Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / tools / dsymutil / DwarfLinker.cpp
blob3fe018a6f2619fd5d072ccf31886c56ba619268b
1 //===- tools/dsymutil/DwarfLinker.cpp - Dwarf debug info linker -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "DwarfLinker.h"
10 #include "BinaryHolder.h"
11 #include "DebugMap.h"
12 #include "DeclContext.h"
13 #include "DwarfStreamer.h"
14 #include "MachOUtils.h"
15 #include "NonRelocatableStringpool.h"
16 #include "dsymutil.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/Hashing.h"
24 #include "llvm/ADT/IntervalMap.h"
25 #include "llvm/ADT/None.h"
26 #include "llvm/ADT/Optional.h"
27 #include "llvm/ADT/PointerIntPair.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/StringMap.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/ADT/Triple.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/BinaryFormat/Dwarf.h"
35 #include "llvm/BinaryFormat/MachO.h"
36 #include "llvm/CodeGen/AccelTable.h"
37 #include "llvm/CodeGen/AsmPrinter.h"
38 #include "llvm/CodeGen/DIE.h"
39 #include "llvm/Config/config.h"
40 #include "llvm/DebugInfo/DIContext.h"
41 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
42 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
43 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
44 #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
45 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
46 #include "llvm/DebugInfo/DWARF/DWARFDie.h"
47 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
48 #include "llvm/DebugInfo/DWARF/DWARFSection.h"
49 #include "llvm/DebugInfo/DWARF/DWARFUnit.h"
50 #include "llvm/MC/MCAsmBackend.h"
51 #include "llvm/MC/MCAsmInfo.h"
52 #include "llvm/MC/MCCodeEmitter.h"
53 #include "llvm/MC/MCContext.h"
54 #include "llvm/MC/MCDwarf.h"
55 #include "llvm/MC/MCInstrInfo.h"
56 #include "llvm/MC/MCObjectFileInfo.h"
57 #include "llvm/MC/MCObjectWriter.h"
58 #include "llvm/MC/MCRegisterInfo.h"
59 #include "llvm/MC/MCSection.h"
60 #include "llvm/MC/MCStreamer.h"
61 #include "llvm/MC/MCSubtargetInfo.h"
62 #include "llvm/MC/MCTargetOptions.h"
63 #include "llvm/Object/MachO.h"
64 #include "llvm/Object/ObjectFile.h"
65 #include "llvm/Object/SymbolicFile.h"
66 #include "llvm/Support/Allocator.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/DJB.h"
70 #include "llvm/Support/DataExtractor.h"
71 #include "llvm/Support/Error.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/ErrorOr.h"
74 #include "llvm/Support/FileSystem.h"
75 #include "llvm/Support/Format.h"
76 #include "llvm/Support/LEB128.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Support/MemoryBuffer.h"
79 #include "llvm/Support/Path.h"
80 #include "llvm/Support/TargetRegistry.h"
81 #include "llvm/Support/ThreadPool.h"
82 #include "llvm/Support/ToolOutputFile.h"
83 #include "llvm/Support/WithColor.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/Target/TargetMachine.h"
86 #include "llvm/Target/TargetOptions.h"
87 #include <algorithm>
88 #include <cassert>
89 #include <cinttypes>
90 #include <climits>
91 #include <cstdint>
92 #include <cstdlib>
93 #include <cstring>
94 #include <limits>
95 #include <map>
96 #include <memory>
97 #include <string>
98 #include <system_error>
99 #include <tuple>
100 #include <utility>
101 #include <vector>
103 namespace llvm {
104 namespace dsymutil {
106 /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
107 /// CompileUnit object instead.
108 static CompileUnit *getUnitForOffset(const UnitListTy &Units, unsigned Offset) {
109 auto CU = std::upper_bound(
110 Units.begin(), Units.end(), Offset,
111 [](uint32_t LHS, const std::unique_ptr<CompileUnit> &RHS) {
112 return LHS < RHS->getOrigUnit().getNextUnitOffset();
114 return CU != Units.end() ? CU->get() : nullptr;
117 /// Resolve the DIE attribute reference that has been extracted in \p RefValue.
118 /// The resulting DIE might be in another CompileUnit which is stored into \p
119 /// ReferencedCU. \returns null if resolving fails for any reason.
120 static DWARFDie resolveDIEReference(const DwarfLinker &Linker,
121 const DebugMapObject &DMO,
122 const UnitListTy &Units,
123 const DWARFFormValue &RefValue,
124 const DWARFUnit &Unit, const DWARFDie &DIE,
125 CompileUnit *&RefCU) {
126 assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
127 uint64_t RefOffset = *RefValue.getAsReference();
129 if ((RefCU = getUnitForOffset(Units, RefOffset)))
130 if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) {
131 // In a file with broken references, an attribute might point to a NULL
132 // DIE.
133 if (!RefDie.isNULL())
134 return RefDie;
137 Linker.reportWarning("could not find referenced DIE", DMO, &DIE);
138 return DWARFDie();
141 /// \returns whether the passed \a Attr type might contain a DIE reference
142 /// suitable for ODR uniquing.
143 static bool isODRAttribute(uint16_t Attr) {
144 switch (Attr) {
145 default:
146 return false;
147 case dwarf::DW_AT_type:
148 case dwarf::DW_AT_containing_type:
149 case dwarf::DW_AT_specification:
150 case dwarf::DW_AT_abstract_origin:
151 case dwarf::DW_AT_import:
152 return true;
154 llvm_unreachable("Improper attribute.");
157 static bool isTypeTag(uint16_t Tag) {
158 switch (Tag) {
159 case dwarf::DW_TAG_array_type:
160 case dwarf::DW_TAG_class_type:
161 case dwarf::DW_TAG_enumeration_type:
162 case dwarf::DW_TAG_pointer_type:
163 case dwarf::DW_TAG_reference_type:
164 case dwarf::DW_TAG_string_type:
165 case dwarf::DW_TAG_structure_type:
166 case dwarf::DW_TAG_subroutine_type:
167 case dwarf::DW_TAG_typedef:
168 case dwarf::DW_TAG_union_type:
169 case dwarf::DW_TAG_ptr_to_member_type:
170 case dwarf::DW_TAG_set_type:
171 case dwarf::DW_TAG_subrange_type:
172 case dwarf::DW_TAG_base_type:
173 case dwarf::DW_TAG_const_type:
174 case dwarf::DW_TAG_constant:
175 case dwarf::DW_TAG_file_type:
176 case dwarf::DW_TAG_namelist:
177 case dwarf::DW_TAG_packed_type:
178 case dwarf::DW_TAG_volatile_type:
179 case dwarf::DW_TAG_restrict_type:
180 case dwarf::DW_TAG_atomic_type:
181 case dwarf::DW_TAG_interface_type:
182 case dwarf::DW_TAG_unspecified_type:
183 case dwarf::DW_TAG_shared_type:
184 return true;
185 default:
186 break;
188 return false;
191 bool DwarfLinker::DIECloner::getDIENames(const DWARFDie &Die,
192 AttributesInfo &Info,
193 OffsetsStringPool &StringPool,
194 bool StripTemplate) {
195 // This function will be called on DIEs having low_pcs and
196 // ranges. As getting the name might be more expansive, filter out
197 // blocks directly.
198 if (Die.getTag() == dwarf::DW_TAG_lexical_block)
199 return false;
201 // FIXME: a bit wasteful as the first getName might return the
202 // short name.
203 if (!Info.MangledName)
204 if (const char *MangledName = Die.getName(DINameKind::LinkageName))
205 Info.MangledName = StringPool.getEntry(MangledName);
207 if (!Info.Name)
208 if (const char *Name = Die.getName(DINameKind::ShortName))
209 Info.Name = StringPool.getEntry(Name);
211 if (StripTemplate && Info.Name && Info.MangledName != Info.Name) {
212 // FIXME: dsymutil compatibility. This is wrong for operator<
213 auto Split = Info.Name.getString().split('<');
214 if (!Split.second.empty())
215 Info.NameWithoutTemplate = StringPool.getEntry(Split.first);
218 return Info.Name || Info.MangledName;
221 /// Report a warning to the user, optionally including information about a
222 /// specific \p DIE related to the warning.
223 void DwarfLinker::reportWarning(const Twine &Warning, const DebugMapObject &DMO,
224 const DWARFDie *DIE) const {
225 StringRef Context = DMO.getObjectFilename();
226 warn(Warning, Context);
228 if (!Options.Verbose || !DIE)
229 return;
231 DIDumpOptions DumpOpts;
232 DumpOpts.RecurseDepth = 0;
233 DumpOpts.Verbose = Options.Verbose;
235 WithColor::note() << " in DIE:\n";
236 DIE->dump(errs(), 6 /* Indent */, DumpOpts);
239 bool DwarfLinker::createStreamer(const Triple &TheTriple,
240 raw_fd_ostream &OutFile) {
241 if (Options.NoOutput)
242 return true;
244 Streamer = llvm::make_unique<DwarfStreamer>(OutFile, Options);
245 return Streamer->init(TheTriple);
248 /// Recursive helper to build the global DeclContext information and
249 /// gather the child->parent relationships in the original compile unit.
251 /// \return true when this DIE and all of its children are only
252 /// forward declarations to types defined in external clang modules
253 /// (i.e., forward declarations that are children of a DW_TAG_module).
254 static bool analyzeContextInfo(const DWARFDie &DIE, unsigned ParentIdx,
255 CompileUnit &CU, DeclContext *CurrentDeclContext,
256 UniquingStringPool &StringPool,
257 DeclContextTree &Contexts,
258 uint64_t ModulesEndOffset,
259 bool InImportedModule = false) {
260 unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE);
261 CompileUnit::DIEInfo &Info = CU.getInfo(MyIdx);
263 // Clang imposes an ODR on modules(!) regardless of the language:
264 // "The module-id should consist of only a single identifier,
265 // which provides the name of the module being defined. Each
266 // module shall have a single definition."
268 // This does not extend to the types inside the modules:
269 // "[I]n C, this implies that if two structs are defined in
270 // different submodules with the same name, those two types are
271 // distinct types (but may be compatible types if their
272 // definitions match)."
274 // We treat non-C++ modules like namespaces for this reason.
275 if (DIE.getTag() == dwarf::DW_TAG_module && ParentIdx == 0 &&
276 dwarf::toString(DIE.find(dwarf::DW_AT_name), "") !=
277 CU.getClangModuleName()) {
278 InImportedModule = true;
281 Info.ParentIdx = ParentIdx;
282 bool InClangModule = CU.isClangModule() || InImportedModule;
283 if (CU.hasODR() || InClangModule) {
284 if (CurrentDeclContext) {
285 auto PtrInvalidPair = Contexts.getChildDeclContext(
286 *CurrentDeclContext, DIE, CU, StringPool, InClangModule);
287 CurrentDeclContext = PtrInvalidPair.getPointer();
288 Info.Ctxt =
289 PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
290 if (Info.Ctxt)
291 Info.Ctxt->setDefinedInClangModule(InClangModule);
292 } else
293 Info.Ctxt = CurrentDeclContext = nullptr;
296 Info.Prune = InImportedModule;
297 if (DIE.hasChildren())
298 for (auto Child : DIE.children())
299 Info.Prune &=
300 analyzeContextInfo(Child, MyIdx, CU, CurrentDeclContext, StringPool,
301 Contexts, ModulesEndOffset, InImportedModule);
303 // Prune this DIE if it is either a forward declaration inside a
304 // DW_TAG_module or a DW_TAG_module that contains nothing but
305 // forward declarations.
306 Info.Prune &= (DIE.getTag() == dwarf::DW_TAG_module) ||
307 (isTypeTag(DIE.getTag()) &&
308 dwarf::toUnsigned(DIE.find(dwarf::DW_AT_declaration), 0));
310 // Only prune forward declarations inside a DW_TAG_module for which a
311 // definition exists elsewhere.
312 if (ModulesEndOffset == 0)
313 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
314 else
315 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 &&
316 Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset;
318 return Info.Prune;
319 } // namespace dsymutil
321 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
322 switch (Tag) {
323 default:
324 return false;
325 case dwarf::DW_TAG_subprogram:
326 case dwarf::DW_TAG_lexical_block:
327 case dwarf::DW_TAG_subroutine_type:
328 case dwarf::DW_TAG_structure_type:
329 case dwarf::DW_TAG_class_type:
330 case dwarf::DW_TAG_union_type:
331 return true;
333 llvm_unreachable("Invalid Tag");
336 void DwarfLinker::startDebugObject(LinkContext &Context) {
337 // Iterate over the debug map entries and put all the ones that are
338 // functions (because they have a size) into the Ranges map. This map is
339 // very similar to the FunctionRanges that are stored in each unit, with 2
340 // notable differences:
342 // 1. Obviously this one is global, while the other ones are per-unit.
344 // 2. This one contains not only the functions described in the DIE
345 // tree, but also the ones that are only in the debug map.
347 // The latter information is required to reproduce dsymutil's logic while
348 // linking line tables. The cases where this information matters look like
349 // bugs that need to be investigated, but for now we need to reproduce
350 // dsymutil's behavior.
351 // FIXME: Once we understood exactly if that information is needed,
352 // maybe totally remove this (or try to use it to do a real
353 // -gline-tables-only on Darwin.
