1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
115 using namespace llvm
;
116 using namespace llvm::PatternMatch
;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls
, "Number of tail calls");
121 STATISTIC(NumMovwMovt
, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals
, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted
,
124 "Number of constants with their storage promoted into constant pools");
127 ARMInterworking("arm-interworking", cl::Hidden
,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
131 static cl::opt
<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden
,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt
<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden
,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
140 static cl::opt
<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden
,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs
[] = {
147 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT
, MVT PromotedLdStVT
,
151 MVT PromotedBitwiseVT
) {
152 if (VT
!= PromotedLdStVT
) {
153 setOperationAction(ISD::LOAD
, VT
, Promote
);
154 AddPromotedToType (ISD::LOAD
, VT
, PromotedLdStVT
);
156 setOperationAction(ISD::STORE
, VT
, Promote
);
157 AddPromotedToType (ISD::STORE
, VT
, PromotedLdStVT
);
160 MVT ElemTy
= VT
.getVectorElementType();
161 if (ElemTy
!= MVT::f64
)
162 setOperationAction(ISD::SETCC
, VT
, Custom
);
163 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
165 if (ElemTy
== MVT::i32
) {
166 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
167 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
168 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
169 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
171 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
172 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
173 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
174 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
176 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
177 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
178 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Legal
);
180 setOperationAction(ISD::SELECT
, VT
, Expand
);
181 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
182 setOperationAction(ISD::VSELECT
, VT
, Expand
);
183 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
184 if (VT
.isInteger()) {
185 setOperationAction(ISD::SHL
, VT
, Custom
);
186 setOperationAction(ISD::SRA
, VT
, Custom
);
187 setOperationAction(ISD::SRL
, VT
, Custom
);
190 // Promote all bit-wise operations.
191 if (VT
.isInteger() && VT
!= PromotedBitwiseVT
) {
192 setOperationAction(ISD::AND
, VT
, Promote
);
193 AddPromotedToType (ISD::AND
, VT
, PromotedBitwiseVT
);
194 setOperationAction(ISD::OR
, VT
, Promote
);
195 AddPromotedToType (ISD::OR
, VT
, PromotedBitwiseVT
);
196 setOperationAction(ISD::XOR
, VT
, Promote
);
197 AddPromotedToType (ISD::XOR
, VT
, PromotedBitwiseVT
);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV
, VT
, Expand
);
202 setOperationAction(ISD::UDIV
, VT
, Expand
);
203 setOperationAction(ISD::FDIV
, VT
, Expand
);
204 setOperationAction(ISD::SREM
, VT
, Expand
);
205 setOperationAction(ISD::UREM
, VT
, Expand
);
206 setOperationAction(ISD::FREM
, VT
, Expand
);
208 if (!VT
.isFloatingPoint() &&
209 VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
210 for (auto Opcode
: {ISD::ABS
, ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
211 setOperationAction(Opcode
, VT
, Legal
);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT
) {
215 addRegisterClass(VT
, &ARM::DPRRegClass
);
216 addTypeForNEON(VT
, MVT::f64
, MVT::v2i32
);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT
) {
220 addRegisterClass(VT
, &ARM::DPairRegClass
);
221 addTypeForNEON(VT
, MVT::v2f64
, MVT::v4i32
);
224 void ARMTargetLowering::setAllExpand(MVT VT
) {
225 for (unsigned Opc
= 0; Opc
< ISD::BUILTIN_OP_END
; ++Opc
)
226 setOperationAction(Opc
, VT
, Expand
);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST
, VT
, Legal
);
232 setOperationAction(ISD::LOAD
, VT
, Legal
);
233 setOperationAction(ISD::STORE
, VT
, Legal
);
234 setOperationAction(ISD::UNDEF
, VT
, Legal
);
237 void ARMTargetLowering::addAllExtLoads(const MVT From
, const MVT To
,
238 LegalizeAction Action
) {
239 setLoadExtAction(ISD::EXTLOAD
, From
, To
, Action
);
240 setLoadExtAction(ISD::ZEXTLOAD
, From
, To
, Action
);
241 setLoadExtAction(ISD::SEXTLOAD
, From
, To
, Action
);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP
) {
245 const MVT IntTypes
[] = { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
};
247 for (auto VT
: IntTypes
) {
248 addRegisterClass(VT
, &ARM::QPRRegClass
);
249 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
250 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
252 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
253 setOperationAction(ISD::SHL
, VT
, Custom
);
254 setOperationAction(ISD::SRA
, VT
, Custom
);
255 setOperationAction(ISD::SRL
, VT
, Custom
);
256 setOperationAction(ISD::SMIN
, VT
, Legal
);
257 setOperationAction(ISD::SMAX
, VT
, Legal
);
258 setOperationAction(ISD::UMIN
, VT
, Legal
);
259 setOperationAction(ISD::UMAX
, VT
, Legal
);
260 setOperationAction(ISD::ABS
, VT
, Legal
);
261 setOperationAction(ISD::SETCC
, VT
, Custom
);
263 // No native support for these.
264 setOperationAction(ISD::UDIV
, VT
, Expand
);
265 setOperationAction(ISD::SDIV
, VT
, Expand
);
266 setOperationAction(ISD::UREM
, VT
, Expand
);
267 setOperationAction(ISD::SREM
, VT
, Expand
);
270 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
271 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
272 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
273 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
277 const MVT FloatTypes
[] = { MVT::v8f16
, MVT::v4f32
};
278 for (auto VT
: FloatTypes
) {
279 addRegisterClass(VT
, &ARM::QPRRegClass
);
283 // These are legal or custom whether we have MVE.fp or not
284 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
285 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
286 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
.getVectorElementType(), Custom
);
287 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
288 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
289 setOperationAction(ISD::BUILD_VECTOR
, VT
.getVectorElementType(), Custom
);
290 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Legal
);
291 setOperationAction(ISD::SETCC
, VT
, Custom
);
294 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
295 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
296 setOperationAction(ISD::FROUND
, VT
, Legal
);
298 // No native support for these.
299 setOperationAction(ISD::FDIV
, VT
, Expand
);
300 setOperationAction(ISD::FREM
, VT
, Expand
);
301 setOperationAction(ISD::FSQRT
, VT
, Expand
);
302 setOperationAction(ISD::FSIN
, VT
, Expand
);
303 setOperationAction(ISD::FCOS
, VT
, Expand
);
304 setOperationAction(ISD::FPOW
, VT
, Expand
);
305 setOperationAction(ISD::FLOG
, VT
, Expand
);
306 setOperationAction(ISD::FLOG2
, VT
, Expand
);
307 setOperationAction(ISD::FLOG10
, VT
, Expand
);
308 setOperationAction(ISD::FEXP
, VT
, Expand
);
309 setOperationAction(ISD::FEXP2
, VT
, Expand
);
310 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
314 // We 'support' these types up to bitcast/load/store level, regardless of
315 // MVE integer-only / float support. Only doing FP data processing on the FP
316 // vector types is inhibited at integer-only level.
317 const MVT LongTypes
[] = { MVT::v2i64
, MVT::v2f64
};
318 for (auto VT
: LongTypes
) {
319 addRegisterClass(VT
, &ARM::QPRRegClass
);
321 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
322 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
323 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
325 // We can do bitwise operations on v2i64 vectors
326 setOperationAction(ISD::AND
, MVT::v2i64
, Legal
);
327 setOperationAction(ISD::OR
, MVT::v2i64
, Legal
);
328 setOperationAction(ISD::XOR
, MVT::v2i64
, Legal
);
330 // It is legal to extload from v4i8 to v4i16 or v4i32.
331 addAllExtLoads(MVT::v8i16
, MVT::v8i8
, Legal
);
332 addAllExtLoads(MVT::v4i32
, MVT::v4i16
, Legal
);
333 addAllExtLoads(MVT::v4i32
, MVT::v4i8
, Legal
);
335 // Some truncating stores are legal too.
336 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Legal
);
337 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Legal
);
338 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Legal
);
341 const MVT pTypes
[] = {MVT::v16i1
, MVT::v8i1
, MVT::v4i1
};
342 for (auto VT
: pTypes
) {
343 addRegisterClass(VT
, &ARM::VCCRRegClass
);
344 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
345 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
346 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
347 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
348 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
349 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
350 setOperationAction(ISD::SETCC
, VT
, Custom
);
351 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
355 ARMTargetLowering::ARMTargetLowering(const TargetMachine
&TM
,
356 const ARMSubtarget
&STI
)
357 : TargetLowering(TM
), Subtarget(&STI
) {
358 RegInfo
= Subtarget
->getRegisterInfo();
359 Itins
= Subtarget
->getInstrItineraryData();
361 setBooleanContents(ZeroOrOneBooleanContent
);
362 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
364 if (!Subtarget
->isTargetDarwin() && !Subtarget
->isTargetIOS() &&
365 !Subtarget
->isTargetWatchOS()) {
366 bool IsHFTarget
= TM
.Options
.FloatABIType
== FloatABI::Hard
;
367 for (int LCID
= 0; LCID
< RTLIB::UNKNOWN_LIBCALL
; ++LCID
)
368 setLibcallCallingConv(static_cast<RTLIB::Libcall
>(LCID
),
369 IsHFTarget
? CallingConv::ARM_AAPCS_VFP
370 : CallingConv::ARM_AAPCS
);
373 if (Subtarget
->isTargetMachO()) {
374 // Uses VFP for Thumb libfuncs if available.
375 if (Subtarget
->isThumb() && Subtarget
->hasVFP2Base() &&
376 Subtarget
->hasARMOps() && !Subtarget
->useSoftFloat()) {
377 static const struct {
378 const RTLIB::Libcall Op
;
379 const char * const Name
;
380 const ISD::CondCode Cond
;
382 // Single-precision floating-point arithmetic.
383 { RTLIB::ADD_F32
, "__addsf3vfp", ISD::SETCC_INVALID
},
384 { RTLIB::SUB_F32
, "__subsf3vfp", ISD::SETCC_INVALID
},
385 { RTLIB::MUL_F32
, "__mulsf3vfp", ISD::SETCC_INVALID
},
386 { RTLIB::DIV_F32
, "__divsf3vfp", ISD::SETCC_INVALID
},
388 // Double-precision floating-point arithmetic.
389 { RTLIB::ADD_F64
, "__adddf3vfp", ISD::SETCC_INVALID
},
390 { RTLIB::SUB_F64
, "__subdf3vfp", ISD::SETCC_INVALID
},
391 { RTLIB::MUL_F64
, "__muldf3vfp", ISD::SETCC_INVALID
},
392 { RTLIB::DIV_F64
, "__divdf3vfp", ISD::SETCC_INVALID
},
394 // Single-precision comparisons.
395 { RTLIB::OEQ_F32
, "__eqsf2vfp", ISD::SETNE
},
396 { RTLIB::UNE_F32
, "__nesf2vfp", ISD::SETNE
},
397 { RTLIB::OLT_F32
, "__ltsf2vfp", ISD::SETNE
},
398 { RTLIB::OLE_F32
, "__lesf2vfp", ISD::SETNE
},
399 { RTLIB::OGE_F32
, "__gesf2vfp", ISD::SETNE
},
400 { RTLIB::OGT_F32
, "__gtsf2vfp", ISD::SETNE
},
401 { RTLIB::UO_F32
, "__unordsf2vfp", ISD::SETNE
},
402 { RTLIB::O_F32
, "__unordsf2vfp", ISD::SETEQ
},
404 // Double-precision comparisons.
405 { RTLIB::OEQ_F64
, "__eqdf2vfp", ISD::SETNE
},
406 { RTLIB::UNE_F64
, "__nedf2vfp", ISD::SETNE
},
407 { RTLIB::OLT_F64
, "__ltdf2vfp", ISD::SETNE
},
408 { RTLIB::OLE_F64
, "__ledf2vfp", ISD::SETNE
},
409 { RTLIB::OGE_F64
, "__gedf2vfp", ISD::SETNE
},
410 { RTLIB::OGT_F64
, "__gtdf2vfp", ISD::SETNE
},
411 { RTLIB::UO_F64
, "__unorddf2vfp", ISD::SETNE
},
412 { RTLIB::O_F64
, "__unorddf2vfp", ISD::SETEQ
},
414 // Floating-point to integer conversions.
415 // i64 conversions are done via library routines even when generating VFP
416 // instructions, so use the same ones.
417 { RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp", ISD::SETCC_INVALID
},
418 { RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp", ISD::SETCC_INVALID
},
419 { RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp", ISD::SETCC_INVALID
},
420 { RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp", ISD::SETCC_INVALID
},
422 // Conversions between floating types.
423 { RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp", ISD::SETCC_INVALID
},
424 { RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp", ISD::SETCC_INVALID
},
426 // Integer to floating-point conversions.
427 // i64 conversions are done via library routines even when generating VFP
428 // instructions, so use the same ones.
429 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
430 // e.g., __floatunsidf vs. __floatunssidfvfp.
431 { RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp", ISD::SETCC_INVALID
},
432 { RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp", ISD::SETCC_INVALID
},
433 { RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp", ISD::SETCC_INVALID
},
434 { RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp", ISD::SETCC_INVALID
},
437 for (const auto &LC
: LibraryCalls
) {
438 setLibcallName(LC
.Op
, LC
.Name
);
439 if (LC
.Cond
!= ISD::SETCC_INVALID
)
440 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
445 // These libcalls are not available in 32-bit.
446 setLibcallName(RTLIB::SHL_I128
, nullptr);
447 setLibcallName(RTLIB::SRL_I128
, nullptr);
448 setLibcallName(RTLIB::SRA_I128
, nullptr);
451 if (Subtarget
->isAAPCS_ABI() &&
452 (Subtarget
->isTargetAEABI() || Subtarget
->isTargetGNUAEABI() ||
453 Subtarget
->isTargetMuslAEABI() || Subtarget
->isTargetAndroid())) {
454 static const struct {
455 const RTLIB::Libcall Op
;
456 const char * const Name
;
457 const CallingConv::ID CC
;
458 const ISD::CondCode Cond
;
460 // Double-precision floating-point arithmetic helper functions
461 // RTABI chapter 4.1.2, Table 2
462 { RTLIB::ADD_F64
, "__aeabi_dadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
463 { RTLIB::DIV_F64
, "__aeabi_ddiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
464 { RTLIB::MUL_F64
, "__aeabi_dmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
465 { RTLIB::SUB_F64
, "__aeabi_dsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
467 // Double-precision floating-point comparison helper functions
468 // RTABI chapter 4.1.2, Table 3
469 { RTLIB::OEQ_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
470 { RTLIB::UNE_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
471 { RTLIB::OLT_F64
, "__aeabi_dcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
472 { RTLIB::OLE_F64
, "__aeabi_dcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
473 { RTLIB::OGE_F64
, "__aeabi_dcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
474 { RTLIB::OGT_F64
, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
475 { RTLIB::UO_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
476 { RTLIB::O_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
478 // Single-precision floating-point arithmetic helper functions
479 // RTABI chapter 4.1.2, Table 4
480 { RTLIB::ADD_F32
, "__aeabi_fadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
481 { RTLIB::DIV_F32
, "__aeabi_fdiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
482 { RTLIB::MUL_F32
, "__aeabi_fmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
483 { RTLIB::SUB_F32
, "__aeabi_fsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
485 // Single-precision floating-point comparison helper functions
486 // RTABI chapter 4.1.2, Table 5
487 { RTLIB::OEQ_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
488 { RTLIB::UNE_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
489 { RTLIB::OLT_F32
, "__aeabi_fcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
490 { RTLIB::OLE_F32
, "__aeabi_fcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
491 { RTLIB::OGE_F32
, "__aeabi_fcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
492 { RTLIB::OGT_F32
, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
493 { RTLIB::UO_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
494 { RTLIB::O_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
496 // Floating-point to integer conversions.
497 // RTABI chapter 4.1.2, Table 6
498 { RTLIB::FPTOSINT_F64_I32
, "__aeabi_d2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
499 { RTLIB::FPTOUINT_F64_I32
, "__aeabi_d2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
500 { RTLIB::FPTOSINT_F64_I64
, "__aeabi_d2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
501 { RTLIB::FPTOUINT_F64_I64
, "__aeabi_d2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
502 { RTLIB::FPTOSINT_F32_I32
, "__aeabi_f2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
503 { RTLIB::FPTOUINT_F32_I32
, "__aeabi_f2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
504 { RTLIB::FPTOSINT_F32_I64
, "__aeabi_f2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
505 { RTLIB::FPTOUINT_F32_I64
, "__aeabi_f2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
507 // Conversions between floating types.
508 // RTABI chapter 4.1.2, Table 7
509 { RTLIB::FPROUND_F64_F32
, "__aeabi_d2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
510 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
511 { RTLIB::FPEXT_F32_F64
, "__aeabi_f2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
513 // Integer to floating-point conversions.
514 // RTABI chapter 4.1.2, Table 8
515 { RTLIB::SINTTOFP_I32_F64
, "__aeabi_i2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
516 { RTLIB::UINTTOFP_I32_F64
, "__aeabi_ui2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
517 { RTLIB::SINTTOFP_I64_F64
, "__aeabi_l2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
518 { RTLIB::UINTTOFP_I64_F64
, "__aeabi_ul2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
519 { RTLIB::SINTTOFP_I32_F32
, "__aeabi_i2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
520 { RTLIB::UINTTOFP_I32_F32
, "__aeabi_ui2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
521 { RTLIB::SINTTOFP_I64_F32
, "__aeabi_l2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
522 { RTLIB::UINTTOFP_I64_F32
, "__aeabi_ul2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
524 // Long long helper functions
525 // RTABI chapter 4.2, Table 9
526 { RTLIB::MUL_I64
, "__aeabi_lmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
527 { RTLIB::SHL_I64
, "__aeabi_llsl", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
528 { RTLIB::SRL_I64
, "__aeabi_llsr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
529 { RTLIB::SRA_I64
, "__aeabi_lasr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
531 // Integer division functions
532 // RTABI chapter 4.3.1
533 { RTLIB::SDIV_I8
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
534 { RTLIB::SDIV_I16
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
535 { RTLIB::SDIV_I32
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
536 { RTLIB::SDIV_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
537 { RTLIB::UDIV_I8
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
538 { RTLIB::UDIV_I16
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
539 { RTLIB::UDIV_I32
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
540 { RTLIB::UDIV_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
543 for (const auto &LC
: LibraryCalls
) {
544 setLibcallName(LC
.Op
, LC
.Name
);
545 setLibcallCallingConv(LC
.Op
, LC
.CC
);
546 if (LC
.Cond
!= ISD::SETCC_INVALID
)
547 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
550 // EABI dependent RTLIB
551 if (TM
.Options
.EABIVersion
== EABI::EABI4
||
552 TM
.Options
.EABIVersion
== EABI::EABI5
) {
553 static const struct {
554 const RTLIB::Libcall Op
;
555 const char *const Name
;
556 const CallingConv::ID CC
;
557 const ISD::CondCode Cond
;
558 } MemOpsLibraryCalls
[] = {
560 // RTABI chapter 4.3.4
561 { RTLIB::MEMCPY
, "__aeabi_memcpy", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
562 { RTLIB::MEMMOVE
, "__aeabi_memmove", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
563 { RTLIB::MEMSET
, "__aeabi_memset", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
566 for (const auto &LC
: MemOpsLibraryCalls
) {
567 setLibcallName(LC
.Op
, LC
.Name
);
568 setLibcallCallingConv(LC
.Op
, LC
.CC
);
569 if (LC
.Cond
!= ISD::SETCC_INVALID
)
570 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
575 if (Subtarget
->isTargetWindows()) {
576 static const struct {
577 const RTLIB::Libcall Op
;
578 const char * const Name
;
579 const CallingConv::ID CC
;
581 { RTLIB::FPTOSINT_F32_I64
, "__stoi64", CallingConv::ARM_AAPCS_VFP
},
582 { RTLIB::FPTOSINT_F64_I64
, "__dtoi64", CallingConv::ARM_AAPCS_VFP
},
583 { RTLIB::FPTOUINT_F32_I64
, "__stou64", CallingConv::ARM_AAPCS_VFP
},
584 { RTLIB::FPTOUINT_F64_I64
, "__dtou64", CallingConv::ARM_AAPCS_VFP
},
585 { RTLIB::SINTTOFP_I64_F32
, "__i64tos", CallingConv::ARM_AAPCS_VFP
},
586 { RTLIB::SINTTOFP_I64_F64
, "__i64tod", CallingConv::ARM_AAPCS_VFP
},
587 { RTLIB::UINTTOFP_I64_F32
, "__u64tos", CallingConv::ARM_AAPCS_VFP
},
588 { RTLIB::UINTTOFP_I64_F64
, "__u64tod", CallingConv::ARM_AAPCS_VFP
},
591 for (const auto &LC
: LibraryCalls
) {
592 setLibcallName(LC
.Op
, LC
.Name
);
593 setLibcallCallingConv(LC
.Op
, LC
.CC
);
597 // Use divmod compiler-rt calls for iOS 5.0 and later.
598 if (Subtarget
->isTargetMachO() &&
599 !(Subtarget
->isTargetIOS() &&
600 Subtarget
->getTargetTriple().isOSVersionLT(5, 0))) {
601 setLibcallName(RTLIB::SDIVREM_I32
, "__divmodsi4");
602 setLibcallName(RTLIB::UDIVREM_I32
, "__udivmodsi4");
605 // The half <-> float conversion functions are always soft-float on
606 // non-watchos platforms, but are needed for some targets which use a
607 // hard-float calling convention by default.
608 if (!Subtarget
->isTargetWatchABI()) {
609 if (Subtarget
->isAAPCS_ABI()) {
610 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_AAPCS
);
611 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_AAPCS
);
612 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_AAPCS
);
614 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_APCS
);
615 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_APCS
);
616 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_APCS
);
620 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
621 // a __gnu_ prefix (which is the default).
622 if (Subtarget
->isTargetAEABI()) {
623 static const struct {
624 const RTLIB::Libcall Op
;
625 const char * const Name
;
626 const CallingConv::ID CC
;
628 { RTLIB::FPROUND_F32_F16
, "__aeabi_f2h", CallingConv::ARM_AAPCS
},
629 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
},
630 { RTLIB::FPEXT_F16_F32
, "__aeabi_h2f", CallingConv::ARM_AAPCS
},
633 for (const auto &LC
: LibraryCalls
) {
634 setLibcallName(LC
.Op
, LC
.Name
);
635 setLibcallCallingConv(LC
.Op
, LC
.CC
);
639 if (Subtarget
->isThumb1Only())
640 addRegisterClass(MVT::i32
, &ARM::tGPRRegClass
);
642 addRegisterClass(MVT::i32
, &ARM::GPRRegClass
);
644 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only() &&
645 Subtarget
->hasFPRegs()) {
646 addRegisterClass(MVT::f32
, &ARM::SPRRegClass
);
647 addRegisterClass(MVT::f64
, &ARM::DPRRegClass
);
648 if (!Subtarget
->hasVFP2Base())
649 setAllExpand(MVT::f32
);
650 if (!Subtarget
->hasFP64())
651 setAllExpand(MVT::f64
);
654 if (Subtarget
->hasFullFP16()) {
655 addRegisterClass(MVT::f16
, &ARM::HPRRegClass
);
656 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
657 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
658 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
660 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
661 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
664 for (MVT VT
: MVT::vector_valuetypes()) {
665 for (MVT InnerVT
: MVT::vector_valuetypes()) {
666 setTruncStoreAction(VT
, InnerVT
, Expand
);
667 addAllExtLoads(VT
, InnerVT
, Expand
);
670 setOperationAction(ISD::MULHS
, VT
, Expand
);
671 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
672 setOperationAction(ISD::MULHU
, VT
, Expand
);
673 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
675 setOperationAction(ISD::BSWAP
, VT
, Expand
);
678 setOperationAction(ISD::ConstantFP
, MVT::f32
, Custom
);
679 setOperationAction(ISD::ConstantFP
, MVT::f64
, Custom
);
681 setOperationAction(ISD::READ_REGISTER
, MVT::i64
, Custom
);
682 setOperationAction(ISD::WRITE_REGISTER
, MVT::i64
, Custom
);
684 if (Subtarget
->hasMVEIntegerOps())
685 addMVEVectorTypes(Subtarget
->hasMVEFloatOps());
687 // Combine low-overhead loop intrinsics so that we can lower i1 types.
688 if (Subtarget
->hasLOB()) {
689 setTargetDAGCombine(ISD::BRCOND
);
690 setTargetDAGCombine(ISD::BR_CC
);
693 if (Subtarget
->hasNEON()) {
694 addDRTypeForNEON(MVT::v2f32
);
695 addDRTypeForNEON(MVT::v8i8
);
696 addDRTypeForNEON(MVT::v4i16
);
697 addDRTypeForNEON(MVT::v2i32
);
698 addDRTypeForNEON(MVT::v1i64
);
700 addQRTypeForNEON(MVT::v4f32
);
701 addQRTypeForNEON(MVT::v2f64
);
702 addQRTypeForNEON(MVT::v16i8
);
703 addQRTypeForNEON(MVT::v8i16
);
704 addQRTypeForNEON(MVT::v4i32
);
705 addQRTypeForNEON(MVT::v2i64
);
707 if (Subtarget
->hasFullFP16()) {
708 addQRTypeForNEON(MVT::v8f16
);
709 addDRTypeForNEON(MVT::v4f16
);
713 if (Subtarget
->hasMVEIntegerOps() || Subtarget
->hasNEON()) {
714 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
715 // none of Neon, MVE or VFP supports any arithmetic operations on it.
716 setOperationAction(ISD::FADD
, MVT::v2f64
, Expand
);
717 setOperationAction(ISD::FSUB
, MVT::v2f64
, Expand
);
718 setOperationAction(ISD::FMUL
, MVT::v2f64
, Expand
);
719 // FIXME: Code duplication: FDIV and FREM are expanded always, see
720 // ARMTargetLowering::addTypeForNEON method for details.
721 setOperationAction(ISD::FDIV
, MVT::v2f64
, Expand
);
722 setOperationAction(ISD::FREM
, MVT::v2f64
, Expand
);
723 // FIXME: Create unittest.
724 // In another words, find a way when "copysign" appears in DAG with vector
726 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Expand
);
727 // FIXME: Code duplication: SETCC has custom operation action, see
728 // ARMTargetLowering::addTypeForNEON method for details.
729 setOperationAction(ISD::SETCC
, MVT::v2f64
, Expand
);
730 // FIXME: Create unittest for FNEG and for FABS.
731 setOperationAction(ISD::FNEG
, MVT::v2f64
, Expand
);
732 setOperationAction(ISD::FABS
, MVT::v2f64
, Expand
);
733 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Expand
);
734 setOperationAction(ISD::FSIN
, MVT::v2f64
, Expand
);
735 setOperationAction(ISD::FCOS
, MVT::v2f64
, Expand
);
736 setOperationAction(ISD::FPOW
, MVT::v2f64
, Expand
);
737 setOperationAction(ISD::FLOG
, MVT::v2f64
, Expand
);
738 setOperationAction(ISD::FLOG2
, MVT::v2f64
, Expand
);
739 setOperationAction(ISD::FLOG10
, MVT::v2f64
, Expand
);
740 setOperationAction(ISD::FEXP
, MVT::v2f64
, Expand
);
741 setOperationAction(ISD::FEXP2
, MVT::v2f64
, Expand
);
742 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
743 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Expand
);
744 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Expand
);
745 setOperationAction(ISD::FRINT
, MVT::v2f64
, Expand
);
746 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Expand
);
747 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Expand
);
748 setOperationAction(ISD::FMA
, MVT::v2f64
, Expand
);
751 if (Subtarget
->hasNEON()) {
752 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
753 // supported for v4f32.
754 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
755 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
756 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
757 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
758 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
759 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
760 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
761 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
762 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
763 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Expand
);
764 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Expand
);
765 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
766 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
767 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Expand
);
769 // Mark v2f32 intrinsics.
770 setOperationAction(ISD::FSQRT
, MVT::v2f32
, Expand
);
771 setOperationAction(ISD::FSIN
, MVT::v2f32
, Expand
);
772 setOperationAction(ISD::FCOS
, MVT::v2f32
, Expand
);
773 setOperationAction(ISD::FPOW
, MVT::v2f32
, Expand
);
774 setOperationAction(ISD::FLOG
, MVT::v2f32
, Expand
);
775 setOperationAction(ISD::FLOG2
, MVT::v2f32
, Expand
);
776 setOperationAction(ISD::FLOG10
, MVT::v2f32
, Expand
);
777 setOperationAction(ISD::FEXP
, MVT::v2f32
, Expand
);
778 setOperationAction(ISD::FEXP2
, MVT::v2f32
, Expand
);
779 setOperationAction(ISD::FCEIL
, MVT::v2f32
, Expand
);
780 setOperationAction(ISD::FTRUNC
, MVT::v2f32
, Expand
);
781 setOperationAction(ISD::FRINT
, MVT::v2f32
, Expand
);
782 setOperationAction(ISD::FNEARBYINT
, MVT::v2f32
, Expand
);
783 setOperationAction(ISD::FFLOOR
, MVT::v2f32
, Expand
);
785 // Neon does not support some operations on v1i64 and v2i64 types.
786 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
787 // Custom handling for some quad-vector types to detect VMULL.
788 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
789 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
790 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
791 // Custom handling for some vector types to avoid expensive expansions
792 setOperationAction(ISD::SDIV
, MVT::v4i16
, Custom
);
793 setOperationAction(ISD::SDIV
, MVT::v8i8
, Custom
);
794 setOperationAction(ISD::UDIV
, MVT::v4i16
, Custom
);
795 setOperationAction(ISD::UDIV
, MVT::v8i8
, Custom
);
796 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
797 // a destination type that is wider than the source, and nor does
798 // it have a FP_TO_[SU]INT instruction with a narrower destination than
800 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
801 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
802 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
803 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
804 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i16
, Custom
);
805 setOperationAction(ISD::FP_TO_UINT
, MVT::v8i16
, Custom
);
806 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i16
, Custom
);
807 setOperationAction(ISD::FP_TO_SINT
, MVT::v8i16
, Custom
);
809 setOperationAction(ISD::FP_ROUND
, MVT::v2f32
, Expand
);
810 setOperationAction(ISD::FP_EXTEND
, MVT::v2f64
, Expand
);
812 // NEON does not have single instruction CTPOP for vectors with element
813 // types wider than 8-bits. However, custom lowering can leverage the
814 // v8i8/v16i8 vcnt instruction.
815 setOperationAction(ISD::CTPOP
, MVT::v2i32
, Custom
);
816 setOperationAction(ISD::CTPOP
, MVT::v4i32
, Custom
);
817 setOperationAction(ISD::CTPOP
, MVT::v4i16
, Custom
);
818 setOperationAction(ISD::CTPOP
, MVT::v8i16
, Custom
);
819 setOperationAction(ISD::CTPOP
, MVT::v1i64
, Custom
);
820 setOperationAction(ISD::CTPOP
, MVT::v2i64
, Custom
);
822 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
823 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
825 // NEON does not have single instruction CTTZ for vectors.
826 setOperationAction(ISD::CTTZ
, MVT::v8i8
, Custom
);
827 setOperationAction(ISD::CTTZ
, MVT::v4i16
, Custom
);
828 setOperationAction(ISD::CTTZ
, MVT::v2i32
, Custom
);
829 setOperationAction(ISD::CTTZ
, MVT::v1i64
, Custom
);
831 setOperationAction(ISD::CTTZ
, MVT::v16i8
, Custom
);
832 setOperationAction(ISD::CTTZ
, MVT::v8i16
, Custom
);
833 setOperationAction(ISD::CTTZ
, MVT::v4i32
, Custom
);
834 setOperationAction(ISD::CTTZ
, MVT::v2i64
, Custom
);
836 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i8
, Custom
);
837 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i16
, Custom
);
838 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i32
, Custom
);
839 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v1i64
, Custom
);
841 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v16i8
, Custom
);
842 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i16
, Custom
);
843 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i32
, Custom
);
844 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i64
, Custom
);
846 // NEON only has FMA instructions as of VFP4.
847 if (!Subtarget
->hasVFP4Base()) {
848 setOperationAction(ISD::FMA
, MVT::v2f32
, Expand
);
849 setOperationAction(ISD::FMA
, MVT::v4f32
, Expand
);
852 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
853 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
854 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
855 setTargetDAGCombine(ISD::SHL
);
856 setTargetDAGCombine(ISD::SRL
);
857 setTargetDAGCombine(ISD::SRA
);
858 setTargetDAGCombine(ISD::SIGN_EXTEND
);
859 setTargetDAGCombine(ISD::ZERO_EXTEND
);
860 setTargetDAGCombine(ISD::ANY_EXTEND
);
861 setTargetDAGCombine(ISD::STORE
);
862 setTargetDAGCombine(ISD::FP_TO_SINT
);
863 setTargetDAGCombine(ISD::FP_TO_UINT
);
864 setTargetDAGCombine(ISD::FDIV
);
865 setTargetDAGCombine(ISD::LOAD
);
867 // It is legal to extload from v4i8 to v4i16 or v4i32.
868 for (MVT Ty
: {MVT::v8i8
, MVT::v4i8
, MVT::v2i8
, MVT::v4i16
, MVT::v2i16
,
870 for (MVT VT
: MVT::integer_vector_valuetypes()) {
871 setLoadExtAction(ISD::EXTLOAD
, VT
, Ty
, Legal
);
872 setLoadExtAction(ISD::ZEXTLOAD
, VT
, Ty
, Legal
);
873 setLoadExtAction(ISD::SEXTLOAD
, VT
, Ty
, Legal
);
878 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
879 setTargetDAGCombine(ISD::BUILD_VECTOR
);
880 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
881 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
884 if (!Subtarget
->hasFP64()) {
885 // When targeting a floating-point unit with only single-precision
886 // operations, f64 is legal for the few double-precision instructions which
887 // are present However, no double-precision operations other than moves,
888 // loads and stores are provided by the hardware.
889 setOperationAction(ISD::FADD
, MVT::f64
, Expand
);
890 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
891 setOperationAction(ISD::FMUL
, MVT::f64
, Expand
);
892 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
893 setOperationAction(ISD::FDIV
, MVT::f64
, Expand
);
894 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
895 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
896 setOperationAction(ISD::FGETSIGN
, MVT::f64
, Expand
);
897 setOperationAction(ISD::FNEG
, MVT::f64
, Expand
);
898 setOperationAction(ISD::FABS
, MVT::f64
, Expand
);
899 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
900 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
901 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
902 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
903 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
904 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
905 setOperationAction(ISD::FLOG10
, MVT::f64
, Expand
);
906 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
907 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
908 setOperationAction(ISD::FCEIL
, MVT::f64
, Expand
);
909 setOperationAction(ISD::FTRUNC
, MVT::f64
, Expand
);
910 setOperationAction(ISD::FRINT
, MVT::f64
, Expand
);
911 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Expand
);
912 setOperationAction(ISD::FFLOOR
, MVT::f64
, Expand
);
913 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
914 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
915 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
916 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
917 setOperationAction(ISD::FP_TO_SINT
, MVT::f64
, Custom
);
918 setOperationAction(ISD::FP_TO_UINT
, MVT::f64
, Custom
);
919 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
922 if (!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()){
923 setOperationAction(ISD::FP_EXTEND
, MVT::f64
, Custom
);
924 setOperationAction(ISD::FP_ROUND
, MVT::f16
, Custom
);
927 if (!Subtarget
->hasFP16())
928 setOperationAction(ISD::FP_EXTEND
, MVT::f32
, Custom
);
930 if (!Subtarget
->hasFP64())
931 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
933 computeRegisterProperties(Subtarget
->getRegisterInfo());
935 // ARM does not have floating-point extending loads.
936 for (MVT VT
: MVT::fp_valuetypes()) {
937 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
938 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
941 // ... or truncating stores
942 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
943 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
944 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
946 // ARM does not have i1 sign extending load.
947 for (MVT VT
: MVT::integer_valuetypes())
948 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
950 // ARM supports all 4 flavors of integer indexed load / store.
951 if (!Subtarget
->isThumb1Only()) {
952 for (unsigned im
= (unsigned)ISD::PRE_INC
;
953 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
954 setIndexedLoadAction(im
, MVT::i1
, Legal
);
955 setIndexedLoadAction(im
, MVT::i8
, Legal
);
956 setIndexedLoadAction(im
, MVT::i16
, Legal
);
957 setIndexedLoadAction(im
, MVT::i32
, Legal
);
958 setIndexedStoreAction(im
, MVT::i1
, Legal
);
959 setIndexedStoreAction(im
, MVT::i8
, Legal
);
960 setIndexedStoreAction(im
, MVT::i16
, Legal
);
961 setIndexedStoreAction(im
, MVT::i32
, Legal
);
964 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
965 setIndexedLoadAction(ISD::POST_INC
, MVT::i32
, Legal
);
966 setIndexedStoreAction(ISD::POST_INC
, MVT::i32
, Legal
);
969 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
970 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
971 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
972 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
974 setOperationAction(ISD::ADDCARRY
, MVT::i32
, Custom
);
975 setOperationAction(ISD::SUBCARRY
, MVT::i32
, Custom
);
977 // i64 operation support.
978 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
979 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
980 if (Subtarget
->isThumb1Only()) {
981 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
982 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
984 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6Ops()
985 || (Subtarget
->isThumb2() && !Subtarget
->hasDSP()))
986 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
988 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
989 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
990 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
991 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
992 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
993 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
995 // MVE lowers 64 bit shifts to lsll and lsrl
996 // assuming that ISD::SRL and SRA of i64 are already marked custom
997 if (Subtarget
->hasMVEIntegerOps())
998 setOperationAction(ISD::SHL
, MVT::i64
, Custom
);
1000 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1001 if (Subtarget
->isThumb1Only()) {
1002 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
1003 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
1004 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
1007 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops())
1008 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
1010 // ARM does not have ROTL.
1011 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
1012 for (MVT VT
: MVT::vector_valuetypes()) {
1013 setOperationAction(ISD::ROTL
, VT
, Expand
);
1014 setOperationAction(ISD::ROTR
, VT
, Expand
);
1016 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
1017 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
1018 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb1Only()) {
1019 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
1020 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, LibCall
);
1023 // @llvm.readcyclecounter requires the Performance Monitors extension.
1024 // Default to the 0 expansion on unsupported platforms.
1025 // FIXME: Technically there are older ARM CPUs that have
1026 // implementation-specific ways of obtaining this information.
1027 if (Subtarget
->hasPerfMon())
1028 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
1030 // Only ARMv6 has BSWAP.
1031 if (!Subtarget
->hasV6Ops())
1032 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
1034 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
1035 : Subtarget
->hasDivideInARMMode();
1037 // These are expanded into libcalls if the cpu doesn't have HW divider.
1038 setOperationAction(ISD::SDIV
, MVT::i32
, LibCall
);
1039 setOperationAction(ISD::UDIV
, MVT::i32
, LibCall
);
1042 if (Subtarget
->isTargetWindows() && !Subtarget
->hasDivideInThumbMode()) {
1043 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
1044 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
1046 setOperationAction(ISD::SDIV
, MVT::i64
, Custom
);
1047 setOperationAction(ISD::UDIV
, MVT::i64
, Custom
);
1050 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
1051 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
1053 // Register based DivRem for AEABI (RTABI 4.2)
1054 if (Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
1055 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
1056 Subtarget
->isTargetWindows()) {
1057 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
1058 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
1059 HasStandaloneRem
= false;
1061 if (Subtarget
->isTargetWindows()) {
1063 const RTLIB::Libcall Op
;
1064 const char * const Name
;
1065 const CallingConv::ID CC
;
1066 } LibraryCalls
[] = {
1067 { RTLIB::SDIVREM_I8
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1068 { RTLIB::SDIVREM_I16
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1069 { RTLIB::SDIVREM_I32
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1070 { RTLIB::SDIVREM_I64
, "__rt_sdiv64", CallingConv::ARM_AAPCS
},
1072 { RTLIB::UDIVREM_I8
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1073 { RTLIB::UDIVREM_I16
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1074 { RTLIB::UDIVREM_I32
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1075 { RTLIB::UDIVREM_I64
, "__rt_udiv64", CallingConv::ARM_AAPCS
},
1078 for (const auto &LC
: LibraryCalls
) {
1079 setLibcallName(LC
.Op
, LC
.Name
);
1080 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1084 const RTLIB::Libcall Op
;
1085 const char * const Name
;
1086 const CallingConv::ID CC
;
1087 } LibraryCalls
[] = {
1088 { RTLIB::SDIVREM_I8
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1089 { RTLIB::SDIVREM_I16
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1090 { RTLIB::SDIVREM_I32
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1091 { RTLIB::SDIVREM_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
},
1093 { RTLIB::UDIVREM_I8
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1094 { RTLIB::UDIVREM_I16
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1095 { RTLIB::UDIVREM_I32
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1096 { RTLIB::UDIVREM_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
},
1099 for (const auto &LC
: LibraryCalls
) {
1100 setLibcallName(LC
.Op
, LC
.Name
);
1101 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1105 setOperationAction(ISD::SDIVREM
, MVT::i32
, Custom
);
1106 setOperationAction(ISD::UDIVREM
, MVT::i32
, Custom
);
1107 setOperationAction(ISD::SDIVREM
, MVT::i64
, Custom
);
1108 setOperationAction(ISD::UDIVREM
, MVT::i64
, Custom
);
1110 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
1111 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
1114 if (Subtarget
->isTargetWindows() && Subtarget
->getTargetTriple().isOSMSVCRT())
1115 for (auto &VT
: {MVT::f32
, MVT::f64
})
1116 setOperationAction(ISD::FPOWI
, VT
, Custom
);
1118 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
1119 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
1120 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
1121 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
1123 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
1124 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
1126 // Use the default implementation.
1127 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
1128 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
1129 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
1130 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
1131 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
1132 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
1134 if (Subtarget
->isTargetWindows())
1135 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
1137 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
1139 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1140 // the default expansion.
1141 InsertFencesForAtomic
= false;
1142 if (Subtarget
->hasAnyDataBarrier() &&
1143 (!Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps())) {
1144 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1145 // to ldrex/strex loops already.
1146 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
1147 if (!Subtarget
->isThumb() || !Subtarget
->isMClass())
1148 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
1150 // On v8, we have particularly efficient implementations of atomic fences
1151 // if they can be combined with nearby atomic loads and stores.
1152 if (!Subtarget
->hasAcquireRelease() ||
1153 getTargetMachine().getOptLevel() == 0) {
1154 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1155 InsertFencesForAtomic
= true;
1158 // If there's anything we can use as a barrier, go through custom lowering
1159 // for ATOMIC_FENCE.
1160 // If target has DMB in thumb, Fences can be inserted.
1161 if (Subtarget
->hasDataBarrier())
1162 InsertFencesForAtomic
= true;
1164 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
,
1165 Subtarget
->hasAnyDataBarrier() ? Custom
: Expand
);
1167 // Set them all for expansion, which will force libcalls.
1168 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Expand
);
1169 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, Expand
);
1170 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, Expand
);
1171 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Expand
);
1172 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Expand
);
1173 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, Expand
);
1174 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, Expand
);
1175 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, Expand
);
1176 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, Expand
);
1177 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, Expand
);
1178 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, Expand
);
1179 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, Expand
);
1180 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1181 // Unordered/Monotonic case.
1182 if (!InsertFencesForAtomic
) {
1183 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
1184 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
1188 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
1190 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1191 if (!Subtarget
->hasV6Ops()) {
1192 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
1193 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
1195 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
1197 if (!Subtarget
->useSoftFloat() && Subtarget
->hasFPRegs() &&
1198 !Subtarget
->isThumb1Only()) {
1199 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1200 // iff target supports vfp2.
1201 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
1202 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
1205 // We want to custom lower some of our intrinsics.
1206 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
1207 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
1208 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
1209 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH
, MVT::Other
, Custom
);
1210 if (Subtarget
->useSjLjEH())
1211 setLibcallName(RTLIB::UNWIND_RESUME
, "_Unwind_SjLj_Resume");
1213 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
1214 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
1215 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
1216 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
1217 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
1218 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
1219 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1220 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
1221 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
1222 if (Subtarget
->hasFullFP16()) {
1223 setOperationAction(ISD::SETCC
, MVT::f16
, Expand
);
1224 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
1225 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
1228 setOperationAction(ISD::SETCCCARRY
, MVT::i32
, Custom
);
1230 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
1231 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
1232 if (Subtarget
->hasFullFP16())
1233 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
1234 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
1235 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
1236 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
1238 // We don't support sin/cos/fmod/copysign/pow
1239 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1240 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
1241 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
1242 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1243 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
1244 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
1245 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1246 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
1247 if (!Subtarget
->useSoftFloat() && Subtarget
->hasVFP2Base() &&
1248 !Subtarget
->isThumb1Only()) {
1249 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
1250 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
1252 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1253 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
1255 if (!Subtarget
->hasVFP4Base()) {
1256 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1257 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
1260 // Various VFP goodness
1261 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only()) {
1262 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1263 if (!Subtarget
->hasFPARMv8Base() || !Subtarget
->hasFP64()) {
1264 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
1265 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
1268 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1269 if (!Subtarget
->hasFP16()) {
1270 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
1271 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
1275 // Use __sincos_stret if available.
1276 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
1277 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
1278 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
1279 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
1282 // FP-ARMv8 implements a lot of rounding-like FP operations.
1283 if (Subtarget
->hasFPARMv8Base()) {
1284 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
1285 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
1286 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
1287 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
1288 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
1289 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
1290 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
1291 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
1292 if (Subtarget
->hasNEON()) {
1293 setOperationAction(ISD::FMINNUM
, MVT::v2f32
, Legal
);
1294 setOperationAction(ISD::FMAXNUM
, MVT::v2f32
, Legal
);
1295 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1296 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1299 if (Subtarget
->hasFP64()) {
1300 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
1301 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
1302 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
1303 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
1304 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
1305 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
1306 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
1307 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
1311 // FP16 often need to be promoted to call lib functions
1312 if (Subtarget
->hasFullFP16()) {
1313 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
1314 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Expand
);
1315 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
1316 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
1317 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
1318 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
1319 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
1320 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
1321 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
1322 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
1323 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
1324 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
1326 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
1329 if (Subtarget
->hasNEON()) {
1330 // vmin and vmax aren't available in a scalar form, so we use
1331 // a NEON instruction with an undef lane instead.
