Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / test / CodeGen / X86 / urem-seteq.ll
blob469c985a53b25af2404eece7e1db7232d33e937b
1 ; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
2 ; RUN: llc -mtriple=i686-unknown-linux-gnu < %s | FileCheck %s --check-prefixes=CHECK,X86
3 ; RUN: llc -mtriple=x86_64-unknown-linux-gnu < %s | FileCheck %s --check-prefixes=CHECK,X64
5 ; This tests the BuildREMEqFold optimization with UREM, i32, odd divisor, SETEQ.
6 ; The corresponding pseudocode is:
7 ; Q <- [N * multInv(5, 2^32)] <=> [N * 0xCCCCCCCD] <=> [N * (-858993459)]
8 ; res <- [Q <= (2^32 - 1) / 5] <=> [Q <= 858993459] <=> [Q < 858993460]
9 define i32 @test_urem_odd(i32 %X) nounwind readnone {
10 ; X86-LABEL: test_urem_odd:
11 ; X86:       # %bb.0:
12 ; X86-NEXT:    movl {{[0-9]+}}(%esp), %ecx
13 ; X86-NEXT:    movl $-858993459, %edx # imm = 0xCCCCCCCD
14 ; X86-NEXT:    movl %ecx, %eax
15 ; X86-NEXT:    mull %edx
16 ; X86-NEXT:    shrl $2, %edx
17 ; X86-NEXT:    leal (%edx,%edx,4), %edx
18 ; X86-NEXT:    xorl %eax, %eax
19 ; X86-NEXT:    cmpl %edx, %ecx
20 ; X86-NEXT:    sete %al
21 ; X86-NEXT:    retl
23 ; X64-LABEL: test_urem_odd:
24 ; X64:       # %bb.0:
25 ; X64-NEXT:    movl %edi, %eax
26 ; X64-NEXT:    movl $3435973837, %ecx # imm = 0xCCCCCCCD
27 ; X64-NEXT:    imulq %rax, %rcx
28 ; X64-NEXT:    shrq $34, %rcx
29 ; X64-NEXT:    leal (%rcx,%rcx,4), %ecx
30 ; X64-NEXT:    xorl %eax, %eax
31 ; X64-NEXT:    cmpl %ecx, %edi
32 ; X64-NEXT:    sete %al
33 ; X64-NEXT:    retq
34   %urem = urem i32 %X, 5
35   %cmp = icmp eq i32 %urem, 0
36   %ret = zext i1 %cmp to i32
37   ret i32 %ret
40 ; This is like test_urem_odd, except the divisor has bit 30 set.
41 define i32 @test_urem_odd_bit30(i32 %X) nounwind readnone {
42 ; X86-LABEL: test_urem_odd_bit30:
43 ; X86:       # %bb.0:
44 ; X86-NEXT:    movl {{[0-9]+}}(%esp), %ecx
45 ; X86-NEXT:    movl $-11, %edx
46 ; X86-NEXT:    movl %ecx, %eax
47 ; X86-NEXT:    mull %edx
48 ; X86-NEXT:    shrl $30, %edx
49 ; X86-NEXT:    imull $1073741827, %edx, %edx # imm = 0x40000003
50 ; X86-NEXT:    xorl %eax, %eax
51 ; X86-NEXT:    cmpl %edx, %ecx
52 ; X86-NEXT:    sete %al
53 ; X86-NEXT:    retl
55 ; X64-LABEL: test_urem_odd_bit30:
56 ; X64:       # %bb.0:
57 ; X64-NEXT:    movl %edi, %eax
58 ; X64-NEXT:    movl $4294967285, %ecx # imm = 0xFFFFFFF5
59 ; X64-NEXT:    imulq %rax, %rcx
60 ; X64-NEXT:    shrq $62, %rcx
61 ; X64-NEXT:    imull $1073741827, %ecx, %ecx # imm = 0x40000003
62 ; X64-NEXT:    xorl %eax, %eax
63 ; X64-NEXT:    cmpl %ecx, %edi
64 ; X64-NEXT:    sete %al
65 ; X64-NEXT:    retq
66   %urem = urem i32 %X, 1073741827
67   %cmp = icmp eq i32 %urem, 0
68   %ret = zext i1 %cmp to i32
69   ret i32 %ret
72 ; This is like test_urem_odd, except the divisor has bit 31 set.