354 for (const auto &Entry : Context.DMO.symbols()) {
355 const auto &Mapping = Entry.getValue();
356 if (Mapping.Size && Mapping.ObjectAddress)
357 Context.Ranges[*Mapping.ObjectAddress] = DebugMapObjectRange(
358 *Mapping.ObjectAddress + Mapping.Size,
359 int64_t(Mapping.BinaryAddress) - *Mapping.ObjectAddress);
363 void DwarfLinker::endDebugObject(LinkContext &Context) {
364 Context.Clear();
366 for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I)
367 (*I)->~DIEBlock();
368 for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I)
369 (*I)->~DIELoc();
371 DIEBlocks.clear();
372 DIELocs.clear();
373 DIEAlloc.Reset();
376 static bool isMachOPairedReloc(uint64_t RelocType, uint64_t Arch) {
377 switch (Arch) {
378 case Triple::x86:
379 return RelocType == MachO::GENERIC_RELOC_SECTDIFF ||
380 RelocType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF;
381 case Triple::x86_64:
382 return RelocType == MachO::X86_64_RELOC_SUBTRACTOR;
383 case Triple::arm:
384 case Triple::thumb:
385 return RelocType == MachO::ARM_RELOC_SECTDIFF ||
386 RelocType == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
387 RelocType == MachO::ARM_RELOC_HALF ||
388 RelocType == MachO::ARM_RELOC_HALF_SECTDIFF;
389 case Triple::aarch64:
390 return RelocType == MachO::ARM64_RELOC_SUBTRACTOR;
391 default:
392 return false;
396 /// Iterate over the relocations of the given \p Section and
397 /// store the ones that correspond to debug map entries into the
398 /// ValidRelocs array.
399 void DwarfLinker::RelocationManager::findValidRelocsMachO(
400 const object::SectionRef &Section, const object::MachOObjectFile &Obj,
401 const DebugMapObject &DMO) {
402 StringRef Contents;
403 Section.getContents(Contents);
404 DataExtractor Data(Contents, Obj.isLittleEndian(), 0);
405 bool SkipNext = false;
407 for (const object::RelocationRef &Reloc : Section.relocations()) {
408 if (SkipNext) {
409 SkipNext = false;
410 continue;
413 object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl();
414 MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef);
416 if (isMachOPairedReloc(Obj.getAnyRelocationType(MachOReloc),
417 Obj.getArch())) {
418 SkipNext = true;
419 Linker.reportWarning("unsupported relocation in debug_info section.",
420 DMO);
421 continue;
424 unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc);
425 uint64_t Offset64 = Reloc.getOffset();
426 if ((RelocSize != 4 && RelocSize != 8)) {
427 Linker.reportWarning("unsupported relocation in debug_info section.",
428 DMO);
429 continue;
431 uint32_t Offset = Offset64;
432 // Mach-o uses REL relocations, the addend is at the relocation offset.
433 uint64_t Addend = Data.getUnsigned(&Offset, RelocSize);
434 uint64_t SymAddress;
435 int64_t SymOffset;
437 if (Obj.isRelocationScattered(MachOReloc)) {
438 // The address of the base symbol for scattered relocations is
439 // stored in the reloc itself. The actual addend will store the
440 // base address plus the offset.
441 SymAddress = Obj.getScatteredRelocationValue(MachOReloc);
442 SymOffset = int64_t(Addend) - SymAddress;
443 } else {
444 SymAddress = Addend;
445 SymOffset = 0;
448 auto Sym = Reloc.getSymbol();
449 if (Sym != Obj.symbol_end()) {
450 Expected<StringRef> SymbolName = Sym->getName();
451 if (!SymbolName) {
452 consumeError(SymbolName.takeError());
453 Linker.reportWarning("error getting relocation symbol name.", DMO);
454 continue;
456 if (const auto *Mapping = DMO.lookupSymbol(*SymbolName))
457 ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping);
458 } else if (const auto *Mapping = DMO.lookupObjectAddress(SymAddress)) {
459 // Do not store the addend. The addend was the address of the symbol in
460 // the object file, the address in the binary that is stored in the debug
461 // map doesn't need to be offset.
462 ValidRelocs.emplace_back(Offset64, RelocSize, SymOffset, Mapping);
467 /// Dispatch the valid relocation finding logic to the
468 /// appropriate handler depending on the object file format.
469 bool DwarfLinker::RelocationManager::findValidRelocs(
470 const object::SectionRef &Section, const object::ObjectFile &Obj,
471 const DebugMapObject &DMO) {
472 // Dispatch to the right handler depending on the file type.
473 if (auto *MachOObj = dyn_cast<object::MachOObjectFile>(&Obj))
474 findValidRelocsMachO(Section, *MachOObj, DMO);
475 else
476 Linker.reportWarning(
477 Twine("unsupported object file type: ") + Obj.getFileName(), DMO);
479 if (ValidRelocs.empty())
480 return false;
482 // Sort the relocations by offset. We will walk the DIEs linearly in
483 // the file, this allows us to just keep an index in the relocation
484 // array that we advance during our walk, rather than resorting to
485 // some associative container. See DwarfLinker::NextValidReloc.
486 llvm::sort(ValidRelocs);
487 return true;
490 /// Look for relocations in the debug_info section that match
491 /// entries in the debug map. These relocations will drive the Dwarf
492 /// link by indicating which DIEs refer to symbols present in the
493 /// linked binary.
494 /// \returns whether there are any valid relocations in the debug info.
495 bool DwarfLinker::RelocationManager::findValidRelocsInDebugInfo(
496 const object::ObjectFile &Obj, const DebugMapObject &DMO) {
497 // Find the debug_info section.
498 for (const object::SectionRef &Section : Obj.sections()) {
499 StringRef SectionName;
500 Section.getName(SectionName);
501 SectionName = SectionName.substr(SectionName.find_first_not_of("._"));
502 if (SectionName != "debug_info")
503 continue;
504 return findValidRelocs(Section, Obj, DMO);
506 return false;
509 /// Checks that there is a relocation against an actual debug
510 /// map entry between \p StartOffset and \p NextOffset.
512 /// This function must be called with offsets in strictly ascending
513 /// order because it never looks back at relocations it already 'went past'.
514 /// \returns true and sets Info.InDebugMap if it is the case.
515 bool DwarfLinker::RelocationManager::hasValidRelocation(
516 uint32_t StartOffset, uint32_t EndOffset, CompileUnit::DIEInfo &Info) {
517 assert(NextValidReloc == 0 ||
518 StartOffset > ValidRelocs[NextValidReloc - 1].Offset);
519 if (NextValidReloc >= ValidRelocs.size())
520 return false;
522 uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset;
524 // We might need to skip some relocs that we didn't consider. For
525 // example the high_pc of a discarded DIE might contain a reloc that
526 // is in the list because it actually corresponds to the start of a
527 // function that is in the debug map.
528 while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1)
529 RelocOffset = ValidRelocs[++NextValidReloc].Offset;
531 if (RelocOffset < StartOffset || RelocOffset >= EndOffset)
532 return false;
534 const auto &ValidReloc = ValidRelocs[NextValidReloc++];
535 const auto &Mapping = ValidReloc.Mapping->getValue();
536 uint64_t ObjectAddress = Mapping.ObjectAddress
537 ? uint64_t(*Mapping.ObjectAddress)
538 : std::numeric_limits<uint64_t>::max();
539 if (Linker.Options.Verbose)
540 outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey()
541 << " "
542 << format("\t%016" PRIx64 " => %016" PRIx64, ObjectAddress,
543 uint64_t(Mapping.BinaryAddress));
545 Info.AddrAdjust = int64_t(Mapping.BinaryAddress) + ValidReloc.Addend;
546 if (Mapping.ObjectAddress)
547 Info.AddrAdjust -= ObjectAddress;
548 Info.InDebugMap = true;
549 return true;
552 /// Get the starting and ending (exclusive) offset for the
553 /// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
554 /// supposed to point to the position of the first attribute described
555 /// by \p Abbrev.
556 /// \return [StartOffset, EndOffset) as a pair.
557 static std::pair<uint32_t, uint32_t>
558 getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx,
559 unsigned Offset, const DWARFUnit &Unit) {
560 DataExtractor Data = Unit.getDebugInfoExtractor();
562 for (unsigned i = 0; i < Idx; ++i)
563 DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset,
564 Unit.getFormParams());
566 uint32_t End = Offset;
567 DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End,
568 Unit.getFormParams());
570 return std::make_pair(Offset, End);
573 /// Check if a variable describing DIE should be kept.
574 /// \returns updated TraversalFlags.
575 unsigned DwarfLinker::shouldKeepVariableDIE(RelocationManager &RelocMgr,
576 const DWARFDie &DIE,
577 CompileUnit &Unit,
578 CompileUnit::DIEInfo &MyInfo,
579 unsigned Flags) {
580 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
582 // Global variables with constant value can always be kept.
583 if (!(Flags & TF_InFunctionScope) &&
584 Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) {
585 MyInfo.InDebugMap = true;
586 return Flags | TF_Keep;
589 Optional<uint32_t> LocationIdx =
590 Abbrev->findAttributeIndex(dwarf::DW_AT_location);
591 if (!LocationIdx)
592 return Flags;
594 uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
595 const DWARFUnit &OrigUnit = Unit.getOrigUnit();
596 uint32_t LocationOffset, LocationEndOffset;
597 std::tie(LocationOffset, LocationEndOffset) =
598 getAttributeOffsets(Abbrev, *LocationIdx, Offset, OrigUnit);
600 // See if there is a relocation to a valid debug map entry inside
601 // this variable's location. The order is important here. We want to
602 // always check in the variable has a valid relocation, so that the
603 // DIEInfo is filled. However, we don't want a static variable in a
604 // function to force us to keep the enclosing function.
605 if (!RelocMgr.hasValidRelocation(LocationOffset, LocationEndOffset, MyInfo) ||
606 (Flags & TF_InFunctionScope))
607 return Flags;
609 if (Options.Verbose) {
610 DIDumpOptions DumpOpts;
611 DumpOpts.RecurseDepth = 0;
612 DumpOpts.Verbose = Options.Verbose;
613 DIE.dump(outs(), 8 /* Indent */, DumpOpts);
616 return Flags | TF_Keep;
619 /// Check if a function describing DIE should be kept.
620 /// \returns updated TraversalFlags.
621 unsigned DwarfLinker::shouldKeepSubprogramDIE(
622 RelocationManager &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
623 const DebugMapObject &DMO, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
624 unsigned Flags) {
625 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
627 Flags |= TF_InFunctionScope;
629 Optional<uint32_t> LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc);
630 if (!LowPcIdx)
631 return Flags;
633 uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
634 DWARFUnit &OrigUnit = Unit.getOrigUnit();
635 uint32_t LowPcOffset, LowPcEndOffset;
636 std::tie(LowPcOffset, LowPcEndOffset) =
637 getAttributeOffsets(Abbrev, *LowPcIdx, Offset, OrigUnit);
639 auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc));
640 assert(LowPc.hasValue() && "low_pc attribute is not an address.");
641 if (!LowPc ||
642 !RelocMgr.hasValidRelocation(LowPcOffset, LowPcEndOffset, MyInfo))
643 return Flags;
645 if (Options.Verbose) {
646 DIDumpOptions DumpOpts;
647 DumpOpts.RecurseDepth = 0;
648 DumpOpts.Verbose = Options.Verbose;
649 DIE.dump(outs(), 8 /* Indent */, DumpOpts);
652 if (DIE.getTag() == dwarf::DW_TAG_label) {
653 if (Unit.hasLabelAt(*LowPc))
654 return Flags;
655 // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
656 // that don't fall into the CU's aranges. This is wrong IMO. Debug info
657 // generation bugs aside, this is really wrong in the case of labels, where
658 // a label marking the end of a function will have a PC == CU's high_pc.
659 if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc))
660 .getValueOr(UINT64_MAX) <= LowPc)
661 return Flags;
662 Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust);
663 return Flags | TF_Keep;
666 Flags |= TF_Keep;
668 Optional<uint64_t> HighPc = DIE.getHighPC(*LowPc);
669 if (!HighPc) {
670 reportWarning("Function without high_pc. Range will be discarded.\n", DMO,
671 &DIE);
672 return Flags;
675 // Replace the debug map range with a more accurate one.
676 Ranges[*LowPc] = DebugMapObjectRange(*HighPc, MyInfo.AddrAdjust);
677 Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust);
678 return Flags;
681 /// Check if a DIE should be kept.
682 /// \returns updated TraversalFlags.
683 unsigned DwarfLinker::shouldKeepDIE(RelocationManager &RelocMgr,
684 RangesTy &Ranges, const DWARFDie &DIE,
685 const DebugMapObject &DMO,
686 CompileUnit &Unit,
687 CompileUnit::DIEInfo &MyInfo,
688 unsigned Flags) {
689 switch (DIE.getTag()) {
690 case dwarf::DW_TAG_constant:
691 case dwarf::DW_TAG_variable:
692 return shouldKeepVariableDIE(RelocMgr, DIE, Unit, MyInfo, Flags);
693 case dwarf::DW_TAG_subprogram:
694 case dwarf::DW_TAG_label:
695 return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, DMO, Unit, MyInfo,
696 Flags);
697 case dwarf::DW_TAG_imported_module:
698 case dwarf::DW_TAG_imported_declaration:
699 case dwarf::DW_TAG_imported_unit:
700 // We always want to keep these.