1332 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
1333 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
1334 setOperationAction(ISD::FMINIMUM
, MVT::f32
, Legal
);
1335 setOperationAction(ISD::FMAXIMUM
, MVT::f32
, Legal
);
1336 setOperationAction(ISD::FMINIMUM
, MVT::v2f32
, Legal
);
1337 setOperationAction(ISD::FMAXIMUM
, MVT::v2f32
, Legal
);
1338 setOperationAction(ISD::FMINIMUM
, MVT::v4f32
, Legal
);
1339 setOperationAction(ISD::FMAXIMUM
, MVT::v4f32
, Legal
);
1341 if (Subtarget
->hasFullFP16()) {
1342 setOperationAction(ISD::FMINNUM
, MVT::v4f16
, Legal
);
1343 setOperationAction(ISD::FMAXNUM
, MVT::v4f16
, Legal
);
1344 setOperationAction(ISD::FMINNUM
, MVT::v8f16
, Legal
);
1345 setOperationAction(ISD::FMAXNUM
, MVT::v8f16
, Legal
);
1347 setOperationAction(ISD::FMINIMUM
, MVT::v4f16
, Legal
);
1348 setOperationAction(ISD::FMAXIMUM
, MVT::v4f16
, Legal
);
1349 setOperationAction(ISD::FMINIMUM
, MVT::v8f16
, Legal
);
1350 setOperationAction(ISD::FMAXIMUM
, MVT::v8f16
, Legal
);
1354 // We have target-specific dag combine patterns for the following nodes:
1355 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1356 setTargetDAGCombine(ISD::ADD
);
1357 setTargetDAGCombine(ISD::SUB
);
1358 setTargetDAGCombine(ISD::MUL
);
1359 setTargetDAGCombine(ISD::AND
);
1360 setTargetDAGCombine(ISD::OR
);
1361 setTargetDAGCombine(ISD::XOR
);
1363 if (Subtarget
->hasV6Ops())
1364 setTargetDAGCombine(ISD::SRL
);
1365 if (Subtarget
->isThumb1Only())
1366 setTargetDAGCombine(ISD::SHL
);
1368 setStackPointerRegisterToSaveRestore(ARM::SP
);
1370 if (Subtarget
->useSoftFloat() || Subtarget
->isThumb1Only() ||
1371 !Subtarget
->hasVFP2Base() || Subtarget
->hasMinSize())
1372 setSchedulingPreference(Sched::RegPressure
);
1374 setSchedulingPreference(Sched::Hybrid
);
1376 //// temporary - rewrite interface to use type
1377 MaxStoresPerMemset
= 8;
1378 MaxStoresPerMemsetOptSize
= 4;
1379 MaxStoresPerMemcpy
= 4; // For @llvm.memcpy -> sequence of stores
1380 MaxStoresPerMemcpyOptSize
= 2;
1381 MaxStoresPerMemmove
= 4; // For @llvm.memmove -> sequence of stores
1382 MaxStoresPerMemmoveOptSize
= 2;
1384 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1385 // are at least 4 bytes aligned.
1386 setMinStackArgumentAlignment(4);
1388 // Prefer likely predicted branches to selects on out-of-order cores.
1389 PredictableSelectIsExpensive
= Subtarget
->getSchedModel().isOutOfOrder();
1391 setPrefLoopAlignment(Subtarget
->getPrefLoopAlignment());
1393 setMinFunctionAlignment(Subtarget
->isThumb() ? 1 : 2);
1395 if (Subtarget
->isThumb() || Subtarget
->isThumb2())
1396 setTargetDAGCombine(ISD::ABS
);
1399 bool ARMTargetLowering::useSoftFloat() const {
1400 return Subtarget
->useSoftFloat();
1403 // FIXME: It might make sense to define the representative register class as the
1404 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1405 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1406 // SPR's representative would be DPR_VFP2. This should work well if register
1407 // pressure tracking were modified such that a register use would increment the
1408 // pressure of the register class's representative and all of it's super
1409 // classes' representatives transitively. We have not implemented this because
1410 // of the difficulty prior to coalescing of modeling operand register classes
1411 // due to the common occurrence of cross class copies and subregister insertions
1413 std::pair
<const TargetRegisterClass
*, uint8_t>
1414 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1416 const TargetRegisterClass
*RRC
= nullptr;
1418 switch (VT
.SimpleTy
) {
1420 return TargetLowering::findRepresentativeClass(TRI
, VT
);
1421 // Use DPR as representative register class for all floating point
1422 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1423 // the cost is 1 for both f32 and f64.
1424 case MVT::f32
: case MVT::f64
: case MVT::v8i8
: case MVT::v4i16
:
1425 case MVT::v2i32
: case MVT::v1i64
: case MVT::v2f32
:
1426 RRC
= &ARM::DPRRegClass
;
1427 // When NEON is used for SP, only half of the register file is available
1428 // because operations that define both SP and DP results will be constrained
1429 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1430 // coalescing by double-counting the SP regs. See the FIXME above.
1431 if (Subtarget
->useNEONForSinglePrecisionFP())
1434 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1435 case MVT::v4f32
: case MVT::v2f64
:
1436 RRC
= &ARM::DPRRegClass
;
1440 RRC
= &ARM::DPRRegClass
;
1444 RRC
= &ARM::DPRRegClass
;
1448 return std::make_pair(RRC
, Cost
);
1451 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1452 switch ((ARMISD::NodeType
)Opcode
) {
1453 case ARMISD::FIRST_NUMBER
: break;
1454 case ARMISD::Wrapper
: return "ARMISD::Wrapper";
1455 case ARMISD::WrapperPIC
: return "ARMISD::WrapperPIC";
1456 case ARMISD::WrapperJT
: return "ARMISD::WrapperJT";
1457 case ARMISD::COPY_STRUCT_BYVAL
: return "ARMISD::COPY_STRUCT_BYVAL";
1458 case ARMISD::CALL
: return "ARMISD::CALL";
1459 case ARMISD::CALL_PRED
: return "ARMISD::CALL_PRED";
1460 case ARMISD::CALL_NOLINK
: return "ARMISD::CALL_NOLINK";
1461 case ARMISD::BRCOND
: return "ARMISD::BRCOND";
1462 case ARMISD::BR_JT
: return "ARMISD::BR_JT";
1463 case ARMISD::BR2_JT
: return "ARMISD::BR2_JT";
1464 case ARMISD::RET_FLAG
: return "ARMISD::RET_FLAG";
1465 case ARMISD::INTRET_FLAG
: return "ARMISD::INTRET_FLAG";
1466 case ARMISD::PIC_ADD
: return "ARMISD::PIC_ADD";
1467 case ARMISD::CMP
: return "ARMISD::CMP";
1468 case ARMISD::CMN
: return "ARMISD::CMN";
1469 case ARMISD::CMPZ
: return "ARMISD::CMPZ";
1470 case ARMISD::CMPFP
: return "ARMISD::CMPFP";
1471 case ARMISD::CMPFPw0
: return "ARMISD::CMPFPw0";
1472 case ARMISD::BCC_i64
: return "ARMISD::BCC_i64";
1473 case ARMISD::FMSTAT
: return "ARMISD::FMSTAT";
1475 case ARMISD::CMOV
: return "ARMISD::CMOV";
1476 case ARMISD::SUBS
: return "ARMISD::SUBS";
1478 case ARMISD::SSAT
: return "ARMISD::SSAT";
1479 case ARMISD::USAT
: return "ARMISD::USAT";
1481 case ARMISD::ASRL
: return "ARMISD::ASRL";
1482 case ARMISD::LSRL
: return "ARMISD::LSRL";
1483 case ARMISD::LSLL
: return "ARMISD::LSLL";
1485 case ARMISD::SRL_FLAG
: return "ARMISD::SRL_FLAG";
1486 case ARMISD::SRA_FLAG
: return "ARMISD::SRA_FLAG";
1487 case ARMISD::RRX
: return "ARMISD::RRX";
1489 case ARMISD::ADDC
: return "ARMISD::ADDC";
1490 case ARMISD::ADDE
: return "ARMISD::ADDE";
1491 case ARMISD::SUBC
: return "ARMISD::SUBC";
1492 case ARMISD::SUBE
: return "ARMISD::SUBE";
1494 case ARMISD::VMOVRRD
: return "ARMISD::VMOVRRD";
1495 case ARMISD::VMOVDRR
: return "ARMISD::VMOVDRR";
1496 case ARMISD::VMOVhr
: return "ARMISD::VMOVhr";
1497 case ARMISD::VMOVrh
: return "ARMISD::VMOVrh";
1498 case ARMISD::VMOVSR
: return "ARMISD::VMOVSR";
1500 case ARMISD::EH_SJLJ_SETJMP
: return "ARMISD::EH_SJLJ_SETJMP";
1501 case ARMISD::EH_SJLJ_LONGJMP
: return "ARMISD::EH_SJLJ_LONGJMP";
1502 case ARMISD::EH_SJLJ_SETUP_DISPATCH
: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1504 case ARMISD::TC_RETURN
: return "ARMISD::TC_RETURN";
1506 case ARMISD::THREAD_POINTER
:return "ARMISD::THREAD_POINTER";
1508 case ARMISD::DYN_ALLOC
: return "ARMISD::DYN_ALLOC";
1510 case ARMISD::MEMBARRIER_MCR
: return "ARMISD::MEMBARRIER_MCR";
1512 case ARMISD::PRELOAD
: return "ARMISD::PRELOAD";
1514 case ARMISD::WIN__CHKSTK
: return "ARMISD::WIN__CHKSTK";
1515 case ARMISD::WIN__DBZCHK
: return "ARMISD::WIN__DBZCHK";
1517 case ARMISD::PREDICATE_CAST
: return "ARMISD::PREDICATE_CAST";
1518 case ARMISD::VCEQ
: return "ARMISD::VCEQ";
1519 case ARMISD::VCEQZ
: return "ARMISD::VCEQZ";
1520 case ARMISD::VCNE
: return "ARMISD::VCNE";
1521 case ARMISD::VCNEZ
: return "ARMISD::VCNEZ";
1522 case ARMISD::VCGE
: return "ARMISD::VCGE";
1523 case ARMISD::VCGEZ
: return "ARMISD::VCGEZ";
1524 case ARMISD::VCLE
: return "ARMISD::VCLE";
1525 case ARMISD::VCLEZ
: return "ARMISD::VCLEZ";
1526 case ARMISD::VCGEU
: return "ARMISD::VCGEU";
1527 case ARMISD::VCGT
: return "ARMISD::VCGT";
1528 case ARMISD::VCGTZ
: return "ARMISD::VCGTZ";
1529 case ARMISD::VCLT
: return "ARMISD::VCLT";
1530 case ARMISD::VCLTZ
: return "ARMISD::VCLTZ";
1531 case ARMISD::VCGTU
: return "ARMISD::VCGTU";
1532 case ARMISD::VTST
: return "ARMISD::VTST";
1534 case ARMISD::VSHLs
: return "ARMISD::VSHLs";
1535 case ARMISD::VSHLu
: return "ARMISD::VSHLu";
1536 case ARMISD::VSHLIMM
: return "ARMISD::VSHLIMM";
1537 case ARMISD::VSHRsIMM
: return "ARMISD::VSHRsIMM";
1538 case ARMISD::VSHRuIMM
: return "ARMISD::VSHRuIMM";
1539 case ARMISD::VRSHRsIMM
: return "ARMISD::VRSHRsIMM";
1540 case ARMISD::VRSHRuIMM
: return "ARMISD::VRSHRuIMM";
1541 case ARMISD::VRSHRNIMM
: return "ARMISD::VRSHRNIMM";
1542 case ARMISD::VQSHLsIMM
: return "ARMISD::VQSHLsIMM";
1543 case ARMISD::VQSHLuIMM
: return "ARMISD::VQSHLuIMM";
1544 case ARMISD::VQSHLsuIMM
: return "ARMISD::VQSHLsuIMM";
1545 case ARMISD::VQSHRNsIMM
: return "ARMISD::VQSHRNsIMM";
1546 case ARMISD::VQSHRNuIMM
: return "ARMISD::VQSHRNuIMM";
1547 case ARMISD::VQSHRNsuIMM
: return "ARMISD::VQSHRNsuIMM";
1548 case ARMISD::VQRSHRNsIMM
: return "ARMISD::VQRSHRNsIMM";
1549 case ARMISD::VQRSHRNuIMM
: return "ARMISD::VQRSHRNuIMM";
1550 case ARMISD::VQRSHRNsuIMM
: return "ARMISD::VQRSHRNsuIMM";
1551 case ARMISD::VSLIIMM
: return "ARMISD::VSLIIMM";
1552 case ARMISD::VSRIIMM
: return "ARMISD::VSRIIMM";
1553 case ARMISD::VGETLANEu
: return "ARMISD::VGETLANEu";
1554 case ARMISD::VGETLANEs
: return "ARMISD::VGETLANEs";
1555 case ARMISD::VMOVIMM
: return "ARMISD::VMOVIMM";
1556 case ARMISD::VMVNIMM
: return "ARMISD::VMVNIMM";
1557 case ARMISD::VMOVFPIMM
: return "ARMISD::VMOVFPIMM";
1558 case ARMISD::VDUP
: return "ARMISD::VDUP";
1559 case ARMISD::VDUPLANE
: return "ARMISD::VDUPLANE";
1560 case ARMISD::VEXT
: return "ARMISD::VEXT";
1561 case ARMISD::VREV64
: return "ARMISD::VREV64";
1562 case ARMISD::VREV32
: return "ARMISD::VREV32";
1563 case ARMISD::VREV16
: return "ARMISD::VREV16";
1564 case ARMISD::VZIP
: return "ARMISD::VZIP";
1565 case ARMISD::VUZP
: return "ARMISD::VUZP";
1566 case ARMISD::VTRN
: return "ARMISD::VTRN";
1567 case ARMISD::VTBL1
: return "ARMISD::VTBL1";
1568 case ARMISD::VTBL2
: return "ARMISD::VTBL2";
1569 case ARMISD::VMULLs
: return "ARMISD::VMULLs";
1570 case ARMISD::VMULLu
: return "ARMISD::VMULLu";
1571 case ARMISD::UMAAL
: return "ARMISD::UMAAL";
1572 case ARMISD::UMLAL
: return "ARMISD::UMLAL";
1573 case ARMISD::SMLAL
: return "ARMISD::SMLAL";
1574 case ARMISD::SMLALBB
: return "ARMISD::SMLALBB";
1575 case ARMISD::SMLALBT
: return "ARMISD::SMLALBT";
1576 case ARMISD::SMLALTB
: return "ARMISD::SMLALTB";
1577 case ARMISD::SMLALTT
: return "ARMISD::SMLALTT";
1578 case ARMISD::SMULWB
: return "ARMISD::SMULWB";
1579 case ARMISD::SMULWT
: return "ARMISD::SMULWT";
1580 case ARMISD::SMLALD
: return "ARMISD::SMLALD";
1581 case ARMISD::SMLALDX
: return "ARMISD::SMLALDX";
1582 case ARMISD::SMLSLD
: return "ARMISD::SMLSLD";
1583 case ARMISD::SMLSLDX
: return "ARMISD::SMLSLDX";
1584 case ARMISD::SMMLAR
: return "ARMISD::SMMLAR";
1585 case ARMISD::SMMLSR
: return "ARMISD::SMMLSR";
1586 case ARMISD::BUILD_VECTOR
: return "ARMISD::BUILD_VECTOR";
1587 case ARMISD::BFI
: return "ARMISD::BFI";
1588 case ARMISD::VORRIMM
: return "ARMISD::VORRIMM";
1589 case ARMISD::VBICIMM
: return "ARMISD::VBICIMM";
1590 case ARMISD::VBSL
: return "ARMISD::VBSL";
1591 case ARMISD::MEMCPY
: return "ARMISD::MEMCPY";
1592 case ARMISD::VLD1DUP
: return "ARMISD::VLD1DUP";
1593 case ARMISD::VLD2DUP
: return "ARMISD::VLD2DUP";
1594 case ARMISD::VLD3DUP
: return "ARMISD::VLD3DUP";
1595 case ARMISD::VLD4DUP
: return "ARMISD::VLD4DUP";
1596 case ARMISD::VLD1_UPD
: return "ARMISD::VLD1_UPD";
1597 case ARMISD::VLD2_UPD
: return "ARMISD::VLD2_UPD";
1598 case ARMISD::VLD3_UPD
: return "ARMISD::VLD3_UPD";
1599 case ARMISD::VLD4_UPD
: return "ARMISD::VLD4_UPD";
1600 case ARMISD::VLD2LN_UPD
: return "ARMISD::VLD2LN_UPD";
1601 case ARMISD::VLD3LN_UPD
: return "ARMISD::VLD3LN_UPD";
1602 case ARMISD::VLD4LN_UPD
: return "ARMISD::VLD4LN_UPD";
1603 case ARMISD::VLD1DUP_UPD
: return "ARMISD::VLD1DUP_UPD";
1604 case ARMISD::VLD2DUP_UPD
: return "ARMISD::VLD2DUP_UPD";
1605 case ARMISD::VLD3DUP_UPD
: return "ARMISD::VLD3DUP_UPD";
1606 case ARMISD::VLD4DUP_UPD
: return "ARMISD::VLD4DUP_UPD";
1607 case ARMISD::VST1_UPD
: return "ARMISD::VST1_UPD";
1608 case ARMISD::VST2_UPD
: return "ARMISD::VST2_UPD";
1609 case ARMISD::VST3_UPD
: return "ARMISD::VST3_UPD";
1610 case ARMISD::VST4_UPD
: return "ARMISD::VST4_UPD";
1611 case ARMISD::VST2LN_UPD
: return "ARMISD::VST2LN_UPD";
1612 case ARMISD::VST3LN_UPD
: return "ARMISD::VST3LN_UPD";
1613 case ARMISD::VST4LN_UPD
: return "ARMISD::VST4LN_UPD";
1614 case ARMISD::WLS
: return "ARMISD::WLS";
1615 case ARMISD::LE
: return "ARMISD::LE";
1616 case ARMISD::LOOP_DEC
: return "ARMISD::LOOP_DEC";
1621 EVT
ARMTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1624 return getPointerTy(DL
);
1626 // MVE has a predicate register.
1627 if (Subtarget
->hasMVEIntegerOps() &&
1628 (VT
== MVT::v4i32
|| VT
== MVT::v8i16
|| VT
== MVT::v16i8
))
1629 return MVT::getVectorVT(MVT::i1
, VT
.getVectorElementCount());
1630 return VT
.changeVectorElementTypeToInteger();
1633 /// getRegClassFor - Return the register class that should be used for the
1634 /// specified value type.
1635 const TargetRegisterClass
*
1636 ARMTargetLowering::getRegClassFor(MVT VT
, bool isDivergent
) const {
1638 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1639 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1640 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1642 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
1643 if (VT
== MVT::v4i64
)
1644 return &ARM::QQPRRegClass
;
1645 if (VT
== MVT::v8i64
)
1646 return &ARM::QQQQPRRegClass
;
1648 return TargetLowering::getRegClassFor(VT
);
1651 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1652 // source/dest is aligned and the copy size is large enough. We therefore want
1653 // to align such objects passed to memory intrinsics.
1654 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst
*CI
, unsigned &MinSize
,
1655 unsigned &PrefAlign
) const {
1656 if (!isa
<MemIntrinsic
>(CI
))
1659 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1660 // cycle faster than 4-byte aligned LDM.
1661 PrefAlign
= (Subtarget
->hasV6Ops() && !Subtarget
->isMClass() ? 8 : 4);
1665 // Create a fast isel object.
1667 ARMTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1668 const TargetLibraryInfo
*libInfo
) const {
1669 return ARM::createFastISel(funcInfo
, libInfo
);
1672 Sched::Preference
ARMTargetLowering::getSchedulingPreference(SDNode
*N
) const {
1673 unsigned NumVals
= N
->getNumValues();
1675 return Sched::RegPressure
;
1677 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
1678 EVT VT
= N
->getValueType(i
);
1679 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
1681 if (VT
.isFloatingPoint() || VT
.isVector())
1685 if (!N
->isMachineOpcode())
1686 return Sched::RegPressure
;
1688 // Load are scheduled for latency even if there instruction itinerary
1689 // is not available.
1690 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1691 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1693 if (MCID
.getNumDefs() == 0)
1694 return Sched::RegPressure
;
1695 if (!Itins
->isEmpty() &&
1696 Itins
->getOperandCycle(MCID
.getSchedClass(), 0) > 2)
1699 return Sched::RegPressure
;
1702 //===----------------------------------------------------------------------===//
1704 //===----------------------------------------------------------------------===//
1706 static bool isSRL16(const SDValue
&Op
) {
1707 if (Op
.getOpcode() != ISD::SRL
)
1709 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1710 return Const
->getZExtValue() == 16;
1714 static bool isSRA16(const SDValue
&Op
) {
1715 if (Op
.getOpcode() != ISD::SRA
)
1717 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1718 return Const
->getZExtValue() == 16;
1722 static bool isSHL16(const SDValue
&Op
) {
1723 if (Op
.getOpcode() != ISD::SHL
)
1725 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1726 return Const
->getZExtValue() == 16;
1730 // Check for a signed 16-bit value. We special case SRA because it makes it
1731 // more simple when also looking for SRAs that aren't sign extending a
1732 // smaller value. Without the check, we'd need to take extra care with
1733 // checking order for some operations.
1734 static bool isS16(const SDValue
&Op
, SelectionDAG
&DAG
) {
1736 return isSHL16(Op
.getOperand(0));
1737 return DAG
.ComputeNumSignBits(Op
) == 17;
1740 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1741 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
1743 default: llvm_unreachable("Unknown condition code!");
1744 case ISD::SETNE
: return ARMCC::NE
;
1745 case ISD::SETEQ
: return ARMCC::EQ
;
1746 case ISD::SETGT
: return ARMCC::GT
;
1747 case ISD::SETGE
: return ARMCC::GE
;
1748 case ISD::SETLT
: return ARMCC::LT
;
1749 case ISD::SETLE
: return ARMCC::LE
;
1750 case ISD::SETUGT
: return ARMCC::HI
;
1751 case ISD::SETUGE
: return ARMCC::HS
;
1752 case ISD::SETULT
: return ARMCC::LO
;
1753 case ISD::SETULE
: return ARMCC::LS
;
1757 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1758 static void FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
1759 ARMCC::CondCodes
&CondCode2
, bool &InvalidOnQNaN
) {
1760 CondCode2
= ARMCC::AL
;
1761 InvalidOnQNaN
= true;
1763 default: llvm_unreachable("Unknown FP condition!");
1766 CondCode
= ARMCC::EQ
;
1767 InvalidOnQNaN
= false;
1770 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
1772 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
1773 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
1774 case ISD::SETOLE
: CondCode
= ARMCC::LS
; break;
1776 CondCode
= ARMCC::MI
;
1777 CondCode2
= ARMCC::GT
;
1778 InvalidOnQNaN
= false;
1780 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
1781 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
1783 CondCode
= ARMCC::EQ
;
1784 CondCode2
= ARMCC::VS
;
1785 InvalidOnQNaN
= false;
1787 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
1788 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
1790 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
1792 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
1795 CondCode
= ARMCC::NE
;
1796 InvalidOnQNaN
= false;
1801 //===----------------------------------------------------------------------===//
1802 // Calling Convention Implementation
1803 //===----------------------------------------------------------------------===//
1805 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1806 /// account presence of floating point hardware and calling convention
1807 /// limitations, such as support for variadic functions.
1809 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC
,
1810 bool isVarArg
) const {
1813 report_fatal_error("Unsupported calling convention");
1814 case CallingConv::ARM_AAPCS
:
1815 case CallingConv::ARM_APCS
:
1816 case CallingConv::GHC
:
1818 case CallingConv::PreserveMost
:
1819 return CallingConv::PreserveMost
;
1820 case CallingConv::ARM_AAPCS_VFP
:
1821 case CallingConv::Swift
:
1822 return isVarArg
? CallingConv::ARM_AAPCS
: CallingConv::ARM_AAPCS_VFP
;
1823 case CallingConv::C
:
1824 if (!Subtarget
->isAAPCS_ABI())
1825 return CallingConv::ARM_APCS
;
1826 else if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() &&
1827 getTargetMachine().Options
.FloatABIType
== FloatABI::Hard
&&
1829 return CallingConv::ARM_AAPCS_VFP
;
1831 return CallingConv::ARM_AAPCS
;
1832 case CallingConv::Fast
:
1833 case CallingConv::CXX_FAST_TLS
:
1834 if (!Subtarget
->isAAPCS_ABI()) {
1835 if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() && !isVarArg
)
1836 return CallingConv::Fast
;
1837 return CallingConv::ARM_APCS
;
1838 } else if (Subtarget
->hasVFP2Base() &&
1839 !Subtarget
->isThumb1Only() && !isVarArg
)
1840 return CallingConv::ARM_AAPCS_VFP
;
1842 return CallingConv::ARM_AAPCS
;
1846 CCAssignFn
*ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1847 bool isVarArg
) const {
1848 return CCAssignFnForNode(CC
, false, isVarArg
);
1851 CCAssignFn
*ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1852 bool isVarArg
) const {
1853 return CCAssignFnForNode(CC
, true, isVarArg
);
1856 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1857 /// CallingConvention.
1858 CCAssignFn
*ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC
,
1860 bool isVarArg
) const {
1861 switch (getEffectiveCallingConv(CC
, isVarArg
)) {
1863 report_fatal_error("Unsupported calling convention");
1864 case CallingConv::ARM_APCS
:
1865 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1866 case CallingConv::ARM_AAPCS
:
1867 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1868 case CallingConv::ARM_AAPCS_VFP
:
1869 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1870 case CallingConv::Fast
:
1871 return (Return
? RetFastCC_ARM_APCS
: FastCC_ARM_APCS
);
1872 case CallingConv::GHC
:
1873 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS_GHC
);
1874 case CallingConv::PreserveMost
:
1875 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1879 /// LowerCallResult - Lower the result values of a call into the
1880 /// appropriate copies out of appropriate physical registers.
1881 SDValue
ARMTargetLowering::LowerCallResult(
1882 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
1883 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1884 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
1885 SDValue ThisVal
) const {
1886 // Assign locations to each value returned by this call.
1887 SmallVector
<CCValAssign
, 16> RVLocs
;
1888 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1890 CCInfo
.AnalyzeCallResult(Ins
, CCAssignFnForReturn(CallConv
, isVarArg
));
1892 // Copy all of the result registers out of their specified physreg.
1893 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1894 CCValAssign VA
= RVLocs
[i
];
1896 // Pass 'this' value directly from the argument to return value, to avoid
1897 // reg unit interference
1898 if (i
== 0 && isThisReturn
) {
1899 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i32
&&
1900 "unexpected return calling convention register assignment");
1901 InVals
.push_back(ThisVal
);
1906 if (VA
.needsCustom()) {
1907 // Handle f64 or half of a v2f64.
1908 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1910 Chain
= Lo
.getValue(1);
1911 InFlag
= Lo
.getValue(2);
1912 VA
= RVLocs
[++i
]; // skip ahead to next loc
1913 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1915 Chain
= Hi
.getValue(1);
1916 InFlag
= Hi
.getValue(2);
1917 if (!Subtarget
->isLittle())
1919 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1921 if (VA
.getLocVT() == MVT::v2f64
) {
1922 SDValue Vec
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
1923 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1924 DAG
.getConstant(0, dl
, MVT::i32
));
1926 VA
= RVLocs
[++i
]; // skip ahead to next loc
1927 Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1928 Chain
= Lo
.getValue(1);
1929 InFlag
= Lo
.getValue(2);
1930 VA
= RVLocs
[++i
]; // skip ahead to next loc
1931 Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1932 Chain
= Hi
.getValue(1);
1933 InFlag
= Hi
.getValue(2);
1934 if (!Subtarget
->isLittle())
1936 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1937 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1938 DAG
.getConstant(1, dl
, MVT::i32
));
1941 Val
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getLocVT(),
1943 Chain
= Val
.getValue(1);
1944 InFlag
= Val
.getValue(2);
1947 switch (VA
.getLocInfo()) {
1948 default: llvm_unreachable("Unknown loc info!");
1949 case CCValAssign::Full
: break;
1950 case CCValAssign::BCvt
:
1951 Val
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), Val
);
1955 InVals
.push_back(Val
);
1961 /// LowerMemOpCallTo - Store the argument to the stack.
1962 SDValue
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
,
1963 SDValue Arg
, const SDLoc
&dl
,
1965 const CCValAssign
&VA
,
1966 ISD::ArgFlagsTy Flags
) const {
1967 unsigned LocMemOffset
= VA
.getLocMemOffset();
1968 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
1969 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
1971 return DAG
.getStore(
1972 Chain
, dl
, Arg
, PtrOff
,
1973 MachinePointerInfo::getStack(DAG
.getMachineFunction(), LocMemOffset
));
1976 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc
&dl
, SelectionDAG
&DAG
,
1977 SDValue Chain
, SDValue
&Arg
,
1978 RegsToPassVector
&RegsToPass
,
1979 CCValAssign
&VA
, CCValAssign
&NextVA
,
1981 SmallVectorImpl
<SDValue
> &MemOpChains
,
1982 ISD::ArgFlagsTy Flags
) const {
1983 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
1984 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
1985 unsigned id
= Subtarget
->isLittle() ? 0 : 1;
1986 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), fmrrd
.getValue(id
)));
1988 if (NextVA
.isRegLoc())
1989 RegsToPass
.push_back(std::make_pair(NextVA
.getLocReg(), fmrrd
.getValue(1-id
)));
1991 assert(NextVA
.isMemLoc());
1992 if (!StackPtr
.getNode())
1993 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
,
1994 getPointerTy(DAG
.getDataLayout()));
1996 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, fmrrd
.getValue(1-id
),
2002 /// LowerCall - Lowering a call into a callseq_start <-
2003 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2006 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
2007 SmallVectorImpl
<SDValue
> &InVals
) const {
2008 SelectionDAG
&DAG
= CLI
.DAG
;
2010 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
2011 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
2012 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
2013 SDValue Chain
= CLI
.Chain
;
2014 SDValue Callee
= CLI
.Callee
;
2015 bool &isTailCall
= CLI
.IsTailCall
;
2016 CallingConv::ID CallConv
= CLI
.CallConv
;
2017 bool doesNotRet
= CLI
.DoesNotReturn
;
2018 bool isVarArg
= CLI
.IsVarArg
;
2020 MachineFunction
&MF
= DAG
.getMachineFunction();
2021 bool isStructRet
= (Outs
.empty()) ? false : Outs
[0].Flags
.isSRet();
2022 bool isThisReturn
= false;
2023 auto Attr
= MF
.getFunction().getFnAttribute("disable-tail-calls");
2024 bool PreferIndirect
= false;
2026 // Disable tail calls if they're not supported.
2027 if (!Subtarget
->supportsTailCall() || Attr
.getValueAsString() == "true")
2030 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2031 // If we're optimizing for minimum size and the function is called three or
2032 // more times in this block, we can improve codesize by calling indirectly
2033 // as BLXr has a 16-bit encoding.
2034 auto *GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
2036 auto *BB
= CLI
.CS
.getParent();
2037 PreferIndirect
= Subtarget
->isThumb() && Subtarget
->hasMinSize() &&
2038 count_if(GV
->users(), [&BB
](const User
*U
) {
2039 return isa
<Instruction
>(U
) &&
2040 cast
<Instruction
>(U
)->getParent() == BB
;
2045 // Check if it's really possible to do a tail call.
2046 isTailCall
= IsEligibleForTailCallOptimization(
2047 Callee
, CallConv
, isVarArg
, isStructRet
,
2048 MF
.getFunction().hasStructRetAttr(), Outs
, OutVals
, Ins
, DAG
,
2050 if (!isTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
2051 report_fatal_error("failed to perform tail call elimination on a call "
2052 "site marked musttail");
2053 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2054 // detected sibcalls.
2059 // Analyze operands of the call, assigning locations to each operand.
2060 SmallVector
<CCValAssign
, 16> ArgLocs
;
2061 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
2063 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CallConv
, isVarArg
));
2065 // Get a count of how many bytes are to be pushed on the stack.
2066 unsigned NumBytes
= CCInfo
.getNextStackOffset();
2069 // For tail calls, memory operands are available in our caller's stack.
2072 // Adjust the stack pointer for the new arguments...
2073 // These operations are automatically eliminated by the prolog/epilog pass
2074 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
2078 DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
, getPointerTy(DAG
.getDataLayout()));
2080 RegsToPassVector RegsToPass
;
2081 SmallVector
<SDValue
, 8> MemOpChains
;
2083 // Walk the register/memloc assignments, inserting copies/loads. In the case
2084 // of tail call optimization, arguments are handled later.
2085 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2087 ++i
, ++realArgIdx
) {
2088 CCValAssign
&VA
= ArgLocs
[i
];
2089 SDValue Arg
= OutVals
[realArgIdx
];
2090 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2091 bool isByVal
= Flags
.isByVal();
2093 // Promote the value if needed.
2094 switch (VA
.getLocInfo()) {
2095 default: llvm_unreachable("Unknown loc info!");
2096 case CCValAssign::Full
: break;
2097 case CCValAssign::SExt
:
2098 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2100 case CCValAssign::ZExt
:
2101 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2103 case CCValAssign::AExt
:
2104 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2106 case CCValAssign::BCvt
:
2107 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2111 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2112 if (VA
.needsCustom()) {
2113 if (VA
.getLocVT() == MVT::v2f64
) {
2114 SDValue Op0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2115 DAG
.getConstant(0, dl
, MVT::i32
));
2116 SDValue Op1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2117 DAG
.getConstant(1, dl
, MVT::i32
));
2119 PassF64ArgInRegs(dl
, DAG
, Chain
, Op0
, RegsToPass
,
2120 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2122 VA
= ArgLocs
[++i
]; // skip ahead to next loc
2123 if (VA
.isRegLoc()) {
2124 PassF64ArgInRegs(dl
, DAG
, Chain
, Op1
, RegsToPass
,
2125 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2127 assert(VA
.isMemLoc());
2129 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Op1
,
2130 dl
, DAG
, VA
, Flags
));
2133 PassF64ArgInRegs(dl
, DAG
, Chain
, Arg
, RegsToPass
, VA
, ArgLocs
[++i
],
2134 StackPtr
, MemOpChains
, Flags
);
2136 } else if (VA
.isRegLoc()) {
2137 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
2138 Outs
[0].VT
== MVT::i32
) {
2139 assert(VA
.getLocVT() == MVT::i32
&&
2140 "unexpected calling convention register assignment");
2141 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i32
&&
2142 "unexpected use of 'returned'");
2143 isThisReturn
= true;
2145 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2146 } else if (isByVal
) {
2147 assert(VA
.isMemLoc());
2148 unsigned offset
= 0;
2150 // True if this byval aggregate will be split between registers
2152 unsigned ByValArgsCount
= CCInfo
.getInRegsParamsCount();
2153 unsigned CurByValIdx
= CCInfo
.getInRegsParamsProcessed();
2155 if (CurByValIdx
< ByValArgsCount
) {
2157 unsigned RegBegin
, RegEnd
;
2158 CCInfo
.getInRegsParamInfo(CurByValIdx
, RegBegin
, RegEnd
);
2161 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2163 for (i
= 0, j
= RegBegin
; j
< RegEnd
; i
++, j
++) {
2164 SDValue Const
= DAG
.getConstant(4*i
, dl
, MVT::i32
);
2165 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
2166 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
2167 MachinePointerInfo(),
2168 DAG
.InferPtrAlignment(AddArg
));
2169 MemOpChains
.push_back(Load
.getValue(1));
2170 RegsToPass
.push_back(std::make_pair(j
, Load
));
2173 // If parameter size outsides register area, "offset" value
2174 // helps us to calculate stack slot for remained part properly.
2175 offset
= RegEnd
- RegBegin
;
2177 CCInfo
.nextInRegsParam();
2180 if (Flags
.getByValSize() > 4*offset
) {
2181 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2182 unsigned LocMemOffset
= VA
.getLocMemOffset();
2183 SDValue StkPtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2184 SDValue Dst
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, StkPtrOff
);
2185 SDValue SrcOffset
= DAG
.getIntPtrConstant(4*offset
, dl
);
2186 SDValue Src
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, SrcOffset
);
2187 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize() - 4*offset
, dl
,
2189 SDValue AlignNode
= DAG
.getConstant(Flags
.getByValAlign(), dl
,
2192 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2193 SDValue Ops
[] = { Chain
, Dst
, Src
, SizeNode
, AlignNode
};
2194 MemOpChains
.push_back(DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
,
2197 } else if (!isTailCall
) {
2198 assert(VA
.isMemLoc());
2200 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
2201 dl
, DAG
, VA
, Flags
));
2205 if (!MemOpChains
.empty())
2206 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
2208 // Build a sequence of copy-to-reg nodes chained together with token chain
2209 // and flag operands which copy the outgoing args into the appropriate regs.
2211 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2212 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2213 RegsToPass
[i
].second
, InFlag
);
2214 InFlag
= Chain
.getValue(1);
2217 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2218 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2219 // node so that legalize doesn't hack it.
2220 bool isDirect
= false;
2222 const TargetMachine
&TM
= getTargetMachine();
2223 const Module
*Mod
= MF
.getFunction().getParent();
2224 const GlobalValue
*GV
= nullptr;
2225 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2226 GV
= G
->getGlobal();
2228 !TM
.shouldAssumeDSOLocal(*Mod
, GV
) && Subtarget
->isTargetMachO();
2230 bool isARMFunc
= !Subtarget
->isThumb() || (isStub
&& !Subtarget
->isMClass());
2231 bool isLocalARMFunc
= false;
2232 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2233 auto PtrVt
= getPointerTy(DAG
.getDataLayout());
2235 if (Subtarget
->genLongCalls()) {
2236 assert((!isPositionIndependent() || Subtarget
->isTargetWindows()) &&
2237 "long-calls codegen is not position independent!");
2238 // Handle a global address or an external symbol. If it's not one of
2239 // those, the target's already in a register, so we don't need to do
2241 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2242 // Create a constant pool entry for the callee address
2243 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2244 ARMConstantPoolValue
*CPV
=
2245 ARMConstantPoolConstant::Create(GV
, ARMPCLabelIndex
, ARMCP::CPValue
, 0);
2247 // Get the address of the callee into a register
2248 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2249 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2250 Callee
= DAG
.getLoad(
2251 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2252 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2253 } else if (ExternalSymbolSDNode
*S
=dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2254 const char *Sym
= S
->getSymbol();
2256 // Create a constant pool entry for the callee address
2257 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2258 ARMConstantPoolValue
*CPV
=
2259 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2260 ARMPCLabelIndex
, 0);
2261 // Get the address of the callee into a register
2262 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2263 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2264 Callee
= DAG
.getLoad(
2265 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2266 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2268 } else if (isa
<GlobalAddressSDNode
>(Callee
)) {
2269 if (!PreferIndirect
) {
2271 bool isDef
= GV
->isStrongDefinitionForLinker();
2273 // ARM call to a local ARM function is predicable.
2274 isLocalARMFunc
= !Subtarget
->isThumb() && (isDef
|| !ARMInterworking
);
2275 // tBX takes a register source operand.
2276 if (isStub
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2277 assert(Subtarget
->isTargetMachO() && "WrapperPIC use on non-MachO?");
2278 Callee
= DAG
.getNode(
2279 ARMISD::WrapperPIC
, dl
, PtrVt
,
2280 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, ARMII::MO_NONLAZY
));
2281 Callee
= DAG
.getLoad(
2282 PtrVt
, dl
, DAG
.getEntryNode(), Callee
,
2283 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
2284 /* Alignment = */ 0, MachineMemOperand::MODereferenceable
|
2285 MachineMemOperand::MOInvariant
);
2286 } else if (Subtarget
->isTargetCOFF()) {
2287 assert(Subtarget
->isTargetWindows() &&
2288 "Windows is the only supported COFF target");
2289 unsigned TargetFlags
= GV
->hasDLLImportStorageClass()
2290 ? ARMII::MO_DLLIMPORT
2291 : ARMII::MO_NO_FLAG
;
2292 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, /*offset=*/0,
2294 if (GV
->hasDLLImportStorageClass())
2296 DAG
.getLoad(PtrVt
, dl
, DAG
.getEntryNode(),
2297 DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
, Callee
),
2298 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2300 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, 0);
2303 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2305 // tBX takes a register source operand.
2306 const char *Sym
= S
->getSymbol();
2307 if (isARMFunc
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2308 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2309 ARMConstantPoolValue
*CPV
=
2310 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2311 ARMPCLabelIndex
, 4);
2312 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2313 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2314 Callee
= DAG
.getLoad(
2315 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2316 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2317 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
2318 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVt
, Callee
, PICLabel
);
2320 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVt
, 0);
2324 // FIXME: handle tail calls differently.
2326 if (Subtarget
->isThumb()) {
2327 if ((!isDirect
|| isARMFunc
) && !Subtarget
->hasV5TOps())
2328 CallOpc
= ARMISD::CALL_NOLINK
;
2330 CallOpc
= ARMISD::CALL
;
2332 if (!isDirect
&& !Subtarget
->hasV5TOps())
2333 CallOpc
= ARMISD::CALL_NOLINK
;
2334 else if (doesNotRet
&& isDirect
&& Subtarget
->hasRetAddrStack() &&
2335 // Emit regular call when code size is the priority
2336 !Subtarget
->hasMinSize())
2337 // "mov lr, pc; b _foo" to avoid confusing the RSP
2338 CallOpc
= ARMISD::CALL_NOLINK
;
2340 CallOpc
= isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
;
2343 std::vector
<SDValue
> Ops
;
2344 Ops
.push_back(Chain
);
2345 Ops
.push_back(Callee
);
2347 // Add argument registers to the end of the list so that they are known live
2349 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2350 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2351 RegsToPass
[i
].second
.getValueType()));
2353 // Add a register mask operand representing the call-preserved registers.
2355 const uint32_t *Mask
;
2356 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
2358 // For 'this' returns, use the R0-preserving mask if applicable
2359 Mask
= ARI
->getThisReturnPreservedMask(MF
, CallConv
);
2361 // Set isThisReturn to false if the calling convention is not one that
2362 // allows 'returned' to be modeled in this way, so LowerCallResult does
2363 // not try to pass 'this' straight through
2364 isThisReturn
= false;
2365 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2368 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2370 assert(Mask
&& "Missing call preserved mask for calling convention");
2371 Ops
.push_back(DAG
.getRegisterMask(Mask
));
2374 if (InFlag
.getNode())
2375 Ops
.push_back(InFlag
);
2377 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2379 MF
.getFrameInfo().setHasTailCall();
2380 return DAG
.getNode(ARMISD::TC_RETURN
, dl
, NodeTys
, Ops
);
2383 // Returns a chain and a flag for retval copy to use.
2384 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, Ops
);
2385 InFlag
= Chain
.getValue(1);
2387 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
2388 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
2390 InFlag
= Chain
.getValue(1);
2392 // Handle result values, copying them out of physregs into vregs that we
2394 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
2395 InVals
, isThisReturn
,
2396 isThisReturn
? OutVals
[0] : SDValue());
2399 /// HandleByVal - Every parameter *after* a byval parameter is passed
2400 /// on the stack. Remember the next parameter register to allocate,
2401 /// and then confiscate the rest of the parameter registers to insure
2403 void ARMTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
2404 unsigned Align
) const {
2405 // Byval (as with any stack) slots are always at least 4 byte aligned.
2406 Align
= std::max(Align
, 4U);
2408 unsigned Reg
= State
->AllocateReg(GPRArgRegs
);
2412 unsigned AlignInRegs
= Align
/ 4;
2413 unsigned Waste
= (ARM::R4
- Reg
) % AlignInRegs
;
2414 for (unsigned i
= 0; i
< Waste
; ++i
)
2415 Reg
= State
->AllocateReg(GPRArgRegs
);
2420 unsigned Excess
= 4 * (ARM::R4
- Reg
);
2422 // Special case when NSAA != SP and parameter size greater than size of
2423 // all remained GPR regs. In that case we can't split parameter, we must
2424 // send it to stack. We also must set NCRN to R4, so waste all
2425 // remained registers.
2426 const unsigned NSAAOffset
= State
->getNextStackOffset();
2427 if (NSAAOffset
!= 0 && Size
> Excess
) {
2428 while (State
->AllocateReg(GPRArgRegs
))
2433 // First register for byval parameter is the first register that wasn't
2434 // allocated before this method call, so it would be "reg".
2435 // If parameter is small enough to be saved in range [reg, r4), then
2436 // the end (first after last) register would be reg + param-size-in-regs,
2437 // else parameter would be splitted between registers and stack,
2438 // end register would be r4 in this case.
2439 unsigned ByValRegBegin
= Reg
;
2440 unsigned ByValRegEnd
= std::min
<unsigned>(Reg
+ Size
/ 4, ARM::R4
);
2441 State
->addInRegsParamInfo(ByValRegBegin
, ByValRegEnd
);
2442 // Note, first register is allocated in the beginning of function already,
2443 // allocate remained amount of registers we need.
2444 for (unsigned i
= Reg
+ 1; i
!= ByValRegEnd
; ++i
)
2445 State
->AllocateReg(GPRArgRegs
);
2446 // A byval parameter that is split between registers and memory needs its
2447 // size truncated here.
2448 // In the case where the entire structure fits in registers, we set the
2449 // size in memory to zero.
2450 Size
= std::max
<int>(Size
- Excess
, 0);
2453 /// MatchingStackOffset - Return true if the given stack call argument is
2454 /// already available in the same position (relatively) of the caller's
2455 /// incoming argument stack.
2457 bool MatchingStackOffset(SDValue Arg
, unsigned Offset
, ISD::ArgFlagsTy Flags
,
2458 MachineFrameInfo
&MFI
, const MachineRegisterInfo
*MRI
,
2459 const TargetInstrInfo
*TII
) {
2460 unsigned Bytes
= Arg
.getValueSizeInBits() / 8;
2461 int FI
= std::numeric_limits
<int>::max();
2462 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
2463 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
2464 if (!TargetRegisterInfo::isVirtualRegister(VR
))
2466 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
2469 if (!Flags
.isByVal()) {
2470 if (!TII
->isLoadFromStackSlot(*Def
, FI
))
2475 } else if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
2476 if (Flags
.isByVal())
2477 // ByVal argument is passed in as a pointer but it's now being
2478 // dereferenced. e.g.
2479 // define @foo(%struct.X* %A) {
2480 // tail call @bar(%struct.X* byval %A)
2483 SDValue Ptr
= Ld
->getBasePtr();
2484 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
2487 FI
= FINode
->getIndex();
2491 assert(FI
!= std::numeric_limits
<int>::max());
2492 if (!MFI
.isFixedObjectIndex(FI
))
2494 return Offset
== MFI
.getObjectOffset(FI
) && Bytes
== MFI
.getObjectSize(FI
);
2497 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2498 /// for tail call optimization. Targets which want to do tail call
2499 /// optimization should implement this function.
2500 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2501 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
2502 bool isCalleeStructRet
, bool isCallerStructRet
,
2503 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2504 const SmallVectorImpl
<SDValue
> &OutVals
,
2505 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
,
2506 const bool isIndirect
) const {
2507 MachineFunction
&MF
= DAG
.getMachineFunction();
2508 const Function
&CallerF
= MF
.getFunction();
2509 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
2511 assert(Subtarget
->supportsTailCall());
2513 // Indirect tail calls cannot be optimized for Thumb1 if the args
2514 // to the call take up r0-r3. The reason is that there are no legal registers
2515 // left to hold the pointer to the function to be called.
