 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
396 Ty0 = convertPointerToIntegerType(DL, Ty0);
397 Ty1 = convertPointerToIntegerType(DL, Ty1);
398 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
399 return Ty0;
400 return Ty1;
403 /// Check that the instruction has outside loop users and is not an
404 /// identified reduction variable.
405 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
406 SmallPtrSetImpl<Value *> &AllowedExit) {
407 // Reductions, Inductions and non-header phis are allowed to have exit users. All
408 // other instructions must not have external users.
409 if (!AllowedExit.count(Inst))
410 // Check that all of the users of the loop are inside the BB.
411 for (User *U : Inst->users()) {
412 Instruction *UI = cast<Instruction>(U);
413 // This user may be a reduction exit value.
414 if (!TheLoop->contains(UI)) {
415 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
416 return true;
419 return false;
422 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
423 const ValueToValueMap &Strides =
424 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
426 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
427 if (Stride == 1 || Stride == -1)
428 return Stride;
429 return 0;
432 bool LoopVectorizationLegality::isUniform(Value *V) {
433 return LAI->isUniform(V);
436 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
437 assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
438 // Store the result and return it at the end instead of exiting early, in case
439 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
440 bool Result = true;
441 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
443 for (BasicBlock *BB : TheLoop->blocks()) {
444 // Check whether the BB terminator is a BranchInst. Any other terminator is
445 // not supported yet.
446 auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
447 if (!Br) {
448 LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n");
449 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
450 << "loop control flow is not understood by vectorizer");
451 if (DoExtraAnalysis)
452 Result = false;
453 else
454 return false;
457 // Check whether the BranchInst is a supported one. Only unconditional
458 // branches, conditional branches with an outer loop invariant condition or
459 // backedges are supported.
460 // FIXME: We skip these checks when VPlan predication is enabled as we
461 // want to allow divergent branches. This whole check will be removed
462 // once VPlan predication is on by default.
463 if (!EnableVPlanPredication && Br && Br->isConditional() &&
464 !TheLoop->isLoopInvariant(Br->getCondition()) &&
465 !LI->isLoopHeader(Br->getSuccessor(0)) &&
466 !LI->isLoopHeader(Br->getSuccessor(1))) {
467 LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n");
468 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
469 << "loop control flow is not understood by vectorizer");
470 if (DoExtraAnalysis)
471 Result = false;
472 else
473 return false;
477 // Check whether inner loops are uniform. At this point, we only support
478 // simple outer loops scenarios with uniform nested loops.
479 if (!isUniformLoopNest(TheLoop /*loop nest*/,
480 TheLoop /*context outer loop*/)) {
481 LLVM_DEBUG(
482 dbgs()
483 << "LV: Not vectorizing: Outer loop contains divergent loops.\n");
484 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
485 << "loop control flow is not understood by vectorizer");
486 if (DoExtraAnalysis)
487 Result = false;
488 else
489 return false;
492 // Check whether we are able to set up outer loop induction.
493 if (!setupOuterLoopInductions()) {
494 LLVM_DEBUG(
495 dbgs() << "LV: Not vectorizing: Unsupported outer loop Phi(s).\n");
496 ORE->emit(createMissedAnalysis("UnsupportedPhi")
497 << "Unsupported outer loop Phi(s)");
498 if (DoExtraAnalysis)
499 Result = false;
500 else
501 return false;
504 return Result;
507 void LoopVectorizationLegality::addInductionPhi(
508 PHINode *Phi, const InductionDescriptor &ID,
509 SmallPtrSetImpl<Value *> &AllowedExit) {
510 Inductions[Phi] = ID;
512 // In case this induction also comes with casts that we know we can ignore
513 // in the vectorized loop body, record them here. All casts could be recorded
514 // here for ignoring, but suffices to record only the first (as it is the
515 // only one that may bw used outside the cast sequence).