701 return Flags | TF_Keep;
702 default:
703 break;
706 return Flags;
709 /// Mark the passed DIE as well as all the ones it depends on
710 /// as kept.
712 /// This function is called by lookForDIEsToKeep on DIEs that are
713 /// newly discovered to be needed in the link. It recursively calls
714 /// back to lookForDIEsToKeep while adding TF_DependencyWalk to the
715 /// TraversalFlags to inform it that it's not doing the primary DIE
716 /// tree walk.
717 void DwarfLinker::keepDIEAndDependencies(
718 RelocationManager &RelocMgr, RangesTy &Ranges, const UnitListTy &Units,
719 const DWARFDie &Die, CompileUnit::DIEInfo &MyInfo,
720 const DebugMapObject &DMO, CompileUnit &CU, bool UseODR) {
721 DWARFUnit &Unit = CU.getOrigUnit();
722 MyInfo.Keep = true;
724 // We're looking for incomplete types.
725 MyInfo.Incomplete = Die.getTag() != dwarf::DW_TAG_subprogram &&
726 Die.getTag() != dwarf::DW_TAG_member &&
727 dwarf::toUnsigned(Die.find(dwarf::DW_AT_declaration), 0);
729 // First mark all the parent chain as kept.
730 unsigned AncestorIdx = MyInfo.ParentIdx;
731 while (!CU.getInfo(AncestorIdx).Keep) {
732 unsigned ODRFlag = UseODR ? TF_ODR : 0;
733 lookForDIEsToKeep(RelocMgr, Ranges, Units, Unit.getDIEAtIndex(AncestorIdx),
734 DMO, CU,
735 TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag);
736 AncestorIdx = CU.getInfo(AncestorIdx).ParentIdx;
739 // Then we need to mark all the DIEs referenced by this DIE's
740 // attributes as kept.
741 DWARFDataExtractor Data = Unit.getDebugInfoExtractor();
742 const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
743 uint32_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
745 // Mark all DIEs referenced through attributes as kept.
746 for (const auto &AttrSpec : Abbrev->attributes()) {
747 DWARFFormValue Val(AttrSpec.Form);
749 if (!Val.isFormClass(DWARFFormValue::FC_Reference) ||
750 AttrSpec.Attr == dwarf::DW_AT_sibling) {
751 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
752 Unit.getFormParams());
753 continue;
756 Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit);
757 CompileUnit *ReferencedCU;
758 if (auto RefDie = resolveDIEReference(*this, DMO, Units, Val, Unit, Die,
759 ReferencedCU)) {
760 uint32_t RefIdx = ReferencedCU->getOrigUnit().getDIEIndex(RefDie);
761 CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefIdx);
762 bool IsModuleRef = Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() &&
763 Info.Ctxt->isDefinedInClangModule();
764 // If the referenced DIE has a DeclContext that has already been
765 // emitted, then do not keep the one in this CU. We'll link to
766 // the canonical DIE in cloneDieReferenceAttribute.
767 // FIXME: compatibility with dsymutil-classic. UseODR shouldn't
768 // be necessary and could be advantageously replaced by
769 // ReferencedCU->hasODR() && CU.hasODR().
770 // FIXME: compatibility with dsymutil-classic. There is no
771 // reason not to unique ref_addr references.
772 if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && (UseODR || IsModuleRef) &&
773 Info.Ctxt &&
774 Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt &&
775 Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr))
776 continue;
778 // Keep a module forward declaration if there is no definition.
779 if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
780 Info.Ctxt->getCanonicalDIEOffset()))
781 Info.Prune = false;
783 unsigned ODRFlag = UseODR ? TF_ODR : 0;
784 lookForDIEsToKeep(RelocMgr, Ranges, Units, RefDie, DMO, *ReferencedCU,
785 TF_Keep | TF_DependencyWalk | ODRFlag);
787 // The incomplete property is propagated if the current DIE is complete
788 // but references an incomplete DIE.
789 if (Info.Incomplete && !MyInfo.Incomplete &&
790 (Die.getTag() == dwarf::DW_TAG_typedef ||
791 Die.getTag() == dwarf::DW_TAG_member ||
792 Die.getTag() == dwarf::DW_TAG_reference_type ||
793 Die.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
794 Die.getTag() == dwarf::DW_TAG_pointer_type))
795 MyInfo.Incomplete = true;
800 namespace {
801 /// This class represents an item in the work list. In addition to it's obvious
802 /// purpose of representing the state associated with a particular run of the
803 /// work loop, it also serves as a marker to indicate that we should run the
804 /// "continuation" code.
806 /// Originally, the latter was lambda which allowed arbitrary code to be run.
807 /// Because we always need to run the exact same code, it made more sense to
808 /// use a boolean and repurpose the already existing DIE field.
809 struct WorklistItem {
810 DWARFDie Die;
811 unsigned Flags;
812 bool IsContinuation;
813 CompileUnit::DIEInfo *ChildInfo = nullptr;
815 /// Construct a classic worklist item.
816 WorklistItem(DWARFDie Die, unsigned Flags)
817 : Die(Die), Flags(Flags), IsContinuation(false){};
819 /// Creates a continuation marker.
820 WorklistItem(DWARFDie Die) : Die(Die), IsContinuation(true){};
822 } // namespace
824 // Helper that updates the completeness of the current DIE. It depends on the
825 // fact that the incompletness of its children is already computed.
826 static void updateIncompleteness(const DWARFDie &Die,
827 CompileUnit::DIEInfo &ChildInfo,
828 CompileUnit &CU) {
829 // Only propagate incomplete members.
830 if (Die.getTag() != dwarf::DW_TAG_structure_type &&
831 Die.getTag() != dwarf::DW_TAG_class_type)
832 return;
834 unsigned Idx = CU.getOrigUnit().getDIEIndex(Die);
835 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
837 if (MyInfo.Incomplete)
838 return;
840 if (ChildInfo.Incomplete || ChildInfo.Prune)
841 MyInfo.Incomplete = true;
844 /// Recursively walk the \p DIE tree and look for DIEs to
845 /// keep. Store that information in \p CU's DIEInfo.
847 /// This function is the entry point of the DIE selection
848 /// algorithm. It is expected to walk the DIE tree in file order and
849 /// (though the mediation of its helper) call hasValidRelocation() on
850 /// each DIE that might be a 'root DIE' (See DwarfLinker class
851 /// comment).
852 /// While walking the dependencies of root DIEs, this function is
853 /// also called, but during these dependency walks the file order is
854 /// not respected. The TF_DependencyWalk flag tells us which kind of
855 /// traversal we are currently doing.
857 /// The return value indicates whether the DIE is incomplete.
858 void DwarfLinker::lookForDIEsToKeep(RelocationManager &RelocMgr,
859 RangesTy &Ranges, const UnitListTy &Units,
860 const DWARFDie &Die,
861 const DebugMapObject &DMO, CompileUnit &CU,
862 unsigned Flags) {
863 // LIFO work list.
864 SmallVector<WorklistItem, 4> Worklist;
865 Worklist.emplace_back(Die, Flags);
867 while (!Worklist.empty()) {
868 WorklistItem Current = Worklist.back();
869 Worklist.pop_back();
871 if (Current.IsContinuation) {
872 updateIncompleteness(Current.Die, *Current.ChildInfo, CU);
873 continue;
876 unsigned Idx = CU.getOrigUnit().getDIEIndex(Current.Die);
877 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
879 // At this point we are guaranteed to have a continuation marker before us
880 // in the worklist, except for the last DIE.
881 if (!Worklist.empty())
882 Worklist.back().ChildInfo = &MyInfo;
884 if (MyInfo.Prune)
885 continue;
887 // If the Keep flag is set, we are marking a required DIE's dependencies.
888 // If our target is already marked as kept, we're all set.
889 bool AlreadyKept = MyInfo.Keep;
890 if ((Current.Flags & TF_DependencyWalk) && AlreadyKept)
891 continue;
893 // We must not call shouldKeepDIE while called from keepDIEAndDependencies,
894 // because it would screw up the relocation finding logic.
895 if (!(Current.Flags & TF_DependencyWalk))
896 Current.Flags = shouldKeepDIE(RelocMgr, Ranges, Current.Die, DMO, CU,
897 MyInfo, Current.Flags);
899 // If it is a newly kept DIE mark it as well as all its dependencies as
900 // kept.
901 if (!AlreadyKept && (Current.Flags & TF_Keep)) {
902 bool UseOdr = (Current.Flags & TF_DependencyWalk)
903 ? (Current.Flags & TF_ODR)
904 : CU.hasODR();
905 keepDIEAndDependencies(RelocMgr, Ranges, Units, Current.Die, MyInfo, DMO,
906 CU, UseOdr);
909 // The TF_ParentWalk flag tells us that we are currently walking up
910 // the parent chain of a required DIE, and we don't want to mark all
911 // the children of the parents as kept (consider for example a
912 // DW_TAG_namespace node in the parent chain). There are however a
913 // set of DIE types for which we want to ignore that directive and still
914 // walk their children.
915 if (dieNeedsChildrenToBeMeaningful(Current.Die.getTag()))
916 Current.Flags &= ~TF_ParentWalk;
918 if (!Current.Die.hasChildren() || (Current.Flags & TF_ParentWalk))
919 continue;
921 // Add children in reverse order to the worklist to effectively process
922 // them in order.
923 for (auto Child : reverse(Current.Die.children())) {
924 // Add continuation marker before every child to calculate incompleteness
925 // after the last child is processed. We can't store this information in
926 // the same item because we might have to process other continuations
927 // first.
928 Worklist.emplace_back(Current.Die);
929 Worklist.emplace_back(Child, Current.Flags);
934 /// Assign an abbreviation number to \p Abbrev.
936 /// Our DIEs get freed after every DebugMapObject has been processed,
937 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
938 /// the instances hold by the DIEs. When we encounter an abbreviation
939 /// that we don't know, we create a permanent copy of it.
940 void DwarfLinker::AssignAbbrev(DIEAbbrev &Abbrev) {
941 // Check the set for priors.
942 FoldingSetNodeID ID;
943 Abbrev.Profile(ID);
944 void *InsertToken;
945 DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
947 // If it's newly added.
948 if (InSet) {
949 // Assign existing abbreviation number.
950 Abbrev.setNumber(InSet->getNumber());
951 } else {
952 // Add to abbreviation list.
953 Abbreviations.push_back(
954 llvm::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
955 for (const auto &Attr : Abbrev.getData())
956 Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
957 AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
958 // Assign the unique abbreviation number.
959 Abbrev.setNumber(Abbreviations.size());
960 Abbreviations.back()->setNumber(Abbreviations.size());
964 unsigned DwarfLinker::DIECloner::cloneStringAttribute(
965 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
966 const DWARFUnit &U, OffsetsStringPool &StringPool, AttributesInfo &Info) {
967 // Switch everything to out of line strings.
968 const char *String = *Val.getAsCString();
969 auto StringEntry = StringPool.getEntry(String);
971 // Update attributes info.
972 if (AttrSpec.Attr == dwarf::DW_AT_name)
973 Info.Name = StringEntry;
974 else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name ||
975 AttrSpec.Attr == dwarf::DW_AT_linkage_name)
976 Info.MangledName = StringEntry;
978 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
979 DIEInteger(StringEntry.getOffset()));
981 return 4;
984 unsigned DwarfLinker::DIECloner::cloneDieReferenceAttribute(
985 DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
986 unsigned AttrSize, const DWARFFormValue &Val, const DebugMapObject &DMO,
987 CompileUnit &Unit) {
988 const DWARFUnit &U = Unit.getOrigUnit();
989 uint32_t Ref = *Val.getAsReference();
990 DIE *NewRefDie = nullptr;
991 CompileUnit *RefUnit = nullptr;
992 DeclContext *Ctxt = nullptr;
994 DWARFDie RefDie =
995 resolveDIEReference(Linker, DMO, CompileUnits, Val, U, InputDIE, RefUnit);
997 // If the referenced DIE is not found, drop the attribute.
998 if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling)
999 return 0;
1001 unsigned Idx = RefUnit->getOrigUnit().getDIEIndex(RefDie);
1002 CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(Idx);
1004 // If we already have emitted an equivalent DeclContext, just point
1005 // at it.
1006 if (isODRAttribute(AttrSpec.Attr)) {
1007 Ctxt = RefInfo.Ctxt;
1008 if (Ctxt && Ctxt->getCanonicalDIEOffset()) {
1009 DIEInteger Attr(Ctxt->getCanonicalDIEOffset());
1010 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1011 dwarf::DW_FORM_ref_addr, Attr);
1012 return U.getRefAddrByteSize();
1016 if (!RefInfo.Clone) {
1017 assert(Ref > InputDIE.getOffset());
1018 // We haven't cloned this DIE yet. Just create an empty one and
1019 // store it. It'll get really cloned when we process it.
1020 RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag()));
1022 NewRefDie = RefInfo.Clone;
1024 if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
1025 (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
1026 // We cannot currently rely on a DIEEntry to emit ref_addr
1027 // references, because the implementation calls back to DwarfDebug
1028 // to find the unit offset. (We don't have a DwarfDebug)
1029 // FIXME: we should be able to design DIEEntry reliance on
1030 // DwarfDebug away.