2516 if (Subtarget
->isThumb1Only() && Outs
.size() >= 4 &&
2517 (!isa
<GlobalAddressSDNode
>(Callee
.getNode()) || isIndirect
))
2520 // Look for obvious safe cases to perform tail call optimization that do not
2521 // require ABI changes. This is what gcc calls sibcall.
2523 // Exception-handling functions need a special set of instructions to indicate
2524 // a return to the hardware. Tail-calling another function would probably
2526 if (CallerF
.hasFnAttribute("interrupt"))
2529 // Also avoid sibcall optimization if either caller or callee uses struct
2530 // return semantics.
2531 if (isCalleeStructRet
|| isCallerStructRet
)
2534 // Externally-defined functions with weak linkage should not be
2535 // tail-called on ARM when the OS does not support dynamic
2536 // pre-emption of symbols, as the AAELF spec requires normal calls
2537 // to undefined weak functions to be replaced with a NOP or jump to the
2538 // next instruction. The behaviour of branch instructions in this
2539 // situation (as used for tail calls) is implementation-defined, so we
2540 // cannot rely on the linker replacing the tail call with a return.
2541 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2542 const GlobalValue
*GV
= G
->getGlobal();
2543 const Triple
&TT
= getTargetMachine().getTargetTriple();
2544 if (GV
->hasExternalWeakLinkage() &&
2545 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
2549 // Check that the call results are passed in the same way.
2550 LLVMContext
&C
= *DAG
.getContext();
2551 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
2552 CCAssignFnForReturn(CalleeCC
, isVarArg
),
2553 CCAssignFnForReturn(CallerCC
, isVarArg
)))
2555 // The callee has to preserve all registers the caller needs to preserve.
2556 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2557 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
2558 if (CalleeCC
!= CallerCC
) {
2559 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
2560 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
2564 // If Caller's vararg or byval argument has been split between registers and
2565 // stack, do not perform tail call, since part of the argument is in caller's
2567 const ARMFunctionInfo
*AFI_Caller
= MF
.getInfo
<ARMFunctionInfo
>();
2568 if (AFI_Caller
->getArgRegsSaveSize())
2571 // If the callee takes no arguments then go on to check the results of the
2573 if (!Outs
.empty()) {
2574 // Check if stack adjustment is needed. For now, do not do this if any
2575 // argument is passed on the stack.
2576 SmallVector
<CCValAssign
, 16> ArgLocs
;
2577 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
2578 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
2579 if (CCInfo
.getNextStackOffset()) {
2580 // Check if the arguments are already laid out in the right way as
2581 // the caller's fixed stack objects.
2582 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2583 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
2584 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
2585 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2587 ++i
, ++realArgIdx
) {
2588 CCValAssign
&VA
= ArgLocs
[i
];
2589 EVT RegVT
= VA
.getLocVT();
2590 SDValue Arg
= OutVals
[realArgIdx
];
2591 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2592 if (VA
.getLocInfo() == CCValAssign::Indirect
)
2594 if (VA
.needsCustom()) {
2595 // f64 and vector types are split into multiple registers or
2596 // register/stack-slot combinations. The types will not match
2597 // the registers; give up on memory f64 refs until we figure
2598 // out what to do about this.
2601 if (!ArgLocs
[++i
].isRegLoc())
2603 if (RegVT
== MVT::v2f64
) {
2604 if (!ArgLocs
[++i
].isRegLoc())
2606 if (!ArgLocs
[++i
].isRegLoc())
2609 } else if (!VA
.isRegLoc()) {
2610 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
,
2617 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2618 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
2626 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
2627 MachineFunction
&MF
, bool isVarArg
,
2628 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2629 LLVMContext
&Context
) const {
2630 SmallVector
<CCValAssign
, 16> RVLocs
;
2631 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
2632 return CCInfo
.CheckReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2635 static SDValue
LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
2636 const SDLoc
&DL
, SelectionDAG
&DAG
) {
2637 const MachineFunction
&MF
= DAG
.getMachineFunction();
2638 const Function
&F
= MF
.getFunction();
2640 StringRef IntKind
= F
.getFnAttribute("interrupt").getValueAsString();
2642 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2643 // version of the "preferred return address". These offsets affect the return
2644 // instruction if this is a return from PL1 without hypervisor extensions.
2645 // IRQ/FIQ: +4 "subs pc, lr, #4"
2646 // SWI: 0 "subs pc, lr, #0"
2647 // ABORT: +4 "subs pc, lr, #4"
2648 // UNDEF: +4/+2 "subs pc, lr, #0"
2649 // UNDEF varies depending on where the exception came from ARM or Thumb
2650 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2653 if (IntKind
== "" || IntKind
== "IRQ" || IntKind
== "FIQ" ||
2656 else if (IntKind
== "SWI" || IntKind
== "UNDEF")
2659 report_fatal_error("Unsupported interrupt attribute. If present, value "
2660 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2662 RetOps
.insert(RetOps
.begin() + 1,
2663 DAG
.getConstant(LROffset
, DL
, MVT::i32
, false));
2665 return DAG
.getNode(ARMISD::INTRET_FLAG
, DL
, MVT::Other
, RetOps
);
2669 ARMTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
2671 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2672 const SmallVectorImpl
<SDValue
> &OutVals
,
2673 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
2674 // CCValAssign - represent the assignment of the return value to a location.
2675 SmallVector
<CCValAssign
, 16> RVLocs
;
2677 // CCState - Info about the registers and stack slots.
2678 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
2681 // Analyze outgoing return values.
2682 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2685 SmallVector
<SDValue
, 4> RetOps
;
2686 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
2687 bool isLittleEndian
= Subtarget
->isLittle();
2689 MachineFunction
&MF
= DAG
.getMachineFunction();
2690 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2691 AFI
->setReturnRegsCount(RVLocs
.size());
2693 // Copy the result values into the output registers.
2694 for (unsigned i
= 0, realRVLocIdx
= 0;
2696 ++i
, ++realRVLocIdx
) {
2697 CCValAssign
&VA
= RVLocs
[i
];
2698 assert(VA
.isRegLoc() && "Can only return in registers!");
2700 SDValue Arg
= OutVals
[realRVLocIdx
];
2701 bool ReturnF16
= false;
2703 if (Subtarget
->hasFullFP16() && Subtarget
->isTargetHardFloat()) {
2704 // Half-precision return values can be returned like this:
2706 // t11 f16 = fadd ...
2707 // t12: i16 = bitcast t11
2708 // t13: i32 = zero_extend t12
2709 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2711 // to avoid code generation for bitcasts, we simply set Arg to the node
2712 // that produces the f16 value, t11 in this case.
2714 if (Arg
.getValueType() == MVT::f32
&& Arg
.getOpcode() == ISD::BITCAST
) {
2715 SDValue ZE
= Arg
.getOperand(0);
2716 if (ZE
.getOpcode() == ISD::ZERO_EXTEND
&& ZE
.getValueType() == MVT::i32
) {
2717 SDValue BC
= ZE
.getOperand(0);
2718 if (BC
.getOpcode() == ISD::BITCAST
&& BC
.getValueType() == MVT::i16
) {
2719 Arg
= BC
.getOperand(0);
2726 switch (VA
.getLocInfo()) {
2727 default: llvm_unreachable("Unknown loc info!");
2728 case CCValAssign::Full
: break;
2729 case CCValAssign::BCvt
:
2731 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2735 if (VA
.needsCustom()) {
2736 if (VA
.getLocVT() == MVT::v2f64
) {
2737 // Extract the first half and return it in two registers.
2738 SDValue Half
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2739 DAG
.getConstant(0, dl
, MVT::i32
));
2740 SDValue HalfGPRs
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2741 DAG
.getVTList(MVT::i32
, MVT::i32
), Half
);
2743 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2744 HalfGPRs
.getValue(isLittleEndian
? 0 : 1),
2746 Flag
= Chain
.getValue(1);
2747 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2748 VA
= RVLocs
[++i
]; // skip ahead to next loc
2749 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2750 HalfGPRs
.getValue(isLittleEndian
? 1 : 0),
2752 Flag
= Chain
.getValue(1);
2753 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2754 VA
= RVLocs
[++i
]; // skip ahead to next loc
2756 // Extract the 2nd half and fall through to handle it as an f64 value.
2757 Arg
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2758 DAG
.getConstant(1, dl
, MVT::i32
));
2760 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2762 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2763 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2764 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2765 fmrrd
.getValue(isLittleEndian
? 0 : 1),
2767 Flag
= Chain
.getValue(1);
2768 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2769 VA
= RVLocs
[++i
]; // skip ahead to next loc
2770 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2771 fmrrd
.getValue(isLittleEndian
? 1 : 0),
2774 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
2776 // Guarantee that all emitted copies are
2777 // stuck together, avoiding something bad.
2778 Flag
= Chain
.getValue(1);
2779 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(),
2780 ReturnF16
? MVT::f16
: VA
.getLocVT()));
2782 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2783 const MCPhysReg
*I
=
2784 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
2787 if (ARM::GPRRegClass
.contains(*I
))
2788 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i32
));
2789 else if (ARM::DPRRegClass
.contains(*I
))
2790 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
2792 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2796 // Update chain and glue.
2799 RetOps
.push_back(Flag
);
2801 // CPUs which aren't M-class use a special sequence to return from
2802 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2803 // though we use "subs pc, lr, #N").
2805 // M-class CPUs actually use a normal return sequence with a special
2806 // (hardware-provided) value in LR, so the normal code path works.
2807 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2808 !Subtarget
->isMClass()) {
2809 if (Subtarget
->isThumb1Only())
2810 report_fatal_error("interrupt attribute is not supported in Thumb1");
2811 return LowerInterruptReturn(RetOps
, dl
, DAG
);
2814 return DAG
.getNode(ARMISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
2817 bool ARMTargetLowering::isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const {
2818 if (N
->getNumValues() != 1)
2820 if (!N
->hasNUsesOfValue(1, 0))
2823 SDValue TCChain
= Chain
;
2824 SDNode
*Copy
= *N
->use_begin();
2825 if (Copy
->getOpcode() == ISD::CopyToReg
) {
2826 // If the copy has a glue operand, we conservatively assume it isn't safe to
2827 // perform a tail call.
2828 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2830 TCChain
= Copy
->getOperand(0);
2831 } else if (Copy
->getOpcode() == ARMISD::VMOVRRD
) {
2832 SDNode
*VMov
= Copy
;
2833 // f64 returned in a pair of GPRs.
2834 SmallPtrSet
<SDNode
*, 2> Copies
;
2835 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2837 if (UI
->getOpcode() != ISD::CopyToReg
)
2841 if (Copies
.size() > 2)
2844 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2846 SDValue UseChain
= UI
->getOperand(0);
2847 if (Copies
.count(UseChain
.getNode()))
2851 // We are at the top of this chain.
2852 // If the copy has a glue operand, we conservatively assume it
2853 // isn't safe to perform a tail call.
2854 if (UI
->getOperand(UI
->getNumOperands()-1).getValueType() == MVT::Glue
)
2860 } else if (Copy
->getOpcode() == ISD::BITCAST
) {
2861 // f32 returned in a single GPR.
2862 if (!Copy
->hasOneUse())
2864 Copy
= *Copy
->use_begin();
2865 if (Copy
->getOpcode() != ISD::CopyToReg
|| !Copy
->hasNUsesOfValue(1, 0))
2867 // If the copy has a glue operand, we conservatively assume it isn't safe to
2868 // perform a tail call.
2869 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2871 TCChain
= Copy
->getOperand(0);
2876 bool HasRet
= false;
2877 for (SDNode::use_iterator UI
= Copy
->use_begin(), UE
= Copy
->use_end();
2879 if (UI
->getOpcode() != ARMISD::RET_FLAG
&&
2880 UI
->getOpcode() != ARMISD::INTRET_FLAG
)
2892 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
2893 if (!Subtarget
->supportsTailCall())
2897 CI
->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2898 if (!CI
->isTailCall() || Attr
.getValueAsString() == "true")
2904 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2905 // and pass the lower and high parts through.
2906 static SDValue
LowerWRITE_REGISTER(SDValue Op
, SelectionDAG
&DAG
) {
2908 SDValue WriteValue
= Op
->getOperand(2);
2910 // This function is only supposed to be called for i64 type argument.
2911 assert(WriteValue
.getValueType() == MVT::i64
2912 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2914 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2915 DAG
.getConstant(0, DL
, MVT::i32
));
2916 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2917 DAG
.getConstant(1, DL
, MVT::i32
));
2918 SDValue Ops
[] = { Op
->getOperand(0), Op
->getOperand(1), Lo
, Hi
};
2919 return DAG
.getNode(ISD::WRITE_REGISTER
, DL
, MVT::Other
, Ops
);
2922 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2923 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2924 // one of the above mentioned nodes. It has to be wrapped because otherwise
2925 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2926 // be used to form addressing mode. These wrapped nodes will be selected
2928 SDValue
ARMTargetLowering::LowerConstantPool(SDValue Op
,
2929 SelectionDAG
&DAG
) const {
2930 EVT PtrVT
= Op
.getValueType();
2931 // FIXME there is no actual debug info here
2933 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2936 // When generating execute-only code Constant Pools must be promoted to the
2937 // global data section. It's a bit ugly that we can't share them across basic
2938 // blocks, but this way we guarantee that execute-only behaves correct with
2939 // position-independent addressing modes.
2940 if (Subtarget
->genExecuteOnly()) {
2941 auto AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
2942 auto T
= const_cast<Type
*>(CP
->getType());
2943 auto C
= const_cast<Constant
*>(CP
->getConstVal());
2944 auto M
= const_cast<Module
*>(DAG
.getMachineFunction().
2945 getFunction().getParent());
2946 auto GV
= new GlobalVariable(
2947 *M
, T
, /*isConstant=*/true, GlobalVariable::InternalLinkage
, C
,
2948 Twine(DAG
.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2949 Twine(DAG
.getMachineFunction().getFunctionNumber()) + "_" +
2950 Twine(AFI
->createPICLabelUId())
2952 SDValue GA
= DAG
.getTargetGlobalAddress(dyn_cast
<GlobalValue
>(GV
),
2954 return LowerGlobalAddress(GA
, DAG
);
2957 if (CP
->isMachineConstantPoolEntry())
2958 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
2959 CP
->getAlignment());
2961 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
2962 CP
->getAlignment());
2963 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Res
);
2966 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2967 return MachineJumpTableInfo::EK_Inline
;
2970 SDValue
ARMTargetLowering::LowerBlockAddress(SDValue Op
,
2971 SelectionDAG
&DAG
) const {
2972 MachineFunction
&MF
= DAG
.getMachineFunction();
2973 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2974 unsigned ARMPCLabelIndex
= 0;
2976 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2977 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
2979 bool IsPositionIndependent
= isPositionIndependent() || Subtarget
->isROPI();
2980 if (!IsPositionIndependent
) {
2981 CPAddr
= DAG
.getTargetConstantPool(BA
, PtrVT
, 4);
2983 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
2984 ARMPCLabelIndex
= AFI
->createPICLabelUId();
2985 ARMConstantPoolValue
*CPV
=
2986 ARMConstantPoolConstant::Create(BA
, ARMPCLabelIndex
,
2987 ARMCP::CPBlockAddress
, PCAdj
);
2988 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
2990 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, CPAddr
);
2991 SDValue Result
= DAG
.getLoad(
2992 PtrVT
, DL
, DAG
.getEntryNode(), CPAddr
,
2993 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2994 if (!IsPositionIndependent
)
2996 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, DL
, MVT::i32
);
2997 return DAG
.getNode(ARMISD::PIC_ADD
, DL
, PtrVT
, Result
, PICLabel
);
3000 /// Convert a TLS address reference into the correct sequence of loads
3001 /// and calls to compute the variable's address for Darwin, and return an
3002 /// SDValue containing the final node.
3004 /// Darwin only has one TLS scheme which must be capable of dealing with the
3005 /// fully general situation, in the worst case. This means:
3006 /// + "extern __thread" declaration.
3007 /// + Defined in a possibly unknown dynamic library.
3009 /// The general system is that each __thread variable has a [3 x i32] descriptor
3010 /// which contains information used by the runtime to calculate the address. The
3011 /// only part of this the compiler needs to know about is the first word, which
3012 /// contains a function pointer that must be called with the address of the
3013 /// entire descriptor in "r0".
3015 /// Since this descriptor may be in a different unit, in general access must
3016 /// proceed along the usual ARM rules. A common sequence to produce is:
3018 /// movw rT1, :lower16:_var$non_lazy_ptr
3019 /// movt rT1, :upper16:_var$non_lazy_ptr
3023 /// [...address now in r0...]
3025 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op
,
3026 SelectionDAG
&DAG
) const {
3027 assert(Subtarget
->isTargetDarwin() &&
3028 "This function expects a Darwin target");
3031 // First step is to get the address of the actua global symbol. This is where
3032 // the TLS descriptor lives.
3033 SDValue DescAddr
= LowerGlobalAddressDarwin(Op
, DAG
);
3035 // The first entry in the descriptor is a function pointer that we must call
3036 // to obtain the address of the variable.
3037 SDValue Chain
= DAG
.getEntryNode();
3038 SDValue FuncTLVGet
= DAG
.getLoad(
3039 MVT::i32
, DL
, Chain
, DescAddr
,
3040 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
3041 /* Alignment = */ 4,
3042 MachineMemOperand::MONonTemporal
| MachineMemOperand::MODereferenceable
|
3043 MachineMemOperand::MOInvariant
);
3044 Chain
= FuncTLVGet
.getValue(1);
3046 MachineFunction
&F
= DAG
.getMachineFunction();
3047 MachineFrameInfo
&MFI
= F
.getFrameInfo();
3048 MFI
.setAdjustsStack(true);
3050 // TLS calls preserve all registers except those that absolutely must be
3051 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3054 getTargetMachine().getSubtargetImpl(F
.getFunction())->getRegisterInfo();
3055 auto ARI
= static_cast<const ARMRegisterInfo
*>(TRI
);
3056 const uint32_t *Mask
= ARI
->getTLSCallPreservedMask(DAG
.getMachineFunction());
3058 // Finally, we can make the call. This is just a degenerate version of a
3059 // normal AArch64 call node: r0 takes the address of the descriptor, and
3060 // returns the address of the variable in this thread.
3061 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R0
, DescAddr
, SDValue());
3063 DAG
.getNode(ARMISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
3064 Chain
, FuncTLVGet
, DAG
.getRegister(ARM::R0
, MVT::i32
),
3065 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
3066 return DAG
.getCopyFromReg(Chain
, DL
, ARM::R0
, MVT::i32
, Chain
.getValue(1));
3070 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op
,
3071 SelectionDAG
&DAG
) const {
3072 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
3074 SDValue Chain
= DAG
.getEntryNode();
3075 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3078 // Load the current TEB (thread environment block)
3079 SDValue Ops
[] = {Chain
,
3080 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
3081 DAG
.getConstant(15, DL
, MVT::i32
),
3082 DAG
.getConstant(0, DL
, MVT::i32
),
3083 DAG
.getConstant(13, DL
, MVT::i32
),
3084 DAG
.getConstant(0, DL
, MVT::i32
),
3085 DAG
.getConstant(2, DL
, MVT::i32
)};
3086 SDValue CurrentTEB
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
3087 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
3089 SDValue TEB
= CurrentTEB
.getValue(0);
3090 Chain
= CurrentTEB
.getValue(1);
3092 // Load the ThreadLocalStoragePointer from the TEB
3093 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3095 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x2c, DL
));
3096 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
3098 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3099 // offset into the TLSArray.
3101 // Load the TLS index from the C runtime
3103 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, ARMII::MO_NO_FLAG
);
3104 TLSIndex
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, TLSIndex
);
3105 TLSIndex
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
3107 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
3108 DAG
.getConstant(2, DL
, MVT::i32
));
3109 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
3110 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
3111 MachinePointerInfo());
3113 // Get the offset of the start of the .tls section (section base)
3114 const auto *GA
= cast
<GlobalAddressSDNode
>(Op
);
3115 auto *CPV
= ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMCP::SECREL
);
3116 SDValue Offset
= DAG
.getLoad(
3117 PtrVT
, DL
, Chain
, DAG
.getNode(ARMISD::Wrapper
, DL
, MVT::i32
,
3118 DAG
.getTargetConstantPool(CPV
, PtrVT
, 4)),
3119 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3121 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLS
, Offset
);
3124 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3126 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
3127 SelectionDAG
&DAG
) const {
3129 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3130 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3131 MachineFunction
&MF
= DAG
.getMachineFunction();
3132 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3133 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3134 ARMConstantPoolValue
*CPV
=
3135 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3136 ARMCP::CPValue
, PCAdj
, ARMCP::TLSGD
, true);
3137 SDValue Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3138 Argument
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Argument
);
3139 Argument
= DAG
.getLoad(
3140 PtrVT
, dl
, DAG
.getEntryNode(), Argument
,
3141 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3142 SDValue Chain
= Argument
.getValue(1);
3144 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3145 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Argument
, PICLabel
);
3147 // call __tls_get_addr.
3150 Entry
.Node
= Argument
;
3151 Entry
.Ty
= (Type
*) Type::getInt32Ty(*DAG
.getContext());
3152 Args
.push_back(Entry
);
3154 // FIXME: is there useful debug info available here?
3155 TargetLowering::CallLoweringInfo
CLI(DAG
);
3156 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3157 CallingConv::C
, Type::getInt32Ty(*DAG
.getContext()),
3158 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), std::move(Args
));
3160 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3161 return CallResult
.first
;
3164 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3165 // "local exec" model.
3167 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
3169 TLSModel::Model model
) const {
3170 const GlobalValue
*GV
= GA
->getGlobal();
3173 SDValue Chain
= DAG
.getEntryNode();
3174 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3175 // Get the Thread Pointer
3176 SDValue ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3178 if (model
== TLSModel::InitialExec
) {
3179 MachineFunction
&MF
= DAG
.getMachineFunction();
3180 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3181 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3182 // Initial exec model.
3183 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3184 ARMConstantPoolValue
*CPV
=
3185 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3186 ARMCP::CPValue
, PCAdj
, ARMCP::GOTTPOFF
,
3188 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3189 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3190 Offset
= DAG
.getLoad(
3191 PtrVT
, dl
, Chain
, Offset
,
3192 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3193 Chain
= Offset
.getValue(1);
3195 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3196 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Offset
, PICLabel
);
3198 Offset
= DAG
.getLoad(
3199 PtrVT
, dl
, Chain
, Offset
,
3200 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3203 assert(model
== TLSModel::LocalExec
);
3204 ARMConstantPoolValue
*CPV
=
3205 ARMConstantPoolConstant::Create(GV
, ARMCP::TPOFF
);
3206 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3207 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3208 Offset
= DAG
.getLoad(
3209 PtrVT
, dl
, Chain
, Offset
,
3210 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3213 // The address of the thread local variable is the add of the thread
3214 // pointer with the offset of the variable.
3215 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
3219 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
3220 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3221 if (DAG
.getTarget().useEmulatedTLS())
3222 return LowerToTLSEmulatedModel(GA
, DAG
);
3224 if (Subtarget
->isTargetDarwin())
3225 return LowerGlobalTLSAddressDarwin(Op
, DAG
);
3227 if (Subtarget
->isTargetWindows())
3228 return LowerGlobalTLSAddressWindows(Op
, DAG
);
3230 // TODO: implement the "local dynamic" model
3231 assert(Subtarget
->isTargetELF() && "Only ELF implemented here");
3232 TLSModel::Model model
= getTargetMachine().getTLSModel(GA
->getGlobal());
3235 case TLSModel::GeneralDynamic
:
3236 case TLSModel::LocalDynamic
:
3237 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
3238 case TLSModel::InitialExec
:
3239 case TLSModel::LocalExec
:
3240 return LowerToTLSExecModels(GA
, DAG
, model
);
3242 llvm_unreachable("bogus TLS model");
3245 /// Return true if all users of V are within function F, looking through
3247 static bool allUsersAreInFunction(const Value
*V
, const Function
*F
) {
3248 SmallVector
<const User
*,4> Worklist
;
3249 for (auto *U
: V
->users())
3250 Worklist
.push_back(U
);
3251 while (!Worklist
.empty()) {
3252 auto *U
= Worklist
.pop_back_val();
3253 if (isa
<ConstantExpr
>(U
)) {
3254 for (auto *UU
: U
->users())
3255 Worklist
.push_back(UU
);
3259 auto *I
= dyn_cast
<Instruction
>(U
);
3260 if (!I
|| I
->getParent()->getParent() != F
)
3266 static SDValue
promoteToConstantPool(const ARMTargetLowering
*TLI
,
3267 const GlobalValue
*GV
, SelectionDAG
&DAG
,
3268 EVT PtrVT
, const SDLoc
&dl
) {
3269 // If we're creating a pool entry for a constant global with unnamed address,
3270 // and the global is small enough, we can emit it inline into the constant pool
3271 // to save ourselves an indirection.
3273 // This is a win if the constant is only used in one function (so it doesn't
3274 // need to be duplicated) or duplicating the constant wouldn't increase code
3275 // size (implying the constant is no larger than 4 bytes).
3276 const Function
&F
= DAG
.getMachineFunction().getFunction();
3278 // We rely on this decision to inline being idemopotent and unrelated to the
3279 // use-site. We know that if we inline a variable at one use site, we'll
3280 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3281 // doesn't know about this optimization, so bail out if it's enabled else
3282 // we could decide to inline here (and thus never emit the GV) but require
3283 // the GV from fast-isel generated code.
3284 if (!EnableConstpoolPromotion
||
3285 DAG
.getMachineFunction().getTarget().Options
.EnableFastISel
)
3288 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
3289 if (!GVar
|| !GVar
->hasInitializer() ||
3290 !GVar
->isConstant() || !GVar
->hasGlobalUnnamedAddr() ||
3291 !GVar
->hasLocalLinkage())
3294 // If we inline a value that contains relocations, we move the relocations
3295 // from .data to .text. This is not allowed in position-independent code.
3296 auto *Init
= GVar
->getInitializer();
3297 if ((TLI
->isPositionIndependent() || TLI
->getSubtarget()->isROPI()) &&
3298 Init
->needsRelocation())
3301 // The constant islands pass can only really deal with alignment requests
3302 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3303 // any type wanting greater alignment requirements than 4 bytes. We also
3304 // can only promote constants that are multiples of 4 bytes in size or
3305 // are paddable to a multiple of 4. Currently we only try and pad constants
3306 // that are strings for simplicity.
3307 auto *CDAInit
= dyn_cast
<ConstantDataArray
>(Init
);
3308 unsigned Size
= DAG
.getDataLayout().getTypeAllocSize(Init
->getType());
3309 unsigned Align
= DAG
.getDataLayout().getPreferredAlignment(GVar
);
3310 unsigned RequiredPadding
= 4 - (Size
% 4);
3311 bool PaddingPossible
=
3312 RequiredPadding
== 4 || (CDAInit
&& CDAInit
->isString());
3313 if (!PaddingPossible
|| Align
> 4 || Size
> ConstpoolPromotionMaxSize
||
3317 unsigned PaddedSize
= Size
+ ((RequiredPadding
== 4) ? 0 : RequiredPadding
);
3318 MachineFunction
&MF
= DAG
.getMachineFunction();
3319 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3321 // We can't bloat the constant pool too much, else the ConstantIslands pass
3322 // may fail to converge. If we haven't promoted this global yet (it may have
3323 // multiple uses), and promoting it would increase the constant pool size (Sz
3324 // > 4), ensure we have space to do so up to MaxTotal.
3325 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
) && Size
> 4)
3326 if (AFI
->getPromotedConstpoolIncrease() + PaddedSize
- 4 >=
3327 ConstpoolPromotionMaxTotal
)
3330 // This is only valid if all users are in a single function; we can't clone
3331 // the constant in general. The LLVM IR unnamed_addr allows merging
3332 // constants, but not cloning them.
3334 // We could potentially allow cloning if we could prove all uses of the
3335 // constant in the current function don't care about the address, like
3336 // printf format strings. But that isn't implemented for now.
3337 if (!allUsersAreInFunction(GVar
, &F
))
3340 // We're going to inline this global. Pad it out if needed.
3341 if (RequiredPadding
!= 4) {
3342 StringRef S
= CDAInit
->getAsString();
3344 SmallVector
<uint8_t,16> V(S
.size());
3345 std::copy(S
.bytes_begin(), S
.bytes_end(), V
.begin());
3346 while (RequiredPadding
--)
3348 Init
= ConstantDataArray::get(*DAG
.getContext(), V
);
3351 auto CPVal
= ARMConstantPoolConstant::Create(GVar
, Init
);
3353 DAG
.getTargetConstantPool(CPVal
, PtrVT
, /*Align=*/4);
3354 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
)) {
3355 AFI
->markGlobalAsPromotedToConstantPool(GVar
);
3356 AFI
->setPromotedConstpoolIncrease(AFI
->getPromotedConstpoolIncrease() +
3359 ++NumConstpoolPromoted
;
3360 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3363 bool ARMTargetLowering::isReadOnly(const GlobalValue
*GV
) const {
3364 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
3365 if (!(GV
= GA
->getBaseObject()))
3367 if (const auto *V
= dyn_cast
<GlobalVariable
>(GV
))
3368 return V
->isConstant();
3369 return isa
<Function
>(GV
);
3372 SDValue
ARMTargetLowering::LowerGlobalAddress(SDValue Op
,
3373 SelectionDAG
&DAG
) const {
3374 switch (Subtarget
->getTargetTriple().getObjectFormat()) {
3375 default: llvm_unreachable("unknown object format");
3377 return LowerGlobalAddressWindows(Op
, DAG
);
3379 return LowerGlobalAddressELF(Op
, DAG
);
3381 return LowerGlobalAddressDarwin(Op
, DAG
);
3385 SDValue
ARMTargetLowering::LowerGlobalAddressELF(SDValue Op
,
3386 SelectionDAG
&DAG
) const {
3387 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3389 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3390 const TargetMachine
&TM
= getTargetMachine();
3391 bool IsRO
= isReadOnly(GV
);
3393 // promoteToConstantPool only if not generating XO text section
3394 if (TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
) && !Subtarget
->genExecuteOnly())
3395 if (SDValue V
= promoteToConstantPool(this, GV
, DAG
, PtrVT
, dl
))
3398 if (isPositionIndependent()) {
3399 bool UseGOT_PREL
= !TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
);
3400 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3401 UseGOT_PREL
? ARMII::MO_GOT
: 0);
3402 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3405 DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3406 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3408 } else if (Subtarget
->isROPI() && IsRO
) {
3410 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
);
3411 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3413 } else if (Subtarget
->isRWPI() && !IsRO
) {
3416 if (Subtarget
->useMovt()) {
3418 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_SBREL
);
3419 RelAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
, G
);
3420 } else { // use literal pool for address constant
3421 ARMConstantPoolValue
*CPV
=
3422 ARMConstantPoolConstant::Create(GV
, ARMCP::SBREL
);
3423 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3424 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3425 RelAddr
= DAG
.getLoad(
3426 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3427 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3429 SDValue SB
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, ARM::R9
, PtrVT
);
3430 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SB
, RelAddr
);
3434 // If we have T2 ops, we can materialize the address directly via movt/movw
3435 // pair. This is always cheaper.
3436 if (Subtarget
->useMovt()) {
3438 // FIXME: Once remat is capable of dealing with instructions with register
3439 // operands, expand this into two nodes.
3440 return DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
,
3441 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
));
3443 SDValue CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 4);
3444 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3446 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3447 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3451 SDValue
ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op
,
3452 SelectionDAG
&DAG
) const {
3453 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3454 "ROPI/RWPI not currently supported for Darwin");
3455 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3457 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3459 if (Subtarget
->useMovt())
3462 // FIXME: Once remat is capable of dealing with instructions with register
3463 // operands, expand this into multiple nodes
3465 isPositionIndependent() ? ARMISD::WrapperPIC
: ARMISD::Wrapper
;
3467 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_NONLAZY
);
3468 SDValue Result
= DAG
.getNode(Wrapper
, dl
, PtrVT
, G
);
3470 if (Subtarget
->isGVIndirectSymbol(GV
))
3471 Result
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3472 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3476 SDValue
ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op
,
3477 SelectionDAG
&DAG
) const {
3478 assert(Subtarget
->isTargetWindows() && "non-Windows COFF is not supported");
3479 assert(Subtarget
->useMovt() &&
3480 "Windows on ARM expects to use movw/movt");
3481 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3482 "ROPI/RWPI not currently supported for Windows");
3484 const TargetMachine
&TM
= getTargetMachine();
3485 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3486 ARMII::TOF TargetFlags
= ARMII::MO_NO_FLAG
;
3487 if (GV
->hasDLLImportStorageClass())
3488 TargetFlags
= ARMII::MO_DLLIMPORT
;
3489 else if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
3490 TargetFlags
= ARMII::MO_COFFSTUB
;
3491 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3497 // FIXME: Once remat is capable of dealing with instructions with register
3498 // operands, expand this into two nodes.
3499 Result
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
,
3500 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, /*offset=*/0,
3502 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
3503 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
3504 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3509 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3511 SDValue Val
= DAG
.getConstant(0, dl
, MVT::i32
);
3512 return DAG
.getNode(ARMISD::EH_SJLJ_SETJMP
, dl
,
3513 DAG
.getVTList(MVT::i32
, MVT::Other
), Op
.getOperand(0),
3514 Op
.getOperand(1), Val
);
3518 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3520 return DAG
.getNode(ARMISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
, Op
.getOperand(0),
3521 Op
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
3524 SDValue
ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
,
3525 SelectionDAG
&DAG
) const {
3527 return DAG
.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH
, dl
, MVT::Other
,
3532 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
,
3533 const ARMSubtarget
*Subtarget
) const {
3534 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3537 default: return SDValue(); // Don't custom lower most intrinsics.
3538 case Intrinsic::thread_pointer
: {
3539 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3540 return DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3542 case Intrinsic::eh_sjlj_lsda
: {
3543 MachineFunction
&MF
= DAG
.getMachineFunction();
3544 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3545 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3546 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3548 bool IsPositionIndependent
= isPositionIndependent();
3549 unsigned PCAdj
= IsPositionIndependent
? (Subtarget
->isThumb() ? 4 : 8) : 0;
3550 ARMConstantPoolValue
*CPV
=
3551 ARMConstantPoolConstant::Create(&MF
.getFunction(), ARMPCLabelIndex
,
3552 ARMCP::CPLSDA
, PCAdj
);
3553 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3554 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3555 SDValue Result
= DAG
.getLoad(
3556 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3557 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3559 if (IsPositionIndependent
) {
3560 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3561 Result
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Result
, PICLabel
);
3565 case Intrinsic::arm_neon_vabs
:
3566 return DAG
.getNode(ISD::ABS
, SDLoc(Op
), Op
.getValueType(),
3568 case Intrinsic::arm_neon_vmulls
:
3569 case Intrinsic::arm_neon_vmullu
: {
3570 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmulls
)
3571 ? ARMISD::VMULLs
: ARMISD::VMULLu
;
3572 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3573 Op
.getOperand(1), Op
.getOperand(2));
3575 case Intrinsic::arm_neon_vminnm
:
3576 case Intrinsic::arm_neon_vmaxnm
: {
3577 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminnm
)
3578 ? ISD::FMINNUM
: ISD::FMAXNUM
;
3579 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3580 Op
.getOperand(1), Op
.getOperand(2));
3582 case Intrinsic::arm_neon_vminu
:
3583 case Intrinsic::arm_neon_vmaxu
: {
3584 if (Op
.getValueType().isFloatingPoint())
3586 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminu
)
3587 ? ISD::UMIN
: ISD::UMAX
;
3588 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3589 Op
.getOperand(1), Op
.getOperand(2));
3591 case Intrinsic::arm_neon_vmins
:
3592 case Intrinsic::arm_neon_vmaxs
: {
3593 // v{min,max}s is overloaded between signed integers and floats.
3594 if (!Op
.getValueType().isFloatingPoint()) {
3595 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3596 ? ISD::SMIN
: ISD::SMAX
;
3597 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3598 Op
.getOperand(1), Op
.getOperand(2));
3600 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3601 ? ISD::FMINIMUM
: ISD::FMAXIMUM
;
3602 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3603 Op
.getOperand(1), Op
.getOperand(2));
3605 case Intrinsic::arm_neon_vtbl1
:
3606 return DAG
.getNode(ARMISD::VTBL1
, SDLoc(Op
), Op
.getValueType(),
3607 Op
.getOperand(1), Op
.getOperand(2));
3608 case Intrinsic::arm_neon_vtbl2
:
3609 return DAG
.getNode(ARMISD::VTBL2
, SDLoc(Op
), Op
.getValueType(),
3610 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
3614 static SDValue
LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
,
3615 const ARMSubtarget
*Subtarget
) {
3617 ConstantSDNode
*SSIDNode
= cast
<ConstantSDNode
>(Op
.getOperand(2));
3618 auto SSID
= static_cast<SyncScope::ID
>(SSIDNode
->getZExtValue());
3619 if (SSID
== SyncScope::SingleThread
)
3622 if (!Subtarget
->hasDataBarrier()) {
3623 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3624 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3626 assert(Subtarget
->hasV6Ops() && !Subtarget
->isThumb() &&
3627 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3628 return DAG
.getNode(ARMISD::MEMBARRIER_MCR
, dl
, MVT::Other
, Op
.getOperand(0),
3629 DAG
.getConstant(0, dl
, MVT::i32
));
3632 ConstantSDNode
*OrdN
= cast
<ConstantSDNode
>(Op
.getOperand(1));
3633 AtomicOrdering Ord
= static_cast<AtomicOrdering
>(OrdN
->getZExtValue());
3634 ARM_MB::MemBOpt Domain
= ARM_MB::ISH
;
3635 if (Subtarget
->isMClass()) {
3636 // Only a full system barrier exists in the M-class architectures.
3637 Domain
= ARM_MB::SY
;
3638 } else if (Subtarget
->preferISHSTBarriers() &&
3639 Ord
== AtomicOrdering::Release
) {
3640 // Swift happens to implement ISHST barriers in a way that's compatible with
3641 // Release semantics but weaker than ISH so we'd be fools not to use
3642 // it. Beware: other processors probably don't!
3643 Domain
= ARM_MB::ISHST
;
3646 return DAG
.getNode(ISD::INTRINSIC_VOID
, dl
, MVT::Other
, Op
.getOperand(0),
3647 DAG
.getConstant(Intrinsic::arm_dmb
, dl
, MVT::i32
),
3648 DAG
.getConstant(Domain
, dl
, MVT::i32
));
3651 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
,
3652 const ARMSubtarget
*Subtarget
) {
3653 // ARM pre v5TE and Thumb1 does not have preload instructions.
3654 if (!(Subtarget
->isThumb2() ||
3655 (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TEOps())))
3656 // Just preserve the chain.
3657 return Op
.getOperand(0);
3660 unsigned isRead
= ~cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() & 1;
3662 (!Subtarget
->hasV7Ops() || !Subtarget
->hasMPExtension()))
3663 // ARMv7 with MP extension has PLDW.
3664 return Op
.getOperand(0);
3666 unsigned isData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
3667 if (Subtarget
->isThumb()) {
3669 isRead
= ~isRead
& 1;
3670 isData
= ~isData
& 1;
3673 return DAG
.getNode(ARMISD::PRELOAD
, dl
, MVT::Other
, Op
.getOperand(0),
3674 Op
.getOperand(1), DAG
.getConstant(isRead
, dl
, MVT::i32
),
3675 DAG
.getConstant(isData
, dl
, MVT::i32
));
3678 static SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
3679 MachineFunction
&MF
= DAG
.getMachineFunction();
3680 ARMFunctionInfo
*FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
3682 // vastart just stores the address of the VarArgsFrameIndex slot into the
3683 // memory location argument.
3685 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
3686 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3687 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3688 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3689 MachinePointerInfo(SV
));
3692 SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign
&VA
,
3693 CCValAssign
&NextVA
,
3696 const SDLoc
&dl
) const {
3697 MachineFunction
&MF
= DAG
.getMachineFunction();
3698 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3700 const TargetRegisterClass
*RC
;
3701 if (AFI
->isThumb1OnlyFunction())
3702 RC
= &ARM::tGPRRegClass
;
3704 RC
= &ARM::GPRRegClass
;
3706 // Transform the arguments stored in physical registers into virtual ones.
3707 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3708 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3711 if (NextVA
.isMemLoc()) {
3712 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3713 int FI
= MFI
.CreateFixedObject(4, NextVA
.getLocMemOffset(), true);
3715 // Create load node to retrieve arguments from the stack.
3716 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3717 ArgValue2
= DAG
.getLoad(
3718 MVT::i32
, dl
, Root
, FIN
,
3719 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3721 Reg
= MF
.addLiveIn(NextVA
.getLocReg(), RC
);
3722 ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3724 if (!Subtarget
->isLittle())
3725 std::swap (ArgValue
, ArgValue2
);
3726 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, ArgValue
, ArgValue2
);
3729 // The remaining GPRs hold either the beginning of variable-argument
3730 // data, or the beginning of an aggregate passed by value (usually
3731 // byval). Either way, we allocate stack slots adjacent to the data
3732 // provided by our caller, and store the unallocated registers there.
3733 // If this is a variadic function, the va_list pointer will begin with
3734 // these values; otherwise, this reassembles a (byval) structure that
3735 // was split between registers and memory.
3736 // Return: The frame index registers were stored into.
3737 int ARMTargetLowering::StoreByValRegs(CCState
&CCInfo
, SelectionDAG
&DAG
,
3738 const SDLoc
&dl
, SDValue
&Chain
,
3739 const Value
*OrigArg
,
3740 unsigned InRegsParamRecordIdx
,
3741 int ArgOffset
, unsigned ArgSize
) const {
3742 // Currently, two use-cases possible:
3743 // Case #1. Non-var-args function, and we meet first byval parameter.
3744 // Setup first unallocated register as first byval register;
3745 // eat all remained registers
3746 // (these two actions are performed by HandleByVal method).
3747 // Then, here, we initialize stack frame with
3748 // "store-reg" instructions.
3749 // Case #2. Var-args function, that doesn't contain byval parameters.
3750 // The same: eat all remained unallocated registers,
3751 // initialize stack frame.
3753 MachineFunction
&MF
= DAG
.getMachineFunction();
3754 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3755 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3756 unsigned RBegin
, REnd
;
3757 if (InRegsParamRecordIdx
< CCInfo
.getInRegsParamsCount()) {
3758 CCInfo
.getInRegsParamInfo(InRegsParamRecordIdx
, RBegin
, REnd
);
3760 unsigned RBeginIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3761 RBegin
= RBeginIdx
== 4 ? (unsigned)ARM::R4
: GPRArgRegs
[RBeginIdx
];
3766 ArgOffset
= -4 * (ARM::R4
- RBegin
);
3768 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3769 int FrameIndex
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false);
3770 SDValue FIN
= DAG
.getFrameIndex(FrameIndex
, PtrVT
);
3772 SmallVector
<SDValue
, 4> MemOps
;
3773 const TargetRegisterClass
*RC
=
3774 AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
3776 for (unsigned Reg
= RBegin
, i
= 0; Reg
< REnd
; ++Reg
, ++i
) {
3777 unsigned VReg
= MF
.addLiveIn(Reg
, RC
);
3778 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
3779 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
3780 MachinePointerInfo(OrigArg
, 4 * i
));
3781 MemOps
.push_back(Store
);
3782 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FIN
, DAG
.getConstant(4, dl
, PtrVT
));
3785 if (!MemOps
.empty())
3786 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
3790 // Setup stack frame, the va_list pointer will start from.
3791 void ARMTargetLowering::VarArgStyleRegisters(CCState
&CCInfo
, SelectionDAG
&DAG
,
3792 const SDLoc
&dl
, SDValue
&Chain
,
3794 unsigned TotalArgRegsSaveSize
,
3795 bool ForceMutable
) const {
3796 MachineFunction
&MF
= DAG
.getMachineFunction();
3797 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3799 // Try to store any remaining integer argument regs
3800 // to their spots on the stack so that they may be loaded by dereferencing
3801 // the result of va_next.
3802 // If there is no regs to be stored, just point address after last
3803 // argument passed via stack.
3804 int FrameIndex
= StoreByValRegs(CCInfo
, DAG
, dl
, Chain
, nullptr,
3805 CCInfo
.getInRegsParamsCount(),
3806 CCInfo
.getNextStackOffset(),
3807 std::max(4U, TotalArgRegsSaveSize
));
3808 AFI
->setVarArgsFrameIndex(FrameIndex
);
3811 SDValue
ARMTargetLowering::LowerFormalArguments(
3812 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3813 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3814 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3815 MachineFunction
&MF
= DAG
.getMachineFunction();
3816 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3818 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3820 // Assign locations to all of the incoming arguments.
3821 SmallVector
<CCValAssign
, 16> ArgLocs
;
3822 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3824 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
3826 SmallVector
<SDValue
, 16> ArgValues
;
3828 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3829 unsigned CurArgIdx
= 0;
3831 // Initially ArgRegsSaveSize is zero.
3832 // Then we increase this value each time we meet byval parameter.
3833 // We also increase this value in case of varargs function.
3834 AFI
->setArgRegsSaveSize(0);
3836 // Calculate the amount of stack space that we need to allocate to store
3837 // byval and variadic arguments that are passed in registers.
3838 // We need to know this before we allocate the first byval or variadic
3839 // argument, as they will be allocated a stack slot below the CFA (Canonical
3840 // Frame Address, the stack pointer at entry to the function).
3841 unsigned ArgRegBegin
= ARM::R4
;
3842 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3843 if (CCInfo
.getInRegsParamsProcessed() >= CCInfo
.getInRegsParamsCount())
3846 CCValAssign
&VA
= ArgLocs
[i
];
3847 unsigned Index
= VA
.getValNo();
3848 ISD::ArgFlagsTy Flags
= Ins
[Index
].Flags
;
3849 if (!Flags
.isByVal())
3852 assert(VA
.isMemLoc() && "unexpected byval pointer in reg");
3853 unsigned RBegin
, REnd
;
3854 CCInfo
.getInRegsParamInfo(CCInfo
.getInRegsParamsProcessed(), RBegin
, REnd
);
3855 ArgRegBegin
= std::min(ArgRegBegin
, RBegin
);
3857 CCInfo
.nextInRegsParam();
3859 CCInfo
.rewindByValRegsInfo();
3861 int lastInsIndex
= -1;
3862 if (isVarArg
&& MFI
.hasVAStart()) {
3863 unsigned RegIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3864 if (RegIdx
!= array_lengthof(GPRArgRegs
))
3865 ArgRegBegin
= std::min(ArgRegBegin
, (unsigned)GPRArgRegs
[RegIdx
]);
3868 unsigned TotalArgRegsSaveSize
= 4 * (ARM::R4
- ArgRegBegin
);
3869 AFI
->setArgRegsSaveSize(TotalArgRegsSaveSize
);
3870 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3872 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3873 CCValAssign
&VA
= ArgLocs
[i
];
3874 if (Ins
[VA
.getValNo()].isOrigArg()) {
3875 std::advance(CurOrigArg
,
3876 Ins
[VA
.getValNo()].getOrigArgIndex() - CurArgIdx
);
3877 CurArgIdx
= Ins
[VA
.getValNo()].getOrigArgIndex();
3879 // Arguments stored in registers.