516 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
517 if (!Casts.empty())
518 InductionCastsToIgnore.insert(*Casts.begin());
520 Type *PhiTy = Phi->getType();
521 const DataLayout &DL = Phi->getModule()->getDataLayout();
523 // Get the widest type.
524 if (!PhiTy->isFloatingPointTy()) {
525 if (!WidestIndTy)
526 WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
527 else
528 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
531 // Int inductions are special because we only allow one IV.
532 if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
533 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
534 isa<Constant>(ID.getStartValue()) &&
535 cast<Constant>(ID.getStartValue())->isNullValue()) {
537 // Use the phi node with the widest type as induction. Use the last
538 // one if there are multiple (no good reason for doing this other
539 // than it is expedient). We've checked that it begins at zero and
540 // steps by one, so this is a canonical induction variable.
541 if (!PrimaryInduction || PhiTy == WidestIndTy)
542 PrimaryInduction = Phi;
545 // Both the PHI node itself, and the "post-increment" value feeding
546 // back into the PHI node may have external users.
547 // We can allow those uses, except if the SCEVs we have for them rely
548 // on predicates that only hold within the loop, since allowing the exit
549 // currently means re-using this SCEV outside the loop (see PR33706 for more
550 // details).
551 if (PSE.getUnionPredicate().isAlwaysTrue()) {
552 AllowedExit.insert(Phi);
553 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
556 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
559 bool LoopVectorizationLegality::setupOuterLoopInductions() {
560 BasicBlock *Header = TheLoop->getHeader();
562 // Returns true if a given Phi is a supported induction.
563 auto isSupportedPhi = [&](PHINode &Phi) -> bool {
564 InductionDescriptor ID;
565 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
566 ID.getKind() == InductionDescriptor::IK_IntInduction) {
567 addInductionPhi(&Phi, ID, AllowedExit);
568 return true;
569 } else {
570 // Bail out for any Phi in the outer loop header that is not a supported
571 // induction.
572 LLVM_DEBUG(
573 dbgs()
574 << "LV: Found unsupported PHI for outer loop vectorization.\n");
575 return false;
579 if (llvm::all_of(Header->phis(), isSupportedPhi))
580 return true;
581 else
582 return false;
585 bool LoopVectorizationLegality::canVectorizeInstrs() {
586 BasicBlock *Header = TheLoop->getHeader();
588 // Look for the attribute signaling the absence of NaNs.
589 Function &F = *Header->getParent();
590 HasFunNoNaNAttr =
591 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
593 // For each block in the loop.
594 for (BasicBlock *BB : TheLoop->blocks()) {
595 // Scan the instructions in the block and look for hazards.
596 for (Instruction &I : *BB) {
597 if (auto *Phi = dyn_cast<PHINode>(&I)) {
598 Type *PhiTy = Phi->getType();
599 // Check that this PHI type is allowed.
600 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
601 !PhiTy->isPointerTy()) {
602 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
603 << "loop control flow is not understood by vectorizer");
604 LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
605 return false;
608 // If this PHINode is not in the header block, then we know that we
609 // can convert it to select during if-conversion. No need to check if
610 // the PHIs in this block are induction or reduction variables.
611 if (BB != Header) {
612 // Non-header phi nodes that have outside uses can be vectorized. Add
613 // them to the list of allowed exits.
614 // Unsafe cyclic dependencies with header phis are identified during
615 // legalization for reduction, induction and first order
616 // recurrences.
617 continue;
620 // We only allow if-converted PHIs with exactly two incoming values.