73 define i32 @test_urem_odd_bit31(i32 %X) nounwind readnone {
74 ; X86-LABEL: test_urem_odd_bit31:
75 ; X86:       # %bb.0:
76 ; X86-NEXT:    movl {{[0-9]+}}(%esp), %ecx
77 ; X86-NEXT:    movl $1073741823, %edx # imm = 0x3FFFFFFF
78 ; X86-NEXT:    movl %ecx, %eax
79 ; X86-NEXT:    mull %edx
80 ; X86-NEXT:    shrl $29, %edx
81 ; X86-NEXT:    imull $-2147483645, %edx, %edx # imm = 0x80000003
82 ; X86-NEXT:    xorl %eax, %eax
83 ; X86-NEXT:    cmpl %edx, %ecx
84 ; X86-NEXT:    sete %al
85 ; X86-NEXT:    retl
87 ; X64-LABEL: test_urem_odd_bit31:
88 ; X64:       # %bb.0:
89 ; X64-NEXT:    movl %edi, %eax
90 ; X64-NEXT:    movq %rax, %rcx
91 ; X64-NEXT:    shlq $30, %rcx
92 ; X64-NEXT:    subq %rax, %rcx
93 ; X64-NEXT:    shrq $61, %rcx
94 ; X64-NEXT:    imull $-2147483645, %ecx, %ecx # imm = 0x80000003
95 ; X64-NEXT:    xorl %eax, %eax
96 ; X64-NEXT:    cmpl %ecx, %edi
97 ; X64-NEXT:    sete %al
98 ; X64-NEXT:    retq
99   %urem = urem i32 %X, 2147483651
100   %cmp = icmp eq i32 %urem, 0
101   %ret = zext i1 %cmp to i32
102   ret i32 %ret
105 ; This tests the BuildREMEqFold optimization with UREM, i16, even divisor, SETNE.
106 ; In this case, D <=> 14 <=> 7 * 2^1, so D0 = 7 and K = 1.
107 ; The corresponding pseudocode is:
108 ; Q <- [N * multInv(D0, 2^16)] <=> [N * multInv(7, 2^16)] <=> [N * 28087]
109 ; Q <- [Q >>rot K] <=> [Q >>rot 1]
110 ; res <- ![Q <= (2^16 - 1) / 7] <=> ![Q <= 9362] <=> [Q > 9362]
111 define i16 @test_urem_even(i16 %X) nounwind readnone {
112 ; X86-LABEL: test_urem_even:
113 ; X86:       # %bb.0:
114 ; X86-NEXT:    movzwl {{[0-9]+}}(%esp), %ecx
115 ; X86-NEXT:    movl %ecx, %eax
116 ; X86-NEXT:    shrl %eax
117 ; X86-NEXT:    imull $18725, %eax, %eax # imm = 0x4925
118 ; X86-NEXT:    shrl $17, %eax
119 ; X86-NEXT:    movl %eax, %edx
120 ; X86-NEXT:    shll $4, %edx
121 ; X86-NEXT:    subl %eax, %edx
122 ; X86-NEXT:    subl %eax, %edx
123 ; X86-NEXT:    xorl %eax, %eax
124 ; X86-NEXT:    cmpw %dx, %cx
125 ; X86-NEXT:    setne %al
126 ; X86-NEXT:    # kill: def $ax killed $ax killed $eax
127 ; X86-NEXT:    retl
129 ; X64-LABEL: test_urem_even:
130 ; X64:       # %bb.0:
131 ; X64-NEXT:    movzwl %di, %ecx
132 ; X64-NEXT:    movl %ecx, %eax
133 ; X64-NEXT:    shrl %eax
134 ; X64-NEXT:    imull $18725, %eax, %eax # imm = 0x4925
135 ; X64-NEXT:    shrl $17, %eax
136 ; X64-NEXT:    movl %eax, %edx
137 ; X64-NEXT:    shll $4, %edx
138 ; X64-NEXT:    subl %eax, %edx
139 ; X64-NEXT:    subl %eax, %edx
140 ; X64-NEXT:    xorl %eax, %eax
141 ; X64-NEXT:    cmpw %dx, %cx
142 ; X64-NEXT:    setne %al
143 ; X64-NEXT:    # kill: def $ax killed $ax killed $eax
144 ; X64-NEXT:    retq
145   %urem = urem i16 %X, 14
146   %cmp = icmp ne i16 %urem, 0
147   %ret = zext i1 %cmp to i16
148   ret i16 %ret
151 ; This is like test_urem_even, except the divisor has bit 30 set.