3880 if (VA
.isRegLoc()) {
3881 EVT RegVT
= VA
.getLocVT();
3883 if (VA
.needsCustom()) {
3884 // f64 and vector types are split up into multiple registers or
3885 // combinations of registers and stack slots.
3886 if (VA
.getLocVT() == MVT::v2f64
) {
3887 SDValue ArgValue1
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3889 VA
= ArgLocs
[++i
]; // skip ahead to next loc
3891 if (VA
.isMemLoc()) {
3892 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), true);
3893 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3894 ArgValue2
= DAG
.getLoad(MVT::f64
, dl
, Chain
, FIN
,
3895 MachinePointerInfo::getFixedStack(
3896 DAG
.getMachineFunction(), FI
));
3898 ArgValue2
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3901 ArgValue
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
3902 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3903 ArgValue
, ArgValue1
,
3904 DAG
.getIntPtrConstant(0, dl
));
3905 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3906 ArgValue
, ArgValue2
,
3907 DAG
.getIntPtrConstant(1, dl
));
3909 ArgValue
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
3911 const TargetRegisterClass
*RC
;
3914 if (RegVT
== MVT::f16
)
3915 RC
= &ARM::HPRRegClass
;
3916 else if (RegVT
== MVT::f32
)
3917 RC
= &ARM::SPRRegClass
;
3918 else if (RegVT
== MVT::f64
|| RegVT
== MVT::v4f16
)
3919 RC
= &ARM::DPRRegClass
;
3920 else if (RegVT
== MVT::v2f64
|| RegVT
== MVT::v8f16
)
3921 RC
= &ARM::QPRRegClass
;
3922 else if (RegVT
== MVT::i32
)
3923 RC
= AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3924 : &ARM::GPRRegClass
;
3926 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3928 // Transform the arguments in physical registers into virtual ones.
3929 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3930 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
3932 // If this value is passed in r0 and has the returned attribute (e.g.
3933 // C++ 'structors), record this fact for later use.
3934 if (VA
.getLocReg() == ARM::R0
&& Ins
[VA
.getValNo()].Flags
.isReturned()) {
3935 AFI
->setPreservesR0();
3939 // If this is an 8 or 16-bit value, it is really passed promoted
3940 // to 32 bits. Insert an assert[sz]ext to capture this, then
3941 // truncate to the right size.
3942 switch (VA
.getLocInfo()) {
3943 default: llvm_unreachable("Unknown loc info!");
3944 case CCValAssign::Full
: break;
3945 case CCValAssign::BCvt
:
3946 ArgValue
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), ArgValue
);
3948 case CCValAssign::SExt
:
3949 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
3950 DAG
.getValueType(VA
.getValVT()));
3951 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
3953 case CCValAssign::ZExt
:
3954 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
3955 DAG
.getValueType(VA
.getValVT()));
3956 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
3960 InVals
.push_back(ArgValue
);
3961 } else { // VA.isRegLoc()
3963 assert(VA
.isMemLoc());
3964 assert(VA
.getValVT() != MVT::i64
&& "i64 should already be lowered");
3966 int index
= VA
.getValNo();
3968 // Some Ins[] entries become multiple ArgLoc[] entries.
3969 // Process them only once.
3970 if (index
!= lastInsIndex
)
3972 ISD::ArgFlagsTy Flags
= Ins
[index
].Flags
;
3973 // FIXME: For now, all byval parameter objects are marked mutable.
3974 // This can be changed with more analysis.
3975 // In case of tail call optimization mark all arguments mutable.
3976 // Since they could be overwritten by lowering of arguments in case of
3978 if (Flags
.isByVal()) {
3979 assert(Ins
[index
].isOrigArg() &&
3980 "Byval arguments cannot be implicit");
3981 unsigned CurByValIndex
= CCInfo
.getInRegsParamsProcessed();
3983 int FrameIndex
= StoreByValRegs(
3984 CCInfo
, DAG
, dl
, Chain
, &*CurOrigArg
, CurByValIndex
,
3985 VA
.getLocMemOffset(), Flags
.getByValSize());
3986 InVals
.push_back(DAG
.getFrameIndex(FrameIndex
, PtrVT
));
3987 CCInfo
.nextInRegsParam();
3989 unsigned FIOffset
= VA
.getLocMemOffset();
3990 int FI
= MFI
.CreateFixedObject(VA
.getLocVT().getSizeInBits()/8,
3993 // Create load nodes to retrieve arguments from the stack.
3994 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3995 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
3996 MachinePointerInfo::getFixedStack(
3997 DAG
.getMachineFunction(), FI
)));
3999 lastInsIndex
= index
;
4005 if (isVarArg
&& MFI
.hasVAStart())
4006 VarArgStyleRegisters(CCInfo
, DAG
, dl
, Chain
,
4007 CCInfo
.getNextStackOffset(),
4008 TotalArgRegsSaveSize
);
4010 AFI
->setArgumentStackSize(CCInfo
.getNextStackOffset());
4015 /// isFloatingPointZero - Return true if this is +0.0.
4016 static bool isFloatingPointZero(SDValue Op
) {
4017 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
4018 return CFP
->getValueAPF().isPosZero();
4019 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
4020 // Maybe this has already been legalized into the constant pool?
4021 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
4022 SDValue WrapperOp
= Op
.getOperand(1).getOperand(0);
4023 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
4024 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
4025 return CFP
->getValueAPF().isPosZero();
4027 } else if (Op
->getOpcode() == ISD::BITCAST
&&
4028 Op
->getValueType(0) == MVT::f64
) {
4029 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4030 // created by LowerConstantFP().
4031 SDValue BitcastOp
= Op
->getOperand(0);
4032 if (BitcastOp
->getOpcode() == ARMISD::VMOVIMM
&&
4033 isNullConstant(BitcastOp
->getOperand(0)))
4039 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4040 /// the given operands.
4041 SDValue
ARMTargetLowering::getARMCmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
4042 SDValue
&ARMcc
, SelectionDAG
&DAG
,
4043 const SDLoc
&dl
) const {
4044 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
4045 unsigned C
= RHSC
->getZExtValue();
4046 if (!isLegalICmpImmediate((int32_t)C
)) {
4047 // Constant does not fit, try adjusting it by one.
4052 if (C
!= 0x80000000 && isLegalICmpImmediate(C
-1)) {
4053 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
4054 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4059 if (C
!= 0 && isLegalICmpImmediate(C
-1)) {
4060 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
4061 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4066 if (C
!= 0x7fffffff && isLegalICmpImmediate(C
+1)) {
4067 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
4068 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4073 if (C
!= 0xffffffff && isLegalICmpImmediate(C
+1)) {
4074 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
4075 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4080 } else if ((ARM_AM::getShiftOpcForNode(LHS
.getOpcode()) != ARM_AM::no_shift
) &&
4081 (ARM_AM::getShiftOpcForNode(RHS
.getOpcode()) == ARM_AM::no_shift
)) {
4082 // In ARM and Thumb-2, the compare instructions can shift their second
4084 CC
= ISD::getSetCCSwappedOperands(CC
);
4085 std::swap(LHS
, RHS
);
4088 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4090 // If the RHS is a constant zero then the V (overflow) flag will never be
4091 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4092 // simpler for other passes (like the peephole optimiser) to deal with.
4093 if (isNullConstant(RHS
)) {
4097 CondCode
= ARMCC::PL
;
4100 CondCode
= ARMCC::MI
;
4105 ARMISD::NodeType CompareType
;
4108 CompareType
= ARMISD::CMP
;
4113 CompareType
= ARMISD::CMPZ
;
4116 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4117 return DAG
.getNode(CompareType
, dl
, MVT::Glue
, LHS
, RHS
);
4120 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4121 SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS
, SDValue RHS
,
4122 SelectionDAG
&DAG
, const SDLoc
&dl
,
4123 bool InvalidOnQNaN
) const {
4124 assert(Subtarget
->hasFP64() || RHS
.getValueType() != MVT::f64
);
4126 SDValue C
= DAG
.getConstant(InvalidOnQNaN
, dl
, MVT::i32
);
4127 if (!isFloatingPointZero(RHS
))
4128 Cmp
= DAG
.getNode(ARMISD::CMPFP
, dl
, MVT::Glue
, LHS
, RHS
, C
);
4130 Cmp
= DAG
.getNode(ARMISD::CMPFPw0
, dl
, MVT::Glue
, LHS
, C
);
4131 return DAG
.getNode(ARMISD::FMSTAT
, dl
, MVT::Glue
, Cmp
);
4134 /// duplicateCmp - Glue values can have only one use, so this function
4135 /// duplicates a comparison node.
4137 ARMTargetLowering::duplicateCmp(SDValue Cmp
, SelectionDAG
&DAG
) const {
4138 unsigned Opc
= Cmp
.getOpcode();
4140 if (Opc
== ARMISD::CMP
|| Opc
== ARMISD::CMPZ
)
4141 return DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4143 assert(Opc
== ARMISD::FMSTAT
&& "unexpected comparison operation");
4144 Cmp
= Cmp
.getOperand(0);
4145 Opc
= Cmp
.getOpcode();
4146 if (Opc
== ARMISD::CMPFP
)
4147 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4148 Cmp
.getOperand(1), Cmp
.getOperand(2));
4150 assert(Opc
== ARMISD::CMPFPw0
&& "unexpected operand of FMSTAT");
4151 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4154 return DAG
.getNode(ARMISD::FMSTAT
, DL
, MVT::Glue
, Cmp
);
4157 // This function returns three things: the arithmetic computation itself
4158 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4159 // comparison and the condition code define the case in which the arithmetic
4160 // computation *does not* overflow.
4161 std::pair
<SDValue
, SDValue
>
4162 ARMTargetLowering::getARMXALUOOp(SDValue Op
, SelectionDAG
&DAG
,
4163 SDValue
&ARMcc
) const {
4164 assert(Op
.getValueType() == MVT::i32
&& "Unsupported value type");
4166 SDValue Value
, OverflowCmp
;
4167 SDValue LHS
= Op
.getOperand(0);
4168 SDValue RHS
= Op
.getOperand(1);
4171 // FIXME: We are currently always generating CMPs because we don't support
4172 // generating CMN through the backend. This is not as good as the natural
4173 // CMP case because it causes a register dependency and cannot be folded
4176 switch (Op
.getOpcode()) {
4178 llvm_unreachable("Unknown overflow instruction!");
4180 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4181 Value
= DAG
.getNode(ISD::ADD
, dl
, Op
.getValueType(), LHS
, RHS
);
4182 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4185 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4186 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4187 // We do not use it in the USUBO case as Value may not be used.
4188 Value
= DAG
.getNode(ARMISD::ADDC
, dl
,
4189 DAG
.getVTList(Op
.getValueType(), MVT::i32
), LHS
, RHS
)
4191 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4194 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4195 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4196 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4199 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4200 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4201 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4204 // We generate a UMUL_LOHI and then check if the high word is 0.
4205 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4206 Value
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
4207 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4209 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4210 DAG
.getConstant(0, dl
, MVT::i32
));
4211 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4214 // We generate a SMUL_LOHI and then check if all the bits of the high word
4215 // are the same as the sign bit of the low word.
4216 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4217 Value
= DAG
.getNode(ISD::SMUL_LOHI
, dl
,
4218 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4220 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4221 DAG
.getNode(ISD::SRA
, dl
, Op
.getValueType(),
4223 DAG
.getConstant(31, dl
, MVT::i32
)));
4224 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4228 return std::make_pair(Value
, OverflowCmp
);
4232 ARMTargetLowering::LowerSignedALUO(SDValue Op
, SelectionDAG
&DAG
) const {
4233 // Let legalize expand this if it isn't a legal type yet.
4234 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4237 SDValue Value
, OverflowCmp
;
4239 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Op
, DAG
, ARMcc
);
4240 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4242 // We use 0 and 1 as false and true values.
4243 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
4244 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
4245 EVT VT
= Op
.getValueType();
4247 SDValue Overflow
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, TVal
, FVal
,
4248 ARMcc
, CCR
, OverflowCmp
);
4250 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
4251 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4254 static SDValue
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry
,
4255 SelectionDAG
&DAG
) {
4256 SDLoc
DL(BoolCarry
);
4257 EVT CarryVT
= BoolCarry
.getValueType();
4259 // This converts the boolean value carry into the carry flag by doing
4260 // ARMISD::SUBC Carry, 1
4261 SDValue Carry
= DAG
.getNode(ARMISD::SUBC
, DL
,
4262 DAG
.getVTList(CarryVT
, MVT::i32
),
4263 BoolCarry
, DAG
.getConstant(1, DL
, CarryVT
));
4264 return Carry
.getValue(1);
4267 static SDValue
ConvertCarryFlagToBooleanCarry(SDValue Flags
, EVT VT
,
4268 SelectionDAG
&DAG
) {
4271 // Now convert the carry flag into a boolean carry. We do this
4272 // using ARMISD:ADDE 0, 0, Carry
4273 return DAG
.getNode(ARMISD::ADDE
, DL
, DAG
.getVTList(VT
, MVT::i32
),
4274 DAG
.getConstant(0, DL
, MVT::i32
),
4275 DAG
.getConstant(0, DL
, MVT::i32
), Flags
);
4278 SDValue
ARMTargetLowering::LowerUnsignedALUO(SDValue Op
,
4279 SelectionDAG
&DAG
) const {
4280 // Let legalize expand this if it isn't a legal type yet.
4281 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4284 SDValue LHS
= Op
.getOperand(0);
4285 SDValue RHS
= Op
.getOperand(1);
4288 EVT VT
= Op
.getValueType();
4289 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
4292 switch (Op
.getOpcode()) {
4294 llvm_unreachable("Unknown overflow instruction!");
4296 Value
= DAG
.getNode(ARMISD::ADDC
, dl
, VTs
, LHS
, RHS
);
4297 // Convert the carry flag into a boolean value.
4298 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4301 Value
= DAG
.getNode(ARMISD::SUBC
, dl
, VTs
, LHS
, RHS
);
4302 // Convert the carry flag into a boolean value.
4303 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4304 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4305 // value. So compute 1 - C.
4306 Overflow
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
4307 DAG
.getConstant(1, dl
, MVT::i32
), Overflow
);
4312 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4315 SDValue
ARMTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
4316 SDValue Cond
= Op
.getOperand(0);
4317 SDValue SelectTrue
= Op
.getOperand(1);
4318 SDValue SelectFalse
= Op
.getOperand(2);
4320 unsigned Opc
= Cond
.getOpcode();
4322 if (Cond
.getResNo() == 1 &&
4323 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4324 Opc
== ISD::USUBO
)) {
4325 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4328 SDValue Value
, OverflowCmp
;
4330 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4331 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4332 EVT VT
= Op
.getValueType();
4334 return getCMOV(dl
, VT
, SelectTrue
, SelectFalse
, ARMcc
, CCR
,
4340 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4341 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4343 if (Cond
.getOpcode() == ARMISD::CMOV
&& Cond
.hasOneUse()) {
4344 const ConstantSDNode
*CMOVTrue
=
4345 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(0));
4346 const ConstantSDNode
*CMOVFalse
=
4347 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
4349 if (CMOVTrue
&& CMOVFalse
) {
4350 unsigned CMOVTrueVal
= CMOVTrue
->getZExtValue();
4351 unsigned CMOVFalseVal
= CMOVFalse
->getZExtValue();
4355 if (CMOVTrueVal
== 1 && CMOVFalseVal
== 0) {
4357 False
= SelectFalse
;
4358 } else if (CMOVTrueVal
== 0 && CMOVFalseVal
== 1) {
4363 if (True
.getNode() && False
.getNode()) {
4364 EVT VT
= Op
.getValueType();
4365 SDValue ARMcc
= Cond
.getOperand(2);
4366 SDValue CCR
= Cond
.getOperand(3);
4367 SDValue Cmp
= duplicateCmp(Cond
.getOperand(4), DAG
);
4368 assert(True
.getValueType() == VT
);
4369 return getCMOV(dl
, VT
, True
, False
, ARMcc
, CCR
, Cmp
, DAG
);
4374 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4375 // undefined bits before doing a full-word comparison with zero.
4376 Cond
= DAG
.getNode(ISD::AND
, dl
, Cond
.getValueType(), Cond
,
4377 DAG
.getConstant(1, dl
, Cond
.getValueType()));
4379 return DAG
.getSelectCC(dl
, Cond
,
4380 DAG
.getConstant(0, dl
, Cond
.getValueType()),
4381 SelectTrue
, SelectFalse
, ISD::SETNE
);
4384 static void checkVSELConstraints(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
4385 bool &swpCmpOps
, bool &swpVselOps
) {
4386 // Start by selecting the GE condition code for opcodes that return true for
4388 if (CC
== ISD::SETUGE
|| CC
== ISD::SETOGE
|| CC
== ISD::SETOLE
||
4389 CC
== ISD::SETULE
|| CC
== ISD::SETGE
|| CC
== ISD::SETLE
)
4390 CondCode
= ARMCC::GE
;
4392 // and GT for opcodes that return false for 'equality'.
4393 else if (CC
== ISD::SETUGT
|| CC
== ISD::SETOGT
|| CC
== ISD::SETOLT
||
4394 CC
== ISD::SETULT
|| CC
== ISD::SETGT
|| CC
== ISD::SETLT
)
4395 CondCode
= ARMCC::GT
;
4397 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4398 // to swap the compare operands.
4399 if (CC
== ISD::SETOLE
|| CC
== ISD::SETULE
|| CC
== ISD::SETOLT
||
4400 CC
== ISD::SETULT
|| CC
== ISD::SETLE
|| CC
== ISD::SETLT
)
4403 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4404 // If we have an unordered opcode, we need to swap the operands to the VSEL
4405 // instruction (effectively negating the condition).
4407 // This also has the effect of swapping which one of 'less' or 'greater'
4408 // returns true, so we also swap the compare operands. It also switches
4409 // whether we return true for 'equality', so we compensate by picking the
4410 // opposite condition code to our original choice.
4411 if (CC
== ISD::SETULE
|| CC
== ISD::SETULT
|| CC
== ISD::SETUGE
||
4412 CC
== ISD::SETUGT
) {
4413 swpCmpOps
= !swpCmpOps
;
4414 swpVselOps
= !swpVselOps
;
4415 CondCode
= CondCode
== ARMCC::GT
? ARMCC::GE
: ARMCC::GT
;
4418 // 'ordered' is 'anything but unordered', so use the VS condition code and
4419 // swap the VSEL operands.
4420 if (CC
== ISD::SETO
) {
4421 CondCode
= ARMCC::VS
;
4425 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4426 // code and swap the VSEL operands. Also do this if we don't care about the
4428 if (CC
== ISD::SETUNE
|| CC
== ISD::SETNE
) {
4429 CondCode
= ARMCC::EQ
;
4434 SDValue
ARMTargetLowering::getCMOV(const SDLoc
&dl
, EVT VT
, SDValue FalseVal
,
4435 SDValue TrueVal
, SDValue ARMcc
, SDValue CCR
,
4436 SDValue Cmp
, SelectionDAG
&DAG
) const {
4437 if (!Subtarget
->hasFP64() && VT
== MVT::f64
) {
4438 FalseVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4439 DAG
.getVTList(MVT::i32
, MVT::i32
), FalseVal
);
4440 TrueVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4441 DAG
.getVTList(MVT::i32
, MVT::i32
), TrueVal
);
4443 SDValue TrueLow
= TrueVal
.getValue(0);
4444 SDValue TrueHigh
= TrueVal
.getValue(1);
4445 SDValue FalseLow
= FalseVal
.getValue(0);
4446 SDValue FalseHigh
= FalseVal
.getValue(1);
4448 SDValue Low
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseLow
, TrueLow
,
4450 SDValue High
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseHigh
, TrueHigh
,
4451 ARMcc
, CCR
, duplicateCmp(Cmp
, DAG
));
4453 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Low
, High
);
4455 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
,
4460 static bool isGTorGE(ISD::CondCode CC
) {
4461 return CC
== ISD::SETGT
|| CC
== ISD::SETGE
;
4464 static bool isLTorLE(ISD::CondCode CC
) {
4465 return CC
== ISD::SETLT
|| CC
== ISD::SETLE
;
4468 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4469 // All of these conditions (and their <= and >= counterparts) will do:
4474 static bool isLowerSaturate(const SDValue LHS
, const SDValue RHS
,
4475 const SDValue TrueVal
, const SDValue FalseVal
,
4476 const ISD::CondCode CC
, const SDValue K
) {
4477 return (isGTorGE(CC
) &&
4478 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
))) ||
4480 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
)));
4483 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4484 static bool isUpperSaturate(const SDValue LHS
, const SDValue RHS
,
4485 const SDValue TrueVal
, const SDValue FalseVal
,
4486 const ISD::CondCode CC
, const SDValue K
) {
4487 return (isGTorGE(CC
) &&
4488 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
))) ||
4490 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
)));
4493 // Check if two chained conditionals could be converted into SSAT or USAT.
4495 // SSAT can replace a set of two conditional selectors that bound a number to an
4496 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4498 // x < -k ? -k : (x > k ? k : x)
4499 // x < -k ? -k : (x < k ? x : k)
4500 // x > -k ? (x > k ? k : x) : -k
4501 // x < k ? (x < -k ? -k : x) : k
4504 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4507 // It returns true if the conversion can be done, false otherwise.
4508 // Additionally, the variable is returned in parameter V, the constant in K and
4509 // usat is set to true if the conditional represents an unsigned saturation
4510 static bool isSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4511 uint64_t &K
, bool &usat
) {
4512 SDValue LHS1
= Op
.getOperand(0);
4513 SDValue RHS1
= Op
.getOperand(1);
4514 SDValue TrueVal1
= Op
.getOperand(2);
4515 SDValue FalseVal1
= Op
.getOperand(3);
4516 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4518 const SDValue Op2
= isa
<ConstantSDNode
>(TrueVal1
) ? FalseVal1
: TrueVal1
;
4519 if (Op2
.getOpcode() != ISD::SELECT_CC
)
4522 SDValue LHS2
= Op2
.getOperand(0);
4523 SDValue RHS2
= Op2
.getOperand(1);
4524 SDValue TrueVal2
= Op2
.getOperand(2);
4525 SDValue FalseVal2
= Op2
.getOperand(3);
4526 ISD::CondCode CC2
= cast
<CondCodeSDNode
>(Op2
.getOperand(4))->get();
4528 // Find out which are the constants and which are the variables
4529 // in each conditional
4530 SDValue
*K1
= isa
<ConstantSDNode
>(LHS1
) ? &LHS1
: isa
<ConstantSDNode
>(RHS1
)
4533 SDValue
*K2
= isa
<ConstantSDNode
>(LHS2
) ? &LHS2
: isa
<ConstantSDNode
>(RHS2
)
4536 SDValue K2Tmp
= isa
<ConstantSDNode
>(TrueVal2
) ? TrueVal2
: FalseVal2
;
4537 SDValue V1Tmp
= (K1
&& *K1
== LHS1
) ? RHS1
: LHS1
;
4538 SDValue V2Tmp
= (K2
&& *K2
== LHS2
) ? RHS2
: LHS2
;
4539 SDValue V2
= (K2Tmp
== TrueVal2
) ? FalseVal2
: TrueVal2
;
4541 // We must detect cases where the original operations worked with 16- or
4542 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4543 // must work with sign-extended values but the select operations return
4544 // the original non-extended value.
4545 SDValue V2TmpReg
= V2Tmp
;
4546 if (V2Tmp
->getOpcode() == ISD::SIGN_EXTEND_INREG
)
4547 V2TmpReg
= V2Tmp
->getOperand(0);
4549 // Check that the registers and the constants have the correct values
4550 // in both conditionals
4551 if (!K1
|| !K2
|| *K1
== Op2
|| *K2
!= K2Tmp
|| V1Tmp
!= V2Tmp
||
4555 // Figure out which conditional is saturating the lower/upper bound.
4556 const SDValue
*LowerCheckOp
=
4557 isLowerSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4559 : isLowerSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4562 const SDValue
*UpperCheckOp
=
4563 isUpperSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4565 : isUpperSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4569 if (!UpperCheckOp
|| !LowerCheckOp
|| LowerCheckOp
== UpperCheckOp
)
4572 // Check that the constant in the lower-bound check is
4573 // the opposite of the constant in the upper-bound check
4574 // in 1's complement.
4575 int64_t Val1
= cast
<ConstantSDNode
>(*K1
)->getSExtValue();
4576 int64_t Val2
= cast
<ConstantSDNode
>(*K2
)->getSExtValue();
4577 int64_t PosVal
= std::max(Val1
, Val2
);
4578 int64_t NegVal
= std::min(Val1
, Val2
);
4580 if (((Val1
> Val2
&& UpperCheckOp
== &Op
) ||
4581 (Val1
< Val2
&& UpperCheckOp
== &Op2
)) &&
4582 isPowerOf2_64(PosVal
+ 1)) {
4584 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4587 else if (NegVal
== 0)
4593 K
= (uint64_t)PosVal
; // At this point, PosVal is guaranteed to be positive
4601 // Check if a condition of the type x < k ? k : x can be converted into a
4602 // bit operation instead of conditional moves.
4603 // Currently this is allowed given:
4604 // - The conditions and values match up
4605 // - k is 0 or -1 (all ones)
4606 // This function will not check the last condition, thats up to the caller
4607 // It returns true if the transformation can be made, and in such case
4608 // returns x in V, and k in SatK.
4609 static bool isLowerSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4612 SDValue LHS
= Op
.getOperand(0);
4613 SDValue RHS
= Op
.getOperand(1);
4614 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4615 SDValue TrueVal
= Op
.getOperand(2);
4616 SDValue FalseVal
= Op
.getOperand(3);
4618 SDValue
*K
= isa
<ConstantSDNode
>(LHS
) ? &LHS
: isa
<ConstantSDNode
>(RHS
)
4622 // No constant operation in comparison, early out
4626 SDValue KTmp
= isa
<ConstantSDNode
>(TrueVal
) ? TrueVal
: FalseVal
;
4627 V
= (KTmp
== TrueVal
) ? FalseVal
: TrueVal
;
4628 SDValue VTmp
= (K
&& *K
== LHS
) ? RHS
: LHS
;
4630 // If the constant on left and right side, or variable on left and right,
4631 // does not match, early out
4632 if (*K
!= KTmp
|| V
!= VTmp
)
4635 if (isLowerSaturate(LHS
, RHS
, TrueVal
, FalseVal
, CC
, *K
)) {
4643 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT
) const {
4645 return !Subtarget
->hasVFP2Base();
4647 return !Subtarget
->hasFP64();
4649 return !Subtarget
->hasFullFP16();
4653 SDValue
ARMTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4654 EVT VT
= Op
.getValueType();
4657 // Try to convert two saturating conditional selects into a single SSAT
4659 uint64_t SatConstant
;
4661 if (((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) || Subtarget
->isThumb2()) &&
4662 isSaturatingConditional(Op
, SatValue
, SatConstant
, SatUSat
)) {
4664 return DAG
.getNode(ARMISD::USAT
, dl
, VT
, SatValue
,
4665 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4667 return DAG
.getNode(ARMISD::SSAT
, dl
, VT
, SatValue
,
4668 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4671 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4672 // into more efficient bit operations, which is possible when k is 0 or -1
4673 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4674 // single instructions. On Thumb the shift and the bit operation will be two
4676 // Only allow this transformation on full-width (32-bit) operations
4677 SDValue LowerSatConstant
;
4678 if (VT
== MVT::i32
&&
4679 isLowerSaturatingConditional(Op
, SatValue
, LowerSatConstant
)) {
4680 SDValue ShiftV
= DAG
.getNode(ISD::SRA
, dl
, VT
, SatValue
,
4681 DAG
.getConstant(31, dl
, VT
));
4682 if (isNullConstant(LowerSatConstant
)) {
4683 SDValue NotShiftV
= DAG
.getNode(ISD::XOR
, dl
, VT
, ShiftV
,
4684 DAG
.getAllOnesConstant(dl
, VT
));
4685 return DAG
.getNode(ISD::AND
, dl
, VT
, SatValue
, NotShiftV
);
4686 } else if (isAllOnesConstant(LowerSatConstant
))
4687 return DAG
.getNode(ISD::OR
, dl
, VT
, SatValue
, ShiftV
);
4690 SDValue LHS
= Op
.getOperand(0);
4691 SDValue RHS
= Op
.getOperand(1);
4692 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4693 SDValue TrueVal
= Op
.getOperand(2);
4694 SDValue FalseVal
= Op
.getOperand(3);
4696 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4697 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4698 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
);
4700 // If softenSetCCOperands only returned one value, we should compare it to
4702 if (!RHS
.getNode()) {
4703 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4708 if (LHS
.getValueType() == MVT::i32
) {
4709 // Try to generate VSEL on ARMv8.
4710 // The VSEL instruction can't use all the usual ARM condition
4711 // codes: it only has two bits to select the condition code, so it's
4712 // constrained to use only GE, GT, VS and EQ.
4714 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4715 // swap the operands of the previous compare instruction (effectively
4716 // inverting the compare condition, swapping 'less' and 'greater') and
4717 // sometimes need to swap the operands to the VSEL (which inverts the
4718 // condition in the sense of firing whenever the previous condition didn't)
4719 if (Subtarget
->hasFPARMv8Base() && (TrueVal
.getValueType() == MVT::f16
||
4720 TrueVal
.getValueType() == MVT::f32
||
4721 TrueVal
.getValueType() == MVT::f64
)) {
4722 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4723 if (CondCode
== ARMCC::LT
|| CondCode
== ARMCC::LE
||
4724 CondCode
== ARMCC::VC
|| CondCode
== ARMCC::NE
) {
4725 CC
= ISD::getSetCCInverse(CC
, true);
4726 std::swap(TrueVal
, FalseVal
);
4731 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4732 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4733 // Choose GE over PL, which vsel does now support
4734 if (cast
<ConstantSDNode
>(ARMcc
)->getZExtValue() == ARMCC::PL
)
4735 ARMcc
= DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
);
4736 return getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4739 ARMCC::CondCodes CondCode
, CondCode2
;
4741 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
4743 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4744 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4745 // must use VSEL (limited condition codes), due to not having conditional f16
4747 if (Subtarget
->hasFPARMv8Base() &&
4748 !(isFloatingPointZero(RHS
) && TrueVal
.getValueType() != MVT::f16
) &&
4749 (TrueVal
.getValueType() == MVT::f16
||
4750 TrueVal
.getValueType() == MVT::f32
||
4751 TrueVal
.getValueType() == MVT::f64
)) {
4752 bool swpCmpOps
= false;
4753 bool swpVselOps
= false;
4754 checkVSELConstraints(CC
, CondCode
, swpCmpOps
, swpVselOps
);
4756 if (CondCode
== ARMCC::GT
|| CondCode
== ARMCC::GE
||
4757 CondCode
== ARMCC::VS
|| CondCode
== ARMCC::EQ
) {
4759 std::swap(LHS
, RHS
);
4761 std::swap(TrueVal
, FalseVal
);
4765 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4766 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4767 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4768 SDValue Result
= getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4769 if (CondCode2
!= ARMCC::AL
) {
4770 SDValue ARMcc2
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4771 // FIXME: Needs another CMP because flag can have but one use.
4772 SDValue Cmp2
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4773 Result
= getCMOV(dl
, VT
, Result
, TrueVal
, ARMcc2
, CCR
, Cmp2
, DAG
);
4778 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4779 /// to morph to an integer compare sequence.
4780 static bool canChangeToInt(SDValue Op
, bool &SeenZero
,
4781 const ARMSubtarget
*Subtarget
) {
4782 SDNode
*N
= Op
.getNode();
4783 if (!N
->hasOneUse())
4784 // Otherwise it requires moving the value from fp to integer registers.
4786 if (!N
->getNumValues())
4788 EVT VT
= Op
.getValueType();
4789 if (VT
!= MVT::f32
&& !Subtarget
->isFPBrccSlow())
4790 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4791 // vmrs are very slow, e.g. cortex-a8.
4794 if (isFloatingPointZero(Op
)) {
4798 return ISD::isNormalLoad(N
);
4801 static SDValue
bitcastf32Toi32(SDValue Op
, SelectionDAG
&DAG
) {
4802 if (isFloatingPointZero(Op
))
4803 return DAG
.getConstant(0, SDLoc(Op
), MVT::i32
);
4805 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
))
4806 return DAG
.getLoad(MVT::i32
, SDLoc(Op
), Ld
->getChain(), Ld
->getBasePtr(),
4807 Ld
->getPointerInfo(), Ld
->getAlignment(),
4808 Ld
->getMemOperand()->getFlags());
4810 llvm_unreachable("Unknown VFP cmp argument!");
4813 static void expandf64Toi32(SDValue Op
, SelectionDAG
&DAG
,
4814 SDValue
&RetVal1
, SDValue
&RetVal2
) {
4817 if (isFloatingPointZero(Op
)) {
4818 RetVal1
= DAG
.getConstant(0, dl
, MVT::i32
);
4819 RetVal2
= DAG
.getConstant(0, dl
, MVT::i32
);
4823 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
)) {
4824 SDValue Ptr
= Ld
->getBasePtr();
4826 DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), Ptr
, Ld
->getPointerInfo(),
4827 Ld
->getAlignment(), Ld
->getMemOperand()->getFlags());
4829 EVT PtrType
= Ptr
.getValueType();
4830 unsigned NewAlign
= MinAlign(Ld
->getAlignment(), 4);
4831 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, dl
,
4832 PtrType
, Ptr
, DAG
.getConstant(4, dl
, PtrType
));
4833 RetVal2
= DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), NewPtr
,
4834 Ld
->getPointerInfo().getWithOffset(4), NewAlign
,
4835 Ld
->getMemOperand()->getFlags());
4839 llvm_unreachable("Unknown VFP cmp argument!");
4842 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4843 /// f32 and even f64 comparisons to integer ones.
4845 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op
, SelectionDAG
&DAG
) const {
4846 SDValue Chain
= Op
.getOperand(0);
4847 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
4848 SDValue LHS
= Op
.getOperand(2);
4849 SDValue RHS
= Op
.getOperand(3);
4850 SDValue Dest
= Op
.getOperand(4);
4853 bool LHSSeenZero
= false;
4854 bool LHSOk
= canChangeToInt(LHS
, LHSSeenZero
, Subtarget
);
4855 bool RHSSeenZero
= false;
4856 bool RHSOk
= canChangeToInt(RHS
, RHSSeenZero
, Subtarget
);
4857 if (LHSOk
&& RHSOk
&& (LHSSeenZero
|| RHSSeenZero
)) {
4858 // If unsafe fp math optimization is enabled and there are no other uses of
4859 // the CMP operands, and the condition code is EQ or NE, we can optimize it
4860 // to an integer comparison.
4861 if (CC
== ISD::SETOEQ
)
4863 else if (CC
== ISD::SETUNE
)
4866 SDValue Mask
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
4868 if (LHS
.getValueType() == MVT::f32
) {
4869 LHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
4870 bitcastf32Toi32(LHS
, DAG
), Mask
);
4871 RHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
4872 bitcastf32Toi32(RHS
, DAG
), Mask
);
4873 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4874 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4875 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
4876 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
4881 expandf64Toi32(LHS
, DAG
, LHS1
, LHS2
);
4882 expandf64Toi32(RHS
, DAG
, RHS1
, RHS2
);
4883 LHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, LHS2
, Mask
);
4884 RHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RHS2
, Mask
);
4885 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4886 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4887 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
4888 SDValue Ops
[] = { Chain
, ARMcc
, LHS1
, LHS2
, RHS1
, RHS2
, Dest
};
4889 return DAG
.getNode(ARMISD::BCC_i64
, dl
, VTList
, Ops
);
4895 SDValue
ARMTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
4896 SDValue Chain
= Op
.getOperand(0);
4897 SDValue Cond
= Op
.getOperand(1);
4898 SDValue Dest
= Op
.getOperand(2);
4901 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4903 unsigned Opc
= Cond
.getOpcode();
4904 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
4905 !Subtarget
->isThumb1Only();
4906 if (Cond
.getResNo() == 1 &&
4907 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4908 Opc
== ISD::USUBO
|| OptimizeMul
)) {
4909 // Only lower legal XALUO ops.
4910 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4913 // The actual operation with overflow check.
4914 SDValue Value
, OverflowCmp
;
4916 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4918 // Reverse the condition code.
4919 ARMCC::CondCodes CondCode
=
4920 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
4921 CondCode
= ARMCC::getOppositeCondition(CondCode
);
4922 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
4923 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4925 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
4932 SDValue
ARMTargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4933 SDValue Chain
= Op
.getOperand(0);
4934 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
4935 SDValue LHS
= Op
.getOperand(2);
4936 SDValue RHS
= Op
.getOperand(3);
4937 SDValue Dest
= Op
.getOperand(4);
4940 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4941 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4942 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
);
4944 // If softenSetCCOperands only returned one value, we should compare it to
4946 if (!RHS
.getNode()) {
4947 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4952 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4954 unsigned Opc
= LHS
.getOpcode();
4955 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
4956 !Subtarget
->isThumb1Only();
4957 if (LHS
.getResNo() == 1 && (isOneConstant(RHS
) || isNullConstant(RHS
)) &&
4958 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4959 Opc
== ISD::USUBO
|| OptimizeMul
) &&
4960 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
4961 // Only lower legal XALUO ops.
4962 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
4965 // The actual operation with overflow check.
4966 SDValue Value
, OverflowCmp
;
4968 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(LHS
.getValue(0), DAG
, ARMcc
);
4970 if ((CC
== ISD::SETNE
) != isOneConstant(RHS
)) {
4971 // Reverse the condition code.
4972 ARMCC::CondCodes CondCode
=
4973 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
4974 CondCode
= ARMCC::getOppositeCondition(CondCode
);
4975 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
4977 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4979 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
4983 if (LHS
.getValueType() == MVT::i32
) {
4985 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4986 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4987 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
4988 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
4991 if (getTargetMachine().Options
.UnsafeFPMath
&&
4992 (CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
||
4993 CC
== ISD::SETNE
|| CC
== ISD::SETUNE
)) {
4994 if (SDValue Result
= OptimizeVFPBrcond(Op
, DAG
))
4998 ARMCC::CondCodes CondCode
, CondCode2
;
5000 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
5002 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5003 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
5004 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5005 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5006 SDValue Ops
[] = { Chain
, Dest
, ARMcc
, CCR
, Cmp
};
5007 SDValue Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5008 if (CondCode2
!= ARMCC::AL
) {
5009 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
5010 SDValue Ops
[] = { Res
, Dest
, ARMcc
, CCR
, Res
.getValue(1) };
5011 Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5016 SDValue
ARMTargetLowering::LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const {
5017 SDValue Chain
= Op
.getOperand(0);
5018 SDValue Table
= Op
.getOperand(1);
5019 SDValue Index
= Op
.getOperand(2);
5022 EVT PTy
= getPointerTy(DAG
.getDataLayout());
5023 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
5024 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
5025 Table
= DAG
.getNode(ARMISD::WrapperJT
, dl
, MVT::i32
, JTI
);
5026 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
, Index
, DAG
.getConstant(4, dl
, PTy
));
5027 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Index
);
5028 if (Subtarget
->isThumb2() || (Subtarget
->hasV8MBaselineOps() && Subtarget
->isThumb())) {
5029 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5030 // which does another jump to the destination. This also makes it easier
5031 // to translate it to TBB / TBH later (Thumb2 only).
5032 // FIXME: This might not work if the function is extremely large.
5033 return DAG
.getNode(ARMISD::BR2_JT
, dl
, MVT::Other
, Chain
,
5034 Addr
, Op
.getOperand(2), JTI
);
5036 if (isPositionIndependent() || Subtarget
->isROPI()) {
5038 DAG
.getLoad((EVT
)MVT::i32
, dl
, Chain
, Addr
,
5039 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5040 Chain
= Addr
.getValue(1);
5041 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Addr
);
5042 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5045 DAG
.getLoad(PTy
, dl
, Chain
, Addr
,
5046 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5047 Chain
= Addr
.getValue(1);
5048 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5052 static SDValue
LowerVectorFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) {
5053 EVT VT
= Op
.getValueType();
5056 if (Op
.getValueType().getVectorElementType() == MVT::i32
) {
5057 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::f32
)
5059 return DAG
.UnrollVectorOp(Op
.getNode());
5062 const bool HasFullFP16
=
5063 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5066 const EVT OpTy
= Op
.getOperand(0).getValueType();
5067 if (OpTy
== MVT::v4f32
)
5069 else if (OpTy
== MVT::v4f16
&& HasFullFP16
)
5071 else if (OpTy
== MVT::v8f16
&& HasFullFP16
)
5074 llvm_unreachable("Invalid type for custom lowering!");
5076 if (VT
!= MVT::v4i16
&& VT
!= MVT::v8i16
)
5077 return DAG
.UnrollVectorOp(Op
.getNode());
5079 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NewTy
, Op
.getOperand(0));
5080 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op
);
5083 SDValue
ARMTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const {
5084 EVT VT
= Op
.getValueType();
5086 return LowerVectorFP_TO_INT(Op
, DAG
);
5087 if (isUnsupportedFloatingType(Op
.getOperand(0).getValueType())) {
5089 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
5090 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(),
5093 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(),
5095 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5096 /*isSigned*/ false, SDLoc(Op
)).first
;
5102 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
5103 EVT VT
= Op
.getValueType();
5106 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i32
) {
5107 if (VT
.getVectorElementType() == MVT::f32
)
5109 return DAG
.UnrollVectorOp(Op
.getNode());
5112 assert((Op
.getOperand(0).getValueType() == MVT::v4i16
||
5113 Op
.getOperand(0).getValueType() == MVT::v8i16
) &&
5114 "Invalid type for custom lowering!");
5116 const bool HasFullFP16
=
5117 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5120 if (VT
== MVT::v4f32
)
5121 DestVecType
= MVT::v4i32
;
5122 else if (VT
== MVT::v4f16
&& HasFullFP16
)
5123 DestVecType
= MVT::v4i16
;
5124 else if (VT
== MVT::v8f16
&& HasFullFP16
)
5125 DestVecType
= MVT::v8i16
;
5127 return DAG
.UnrollVectorOp(Op
.getNode());
5131 switch (Op
.getOpcode()) {
5132 default: llvm_unreachable("Invalid opcode!");
5133 case ISD::SINT_TO_FP
:
5134 CastOpc
= ISD::SIGN_EXTEND
;
5135 Opc
= ISD::SINT_TO_FP
;
5137 case ISD::UINT_TO_FP
:
5138 CastOpc
= ISD::ZERO_EXTEND
;
5139 Opc
= ISD::UINT_TO_FP
;
5143 Op
= DAG
.getNode(CastOpc
, dl
, DestVecType
, Op
.getOperand(0));
5144 return DAG
.getNode(Opc
, dl
, VT
, Op
);
5147 SDValue
ARMTargetLowering::LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const {
5148 EVT VT
= Op
.getValueType();
5150 return LowerVectorINT_TO_FP(Op
, DAG
);
5151 if (isUnsupportedFloatingType(VT
)) {
5153 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
5154 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(),
5157 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(),
5159 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5160 /*isSigned*/ false, SDLoc(Op
)).first
;
5166 SDValue
ARMTargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
5167 // Implement fcopysign with a fabs and a conditional fneg.
5168 SDValue Tmp0
= Op
.getOperand(0);
5169 SDValue Tmp1
= Op
.getOperand(1);
5171 EVT VT
= Op
.getValueType();
5172 EVT SrcVT
= Tmp1
.getValueType();
5173 bool InGPR
= Tmp0
.getOpcode() == ISD::BITCAST
||
5174 Tmp0
.getOpcode() == ARMISD::VMOVDRR
;
5175 bool UseNEON
= !InGPR
&& Subtarget
->hasNEON();
5178 // Use VBSL to copy the sign bit.
5179 unsigned EncodedVal
= ARM_AM::createVMOVModImm(0x6, 0x80);
5180 SDValue Mask
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v2i32
,
5181 DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
));
5182 EVT OpVT
= (VT
== MVT::f32
) ? MVT::v2i32
: MVT::v1i64
;
5184 Mask
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5185 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Mask
),
5186 DAG
.getConstant(32, dl
, MVT::i32
));
5187 else /*if (VT == MVT::f32)*/
5188 Tmp0
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp0
);
5189 if (SrcVT
== MVT::f32
) {
5190 Tmp1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp1
);
5192 Tmp1
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5193 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
),
5194 DAG
.getConstant(32, dl
, MVT::i32
));
5195 } else if (VT
== MVT::f32
)
5196 Tmp1
= DAG
.getNode(ARMISD::VSHRuIMM
, dl
, MVT::v1i64
,
5197 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
, Tmp1
),
5198 DAG
.getConstant(32, dl
, MVT::i32
));
5199 Tmp0
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp0
);
5200 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
);
5202 SDValue AllOnes
= DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5204 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v8i8
, AllOnes
);
5205 SDValue MaskNot
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Mask
,
5206 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, AllOnes
));
5208 SDValue Res
= DAG
.getNode(ISD::OR
, dl
, OpVT
,
5209 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp1
, Mask
),
5210 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp0
, MaskNot
));
5211 if (VT
== MVT::f32
) {
5212 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f32
, Res
);
5213 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, Res
,
5214 DAG
.getConstant(0, dl
, MVT::i32
));
5216 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Res
);
5222 // Bitcast operand 1 to i32.
5223 if (SrcVT
== MVT::f64
)
5224 Tmp1
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5226 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp1
);
5228 // Or in the signbit with integer operations.
5229 SDValue Mask1
= DAG
.getConstant(0x80000000, dl
, MVT::i32
);
5230 SDValue Mask2
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5231 Tmp1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp1
, Mask1
);
5232 if (VT
== MVT::f32
) {
5233 Tmp0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5234 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp0
), Mask2
);
5235 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
5236 DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Tmp0
, Tmp1
));
5239 // f64: Or the high part with signbit and then combine two parts.