621 if (Phi->getNumIncomingValues() != 2) {
622 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
623 << "control flow not understood by vectorizer");
624 LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
625 return false;
628 RecurrenceDescriptor RedDes;
629 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
630 DT)) {
631 if (RedDes.hasUnsafeAlgebra())
632 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
633 AllowedExit.insert(RedDes.getLoopExitInstr());
634 Reductions[Phi] = RedDes;
635 continue;
638 // TODO: Instead of recording the AllowedExit, it would be good to record the
639 // complementary set: NotAllowedExit. These include (but may not be
640 // limited to):
641 // 1. Reduction phis as they represent the one-before-last value, which
642 // is not available when vectorized
643 // 2. Induction phis and increment when SCEV predicates cannot be used
644 // outside the loop - see addInductionPhi
645 // 3. Non-Phis with outside uses when SCEV predicates cannot be used
646 // outside the loop - see call to hasOutsideLoopUser in the non-phi
647 // handling below
648 // 4. FirstOrderRecurrence phis that can possibly be handled by
649 // extraction.
650 // By recording these, we can then reason about ways to vectorize each
651 // of these NotAllowedExit.
652 InductionDescriptor ID;
653 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
654 addInductionPhi(Phi, ID, AllowedExit);
655 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
656 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
657 continue;
660 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
661 SinkAfter, DT)) {
662 FirstOrderRecurrences.insert(Phi);
663 continue;
666 // As a last resort, coerce the PHI to a AddRec expression
667 // and re-try classifying it a an induction PHI.
668 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
669 addInductionPhi(Phi, ID, AllowedExit);
670 continue;
673 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
674 << "value that could not be identified as "
675 "reduction is used outside the loop");
676 LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
677 return false;
678 } // end of PHI handling
680 // We handle calls that:
681 // * Are debug info intrinsics.
682 // * Have a mapping to an IR intrinsic.
683 // * Have a vector version available.
684 auto *CI = dyn_cast<CallInst>(&I);
685 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
686 !isa<DbgInfoIntrinsic>(CI) &&
687 !(CI->getCalledFunction() && TLI &&
688 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
689 // If the call is a recognized math libary call, it is likely that
690 // we can vectorize it given loosened floating-point constraints.
691 LibFunc Func;
692 bool IsMathLibCall =
693 TLI && CI->getCalledFunction() &&
694 CI->getType()->isFloatingPointTy() &&
695 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
696 TLI->hasOptimizedCodeGen(Func);
698 if (IsMathLibCall) {
699 // TODO: Ideally, we should not use clang-specific language here,
700 // but it's hard to provide meaningful yet generic advice.
701 // Also, should this be guarded by allowExtraAnalysis() and/or be part
702 // of the returned info from isFunctionVectorizable()?
703 ORE->emit(createMissedAnalysis("CantVectorizeLibcall", CI)
704 << "library call cannot be vectorized. "
705 "Try compiling with -fno-math-errno, -ffast-math, "
706 "or similar flags");
707 } else {
708 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
709 << "call instruction cannot be vectorized");
711 LLVM_DEBUG(
712 dbgs() << "LV: Found a non-intrinsic callsite.\n");
713 return false;
716 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
717 // second argument is the same (i.e. loop invariant)
718 if (CI && hasVectorInstrinsicScalarOpd(
719 getVectorIntrinsicIDForCall(CI, TLI), 1)) {
720 auto *SE = PSE.getSE();
721 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
722 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
723 << "intrinsic instruction cannot be vectorized");
724 LLVM_DEBUG(dbgs()
725 << "LV: Found unvectorizable intrinsic " << *CI << "\n");
726 return false;
730 // Check that the instruction return type is vectorizable.
731 // Also, we can't vectorize extractelement instructions.
732 if ((!VectorType::isValidElementType(I.getType()) &&
733 !I.getType()->isVoidTy()) ||
734 isa<ExtractElementInst>(I)) {
735 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
736 << "instruction return type cannot be vectorized");
737 LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
738 return false;
741 // Check that the stored type is vectorizable.
742 if (auto *ST = dyn_cast<StoreInst>(&I)) {
743 Type *T = ST->getValueOperand()->getType();
744 if (!VectorType::isValidElementType(T)) {
745 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
746 << "store instruction cannot be vectorized");
747 return false;
750 // FP instructions can allow unsafe algebra, thus vectorizable by
751 // non-IEEE-754 compliant SIMD units.