1031 uint64_t Attr;
1032 if (Ref < InputDIE.getOffset()) {
1033 // We must have already cloned that DIE.
1034 uint32_t NewRefOffset =
1035 RefUnit->getStartOffset() + NewRefDie->getOffset();
1036 Attr = NewRefOffset;
1037 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1038 dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
1039 } else {
1040 // A forward reference. Note and fixup later.
1041 Attr = 0xBADDEF;
1042 Unit.noteForwardReference(
1043 NewRefDie, RefUnit, Ctxt,
1044 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1045 dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
1047 return U.getRefAddrByteSize();
1050 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1051 dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
1052 return AttrSize;
1055 unsigned DwarfLinker::DIECloner::cloneBlockAttribute(DIE &Die,
1056 AttributeSpec AttrSpec,
1057 const DWARFFormValue &Val,
1058 unsigned AttrSize) {
1059 DIEValueList *Attr;
1060 DIEValue Value;
1061 DIELoc *Loc = nullptr;
1062 DIEBlock *Block = nullptr;
1063 // Just copy the block data over.
1064 if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
1065 Loc = new (DIEAlloc) DIELoc;
1066 Linker.DIELocs.push_back(Loc);
1067 } else {
1068 Block = new (DIEAlloc) DIEBlock;
1069 Linker.DIEBlocks.push_back(Block);
1071 Attr = Loc ? static_cast<DIEValueList *>(Loc)
1072 : static_cast<DIEValueList *>(Block);
1074 if (Loc)
1075 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1076 dwarf::Form(AttrSpec.Form), Loc);
1077 else
1078 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1079 dwarf::Form(AttrSpec.Form), Block);
1080 ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
1081 for (auto Byte : Bytes)
1082 Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
1083 dwarf::DW_FORM_data1, DIEInteger(Byte));
1084 // FIXME: If DIEBlock and DIELoc just reuses the Size field of
1085 // the DIE class, this if could be replaced by
1086 // Attr->setSize(Bytes.size()).
1087 if (Linker.Streamer) {
1088 auto *AsmPrinter = &Linker.Streamer->getAsmPrinter();
1089 if (Loc)
1090 Loc->ComputeSize(AsmPrinter);
1091 else
1092 Block->ComputeSize(AsmPrinter);
1094 Die.addValue(DIEAlloc, Value);
1095 return AttrSize;
1098 unsigned DwarfLinker::DIECloner::cloneAddressAttribute(
1099 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1100 const CompileUnit &Unit, AttributesInfo &Info) {
1101 uint64_t Addr = *Val.getAsAddress();
1103 if (LLVM_UNLIKELY(Linker.Options.Update)) {
1104 if (AttrSpec.Attr == dwarf::DW_AT_low_pc)
1105 Info.HasLowPc = true;
1106 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1107 dwarf::Form(AttrSpec.Form), DIEInteger(Addr));
1108 return Unit.getOrigUnit().getAddressByteSize();
1111 if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
1112 if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
1113 Die.getTag() == dwarf::DW_TAG_lexical_block)
1114 // The low_pc of a block or inline subroutine might get
1115 // relocated because it happens to match the low_pc of the
1116 // enclosing subprogram. To prevent issues with that, always use
1117 // the low_pc from the input DIE if relocations have been applied.
1118 Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max()
1119 ? Info.OrigLowPc
1120 : Addr) +
1121 Info.PCOffset;
1122 else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1123 Addr = Unit.getLowPc();
1124 if (Addr == std::numeric_limits<uint64_t>::max())
1125 return 0;
1127 Info.HasLowPc = true;
1128 } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
1129 if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1130 if (uint64_t HighPc = Unit.getHighPc())
1131 Addr = HighPc;
1132 else
1133 return 0;
1134 } else
1135 // If we have a high_pc recorded for the input DIE, use
1136 // it. Otherwise (when no relocations where applied) just use the
1137 // one we just decoded.
1138 Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
1141 Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
1142 static_cast<dwarf::Form>(AttrSpec.Form), DIEInteger(Addr));
1143 return Unit.getOrigUnit().getAddressByteSize();
1146 unsigned DwarfLinker::DIECloner::cloneScalarAttribute(
1147 DIE &Die, const DWARFDie &InputDIE, const DebugMapObject &DMO,
1148 CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1149 unsigned AttrSize, AttributesInfo &Info) {
1150 uint64_t Value;
1152 if (LLVM_UNLIKELY(Linker.Options.Update)) {
1153 if (auto OptionalValue = Val.getAsUnsignedConstant())
1154 Value = *OptionalValue;
1155 else if (auto OptionalValue = Val.getAsSignedConstant())
1156 Value = *OptionalValue;
1157 else if (auto OptionalValue = Val.getAsSectionOffset())
1158 Value = *OptionalValue;
1159 else {
1160 Linker.reportWarning(
1161 "Unsupported scalar attribute form. Dropping attribute.", DMO,
1162 &InputDIE);
1163 return 0;
1165 if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1166 Info.IsDeclaration = true;
1167 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1168 dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1169 return AttrSize;
1172 if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
1173 Die.getTag() == dwarf::DW_TAG_compile_unit) {
1174 if (Unit.getLowPc() == -1ULL)
1175 return 0;
1176 // Dwarf >= 4 high_pc is an size, not an address.
1177 Value = Unit.getHighPc() - Unit.getLowPc();
1178 } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
1179 Value = *Val.getAsSectionOffset();
1180 else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
1181 Value = *Val.getAsSignedConstant();
1182 else if (auto OptionalValue = Val.getAsUnsignedConstant())
1183 Value = *OptionalValue;
1184 else {
1185 Linker.reportWarning(
1186 "Unsupported scalar attribute form. Dropping attribute.", DMO,
1187 &InputDIE);
1188 return 0;
1190 PatchLocation Patch =
1191 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1192 dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1193 if (AttrSpec.Attr == dwarf::DW_AT_ranges) {
1194 Unit.noteRangeAttribute(Die, Patch);
1195 Info.HasRanges = true;
1198 // A more generic way to check for location attributes would be
1199 // nice, but it's very unlikely that any other attribute needs a
1200 // location list.
1201 else if (AttrSpec.Attr == dwarf::DW_AT_location ||
1202 AttrSpec.Attr == dwarf::DW_AT_frame_base)
1203 Unit.noteLocationAttribute(Patch, Info.PCOffset);
1204 else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1205 Info.IsDeclaration = true;
1207 return AttrSize;
1210 /// Clone \p InputDIE's attribute described by \p AttrSpec with
1211 /// value \p Val, and add it to \p Die.
1212 /// \returns the size of the cloned attribute.
1213 unsigned DwarfLinker::DIECloner::cloneAttribute(
1214 DIE &Die, const DWARFDie &InputDIE, const DebugMapObject &DMO,
1215 CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val,
1216 const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info) {
1217 const DWARFUnit &U = Unit.getOrigUnit();
1219 switch (AttrSpec.Form) {
1220 case dwarf::DW_FORM_strp:
1221 case dwarf::DW_FORM_string:
1222 return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info);
1223 case dwarf::DW_FORM_ref_addr:
1224 case dwarf::DW_FORM_ref1:
1225 case dwarf::DW_FORM_ref2:
1226 case dwarf::DW_FORM_ref4:
1227 case dwarf::DW_FORM_ref8:
1228 return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
1229 DMO, Unit);
1230 case dwarf::DW_FORM_block:
1231 case dwarf::DW_FORM_block1:
1232 case dwarf::DW_FORM_block2:
1233 case dwarf::DW_FORM_block4:
1234 case dwarf::DW_FORM_exprloc:
1235 return cloneBlockAttribute(Die, AttrSpec, Val, AttrSize);
1236 case dwarf::DW_FORM_addr:
1237 return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
1238 case dwarf::DW_FORM_data1:
1239 case dwarf::DW_FORM_data2:
1240 case dwarf::DW_FORM_data4:
1241 case dwarf::DW_FORM_data8:
1242 case dwarf::DW_FORM_udata:
1243 case dwarf::DW_FORM_sdata:
1244 case dwarf::DW_FORM_sec_offset:
1245 case dwarf::DW_FORM_flag:
1246 case dwarf::DW_FORM_flag_present:
1247 return cloneScalarAttribute(Die, InputDIE, DMO, Unit, AttrSpec, Val,
1248 AttrSize, Info);
1249 default:
1250 Linker.reportWarning(
1251 "Unsupported attribute form in cloneAttribute. Dropping.", DMO,
1252 &InputDIE);
1255 return 0;
1258 /// Apply the valid relocations found by findValidRelocs() to
1259 /// the buffer \p Data, taking into account that Data is at \p BaseOffset
1260 /// in the debug_info section.
1262 /// Like for findValidRelocs(), this function must be called with
1263 /// monotonic \p BaseOffset values.
1265 /// \returns whether any reloc has been applied.
1266 bool DwarfLinker::RelocationManager::applyValidRelocs(
1267 MutableArrayRef<char> Data, uint32_t BaseOffset, bool isLittleEndian) {
1268 assert((NextValidReloc == 0 ||
1269 BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) &&
1270 "BaseOffset should only be increasing.");
1271 if (NextValidReloc >= ValidRelocs.size())
1272 return false;
1274 // Skip relocs that haven't been applied.
1275 while (NextValidReloc < ValidRelocs.size() &&
1276 ValidRelocs[NextValidReloc].Offset < BaseOffset)
1277 ++NextValidReloc;
1279 bool Applied = false;
1280 uint64_t EndOffset = BaseOffset + Data.size();
1281 while (NextValidReloc < ValidRelocs.size() &&
1282 ValidRelocs[NextValidReloc].Offset >= BaseOffset &&
1283 ValidRelocs[NextValidReloc].Offset < EndOffset) {
1284 const auto &ValidReloc = ValidRelocs[NextValidReloc++];
1285 assert(ValidReloc.Offset - BaseOffset < Data.size());
1286 assert(ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data.size());
1287 char Buf[8];
1288 uint64_t Value = ValidReloc.Mapping->getValue().BinaryAddress;
1289 Value += ValidReloc.Addend;
1290 for (unsigned i = 0; i != ValidReloc.Size; ++i) {
1291 unsigned Index = isLittleEndian ? i : (ValidReloc.Size - i - 1);
1292 Buf[i] = uint8_t(Value >> (Index * 8));
1294 assert(ValidReloc.Size <= sizeof(Buf));
1295 memcpy(&Data[ValidReloc.Offset - BaseOffset], Buf, ValidReloc.Size);
1296 Applied = true;
1299 return Applied;
1302 static bool isObjCSelector(StringRef Name) {
1303 return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') &&
1304 (Name[1] == '[');
1307 void DwarfLinker::DIECloner::addObjCAccelerator(CompileUnit &Unit,
1308 const DIE *Die,
1309 DwarfStringPoolEntryRef Name,
1310 OffsetsStringPool &StringPool,
1311 bool SkipPubSection) {
1312 assert(isObjCSelector(Name.getString()) && "not an objc selector");
1313 // Objective C method or class function.
1314 // "- [Class(Category) selector :withArg ...]"
1315 StringRef ClassNameStart(Name.getString().drop_front(2));
1316 size_t FirstSpace = ClassNameStart.find(' ');
1317 if (FirstSpace == StringRef::npos)
1318 return;
1320 StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1);
1321 if (!SelectorStart.size())
1322 return;
1324 StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1);
1325 Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection);
1327 // Add an entry for the class name that points to this
1328 // method/class function.
1329 StringRef ClassName(ClassNameStart.data(), FirstSpace);
1330 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection);
1332 if (ClassName[ClassName.size() - 1] == ')') {
1333 size_t OpenParens = ClassName.find('(');
1334 if (OpenParens != StringRef::npos) {
1335 StringRef ClassNameNoCategory(ClassName.data(), OpenParens);
1336 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory),
1337 SkipPubSection);
1339 std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2);
1340 // FIXME: The missing space here may be a bug, but
1341 // dsymutil-classic also does it this way.
1342 MethodNameNoCategory.append(SelectorStart);
1343 Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory),
1344 SkipPubSection);
1349 static bool
1350 shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
1351 uint16_t Tag, bool InDebugMap, bool SkipPC,
1352 bool InFunctionScope) {
1353 switch (AttrSpec.Attr) {
1354 default:
1355 return false;
1356 case dwarf::DW_AT_low_pc:
1357 case dwarf::DW_AT_high_pc:
1358 case dwarf::DW_AT_ranges:
1359 return SkipPC;
1360 case dwarf::DW_AT_location:
1361 case dwarf::DW_AT_frame_base:
1362 // FIXME: for some reason dsymutil-classic keeps the location attributes
1363 // when they are of block type (i.e. not location lists). This is totally
1364 // wrong for globals where we will keep a wrong address. It is mostly
1365 // harmless for locals, but there is no point in keeping these anyway when
1366 // the function wasn't linked.
1367 return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
1368 !InDebugMap)) &&
1369 !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
1373 DIE *DwarfLinker::DIECloner::cloneDIE(const DWARFDie &InputDIE,
1374 const DebugMapObject &DMO,
1375 CompileUnit &Unit,
1376 OffsetsStringPool &StringPool,
1377 int64_t PCOffset, uint32_t OutOffset,
1378 unsigned Flags, DIE *Die) {
1379 DWARFUnit &U = Unit.getOrigUnit();
1380 unsigned Idx = U.getDIEIndex(InputDIE);
1381 CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
1383 // Should the DIE appear in the output?