5240 Tmp0
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5242 SDValue Lo
= Tmp0
.getValue(0);
5243 SDValue Hi
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp0
.getValue(1), Mask2
);
5244 Hi
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Hi
, Tmp1
);
5245 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
5248 SDValue
ARMTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const{
5249 MachineFunction
&MF
= DAG
.getMachineFunction();
5250 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5251 MFI
.setReturnAddressIsTaken(true);
5253 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
5256 EVT VT
= Op
.getValueType();
5258 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5260 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5261 SDValue Offset
= DAG
.getConstant(4, dl
, MVT::i32
);
5262 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(),
5263 DAG
.getNode(ISD::ADD
, dl
, VT
, FrameAddr
, Offset
),
5264 MachinePointerInfo());
5267 // Return LR, which contains the return address. Mark it an implicit live-in.
5268 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
5269 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, VT
);
5272 SDValue
ARMTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
5273 const ARMBaseRegisterInfo
&ARI
=
5274 *static_cast<const ARMBaseRegisterInfo
*>(RegInfo
);
5275 MachineFunction
&MF
= DAG
.getMachineFunction();
5276 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5277 MFI
.setFrameAddressIsTaken(true);
5279 EVT VT
= Op
.getValueType();
5280 SDLoc
dl(Op
); // FIXME probably not meaningful
5281 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5282 unsigned FrameReg
= ARI
.getFrameRegister(MF
);
5283 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
5285 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
5286 MachinePointerInfo());
5290 // FIXME? Maybe this could be a TableGen attribute on some registers and
5291 // this table could be generated automatically from RegInfo.
5292 unsigned ARMTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
5293 SelectionDAG
&DAG
) const {
5294 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
5295 .Case("sp", ARM::SP
)
5299 report_fatal_error(Twine("Invalid register name \""
5300 + StringRef(RegName
) + "\"."));
5303 // Result is 64 bit value so split into two 32 bit values and return as a
5305 static void ExpandREAD_REGISTER(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
5306 SelectionDAG
&DAG
) {
5309 // This function is only supposed to be called for i64 type destination.
5310 assert(N
->getValueType(0) == MVT::i64
5311 && "ExpandREAD_REGISTER called for non-i64 type result.");
5313 SDValue Read
= DAG
.getNode(ISD::READ_REGISTER
, DL
,
5314 DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
),
5318 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Read
.getValue(0),
5320 Results
.push_back(Read
.getOperand(0));
5323 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5324 /// When \p DstVT, the destination type of \p BC, is on the vector
5325 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5326 /// it might be possible to combine them, such that everything stays on the
5327 /// vector register bank.
5328 /// \p return The node that would replace \p BT, if the combine
5330 static SDValue
CombineVMOVDRRCandidateWithVecOp(const SDNode
*BC
,
5331 SelectionDAG
&DAG
) {
5332 SDValue Op
= BC
->getOperand(0);
5333 EVT DstVT
= BC
->getValueType(0);
5335 // The only vector instruction that can produce a scalar (remember,
5336 // since the bitcast was about to be turned into VMOVDRR, the source
5337 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5338 // Moreover, we can do this combine only if there is one use.
5339 // Finally, if the destination type is not a vector, there is not
5340 // much point on forcing everything on the vector bank.
5341 if (!DstVT
.isVector() || Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5345 // If the index is not constant, we will introduce an additional
5346 // multiply that will stick.
5347 // Give up in that case.
5348 ConstantSDNode
*Index
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5351 unsigned DstNumElt
= DstVT
.getVectorNumElements();
5353 // Compute the new index.
5354 const APInt
&APIntIndex
= Index
->getAPIntValue();
5355 APInt
NewIndex(APIntIndex
.getBitWidth(), DstNumElt
);
5356 NewIndex
*= APIntIndex
;
5357 // Check if the new constant index fits into i32.
5358 if (NewIndex
.getBitWidth() > 32)
5361 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5362 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5364 SDValue ExtractSrc
= Op
.getOperand(0);
5365 EVT VecVT
= EVT::getVectorVT(
5366 *DAG
.getContext(), DstVT
.getScalarType(),
5367 ExtractSrc
.getValueType().getVectorNumElements() * DstNumElt
);
5368 SDValue BitCast
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, ExtractSrc
);
5369 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DstVT
, BitCast
,
5370 DAG
.getConstant(NewIndex
.getZExtValue(), dl
, MVT::i32
));
5373 /// ExpandBITCAST - If the target supports VFP, this function is called to
5374 /// expand a bit convert where either the source or destination type is i64 to
5375 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5376 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5377 /// vectors), since the legalizer won't know what to do with that.
5378 static SDValue
ExpandBITCAST(SDNode
*N
, SelectionDAG
&DAG
,
5379 const ARMSubtarget
*Subtarget
) {
5380 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5382 SDValue Op
= N
->getOperand(0);
5384 // This function is only supposed to be called for i64 types, either as the
5385 // source or destination of the bit convert.
5386 EVT SrcVT
= Op
.getValueType();
5387 EVT DstVT
= N
->getValueType(0);
5388 const bool HasFullFP16
= Subtarget
->hasFullFP16();
5390 if (SrcVT
== MVT::f32
&& DstVT
== MVT::i32
) {
5391 // FullFP16: half values are passed in S-registers, and we don't
5392 // need any of the bitcast and moves:
5394 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5395 // t5: i32 = bitcast t2
5396 // t18: f16 = ARMISD::VMOVhr t5
5397 if (Op
.getOpcode() != ISD::CopyFromReg
||
5398 Op
.getValueType() != MVT::f32
)
5401 auto Move
= N
->use_begin();
5402 if (Move
->getOpcode() != ARMISD::VMOVhr
)
5405 SDValue Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
5406 SDValue Copy
= DAG
.getNode(ISD::CopyFromReg
, SDLoc(Op
), MVT::f16
, Ops
);
5407 DAG
.ReplaceAllUsesWith(*Move
, &Copy
);
5411 if (SrcVT
== MVT::i16
&& DstVT
== MVT::f16
) {
5414 // SoftFP: read half-precision arguments:
5417 // t7: i16 = truncate t2 <~~~~ Op
5418 // t8: f16 = bitcast t7 <~~~~ N
5420 if (Op
.getOperand(0).getValueType() == MVT::i32
)
5421 return DAG
.getNode(ARMISD::VMOVhr
, SDLoc(Op
),
5422 MVT::f16
, Op
.getOperand(0));
5427 // Half-precision return values
5428 if (SrcVT
== MVT::f16
&& DstVT
== MVT::i16
) {
5432 // t11: f16 = fadd t8, t10
5433 // t12: i16 = bitcast t11 <~~~ SDNode N
5434 // t13: i32 = zero_extend t12
5435 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5436 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5438 // transform this into:
5440 // t20: i32 = ARMISD::VMOVrh t11
5441 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5443 auto ZeroExtend
= N
->use_begin();
5444 if (N
->use_size() != 1 || ZeroExtend
->getOpcode() != ISD::ZERO_EXTEND
||
5445 ZeroExtend
->getValueType(0) != MVT::i32
)
5448 auto Copy
= ZeroExtend
->use_begin();
5449 if (Copy
->getOpcode() == ISD::CopyToReg
&&
5450 Copy
->use_begin()->getOpcode() == ARMISD::RET_FLAG
) {
5451 SDValue Cvt
= DAG
.getNode(ARMISD::VMOVrh
, SDLoc(Op
), MVT::i32
, Op
);
5452 DAG
.ReplaceAllUsesWith(*ZeroExtend
, &Cvt
);
5458 if (!(SrcVT
== MVT::i64
|| DstVT
== MVT::i64
))
5461 // Turn i64->f64 into VMOVDRR.
5462 if (SrcVT
== MVT::i64
&& TLI
.isTypeLegal(DstVT
)) {
5463 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5464 // if we can combine the bitcast with its source.
5465 if (SDValue Val
= CombineVMOVDRRCandidateWithVecOp(N
, DAG
))
5468 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5469 DAG
.getConstant(0, dl
, MVT::i32
));
5470 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5471 DAG
.getConstant(1, dl
, MVT::i32
));
5472 return DAG
.getNode(ISD::BITCAST
, dl
, DstVT
,
5473 DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
));
5476 // Turn f64->i64 into VMOVRRD.
5477 if (DstVT
== MVT::i64
&& TLI
.isTypeLegal(SrcVT
)) {
5479 if (DAG
.getDataLayout().isBigEndian() && SrcVT
.isVector() &&
5480 SrcVT
.getVectorNumElements() > 1)
5481 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5482 DAG
.getVTList(MVT::i32
, MVT::i32
),
5483 DAG
.getNode(ARMISD::VREV64
, dl
, SrcVT
, Op
));
5485 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5486 DAG
.getVTList(MVT::i32
, MVT::i32
), Op
);
5487 // Merge the pieces into a single i64 value.
5488 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Cvt
, Cvt
.getValue(1));
5494 /// getZeroVector - Returns a vector of specified type with all zero elements.
5495 /// Zero vectors are used to represent vector negation and in those cases
5496 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5497 /// not support i64 elements, so sometimes the zero vectors will need to be
5498 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5500 static SDValue
getZeroVector(EVT VT
, SelectionDAG
&DAG
, const SDLoc
&dl
) {
5501 assert(VT
.isVector() && "Expected a vector type");
5502 // The canonical modified immediate encoding of a zero vector is....0!
5503 SDValue EncodedVal
= DAG
.getTargetConstant(0, dl
, MVT::i32
);
5504 EVT VmovVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
5505 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, EncodedVal
);
5506 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
5509 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5510 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5511 SDValue
ARMTargetLowering::LowerShiftRightParts(SDValue Op
,
5512 SelectionDAG
&DAG
) const {
5513 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5514 EVT VT
= Op
.getValueType();
5515 unsigned VTBits
= VT
.getSizeInBits();
5517 SDValue ShOpLo
= Op
.getOperand(0);
5518 SDValue ShOpHi
= Op
.getOperand(1);
5519 SDValue ShAmt
= Op
.getOperand(2);
5521 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5522 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5524 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5526 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5527 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5528 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5529 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5530 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5531 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5532 SDValue LoSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5533 SDValue LoBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5534 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5535 ISD::SETGE
, ARMcc
, DAG
, dl
);
5536 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
, LoBigShift
,
5539 SDValue HiSmallShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5540 SDValue HiBigShift
= Opc
== ISD::SRA
5541 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5542 DAG
.getConstant(VTBits
- 1, dl
, VT
))
5543 : DAG
.getConstant(0, dl
, VT
);
5544 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5545 ISD::SETGE
, ARMcc
, DAG
, dl
);
5546 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5549 SDValue Ops
[2] = { Lo
, Hi
};
5550 return DAG
.getMergeValues(Ops
, dl
);
5553 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5554 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5555 SDValue
ARMTargetLowering::LowerShiftLeftParts(SDValue Op
,
5556 SelectionDAG
&DAG
) const {
5557 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5558 EVT VT
= Op
.getValueType();
5559 unsigned VTBits
= VT
.getSizeInBits();
5561 SDValue ShOpLo
= Op
.getOperand(0);
5562 SDValue ShOpHi
= Op
.getOperand(1);
5563 SDValue ShAmt
= Op
.getOperand(2);
5565 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5567 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5568 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5569 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5570 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5571 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5572 SDValue HiSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5574 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5575 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5576 SDValue HiBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5577 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5578 ISD::SETGE
, ARMcc
, DAG
, dl
);
5579 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5582 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5583 ISD::SETGE
, ARMcc
, DAG
, dl
);
5584 SDValue LoSmallShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5585 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
,
5586 DAG
.getConstant(0, dl
, VT
), ARMcc
, CCR
, CmpLo
);
5588 SDValue Ops
[2] = { Lo
, Hi
};
5589 return DAG
.getMergeValues(Ops
, dl
);
5592 SDValue
ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
5593 SelectionDAG
&DAG
) const {
5594 // The rounding mode is in bits 23:22 of the FPSCR.
5595 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5596 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5597 // so that the shift + and get folded into a bitfield extract.
5599 SDValue Ops
[] = { DAG
.getEntryNode(),
5600 DAG
.getConstant(Intrinsic::arm_get_fpscr
, dl
, MVT::i32
) };
5602 SDValue FPSCR
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, dl
, MVT::i32
, Ops
);
5603 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPSCR
,
5604 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
5605 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
5606 DAG
.getConstant(22, dl
, MVT::i32
));
5607 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
5608 DAG
.getConstant(3, dl
, MVT::i32
));
5611 static SDValue
LowerCTTZ(SDNode
*N
, SelectionDAG
&DAG
,
5612 const ARMSubtarget
*ST
) {
5614 EVT VT
= N
->getValueType(0);
5615 if (VT
.isVector()) {
5616 assert(ST
->hasNEON());
5618 // Compute the least significant set bit: LSB = X & -X
5619 SDValue X
= N
->getOperand(0);
5620 SDValue NX
= DAG
.getNode(ISD::SUB
, dl
, VT
, getZeroVector(VT
, DAG
, dl
), X
);
5621 SDValue LSB
= DAG
.getNode(ISD::AND
, dl
, VT
, X
, NX
);
5623 EVT ElemTy
= VT
.getVectorElementType();
5625 if (ElemTy
== MVT::i8
) {
5626 // Compute with: cttz(x) = ctpop(lsb - 1)
5627 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5628 DAG
.getTargetConstant(1, dl
, ElemTy
));
5629 SDValue Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5630 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5633 if ((ElemTy
== MVT::i16
|| ElemTy
== MVT::i32
) &&
5634 (N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
)) {
5635 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5636 unsigned NumBits
= ElemTy
.getSizeInBits();
5637 SDValue WidthMinus1
=
5638 DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5639 DAG
.getTargetConstant(NumBits
- 1, dl
, ElemTy
));
5640 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, LSB
);
5641 return DAG
.getNode(ISD::SUB
, dl
, VT
, WidthMinus1
, CTLZ
);
5644 // Compute with: cttz(x) = ctpop(lsb - 1)
5648 if (ElemTy
== MVT::i64
) {
5649 // Load constant 0xffff'ffff'ffff'ffff to register.
5650 SDValue FF
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5651 DAG
.getTargetConstant(0x1eff, dl
, MVT::i32
));
5652 Bits
= DAG
.getNode(ISD::ADD
, dl
, VT
, LSB
, FF
);
5654 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5655 DAG
.getTargetConstant(1, dl
, ElemTy
));
5656 Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5658 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5661 if (!ST
->hasV6T2Ops())
5664 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, VT
, N
->getOperand(0));
5665 return DAG
.getNode(ISD::CTLZ
, dl
, VT
, rbit
);
5668 static SDValue
LowerCTPOP(SDNode
*N
, SelectionDAG
&DAG
,
5669 const ARMSubtarget
*ST
) {
5670 EVT VT
= N
->getValueType(0);
5673 assert(ST
->hasNEON() && "Custom ctpop lowering requires NEON.");
5674 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
5675 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
5676 "Unexpected type for custom ctpop lowering");
5678 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5679 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
5680 SDValue Res
= DAG
.getBitcast(VT8Bit
, N
->getOperand(0));
5681 Res
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Res
);
5683 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5684 unsigned EltSize
= 8;
5685 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
5686 while (EltSize
!= VT
.getScalarSizeInBits()) {
5687 SmallVector
<SDValue
, 8> Ops
;
5688 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddlu
, DL
,
5689 TLI
.getPointerTy(DAG
.getDataLayout())));
5694 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
5695 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
, Ops
);
5701 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
5702 /// operand of a vector shift operation, where all the elements of the
5703 /// build_vector must have the same constant integer value.
5704 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
5705 // Ignore bit_converts.
5706 while (Op
.getOpcode() == ISD::BITCAST
)
5707 Op
= Op
.getOperand(0);
5708 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
5709 APInt SplatBits
, SplatUndef
;
5710 unsigned SplatBitSize
;
5713 !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
5715 SplatBitSize
> ElementBits
)
5717 Cnt
= SplatBits
.getSExtValue();
5721 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
5722 /// operand of a vector shift left operation. That value must be in the range:
5723 /// 0 <= Value < ElementBits for a left shift; or
5724 /// 0 <= Value <= ElementBits for a long left shift.
5725 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
5726 assert(VT
.isVector() && "vector shift count is not a vector type");
5727 int64_t ElementBits
= VT
.getScalarSizeInBits();
5728 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5730 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
5733 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
5734 /// operand of a vector shift right operation. For a shift opcode, the value
5735 /// is positive, but for an intrinsic the value count must be negative. The
5736 /// absolute value must be in the range:
5737 /// 1 <= |Value| <= ElementBits for a right shift; or
5738 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5739 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, bool isIntrinsic
,
5741 assert(VT
.isVector() && "vector shift count is not a vector type");
5742 int64_t ElementBits
= VT
.getScalarSizeInBits();
5743 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5746 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
5747 if (Cnt
>= -(isNarrow
? ElementBits
/ 2 : ElementBits
) && Cnt
<= -1) {
5754 static SDValue
LowerShift(SDNode
*N
, SelectionDAG
&DAG
,
5755 const ARMSubtarget
*ST
) {
5756 EVT VT
= N
->getValueType(0);
5763 // We essentially have two forms here. Shift by an immediate and shift by a
5764 // vector register (there are also shift by a gpr, but that is just handled
5765 // with a tablegen pattern). We cannot easily match shift by an immediate in
5766 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
5767 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
5768 // signed or unsigned, and a negative shift indicates a shift right).
5769 if (N
->getOpcode() == ISD::SHL
) {
5770 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
))
5771 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
5772 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5773 return DAG
.getNode(ARMISD::VSHLu
, dl
, VT
, N
->getOperand(0),
5777 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
5778 "unexpected vector shift opcode");
5780 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
5781 unsigned VShiftOpc
=
5782 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
5783 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
5784 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5787 // Other right shifts we don't have operations for (we use a shift left by a
5788 // negative number).
5789 EVT ShiftVT
= N
->getOperand(1).getValueType();
5790 SDValue NegatedCount
= DAG
.getNode(
5791 ISD::SUB
, dl
, ShiftVT
, getZeroVector(ShiftVT
, DAG
, dl
), N
->getOperand(1));
5792 unsigned VShiftOpc
=
5793 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHLs
: ARMISD::VSHLu
);
5794 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0), NegatedCount
);
5797 static SDValue
Expand64BitShift(SDNode
*N
, SelectionDAG
&DAG
,
5798 const ARMSubtarget
*ST
) {
5799 EVT VT
= N
->getValueType(0);
5802 // We can get here for a node like i32 = ISD::SHL i32, i64
5806 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
||
5807 N
->getOpcode() == ISD::SHL
) &&
5808 "Unknown shift to lower!");
5810 unsigned ShOpc
= N
->getOpcode();
5811 if (ST
->hasMVEIntegerOps()) {
5812 SDValue ShAmt
= N
->getOperand(1);
5813 unsigned ShPartsOpc
= ARMISD::LSLL
;
5814 ConstantSDNode
*Con
= dyn_cast
<ConstantSDNode
>(ShAmt
);
5816 // If the shift amount is greater than 32 then do the default optimisation
5817 if (Con
&& Con
->getZExtValue() > 32)
5820 // Extract the lower 32 bits of the shift amount if it's an i64
5821 if (ShAmt
->getValueType(0) == MVT::i64
)
5822 ShAmt
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, ShAmt
,
5823 DAG
.getConstant(0, dl
, MVT::i32
));
5825 if (ShOpc
== ISD::SRL
) {
5827 // There is no t2LSRLr instruction so negate and perform an lsll if the
5828 // shift amount is in a register, emulating a right shift.
5829 ShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5830 DAG
.getConstant(0, dl
, MVT::i32
), ShAmt
);
5832 // Else generate an lsrl on the immediate shift amount
5833 ShPartsOpc
= ARMISD::LSRL
;
5834 } else if (ShOpc
== ISD::SRA
)
5835 ShPartsOpc
= ARMISD::ASRL
;
5837 // Lower 32 bits of the destination/source
5838 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5839 DAG
.getConstant(0, dl
, MVT::i32
));
5840 // Upper 32 bits of the destination/source
5841 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5842 DAG
.getConstant(1, dl
, MVT::i32
));
5844 // Generate the shift operation as computed above
5845 Lo
= DAG
.getNode(ShPartsOpc
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
), Lo
, Hi
,
5847 // The upper 32 bits come from the second return value of lsll
5848 Hi
= SDValue(Lo
.getNode(), 1);
5849 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
5852 // We only lower SRA, SRL of 1 here, all others use generic lowering.
5853 if (!isOneConstant(N
->getOperand(1)) || N
->getOpcode() == ISD::SHL
)
5856 // If we are in thumb mode, we don't have RRX.
5857 if (ST
->isThumb1Only())
5860 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
5861 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5862 DAG
.getConstant(0, dl
, MVT::i32
));
5863 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
5864 DAG
.getConstant(1, dl
, MVT::i32
));
5866 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5867 // captures the result into a carry flag.
5868 unsigned Opc
= N
->getOpcode() == ISD::SRL
? ARMISD::SRL_FLAG
:ARMISD::SRA_FLAG
;
5869 Hi
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::i32
, MVT::Glue
), Hi
);
5871 // The low part is an ARMISD::RRX operand, which shifts the carry in.
5872 Lo
= DAG
.getNode(ARMISD::RRX
, dl
, MVT::i32
, Lo
, Hi
.getValue(1));
5874 // Merge the pieces into a single i64 value.
5875 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
5878 static SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
,
5879 const ARMSubtarget
*ST
) {
5880 SDValue TmpOp0
, TmpOp1
;
5881 bool Invert
= false;
5885 SDValue Op0
= Op
.getOperand(0);
5886 SDValue Op1
= Op
.getOperand(1);
5887 SDValue CC
= Op
.getOperand(2);
5888 EVT VT
= Op
.getValueType();
5889 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
5894 CmpVT
= Op0
.getValueType().changeVectorElementTypeToInteger();
5896 assert(ST
->hasMVEIntegerOps() &&
5897 "No hardware support for integer vector comparison!");
5899 if (Op
.getValueType().getVectorElementType() != MVT::i1
)
5902 // Make sure we expand floating point setcc to scalar if we do not have
5903 // mve.fp, so that we can handle them from there.
5904 if (Op0
.getValueType().isFloatingPoint() && !ST
->hasMVEFloatOps())
5910 if (Op0
.getValueType().getVectorElementType() == MVT::i64
&&
5911 (SetCCOpcode
== ISD::SETEQ
|| SetCCOpcode
== ISD::SETNE
)) {
5912 // Special-case integer 64-bit equality comparisons. They aren't legal,
5913 // but they can be lowered with a few vector instructions.
5914 unsigned CmpElements
= CmpVT
.getVectorNumElements() * 2;
5915 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, CmpElements
);
5916 SDValue CastOp0
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op0
);
5917 SDValue CastOp1
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op1
);
5918 SDValue Cmp
= DAG
.getNode(ISD::SETCC
, dl
, SplitVT
, CastOp0
, CastOp1
,
5919 DAG
.getCondCode(ISD::SETEQ
));
5920 SDValue Reversed
= DAG
.getNode(ARMISD::VREV64
, dl
, SplitVT
, Cmp
);
5921 SDValue Merged
= DAG
.getNode(ISD::AND
, dl
, SplitVT
, Cmp
, Reversed
);
5922 Merged
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, Merged
);
5923 if (SetCCOpcode
== ISD::SETNE
)
5924 Merged
= DAG
.getNOT(dl
, Merged
, CmpVT
);
5925 Merged
= DAG
.getSExtOrTrunc(Merged
, dl
, VT
);
5929 if (CmpVT
.getVectorElementType() == MVT::i64
)
5930 // 64-bit comparisons are not legal in general.
5933 if (Op1
.getValueType().isFloatingPoint()) {
5934 switch (SetCCOpcode
) {
5935 default: llvm_unreachable("Illegal FP comparison");
5938 if (ST
->hasMVEFloatOps()) {
5939 Opc
= ARMISD::VCNE
; break;
5941 Invert
= true; LLVM_FALLTHROUGH
;
5944 case ISD::SETEQ
: Opc
= ARMISD::VCEQ
; break;
5946 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
5948 case ISD::SETGT
: Opc
= ARMISD::VCGT
; break;
5950 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
5952 case ISD::SETGE
: Opc
= ARMISD::VCGE
; break;
5953 case ISD::SETUGE
: Swap
= true; LLVM_FALLTHROUGH
;
5954 case ISD::SETULE
: Invert
= true; Opc
= ARMISD::VCGT
; break;
5955 case ISD::SETUGT
: Swap
= true; LLVM_FALLTHROUGH
;
5956 case ISD::SETULT
: Invert
= true; Opc
= ARMISD::VCGE
; break;
5957 case ISD::SETUEQ
: Invert
= true; LLVM_FALLTHROUGH
;
5959 // Expand this to (OLT | OGT).
5963 Op0
= DAG
.getNode(ARMISD::VCGT
, dl
, CmpVT
, TmpOp1
, TmpOp0
);
5964 Op1
= DAG
.getNode(ARMISD::VCGT
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
5970 // Expand this to (OLT | OGE).
5974 Op0
= DAG
.getNode(ARMISD::VCGT
, dl
, CmpVT
, TmpOp1
, TmpOp0
);
5975 Op1
= DAG
.getNode(ARMISD::VCGE
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
5979 // Integer comparisons.
5980 switch (SetCCOpcode
) {
5981 default: llvm_unreachable("Illegal integer comparison");
5983 if (ST
->hasMVEIntegerOps()) {
5984 Opc
= ARMISD::VCNE
; break;
5986 Invert
= true; LLVM_FALLTHROUGH
;
5988 case ISD::SETEQ
: Opc
= ARMISD::VCEQ
; break;
5989 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
5990 case ISD::SETGT
: Opc
= ARMISD::VCGT
; break;
5991 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
5992 case ISD::SETGE
: Opc
= ARMISD::VCGE
; break;
5993 case ISD::SETULT
: Swap
= true; LLVM_FALLTHROUGH
;
5994 case ISD::SETUGT
: Opc
= ARMISD::VCGTU
; break;
5995 case ISD::SETULE
: Swap
= true; LLVM_FALLTHROUGH
;
5996 case ISD::SETUGE
: Opc
= ARMISD::VCGEU
; break;
5999 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6000 if (ST
->hasNEON() && Opc
== ARMISD::VCEQ
) {
6002 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6004 else if (ISD::isBuildVectorAllZeros(Op0
.getNode()))
6007 // Ignore bitconvert.
6008 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::BITCAST
)
6009 AndOp
= AndOp
.getOperand(0);
6011 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::AND
) {
6013 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(0));
6014 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(1));
6021 std::swap(Op0
, Op1
);
6023 // If one of the operands is a constant vector zero, attempt to fold the
6024 // comparison to a specialized compare-against-zero form.
6026 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6028 else if (ISD::isBuildVectorAllZeros(Op0
.getNode())) {
6029 if (Opc
== ARMISD::VCGE
)
6030 Opc
= ARMISD::VCLEZ
;
6031 else if (Opc
== ARMISD::VCGT
)
6032 Opc
= ARMISD::VCLTZ
;
6037 if (SingleOp
.getNode()) {
6040 assert(ST
->hasMVEIntegerOps() && "Unexpected DAG node");
6041 Result
= DAG
.getNode(ARMISD::VCNEZ
, dl
, CmpVT
, SingleOp
); break;
6043 Result
= DAG
.getNode(ARMISD::VCEQZ
, dl
, CmpVT
, SingleOp
); break;
6045 Result
= DAG
.getNode(ARMISD::VCGEZ
, dl
, CmpVT
, SingleOp
); break;
6047 Result
= DAG
.getNode(ARMISD::VCLEZ
, dl
, CmpVT
, SingleOp
); break;
6049 Result
= DAG
.getNode(ARMISD::VCGTZ
, dl
, CmpVT
, SingleOp
); break;
6051 Result
= DAG
.getNode(ARMISD::VCLTZ
, dl
, CmpVT
, SingleOp
); break;
6053 Result
= DAG
.getNode(Opc
, dl
, CmpVT
, Op0
, Op1
);
6056 Result
= DAG
.getNode(Opc
, dl
, CmpVT
, Op0
, Op1
);
6059 Result
= DAG
.getSExtOrTrunc(Result
, dl
, VT
);
6062 Result
= DAG
.getNOT(dl
, Result
, VT
);
6067 static SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) {
6068 SDValue LHS
= Op
.getOperand(0);
6069 SDValue RHS
= Op
.getOperand(1);
6070 SDValue Carry
= Op
.getOperand(2);
6071 SDValue Cond
= Op
.getOperand(3);
6074 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6076 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6077 // have to invert the carry first.
6078 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
6079 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
6080 // This converts the boolean value carry into the carry flag.
6081 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
6083 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
6084 SDValue Cmp
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, LHS
, RHS
, Carry
);
6086 SDValue FVal
= DAG
.getConstant(0, DL
, MVT::i32
);
6087 SDValue TVal
= DAG
.getConstant(1, DL
, MVT::i32
);
6088 SDValue ARMcc
= DAG
.getConstant(
6089 IntCCToARMCC(cast
<CondCodeSDNode
>(Cond
)->get()), DL
, MVT::i32
);
6090 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
6091 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, ARM::CPSR
,
6092 Cmp
.getValue(1), SDValue());
6093 return DAG
.getNode(ARMISD::CMOV
, DL
, Op
.getValueType(), FVal
, TVal
, ARMcc
,
6094 CCR
, Chain
.getValue(1));
6097 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6098 /// valid vector constant for a NEON or MVE instruction with a "modified
6099 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
6100 static SDValue
isVMOVModifiedImm(uint64_t SplatBits
, uint64_t SplatUndef
,
6101 unsigned SplatBitSize
, SelectionDAG
&DAG
,
6102 const SDLoc
&dl
, EVT
&VT
, bool is128Bits
,
6103 VMOVModImmType type
) {
6104 unsigned OpCmode
, Imm
;
6106 // SplatBitSize is set to the smallest size that splats the vector, so a
6107 // zero vector will always have SplatBitSize == 8. However, NEON modified
6108 // immediate instructions others than VMOV do not support the 8-bit encoding
6109 // of a zero vector, and the default encoding of zero is supposed to be the
6114 switch (SplatBitSize
) {
6116 if (type
!= VMOVModImm
)
6118 // Any 1-byte value is OK. Op=0, Cmode=1110.
6119 assert((SplatBits
& ~0xff) == 0 && "one byte splat value is too big");
6122 VT
= is128Bits
? MVT::v16i8
: MVT::v8i8
;
6126 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6127 VT
= is128Bits
? MVT::v8i16
: MVT::v4i16
;
6128 if ((SplatBits
& ~0xff) == 0) {
6129 // Value = 0x00nn: Op=x, Cmode=100x.
6134 if ((SplatBits
& ~0xff00) == 0) {
6135 // Value = 0xnn00: Op=x, Cmode=101x.
6137 Imm
= SplatBits
>> 8;
6143 // NEON's 32-bit VMOV supports splat values where:
6144 // * only one byte is nonzero, or
6145 // * the least significant byte is 0xff and the second byte is nonzero, or
6146 // * the least significant 2 bytes are 0xff and the third is nonzero.
6147 VT
= is128Bits
? MVT::v4i32
: MVT::v2i32
;
6148 if ((SplatBits
& ~0xff) == 0) {
6149 // Value = 0x000000nn: Op=x, Cmode=000x.
6154 if ((SplatBits
& ~0xff00) == 0) {
6155 // Value = 0x0000nn00: Op=x, Cmode=001x.
6157 Imm
= SplatBits
>> 8;
6160 if ((SplatBits
& ~0xff0000) == 0) {
6161 // Value = 0x00nn0000: Op=x, Cmode=010x.
6163 Imm
= SplatBits
>> 16;
6166 if ((SplatBits
& ~0xff000000) == 0) {
6167 // Value = 0xnn000000: Op=x, Cmode=011x.
6169 Imm
= SplatBits
>> 24;
6173 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6174 if (type
== OtherModImm
) return SDValue();
6176 if ((SplatBits
& ~0xffff) == 0 &&
6177 ((SplatBits
| SplatUndef
) & 0xff) == 0xff) {
6178 // Value = 0x0000nnff: Op=x, Cmode=1100.
6180 Imm
= SplatBits
>> 8;
6184 // cmode == 0b1101 is not supported for MVE VMVN
6185 if (type
== MVEVMVNModImm
)
6188 if ((SplatBits
& ~0xffffff) == 0 &&
6189 ((SplatBits
| SplatUndef
) & 0xffff) == 0xffff) {
6190 // Value = 0x00nnffff: Op=x, Cmode=1101.
6192 Imm
= SplatBits
>> 16;
6196 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6197 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6198 // VMOV.I32. A (very) minor optimization would be to replicate the value
6199 // and fall through here to test for a valid 64-bit splat. But, then the
6200 // caller would also need to check and handle the change in size.
6204 if (type
!= VMOVModImm
)
6206 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6207 uint64_t BitMask
= 0xff;
6209 unsigned ImmMask
= 1;
6211 for (int ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
6212 if (((SplatBits
| SplatUndef
) & BitMask
) == BitMask
) {
6215 } else if ((SplatBits
& BitMask
) != 0) {
6222 if (DAG
.getDataLayout().isBigEndian())
6223 // swap higher and lower 32 bit word
6224 Imm
= ((Imm
& 0xf) << 4) | ((Imm
& 0xf0) >> 4);
6226 // Op=1, Cmode=1110.
6228 VT
= is128Bits
? MVT::v2i64
: MVT::v1i64
;
6233 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6236 unsigned EncodedVal
= ARM_AM::createVMOVModImm(OpCmode
, Imm
);
6237 return DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
);
6240 SDValue
ARMTargetLowering::LowerConstantFP(SDValue Op
, SelectionDAG
&DAG
,
6241 const ARMSubtarget
*ST
) const {
6242 EVT VT
= Op
.getValueType();
6243 bool IsDouble
= (VT
== MVT::f64
);
6244 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Op
);
6245 const APFloat
&FPVal
= CFP
->getValueAPF();
6247 // Prevent floating-point constants from using literal loads
6248 // when execute-only is enabled.
6249 if (ST
->genExecuteOnly()) {
6250 // If we can represent the constant as an immediate, don't lower it
6251 if (isFPImmLegal(FPVal
, VT
))
6253 // Otherwise, construct as integer, and move to float register
6254 APInt INTVal
= FPVal
.bitcastToAPInt();
6256 switch (VT
.getSimpleVT().SimpleTy
) {
6258 llvm_unreachable("Unknown floating point type!");
6261 SDValue Lo
= DAG
.getConstant(INTVal
.trunc(32), DL
, MVT::i32
);
6262 SDValue Hi
= DAG
.getConstant(INTVal
.lshr(32).trunc(32), DL
, MVT::i32
);
6263 if (!ST
->isLittle())
6265 return DAG
.getNode(ARMISD::VMOVDRR
, DL
, MVT::f64
, Lo
, Hi
);
6268 return DAG
.getNode(ARMISD::VMOVSR
, DL
, VT
,
6269 DAG
.getConstant(INTVal
, DL
, MVT::i32
));
6273 if (!ST
->hasVFP3Base())
6276 // Use the default (constant pool) lowering for double constants when we have
6278 if (IsDouble
&& !Subtarget
->hasFP64())
6281 // Try splatting with a VMOV.f32...
6282 int ImmVal
= IsDouble
? ARM_AM::getFP64Imm(FPVal
) : ARM_AM::getFP32Imm(FPVal
);
6285 if (IsDouble
|| !ST
->useNEONForSinglePrecisionFP()) {
6286 // We have code in place to select a valid ConstantFP already, no need to
6291 // It's a float and we are trying to use NEON operations where
6292 // possible. Lower it to a splat followed by an extract.
6294 SDValue NewVal
= DAG
.getTargetConstant(ImmVal
, DL
, MVT::i32
);
6295 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVFPIMM
, DL
, MVT::v2f32
,
6297 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecConstant
,
6298 DAG
.getConstant(0, DL
, MVT::i32
));
6301 // The rest of our options are NEON only, make sure that's allowed before
6303 if (!ST
->hasNEON() || (!IsDouble
&& !ST
->useNEONForSinglePrecisionFP()))
6307 uint64_t iVal
= FPVal
.bitcastToAPInt().getZExtValue();
6309 // It wouldn't really be worth bothering for doubles except for one very
6310 // important value, which does happen to match: 0.0. So make sure we don't do
6312 if (IsDouble
&& (iVal
& 0xffffffff) != (iVal
>> 32))
6315 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6316 SDValue NewVal
= isVMOVModifiedImm(iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
),
6317 VMovVT
, false, VMOVModImm
);
6318 if (NewVal
!= SDValue()) {
6320 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVIMM
, DL
, VMovVT
,
6323 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6325 // It's a float: cast and extract a vector element.
6326 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6328 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6329 DAG
.getConstant(0, DL
, MVT::i32
));
6332 // Finally, try a VMVN.i32
6333 NewVal
= isVMOVModifiedImm(~iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
), VMovVT
,
6335 if (NewVal
!= SDValue()) {
6337 SDValue VecConstant
= DAG
.getNode(ARMISD::VMVNIMM
, DL
, VMovVT
, NewVal
);
6340 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6342 // It's a float: cast and extract a vector element.
6343 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6345 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6346 DAG
.getConstant(0, DL
, MVT::i32
));
6352 // check if an VEXT instruction can handle the shuffle mask when the
6353 // vector sources of the shuffle are the same.
6354 static bool isSingletonVEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6355 unsigned NumElts
= VT
.getVectorNumElements();
6357 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6363 // If this is a VEXT shuffle, the immediate value is the index of the first
6364 // element. The other shuffle indices must be the successive elements after
6366 unsigned ExpectedElt
= Imm
;
6367 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6368 // Increment the expected index. If it wraps around, just follow it
6369 // back to index zero and keep going.
6371 if (ExpectedElt
== NumElts
)
6374 if (M
[i
] < 0) continue; // ignore UNDEF indices
6375 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6382 static bool isVEXTMask(ArrayRef
<int> M
, EVT VT
,
6383 bool &ReverseVEXT
, unsigned &Imm
) {
6384 unsigned NumElts
= VT
.getVectorNumElements();
6385 ReverseVEXT
= false;
6387 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6393 // If this is a VEXT shuffle, the immediate value is the index of the first
6394 // element. The other shuffle indices must be the successive elements after
6396 unsigned ExpectedElt
= Imm
;
6397 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6398 // Increment the expected index. If it wraps around, it may still be
6399 // a VEXT but the source vectors must be swapped.
6401 if (ExpectedElt
== NumElts
* 2) {
6406 if (M
[i
] < 0) continue; // ignore UNDEF indices
6407 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6411 // Adjust the index value if the source operands will be swapped.
6418 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6419 /// instruction with the specified blocksize. (The order of the elements
6420 /// within each block of the vector is reversed.)
6421 static bool isVREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6422 assert((BlockSize
==16 || BlockSize
==32 || BlockSize
==64) &&
6423 "Only possible block sizes for VREV are: 16, 32, 64");
6425 unsigned EltSz
= VT
.getScalarSizeInBits();
6429 unsigned NumElts
= VT
.getVectorNumElements();
6430 unsigned BlockElts
= M
[0] + 1;
6431 // If the first shuffle index is UNDEF, be optimistic.
6433 BlockElts
= BlockSize
/ EltSz
;
6435 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6438 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6439 if (M
[i
] < 0) continue; // ignore UNDEF indices
6440 if ((unsigned) M
[i
] != (i
- i
%BlockElts
) + (BlockElts
- 1 - i
%BlockElts
))
6447 static bool isVTBLMask(ArrayRef
<int> M
, EVT VT
) {
6448 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6449 // range, then 0 is placed into the resulting vector. So pretty much any mask
6450 // of 8 elements can work here.
6451 return VT
== MVT::v8i8
&& M
.size() == 8;
6454 static unsigned SelectPairHalf(unsigned Elements
, ArrayRef
<int> Mask
,
6456 if (Mask
.size() == Elements
* 2)
6457 return Index
/ Elements
;
6458 return Mask
[Index
] == 0 ? 0 : 1;
6461 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6462 // checking that pairs of elements in the shuffle mask represent the same index
6463 // in each vector, incrementing the expected index by 2 at each step.
6464 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6465 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6467 // WhichResult gives the offset for each element in the mask based on which
6468 // of the two results it belongs to.
6470 // The transpose can be represented either as:
6471 // result1 = shufflevector v1, v2, result1_shuffle_mask
6472 // result2 = shufflevector v1, v2, result2_shuffle_mask
6473 // where v1/v2 and the shuffle masks have the same number of elements
6474 // (here WhichResult (see below) indicates which result is being checked)
6477 // results = shufflevector v1, v2, shuffle_mask
6478 // where both results are returned in one vector and the shuffle mask has twice
6479 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6480 // want to check the low half and high half of the shuffle mask as if it were
6482 static bool isVTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6483 unsigned EltSz
= VT
.getScalarSizeInBits();
6487 unsigned NumElts
= VT
.getVectorNumElements();
6488 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6491 // If the mask is twice as long as the input vector then we need to check the
6492 // upper and lower parts of the mask with a matching value for WhichResult
6493 // FIXME: A mask with only even values will be rejected in case the first
6494 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6495 // M[0] is used to determine WhichResult
6496 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6497 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6498 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6499 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6500 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ NumElts
+ WhichResult
))
6505 if (M
.size() == NumElts
*2)
6511 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6512 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6513 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6514 static bool isVTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6515 unsigned EltSz
= VT
.getScalarSizeInBits();
6519 unsigned NumElts
= VT
.getVectorNumElements();
6520 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6523 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6524 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6525 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6526 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6527 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ WhichResult
))
6532 if (M
.size() == NumElts
*2)
6538 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6539 // that the mask elements are either all even and in steps of size 2 or all odd
6540 // and in steps of size 2.
6541 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6542 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6544 // Requires similar checks to that of isVTRNMask with
6545 // respect the how results are returned.
6546 static bool isVUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6547 unsigned EltSz
= VT
.getScalarSizeInBits();
6551 unsigned NumElts
= VT
.getVectorNumElements();
6552 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6555 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6556 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6557 for (unsigned j
= 0; j
< NumElts
; ++j
) {
6558 if (M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != 2 * j
+ WhichResult
)
6563 if (M
.size() == NumElts
*2)
6566 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6567 if (VT
.is64BitVector() && EltSz
== 32)
6573 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6574 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6575 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6576 static bool isVUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6577 unsigned EltSz
= VT
.getScalarSizeInBits();
6581 unsigned NumElts
= VT
.getVectorNumElements();
6582 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6585 unsigned Half
= NumElts
/ 2;
6586 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6587 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6588 for (unsigned j
= 0; j
< NumElts
; j
+= Half
) {
6589 unsigned Idx
= WhichResult
;
6590 for (unsigned k
= 0; k
< Half
; ++k
) {
6591 int MIdx
= M
[i
+ j
+ k
];
6592 if (MIdx
>= 0 && (unsigned) MIdx
!= Idx
)
6599 if (M
.size() == NumElts
*2)
6602 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6603 if (VT
.is64BitVector() && EltSz
== 32)
6609 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6610 // that pairs of elements of the shufflemask represent the same index in each
6611 // vector incrementing sequentially through the vectors.
6612 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6613 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6615 // Requires similar checks to that of isVTRNMask with respect the how results
6617 static bool isVZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6618 unsigned EltSz
= VT
.getScalarSizeInBits();
6622 unsigned NumElts
= VT
.getVectorNumElements();
6623 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6626 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6627 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6628 unsigned Idx
= WhichResult
* NumElts
/ 2;
6629 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6630 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6631 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
+ NumElts
))
6637 if (M
.size() == NumElts
*2)
6640 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6641 if (VT
.is64BitVector() && EltSz
== 32)
6647 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6648 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6649 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6650 static bool isVZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6651 unsigned EltSz
= VT
.getScalarSizeInBits();
6655 unsigned NumElts
= VT
.getVectorNumElements();
6656 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6659 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6660 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6661 unsigned Idx
= WhichResult
* NumElts
/ 2;
6662 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6663 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6664 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
))
6670 if (M
.size() == NumElts
*2)
6673 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6674 if (VT
.is64BitVector() && EltSz
== 32)
6680 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6681 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6682 static unsigned isNEONTwoResultShuffleMask(ArrayRef
<int> ShuffleMask
, EVT VT
,
6683 unsigned &WhichResult
,
6686 if (isVTRNMask(ShuffleMask
, VT
, WhichResult
))
6687 return ARMISD::VTRN
;
6688 if (isVUZPMask(ShuffleMask
, VT
, WhichResult
))
6689 return ARMISD::VUZP
;
6690 if (isVZIPMask(ShuffleMask
, VT
, WhichResult
))
6691 return ARMISD::VZIP
;
6694 if (isVTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6695 return ARMISD::VTRN
;
6696 if (isVUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6697 return ARMISD::VUZP
;
6698 if (isVZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6699 return ARMISD::VZIP
;
6704 /// \return true if this is a reverse operation on an vector.
6705 static bool isReverseMask(ArrayRef
<int> M
, EVT VT
) {
6706 unsigned NumElts
= VT
.getVectorNumElements();
6707 // Make sure the mask has the right size.
6708 if (NumElts
!= M
.size())
6711 // Look for <15, ..., 3, -1, 1, 0>.
6712 for (unsigned i
= 0; i
!= NumElts
; ++i
)
6713 if (M
[i
] >= 0 && M
[i
] != (int) (NumElts
- 1 - i
))
6719 // If N is an integer constant that can be moved into a register in one
6720 // instruction, return an SDValue of such a constant (will become a MOV
6721 // instruction). Otherwise return null.
6722 static SDValue
IsSingleInstrConstant(SDValue N
, SelectionDAG
&DAG
,
6723 const ARMSubtarget
*ST
, const SDLoc
&dl
) {
6725 if (!isa
<ConstantSDNode
>(N
))
6727 Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
6729 if (ST
->isThumb1Only()) {
6730 if (Val
<= 255 || ~Val
<= 255)
6731 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6733 if (ARM_AM::getSOImmVal(Val
) != -1 || ARM_AM::getSOImmVal(~Val
) != -1)
6734 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6739 static SDValue
LowerBUILD_VECTOR_i1(SDValue Op
, SelectionDAG
&DAG
,
6740 const ARMSubtarget
*ST
) {
6742 EVT VT
= Op
.getValueType();
6744 assert(ST
->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
6746 unsigned NumElts
= VT
.getVectorNumElements();
6748 unsigned BitsPerBool
;
6752 } else if (NumElts
== 8) {
6755 } else if (NumElts
== 16) {
6761 // First create base with bits set where known
6762 unsigned Bits32
= 0;
6763 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6764 SDValue V
= Op
.getOperand(i
);
6765 if (!isa
<ConstantSDNode
>(V
) && !V
.isUndef())
6767 bool BitSet
= V
.isUndef() ? false : cast
<ConstantSDNode
>(V
)->getZExtValue();
6769 Bits32
|= BoolMask
<< (i
* BitsPerBool
);
6772 // Add in unknown nodes
6773 // FIXME: Handle splats of the same value better.