752 // This applies to floating-point math operations and calls, not memory
753 // operations, shuffles, or casts, as they don't change precision or
754 // semantics.
755 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
756 !I.isFast()) {
757 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
758 Hints->setPotentiallyUnsafe();
761 // Reduction instructions are allowed to have exit users.
762 // All other instructions must not have external users.
763 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
764 // We can safely vectorize loops where instructions within the loop are
765 // used outside the loop only if the SCEV predicates within the loop is
766 // same as outside the loop. Allowing the exit means reusing the SCEV
767 // outside the loop.
768 if (PSE.getUnionPredicate().isAlwaysTrue()) {
769 AllowedExit.insert(&I);
770 continue;
772 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
773 << "value cannot be used outside the loop");
774 return false;
776 } // next instr.
779 if (!PrimaryInduction) {
780 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
781 if (Inductions.empty()) {
782 ORE->emit(createMissedAnalysis("NoInductionVariable")
783 << "loop induction variable could not be identified");
784 return false;
785 } else if (!WidestIndTy) {
786 ORE->emit(createMissedAnalysis("NoIntegerInductionVariable")
787 << "integer loop induction variable could not be identified");
788 return false;
792 // Now we know the widest induction type, check if our found induction
793 // is the same size. If it's not, unset it here and InnerLoopVectorizer
794 // will create another.
795 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
796 PrimaryInduction = nullptr;
798 return true;
801 bool LoopVectorizationLegality::canVectorizeMemory() {
802 LAI = &(*GetLAA)(*TheLoop);
803 const OptimizationRemarkAnalysis *LAR = LAI->getReport();
804 if (LAR) {
805 ORE->emit([&]() {
806 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
807 "loop not vectorized: ", *LAR);
810 if (!LAI->canVectorizeMemory())
811 return false;
813 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
814 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
815 << "write to a loop invariant address could not "
816 "be vectorized");
817 LLVM_DEBUG(
818 dbgs() << "LV: Non vectorizable stores to a uniform address\n");
819 return false;
821 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
822 PSE.addPredicate(LAI->getPSE().getUnionPredicate());
824 return true;
827 bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
828 Value *In0 = const_cast<Value *>(V);
829 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
830 if (!PN)
831 return false;
833 return Inductions.count(PN);
836 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
837 auto *Inst = dyn_cast<Instruction>(V);
838 return (Inst && InductionCastsToIgnore.count(Inst));
841 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
842 return isInductionPhi(V) || isCastedInductionVariable(V);
845 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
846 return FirstOrderRecurrences.count(Phi);
849 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
850 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
853 bool LoopVectorizationLegality::blockCanBePredicated(
854 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
855 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
857 for (Instruction &I : *BB) {
858 // Check that we don't have a constant expression that can trap as operand.
859 for (Value *Operand : I.operands()) {
860 if (auto *C = dyn_cast<Constant>(Operand))
861 if (C->canTrap())
862 return false;
864 // We might be able to hoist the load.
865 if (I.mayReadFromMemory()) {
866 auto *LI = dyn_cast<LoadInst>(&I);
867 if (!LI)
868 return false;
869 if (!SafePtrs.count(LI->getPointerOperand())) {
870 // !llvm.mem.parallel_loop_access implies if-conversion safety.
871 // Otherwise, record that the load needs (real or emulated) masking
872 // and let the cost model decide.
873 if (!IsAnnotatedParallel)
874 MaskedOp.insert(LI);
875 continue;
879 if (I.mayWriteToMemory()) {
880 auto *SI = dyn_cast<StoreInst>(&I);
881 if (!SI)
882 return false;
883 // Predicated store requires some form of masking:
884 // 1) masked store HW instruction,
885 // 2) emulation via load-blend-store (only if safe and legal to do so,
886 // be aware on the race conditions), or
887 // 3) element-by-element predicate check and scalar store.