1384 if (!Unit.getInfo(Idx).Keep)
1385 return nullptr;
1387 uint32_t Offset = InputDIE.getOffset();
1388 assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE");
1389 if (!Die) {
1390 // The DIE might have been already created by a forward reference
1391 // (see cloneDieReferenceAttribute()).
1392 if (!Info.Clone)
1393 Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
1394 Die = Info.Clone;
1397 assert(Die->getTag() == InputDIE.getTag());
1398 Die->setOffset(OutOffset);
1399 if ((Unit.hasODR() || Unit.isClangModule()) && !Info.Incomplete &&
1400 Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt &&
1401 Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt &&
1402 !Info.Ctxt->getCanonicalDIEOffset()) {
1403 // We are about to emit a DIE that is the root of its own valid
1404 // DeclContext tree. Make the current offset the canonical offset
1405 // for this context.
1406 Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
1409 // Extract and clone every attribute.
1410 DWARFDataExtractor Data = U.getDebugInfoExtractor();
1411 // Point to the next DIE (generally there is always at least a NULL
1412 // entry after the current one). If this is a lone
1413 // DW_TAG_compile_unit without any children, point to the next unit.
1414 uint32_t NextOffset = (Idx + 1 < U.getNumDIEs())
1415 ? U.getDIEAtIndex(Idx + 1).getOffset()
1416 : U.getNextUnitOffset();
1417 AttributesInfo AttrInfo;
1419 // We could copy the data only if we need to apply a relocation to it. After
1420 // testing, it seems there is no performance downside to doing the copy
1421 // unconditionally, and it makes the code simpler.
1422 SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
1423 Data =
1424 DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
1425 // Modify the copy with relocated addresses.
1426 if (RelocMgr.applyValidRelocs(DIECopy, Offset, Data.isLittleEndian())) {
1427 // If we applied relocations, we store the value of high_pc that was
1428 // potentially stored in the input DIE. If high_pc is an address
1429 // (Dwarf version == 2), then it might have been relocated to a
1430 // totally unrelated value (because the end address in the object
1431 // file might be start address of another function which got moved
1432 // independently by the linker). The computation of the actual
1433 // high_pc value is done in cloneAddressAttribute().
1434 AttrInfo.OrigHighPc =
1435 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0);
1436 // Also store the low_pc. It might get relocated in an
1437 // inline_subprogram that happens at the beginning of its
1438 // inlining function.
1439 AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc),
1440 std::numeric_limits<uint64_t>::max());
1443 // Reset the Offset to 0 as we will be working on the local copy of
1444 // the data.
1445 Offset = 0;
1447 const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
1448 Offset += getULEB128Size(Abbrev->getCode());
1450 // We are entering a subprogram. Get and propagate the PCOffset.
1451 if (Die->getTag() == dwarf::DW_TAG_subprogram)
1452 PCOffset = Info.AddrAdjust;
1453 AttrInfo.PCOffset = PCOffset;
1455 if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
1456 Flags |= TF_InFunctionScope;
1457 if (!Info.InDebugMap && LLVM_LIKELY(!Options.Update))
1458 Flags |= TF_SkipPC;
1461 bool Copied = false;
1462 for (const auto &AttrSpec : Abbrev->attributes()) {
1463 if (LLVM_LIKELY(!Options.Update) &&
1464 shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
1465 Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
1466 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
1467 U.getFormParams());
1468 // FIXME: dsymutil-classic keeps the old abbreviation around
1469 // even if it's not used. We can remove this (and the copyAbbrev
1470 // helper) as soon as bit-for-bit compatibility is not a goal anymore.
1471 if (!Copied) {
1472 copyAbbrev(*InputDIE.getAbbreviationDeclarationPtr(), Unit.hasODR());
1473 Copied = true;
1475 continue;
1478 DWARFFormValue Val(AttrSpec.Form);
1479 uint32_t AttrSize = Offset;
1480 Val.extractValue(Data, &Offset, U.getFormParams(), &U);
1481 AttrSize = Offset - AttrSize;
1483 OutOffset += cloneAttribute(*Die, InputDIE, DMO, Unit, StringPool, Val,
1484 AttrSpec, AttrSize, AttrInfo);
1487 // Look for accelerator entries.
1488 uint16_t Tag = InputDIE.getTag();
1489 // FIXME: This is slightly wrong. An inline_subroutine without a
1490 // low_pc, but with AT_ranges might be interesting to get into the
1491 // accelerator tables too. For now stick with dsymutil's behavior.
1492 if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) &&
1493 Tag != dwarf::DW_TAG_compile_unit &&
1494 getDIENames(InputDIE, AttrInfo, StringPool,
1495 Tag != dwarf::DW_TAG_inlined_subroutine)) {
1496 if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
1497 Unit.addNameAccelerator(Die, AttrInfo.MangledName,
1498 Tag == dwarf::DW_TAG_inlined_subroutine);
1499 if (AttrInfo.Name) {
1500 if (AttrInfo.NameWithoutTemplate)
1501 Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate,
1502 /* SkipPubSection */ true);
1503 Unit.addNameAccelerator(Die, AttrInfo.Name,
1504 Tag == dwarf::DW_TAG_inlined_subroutine);
1506 if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString()))
1507 addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool,
1508 /* SkipPubSection =*/true);
1510 } else if (Tag == dwarf::DW_TAG_namespace) {
1511 if (!AttrInfo.Name)
1512 AttrInfo.Name = StringPool.getEntry("(anonymous namespace)");
1513 Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
1514 } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
1515 getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name &&
1516 AttrInfo.Name.getString()[0]) {
1517 uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, DMO);
1518 uint64_t RuntimeLang =
1519 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class))
1520 .getValueOr(0);
1521 bool ObjCClassIsImplementation =
1522 (RuntimeLang == dwarf::DW_LANG_ObjC ||
1523 RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) &&
1524 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type))
1525 .getValueOr(0);
1526 Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation,
1527 Hash);
1530 // Determine whether there are any children that we want to keep.
1531 bool HasChildren = false;
1532 for (auto Child : InputDIE.children()) {
1533 unsigned Idx = U.getDIEIndex(Child);
1534 if (Unit.getInfo(Idx).Keep) {
1535 HasChildren = true;
1536 break;
1540 DIEAbbrev NewAbbrev = Die->generateAbbrev();
1541 if (HasChildren)
1542 NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
1543 // Assign a permanent abbrev number
1544 Linker.AssignAbbrev(NewAbbrev);
1545 Die->setAbbrevNumber(NewAbbrev.getNumber());
1547 // Add the size of the abbreviation number to the output offset.
1548 OutOffset += getULEB128Size(Die->getAbbrevNumber());
1550 if (!HasChildren) {
1551 // Update our size.
1552 Die->setSize(OutOffset - Die->getOffset());
1553 return Die;
1556 // Recursively clone children.
1557 for (auto Child : InputDIE.children()) {
1558 if (DIE *Clone = cloneDIE(Child, DMO, Unit, StringPool, PCOffset, OutOffset,
1559 Flags)) {
1560 Die->addChild(Clone);
1561 OutOffset = Clone->getOffset() + Clone->getSize();
1565 // Account for the end of children marker.
1566 OutOffset += sizeof(int8_t);
1567 // Update our size.
1568 Die->setSize(OutOffset - Die->getOffset());
1569 return Die;
1572 /// Patch the input object file relevant debug_ranges entries
1573 /// and emit them in the output file. Update the relevant attributes
1574 /// to point at the new entries.
1575 void DwarfLinker::patchRangesForUnit(const CompileUnit &Unit,
1576 DWARFContext &OrigDwarf,
1577 const DebugMapObject &DMO) const {
1578 DWARFDebugRangeList RangeList;
1579 const auto &FunctionRanges = Unit.getFunctionRanges();
1580 unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
1581 DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(),
1582 OrigDwarf.getDWARFObj().getRangeSection(),
1583 OrigDwarf.isLittleEndian(), AddressSize);
1584 auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
1585 DWARFUnit &OrigUnit = Unit.getOrigUnit();
1586 auto OrigUnitDie = OrigUnit.getUnitDIE(false);
1587 uint64_t OrigLowPc =
1588 dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL);
1589 // Ranges addresses are based on the unit's low_pc. Compute the
1590 // offset we need to apply to adapt to the new unit's low_pc.
1591 int64_t UnitPcOffset = 0;
1592 if (OrigLowPc != -1ULL)
1593 UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
1595 for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
1596 uint32_t Offset = RangeAttribute.get();
1597 RangeAttribute.set(Streamer->getRangesSectionSize());
1598 if (Error E = RangeList.extract(RangeExtractor, &Offset)) {
1599 llvm::consumeError(std::move(E));
1600 reportWarning("invalid range list ignored.", DMO);
1601 RangeList.clear();
1603 const auto &Entries = RangeList.getEntries();
1604 if (!Entries.empty()) {
1605 const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
1607 if (CurrRange == InvalidRange ||
1608 First.StartAddress + OrigLowPc < CurrRange.start() ||
1609 First.StartAddress + OrigLowPc >= CurrRange.stop()) {
1610 CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
1611 if (CurrRange == InvalidRange ||
1612 CurrRange.start() > First.StartAddress + OrigLowPc) {
1613 reportWarning("no mapping for range.", DMO);
1614 continue;
1619 Streamer->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, Entries,
1620 AddressSize);
1624 /// Generate the debug_aranges entries for \p Unit and if the
1625 /// unit has a DW_AT_ranges attribute, also emit the debug_ranges
1626 /// contribution for this attribute.
1627 /// FIXME: this could actually be done right in patchRangesForUnit,
1628 /// but for the sake of initial bit-for-bit compatibility with legacy
1629 /// dsymutil, we have to do it in a delayed pass.
1630 void DwarfLinker::generateUnitRanges(CompileUnit &Unit) const {
1631 auto Attr = Unit.getUnitRangesAttribute();
1632 if (Attr)
1633 Attr->set(Streamer->getRangesSectionSize());
1634 Streamer->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
1637 /// Insert the new line info sequence \p Seq into the current
1638 /// set of already linked line info \p Rows.
1639 static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
1640 std::vector<DWARFDebugLine::Row> &Rows) {
1641 if (Seq.empty())
1642 return;
1644 if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
1645 Rows.insert(Rows.end(), Seq.begin(), Seq.end());
1646 Seq.clear();
1647 return;
1650 auto InsertPoint = std::lower_bound(
1651 Rows.begin(), Rows.end(), Seq.front(),
1652 [](const DWARFDebugLine::Row &LHS, const DWARFDebugLine::Row &RHS) {
1653 return LHS.Address < RHS.Address;
1656 // FIXME: this only removes the unneeded end_sequence if the
1657 // sequences have been inserted in order. Using a global sort like
1658 // described in patchLineTableForUnit() and delaying the end_sequene
1659 // elimination to emitLineTableForUnit() we can get rid of all of them.
1660 if (InsertPoint != Rows.end() &&
1661 InsertPoint->Address == Seq.front().Address && InsertPoint->EndSequence) {
1662 *InsertPoint = Seq.front();
1663 Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
1664 } else {
1665 Rows.insert(InsertPoint, Seq.begin(), Seq.end());
1668 Seq.clear();
1671 static void patchStmtList(DIE &Die, DIEInteger Offset) {
1672 for (auto &V : Die.values())
1673 if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
1674 V = DIEValue(V.getAttribute(), V.getForm(), Offset);
1675 return;
1678 llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
1681 /// Extract the line table for \p Unit from \p OrigDwarf, and
1682 /// recreate a relocated version of these for the address ranges that
1683 /// are present in the binary.
1684 void DwarfLinker::patchLineTableForUnit(CompileUnit &Unit,
1685 DWARFContext &OrigDwarf,
1686 RangesTy &Ranges,
1687 const DebugMapObject &DMO) {
1688 DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE();
1689 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1690 if (!StmtList)
1691 return;
1693 // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
1694 if (auto *OutputDIE = Unit.getOutputUnitDIE())
1695 patchStmtList(*OutputDIE, DIEInteger(Streamer->getLineSectionSize()));
1697 // Parse the original line info for the unit.
1698 DWARFDebugLine::LineTable LineTable;
1699 uint32_t StmtOffset = *StmtList;
1700 DWARFDataExtractor LineExtractor(
1701 OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(),
1702 OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize());
1703 if (Options.Translator)
1704 return Streamer->translateLineTable(LineExtractor, StmtOffset, Options);
1706 Error Err = LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf,
1707 &Unit.getOrigUnit(), DWARFContext::dumpWarning);
1708 DWARFContext::dumpWarning(std::move(Err));
1710 // This vector is the output line table.
1711 std::vector<DWARFDebugLine::Row> NewRows;
1712 NewRows.reserve(LineTable.Rows.size());
1714 // Current sequence of rows being extracted, before being inserted
1715 // in NewRows.