152 define i32 @test_urem_even_bit30(i32 %X) nounwind readnone {
153 ; X86-LABEL: test_urem_even_bit30:
154 ; X86:       # %bb.0:
155 ; X86-NEXT:    movl {{[0-9]+}}(%esp), %ecx
156 ; X86-NEXT:    movl $-415, %edx # imm = 0xFE61
157 ; X86-NEXT:    movl %ecx, %eax
158 ; X86-NEXT:    mull %edx
159 ; X86-NEXT:    shrl $30, %edx
160 ; X86-NEXT:    imull $1073741928, %edx, %edx # imm = 0x40000068
161 ; X86-NEXT:    xorl %eax, %eax
162 ; X86-NEXT:    cmpl %edx, %ecx
163 ; X86-NEXT:    sete %al
164 ; X86-NEXT:    retl
166 ; X64-LABEL: test_urem_even_bit30:
167 ; X64:       # %bb.0:
168 ; X64-NEXT:    movl %edi, %eax
169 ; X64-NEXT:    movl $4294966881, %ecx # imm = 0xFFFFFE61
170 ; X64-NEXT:    imulq %rax, %rcx
171 ; X64-NEXT:    shrq $62, %rcx
172 ; X64-NEXT:    imull $1073741928, %ecx, %ecx # imm = 0x40000068
173 ; X64-NEXT:    xorl %eax, %eax
174 ; X64-NEXT:    cmpl %ecx, %edi
175 ; X64-NEXT:    sete %al
176 ; X64-NEXT:    retq
177   %urem = urem i32 %X, 1073741928
178   %cmp = icmp eq i32 %urem, 0
179   %ret = zext i1 %cmp to i32
180   ret i32 %ret
183 ; This is like test_urem_odd, except the divisor has bit 31 set.
184 define i32 @test_urem_even_bit31(i32 %X) nounwind readnone {
185 ; X86-LABEL: test_urem_even_bit31:
186 ; X86:       # %bb.0:
187 ; X86-NEXT:    movl {{[0-9]+}}(%esp), %ecx
188 ; X86-NEXT:    movl $2147483547, %edx # imm = 0x7FFFFF9B
189 ; X86-NEXT:    movl %ecx, %eax
190 ; X86-NEXT:    mull %edx
191 ; X86-NEXT:    shrl $30, %edx
192 ; X86-NEXT:    imull $-2147483546, %edx, %edx # imm = 0x80000066
193 ; X86-NEXT:    xorl %eax, %eax
194 ; X86-NEXT:    cmpl %edx, %ecx
195 ; X86-NEXT:    sete %al
196 ; X86-NEXT:    retl
198 ; X64-LABEL: test_urem_even_bit31:
199 ; X64:       # %bb.0:
200 ; X64-NEXT:    movl %edi, %eax
201 ; X64-NEXT:    imulq $2147483547, %rax, %rax # imm = 0x7FFFFF9B
202 ; X64-NEXT:    shrq $62, %rax
203 ; X64-NEXT:    imull $-2147483546, %eax, %ecx # imm = 0x80000066
204 ; X64-NEXT:    xorl %eax, %eax
205 ; X64-NEXT:    cmpl %ecx, %edi
206 ; X64-NEXT:    sete %al
207 ; X64-NEXT:    retq
208   %urem = urem i32 %X, 2147483750
209   %cmp = icmp eq i32 %urem, 0
210   %ret = zext i1 %cmp to i32
211   ret i32 %ret
214 ; We should not proceed with this fold if the divisor is 1 or -1
215 define i32 @test_urem_one(i32 %X) nounwind readnone {
216 ; CHECK-LABEL: test_urem_one:
217 ; CHECK:       # %bb.0:
218 ; CHECK-NEXT:    movl $1, %eax
219 ; CHECK-NEXT:    ret{{[l|q]}}
220   %urem = urem i32 %X, 1
221   %cmp = icmp eq i32 %urem, 0
222   %ret = zext i1 %cmp to i32
223   ret i32 %ret
226 ; We can lower remainder of division by powers of two much better elsewhere;
227 ; also, BuildREMEqFold does not work when the only odd factor of the divisor is 1.
228 ; This ensures we don't touch powers of two.
229 define i32 @test_urem_pow2(i32 %X) nounwind readnone {
230 ; X86-LABEL: test_urem_pow2:
231 ; X86:       # %bb.0:
232 ; X86-NEXT:    xorl %eax, %eax
233 ; X86-NEXT:    testb $15, {{[0-9]+}}(%esp)
234 ; X86-NEXT:    sete %al
235 ; X86-NEXT:    retl
237 ; X64-LABEL: test_urem_pow2:
238 ; X64:       # %bb.0:
239 ; X64-NEXT:    xorl %eax, %eax
240 ; X64-NEXT:    testb $15, %dil
241 ; X64-NEXT:    sete %al
242 ; X64-NEXT:    retq
243   %urem = urem i32 %X, 16
244   %cmp = icmp eq i32 %urem, 0
245   %ret = zext i1 %cmp to i32
246   ret i32 %ret