888 MaskedOp.insert(SI);
889 continue;
891 if (I.mayThrow())
892 return false;
895 return true;
898 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
899 if (!EnableIfConversion) {
900 ORE->emit(createMissedAnalysis("IfConversionDisabled")
901 << "if-conversion is disabled");
902 return false;
905 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
907 // A list of pointers that we can safely read and write to.
908 SmallPtrSet<Value *, 8> SafePointes;
910 // Collect safe addresses.
911 for (BasicBlock *BB : TheLoop->blocks()) {
912 if (blockNeedsPredication(BB))
913 continue;
915 for (Instruction &I : *BB)
916 if (auto *Ptr = getLoadStorePointerOperand(&I))
917 SafePointes.insert(Ptr);
920 // Collect the blocks that need predication.
921 BasicBlock *Header = TheLoop->getHeader();
922 for (BasicBlock *BB : TheLoop->blocks()) {
923 // We don't support switch statements inside loops.
924 if (!isa<BranchInst>(BB->getTerminator())) {
925 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
926 << "loop contains a switch statement");
927 return false;
930 // We must be able to predicate all blocks that need to be predicated.
931 if (blockNeedsPredication(BB)) {
932 if (!blockCanBePredicated(BB, SafePointes)) {
933 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
934 << "control flow cannot be substituted for a select");
935 return false;
937 } else if (BB != Header && !canIfConvertPHINodes(BB)) {
938 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
939 << "control flow cannot be substituted for a select");
940 return false;
944 // We can if-convert this loop.
945 return true;
948 // Helper function to canVectorizeLoopNestCFG.
949 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
950 bool UseVPlanNativePath) {
951 assert((UseVPlanNativePath || Lp->empty()) &&
952 "VPlan-native path is not enabled.");
954 // TODO: ORE should be improved to show more accurate information when an
955 // outer loop can't be vectorized because a nested loop is not understood or
956 // legal. Something like: "outer_loop_location: loop not vectorized:
957 // (inner_loop_location) loop control flow is not understood by vectorizer".
959 // Store the result and return it at the end instead of exiting early, in case
960 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
961 bool Result = true;
962 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
964 // We must have a loop in canonical form. Loops with indirectbr in them cannot
965 // be canonicalized.
966 if (!Lp->getLoopPreheader()) {
967 LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n");
968 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
969 << "loop control flow is not understood by vectorizer");
970 if (DoExtraAnalysis)
971 Result = false;
972 else
973 return false;
976 // We must have a single backedge.
977 if (Lp->getNumBackEdges() != 1) {
978 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
979 << "loop control flow is not understood by vectorizer");
980 if (DoExtraAnalysis)
981 Result = false;
982 else
983 return false;
986 // We must have a single exiting block.
987 if (!Lp->getExitingBlock()) {
988 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
989 << "loop control flow is not understood by vectorizer");
990 if (DoExtraAnalysis)
991 Result = false;
992 else
993 return false;
996 // We only handle bottom-tested loops, i.e. loop in which the condition is
997 // checked at the end of each iteration. With that we can assume that all
998 // instructions in the loop are executed the same number of times.
999 if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
1000 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
1001 << "loop control flow is not understood by vectorizer");
1002 if (DoExtraAnalysis)
1003 Result = false;
1004 else
1005 return false;
1008 return Result;
1011 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1012 Loop *Lp, bool UseVPlanNativePath) {
1013 // Store the result and return it at the end instead of exiting early, in case
1014 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1015 bool Result = true;
1016 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1017 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1018 if (DoExtraAnalysis)
1019 Result = false;
1020 else
1021 return false;
1024 // Recursively check whether the loop control flow of nested loops is
1025 // understood.
1026 for (Loop *SubLp : *Lp)
1027 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1028 if (DoExtraAnalysis)
1029 Result = false;
1030 else
1031 return false;
1034 return Result;
1037 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1038 // Store the result and return it at the end instead of exiting early, in case
1039 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1040 bool Result = true;
1042 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1043 // Check whether the loop-related control flow in the loop nest is expected by
1044 // vectorizer.