1716 std::vector<DWARFDebugLine::Row> Seq;
1717 const auto &FunctionRanges = Unit.getFunctionRanges();
1718 auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
1720 // FIXME: This logic is meant to generate exactly the same output as
1721 // Darwin's classic dsymutil. There is a nicer way to implement this
1722 // by simply putting all the relocated line info in NewRows and simply
1723 // sorting NewRows before passing it to emitLineTableForUnit. This
1724 // should be correct as sequences for a function should stay
1725 // together in the sorted output. There are a few corner cases that
1726 // look suspicious though, and that required to implement the logic
1727 // this way. Revisit that once initial validation is finished.
1729 // Iterate over the object file line info and extract the sequences
1730 // that correspond to linked functions.
1731 for (auto &Row : LineTable.Rows) {
1732 // Check whether we stepped out of the range. The range is
1733 // half-open, but consider accept the end address of the range if
1734 // it is marked as end_sequence in the input (because in that
1735 // case, the relocation offset is accurate and that entry won't
1736 // serve as the start of another function).
1737 if (CurrRange == InvalidRange || Row.Address < CurrRange.start() ||
1738 Row.Address > CurrRange.stop() ||
1739 (Row.Address == CurrRange.stop() && !Row.EndSequence)) {
1740 // We just stepped out of a known range. Insert a end_sequence
1741 // corresponding to the end of the range.
1742 uint64_t StopAddress = CurrRange != InvalidRange
1743 ? CurrRange.stop() + CurrRange.value()
1744 : -1ULL;
1745 CurrRange = FunctionRanges.find(Row.Address);
1746 bool CurrRangeValid =
1747 CurrRange != InvalidRange && CurrRange.start() <= Row.Address;
1748 if (!CurrRangeValid) {
1749 CurrRange = InvalidRange;
1750 if (StopAddress != -1ULL) {
1751 // Try harder by looking in the DebugMapObject function
1752 // ranges map. There are corner cases where this finds a
1753 // valid entry. It's unclear if this is right or wrong, but
1754 // for now do as dsymutil.
1755 // FIXME: Understand exactly what cases this addresses and
1756 // potentially remove it along with the Ranges map.
1757 auto Range = Ranges.lower_bound(Row.Address);
1758 if (Range != Ranges.begin() && Range != Ranges.end())
1759 --Range;
1761 if (Range != Ranges.end() && Range->first <= Row.Address &&
1762 Range->second.HighPC >= Row.Address) {
1763 StopAddress = Row.Address + Range->second.Offset;
1767 if (StopAddress != -1ULL && !Seq.empty()) {
1768 // Insert end sequence row with the computed end address, but
1769 // the same line as the previous one.
1770 auto NextLine = Seq.back();
1771 NextLine.Address = StopAddress;
1772 NextLine.EndSequence = 1;
1773 NextLine.PrologueEnd = 0;
1774 NextLine.BasicBlock = 0;
1775 NextLine.EpilogueBegin = 0;
1776 Seq.push_back(NextLine);
1777 insertLineSequence(Seq, NewRows);
1780 if (!CurrRangeValid)
1781 continue;
1784 // Ignore empty sequences.
1785 if (Row.EndSequence && Seq.empty())
1786 continue;
1788 // Relocate row address and add it to the current sequence.
1789 Row.Address += CurrRange.value();
1790 Seq.emplace_back(Row);
1792 if (Row.EndSequence)
1793 insertLineSequence(Seq, NewRows);
1796 // Finished extracting, now emit the line tables.
1797 // FIXME: LLVM hard-codes its prologue values. We just copy the
1798 // prologue over and that works because we act as both producer and
1799 // consumer. It would be nicer to have a real configurable line
1800 // table emitter.
1801 if (LineTable.Prologue.getVersion() < 2 ||
1802 LineTable.Prologue.getVersion() > 5 ||
1803 LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
1804 LineTable.Prologue.OpcodeBase > 13)
1805 reportWarning("line table parameters mismatch. Cannot emit.", DMO);
1806 else {
1807 uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength;
1808 // DWARF v5 has an extra 2 bytes of information before the header_length
1809 // field.
1810 if (LineTable.Prologue.getVersion() == 5)
1811 PrologueEnd += 2;
1812 StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data;
1813 MCDwarfLineTableParams Params;
1814 Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
1815 Params.DWARF2LineBase = LineTable.Prologue.LineBase;
1816 Params.DWARF2LineRange = LineTable.Prologue.LineRange;
1817 Streamer->emitLineTableForUnit(Params,
1818 LineData.slice(*StmtList + 4, PrologueEnd),
1819 LineTable.Prologue.MinInstLength, NewRows,
1820 Unit.getOrigUnit().getAddressByteSize());
1824 void DwarfLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
1825 switch (Options.TheAccelTableKind) {
1826 case AccelTableKind::Apple:
1827 emitAppleAcceleratorEntriesForUnit(Unit);
1828 break;
1829 case AccelTableKind::Dwarf:
1830 emitDwarfAcceleratorEntriesForUnit(Unit);
1831 break;
1832 case AccelTableKind::Default:
1833 llvm_unreachable("The default must be updated to a concrete value.");
1834 break;
1838 void DwarfLinker::emitAppleAcceleratorEntriesForUnit(CompileUnit &Unit) {
1839 // Add namespaces.
1840 for (const auto &Namespace : Unit.getNamespaces())
1841 AppleNamespaces.addName(Namespace.Name,
1842 Namespace.Die->getOffset() + Unit.getStartOffset());
1844 /// Add names.
1845 if (!Options.Minimize)
1846 Streamer->emitPubNamesForUnit(Unit);
1847 for (const auto &Pubname : Unit.getPubnames())
1848 AppleNames.addName(Pubname.Name,
1849 Pubname.Die->getOffset() + Unit.getStartOffset());
1851 /// Add types.
1852 if (!Options.Minimize)
1853 Streamer->emitPubTypesForUnit(Unit);
1854 for (const auto &Pubtype : Unit.getPubtypes())
1855 AppleTypes.addName(
1856 Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(),
1857 Pubtype.Die->getTag(),
1858 Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation
1859 : 0,
1860 Pubtype.QualifiedNameHash);
1862 /// Add ObjC names.
1863 for (const auto &ObjC : Unit.getObjC())
1864 AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset());
1867 void DwarfLinker::emitDwarfAcceleratorEntriesForUnit(CompileUnit &Unit) {
1868 for (const auto &Namespace : Unit.getNamespaces())
1869 DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(),
1870 Namespace.Die->getTag(), Unit.getUniqueID());
1871 for (const auto &Pubname : Unit.getPubnames())
1872 DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(),
1873 Pubname.Die->getTag(), Unit.getUniqueID());
1874 for (const auto &Pubtype : Unit.getPubtypes())
1875 DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(),
1876 Pubtype.Die->getTag(), Unit.getUniqueID());
1879 /// Read the frame info stored in the object, and emit the
1880 /// patched frame descriptions for the linked binary.
1882 /// This is actually pretty easy as the data of the CIEs and FDEs can
1883 /// be considered as black boxes and moved as is. The only thing to do
1884 /// is to patch the addresses in the headers.
1885 void DwarfLinker::patchFrameInfoForObject(const DebugMapObject &DMO,
1886 RangesTy &Ranges,
1887 DWARFContext &OrigDwarf,
1888 unsigned AddrSize) {
1889 StringRef FrameData = OrigDwarf.getDWARFObj().getDebugFrameSection();
1890 if (FrameData.empty())
1891 return;
1893 DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
1894 uint32_t InputOffset = 0;
1896 // Store the data of the CIEs defined in this object, keyed by their
1897 // offsets.
1898 DenseMap<uint32_t, StringRef> LocalCIES;
1900 while (Data.isValidOffset(InputOffset)) {
1901 uint32_t EntryOffset = InputOffset;
1902 uint32_t InitialLength = Data.getU32(&InputOffset);
1903 if (InitialLength == 0xFFFFFFFF)
1904 return reportWarning("Dwarf64 bits no supported", DMO);
1906 uint32_t CIEId = Data.getU32(&InputOffset);
1907 if (CIEId == 0xFFFFFFFF) {
1908 // This is a CIE, store it.
1909 StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
1910 LocalCIES[EntryOffset] = CIEData;
1911 // The -4 is to account for the CIEId we just read.
1912 InputOffset += InitialLength - 4;
1913 continue;
1916 uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
1918 // Some compilers seem to emit frame info that doesn't start at
1919 // the function entry point, thus we can't just lookup the address
1920 // in the debug map. Use the linker's range map to see if the FDE
1921 // describes something that we can relocate.
1922 auto Range = Ranges.upper_bound(Loc);
1923 if (Range != Ranges.begin())
1924 --Range;
1925 if (Range == Ranges.end() || Range->first > Loc ||
1926 Range->second.HighPC <= Loc) {
1927 // The +4 is to account for the size of the InitialLength field itself.
1928 InputOffset = EntryOffset + InitialLength + 4;
1929 continue;
1932 // This is an FDE, and we have a mapping.
1933 // Have we already emitted a corresponding CIE?
1934 StringRef CIEData = LocalCIES[CIEId];
1935 if (CIEData.empty())
1936 return reportWarning("Inconsistent debug_frame content. Dropping.", DMO);
1938 // Look if we already emitted a CIE that corresponds to the
1939 // referenced one (the CIE data is the key of that lookup).
1940 auto IteratorInserted = EmittedCIEs.insert(
1941 std::make_pair(CIEData, Streamer->getFrameSectionSize()));
1942 // If there is no CIE yet for this ID, emit it.
1943 if (IteratorInserted.second ||
1944 // FIXME: dsymutil-classic only caches the last used CIE for
1945 // reuse. Mimic that behavior for now. Just removing that
1946 // second half of the condition and the LastCIEOffset variable
1947 // makes the code DTRT.
1948 LastCIEOffset != IteratorInserted.first->getValue()) {
1949 LastCIEOffset = Streamer->getFrameSectionSize();
1950 IteratorInserted.first->getValue() = LastCIEOffset;
1951 Streamer->emitCIE(CIEData);
1954 // Emit the FDE with updated address and CIE pointer.
1955 // (4 + AddrSize) is the size of the CIEId + initial_location
1956 // fields that will get reconstructed by emitFDE().
1957 unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
1958 Streamer->emitFDE(IteratorInserted.first->getValue(), AddrSize,
1959 Loc + Range->second.Offset,
1960 FrameData.substr(InputOffset, FDERemainingBytes));
1961 InputOffset += FDERemainingBytes;
1965 void DwarfLinker::DIECloner::copyAbbrev(
1966 const DWARFAbbreviationDeclaration &Abbrev, bool hasODR) {
1967 DIEAbbrev Copy(dwarf::Tag(Abbrev.getTag()),
1968 dwarf::Form(Abbrev.hasChildren()));
1970 for (const auto &Attr : Abbrev.attributes()) {
1971 uint16_t Form = Attr.Form;
1972 if (hasODR && isODRAttribute(Attr.Attr))
1973 Form = dwarf::DW_FORM_ref_addr;
1974 Copy.AddAttribute(dwarf::Attribute(Attr.Attr), dwarf::Form(Form));
1977 Linker.AssignAbbrev(Copy);
1980 uint32_t DwarfLinker::DIECloner::hashFullyQualifiedName(
1981 DWARFDie DIE, CompileUnit &U, const DebugMapObject &DMO, int RecurseDepth) {
1982 const char *Name = nullptr;
1983 DWARFUnit *OrigUnit = &U.getOrigUnit();
1984 CompileUnit *CU = &U;
1985 Optional<DWARFFormValue> Ref;
1987 while (1) {
1988 if (const char *CurrentName = DIE.getName(DINameKind::ShortName))
1989 Name = CurrentName;
1991 if (!(Ref = DIE.find(dwarf::DW_AT_specification)) &&
1992 !(Ref = DIE.find(dwarf::DW_AT_abstract_origin)))
1993 break;
1995 if (!Ref->isFormClass(DWARFFormValue::FC_Reference))
1996 break;
1998 CompileUnit *RefCU;
1999 if (auto RefDIE = resolveDIEReference(Linker, DMO, CompileUnits, *Ref,
2000 U.getOrigUnit(), DIE, RefCU)) {
2001 CU = RefCU;
2002 OrigUnit = &RefCU->getOrigUnit();
2003 DIE = RefDIE;
2007 unsigned Idx = OrigUnit->getDIEIndex(DIE);
2008 if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace)
2009 Name = "(anonymous namespace)";
2011 if (CU->getInfo(Idx).ParentIdx == 0 ||
2012 // FIXME: dsymutil-classic compatibility. Ignore modules.
2013 CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() ==
2014 dwarf::DW_TAG_module)
2015 return djbHash(Name ? Name : "", djbHash(RecurseDepth ? "" : "::"));
2017 DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx);
2018 return djbHash(
2019 (Name ? Name : ""),
2020 djbHash((Name ? "::" : ""),
2021 hashFullyQualifiedName(Die, *CU, DMO, ++RecurseDepth)));
2024 static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) {
2025 auto DwoId = dwarf::toUnsigned(
2026 CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id}));
2027 if (DwoId)
2028 return *DwoId;
2029 return 0;
2032 bool DwarfLinker::registerModuleReference(
2033 const DWARFDie &CUDie, const DWARFUnit &Unit, DebugMap &ModuleMap,
2034 const DebugMapObject &DMO, RangesTy &Ranges, OffsetsStringPool &StringPool,
2035 UniquingStringPool &UniquingStringPool, DeclContextTree &ODRContexts,
2036 uint64_t ModulesEndOffset, unsigned &UnitID, unsigned Indent, bool Quiet) {
2037 std::string PCMfile = dwarf::toString(
2038 CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), "");
2039 if (PCMfile.empty())
2040 return false;
2042 // Clang module DWARF skeleton CUs abuse this for the path to the module.