6774 SDValue Base
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
,
6775 DAG
.getConstant(Bits32
, dl
, MVT::i32
));
6776 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6777 SDValue V
= Op
.getOperand(i
);
6778 if (isa
<ConstantSDNode
>(V
) || V
.isUndef())
6780 Base
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Base
, V
,
6781 DAG
.getConstant(i
, dl
, MVT::i32
));
6787 // If this is a case we can't handle, return null and let the default
6788 // expansion code take care of it.
6789 SDValue
ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
6790 const ARMSubtarget
*ST
) const {
6791 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
6793 EVT VT
= Op
.getValueType();
6795 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
6796 return LowerBUILD_VECTOR_i1(Op
, DAG
, ST
);
6798 APInt SplatBits
, SplatUndef
;
6799 unsigned SplatBitSize
;
6801 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
6802 if (SplatUndef
.isAllOnesValue())
6803 return DAG
.getUNDEF(VT
);
6805 if ((ST
->hasNEON() && SplatBitSize
<= 64) ||
6806 (ST
->hasMVEIntegerOps() && SplatBitSize
<= 32)) {
6807 // Check if an immediate VMOV works.
6809 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
6810 SplatUndef
.getZExtValue(), SplatBitSize
,
6811 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6814 if (Val
.getNode()) {
6815 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, Val
);
6816 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6819 // Try an immediate VMVN.
6820 uint64_t NegatedImm
= (~SplatBits
).getZExtValue();
6821 Val
= isVMOVModifiedImm(
6822 NegatedImm
, SplatUndef
.getZExtValue(), SplatBitSize
,
6823 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6824 ST
->hasMVEIntegerOps() ? MVEVMVNModImm
: VMVNModImm
);
6825 if (Val
.getNode()) {
6826 SDValue Vmov
= DAG
.getNode(ARMISD::VMVNIMM
, dl
, VmovVT
, Val
);
6827 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6830 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6831 if ((VT
== MVT::v2f32
|| VT
== MVT::v4f32
) && SplatBitSize
== 32) {
6832 int ImmVal
= ARM_AM::getFP32Imm(SplatBits
);
6834 SDValue Val
= DAG
.getTargetConstant(ImmVal
, dl
, MVT::i32
);
6835 return DAG
.getNode(ARMISD::VMOVFPIMM
, dl
, VT
, Val
);
6841 // Scan through the operands to see if only one value is used.
6843 // As an optimisation, even if more than one value is used it may be more
6844 // profitable to splat with one value then change some lanes.
6846 // Heuristically we decide to do this if the vector has a "dominant" value,
6847 // defined as splatted to more than half of the lanes.
6848 unsigned NumElts
= VT
.getVectorNumElements();
6849 bool isOnlyLowElement
= true;
6850 bool usesOnlyOneValue
= true;
6851 bool hasDominantValue
= false;
6852 bool isConstant
= true;
6854 // Map of the number of times a particular SDValue appears in the
6856 DenseMap
<SDValue
, unsigned> ValueCounts
;
6858 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6859 SDValue V
= Op
.getOperand(i
);
6863 isOnlyLowElement
= false;
6864 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
6867 ValueCounts
.insert(std::make_pair(V
, 0));
6868 unsigned &Count
= ValueCounts
[V
];
6870 // Is this value dominant? (takes up more than half of the lanes)
6871 if (++Count
> (NumElts
/ 2)) {
6872 hasDominantValue
= true;
6876 if (ValueCounts
.size() != 1)
6877 usesOnlyOneValue
= false;
6878 if (!Value
.getNode() && !ValueCounts
.empty())
6879 Value
= ValueCounts
.begin()->first
;
6881 if (ValueCounts
.empty())
6882 return DAG
.getUNDEF(VT
);
6884 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6885 // Keep going if we are hitting this case.
6886 if (isOnlyLowElement
&& !ISD::isNormalLoad(Value
.getNode()))
6887 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
6889 unsigned EltSize
= VT
.getScalarSizeInBits();
6891 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
6892 // i32 and try again.
6893 if (hasDominantValue
&& EltSize
<= 32) {
6897 // If we are VDUPing a value that comes directly from a vector, that will
6898 // cause an unnecessary move to and from a GPR, where instead we could
6899 // just use VDUPLANE. We can only do this if the lane being extracted
6900 // is at a constant index, as the VDUP from lane instructions only have
6901 // constant-index forms.
6902 ConstantSDNode
*constIndex
;
6903 if (Value
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
6904 (constIndex
= dyn_cast
<ConstantSDNode
>(Value
->getOperand(1)))) {
6905 // We need to create a new undef vector to use for the VDUPLANE if the
6906 // size of the vector from which we get the value is different than the
6907 // size of the vector that we need to create. We will insert the element
6908 // such that the register coalescer will remove unnecessary copies.
6909 if (VT
!= Value
->getOperand(0).getValueType()) {
6910 unsigned index
= constIndex
->getAPIntValue().getLimitedValue() %
6911 VT
.getVectorNumElements();
6912 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
6913 DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, DAG
.getUNDEF(VT
),
6914 Value
, DAG
.getConstant(index
, dl
, MVT::i32
)),
6915 DAG
.getConstant(index
, dl
, MVT::i32
));
6917 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
6918 Value
->getOperand(0), Value
->getOperand(1));
6920 N
= DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Value
);
6922 if (!usesOnlyOneValue
) {
6923 // The dominant value was splatted as 'N', but we now have to insert
6924 // all differing elements.
6925 for (unsigned I
= 0; I
< NumElts
; ++I
) {
6926 if (Op
.getOperand(I
) == Value
)
6928 SmallVector
<SDValue
, 3> Ops
;
6930 Ops
.push_back(Op
.getOperand(I
));
6931 Ops
.push_back(DAG
.getConstant(I
, dl
, MVT::i32
));
6932 N
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Ops
);
6937 if (VT
.getVectorElementType().isFloatingPoint()) {
6938 SmallVector
<SDValue
, 8> Ops
;
6939 MVT FVT
= VT
.getVectorElementType().getSimpleVT();
6940 assert(FVT
== MVT::f32
|| FVT
== MVT::f16
);
6941 MVT IVT
= (FVT
== MVT::f32
) ? MVT::i32
: MVT::i16
;
6942 for (unsigned i
= 0; i
< NumElts
; ++i
)
6943 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, IVT
,
6945 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), IVT
, NumElts
);
6946 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
6947 Val
= LowerBUILD_VECTOR(Val
, DAG
, ST
);
6949 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
6951 if (usesOnlyOneValue
) {
6952 SDValue Val
= IsSingleInstrConstant(Value
, DAG
, ST
, dl
);
6953 if (isConstant
&& Val
.getNode())
6954 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Val
);
6958 // If all elements are constants and the case above didn't get hit, fall back
6959 // to the default expansion, which will generate a load from the constant
6964 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6966 SDValue shuffle
= ReconstructShuffle(Op
, DAG
);
6967 if (shuffle
!= SDValue())
6971 if (ST
->hasNEON() && VT
.is128BitVector() && VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) {
6972 // If we haven't found an efficient lowering, try splitting a 128-bit vector
6973 // into two 64-bit vectors; we might discover a better way to lower it.
6974 SmallVector
<SDValue
, 64> Ops(Op
->op_begin(), Op
->op_begin() + NumElts
);
6975 EVT ExtVT
= VT
.getVectorElementType();
6976 EVT HVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
, NumElts
/ 2);
6978 DAG
.getBuildVector(HVT
, dl
, makeArrayRef(&Ops
[0], NumElts
/ 2));
6979 if (Lower
.getOpcode() == ISD::BUILD_VECTOR
)
6980 Lower
= LowerBUILD_VECTOR(Lower
, DAG
, ST
);
6981 SDValue Upper
= DAG
.getBuildVector(
6982 HVT
, dl
, makeArrayRef(&Ops
[NumElts
/ 2], NumElts
/ 2));
6983 if (Upper
.getOpcode() == ISD::BUILD_VECTOR
)
6984 Upper
= LowerBUILD_VECTOR(Upper
, DAG
, ST
);
6986 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Lower
, Upper
);
6989 // Vectors with 32- or 64-bit elements can be built by directly assigning
6990 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
6991 // will be legalized.
6992 if (EltSize
>= 32) {
6993 // Do the expansion with floating-point types, since that is what the VFP
6994 // registers are defined to use, and since i64 is not legal.
6995 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
6996 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
6997 SmallVector
<SDValue
, 8> Ops
;
6998 for (unsigned i
= 0; i
< NumElts
; ++i
)
6999 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, EltVT
, Op
.getOperand(i
)));
7000 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7001 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7004 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7005 // know the default expansion would otherwise fall back on something even
7006 // worse. For a vector with one or two non-undef values, that's
7007 // scalar_to_vector for the elements followed by a shuffle (provided the
7008 // shuffle is valid for the target) and materialization element by element
7009 // on the stack followed by a load for everything else.
7010 if (!isConstant
&& !usesOnlyOneValue
) {
7011 SDValue Vec
= DAG
.getUNDEF(VT
);
7012 for (unsigned i
= 0 ; i
< NumElts
; ++i
) {
7013 SDValue V
= Op
.getOperand(i
);
7016 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i32
);
7017 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
7025 // Gather data to see if the operation can be modelled as a
7026 // shuffle in combination with VEXTs.
7027 SDValue
ARMTargetLowering::ReconstructShuffle(SDValue Op
,
7028 SelectionDAG
&DAG
) const {
7029 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7031 EVT VT
= Op
.getValueType();
7032 unsigned NumElts
= VT
.getVectorNumElements();
7034 struct ShuffleSourceInfo
{
7036 unsigned MinElt
= std::numeric_limits
<unsigned>::max();
7037 unsigned MaxElt
= 0;
7039 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7040 // be compatible with the shuffle we intend to construct. As a result
7041 // ShuffleVec will be some sliding window into the original Vec.
7044 // Code should guarantee that element i in Vec starts at element "WindowBase
7045 // + i * WindowScale in ShuffleVec".
7047 int WindowScale
= 1;
7049 ShuffleSourceInfo(SDValue Vec
) : Vec(Vec
), ShuffleVec(Vec
) {}
7051 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
7054 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7056 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
7057 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7058 SDValue V
= Op
.getOperand(i
);
7061 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
) {
7062 // A shuffle can only come from building a vector from various
7063 // elements of other vectors.
7065 } else if (!isa
<ConstantSDNode
>(V
.getOperand(1))) {
7066 // Furthermore, shuffles require a constant mask, whereas extractelts
7067 // accept variable indices.
7071 // Add this element source to the list if it's not already there.
7072 SDValue SourceVec
= V
.getOperand(0);
7073 auto Source
= llvm::find(Sources
, SourceVec
);
7074 if (Source
== Sources
.end())
7075 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
7077 // Update the minimum and maximum lane number seen.
7078 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
7079 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
7080 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
7083 // Currently only do something sane when at most two source vectors
7085 if (Sources
.size() > 2)
7088 // Find out the smallest element size among result and two sources, and use
7089 // it as element size to build the shuffle_vector.
7090 EVT SmallestEltTy
= VT
.getVectorElementType();
7091 for (auto &Source
: Sources
) {
7092 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
7093 if (SrcEltTy
.bitsLT(SmallestEltTy
))
7094 SmallestEltTy
= SrcEltTy
;
7096 unsigned ResMultiplier
=
7097 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
7098 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7099 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
7101 // If the source vector is too wide or too narrow, we may nevertheless be able
7102 // to construct a compatible shuffle either by concatenating it with UNDEF or
7103 // extracting a suitable range of elements.
7104 for (auto &Src
: Sources
) {
7105 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
7107 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
7110 // This stage of the search produces a source with the same element type as
7111 // the original, but with a total width matching the BUILD_VECTOR output.
7112 EVT EltVT
= SrcVT
.getVectorElementType();
7113 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
7114 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
7116 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
7117 if (2 * SrcVT
.getSizeInBits() != VT
.getSizeInBits())
7119 // We can pad out the smaller vector for free, so if it's part of a
7122 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
7123 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
7127 if (SrcVT
.getSizeInBits() != 2 * VT
.getSizeInBits())
7130 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
7131 // Span too large for a VEXT to cope
7135 if (Src
.MinElt
>= NumSrcElts
) {
7136 // The extraction can just take the second half
7138 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7139 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7140 Src
.WindowBase
= -NumSrcElts
;
7141 } else if (Src
.MaxElt
< NumSrcElts
) {
7142 // The extraction can just take the first half
7144 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7145 DAG
.getConstant(0, dl
, MVT::i32
));
7147 // An actual VEXT is needed
7149 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7150 DAG
.getConstant(0, dl
, MVT::i32
));
7152 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7153 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7155 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VEXT
, dl
, DestVT
, VEXTSrc1
,
7157 DAG
.getConstant(Src
.MinElt
, dl
, MVT::i32
));
7158 Src
.WindowBase
= -Src
.MinElt
;
7162 // Another possible incompatibility occurs from the vector element types. We
7163 // can fix this by bitcasting the source vectors to the same type we intend
7165 for (auto &Src
: Sources
) {
7166 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
7167 if (SrcEltTy
== SmallestEltTy
)
7169 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
7170 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
7171 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7172 Src
.WindowBase
*= Src
.WindowScale
;
7175 // Final sanity check before we try to actually produce a shuffle.
7176 LLVM_DEBUG(for (auto Src
7178 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
7180 // The stars all align, our next step is to produce the mask for the shuffle.
7181 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
7182 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
7183 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
7184 SDValue Entry
= Op
.getOperand(i
);
7185 if (Entry
.isUndef())
7188 auto Src
= llvm::find(Sources
, Entry
.getOperand(0));
7189 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
7191 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7192 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7194 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
7195 int BitsDefined
= std::min(OrigEltTy
.getSizeInBits(),
7196 VT
.getScalarSizeInBits());
7197 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
7199 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7200 // starting at the appropriate offset.
7201 int *LaneMask
= &Mask
[i
* ResMultiplier
];
7203 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
7204 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
7205 for (int j
= 0; j
< LanesDefined
; ++j
)
7206 LaneMask
[j
] = ExtractBase
+ j
;
7209 // Final check before we try to produce nonsense...
7210 if (!isShuffleMaskLegal(Mask
, ShuffleVT
))
7213 // We can't handle more than two sources. This should have already
7214 // been checked before this point.
7215 assert(Sources
.size() <= 2 && "Too many sources!");
7217 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
7218 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
7219 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
7221 SDValue Shuffle
= DAG
.getVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
7222 ShuffleOps
[1], Mask
);
7223 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
7226 enum ShuffleOpCodes
{
7227 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7236 OP_VUZPL
, // VUZP, left result
7237 OP_VUZPR
, // VUZP, right result
7238 OP_VZIPL
, // VZIP, left result
7239 OP_VZIPR
, // VZIP, right result
7240 OP_VTRNL
, // VTRN, left result
7241 OP_VTRNR
// VTRN, right result
7244 static bool isLegalMVEShuffleOp(unsigned PFEntry
) {
7245 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7258 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7259 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7260 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7261 /// are assumed to be legal.
7262 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7263 if (VT
.getVectorNumElements() == 4 &&
7264 (VT
.is128BitVector() || VT
.is64BitVector())) {
7265 unsigned PFIndexes
[4];
7266 for (unsigned i
= 0; i
!= 4; ++i
) {
7270 PFIndexes
[i
] = M
[i
];
7273 // Compute the index in the perfect shuffle table.
7274 unsigned PFTableIndex
=
7275 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7276 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7277 unsigned Cost
= (PFEntry
>> 30);
7279 if (Cost
<= 4 && (Subtarget
->hasNEON() || isLegalMVEShuffleOp(PFEntry
)))
7283 bool ReverseVEXT
, isV_UNDEF
;
7284 unsigned Imm
, WhichResult
;
7286 unsigned EltSize
= VT
.getScalarSizeInBits();
7287 if (EltSize
>= 32 ||
7288 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7289 isVREVMask(M
, VT
, 64) ||
7290 isVREVMask(M
, VT
, 32) ||
7291 isVREVMask(M
, VT
, 16))
7293 else if (Subtarget
->hasNEON() &&
7294 (isVEXTMask(M
, VT
, ReverseVEXT
, Imm
) ||
7295 isVTBLMask(M
, VT
) ||
7296 isNEONTwoResultShuffleMask(M
, VT
, WhichResult
, isV_UNDEF
)))
7298 else if (Subtarget
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7299 isReverseMask(M
, VT
))
7305 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7306 /// the specified operations to build the shuffle.
7307 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
7308 SDValue RHS
, SelectionDAG
&DAG
,
7310 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7311 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7312 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7314 if (OpNum
== OP_COPY
) {
7315 if (LHSID
== (1*9+2)*9+3) return LHS
;
7316 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7320 SDValue OpLHS
, OpRHS
;
7321 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
7322 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
7323 EVT VT
= OpLHS
.getValueType();
7326 default: llvm_unreachable("Unknown shuffle opcode!");
7328 // VREV divides the vector in half and swaps within the half.
7329 if (VT
.getVectorElementType() == MVT::i32
||
7330 VT
.getVectorElementType() == MVT::f32
)
7331 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, OpLHS
);
7332 // vrev <4 x i16> -> VREV32
7333 if (VT
.getVectorElementType() == MVT::i16
)
7334 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, OpLHS
);
7335 // vrev <4 x i8> -> VREV16
7336 assert(VT
.getVectorElementType() == MVT::i8
);
7337 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, OpLHS
);
7342 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7343 OpLHS
, DAG
.getConstant(OpNum
-OP_VDUP0
, dl
, MVT::i32
));
7347 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
,
7349 DAG
.getConstant(OpNum
- OP_VEXT1
+ 1, dl
, MVT::i32
));
7352 return DAG
.getNode(ARMISD::VUZP
, dl
, DAG
.getVTList(VT
, VT
),
7353 OpLHS
, OpRHS
).getValue(OpNum
-OP_VUZPL
);
7356 return DAG
.getNode(ARMISD::VZIP
, dl
, DAG
.getVTList(VT
, VT
),
7357 OpLHS
, OpRHS
).getValue(OpNum
-OP_VZIPL
);
7360 return DAG
.getNode(ARMISD::VTRN
, dl
, DAG
.getVTList(VT
, VT
),
7361 OpLHS
, OpRHS
).getValue(OpNum
-OP_VTRNL
);
7365 static SDValue
LowerVECTOR_SHUFFLEv8i8(SDValue Op
,
7366 ArrayRef
<int> ShuffleMask
,
7367 SelectionDAG
&DAG
) {
7368 // Check to see if we can use the VTBL instruction.
7369 SDValue V1
= Op
.getOperand(0);
7370 SDValue V2
= Op
.getOperand(1);
7373 SmallVector
<SDValue
, 8> VTBLMask
;
7374 for (ArrayRef
<int>::iterator
7375 I
= ShuffleMask
.begin(), E
= ShuffleMask
.end(); I
!= E
; ++I
)
7376 VTBLMask
.push_back(DAG
.getConstant(*I
, DL
, MVT::i32
));
7378 if (V2
.getNode()->isUndef())
7379 return DAG
.getNode(ARMISD::VTBL1
, DL
, MVT::v8i8
, V1
,
7380 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7382 return DAG
.getNode(ARMISD::VTBL2
, DL
, MVT::v8i8
, V1
, V2
,
7383 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7386 static SDValue
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op
,
7387 SelectionDAG
&DAG
) {
7389 SDValue OpLHS
= Op
.getOperand(0);
7390 EVT VT
= OpLHS
.getValueType();
7392 assert((VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7393 "Expect an v8i16/v16i8 type");
7394 OpLHS
= DAG
.getNode(ARMISD::VREV64
, DL
, VT
, OpLHS
);
7395 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7396 // extract the first 8 bytes into the top double word and the last 8 bytes
7397 // into the bottom double word. The v8i16 case is similar.
7398 unsigned ExtractNum
= (VT
== MVT::v16i8
) ? 8 : 4;
7399 return DAG
.getNode(ARMISD::VEXT
, DL
, VT
, OpLHS
, OpLHS
,
7400 DAG
.getConstant(ExtractNum
, DL
, MVT::i32
));
7403 static EVT
getVectorTyFromPredicateVector(EVT VT
) {
7404 switch (VT
.getSimpleVT().SimpleTy
) {
7412 llvm_unreachable("Unexpected vector predicate type");
7416 static SDValue
PromoteMVEPredVector(SDLoc dl
, SDValue Pred
, EVT VT
,
7417 SelectionDAG
&DAG
) {
7418 // Converting from boolean predicates to integers involves creating a vector
7419 // of all ones or all zeroes and selecting the lanes based upon the real
7422 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl
, MVT::i32
);
7423 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllOnes
);
7426 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl
, MVT::i32
);
7427 AllZeroes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllZeroes
);
7429 // Get full vector type from predicate type
7430 EVT NewVT
= getVectorTyFromPredicateVector(VT
);
7433 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7434 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7435 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7436 // since we know in hardware the sizes are really the same.
7437 if (VT
!= MVT::v16i1
)
7438 RecastV1
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Pred
);
7442 // Select either all ones or zeroes depending upon the real predicate bits.
7443 SDValue PredAsVector
=
7444 DAG
.getNode(ISD::VSELECT
, dl
, MVT::v16i8
, RecastV1
, AllOnes
, AllZeroes
);
7446 // Recast our new predicate-as-integer v16i8 vector into something
7447 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7448 return DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, PredAsVector
);
7451 static SDValue
LowerVECTOR_SHUFFLE_i1(SDValue Op
, SelectionDAG
&DAG
,
7452 const ARMSubtarget
*ST
) {
7453 EVT VT
= Op
.getValueType();
7454 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7455 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7457 assert(ST
->hasMVEIntegerOps() &&
7458 "No support for vector shuffle of boolean predicates");
7460 SDValue V1
= Op
.getOperand(0);
7462 if (isReverseMask(ShuffleMask
, VT
)) {
7463 SDValue cast
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, V1
);
7464 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, cast
);
7465 SDValue srl
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, rbit
,
7466 DAG
.getConstant(16, dl
, MVT::i32
));
7467 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, srl
);
7470 // Until we can come up with optimised cases for every single vector
7471 // shuffle in existence we have chosen the least painful strategy. This is
7472 // to essentially promote the boolean predicate to a 8-bit integer, where
7473 // each predicate represents a byte. Then we fall back on a normal integer
7474 // vector shuffle and convert the result back into a predicate vector. In
7475 // many cases the generated code might be even better than scalar code
7476 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7477 // fields in a register into 8 other arbitrary 2-bit fields!
7478 SDValue PredAsVector
= PromoteMVEPredVector(dl
, V1
, VT
, DAG
);
7479 EVT NewVT
= PredAsVector
.getValueType();
7482 SDValue Shuffled
= DAG
.getVectorShuffle(NewVT
, dl
, PredAsVector
,
7483 DAG
.getUNDEF(NewVT
), ShuffleMask
);
7485 // Now return the result of comparing the shuffled vector with zero,
7486 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7487 return DAG
.getNode(ARMISD::VCNEZ
, dl
, VT
, Shuffled
);
7490 static SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
7491 const ARMSubtarget
*ST
) {
7492 SDValue V1
= Op
.getOperand(0);
7493 SDValue V2
= Op
.getOperand(1);
7495 EVT VT
= Op
.getValueType();
7496 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7497 unsigned EltSize
= VT
.getScalarSizeInBits();
7499 if (ST
->hasMVEIntegerOps() && EltSize
== 1)
7500 return LowerVECTOR_SHUFFLE_i1(Op
, DAG
, ST
);
7502 // Convert shuffles that are directly supported on NEON to target-specific
7503 // DAG nodes, instead of keeping them as shuffles and matching them again
7504 // during code selection. This is more efficient and avoids the possibility
7505 // of inconsistencies between legalization and selection.
7506 // FIXME: floating-point vectors should be canonicalized to integer vectors
7507 // of the same time so that they get CSEd properly.
7508 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7510 if (EltSize
<= 32) {
7511 if (SVN
->isSplat()) {
7512 int Lane
= SVN
->getSplatIndex();
7513 // If this is undef splat, generate it via "just" vdup, if possible.
7514 if (Lane
== -1) Lane
= 0;
7516 // Test if V1 is a SCALAR_TO_VECTOR.
7517 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
7518 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7520 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7521 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7523 if (Lane
== 0 && V1
.getOpcode() == ISD::BUILD_VECTOR
&&
7524 !isa
<ConstantSDNode
>(V1
.getOperand(0))) {
7525 bool IsScalarToVector
= true;
7526 for (unsigned i
= 1, e
= V1
.getNumOperands(); i
!= e
; ++i
)
7527 if (!V1
.getOperand(i
).isUndef()) {
7528 IsScalarToVector
= false;
7531 if (IsScalarToVector
)
7532 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7534 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
, V1
,
7535 DAG
.getConstant(Lane
, dl
, MVT::i32
));
7538 bool ReverseVEXT
= false;
7540 if (ST
->hasNEON() && isVEXTMask(ShuffleMask
, VT
, ReverseVEXT
, Imm
)) {
7543 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V2
,
7544 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7547 if (isVREVMask(ShuffleMask
, VT
, 64))
7548 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, V1
);
7549 if (isVREVMask(ShuffleMask
, VT
, 32))
7550 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, V1
);
7551 if (isVREVMask(ShuffleMask
, VT
, 16))
7552 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, V1
);
7554 if (ST
->hasNEON() && V2
->isUndef() && isSingletonVEXTMask(ShuffleMask
, VT
, Imm
)) {
7555 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V1
,
7556 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7559 // Check for Neon shuffles that modify both input vectors in place.
7560 // If both results are used, i.e., if there are two shuffles with the same
7561 // source operands and with masks corresponding to both results of one of
7562 // these operations, DAG memoization will ensure that a single node is
7563 // used for both shuffles.
7564 unsigned WhichResult
= 0;
7565 bool isV_UNDEF
= false;
7566 if (ST
->hasNEON()) {
7567 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7568 ShuffleMask
, VT
, WhichResult
, isV_UNDEF
)) {
7571 return DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(VT
, VT
), V1
, V2
)
7572 .getValue(WhichResult
);
7576 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7577 // shuffles that produce a result larger than their operands with:
7578 // shuffle(concat(v1, undef), concat(v2, undef))
7580 // shuffle(concat(v1, v2), undef)
7581 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7583 // This is useful in the general case, but there are special cases where
7584 // native shuffles produce larger results: the two-result ops.
7586 // Look through the concat when lowering them:
7587 // shuffle(concat(v1, v2), undef)
7589 // concat(VZIP(v1, v2):0, :1)
7591 if (ST
->hasNEON() && V1
->getOpcode() == ISD::CONCAT_VECTORS
&& V2
->isUndef()) {
7592 SDValue SubV1
= V1
->getOperand(0);
7593 SDValue SubV2
= V1
->getOperand(1);
7594 EVT SubVT
= SubV1
.getValueType();
7596 // We expect these to have been canonicalized to -1.
7597 assert(llvm::all_of(ShuffleMask
, [&](int i
) {
7598 return i
< (int)VT
.getVectorNumElements();
7599 }) && "Unexpected shuffle index into UNDEF operand!");
7601 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7602 ShuffleMask
, SubVT
, WhichResult
, isV_UNDEF
)) {
7605 assert((WhichResult
== 0) &&
7606 "In-place shuffle of concat can only have one result!");
7607 SDValue Res
= DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(SubVT
, SubVT
),
7609 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Res
.getValue(0),
7615 // If the shuffle is not directly supported and it has 4 elements, use
7616 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7617 unsigned NumElts
= VT
.getVectorNumElements();
7619 unsigned PFIndexes
[4];
7620 for (unsigned i
= 0; i
!= 4; ++i
) {
7621 if (ShuffleMask
[i
] < 0)
7624 PFIndexes
[i
] = ShuffleMask
[i
];
7627 // Compute the index in the perfect shuffle table.
7628 unsigned PFTableIndex
=
7629 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7630 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7631 unsigned Cost
= (PFEntry
>> 30);
7635 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7636 else if (isLegalMVEShuffleOp(PFEntry
)) {
7637 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7638 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7639 unsigned PFEntryLHS
= PerfectShuffleTable
[LHSID
];
7640 unsigned PFEntryRHS
= PerfectShuffleTable
[RHSID
];
7641 if (isLegalMVEShuffleOp(PFEntryLHS
) && isLegalMVEShuffleOp(PFEntryRHS
))
7642 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7647 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7648 if (EltSize
>= 32) {
7649 // Do the expansion with floating-point types, since that is what the VFP
7650 // registers are defined to use, and since i64 is not legal.
7651 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7652 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7653 V1
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V1
);
7654 V2
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V2
);
7655 SmallVector
<SDValue
, 8> Ops
;
7656 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7657 if (ShuffleMask
[i
] < 0)
7658 Ops
.push_back(DAG
.getUNDEF(EltVT
));
7660 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
7661 ShuffleMask
[i
] < (int)NumElts
? V1
: V2
,
7662 DAG
.getConstant(ShuffleMask
[i
] & (NumElts
-1),
7665 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7666 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7669 if (ST
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) && isReverseMask(ShuffleMask
, VT
))
7670 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op
, DAG
);
7672 if (ST
->hasNEON() && VT
== MVT::v8i8
)
7673 if (SDValue NewOp
= LowerVECTOR_SHUFFLEv8i8(Op
, ShuffleMask
, DAG
))
7679 static SDValue
LowerINSERT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7680 const ARMSubtarget
*ST
) {
7681 EVT VecVT
= Op
.getOperand(0).getValueType();
7684 assert(ST
->hasMVEIntegerOps() &&
7685 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7688 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7689 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
7690 unsigned LaneWidth
=
7691 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7692 unsigned Mask
= ((1 << LaneWidth
) - 1) << Lane
* LaneWidth
;
7693 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
,
7694 Op
.getOperand(1), DAG
.getValueType(MVT::i1
));
7695 SDValue BFI
= DAG
.getNode(ARMISD::BFI
, dl
, MVT::i32
, Conv
, Ext
,
7696 DAG
.getConstant(~Mask
, dl
, MVT::i32
));
7697 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), BFI
);
7700 SDValue
ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
7701 SelectionDAG
&DAG
) const {
7702 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7703 SDValue Lane
= Op
.getOperand(2);
7704 if (!isa
<ConstantSDNode
>(Lane
))
7707 SDValue Elt
= Op
.getOperand(1);
7708 EVT EltVT
= Elt
.getValueType();
7710 if (Subtarget
->hasMVEIntegerOps() &&
7711 Op
.getValueType().getScalarSizeInBits() == 1)
7712 return LowerINSERT_VECTOR_ELT_i1(Op
, DAG
, Subtarget
);
7714 if (getTypeAction(*DAG
.getContext(), EltVT
) ==
7715 TargetLowering::TypePromoteFloat
) {
7716 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7717 // but the type system will try to do that if we don't intervene.
7718 // Reinterpret any such vector-element insertion as one with the
7719 // corresponding integer types.
7723 EVT IEltVT
= MVT::getIntegerVT(EltVT
.getScalarSizeInBits());
7724 assert(getTypeAction(*DAG
.getContext(), IEltVT
) !=
7725 TargetLowering::TypePromoteFloat
);
7727 SDValue VecIn
= Op
.getOperand(0);
7728 EVT VecVT
= VecIn
.getValueType();
7729 EVT IVecVT
= EVT::getVectorVT(*DAG
.getContext(), IEltVT
,
7730 VecVT
.getVectorNumElements());
7732 SDValue IElt
= DAG
.getNode(ISD::BITCAST
, dl
, IEltVT
, Elt
);
7733 SDValue IVecIn
= DAG
.getNode(ISD::BITCAST
, dl
, IVecVT
, VecIn
);
7734 SDValue IVecOut
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, IVecVT
,
7735 IVecIn
, IElt
, Lane
);
7736 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, IVecOut
);
7742 static SDValue
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7743 const ARMSubtarget
*ST
) {
7744 EVT VecVT
= Op
.getOperand(0).getValueType();
7747 assert(ST
->hasMVEIntegerOps() &&
7748 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7751 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7752 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
7753 unsigned LaneWidth
=
7754 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7755 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Conv
,
7756 DAG
.getConstant(Lane
* LaneWidth
, dl
, MVT::i32
));
7760 static SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
,
7761 const ARMSubtarget
*ST
) {
7762 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7763 SDValue Lane
= Op
.getOperand(1);
7764 if (!isa
<ConstantSDNode
>(Lane
))
7767 SDValue Vec
= Op
.getOperand(0);
7768 EVT VT
= Vec
.getValueType();
7770 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7771 return LowerEXTRACT_VECTOR_ELT_i1(Op
, DAG
, ST
);
7773 if (Op
.getValueType() == MVT::i32
&& Vec
.getScalarValueSizeInBits() < 32) {
7775 return DAG
.getNode(ARMISD::VGETLANEu
, dl
, MVT::i32
, Vec
, Lane
);
7781 static SDValue
LowerCONCAT_VECTORS_i1(SDValue Op
, SelectionDAG
&DAG
,
7782 const ARMSubtarget
*ST
) {
7783 SDValue V1
= Op
.getOperand(0);
7784 SDValue V2
= Op
.getOperand(1);
7786 EVT VT
= Op
.getValueType();
7787 EVT Op1VT
= V1
.getValueType();
7788 EVT Op2VT
= V2
.getValueType();
7789 unsigned NumElts
= VT
.getVectorNumElements();
7791 assert(Op1VT
== Op2VT
&& "Operand types don't match!");
7792 assert(VT
.getScalarSizeInBits() == 1 &&
7793 "Unexpected custom CONCAT_VECTORS lowering");
7794 assert(ST
->hasMVEIntegerOps() &&
7795 "CONCAT_VECTORS lowering only supported for MVE");
7797 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7798 SDValue NewV2
= PromoteMVEPredVector(dl
, V2
, Op2VT
, DAG
);
7800 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
7801 // promoted to v8i16, etc.
7803 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
7805 // Extract the vector elements from Op1 and Op2 one by one and truncate them
7806 // to be the right size for the destination. For example, if Op1 is v4i1 then
7807 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
7808 // which when promoted is v8i16. That means each i32 element from Op1 needs
7809 // truncating to i16 and inserting in the result.
7810 EVT ConcatVT
= MVT::getVectorVT(ElType
, NumElts
);
7811 SDValue ConVec
= DAG
.getNode(ISD::UNDEF
, dl
, ConcatVT
);
7812 auto ExractInto
= [&DAG
, &dl
](SDValue NewV
, SDValue ConVec
, unsigned &j
) {
7813 EVT NewVT
= NewV
.getValueType();
7814 EVT ConcatVT
= ConVec
.getValueType();
7815 for (unsigned i
= 0, e
= NewVT
.getVectorNumElements(); i
< e
; i
++, j
++) {
7816 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV
,
7817 DAG
.getIntPtrConstant(i
, dl
));
7818 ConVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, ConcatVT
, ConVec
, Elt
,
7819 DAG
.getConstant(j
, dl
, MVT::i32
));
7824 ConVec
= ExractInto(NewV1
, ConVec
, j
);
7825 ConVec
= ExractInto(NewV2
, ConVec
, j
);
7827 // Now return the result of comparing the subvector with zero,
7828 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7829 return DAG
.getNode(ARMISD::VCNEZ
, dl
, VT
, ConVec
);
7832 static SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
,
7833 const ARMSubtarget
*ST
) {
7834 EVT VT
= Op
->getValueType(0);
7835 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7836 return LowerCONCAT_VECTORS_i1(Op
, DAG
, ST
);
7838 // The only time a CONCAT_VECTORS operation can have legal types is when
7839 // two 64-bit vectors are concatenated to a 128-bit vector.
7840 assert(Op
.getValueType().is128BitVector() && Op
.getNumOperands() == 2 &&
7841 "unexpected CONCAT_VECTORS");
7843 SDValue Val
= DAG
.getUNDEF(MVT::v2f64
);
7844 SDValue Op0
= Op
.getOperand(0);
7845 SDValue Op1
= Op
.getOperand(1);
7847 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
7848 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op0
),
7849 DAG
.getIntPtrConstant(0, dl
));
7851 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
7852 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op1
),
7853 DAG
.getIntPtrConstant(1, dl
));
7854 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Val
);
7857 static SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
,
7858 const ARMSubtarget
*ST
) {
7859 SDValue V1
= Op
.getOperand(0);
7860 SDValue V2
= Op
.getOperand(1);
7862 EVT VT
= Op
.getValueType();
7863 EVT Op1VT
= V1
.getValueType();
7864 unsigned NumElts
= VT
.getVectorNumElements();
7865 unsigned Index
= cast
<ConstantSDNode
>(V2
)->getZExtValue();
7867 assert(VT
.getScalarSizeInBits() == 1 &&
7868 "Unexpected custom EXTRACT_SUBVECTOR lowering");
7869 assert(ST
->hasMVEIntegerOps() &&
7870 "EXTRACT_SUBVECTOR lowering only supported for MVE");
7872 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7874 // We now have Op1 promoted to a vector of integers, where v8i1 gets
7875 // promoted to v8i16, etc.
7877 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
7879 EVT SubVT
= MVT::getVectorVT(ElType
, NumElts
);
7880 SDValue SubVec
= DAG
.getNode(ISD::UNDEF
, dl
, SubVT
);
7881 for (unsigned i
= Index
, j
= 0; i
< (Index
+ NumElts
); i
++, j
++) {
7882 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV1
,
7883 DAG
.getIntPtrConstant(i
, dl
));
7884 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
7885 DAG
.getConstant(j
, dl
, MVT::i32
));
7888 // Now return the result of comparing the subvector with zero,
7889 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7890 return DAG
.getNode(ARMISD::VCNEZ
, dl
, VT
, SubVec
);
7893 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
7894 /// element has been zero/sign-extended, depending on the isSigned parameter,
7895 /// from an integer type half its size.
7896 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
7898 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
7899 EVT VT
= N
->getValueType(0);
7900 if (VT
== MVT::v2i64
&& N
->getOpcode() == ISD::BITCAST
) {
7901 SDNode
*BVN
= N
->getOperand(0).getNode();
7902 if (BVN
->getValueType(0) != MVT::v4i32
||
7903 BVN
->getOpcode() != ISD::BUILD_VECTOR
)
7905 unsigned LoElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
7906 unsigned HiElt
= 1 - LoElt
;
7907 ConstantSDNode
*Lo0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
));
7908 ConstantSDNode
*Hi0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
));
7909 ConstantSDNode
*Lo1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
+2));
7910 ConstantSDNode
*Hi1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
+2));
7911 if (!Lo0
|| !Hi0
|| !Lo1
|| !Hi1
)
7914 if (Hi0
->getSExtValue() == Lo0
->getSExtValue() >> 32 &&
7915 Hi1
->getSExtValue() == Lo1
->getSExtValue() >> 32)
7918 if (Hi0
->isNullValue() && Hi1
->isNullValue())
7924 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
7927 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
7928 SDNode
*Elt
= N
->getOperand(i
).getNode();
7929 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
7930 unsigned EltSize
= VT
.getScalarSizeInBits();
7931 unsigned HalfSize
= EltSize
/ 2;
7933 if (!isIntN(HalfSize
, C
->getSExtValue()))
7936 if (!isUIntN(HalfSize
, C
->getZExtValue()))
7947 /// isSignExtended - Check if a node is a vector value that is sign-extended
7948 /// or a constant BUILD_VECTOR with sign-extended elements.
7949 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
7950 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| ISD::isSEXTLoad(N
))
7952 if (isExtendedBUILD_VECTOR(N
, DAG
, true))
7957 /// isZeroExtended - Check if a node is a vector value that is zero-extended
7958 /// or a constant BUILD_VECTOR with zero-extended elements.
7959 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
7960 if (N
->getOpcode() == ISD::ZERO_EXTEND
|| ISD::isZEXTLoad(N
))
7962 if (isExtendedBUILD_VECTOR(N
, DAG
, false))
7967 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
7968 if (OrigVT
.getSizeInBits() >= 64)
7971 assert(OrigVT
.isSimple() && "Expecting a simple value type");
7973 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
7974 switch (OrigSimpleTy
) {
7975 default: llvm_unreachable("Unexpected Vector Type");
7984 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
7985 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
7986 /// We insert the required extension here to get the vector to fill a D register.
7987 static SDValue
AddRequiredExtensionForVMULL(SDValue N
, SelectionDAG
&DAG
,
7990 unsigned ExtOpcode
) {
7991 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
7992 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
7993 // 64-bits we need to insert a new extension so that it will be 64-bits.
7994 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
7995 if (OrigTy
.getSizeInBits() >= 64)
7998 // Must extend size to at least 64 bits to be used as an operand for VMULL.
7999 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
8001 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
8004 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8005 /// does not do any sign/zero extension. If the original vector is less
8006 /// than 64 bits, an appropriate extension will be added after the load to
8007 /// reach a total size of 64 bits. We have to add the extension separately
8008 /// because ARM does not have a sign/zero extending load for vectors.
8009 static SDValue
SkipLoadExtensionForVMULL(LoadSDNode
*LD
, SelectionDAG
& DAG
) {
8010 EVT ExtendedTy
= getExtensionTo64Bits(LD
->getMemoryVT());
8012 // The load already has the right type.
8013 if (ExtendedTy
== LD
->getMemoryVT())
8014 return DAG
.getLoad(LD
->getMemoryVT(), SDLoc(LD
), LD
->getChain(),
8015 LD
->getBasePtr(), LD
->getPointerInfo(),
8016 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
8018 // We need to create a zextload/sextload. We cannot just create a load
8019 // followed by a zext/zext node because LowerMUL is also run during normal
8020 // operation legalization where we can't create illegal types.
8021 return DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
), ExtendedTy
,
8022 LD
->getChain(), LD
->getBasePtr(), LD
->getPointerInfo(),
8023 LD
->getMemoryVT(), LD
->getAlignment(),
8024 LD
->getMemOperand()->getFlags());
8027 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8028 /// extending load, or BUILD_VECTOR with extended elements, return the
8029 /// unextended value. The unextended vector should be 64 bits so that it can
8030 /// be used as an operand to a VMULL instruction. If the original vector size
8031 /// before extension is less than 64 bits we add a an extension to resize
8032 /// the vector to 64 bits.
8033 static SDValue
SkipExtensionForVMULL(SDNode
*N
, SelectionDAG
&DAG
) {
8034 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
8035 return AddRequiredExtensionForVMULL(N
->getOperand(0), DAG
,
8036 N
->getOperand(0)->getValueType(0),
8040 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
8041 assert((ISD::isSEXTLoad(LD
) || ISD::isZEXTLoad(LD
)) &&
8042 "Expected extending load");
8044 SDValue newLoad
= SkipLoadExtensionForVMULL(LD
, DAG
);
8045 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), newLoad
.getValue(1));
8046 unsigned Opcode
= ISD::isSEXTLoad(LD
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8048 DAG
.getNode(Opcode
, SDLoc(newLoad
), LD
->getValueType(0), newLoad
);
8049 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 0), extLoad
);
8054 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8055 // have been legalized as a BITCAST from v4i32.
8056 if (N
->getOpcode() == ISD::BITCAST
) {
8057 SDNode
*BVN
= N
->getOperand(0).getNode();
8058 assert(BVN
->getOpcode() == ISD::BUILD_VECTOR
&&
8059 BVN
->getValueType(0) == MVT::v4i32
&& "expected v4i32 BUILD_VECTOR");
8060 unsigned LowElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8061 return DAG
.getBuildVector(
8062 MVT::v2i32
, SDLoc(N
),
8063 {BVN
->getOperand(LowElt
), BVN
->getOperand(LowElt
+ 2)});
8065 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8066 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
8067 EVT VT
= N
->getValueType(0);
8068 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
8069 unsigned NumElts
= VT
.getVectorNumElements();
8070 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
8071 SmallVector
<SDValue
, 8> Ops
;
8073 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
8074 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
8075 const APInt
&CInt
= C
->getAPIntValue();
8076 // Element types smaller than 32 bits are not legal, so use i32 elements.
8077 // The values are implicitly truncated so sext vs. zext doesn't matter.
8078 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
8080 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
8083 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
8084 unsigned Opcode
= N
->getOpcode();
8085 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8086 SDNode
*N0
= N
->getOperand(0).getNode();
8087 SDNode
*N1
= N
->getOperand(1).getNode();
8088 return N0
->hasOneUse() && N1
->hasOneUse() &&
8089 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
8094 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
8095 unsigned Opcode
= N
->getOpcode();
8096 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8097 SDNode
*N0
= N
->getOperand(0).getNode();
8098 SDNode
*N1
= N
->getOperand(1).getNode();
8099 return N0
->hasOneUse() && N1
->hasOneUse() &&
8100 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
8105 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
8106 // Multiplications are only custom-lowered for 128-bit vectors so that
8107 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8108 EVT VT
= Op
.getValueType();
8109 assert(VT
.is128BitVector() && VT
.isInteger() &&
8110 "unexpected type for custom-lowering ISD::MUL");
8111 SDNode
*N0
= Op
.getOperand(0).getNode();
8112 SDNode
*N1
= Op
.getOperand(1).getNode();
8113 unsigned NewOpc
= 0;
8115 bool isN0SExt
= isSignExtended(N0
, DAG
);
8116 bool isN1SExt
= isSignExtended(N1
, DAG
);
8117 if (isN0SExt
&& isN1SExt
)
8118 NewOpc
= ARMISD::VMULLs
;
8120 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
8121 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
8122 if (isN0ZExt
&& isN1ZExt
)
8123 NewOpc
= ARMISD::VMULLu
;
8124 else if (isN1SExt
|| isN1ZExt
) {
8125 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8126 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8127 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
8128 NewOpc
= ARMISD::VMULLs
;
8130 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
8131 NewOpc
= ARMISD::VMULLu
;
8133 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
8135 NewOpc
= ARMISD::VMULLu
;
8141 if (VT
== MVT::v2i64
)
8142 // Fall through to expand this. It is not legal.
8145 // Other vector multiplications are legal.
8150 // Legalize to a VMULL instruction.
8153 SDValue Op1
= SkipExtensionForVMULL(N1
, DAG
);
8155 Op0
= SkipExtensionForVMULL(N0
, DAG
);
8156 assert(Op0
.getValueType().is64BitVector() &&
8157 Op1
.getValueType().is64BitVector() &&
8158 "unexpected types for extended operands to VMULL");
8159 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
8162 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8163 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8170 SDValue N00
= SkipExtensionForVMULL(N0
->getOperand(0).getNode(), DAG
);
8171 SDValue N01
= SkipExtensionForVMULL(N0
->getOperand(1).getNode(), DAG
);
8172 EVT Op1VT
= Op1
.getValueType();
8173 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
8174 DAG
.getNode(NewOpc
, DL
, VT
,
8175 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
8176 DAG
.getNode(NewOpc
, DL
, VT
,
8177 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
8180 static SDValue
LowerSDIV_v4i8(SDValue X
, SDValue Y
, const SDLoc
&dl
,
8181 SelectionDAG
&DAG
) {
8182 // TODO: Should this propagate fast-math-flags?