1045 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1046 if (DoExtraAnalysis)
1047 Result = false;
1048 else
1049 return false;
1052 // We need to have a loop header.
1053 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1054 << '\n');
1056 // Specific checks for outer loops. We skip the remaining legal checks at this
1057 // point because they don't support outer loops.
1058 if (!TheLoop->empty()) {
1059 assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1061 if (!canVectorizeOuterLoop()) {
1062 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n");
1063 // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1064 // outer loops.
1065 return false;
1068 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1069 return Result;
1072 assert(TheLoop->empty() && "Inner loop expected.");
1073 // Check if we can if-convert non-single-bb loops.
1074 unsigned NumBlocks = TheLoop->getNumBlocks();
1075 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1076 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1077 if (DoExtraAnalysis)
1078 Result = false;
1079 else
1080 return false;
1083 // Check if we can vectorize the instructions and CFG in this loop.
1084 if (!canVectorizeInstrs()) {
1085 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1086 if (DoExtraAnalysis)
1087 Result = false;
1088 else
1089 return false;
1092 // Go over each instruction and look at memory deps.
1093 if (!canVectorizeMemory()) {
1094 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1095 if (DoExtraAnalysis)
1096 Result = false;
1097 else
1098 return false;
1101 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1102 << (LAI->getRuntimePointerChecking()->Need
1103 ? " (with a runtime bound check)"
1104 : "")
1105 << "!\n");
1107 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1108 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1109 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1111 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
1112 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
1113 << "Too many SCEV assumptions need to be made and checked "
1114 << "at runtime");
1115 LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
1116 if (DoExtraAnalysis)
1117 Result = false;
1118 else
1119 return false;
1122 // Okay! We've done all the tests. If any have failed, return false. Otherwise
1123 // we can vectorize, and at this point we don't have any other mem analysis
1124 // which may limit our maximum vectorization factor, so just return true with
1125 // no restrictions.
1126 return Result;
1129 bool LoopVectorizationLegality::canFoldTailByMasking() {
1131 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1133 if (!PrimaryInduction) {
1134 ORE->emit(createMissedAnalysis("NoPrimaryInduction")
1135 << "Missing a primary induction variable in the loop, which is "
1136 << "needed in order to fold tail by masking as required.");
1137 LLVM_DEBUG(dbgs() << "LV: No primary induction, cannot fold tail by "
1138 << "masking.\n");
1139 return false;
1142 // TODO: handle reductions when tail is folded by masking.
1143 if (!Reductions.empty()) {
1144 ORE->emit(createMissedAnalysis("ReductionFoldingTailByMasking")
1145 << "Cannot fold tail by masking in the presence of reductions.");
1146 LLVM_DEBUG(dbgs() << "LV: Loop has reductions, cannot fold tail by "
1147 << "masking.\n");
1148 return false;
1151 // TODO: handle outside users when tail is folded by masking.
1152 for (auto *AE : AllowedExit) {
1153 // Check that all users of allowed exit values are inside the loop.
1154 for (User *U : AE->users()) {
1155 Instruction *UI = cast<Instruction>(U);
1156 if (TheLoop->contains(UI))
1157 continue;
1158 ORE->emit(createMissedAnalysis("LiveOutFoldingTailByMasking")
1159 << "Cannot fold tail by masking in the presence of live outs.");
1160 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop has an "
1161 << "outside user for : " << *UI << '\n');
1162 return false;
1166 // The list of pointers that we can safely read and write to remains empty.
1167 SmallPtrSet<Value *, 8> SafePointers;
1169 // Check and mark all blocks for predication, including those that ordinarily
1170 // do not need predication such as the header block.
1171 for (BasicBlock *BB : TheLoop->blocks()) {
1172 if (!blockCanBePredicated(BB, SafePointers)) {
1173 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
1174 << "control flow cannot be substituted for a select");
1175 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as required.\n");
1176 return false;
1180 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1181 return true;
1184 } // namespace llvm