2043 std::string PCMpath = dwarf::toString(CUDie.find(dwarf::DW_AT_comp_dir), "");
2044 uint64_t DwoId = getDwoId(CUDie, Unit);
2046 std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
2047 if (Name.empty()) {
2048 if (!Quiet)
2049 reportWarning("Anonymous module skeleton CU for " + PCMfile, DMO);
2050 return true;
2053 if (!Quiet && Options.Verbose) {
2054 outs().indent(Indent);
2055 outs() << "Found clang module reference " << PCMfile;
2058 auto Cached = ClangModules.find(PCMfile);
2059 if (Cached != ClangModules.end()) {
2060 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2061 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2062 // ASTFileSignatures will change randomly when a module is rebuilt.
2063 if (!Quiet && Options.Verbose && (Cached->second != DwoId))
2064 reportWarning(Twine("hash mismatch: this object file was built against a "
2065 "different version of the module ") +
2066 PCMfile,
2067 DMO);
2068 if (!Quiet && Options.Verbose)
2069 outs() << " [cached].\n";
2070 return true;
2072 if (!Quiet && Options.Verbose)
2073 outs() << " ...\n";
2075 // Cyclic dependencies are disallowed by Clang, but we still
2076 // shouldn't run into an infinite loop, so mark it as processed now.
2077 ClangModules.insert({PCMfile, DwoId});
2078 if (Error E =
2079 loadClangModule(PCMfile, PCMpath, Name, DwoId, ModuleMap, DMO, Ranges,
2080 StringPool, UniquingStringPool, ODRContexts,
2081 ModulesEndOffset, UnitID, Indent + 2, Quiet)) {
2082 consumeError(std::move(E));
2083 return false;
2085 return true;
2088 ErrorOr<const object::ObjectFile &>
2089 DwarfLinker::loadObject(const DebugMapObject &Obj, const DebugMap &Map) {
2090 auto ObjectEntry =
2091 BinHolder.getObjectEntry(Obj.getObjectFilename(), Obj.getTimestamp());
2092 if (!ObjectEntry) {
2093 auto Err = ObjectEntry.takeError();
2094 reportWarning(
2095 Twine(Obj.getObjectFilename()) + ": " + toString(std::move(Err)), Obj);
2096 return errorToErrorCode(std::move(Err));
2099 auto Object = ObjectEntry->getObject(Map.getTriple());
2100 if (!Object) {
2101 auto Err = Object.takeError();
2102 reportWarning(
2103 Twine(Obj.getObjectFilename()) + ": " + toString(std::move(Err)), Obj);
2104 return errorToErrorCode(std::move(Err));
2107 return *Object;
2110 Error DwarfLinker::loadClangModule(
2111 StringRef Filename, StringRef ModulePath, StringRef ModuleName,
2112 uint64_t DwoId, DebugMap &ModuleMap, const DebugMapObject &DMO,
2113 RangesTy &Ranges, OffsetsStringPool &StringPool,
2114 UniquingStringPool &UniquingStringPool, DeclContextTree &ODRContexts,
2115 uint64_t ModulesEndOffset, unsigned &UnitID, unsigned Indent, bool Quiet) {
2116 SmallString<80> Path(Options.PrependPath);
2117 if (sys::path::is_relative(Filename))
2118 sys::path::append(Path, ModulePath, Filename);
2119 else
2120 sys::path::append(Path, Filename);
2121 // Don't use the cached binary holder because we have no thread-safety
2122 // guarantee and the lifetime is limited.
2123 auto &Obj = ModuleMap.addDebugMapObject(
2124 Path, sys::TimePoint<std::chrono::seconds>(), MachO::N_OSO);
2125 auto ErrOrObj = loadObject(Obj, ModuleMap);
2126 if (!ErrOrObj) {
2127 // Try and emit more helpful warnings by applying some heuristics.
2128 StringRef ObjFile = DMO.getObjectFilename();
2129 bool isClangModule = sys::path::extension(Filename).equals(".pcm");
2130 bool isArchive = ObjFile.endswith(")");
2131 if (isClangModule) {
2132 StringRef ModuleCacheDir = sys::path::parent_path(Path);
2133 if (sys::fs::exists(ModuleCacheDir)) {
2134 // If the module's parent directory exists, we assume that the module
2135 // cache has expired and was pruned by clang. A more adventurous
2136 // dsymutil would invoke clang to rebuild the module now.
2137 if (!ModuleCacheHintDisplayed) {
2138 WithColor::note() << "The clang module cache may have expired since "
2139 "this object file was built. Rebuilding the "
2140 "object file will rebuild the module cache.\n";
2141 ModuleCacheHintDisplayed = true;
2143 } else if (isArchive) {
2144 // If the module cache directory doesn't exist at all and the object
2145 // file is inside a static library, we assume that the static library
2146 // was built on a different machine. We don't want to discourage module
2147 // debugging for convenience libraries within a project though.
2148 if (!ArchiveHintDisplayed) {
2149 WithColor::note()
2150 << "Linking a static library that was built with "
2151 "-gmodules, but the module cache was not found. "
2152 "Redistributable static libraries should never be "
2153 "built with module debugging enabled. The debug "
2154 "experience will be degraded due to incomplete "
2155 "debug information.\n";
2156 ArchiveHintDisplayed = true;
2160 return Error::success();
2163 std::unique_ptr<CompileUnit> Unit;
2165 // Setup access to the debug info.
2166 auto DwarfContext = DWARFContext::create(*ErrOrObj);
2167 RelocationManager RelocMgr(*this);
2169 for (const auto &CU : DwarfContext->compile_units()) {
2170 updateDwarfVersion(CU->getVersion());
2171 // Recursively get all modules imported by this one.
2172 auto CUDie = CU->getUnitDIE(false);
2173 if (!CUDie)
2174 continue;
2175 if (!registerModuleReference(CUDie, *CU, ModuleMap, DMO, Ranges, StringPool,
2176 UniquingStringPool, ODRContexts,
2177 ModulesEndOffset, UnitID, Indent, Quiet)) {
2178 if (Unit) {
2179 std::string Err =
2180 (Filename +
2181 ": Clang modules are expected to have exactly 1 compile unit.\n")
2182 .str();
2183 error(Err);
2184 return make_error<StringError>(Err, inconvertibleErrorCode());
2186 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2187 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2188 // ASTFileSignatures will change randomly when a module is rebuilt.
2189 uint64_t PCMDwoId = getDwoId(CUDie, *CU);
2190 if (PCMDwoId != DwoId) {
2191 if (!Quiet && Options.Verbose)
2192 reportWarning(
2193 Twine("hash mismatch: this object file was built against a "
2194 "different version of the module ") +
2195 Filename,
2196 DMO);
2197 // Update the cache entry with the DwoId of the module loaded from disk.
2198 ClangModules[Filename] = PCMDwoId;
2201 // Add this module.
2202 Unit = llvm::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR,
2203 ModuleName);
2204 Unit->setHasInterestingContent();
2205 analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(),
2206 UniquingStringPool, ODRContexts, ModulesEndOffset);
2207 // Keep everything.
2208 Unit->markEverythingAsKept();
2211 if (!Unit->getOrigUnit().getUnitDIE().hasChildren())
2212 return Error::success();
2213 if (!Quiet && Options.Verbose) {
2214 outs().indent(Indent);
2215 outs() << "cloning .debug_info from " << Filename << "\n";
2218 UnitListTy CompileUnits;
2219 CompileUnits.push_back(std::move(Unit));
2220 DIECloner(*this, RelocMgr, DIEAlloc, CompileUnits, Options)
2221 .cloneAllCompileUnits(*DwarfContext, DMO, Ranges, StringPool);
2222 return Error::success();
2225 void DwarfLinker::DIECloner::cloneAllCompileUnits(
2226 DWARFContext &DwarfContext, const DebugMapObject &DMO, RangesTy &Ranges,
2227 OffsetsStringPool &StringPool) {
2228 if (!Linker.Streamer)
2229 return;
2231 for (auto &CurrentUnit : CompileUnits) {
2232 auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE();
2233 CurrentUnit->setStartOffset(Linker.OutputDebugInfoSize);
2234 if (!InputDIE) {
2235 Linker.OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset();
2236 continue;
2238 if (CurrentUnit->getInfo(0).Keep) {
2239 // Clone the InputDIE into your Unit DIE in our compile unit since it
2240 // already has a DIE inside of it.
2241 CurrentUnit->createOutputDIE();
2242 cloneDIE(InputDIE, DMO, *CurrentUnit, StringPool, 0 /* PC offset */,
2243 11 /* Unit Header size */, 0, CurrentUnit->getOutputUnitDIE());
2246 Linker.OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset();
2248 if (Linker.Options.NoOutput)
2249 continue;
2251 // FIXME: for compatibility with the classic dsymutil, we emit
2252 // an empty line table for the unit, even if the unit doesn't
2253 // actually exist in the DIE tree.
2254 if (LLVM_LIKELY(!Linker.Options.Update) || Linker.Options.Translator)
2255 Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, Ranges, DMO);
2257 Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);
2259 if (LLVM_UNLIKELY(Linker.Options.Update))
2260 continue;
2262 Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, DMO);
2263 Linker.Streamer->emitLocationsForUnit(*CurrentUnit, DwarfContext);
2266 if (Linker.Options.NoOutput)
2267 return;
2269 // Emit all the compile unit's debug information.
2270 for (auto &CurrentUnit : CompileUnits) {
2271 if (LLVM_LIKELY(!Linker.Options.Update))
2272 Linker.generateUnitRanges(*CurrentUnit);
2274 CurrentUnit->fixupForwardReferences();
2276 if (!CurrentUnit->getOutputUnitDIE())
2277 continue;
2279 Linker.Streamer->emitCompileUnitHeader(*CurrentUnit);
2280 Linker.Streamer->emitDIE(*CurrentUnit->getOutputUnitDIE());
2284 void DwarfLinker::updateAccelKind(DWARFContext &Dwarf) {
2285 if (Options.TheAccelTableKind != AccelTableKind::Default)
2286 return;
2288 auto &DwarfObj = Dwarf.getDWARFObj();
2290 if (!AtLeastOneDwarfAccelTable &&
2291 (!DwarfObj.getAppleNamesSection().Data.empty() ||
2292 !DwarfObj.getAppleTypesSection().Data.empty() ||
2293 !DwarfObj.getAppleNamespacesSection().Data.empty() ||
2294 !DwarfObj.getAppleObjCSection().Data.empty())) {
2295 AtLeastOneAppleAccelTable = true;
2298 if (!AtLeastOneDwarfAccelTable &&
2299 !DwarfObj.getDebugNamesSection().Data.empty()) {
2300 AtLeastOneDwarfAccelTable = true;
2304 bool DwarfLinker::emitPaperTrailWarnings(const DebugMapObject &DMO,
2305 const DebugMap &Map,
2306 OffsetsStringPool &StringPool) {
2307 if (DMO.getWarnings().empty() || !DMO.empty())
2308 return false;
2310 Streamer->switchToDebugInfoSection(/* Version */ 2);
2311 DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit);
2312 CUDie->setOffset(11);
2313 StringRef Producer = StringPool.internString("dsymutil");
2314 StringRef File = StringPool.internString(DMO.getObjectFilename());
2315 CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp,
2316 DIEInteger(StringPool.getStringOffset(Producer)));
2317 DIEBlock *String = new (DIEAlloc) DIEBlock();
2318 DIEBlocks.push_back(String);
2319 for (auto &C : File)
2320 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2321 DIEInteger(C));
2322 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2323 DIEInteger(0));
2325 CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String);
2326 for (const auto &Warning : DMO.getWarnings()) {
2327 DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant));
2328 ConstDie.addValue(
2329 DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp,
2330 DIEInteger(StringPool.getStringOffset("dsymutil_warning")));
2331 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag,
2332 DIEInteger(1));
2333 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp,
2334 DIEInteger(StringPool.getStringOffset(Warning)));
2336 unsigned Size = 4 /* FORM_strp */ + File.size() + 1 +
2337 DMO.getWarnings().size() * (4 + 1 + 4) +
2338 1 /* End of children */;
2339 DIEAbbrev Abbrev = CUDie->generateAbbrev();
2340 AssignAbbrev(Abbrev);
2341 CUDie->setAbbrevNumber(Abbrev.getNumber());
2342 Size += getULEB128Size(Abbrev.getNumber());
2343 // Abbreviation ordering needed for classic compatibility.
2344 for (auto &Child : CUDie->children()) {
2345 Abbrev = Child.generateAbbrev();
2346 AssignAbbrev(Abbrev);
2347 Child.setAbbrevNumber(Abbrev.getNumber());
2348 Size += getULEB128Size(Abbrev.getNumber());
2350 CUDie->setSize(Size);
2351 auto &Asm = Streamer->getAsmPrinter();
2352 Asm.emitInt32(11 + CUDie->getSize() - 4);
2353 Asm.emitInt16(2);
2354 Asm.emitInt32(0);
2355 Asm.emitInt8(Map.getTriple().isArch64Bit() ? 8 : 4);
2356 Streamer->emitDIE(*CUDie);
2357 OutputDebugInfoSize += 11 /* Header */ + Size;
2359 return true;
2362 bool DwarfLinker::link(const DebugMap &Map) {
2363 if (!createStreamer(Map.getTriple(), OutFile))
2364 return false;
2366 // Size of the DIEs (and headers) generated for the linked output.