8185 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8186 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8187 X
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, X
);
8188 Y
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, Y
);
8189 X
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, X
);
8190 Y
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, Y
);
8191 // Get reciprocal estimate.
8192 // float4 recip = vrecpeq_f32(yf);
8193 Y
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8194 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8196 // Because char has a smaller range than uchar, we can actually get away
8197 // without any newton steps. This requires that we use a weird bias
8198 // of 0xb000, however (again, this has been exhaustively tested).
8199 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8200 X
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, X
, Y
);
8201 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, X
);
8202 Y
= DAG
.getConstant(0xb000, dl
, MVT::v4i32
);
8203 X
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, X
, Y
);
8204 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, X
);
8205 // Convert back to short.
8206 X
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, X
);
8207 X
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, X
);
8211 static SDValue
LowerSDIV_v4i16(SDValue N0
, SDValue N1
, const SDLoc
&dl
,
8212 SelectionDAG
&DAG
) {
8213 // TODO: Should this propagate fast-math-flags?
8216 // Convert to float.
8217 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8218 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8219 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N0
);
8220 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N1
);
8221 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8222 N1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8224 // Use reciprocal estimate and one refinement step.
8225 // float4 recip = vrecpeq_f32(yf);
8226 // recip *= vrecpsq_f32(yf, recip);
8227 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8228 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8230 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8231 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8233 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8234 // Because short has a smaller range than ushort, we can actually get away
8235 // with only a single newton step. This requires that we use a weird bias
8236 // of 89, however (again, this has been exhaustively tested).
8237 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8238 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8239 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8240 N1
= DAG
.getConstant(0x89, dl
, MVT::v4i32
);
8241 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8242 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8243 // Convert back to integer and return.
8244 // return vmovn_s32(vcvt_s32_f32(result));
8245 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8246 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8250 static SDValue
LowerSDIV(SDValue Op
, SelectionDAG
&DAG
,
8251 const ARMSubtarget
*ST
) {
8252 EVT VT
= Op
.getValueType();
8253 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8254 "unexpected type for custom-lowering ISD::SDIV");
8257 SDValue N0
= Op
.getOperand(0);
8258 SDValue N1
= Op
.getOperand(1);
8261 if (VT
== MVT::v8i8
) {
8262 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N0
);
8263 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N1
);
8265 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8266 DAG
.getIntPtrConstant(4, dl
));
8267 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8268 DAG
.getIntPtrConstant(4, dl
));
8269 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8270 DAG
.getIntPtrConstant(0, dl
));
8271 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8272 DAG
.getIntPtrConstant(0, dl
));
8274 N0
= LowerSDIV_v4i8(N0
, N1
, dl
, DAG
); // v4i16
8275 N2
= LowerSDIV_v4i8(N2
, N3
, dl
, DAG
); // v4i16
8277 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8278 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8280 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v8i8
, N0
);
8283 return LowerSDIV_v4i16(N0
, N1
, dl
, DAG
);
8286 static SDValue
LowerUDIV(SDValue Op
, SelectionDAG
&DAG
,
8287 const ARMSubtarget
*ST
) {
8288 // TODO: Should this propagate fast-math-flags?
8289 EVT VT
= Op
.getValueType();
8290 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8291 "unexpected type for custom-lowering ISD::UDIV");
8294 SDValue N0
= Op
.getOperand(0);
8295 SDValue N1
= Op
.getOperand(1);
8298 if (VT
== MVT::v8i8
) {
8299 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N0
);
8300 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N1
);
8302 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8303 DAG
.getIntPtrConstant(4, dl
));
8304 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8305 DAG
.getIntPtrConstant(4, dl
));
8306 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8307 DAG
.getIntPtrConstant(0, dl
));
8308 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8309 DAG
.getIntPtrConstant(0, dl
));
8311 N0
= LowerSDIV_v4i16(N0
, N1
, dl
, DAG
); // v4i16
8312 N2
= LowerSDIV_v4i16(N2
, N3
, dl
, DAG
); // v4i16
8314 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8315 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8317 N0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v8i8
,
8318 DAG
.getConstant(Intrinsic::arm_neon_vqmovnsu
, dl
,
8324 // v4i16 sdiv ... Convert to float.
8325 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8326 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8327 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N0
);
8328 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N1
);
8329 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8330 SDValue BN1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8332 // Use reciprocal estimate and two refinement steps.
8333 // float4 recip = vrecpeq_f32(yf);
8334 // recip *= vrecpsq_f32(yf, recip);
8335 // recip *= vrecpsq_f32(yf, recip);
8336 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8337 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8339 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8340 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8342 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8343 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8344 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8346 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8347 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8348 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8349 // and that it will never cause us to return an answer too large).
8350 // float4 result = as_float4(as_int4(xf*recip) + 2);
8351 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8352 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8353 N1
= DAG
.getConstant(2, dl
, MVT::v4i32
);
8354 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8355 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8356 // Convert back to integer and return.
8357 // return vmovn_u32(vcvt_s32_f32(result));
8358 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8359 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8363 static SDValue
LowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) {
8364 SDNode
*N
= Op
.getNode();
8365 EVT VT
= N
->getValueType(0);
8366 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
8368 SDValue Carry
= Op
.getOperand(2);
8373 if (Op
.getOpcode() == ISD::ADDCARRY
) {
8374 // This converts the boolean value carry into the carry flag.
8375 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8377 // Do the addition proper using the carry flag we wanted.
8378 Result
= DAG
.getNode(ARMISD::ADDE
, DL
, VTs
, Op
.getOperand(0),
8379 Op
.getOperand(1), Carry
);
8381 // Now convert the carry flag into a boolean value.
8382 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8384 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8385 // have to invert the carry first.
8386 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8387 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8388 // This converts the boolean value carry into the carry flag.
8389 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8391 // Do the subtraction proper using the carry flag we wanted.
8392 Result
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, Op
.getOperand(0),
8393 Op
.getOperand(1), Carry
);
8395 // Now convert the carry flag into a boolean value.
8396 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8397 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8398 // by ISD::SUBCARRY, so compute 1 - C.
8399 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8400 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8403 // Return both values.
8404 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Result
, Carry
);
8407 SDValue
ARMTargetLowering::LowerFSINCOS(SDValue Op
, SelectionDAG
&DAG
) const {
8408 assert(Subtarget
->isTargetDarwin());
8410 // For iOS, we want to call an alternative entry point: __sincos_stret,
8411 // return values are passed via sret.
8413 SDValue Arg
= Op
.getOperand(0);
8414 EVT ArgVT
= Arg
.getValueType();
8415 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
8416 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
8418 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
8419 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8421 // Pair of floats / doubles used to pass the result.
8422 Type
*RetTy
= StructType::get(ArgTy
, ArgTy
);
8423 auto &DL
= DAG
.getDataLayout();
8426 bool ShouldUseSRet
= Subtarget
->isAPCS_ABI();
8428 if (ShouldUseSRet
) {
8429 // Create stack object for sret.
8430 const uint64_t ByteSize
= DL
.getTypeAllocSize(RetTy
);
8431 const unsigned StackAlign
= DL
.getPrefTypeAlignment(RetTy
);
8432 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
8433 SRet
= DAG
.getFrameIndex(FrameIdx
, TLI
.getPointerTy(DL
));
8437 Entry
.Ty
= RetTy
->getPointerTo();
8438 Entry
.IsSExt
= false;
8439 Entry
.IsZExt
= false;
8440 Entry
.IsSRet
= true;
8441 Args
.push_back(Entry
);
8442 RetTy
= Type::getVoidTy(*DAG
.getContext());
8448 Entry
.IsSExt
= false;
8449 Entry
.IsZExt
= false;
8450 Args
.push_back(Entry
);
8453 (ArgVT
== MVT::f64
) ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32
;
8454 const char *LibcallName
= getLibcallName(LC
);
8455 CallingConv::ID CC
= getLibcallCallingConv(LC
);
8456 SDValue Callee
= DAG
.getExternalSymbol(LibcallName
, getPointerTy(DL
));
8458 TargetLowering::CallLoweringInfo
CLI(DAG
);
8460 .setChain(DAG
.getEntryNode())
8461 .setCallee(CC
, RetTy
, Callee
, std::move(Args
))
8462 .setDiscardResult(ShouldUseSRet
);
8463 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
8466 return CallResult
.first
;
8469 DAG
.getLoad(ArgVT
, dl
, CallResult
.second
, SRet
, MachinePointerInfo());
8471 // Address of cos field.
8472 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SRet
,
8473 DAG
.getIntPtrConstant(ArgVT
.getStoreSize(), dl
));
8475 DAG
.getLoad(ArgVT
, dl
, LoadSin
.getValue(1), Add
, MachinePointerInfo());
8477 SDVTList Tys
= DAG
.getVTList(ArgVT
, ArgVT
);
8478 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Tys
,
8479 LoadSin
.getValue(0), LoadCos
.getValue(0));
8482 SDValue
ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op
, SelectionDAG
&DAG
,
8484 SDValue
&Chain
) const {
8485 EVT VT
= Op
.getValueType();
8486 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
8487 "unexpected type for custom lowering DIV");
8490 const auto &DL
= DAG
.getDataLayout();
8491 const auto &TLI
= DAG
.getTargetLoweringInfo();
8493 const char *Name
= nullptr;
8495 Name
= (VT
== MVT::i32
) ? "__rt_sdiv" : "__rt_sdiv64";
8497 Name
= (VT
== MVT::i32
) ? "__rt_udiv" : "__rt_udiv64";
8499 SDValue ES
= DAG
.getExternalSymbol(Name
, TLI
.getPointerTy(DL
));
8501 ARMTargetLowering::ArgListTy Args
;
8503 for (auto AI
: {1, 0}) {
8505 Arg
.Node
= Op
.getOperand(AI
);
8506 Arg
.Ty
= Arg
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
8507 Args
.push_back(Arg
);
8510 CallLoweringInfo
CLI(DAG
);
8513 .setCallee(CallingConv::ARM_AAPCS_VFP
, VT
.getTypeForEVT(*DAG
.getContext()),
8514 ES
, std::move(Args
));
8516 return LowerCallTo(CLI
).first
;
8519 // This is a code size optimisation: return the original SDIV node to
8520 // DAGCombiner when we don't want to expand SDIV into a sequence of
8521 // instructions, and an empty node otherwise which will cause the
8522 // SDIV to be expanded in DAGCombine.
8524 ARMTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
8526 SmallVectorImpl
<SDNode
*> &Created
) const {
8527 // TODO: Support SREM
8528 if (N
->getOpcode() != ISD::SDIV
)
8531 const auto &ST
= static_cast<const ARMSubtarget
&>(DAG
.getSubtarget());
8532 const bool MinSize
= ST
.hasMinSize();
8533 const bool HasDivide
= ST
.isThumb() ? ST
.hasDivideInThumbMode()
8534 : ST
.hasDivideInARMMode();
8536 // Don't touch vector types; rewriting this may lead to scalarizing
8538 if (N
->getOperand(0).getValueType().isVector())
8541 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8542 // hwdiv support for this to be really profitable.
8543 if (!(MinSize
&& HasDivide
))
8546 // ARM mode is a bit simpler than Thumb: we can handle large power
8547 // of 2 immediates with 1 mov instruction; no further checks required,
8548 // just return the sdiv node.
8550 return SDValue(N
, 0);
8552 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8553 // and thus lose the code size benefits of a MOVS that requires only 2.
8554 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8555 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8556 if (Divisor
.sgt(128))
8559 return SDValue(N
, 0);
8562 SDValue
ARMTargetLowering::LowerDIV_Windows(SDValue Op
, SelectionDAG
&DAG
,
8563 bool Signed
) const {
8564 assert(Op
.getValueType() == MVT::i32
&&
8565 "unexpected type for custom lowering DIV");
8568 SDValue DBZCHK
= DAG
.getNode(ARMISD::WIN__DBZCHK
, dl
, MVT::Other
,
8569 DAG
.getEntryNode(), Op
.getOperand(1));
8571 return LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8574 static SDValue
WinDBZCheckDenominator(SelectionDAG
&DAG
, SDNode
*N
, SDValue InChain
) {
8576 SDValue Op
= N
->getOperand(1);
8577 if (N
->getValueType(0) == MVT::i32
)
8578 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
, Op
);
8579 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8580 DAG
.getConstant(0, DL
, MVT::i32
));
8581 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8582 DAG
.getConstant(1, DL
, MVT::i32
));
8583 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
,
8584 DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Lo
, Hi
));
8587 void ARMTargetLowering::ExpandDIV_Windows(
8588 SDValue Op
, SelectionDAG
&DAG
, bool Signed
,
8589 SmallVectorImpl
<SDValue
> &Results
) const {
8590 const auto &DL
= DAG
.getDataLayout();
8591 const auto &TLI
= DAG
.getTargetLoweringInfo();
8593 assert(Op
.getValueType() == MVT::i64
&&
8594 "unexpected type for custom lowering DIV");
8597 SDValue DBZCHK
= WinDBZCheckDenominator(DAG
, Op
.getNode(), DAG
.getEntryNode());
8599 SDValue Result
= LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8601 SDValue Lower
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Result
);
8602 SDValue Upper
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Result
,
8603 DAG
.getConstant(32, dl
, TLI
.getPointerTy(DL
)));
8604 Upper
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Upper
);
8606 Results
.push_back(Lower
);
8607 Results
.push_back(Upper
);
8610 static SDValue
LowerAtomicLoadStore(SDValue Op
, SelectionDAG
&DAG
) {
8611 if (isStrongerThanMonotonic(cast
<AtomicSDNode
>(Op
)->getOrdering()))
8612 // Acquire/Release load/store is not legal for targets without a dmb or
8613 // equivalent available.
8616 // Monotonic load/store is legal for all targets.
8620 static void ReplaceREADCYCLECOUNTER(SDNode
*N
,
8621 SmallVectorImpl
<SDValue
> &Results
,
8623 const ARMSubtarget
*Subtarget
) {
8625 // Under Power Management extensions, the cycle-count is:
8626 // mrc p15, #0, <Rt>, c9, c13, #0
8627 SDValue Ops
[] = { N
->getOperand(0), // Chain
8628 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
8629 DAG
.getConstant(15, DL
, MVT::i32
),
8630 DAG
.getConstant(0, DL
, MVT::i32
),
8631 DAG
.getConstant(9, DL
, MVT::i32
),
8632 DAG
.getConstant(13, DL
, MVT::i32
),
8633 DAG
.getConstant(0, DL
, MVT::i32
)
8636 SDValue Cycles32
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
8637 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
8638 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Cycles32
,
8639 DAG
.getConstant(0, DL
, MVT::i32
)));
8640 Results
.push_back(Cycles32
.getValue(1));
8643 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
8644 SDLoc
dl(V
.getNode());
8645 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i32
);
8646 SDValue VHi
= DAG
.getAnyExtOrTrunc(
8647 DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, V
, DAG
.getConstant(32, dl
, MVT::i32
)),
8649 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8651 std::swap (VLo
, VHi
);
8653 DAG
.getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
8654 SDValue SubReg0
= DAG
.getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
8655 SDValue SubReg1
= DAG
.getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
8656 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
8658 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
8661 static void ReplaceCMP_SWAP_64Results(SDNode
*N
,
8662 SmallVectorImpl
<SDValue
> & Results
,
8663 SelectionDAG
&DAG
) {
8664 assert(N
->getValueType(0) == MVT::i64
&&
8665 "AtomicCmpSwap on types less than 64 should be legal");
8666 SDValue Ops
[] = {N
->getOperand(1),
8667 createGPRPairNode(DAG
, N
->getOperand(2)),
8668 createGPRPairNode(DAG
, N
->getOperand(3)),
8670 SDNode
*CmpSwap
= DAG
.getMachineNode(
8671 ARM::CMP_SWAP_64
, SDLoc(N
),
8672 DAG
.getVTList(MVT::Untyped
, MVT::i32
, MVT::Other
), Ops
);
8674 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
8675 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
8677 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8680 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_1
: ARM::gsub_0
,
8681 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8683 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_0
: ARM::gsub_1
,
8684 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8685 Results
.push_back(SDValue(CmpSwap
, 2));
8688 static SDValue
LowerFPOWI(SDValue Op
, const ARMSubtarget
&Subtarget
,
8689 SelectionDAG
&DAG
) {
8690 const auto &TLI
= DAG
.getTargetLoweringInfo();
8692 assert(Subtarget
.getTargetTriple().isOSMSVCRT() &&
8693 "Custom lowering is MSVCRT specific!");
8696 SDValue Val
= Op
.getOperand(0);
8697 MVT Ty
= Val
->getSimpleValueType(0);
8698 SDValue Exponent
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, Ty
, Op
.getOperand(1));
8699 SDValue Callee
= DAG
.getExternalSymbol(Ty
== MVT::f32
? "powf" : "pow",
8700 TLI
.getPointerTy(DAG
.getDataLayout()));
8702 TargetLowering::ArgListTy Args
;
8703 TargetLowering::ArgListEntry Entry
;
8706 Entry
.Ty
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8707 Entry
.IsZExt
= true;
8708 Args
.push_back(Entry
);
8710 Entry
.Node
= Exponent
;
8711 Entry
.Ty
= Exponent
.getValueType().getTypeForEVT(*DAG
.getContext());
8712 Entry
.IsZExt
= true;
8713 Args
.push_back(Entry
);
8715 Type
*LCRTy
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8717 // In the in-chain to the call is the entry node If we are emitting a
8718 // tailcall, the chain will be mutated if the node has a non-entry input
8720 SDValue InChain
= DAG
.getEntryNode();
8721 SDValue TCChain
= InChain
;
8723 const Function
&F
= DAG
.getMachineFunction().getFunction();
8724 bool IsTC
= TLI
.isInTailCallPosition(DAG
, Op
.getNode(), TCChain
) &&
8725 F
.getReturnType() == LCRTy
;
8729 TargetLowering::CallLoweringInfo
CLI(DAG
);
8732 .setCallee(CallingConv::ARM_AAPCS_VFP
, LCRTy
, Callee
, std::move(Args
))
8734 std::pair
<SDValue
, SDValue
> CI
= TLI
.LowerCallTo(CLI
);
8736 // Return the chain (the DAG root) if it is a tail call
8737 return !CI
.second
.getNode() ? DAG
.getRoot() : CI
.first
;
8740 SDValue
ARMTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
8741 LLVM_DEBUG(dbgs() << "Lowering node: "; Op
.dump());
8742 switch (Op
.getOpcode()) {
8743 default: llvm_unreachable("Don't know how to custom lower this!");
8744 case ISD::WRITE_REGISTER
: return LowerWRITE_REGISTER(Op
, DAG
);
8745 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
8746 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
8747 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
8748 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
8749 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
8750 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
8751 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
8752 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
8753 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
8754 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
8755 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
, Subtarget
);
8756 case ISD::PREFETCH
: return LowerPREFETCH(Op
, DAG
, Subtarget
);
8757 case ISD::SINT_TO_FP
:
8758 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
8759 case ISD::FP_TO_SINT
:
8760 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
8761 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
8762 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
8763 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
8764 case ISD::EH_SJLJ_SETJMP
: return LowerEH_SJLJ_SETJMP(Op
, DAG
);
8765 case ISD::EH_SJLJ_LONGJMP
: return LowerEH_SJLJ_LONGJMP(Op
, DAG
);
8766 case ISD::EH_SJLJ_SETUP_DISPATCH
: return LowerEH_SJLJ_SETUP_DISPATCH(Op
, DAG
);
8767 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
,
8769 case ISD::BITCAST
: return ExpandBITCAST(Op
.getNode(), DAG
, Subtarget
);
8772 case ISD::SRA
: return LowerShift(Op
.getNode(), DAG
, Subtarget
);
8773 case ISD::SREM
: return LowerREM(Op
.getNode(), DAG
);
8774 case ISD::UREM
: return LowerREM(Op
.getNode(), DAG
);
8775 case ISD::SHL_PARTS
: return LowerShiftLeftParts(Op
, DAG
);
8776 case ISD::SRL_PARTS
:
8777 case ISD::SRA_PARTS
: return LowerShiftRightParts(Op
, DAG
);
8779 case ISD::CTTZ_ZERO_UNDEF
: return LowerCTTZ(Op
.getNode(), DAG
, Subtarget
);
8780 case ISD::CTPOP
: return LowerCTPOP(Op
.getNode(), DAG
, Subtarget
);
8781 case ISD::SETCC
: return LowerVSETCC(Op
, DAG
, Subtarget
);
8782 case ISD::SETCCCARRY
: return LowerSETCCCARRY(Op
, DAG
);
8783 case ISD::ConstantFP
: return LowerConstantFP(Op
, DAG
, Subtarget
);
8784 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
8785 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
8786 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
, Subtarget
);
8787 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
8788 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
, Subtarget
);
8789 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
, Subtarget
);
8790 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
8791 case ISD::MUL
: return LowerMUL(Op
, DAG
);
8793 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8794 return LowerDIV_Windows(Op
, DAG
, /* Signed */ true);
8795 return LowerSDIV(Op
, DAG
, Subtarget
);
8797 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8798 return LowerDIV_Windows(Op
, DAG
, /* Signed */ false);
8799 return LowerUDIV(Op
, DAG
, Subtarget
);
8801 case ISD::SUBCARRY
: return LowerADDSUBCARRY(Op
, DAG
);
8804 return LowerSignedALUO(Op
, DAG
);
8807 return LowerUnsignedALUO(Op
, DAG
);
8808 case ISD::ATOMIC_LOAD
:
8809 case ISD::ATOMIC_STORE
: return LowerAtomicLoadStore(Op
, DAG
);
8810 case ISD::FSINCOS
: return LowerFSINCOS(Op
, DAG
);
8812 case ISD::UDIVREM
: return LowerDivRem(Op
, DAG
);
8813 case ISD::DYNAMIC_STACKALLOC
:
8814 if (Subtarget
->isTargetWindows())
8815 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
8816 llvm_unreachable("Don't know how to custom lower this!");
8817 case ISD::FP_ROUND
: return LowerFP_ROUND(Op
, DAG
);
8818 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
8819 case ISD::FPOWI
: return LowerFPOWI(Op
, *Subtarget
, DAG
);
8820 case ARMISD::WIN__DBZCHK
: return SDValue();
8824 static void ReplaceLongIntrinsic(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
8825 SelectionDAG
&DAG
) {
8826 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
8828 if (IntNo
== Intrinsic::arm_smlald
)
8829 Opc
= ARMISD::SMLALD
;
8830 else if (IntNo
== Intrinsic::arm_smlaldx
)
8831 Opc
= ARMISD::SMLALDX
;
8832 else if (IntNo
== Intrinsic::arm_smlsld
)
8833 Opc
= ARMISD::SMLSLD
;
8834 else if (IntNo
== Intrinsic::arm_smlsldx
)
8835 Opc
= ARMISD::SMLSLDX
;
8840 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
8842 DAG
.getConstant(0, dl
, MVT::i32
));
8843 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
8845 DAG
.getConstant(1, dl
, MVT::i32
));
8847 SDValue LongMul
= DAG
.getNode(Opc
, dl
,
8848 DAG
.getVTList(MVT::i32
, MVT::i32
),
8849 N
->getOperand(1), N
->getOperand(2),
8851 Results
.push_back(LongMul
.getValue(0));
8852 Results
.push_back(LongMul
.getValue(1));
8855 /// ReplaceNodeResults - Replace the results of node with an illegal result
8856 /// type with new values built out of custom code.
8857 void ARMTargetLowering::ReplaceNodeResults(SDNode
*N
,
8858 SmallVectorImpl
<SDValue
> &Results
,
8859 SelectionDAG
&DAG
) const {
8861 switch (N
->getOpcode()) {
8863 llvm_unreachable("Don't know how to custom expand this!");
8864 case ISD::READ_REGISTER
:
8865 ExpandREAD_REGISTER(N
, Results
, DAG
);
8868 Res
= ExpandBITCAST(N
, DAG
, Subtarget
);
8873 Res
= Expand64BitShift(N
, DAG
, Subtarget
);
8877 Res
= LowerREM(N
, DAG
);
8881 Res
= LowerDivRem(SDValue(N
, 0), DAG
);
8882 assert(Res
.getNumOperands() == 2 && "DivRem needs two values");
8883 Results
.push_back(Res
.getValue(0));
8884 Results
.push_back(Res
.getValue(1));
8886 case ISD::READCYCLECOUNTER
:
8887 ReplaceREADCYCLECOUNTER(N
, Results
, DAG
, Subtarget
);
8891 assert(Subtarget
->isTargetWindows() && "can only expand DIV on Windows");
8892 return ExpandDIV_Windows(SDValue(N
, 0), DAG
, N
->getOpcode() == ISD::SDIV
,
8894 case ISD::ATOMIC_CMP_SWAP
:
8895 ReplaceCMP_SWAP_64Results(N
, Results
, DAG
);
8897 case ISD::INTRINSIC_WO_CHAIN
:
8898 return ReplaceLongIntrinsic(N
, Results
, DAG
);
8900 lowerABS(N
, Results
, DAG
);
8905 Results
.push_back(Res
);
8908 //===----------------------------------------------------------------------===//
8909 // ARM Scheduler Hooks
8910 //===----------------------------------------------------------------------===//
8912 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
8913 /// registers the function context.
8914 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr
&MI
,
8915 MachineBasicBlock
*MBB
,
8916 MachineBasicBlock
*DispatchBB
,
8918 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
8919 "ROPI/RWPI not currently supported with SjLj");
8920 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
8921 DebugLoc dl
= MI
.getDebugLoc();
8922 MachineFunction
*MF
= MBB
->getParent();
8923 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
8924 MachineConstantPool
*MCP
= MF
->getConstantPool();
8925 ARMFunctionInfo
*AFI
= MF
->getInfo
<ARMFunctionInfo
>();
8926 const Function
&F
= MF
->getFunction();
8928 bool isThumb
= Subtarget
->isThumb();
8929 bool isThumb2
= Subtarget
->isThumb2();
8931 unsigned PCLabelId
= AFI
->createPICLabelUId();
8932 unsigned PCAdj
= (isThumb
|| isThumb2
) ? 4 : 8;
8933 ARMConstantPoolValue
*CPV
=
8934 ARMConstantPoolMBB::Create(F
.getContext(), DispatchBB
, PCLabelId
, PCAdj
);
8935 unsigned CPI
= MCP
->getConstantPoolIndex(CPV
, 4);
8937 const TargetRegisterClass
*TRC
= isThumb
? &ARM::tGPRRegClass
8938 : &ARM::GPRRegClass
;
8940 // Grab constant pool and fixed stack memory operands.
8941 MachineMemOperand
*CPMMO
=
8942 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
8943 MachineMemOperand::MOLoad
, 4, 4);
8945 MachineMemOperand
*FIMMOSt
=
8946 MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
8947 MachineMemOperand::MOStore
, 4, 4);
8949 // Load the address of the dispatch MBB into the jump buffer.
8951 // Incoming value: jbuf
8952 // ldr.n r5, LCPI1_1
8955 // str r5, [$jbuf, #+4] ; &jbuf[1]
8956 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
8957 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2LDRpci
), NewVReg1
)
8958 .addConstantPoolIndex(CPI
)
8959 .addMemOperand(CPMMO
)
8960 .add(predOps(ARMCC::AL
));
8961 // Set the low bit because of thumb mode.
8962 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
8963 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2ORRri
), NewVReg2
)
8964 .addReg(NewVReg1
, RegState::Kill
)
8966 .add(predOps(ARMCC::AL
))
8968 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
8969 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg3
)
8970 .addReg(NewVReg2
, RegState::Kill
)
8972 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2STRi12
))
8973 .addReg(NewVReg3
, RegState::Kill
)
8975 .addImm(36) // &jbuf[1] :: pc
8976 .addMemOperand(FIMMOSt
)
8977 .add(predOps(ARMCC::AL
));
8978 } else if (isThumb
) {
8979 // Incoming value: jbuf
8980 // ldr.n r1, LCPI1_4
8984 // add r2, $jbuf, #+4 ; &jbuf[1]
8986 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
8987 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tLDRpci
), NewVReg1
)
8988 .addConstantPoolIndex(CPI
)
8989 .addMemOperand(CPMMO
)
8990 .add(predOps(ARMCC::AL
));
8991 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
8992 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg2
)
8993 .addReg(NewVReg1
, RegState::Kill
)
8995 // Set the low bit because of thumb mode.
8996 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
8997 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tMOVi8
), NewVReg3
)
8998 .addReg(ARM::CPSR
, RegState::Define
)
9000 .add(predOps(ARMCC::AL
));
9001 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9002 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tORR
), NewVReg4
)
9003 .addReg(ARM::CPSR
, RegState::Define
)
9004 .addReg(NewVReg2
, RegState::Kill
)
9005 .addReg(NewVReg3
, RegState::Kill
)
9006 .add(predOps(ARMCC::AL
));
9007 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
9008 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tADDframe
), NewVReg5
)
9010 .addImm(36); // &jbuf[1] :: pc
9011 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tSTRi
))
9012 .addReg(NewVReg4
, RegState::Kill
)
9013 .addReg(NewVReg5
, RegState::Kill
)
9015 .addMemOperand(FIMMOSt
)
9016 .add(predOps(ARMCC::AL
));
9018 // Incoming value: jbuf
9021 // str r1, [$jbuf, #+4] ; &jbuf[1]
9022 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9023 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9024 .addConstantPoolIndex(CPI
)
9026 .addMemOperand(CPMMO
)
9027 .add(predOps(ARMCC::AL
));
9028 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
9029 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::PICADD
), NewVReg2
)
9030 .addReg(NewVReg1
, RegState::Kill
)
9032 .add(predOps(ARMCC::AL
));
9033 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::STRi12
))
9034 .addReg(NewVReg2
, RegState::Kill
)
9036 .addImm(36) // &jbuf[1] :: pc
9037 .addMemOperand(FIMMOSt
)
9038 .add(predOps(ARMCC::AL
));
9042 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr
&MI
,
9043 MachineBasicBlock
*MBB
) const {
9044 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9045 DebugLoc dl
= MI
.getDebugLoc();
9046 MachineFunction
*MF
= MBB
->getParent();
9047 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9048 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
9049 int FI
= MFI
.getFunctionContextIndex();
9051 const TargetRegisterClass
*TRC
= Subtarget
->isThumb() ? &ARM::tGPRRegClass
9052 : &ARM::GPRnopcRegClass
;
9054 // Get a mapping of the call site numbers to all of the landing pads they're
9056 DenseMap
<unsigned, SmallVector
<MachineBasicBlock
*, 2>> CallSiteNumToLPad
;
9057 unsigned MaxCSNum
= 0;
9058 for (MachineFunction::iterator BB
= MF
->begin(), E
= MF
->end(); BB
!= E
;
9060 if (!BB
->isEHPad()) continue;
9062 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9064 for (MachineBasicBlock::iterator
9065 II
= BB
->begin(), IE
= BB
->end(); II
!= IE
; ++II
) {
9066 if (!II
->isEHLabel()) continue;
9068 MCSymbol
*Sym
= II
->getOperand(0).getMCSymbol();
9069 if (!MF
->hasCallSiteLandingPad(Sym
)) continue;
9071 SmallVectorImpl
<unsigned> &CallSiteIdxs
= MF
->getCallSiteLandingPad(Sym
);
9072 for (SmallVectorImpl
<unsigned>::iterator
9073 CSI
= CallSiteIdxs
.begin(), CSE
= CallSiteIdxs
.end();
9074 CSI
!= CSE
; ++CSI
) {
9075 CallSiteNumToLPad
[*CSI
].push_back(&*BB
);
9076 MaxCSNum
= std::max(MaxCSNum
, *CSI
);
9082 // Get an ordered list of the machine basic blocks for the jump table.
9083 std::vector
<MachineBasicBlock
*> LPadList
;
9084 SmallPtrSet
<MachineBasicBlock
*, 32> InvokeBBs
;
9085 LPadList
.reserve(CallSiteNumToLPad
.size());
9086 for (unsigned I
= 1; I
<= MaxCSNum
; ++I
) {
9087 SmallVectorImpl
<MachineBasicBlock
*> &MBBList
= CallSiteNumToLPad
[I
];
9088 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9089 II
= MBBList
.begin(), IE
= MBBList
.end(); II
!= IE
; ++II
) {
9090 LPadList
.push_back(*II
);
9091 InvokeBBs
.insert((*II
)->pred_begin(), (*II
)->pred_end());
9095 assert(!LPadList
.empty() &&
9096 "No landing pad destinations for the dispatch jump table!");
9098 // Create the jump table and associated information.
9099 MachineJumpTableInfo
*JTI
=
9100 MF
->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline
);
9101 unsigned MJTI
= JTI
->createJumpTableIndex(LPadList
);
9103 // Create the MBBs for the dispatch code.
9105 // Shove the dispatch's address into the return slot in the function context.
9106 MachineBasicBlock
*DispatchBB
= MF
->CreateMachineBasicBlock();
9107 DispatchBB
->setIsEHPad();
9109 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9110 unsigned trap_opcode
;
9111 if (Subtarget
->isThumb())
9112 trap_opcode
= ARM::tTRAP
;
9114 trap_opcode
= Subtarget
->useNaClTrap() ? ARM::TRAPNaCl
: ARM::TRAP
;
9116 BuildMI(TrapBB
, dl
, TII
->get(trap_opcode
));
9117 DispatchBB
->addSuccessor(TrapBB
);
9119 MachineBasicBlock
*DispContBB
= MF
->CreateMachineBasicBlock();
9120 DispatchBB
->addSuccessor(DispContBB
);
9123 MF
->insert(MF
->end(), DispatchBB
);
9124 MF
->insert(MF
->end(), DispContBB
);
9125 MF
->insert(MF
->end(), TrapBB
);
9127 // Insert code into the entry block that creates and registers the function
9129 SetupEntryBlockForSjLj(MI
, MBB
, DispatchBB
, FI
);
9131 MachineMemOperand
*FIMMOLd
= MF
->getMachineMemOperand(
9132 MachinePointerInfo::getFixedStack(*MF
, FI
),
9133 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 4, 4);
9135 MachineInstrBuilder MIB
;
9136 MIB
= BuildMI(DispatchBB
, dl
, TII
->get(ARM::Int_eh_sjlj_dispatchsetup
));
9138 const ARMBaseInstrInfo
*AII
= static_cast<const ARMBaseInstrInfo
*>(TII
);
9139 const ARMBaseRegisterInfo
&RI
= AII
->getRegisterInfo();
9141 // Add a register mask with no preserved registers. This results in all
9142 // registers being marked as clobbered. This can't work if the dispatch block
9143 // is in a Thumb1 function and is linked with ARM code which uses the FP
9144 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9145 MIB
.addRegMask(RI
.getSjLjDispatchPreservedMask(*MF
));
9147 bool IsPositionIndependent
= isPositionIndependent();
9148 unsigned NumLPads
= LPadList
.size();
9149 if (Subtarget
->isThumb2()) {
9150 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9151 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2LDRi12
), NewVReg1
)
9154 .addMemOperand(FIMMOLd
)
9155 .add(predOps(ARMCC::AL
));
9157 if (NumLPads
< 256) {
9158 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPri
))
9160 .addImm(LPadList
.size())
9161 .add(predOps(ARMCC::AL
));
9163 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9164 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVi16
), VReg1
)
9165 .addImm(NumLPads
& 0xFFFF)
9166 .add(predOps(ARMCC::AL
));
9168 unsigned VReg2
= VReg1
;
9169 if ((NumLPads
& 0xFFFF0000) != 0) {
9170 VReg2
= MRI
->createVirtualRegister(TRC
);
9171 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVTi16
), VReg2
)
9173 .addImm(NumLPads
>> 16)
9174 .add(predOps(ARMCC::AL
));
9177 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPrr
))
9180 .add(predOps(ARMCC::AL
));
9183 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2Bcc
))
9188 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9189 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2LEApcrelJT
), NewVReg3
)
9190 .addJumpTableIndex(MJTI
)
9191 .add(predOps(ARMCC::AL
));
9193 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9194 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2ADDrs
), NewVReg4
)
9195 .addReg(NewVReg3
, RegState::Kill
)
9197 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9198 .add(predOps(ARMCC::AL
))
9201 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2BR_JT
))
9202 .addReg(NewVReg4
, RegState::Kill
)
9204 .addJumpTableIndex(MJTI
);
9205 } else if (Subtarget
->isThumb()) {
9206 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9207 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRspi
), NewVReg1
)
9210 .addMemOperand(FIMMOLd
)
9211 .add(predOps(ARMCC::AL
));
9213 if (NumLPads
< 256) {
9214 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPi8
))
9217 .add(predOps(ARMCC::AL
));
9219 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9220 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9221 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9223 // MachineConstantPool wants an explicit alignment.
9224 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9226 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9227 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9229 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9230 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRpci
))
9231 .addReg(VReg1
, RegState::Define
)
9232 .addConstantPoolIndex(Idx
)
9233 .add(predOps(ARMCC::AL
));
9234 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPr
))
9237 .add(predOps(ARMCC::AL
));
9240 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tBcc
))
9245 unsigned NewVReg2
= MRI
->createVirtualRegister(TRC
);
9246 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLSLri
), NewVReg2
)
9247 .addReg(ARM::CPSR
, RegState::Define
)
9250 .add(predOps(ARMCC::AL
));
9252 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9253 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLEApcrelJT
), NewVReg3
)
9254 .addJumpTableIndex(MJTI
)
9255 .add(predOps(ARMCC::AL
));
9257 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9258 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg4
)
9259 .addReg(ARM::CPSR
, RegState::Define
)
9260 .addReg(NewVReg2
, RegState::Kill
)
9262 .add(predOps(ARMCC::AL
));
9264 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9265 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9267 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
9268 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLDRi
), NewVReg5
)
9269 .addReg(NewVReg4
, RegState::Kill
)
9271 .addMemOperand(JTMMOLd
)
9272 .add(predOps(ARMCC::AL
));
9274 unsigned NewVReg6
= NewVReg5
;
9275 if (IsPositionIndependent
) {
9276 NewVReg6
= MRI
->createVirtualRegister(TRC
);
9277 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg6
)
9278 .addReg(ARM::CPSR
, RegState::Define
)
9279 .addReg(NewVReg5
, RegState::Kill
)
9281 .add(predOps(ARMCC::AL
));
9284 BuildMI(DispContBB
, dl
, TII
->get(ARM::tBR_JTr
))
9285 .addReg(NewVReg6
, RegState::Kill
)
9286 .addJumpTableIndex(MJTI
);
9288 unsigned NewVReg1
= MRI
->createVirtualRegister(TRC
);
9289 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9292 .addMemOperand(FIMMOLd
)
9293 .add(predOps(ARMCC::AL
));
9295 if (NumLPads
< 256) {
9296 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPri
))
9299 .add(predOps(ARMCC::AL
));
9300 } else if (Subtarget
->hasV6T2Ops() && isUInt
<16>(NumLPads
)) {
9301 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9302 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVi16
), VReg1
)
9303 .addImm(NumLPads
& 0xFFFF)
9304 .add(predOps(ARMCC::AL
));
9306 unsigned VReg2
= VReg1
;
9307 if ((NumLPads
& 0xFFFF0000) != 0) {
9308 VReg2
= MRI
->createVirtualRegister(TRC
);
9309 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVTi16
), VReg2
)
9311 .addImm(NumLPads
>> 16)
9312 .add(predOps(ARMCC::AL
));
9315 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9318 .add(predOps(ARMCC::AL
));
9320 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9321 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9322 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9324 // MachineConstantPool wants an explicit alignment.
9325 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9327 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9328 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9330 unsigned VReg1
= MRI
->createVirtualRegister(TRC
);
9331 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRcp
))
9332 .addReg(VReg1
, RegState::Define
)
9333 .addConstantPoolIndex(Idx
)
9335 .add(predOps(ARMCC::AL
));
9336 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9338 .addReg(VReg1
, RegState::Kill
)
9339 .add(predOps(ARMCC::AL
));
9342 BuildMI(DispatchBB
, dl
, TII
->get(ARM::Bcc
))
9347 unsigned NewVReg3
= MRI
->createVirtualRegister(TRC
);
9348 BuildMI(DispContBB
, dl
, TII
->get(ARM::MOVsi
), NewVReg3
)
9350 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9351 .add(predOps(ARMCC::AL
))
9353 unsigned NewVReg4
= MRI
->createVirtualRegister(TRC
);
9354 BuildMI(DispContBB
, dl
, TII
->get(ARM::LEApcrelJT
), NewVReg4
)
9355 .addJumpTableIndex(MJTI
)
9356 .add(predOps(ARMCC::AL
));
9358 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9359 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9360 unsigned NewVReg5
= MRI
->createVirtualRegister(TRC
);
9361 BuildMI(DispContBB
, dl
, TII
->get(ARM::LDRrs
), NewVReg5
)
9362 .addReg(NewVReg3
, RegState::Kill
)
9365 .addMemOperand(JTMMOLd
)
9366 .add(predOps(ARMCC::AL
));
9368 if (IsPositionIndependent
) {
9369 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTadd
))
9370 .addReg(NewVReg5
, RegState::Kill
)
9372 .addJumpTableIndex(MJTI
);
9374 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTr
))
9375 .addReg(NewVReg5
, RegState::Kill
)
9376 .addJumpTableIndex(MJTI
);
9380 // Add the jump table entries as successors to the MBB.
9381 SmallPtrSet
<MachineBasicBlock
*, 8> SeenMBBs
;
9382 for (std::vector
<MachineBasicBlock
*>::iterator
9383 I
= LPadList
.begin(), E
= LPadList
.end(); I
!= E
; ++I
) {
9384 MachineBasicBlock
*CurMBB
= *I
;
9385 if (SeenMBBs
.insert(CurMBB
).second
)
9386 DispContBB
->addSuccessor(CurMBB
);
9389 // N.B. the order the invoke BBs are processed in doesn't matter here.
9390 const MCPhysReg
*SavedRegs
= RI
.getCalleeSavedRegs(MF
);
9391 SmallVector
<MachineBasicBlock
*, 64> MBBLPads
;
9392 for (MachineBasicBlock
*BB
: InvokeBBs
) {
9394 // Remove the landing pad successor from the invoke block and replace it
9395 // with the new dispatch block.
9396 SmallVector
<MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
9398 while (!Successors
.empty()) {
9399 MachineBasicBlock
*SMBB
= Successors
.pop_back_val();
9400 if (SMBB
->isEHPad()) {
9401 BB
->removeSuccessor(SMBB
);
9402 MBBLPads
.push_back(SMBB
);
9406 BB
->addSuccessor(DispatchBB
, BranchProbability::getZero());
9407 BB
->normalizeSuccProbs();
9409 // Find the invoke call and mark all of the callee-saved registers as
9410 // 'implicit defined' so that they're spilled. This prevents code from
9411 // moving instructions to before the EH block, where they will never be
9413 for (MachineBasicBlock::reverse_iterator
9414 II
= BB
->rbegin(), IE
= BB
->rend(); II
!= IE
; ++II
) {
9415 if (!II
->isCall()) continue;
9417 DenseMap
<unsigned, bool> DefRegs
;
9418 for (MachineInstr::mop_iterator
9419 OI
= II
->operands_begin(), OE
= II
->operands_end();
9421 if (!OI
->isReg()) continue;
9422 DefRegs
[OI
->getReg()] = true;
9425 MachineInstrBuilder
MIB(*MF
, &*II
);
9427 for (unsigned i
= 0; SavedRegs
[i
] != 0; ++i
) {
9428 unsigned Reg
= SavedRegs
[i
];
9429 if (Subtarget
->isThumb2() &&
9430 !ARM::tGPRRegClass
.contains(Reg
) &&
9431 !ARM::hGPRRegClass
.contains(Reg
))
9433 if (Subtarget
->isThumb1Only() && !ARM::tGPRRegClass
.contains(Reg
))
9435 if (!Subtarget
->isThumb() && !ARM::GPRRegClass
.contains(Reg
))
9438 MIB
.addReg(Reg
, RegState::ImplicitDefine
| RegState::Dead
);
9445 // Mark all former landing pads as non-landing pads. The dispatch is the only
9447 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9448 I
= MBBLPads
.begin(), E
= MBBLPads
.end(); I
!= E
; ++I
)
9449 (*I
)->setIsEHPad(false);
9451 // The instruction is gone now.
9452 MI
.eraseFromParent();
9456 MachineBasicBlock
*OtherSucc(MachineBasicBlock
*MBB
, MachineBasicBlock
*Succ
) {
9457 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
9458 E
= MBB
->succ_end(); I
!= E
; ++I
)
9461 llvm_unreachable("Expecting a BB with two successors!");
9464 /// Return the load opcode for a given load size. If load size >= 8,
9465 /// neon opcode will be returned.
9466 static unsigned getLdOpcode(unsigned LdSize
, bool IsThumb1
, bool IsThumb2
) {
9468 return LdSize
== 16 ? ARM::VLD1q32wb_fixed
9469 : LdSize
== 8 ? ARM::VLD1d32wb_fixed
: 0;
9471 return LdSize
== 4 ? ARM::tLDRi
9472 : LdSize
== 2 ? ARM::tLDRHi
9473 : LdSize
== 1 ? ARM::tLDRBi
: 0;
9475 return LdSize
== 4 ? ARM::t2LDR_POST
9476 : LdSize
== 2 ? ARM::t2LDRH_POST
9477 : LdSize
== 1 ? ARM::t2LDRB_POST
: 0;
9478 return LdSize
== 4 ? ARM::LDR_POST_IMM
9479 : LdSize
== 2 ? ARM::LDRH_POST
9480 : LdSize
== 1 ? ARM::LDRB_POST_IMM
: 0;
9483 /// Return the store opcode for a given store size. If store size >= 8,
9484 /// neon opcode will be returned.
9485 static unsigned getStOpcode(unsigned StSize
, bool IsThumb1
, bool IsThumb2
) {
9487 return StSize
== 16 ? ARM::VST1q32wb_fixed
9488 : StSize
== 8 ? ARM::VST1d32wb_fixed
: 0;
9490 return StSize
== 4 ? ARM::tSTRi
9491 : StSize
== 2 ? ARM::tSTRHi
9492 : StSize
== 1 ? ARM::tSTRBi
: 0;
9494 return StSize
== 4 ? ARM::t2STR_POST
9495 : StSize
== 2 ? ARM::t2STRH_POST
9496 : StSize
== 1 ? ARM::t2STRB_POST
: 0;
9497 return StSize
== 4 ? ARM::STR_POST_IMM
9498 : StSize
== 2 ? ARM::STRH_POST
9499 : StSize
== 1 ? ARM::STRB_POST_IMM
: 0;
9502 /// Emit a post-increment load operation with given size. The instructions
9503 /// will be added to BB at Pos.