2367 OutputDebugInfoSize = 0;
2368 // A unique ID that identifies each compile unit.
2369 unsigned UnitID = 0;
2370 DebugMap ModuleMap(Map.getTriple(), Map.getBinaryPath());
2372 // First populate the data structure we need for each iteration of the
2373 // parallel loop.
2374 unsigned NumObjects = Map.getNumberOfObjects();
2375 std::vector<LinkContext> ObjectContexts;
2376 ObjectContexts.reserve(NumObjects);
2377 for (const auto &Obj : Map.objects()) {
2378 ObjectContexts.emplace_back(Map, *this, *Obj.get());
2379 LinkContext &LC = ObjectContexts.back();
2380 if (LC.ObjectFile)
2381 updateAccelKind(*LC.DwarfContext);
2384 // This Dwarf string pool which is only used for uniquing. This one should
2385 // never be used for offsets as its not thread-safe or predictable.
2386 UniquingStringPool UniquingStringPool;
2388 // This Dwarf string pool which is used for emission. It must be used
2389 // serially as the order of calling getStringOffset matters for
2390 // reproducibility.
2391 OffsetsStringPool OffsetsStringPool(Options.Translator);
2393 // ODR Contexts for the link.
2394 DeclContextTree ODRContexts;
2396 // If we haven't decided on an accelerator table kind yet, we base ourselves
2397 // on the DWARF we have seen so far. At this point we haven't pulled in debug
2398 // information from modules yet, so it is technically possible that they
2399 // would affect the decision. However, as they're built with the same
2400 // compiler and flags, it is safe to assume that they will follow the
2401 // decision made here.
2402 if (Options.TheAccelTableKind == AccelTableKind::Default) {
2403 if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable)
2404 Options.TheAccelTableKind = AccelTableKind::Dwarf;
2405 else
2406 Options.TheAccelTableKind = AccelTableKind::Apple;
2409 for (LinkContext &LinkContext : ObjectContexts) {
2410 if (Options.Verbose)
2411 outs() << "DEBUG MAP OBJECT: " << LinkContext.DMO.getObjectFilename()
2412 << "\n";
2414 // N_AST objects (swiftmodule files) should get dumped directly into the
2415 // appropriate DWARF section.
2416 if (LinkContext.DMO.getType() == MachO::N_AST) {
2417 StringRef File = LinkContext.DMO.getObjectFilename();
2418 auto ErrorOrMem = MemoryBuffer::getFile(File);
2419 if (!ErrorOrMem) {
2420 warn("Could not open '" + File + "'\n");
2421 continue;
2423 sys::fs::file_status Stat;
2424 if (auto Err = sys::fs::status(File, Stat)) {
2425 warn(Err.message());
2426 continue;
2428 if (!Options.NoTimestamp) {
2429 // The modification can have sub-second precision so we need to cast
2430 // away the extra precision that's not present in the debug map.
2431 auto ModificationTime =
2432 std::chrono::time_point_cast<std::chrono::seconds>(
2433 Stat.getLastModificationTime());
2434 if (ModificationTime != LinkContext.DMO.getTimestamp()) {
2435 // Not using the helper here as we can easily stream TimePoint<>.
2436 WithColor::warning()
2437 << "Timestamp mismatch for " << File << ": "
2438 << Stat.getLastModificationTime() << " and "
2439 << sys::TimePoint<>(LinkContext.DMO.getTimestamp()) << "\n";
2440 continue;
2444 // Copy the module into the .swift_ast section.
2445 if (!Options.NoOutput)
2446 Streamer->emitSwiftAST((*ErrorOrMem)->getBuffer());
2447 continue;
2450 if (emitPaperTrailWarnings(LinkContext.DMO, Map, OffsetsStringPool))
2451 continue;
2453 if (!LinkContext.ObjectFile)
2454 continue;
2456 // Look for relocations that correspond to debug map entries.
2458 if (LLVM_LIKELY(!Options.Update) &&
2459 !LinkContext.RelocMgr.findValidRelocsInDebugInfo(
2460 *LinkContext.ObjectFile, LinkContext.DMO)) {
2461 if (Options.Verbose)
2462 outs() << "No valid relocations found. Skipping.\n";
2464 // Clear this ObjFile entry as a signal to other loops that we should not
2465 // process this iteration.
2466 LinkContext.ObjectFile = nullptr;
2467 continue;
2470 // Setup access to the debug info.
2471 if (!LinkContext.DwarfContext)
2472 continue;
2474 startDebugObject(LinkContext);
2476 // In a first phase, just read in the debug info and load all clang modules.
2477 LinkContext.CompileUnits.reserve(
2478 LinkContext.DwarfContext->getNumCompileUnits());
2480 for (const auto &CU : LinkContext.DwarfContext->compile_units()) {
2481 updateDwarfVersion(CU->getVersion());
2482 auto CUDie = CU->getUnitDIE(false);
2483 if (Options.Verbose) {
2484 outs() << "Input compilation unit:";
2485 DIDumpOptions DumpOpts;
2486 DumpOpts.RecurseDepth = 0;
2487 DumpOpts.Verbose = Options.Verbose;
2488 CUDie.dump(outs(), 0, DumpOpts);
2490 if (CUDie && !LLVM_UNLIKELY(Options.Update))
2491 registerModuleReference(CUDie, *CU, ModuleMap, LinkContext.DMO,
2492 LinkContext.Ranges, OffsetsStringPool,
2493 UniquingStringPool, ODRContexts, 0, UnitID);
2497 // If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway.
2498 if (MaxDwarfVersion == 0)
2499 MaxDwarfVersion = 3;
2501 // At this point we know how much data we have emitted. We use this value to
2502 // compare canonical DIE offsets in analyzeContextInfo to see if a definition
2503 // is already emitted, without being affected by canonical die offsets set
2504 // later. This prevents undeterminism when analyze and clone execute
2505 // concurrently, as clone set the canonical DIE offset and analyze reads it.
2506 const uint64_t ModulesEndOffset = OutputDebugInfoSize;
2508 // These variables manage the list of processed object files.
2509 // The mutex and condition variable are to ensure that this is thread safe.
2510 std::mutex ProcessedFilesMutex;
2511 std::condition_variable ProcessedFilesConditionVariable;
2512 BitVector ProcessedFiles(NumObjects, false);
2514 // Analyzing the context info is particularly expensive so it is executed in
2515 // parallel with emitting the previous compile unit.
2516 auto AnalyzeLambda = [&](size_t i) {
2517 auto &LinkContext = ObjectContexts[i];
2519 if (!LinkContext.ObjectFile || !LinkContext.DwarfContext)
2520 return;
2522 for (const auto &CU : LinkContext.DwarfContext->compile_units()) {
2523 updateDwarfVersion(CU->getVersion());
2524 // The !registerModuleReference() condition effectively skips
2525 // over fully resolved skeleton units. This second pass of
2526 // registerModuleReferences doesn't do any new work, but it
2527 // will collect top-level errors, which are suppressed. Module
2528 // warnings were already displayed in the first iteration.
2529 bool Quiet = true;
2530 auto CUDie = CU->getUnitDIE(false);
2531 if (!CUDie || LLVM_UNLIKELY(Options.Update) ||
2532 !registerModuleReference(CUDie, *CU, ModuleMap, LinkContext.DMO,
2533 LinkContext.Ranges, OffsetsStringPool,
2534 UniquingStringPool, ODRContexts,
2535 ModulesEndOffset, UnitID, Quiet)) {
2536 LinkContext.CompileUnits.push_back(llvm::make_unique<CompileUnit>(
2537 *CU, UnitID++, !Options.NoODR && !Options.Update, ""));
2541 // Now build the DIE parent links that we will use during the next phase.
2542 for (auto &CurrentUnit : LinkContext.CompileUnits) {
2543 auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE();
2544 if (!CUDie)
2545 continue;
2546 analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0,
2547 *CurrentUnit, &ODRContexts.getRoot(),
2548 UniquingStringPool, ODRContexts, ModulesEndOffset);
2552 // And then the remaining work in serial again.
2553 // Note, although this loop runs in serial, it can run in parallel with
2554 // the analyzeContextInfo loop so long as we process files with indices >=
2555 // than those processed by analyzeContextInfo.
2556 auto CloneLambda = [&](size_t i) {
2557 auto &LinkContext = ObjectContexts[i];
2558 if (!LinkContext.ObjectFile)
2559 return;
2561 // Then mark all the DIEs that need to be present in the linked output
2562 // and collect some information about them.
2563 // Note that this loop can not be merged with the previous one because
2564 // cross-cu references require the ParentIdx to be setup for every CU in
2565 // the object file before calling this.
2566 if (LLVM_UNLIKELY(Options.Update)) {
2567 for (auto &CurrentUnit : LinkContext.CompileUnits)
2568 CurrentUnit->markEverythingAsKept();
2569 Streamer->copyInvariantDebugSection(*LinkContext.ObjectFile);
2570 } else {
2571 for (auto &CurrentUnit : LinkContext.CompileUnits)
2572 lookForDIEsToKeep(LinkContext.RelocMgr, LinkContext.Ranges,
2573 LinkContext.CompileUnits,
2574 CurrentUnit->getOrigUnit().getUnitDIE(),
2575 LinkContext.DMO, *CurrentUnit, 0);
2578 // The calls to applyValidRelocs inside cloneDIE will walk the reloc
2579 // array again (in the same way findValidRelocsInDebugInfo() did). We
2580 // need to reset the NextValidReloc index to the beginning.
2581 LinkContext.RelocMgr.resetValidRelocs();
2582 if (LinkContext.RelocMgr.hasValidRelocs() || LLVM_UNLIKELY(Options.Update))
2583 DIECloner(*this, LinkContext.RelocMgr, DIEAlloc, LinkContext.CompileUnits,
2584 Options)
2585 .cloneAllCompileUnits(*LinkContext.DwarfContext, LinkContext.DMO,
2586 LinkContext.Ranges, OffsetsStringPool);
2587 if (!Options.NoOutput && !LinkContext.CompileUnits.empty() &&
2588 LLVM_LIKELY(!Options.Update))
2589 patchFrameInfoForObject(
2590 LinkContext.DMO, LinkContext.Ranges, *LinkContext.DwarfContext,
2591 LinkContext.CompileUnits[0]->getOrigUnit().getAddressByteSize());
2593 // Clean-up before starting working on the next object.
2594 endDebugObject(LinkContext);
2597 auto EmitLambda = [&]() {
2598 // Emit everything that's global.
2599 if (!Options.NoOutput) {
2600 Streamer->emitAbbrevs(Abbreviations, MaxDwarfVersion);
2601 Streamer->emitStrings(OffsetsStringPool);
2602 switch (Options.TheAccelTableKind) {
2603 case AccelTableKind::Apple:
2604 Streamer->emitAppleNames(AppleNames);
2605 Streamer->emitAppleNamespaces(AppleNamespaces);
2606 Streamer->emitAppleTypes(AppleTypes);
2607 Streamer->emitAppleObjc(AppleObjc);
2608 break;
2609 case AccelTableKind::Dwarf:
2610 Streamer->emitDebugNames(DebugNames);
2611 break;
2612 case AccelTableKind::Default:
2613 llvm_unreachable("Default should have already been resolved.");
2614 break;
2619 auto AnalyzeAll = [&]() {
2620 for (unsigned i = 0, e = NumObjects; i != e; ++i) {
2621 AnalyzeLambda(i);
2623 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2624 ProcessedFiles.set(i);
2625 ProcessedFilesConditionVariable.notify_one();
2629 auto CloneAll = [&]() {
2630 for (unsigned i = 0, e = NumObjects; i != e; ++i) {
2632 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2633 if (!ProcessedFiles[i]) {
2634 ProcessedFilesConditionVariable.wait(
2635 LockGuard, [&]() { return ProcessedFiles[i]; });
2639 CloneLambda(i);
2641 EmitLambda();
2644 // To limit memory usage in the single threaded case, analyze and clone are
2645 // run sequentially so the LinkContext is freed after processing each object
2646 // in endDebugObject.
2647 if (Options.Threads == 1) {
2648 for (unsigned i = 0, e = NumObjects; i != e; ++i) {
2649 AnalyzeLambda(i);
2650 CloneLambda(i);
2652 EmitLambda();
2653 } else {
2654 ThreadPool pool(2);
2655 pool.async(AnalyzeAll);
2656 pool.async(CloneAll);
2657 pool.wait();
2660 return Options.NoOutput ? true : Streamer->finish(Map, Options.Translator);
2661 } // namespace dsymutil
2663 bool linkDwarf(raw_fd_ostream &OutFile, BinaryHolder &BinHolder,
2664 const DebugMap &DM, const LinkOptions &Options) {
2665 DwarfLinker Linker(OutFile, BinHolder, Options);
2666 return Linker.link(DM);
2669 } // namespace dsymutil
2670 } // namespace llvm