9504 static void emitPostLd(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9505 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9506 unsigned LdSize
, unsigned Data
, unsigned AddrIn
,
9507 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9508 unsigned LdOpc
= getLdOpcode(LdSize
, IsThumb1
, IsThumb2
);
9509 assert(LdOpc
!= 0 && "Should have a load opcode");
9511 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9512 .addReg(AddrOut
, RegState::Define
)
9515 .add(predOps(ARMCC::AL
));
9516 } else if (IsThumb1
) {
9517 // load + update AddrIn
9518 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9521 .add(predOps(ARMCC::AL
));
9522 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9523 .add(t1CondCodeOp())
9526 .add(predOps(ARMCC::AL
));
9527 } else if (IsThumb2
) {
9528 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9529 .addReg(AddrOut
, RegState::Define
)
9532 .add(predOps(ARMCC::AL
));
9534 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9535 .addReg(AddrOut
, RegState::Define
)
9539 .add(predOps(ARMCC::AL
));
9543 /// Emit a post-increment store operation with given size. The instructions
9544 /// will be added to BB at Pos.
9545 static void emitPostSt(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9546 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9547 unsigned StSize
, unsigned Data
, unsigned AddrIn
,
9548 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9549 unsigned StOpc
= getStOpcode(StSize
, IsThumb1
, IsThumb2
);
9550 assert(StOpc
!= 0 && "Should have a store opcode");
9552 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9556 .add(predOps(ARMCC::AL
));
9557 } else if (IsThumb1
) {
9558 // store + update AddrIn
9559 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
))
9563 .add(predOps(ARMCC::AL
));
9564 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9565 .add(t1CondCodeOp())
9568 .add(predOps(ARMCC::AL
));
9569 } else if (IsThumb2
) {
9570 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9574 .add(predOps(ARMCC::AL
));
9576 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9581 .add(predOps(ARMCC::AL
));
9586 ARMTargetLowering::EmitStructByval(MachineInstr
&MI
,
9587 MachineBasicBlock
*BB
) const {
9588 // This pseudo instruction has 3 operands: dst, src, size
9589 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9590 // Otherwise, we will generate unrolled scalar copies.
9591 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9592 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9593 MachineFunction::iterator It
= ++BB
->getIterator();
9595 unsigned dest
= MI
.getOperand(0).getReg();
9596 unsigned src
= MI
.getOperand(1).getReg();
9597 unsigned SizeVal
= MI
.getOperand(2).getImm();
9598 unsigned Align
= MI
.getOperand(3).getImm();
9599 DebugLoc dl
= MI
.getDebugLoc();
9601 MachineFunction
*MF
= BB
->getParent();
9602 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
9603 unsigned UnitSize
= 0;
9604 const TargetRegisterClass
*TRC
= nullptr;
9605 const TargetRegisterClass
*VecTRC
= nullptr;
9607 bool IsThumb1
= Subtarget
->isThumb1Only();
9608 bool IsThumb2
= Subtarget
->isThumb2();
9609 bool IsThumb
= Subtarget
->isThumb();
9613 } else if (Align
& 2) {
9616 // Check whether we can use NEON instructions.
9617 if (!MF
->getFunction().hasFnAttribute(Attribute::NoImplicitFloat
) &&
9618 Subtarget
->hasNEON()) {
9619 if ((Align
% 16 == 0) && SizeVal
>= 16)
9621 else if ((Align
% 8 == 0) && SizeVal
>= 8)
9624 // Can't use NEON instructions.
9629 // Select the correct opcode and register class for unit size load/store
9630 bool IsNeon
= UnitSize
>= 8;
9631 TRC
= IsThumb
? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
9633 VecTRC
= UnitSize
== 16 ? &ARM::DPairRegClass
9634 : UnitSize
== 8 ? &ARM::DPRRegClass
9637 unsigned BytesLeft
= SizeVal
% UnitSize
;
9638 unsigned LoopSize
= SizeVal
- BytesLeft
;
9640 if (SizeVal
<= Subtarget
->getMaxInlineSizeThreshold()) {
9641 // Use LDR and STR to copy.
9642 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
9643 // [destOut] = STR_POST(scratch, destIn, UnitSize)
9644 unsigned srcIn
= src
;
9645 unsigned destIn
= dest
;
9646 for (unsigned i
= 0; i
< LoopSize
; i
+=UnitSize
) {
9647 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9648 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9649 unsigned scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9650 emitPostLd(BB
, MI
, TII
, dl
, UnitSize
, scratch
, srcIn
, srcOut
,
9651 IsThumb1
, IsThumb2
);
9652 emitPostSt(BB
, MI
, TII
, dl
, UnitSize
, scratch
, destIn
, destOut
,
9653 IsThumb1
, IsThumb2
);
9658 // Handle the leftover bytes with LDRB and STRB.
9659 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9660 // [destOut] = STRB_POST(scratch, destIn, 1)
9661 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9662 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9663 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9664 unsigned scratch
= MRI
.createVirtualRegister(TRC
);
9665 emitPostLd(BB
, MI
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9666 IsThumb1
, IsThumb2
);
9667 emitPostSt(BB
, MI
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9668 IsThumb1
, IsThumb2
);
9672 MI
.eraseFromParent(); // The instruction is gone now.
9676 // Expand the pseudo op to a loop.
9679 // movw varEnd, # --> with thumb2
9681 // ldrcp varEnd, idx --> without thumb2
9682 // fallthrough --> loopMBB
9684 // PHI varPhi, varEnd, varLoop
9685 // PHI srcPhi, src, srcLoop
9686 // PHI destPhi, dst, destLoop
9687 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9688 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9689 // subs varLoop, varPhi, #UnitSize
9691 // fallthrough --> exitMBB
9693 // epilogue to handle left-over bytes
9694 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9695 // [destOut] = STRB_POST(scratch, destLoop, 1)
9696 MachineBasicBlock
*loopMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9697 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9698 MF
->insert(It
, loopMBB
);
9699 MF
->insert(It
, exitMBB
);
9701 // Transfer the remainder of BB and its successor edges to exitMBB.
9702 exitMBB
->splice(exitMBB
->begin(), BB
,
9703 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
9704 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
9706 // Load an immediate to varEnd.
9707 unsigned varEnd
= MRI
.createVirtualRegister(TRC
);
9708 if (Subtarget
->useMovt()) {
9709 unsigned Vtmp
= varEnd
;
9710 if ((LoopSize
& 0xFFFF0000) != 0)
9711 Vtmp
= MRI
.createVirtualRegister(TRC
);
9712 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVi16
: ARM::MOVi16
), Vtmp
)
9713 .addImm(LoopSize
& 0xFFFF)
9714 .add(predOps(ARMCC::AL
));
9716 if ((LoopSize
& 0xFFFF0000) != 0)
9717 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVTi16
: ARM::MOVTi16
), varEnd
)
9719 .addImm(LoopSize
>> 16)
9720 .add(predOps(ARMCC::AL
));
9722 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9723 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9724 const Constant
*C
= ConstantInt::get(Int32Ty
, LoopSize
);
9726 // MachineConstantPool wants an explicit alignment.
9727 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9729 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9730 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9731 MachineMemOperand
*CPMMO
=
9732 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9733 MachineMemOperand::MOLoad
, 4, 4);
9736 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDRpci
))
9737 .addReg(varEnd
, RegState::Define
)
9738 .addConstantPoolIndex(Idx
)
9739 .add(predOps(ARMCC::AL
))
9740 .addMemOperand(CPMMO
);
9742 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::LDRcp
))
9743 .addReg(varEnd
, RegState::Define
)
9744 .addConstantPoolIndex(Idx
)
9746 .add(predOps(ARMCC::AL
))
9747 .addMemOperand(CPMMO
);
9749 BB
->addSuccessor(loopMBB
);
9751 // Generate the loop body:
9752 // varPhi = PHI(varLoop, varEnd)
9753 // srcPhi = PHI(srcLoop, src)
9754 // destPhi = PHI(destLoop, dst)
9755 MachineBasicBlock
*entryBB
= BB
;
9757 unsigned varLoop
= MRI
.createVirtualRegister(TRC
);
9758 unsigned varPhi
= MRI
.createVirtualRegister(TRC
);
9759 unsigned srcLoop
= MRI
.createVirtualRegister(TRC
);
9760 unsigned srcPhi
= MRI
.createVirtualRegister(TRC
);
9761 unsigned destLoop
= MRI
.createVirtualRegister(TRC
);
9762 unsigned destPhi
= MRI
.createVirtualRegister(TRC
);
9764 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), varPhi
)
9765 .addReg(varLoop
).addMBB(loopMBB
)
9766 .addReg(varEnd
).addMBB(entryBB
);
9767 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), srcPhi
)
9768 .addReg(srcLoop
).addMBB(loopMBB
)
9769 .addReg(src
).addMBB(entryBB
);
9770 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), destPhi
)
9771 .addReg(destLoop
).addMBB(loopMBB
)
9772 .addReg(dest
).addMBB(entryBB
);
9774 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9775 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9776 unsigned scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9777 emitPostLd(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, srcPhi
, srcLoop
,
9778 IsThumb1
, IsThumb2
);
9779 emitPostSt(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, destPhi
, destLoop
,
9780 IsThumb1
, IsThumb2
);
9782 // Decrement loop variable by UnitSize.
9784 BuildMI(*BB
, BB
->end(), dl
, TII
->get(ARM::tSUBi8
), varLoop
)
9785 .add(t1CondCodeOp())
9788 .add(predOps(ARMCC::AL
));
9790 MachineInstrBuilder MIB
=
9791 BuildMI(*BB
, BB
->end(), dl
,
9792 TII
->get(IsThumb2
? ARM::t2SUBri
: ARM::SUBri
), varLoop
);
9795 .add(predOps(ARMCC::AL
))
9797 MIB
->getOperand(5).setReg(ARM::CPSR
);
9798 MIB
->getOperand(5).setIsDef(true);
9800 BuildMI(*BB
, BB
->end(), dl
,
9801 TII
->get(IsThumb1
? ARM::tBcc
: IsThumb2
? ARM::t2Bcc
: ARM::Bcc
))
9802 .addMBB(loopMBB
).addImm(ARMCC::NE
).addReg(ARM::CPSR
);
9804 // loopMBB can loop back to loopMBB or fall through to exitMBB.
9805 BB
->addSuccessor(loopMBB
);
9806 BB
->addSuccessor(exitMBB
);
9808 // Add epilogue to handle BytesLeft.
9810 auto StartOfExit
= exitMBB
->begin();
9812 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9813 // [destOut] = STRB_POST(scratch, destLoop, 1)
9814 unsigned srcIn
= srcLoop
;
9815 unsigned destIn
= destLoop
;
9816 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9817 unsigned srcOut
= MRI
.createVirtualRegister(TRC
);
9818 unsigned destOut
= MRI
.createVirtualRegister(TRC
);
9819 unsigned scratch
= MRI
.createVirtualRegister(TRC
);
9820 emitPostLd(BB
, StartOfExit
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9821 IsThumb1
, IsThumb2
);
9822 emitPostSt(BB
, StartOfExit
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9823 IsThumb1
, IsThumb2
);
9828 MI
.eraseFromParent(); // The instruction is gone now.
9833 ARMTargetLowering::EmitLowered__chkstk(MachineInstr
&MI
,
9834 MachineBasicBlock
*MBB
) const {
9835 const TargetMachine
&TM
= getTargetMachine();
9836 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
9837 DebugLoc DL
= MI
.getDebugLoc();
9839 assert(Subtarget
->isTargetWindows() &&
9840 "__chkstk is only supported on Windows");
9841 assert(Subtarget
->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9843 // __chkstk takes the number of words to allocate on the stack in R4, and
9844 // returns the stack adjustment in number of bytes in R4. This will not
9845 // clober any other registers (other than the obvious lr).
9847 // Although, technically, IP should be considered a register which may be
9848 // clobbered, the call itself will not touch it. Windows on ARM is a pure
9849 // thumb-2 environment, so there is no interworking required. As a result, we
9850 // do not expect a veneer to be emitted by the linker, clobbering IP.
9852 // Each module receives its own copy of __chkstk, so no import thunk is
9853 // required, again, ensuring that IP is not clobbered.
9855 // Finally, although some linkers may theoretically provide a trampoline for
9856 // out of range calls (which is quite common due to a 32M range limitation of
9857 // branches for Thumb), we can generate the long-call version via
9858 // -mcmodel=large, alleviating the need for the trampoline which may clobber
9861 switch (TM
.getCodeModel()) {
9862 case CodeModel::Tiny
:
9863 llvm_unreachable("Tiny code model not available on ARM.");
9864 case CodeModel::Small
:
9865 case CodeModel::Medium
:
9866 case CodeModel::Kernel
:
9867 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBL
))
9868 .add(predOps(ARMCC::AL
))
9869 .addExternalSymbol("__chkstk")
9870 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
9871 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
9873 RegState::Implicit
| RegState::Define
| RegState::Dead
)
9875 RegState::Implicit
| RegState::Define
| RegState::Dead
);
9877 case CodeModel::Large
: {
9878 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
9879 unsigned Reg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
9881 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2MOVi32imm
), Reg
)
9882 .addExternalSymbol("__chkstk");
9883 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBLXr
))
9884 .add(predOps(ARMCC::AL
))
9885 .addReg(Reg
, RegState::Kill
)
9886 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
9887 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
9889 RegState::Implicit
| RegState::Define
| RegState::Dead
)
9891 RegState::Implicit
| RegState::Define
| RegState::Dead
);
9896 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
9897 .addReg(ARM::SP
, RegState::Kill
)
9898 .addReg(ARM::R4
, RegState::Kill
)
9899 .setMIFlags(MachineInstr::FrameSetup
)
9900 .add(predOps(ARMCC::AL
))
9903 MI
.eraseFromParent();
9908 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr
&MI
,
9909 MachineBasicBlock
*MBB
) const {
9910 DebugLoc DL
= MI
.getDebugLoc();
9911 MachineFunction
*MF
= MBB
->getParent();
9912 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9914 MachineBasicBlock
*ContBB
= MF
->CreateMachineBasicBlock();
9915 MF
->insert(++MBB
->getIterator(), ContBB
);
9916 ContBB
->splice(ContBB
->begin(), MBB
,
9917 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
9918 ContBB
->transferSuccessorsAndUpdatePHIs(MBB
);
9919 MBB
->addSuccessor(ContBB
);
9921 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9922 BuildMI(TrapBB
, DL
, TII
->get(ARM::t__brkdiv0
));
9923 MF
->push_back(TrapBB
);
9924 MBB
->addSuccessor(TrapBB
);
9926 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::tCMPi8
))
9927 .addReg(MI
.getOperand(0).getReg())
9929 .add(predOps(ARMCC::AL
));
9930 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::t2Bcc
))
9935 MI
.eraseFromParent();
9939 // The CPSR operand of SelectItr might be missing a kill marker
9940 // because there were multiple uses of CPSR, and ISel didn't know
9941 // which to mark. Figure out whether SelectItr should have had a
9942 // kill marker, and set it if it should. Returns the correct kill
9944 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr
,
9945 MachineBasicBlock
* BB
,
9946 const TargetRegisterInfo
* TRI
) {
9947 // Scan forward through BB for a use/def of CPSR.
9948 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
9949 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
9950 const MachineInstr
& mi
= *miI
;
9951 if (mi
.readsRegister(ARM::CPSR
))
9953 if (mi
.definesRegister(ARM::CPSR
))
9954 break; // Should have kill-flag - update below.
9957 // If we hit the end of the block, check whether CPSR is live into a
9959 if (miI
== BB
->end()) {
9960 for (MachineBasicBlock::succ_iterator sItr
= BB
->succ_begin(),
9961 sEnd
= BB
->succ_end();
9962 sItr
!= sEnd
; ++sItr
) {
9963 MachineBasicBlock
* succ
= *sItr
;
9964 if (succ
->isLiveIn(ARM::CPSR
))
9969 // We found a def, or hit the end of the basic block and CPSR wasn't live
9970 // out. SelectMI should have a kill flag on CPSR.
9971 SelectItr
->addRegisterKilled(ARM::CPSR
, TRI
);
9976 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
9977 MachineBasicBlock
*BB
) const {
9978 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9979 DebugLoc dl
= MI
.getDebugLoc();
9980 bool isThumb2
= Subtarget
->isThumb2();
9981 switch (MI
.getOpcode()) {
9984 llvm_unreachable("Unexpected instr type to insert");
9987 // Thumb1 post-indexed loads are really just single-register LDMs.
9988 case ARM::tLDR_postidx
: {
9989 MachineOperand
Def(MI
.getOperand(1));
9990 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDMIA_UPD
))
9992 .add(MI
.getOperand(2)) // Rn
9993 .add(MI
.getOperand(3)) // PredImm
9994 .add(MI
.getOperand(4)) // PredReg
9995 .add(MI
.getOperand(0)) // Rt
9997 MI
.eraseFromParent();
10001 // The Thumb2 pre-indexed stores have the same MI operands, they just
10002 // define them differently in the .td files from the isel patterns, so
10003 // they need pseudos.
10004 case ARM::t2STR_preidx
:
10005 MI
.setDesc(TII
->get(ARM::t2STR_PRE
));
10007 case ARM::t2STRB_preidx
:
10008 MI
.setDesc(TII
->get(ARM::t2STRB_PRE
));
10010 case ARM::t2STRH_preidx
:
10011 MI
.setDesc(TII
->get(ARM::t2STRH_PRE
));
10014 case ARM::STRi_preidx
:
10015 case ARM::STRBi_preidx
: {
10016 unsigned NewOpc
= MI
.getOpcode() == ARM::STRi_preidx
? ARM::STR_PRE_IMM
10017 : ARM::STRB_PRE_IMM
;
10018 // Decode the offset.
10019 unsigned Offset
= MI
.getOperand(4).getImm();
10020 bool isSub
= ARM_AM::getAM2Op(Offset
) == ARM_AM::sub
;
10021 Offset
= ARM_AM::getAM2Offset(Offset
);
10025 MachineMemOperand
*MMO
= *MI
.memoperands_begin();
10026 BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
))
10027 .add(MI
.getOperand(0)) // Rn_wb
10028 .add(MI
.getOperand(1)) // Rt
10029 .add(MI
.getOperand(2)) // Rn
10030 .addImm(Offset
) // offset (skip GPR==zero_reg)
10031 .add(MI
.getOperand(5)) // pred
10032 .add(MI
.getOperand(6))
10033 .addMemOperand(MMO
);
10034 MI
.eraseFromParent();
10037 case ARM::STRr_preidx
:
10038 case ARM::STRBr_preidx
:
10039 case ARM::STRH_preidx
: {
10041 switch (MI
.getOpcode()) {
10042 default: llvm_unreachable("unexpected opcode!");
10043 case ARM::STRr_preidx
: NewOpc
= ARM::STR_PRE_REG
; break;
10044 case ARM::STRBr_preidx
: NewOpc
= ARM::STRB_PRE_REG
; break;
10045 case ARM::STRH_preidx
: NewOpc
= ARM::STRH_PRE
; break;
10047 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
));
10048 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
)
10049 MIB
.add(MI
.getOperand(i
));
10050 MI
.eraseFromParent();
10054 case ARM::tMOVCCr_pseudo
: {
10055 // To "insert" a SELECT_CC instruction, we actually have to insert the
10056 // diamond control-flow pattern. The incoming instruction knows the
10057 // destination vreg to set, the condition code register to branch on, the
10058 // true/false values to select between, and a branch opcode to use.
10059 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10060 MachineFunction::iterator It
= ++BB
->getIterator();
10065 // cmpTY ccX, r1, r2
10067 // fallthrough --> copy0MBB
10068 MachineBasicBlock
*thisMBB
= BB
;
10069 MachineFunction
*F
= BB
->getParent();
10070 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10071 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10072 F
->insert(It
, copy0MBB
);
10073 F
->insert(It
, sinkMBB
);
10075 // Check whether CPSR is live past the tMOVCCr_pseudo.
10076 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
10077 if (!MI
.killsRegister(ARM::CPSR
) &&
10078 !checkAndUpdateCPSRKill(MI
, thisMBB
, TRI
)) {
10079 copy0MBB
->addLiveIn(ARM::CPSR
);
10080 sinkMBB
->addLiveIn(ARM::CPSR
);
10083 // Transfer the remainder of BB and its successor edges to sinkMBB.
10084 sinkMBB
->splice(sinkMBB
->begin(), BB
,
10085 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10086 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10088 BB
->addSuccessor(copy0MBB
);
10089 BB
->addSuccessor(sinkMBB
);
10091 BuildMI(BB
, dl
, TII
->get(ARM::tBcc
))
10093 .addImm(MI
.getOperand(3).getImm())
10094 .addReg(MI
.getOperand(4).getReg());
10097 // %FalseValue = ...
10098 // # fallthrough to sinkMBB
10101 // Update machine-CFG edges
10102 BB
->addSuccessor(sinkMBB
);
10105 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10108 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), MI
.getOperand(0).getReg())
10109 .addReg(MI
.getOperand(1).getReg())
10111 .addReg(MI
.getOperand(2).getReg())
10114 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10119 case ARM::BCCZi64
: {
10120 // If there is an unconditional branch to the other successor, remove it.
10121 BB
->erase(std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10123 // Compare both parts that make up the double comparison separately for
10125 bool RHSisZero
= MI
.getOpcode() == ARM::BCCZi64
;
10127 unsigned LHS1
= MI
.getOperand(1).getReg();
10128 unsigned LHS2
= MI
.getOperand(2).getReg();
10130 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10133 .add(predOps(ARMCC::AL
));
10134 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10135 .addReg(LHS2
).addImm(0)
10136 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10138 unsigned RHS1
= MI
.getOperand(3).getReg();
10139 unsigned RHS2
= MI
.getOperand(4).getReg();
10140 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10143 .add(predOps(ARMCC::AL
));
10144 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10145 .addReg(LHS2
).addReg(RHS2
)
10146 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10149 MachineBasicBlock
*destMBB
= MI
.getOperand(RHSisZero
? 3 : 5).getMBB();
10150 MachineBasicBlock
*exitMBB
= OtherSucc(BB
, destMBB
);
10151 if (MI
.getOperand(0).getImm() == ARMCC::NE
)
10152 std::swap(destMBB
, exitMBB
);
10154 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10155 .addMBB(destMBB
).addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10157 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
10159 .add(predOps(ARMCC::AL
));
10161 BuildMI(BB
, dl
, TII
->get(ARM::B
)) .addMBB(exitMBB
);
10163 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10167 case ARM::Int_eh_sjlj_setjmp
:
10168 case ARM::Int_eh_sjlj_setjmp_nofp
:
10169 case ARM::tInt_eh_sjlj_setjmp
:
10170 case ARM::t2Int_eh_sjlj_setjmp
:
10171 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
10174 case ARM::Int_eh_sjlj_setup_dispatch
:
10175 EmitSjLjDispatchBlock(MI
, BB
);
10180 // To insert an ABS instruction, we have to insert the
10181 // diamond control-flow pattern. The incoming instruction knows the
10182 // source vreg to test against 0, the destination vreg to set,
10183 // the condition code register to branch on, the
10184 // true/false values to select between, and a branch opcode to use.
10189 // BCC (branch to SinkBB if V0 >= 0)
10190 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10191 // SinkBB: V1 = PHI(V2, V3)
10192 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10193 MachineFunction::iterator BBI
= ++BB
->getIterator();
10194 MachineFunction
*Fn
= BB
->getParent();
10195 MachineBasicBlock
*RSBBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10196 MachineBasicBlock
*SinkBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10197 Fn
->insert(BBI
, RSBBB
);
10198 Fn
->insert(BBI
, SinkBB
);
10200 unsigned int ABSSrcReg
= MI
.getOperand(1).getReg();
10201 unsigned int ABSDstReg
= MI
.getOperand(0).getReg();
10202 bool ABSSrcKIll
= MI
.getOperand(1).isKill();
10203 bool isThumb2
= Subtarget
->isThumb2();
10204 MachineRegisterInfo
&MRI
= Fn
->getRegInfo();
10205 // In Thumb mode S must not be specified if source register is the SP or
10206 // PC and if destination register is the SP, so restrict register class
10207 unsigned NewRsbDstReg
=
10208 MRI
.createVirtualRegister(isThumb2
? &ARM::rGPRRegClass
: &ARM::GPRRegClass
);
10210 // Transfer the remainder of BB and its successor edges to sinkMBB.
10211 SinkBB
->splice(SinkBB
->begin(), BB
,
10212 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10213 SinkBB
->transferSuccessorsAndUpdatePHIs(BB
);
10215 BB
->addSuccessor(RSBBB
);
10216 BB
->addSuccessor(SinkBB
);
10218 // fall through to SinkMBB
10219 RSBBB
->addSuccessor(SinkBB
);
10221 // insert a cmp at the end of BB
10222 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10225 .add(predOps(ARMCC::AL
));
10227 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10229 TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
)).addMBB(SinkBB
)
10230 .addImm(ARMCC::getOppositeCondition(ARMCC::MI
)).addReg(ARM::CPSR
);
10232 // insert rsbri in RSBBB
10233 // Note: BCC and rsbri will be converted into predicated rsbmi
10234 // by if-conversion pass
10235 BuildMI(*RSBBB
, RSBBB
->begin(), dl
,
10236 TII
->get(isThumb2
? ARM::t2RSBri
: ARM::RSBri
), NewRsbDstReg
)
10237 .addReg(ABSSrcReg
, ABSSrcKIll
? RegState::Kill
: 0)
10239 .add(predOps(ARMCC::AL
))
10240 .add(condCodeOp());
10242 // insert PHI in SinkBB,
10243 // reuse ABSDstReg to not change uses of ABS instruction
10244 BuildMI(*SinkBB
, SinkBB
->begin(), dl
,
10245 TII
->get(ARM::PHI
), ABSDstReg
)
10246 .addReg(NewRsbDstReg
).addMBB(RSBBB
)
10247 .addReg(ABSSrcReg
).addMBB(BB
);
10249 // remove ABS instruction
10250 MI
.eraseFromParent();
10252 // return last added BB
10255 case ARM::COPY_STRUCT_BYVAL_I32
:
10257 return EmitStructByval(MI
, BB
);
10258 case ARM::WIN__CHKSTK
:
10259 return EmitLowered__chkstk(MI
, BB
);
10260 case ARM::WIN__DBZCHK
:
10261 return EmitLowered__dbzchk(MI
, BB
);
10265 /// Attaches vregs to MEMCPY that it will use as scratch registers
10266 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10267 /// instead of as a custom inserter because we need the use list from the SDNode.
10268 static void attachMEMCPYScratchRegs(const ARMSubtarget
*Subtarget
,
10269 MachineInstr
&MI
, const SDNode
*Node
) {
10270 bool isThumb1
= Subtarget
->isThumb1Only();
10272 DebugLoc DL
= MI
.getDebugLoc();
10273 MachineFunction
*MF
= MI
.getParent()->getParent();
10274 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
10275 MachineInstrBuilder
MIB(*MF
, MI
);
10277 // If the new dst/src is unused mark it as dead.
10278 if (!Node
->hasAnyUseOfValue(0)) {
10279 MI
.getOperand(0).setIsDead(true);
10281 if (!Node
->hasAnyUseOfValue(1)) {
10282 MI
.getOperand(1).setIsDead(true);
10285 // The MEMCPY both defines and kills the scratch registers.
10286 for (unsigned I
= 0; I
!= MI
.getOperand(4).getImm(); ++I
) {
10287 unsigned TmpReg
= MRI
.createVirtualRegister(isThumb1
? &ARM::tGPRRegClass
10288 : &ARM::GPRRegClass
);
10289 MIB
.addReg(TmpReg
, RegState::Define
|RegState::Dead
);
10293 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
10294 SDNode
*Node
) const {
10295 if (MI
.getOpcode() == ARM::MEMCPY
) {
10296 attachMEMCPYScratchRegs(Subtarget
, MI
, Node
);
10300 const MCInstrDesc
*MCID
= &MI
.getDesc();
10301 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10302 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10303 // operand is still set to noreg. If needed, set the optional operand's
10304 // register to CPSR, and remove the redundant implicit def.
10306 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10308 // Rename pseudo opcodes.
10309 unsigned NewOpc
= convertAddSubFlagsOpcode(MI
.getOpcode());
10312 const ARMBaseInstrInfo
*TII
= Subtarget
->getInstrInfo();
10313 MCID
= &TII
->get(NewOpc
);
10315 assert(MCID
->getNumOperands() ==
10316 MI
.getDesc().getNumOperands() + 5 - MI
.getDesc().getSize()
10317 && "converted opcode should be the same except for cc_out"
10318 " (and, on Thumb1, pred)");
10322 // Add the optional cc_out operand
10323 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10325 // On Thumb1, move all input operands to the end, then add the predicate
10326 if (Subtarget
->isThumb1Only()) {
10327 for (unsigned c
= MCID
->getNumOperands() - 4; c
--;) {
10328 MI
.addOperand(MI
.getOperand(1));
10329 MI
.RemoveOperand(1);
10332 // Restore the ties
10333 for (unsigned i
= MI
.getNumOperands(); i
--;) {
10334 const MachineOperand
& op
= MI
.getOperand(i
);
10335 if (op
.isReg() && op
.isUse()) {
10336 int DefIdx
= MCID
->getOperandConstraint(i
, MCOI::TIED_TO
);
10338 MI
.tieOperands(DefIdx
, i
);
10342 MI
.addOperand(MachineOperand::CreateImm(ARMCC::AL
));
10343 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10346 ccOutIdx
= MCID
->getNumOperands() - 1;
10348 ccOutIdx
= MCID
->getNumOperands() - 1;
10350 // Any ARM instruction that sets the 's' bit should specify an optional
10351 // "cc_out" operand in the last operand position.
10352 if (!MI
.hasOptionalDef() || !MCID
->OpInfo
[ccOutIdx
].isOptionalDef()) {
10353 assert(!NewOpc
&& "Optional cc_out operand required");
10356 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10357 // since we already have an optional CPSR def.
10358 bool definesCPSR
= false;
10359 bool deadCPSR
= false;
10360 for (unsigned i
= MCID
->getNumOperands(), e
= MI
.getNumOperands(); i
!= e
;
10362 const MachineOperand
&MO
= MI
.getOperand(i
);
10363 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
) {
10364 definesCPSR
= true;
10367 MI
.RemoveOperand(i
);
10371 if (!definesCPSR
) {
10372 assert(!NewOpc
&& "Optional cc_out operand required");
10375 assert(deadCPSR
== !Node
->hasAnyUseOfValue(1) && "inconsistent dead flag");
10377 assert(!MI
.getOperand(ccOutIdx
).getReg() &&
10378 "expect uninitialized optional cc_out operand");
10379 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10380 if (!Subtarget
->isThumb1Only())
10384 // If this instruction was defined with an optional CPSR def and its dag node
10385 // had a live implicit CPSR def, then activate the optional CPSR def.
10386 MachineOperand
&MO
= MI
.getOperand(ccOutIdx
);
10387 MO
.setReg(ARM::CPSR
);
10391 //===----------------------------------------------------------------------===//
10392 // ARM Optimization Hooks
10393 //===----------------------------------------------------------------------===//
10395 // Helper function that checks if N is a null or all ones constant.
10396 static inline bool isZeroOrAllOnes(SDValue N
, bool AllOnes
) {
10397 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
10400 // Return true if N is conditionally 0 or all ones.
10401 // Detects these expressions where cc is an i1 value:
10403 // (select cc 0, y) [AllOnes=0]
10404 // (select cc y, 0) [AllOnes=0]
10405 // (zext cc) [AllOnes=0]
10406 // (sext cc) [AllOnes=0/1]
10407 // (select cc -1, y) [AllOnes=1]
10408 // (select cc y, -1) [AllOnes=1]
10410 // Invert is set when N is the null/all ones constant when CC is false.
10411 // OtherOp is set to the alternative value of N.
10412 static bool isConditionalZeroOrAllOnes(SDNode
*N
, bool AllOnes
,
10413 SDValue
&CC
, bool &Invert
,
10415 SelectionDAG
&DAG
) {
10416 switch (N
->getOpcode()) {
10417 default: return false;
10418 case ISD::SELECT
: {
10419 CC
= N
->getOperand(0);
10420 SDValue N1
= N
->getOperand(1);
10421 SDValue N2
= N
->getOperand(2);
10422 if (isZeroOrAllOnes(N1
, AllOnes
)) {
10427 if (isZeroOrAllOnes(N2
, AllOnes
)) {
10434 case ISD::ZERO_EXTEND
:
10435 // (zext cc) can never be the all ones value.
10439 case ISD::SIGN_EXTEND
: {
10441 EVT VT
= N
->getValueType(0);
10442 CC
= N
->getOperand(0);
10443 if (CC
.getValueType() != MVT::i1
|| CC
.getOpcode() != ISD::SETCC
)
10447 // When looking for an AllOnes constant, N is an sext, and the 'other'
10449 OtherOp
= DAG
.getConstant(0, dl
, VT
);
10450 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
10451 // When looking for a 0 constant, N can be zext or sext.
10452 OtherOp
= DAG
.getConstant(1, dl
, VT
);
10454 OtherOp
= DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
10461 // Combine a constant select operand into its use:
10463 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10464 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10465 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10466 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10467 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10469 // The transform is rejected if the select doesn't have a constant operand that
10470 // is null, or all ones when AllOnes is set.
10472 // Also recognize sext/zext from i1:
10474 // (add (zext cc), x) -> (select cc (add x, 1), x)
10475 // (add (sext cc), x) -> (select cc (add x, -1), x)
10477 // These transformations eventually create predicated instructions.
10479 // @param N The node to transform.
10480 // @param Slct The N operand that is a select.
10481 // @param OtherOp The other N operand (x above).
10482 // @param DCI Context.
10483 // @param AllOnes Require the select constant to be all ones instead of null.
10484 // @returns The new node, or SDValue() on failure.
10486 SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
10487 TargetLowering::DAGCombinerInfo
&DCI
,
10488 bool AllOnes
= false) {
10489 SelectionDAG
&DAG
= DCI
.DAG
;
10490 EVT VT
= N
->getValueType(0);
10491 SDValue NonConstantVal
;
10493 bool SwapSelectOps
;
10494 if (!isConditionalZeroOrAllOnes(Slct
.getNode(), AllOnes
, CCOp
, SwapSelectOps
,
10495 NonConstantVal
, DAG
))
10498 // Slct is now know to be the desired identity constant when CC is true.
10499 SDValue TrueVal
= OtherOp
;
10500 SDValue FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
10501 OtherOp
, NonConstantVal
);
10502 // Unless SwapSelectOps says CC should be false.
10504 std::swap(TrueVal
, FalseVal
);
10506 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
10507 CCOp
, TrueVal
, FalseVal
);
10510 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10512 SDValue
combineSelectAndUseCommutative(SDNode
*N
, bool AllOnes
,
10513 TargetLowering::DAGCombinerInfo
&DCI
) {
10514 SDValue N0
= N
->getOperand(0);
10515 SDValue N1
= N
->getOperand(1);
10516 if (N0
.getNode()->hasOneUse())
10517 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
, AllOnes
))
10519 if (N1
.getNode()->hasOneUse())
10520 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
, AllOnes
))
10525 static bool IsVUZPShuffleNode(SDNode
*N
) {
10526 // VUZP shuffle node.
10527 if (N
->getOpcode() == ARMISD::VUZP
)
10530 // "VUZP" on i32 is an alias for VTRN.
10531 if (N
->getOpcode() == ARMISD::VTRN
&& N
->getValueType(0) == MVT::v2i32
)
10537 static SDValue
AddCombineToVPADD(SDNode
*N
, SDValue N0
, SDValue N1
,
10538 TargetLowering::DAGCombinerInfo
&DCI
,
10539 const ARMSubtarget
*Subtarget
) {
10540 // Look for ADD(VUZP.0, VUZP.1).
10541 if (!IsVUZPShuffleNode(N0
.getNode()) || N0
.getNode() != N1
.getNode() ||
10545 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10546 if (!N
->getValueType(0).is64BitVector())
10550 SelectionDAG
&DAG
= DCI
.DAG
;
10551 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10553 SDNode
*Unzip
= N0
.getNode();
10554 EVT VT
= N
->getValueType(0);
10556 SmallVector
<SDValue
, 8> Ops
;
10557 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpadd
, dl
,
10558 TLI
.getPointerTy(DAG
.getDataLayout())));
10559 Ops
.push_back(Unzip
->getOperand(0));
10560 Ops
.push_back(Unzip
->getOperand(1));
10562 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10565 static SDValue
AddCombineVUZPToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10566 TargetLowering::DAGCombinerInfo
&DCI
,
10567 const ARMSubtarget
*Subtarget
) {
10568 // Check for two extended operands.
10569 if (!(N0
.getOpcode() == ISD::SIGN_EXTEND
&&
10570 N1
.getOpcode() == ISD::SIGN_EXTEND
) &&
10571 !(N0
.getOpcode() == ISD::ZERO_EXTEND
&&
10572 N1
.getOpcode() == ISD::ZERO_EXTEND
))
10575 SDValue N00
= N0
.getOperand(0);
10576 SDValue N10
= N1
.getOperand(0);
10578 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10579 if (!IsVUZPShuffleNode(N00
.getNode()) || N00
.getNode() != N10
.getNode() ||
10583 // We only recognize Q register paddl here; this can't be reached until
10584 // after type legalization.
10585 if (!N00
.getValueType().is64BitVector() ||
10586 !N0
.getValueType().is128BitVector())
10589 // Generate vpaddl.
10590 SelectionDAG
&DAG
= DCI
.DAG
;
10591 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10593 EVT VT
= N
->getValueType(0);
10595 SmallVector
<SDValue
, 8> Ops
;
10596 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10598 if (N0
.getOpcode() == ISD::SIGN_EXTEND
)
10599 Opcode
= Intrinsic::arm_neon_vpaddls
;
10601 Opcode
= Intrinsic::arm_neon_vpaddlu
;
10602 Ops
.push_back(DAG
.getConstant(Opcode
, dl
,
10603 TLI
.getPointerTy(DAG
.getDataLayout())));
10604 EVT ElemTy
= N00
.getValueType().getVectorElementType();
10605 unsigned NumElts
= VT
.getVectorNumElements();
10606 EVT ConcatVT
= EVT::getVectorVT(*DAG
.getContext(), ElemTy
, NumElts
* 2);
10607 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), ConcatVT
,
10608 N00
.getOperand(0), N00
.getOperand(1));
10609 Ops
.push_back(Concat
);
10611 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10614 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10615 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10616 // much easier to match.
10618 AddCombineBUILD_VECTORToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10619 TargetLowering::DAGCombinerInfo
&DCI
,
10620 const ARMSubtarget
*Subtarget
) {
10621 // Only perform optimization if after legalize, and if NEON is available. We
10622 // also expected both operands to be BUILD_VECTORs.
10623 if (DCI
.isBeforeLegalize() || !Subtarget
->hasNEON()
10624 || N0
.getOpcode() != ISD::BUILD_VECTOR
10625 || N1
.getOpcode() != ISD::BUILD_VECTOR
)
10628 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10629 EVT VT
= N
->getValueType(0);
10630 if (!VT
.isInteger() || VT
.getVectorElementType() == MVT::i64
)
10633 // Check that the vector operands are of the right form.
10634 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
10635 // operands, where N is the size of the formed vector.
10636 // Each EXTRACT_VECTOR should have the same input vector and odd or even
10637 // index such that we have a pair wise add pattern.
10639 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
10640 if (N0
->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
10642 SDValue Vec
= N0
->getOperand(0)->getOperand(0);
10643 SDNode
*V
= Vec
.getNode();
10644 unsigned nextIndex
= 0;
10646 // For each operands to the ADD which are BUILD_VECTORs,
10647 // check to see if each of their operands are an EXTRACT_VECTOR with
10648 // the same vector and appropriate index.
10649 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
) {
10650 if (N0
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
10651 && N1
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
10653 SDValue ExtVec0
= N0
->getOperand(i
);
10654 SDValue ExtVec1
= N1
->getOperand(i
);
10656 // First operand is the vector, verify its the same.
10657 if (V
!= ExtVec0
->getOperand(0).getNode() ||
10658 V
!= ExtVec1
->getOperand(0).getNode())
10661 // Second is the constant, verify its correct.
10662 ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(ExtVec0
->getOperand(1));
10663 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(ExtVec1
->getOperand(1));
10665 // For the constant, we want to see all the even or all the odd.
10666 if (!C0
|| !C1
|| C0
->getZExtValue() != nextIndex
10667 || C1
->getZExtValue() != nextIndex
+1)
10670 // Increment index.
10676 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
10677 // we're using the entire input vector, otherwise there's a size/legality
10678 // mismatch somewhere.
10679 if (nextIndex
!= Vec
.getValueType().getVectorNumElements() ||
10680 Vec
.getValueType().getVectorElementType() == VT
.getVectorElementType())
10683 // Create VPADDL node.
10684 SelectionDAG
&DAG
= DCI
.DAG
;
10685 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10689 // Build operand list.
10690 SmallVector
<SDValue
, 8> Ops
;
10691 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddls
, dl
,
10692 TLI
.getPointerTy(DAG
.getDataLayout())));
10694 // Input is the vector.
10695 Ops
.push_back(Vec
);
10697 // Get widened type and narrowed type.
10699 unsigned numElem
= VT
.getVectorNumElements();
10701 EVT inputLaneType
= Vec
.getValueType().getVectorElementType();
10702 switch (inputLaneType
.getSimpleVT().SimpleTy
) {
10703 case MVT::i8
: widenType
= MVT::getVectorVT(MVT::i16
, numElem
); break;
10704 case MVT::i16
: widenType
= MVT::getVectorVT(MVT::i32
, numElem
); break;
10705 case MVT::i32
: widenType
= MVT::getVectorVT(MVT::i64
, numElem
); break;
10707 llvm_unreachable("Invalid vector element type for padd optimization.");
10710 SDValue tmp
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, widenType
, Ops
);
10711 unsigned ExtOp
= VT
.bitsGT(tmp
.getValueType()) ? ISD::ANY_EXTEND
: ISD::TRUNCATE
;
10712 return DAG
.getNode(ExtOp
, dl
, VT
, tmp
);
10715 static SDValue
findMUL_LOHI(SDValue V
) {
10716 if (V
->getOpcode() == ISD::UMUL_LOHI
||
10717 V
->getOpcode() == ISD::SMUL_LOHI
)
10722 static SDValue
AddCombineTo64BitSMLAL16(SDNode
*AddcNode
, SDNode
*AddeNode
,
10723 TargetLowering::DAGCombinerInfo
&DCI
,
10724 const ARMSubtarget
*Subtarget
) {
10725 if (Subtarget
->isThumb()) {
10726 if (!Subtarget
->hasDSP())
10728 } else if (!Subtarget
->hasV5TEOps())
10731 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10732 // accumulates the product into a 64-bit value. The 16-bit values will
10733 // be sign extended somehow or SRA'd into 32-bit values
10734 // (addc (adde (mul 16bit, 16bit), lo), hi)
10735 SDValue Mul
= AddcNode
->getOperand(0);
10736 SDValue Lo
= AddcNode
->getOperand(1);
10737 if (Mul
.getOpcode() != ISD::MUL
) {
10738 Lo
= AddcNode
->getOperand(0);
10739 Mul
= AddcNode
->getOperand(1);
10740 if (Mul
.getOpcode() != ISD::MUL
)
10744 SDValue SRA
= AddeNode
->getOperand(0);
10745 SDValue Hi
= AddeNode
->getOperand(1);
10746 if (SRA
.getOpcode() != ISD::SRA
) {
10747 SRA
= AddeNode
->getOperand(1);
10748 Hi
= AddeNode
->getOperand(0);
10749 if (SRA
.getOpcode() != ISD::SRA
)
10752 if (auto Const
= dyn_cast
<ConstantSDNode
>(SRA
.getOperand(1))) {
10753 if (Const
->getZExtValue() != 31)
10758 if (SRA
.getOperand(0) != Mul
)
10761 SelectionDAG
&DAG
= DCI
.DAG
;
10762 SDLoc
dl(AddcNode
);
10763 unsigned Opcode
= 0;
10767 if (isS16(Mul
.getOperand(0), DAG
) && isS16(Mul
.getOperand(1), DAG
)) {
10768 Opcode
= ARMISD::SMLALBB
;
10769 Op0
= Mul
.getOperand(0);
10770 Op1
= Mul
.getOperand(1);
10771 } else if (isS16(Mul
.getOperand(0), DAG
) && isSRA16(Mul
.getOperand(1))) {
10772 Opcode
= ARMISD::SMLALBT
;
10773 Op0
= Mul
.getOperand(0);
10774 Op1
= Mul
.getOperand(1).getOperand(0);
10775 } else if (isSRA16(Mul
.getOperand(0)) && isS16(Mul
.getOperand(1), DAG
)) {
10776 Opcode
= ARMISD::SMLALTB
;
10777 Op0
= Mul
.getOperand(0).getOperand(0);
10778 Op1
= Mul
.getOperand(1);
10779 } else if (isSRA16(Mul
.getOperand(0)) && isSRA16(Mul
.getOperand(1))) {
10780 Opcode
= ARMISD::SMLALTT
;
10781 Op0
= Mul
->getOperand(0).getOperand(0);
10782 Op1
= Mul
->getOperand(1).getOperand(0);
10788 SDValue SMLAL
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
10790 // Replace the ADDs' nodes uses by the MLA node's values.
10791 SDValue
HiMLALResult(SMLAL
.getNode(), 1);
10792 SDValue
LoMLALResult(SMLAL
.getNode(), 0);
10794 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), LoMLALResult
);
10795 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), HiMLALResult
);
10797 // Return original node to notify the driver to stop replacing.
10798 SDValue
resNode(AddcNode
, 0);
10802 static SDValue
AddCombineTo64bitMLAL(SDNode
*AddeSubeNode
,
10803 TargetLowering::DAGCombinerInfo
&DCI
,
10804 const ARMSubtarget
*Subtarget
) {
10805 // Look for multiply add opportunities.
10806 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10807 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10808 // a glue link from the first add to the second add.
10809 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10810 // a S/UMLAL instruction.
10813 // V \ [no multiline comment]
10819 // In the special case where only the higher part of a signed result is used
10820 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10821 // a constant with the exact value of 0x80000000, we recognize we are dealing
10822 // with a "rounded multiply and add" (or subtract) and transform it into
10823 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10825 assert((AddeSubeNode
->getOpcode() == ARMISD::ADDE
||
10826 AddeSubeNode
->getOpcode() == ARMISD::SUBE
) &&
10827 "Expect an ADDE or SUBE");
10829 assert(AddeSubeNode
->getNumOperands() == 3 &&
10830 AddeSubeNode
->getOperand(2).getValueType() == MVT::i32
&&
10831 "ADDE node has the wrong inputs");
10833 // Check that we are chained to the right ADDC or SUBC node.
10834 SDNode
*AddcSubcNode
= AddeSubeNode
->getOperand(2).getNode();
10835 if ((AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
10836 AddcSubcNode
->getOpcode() != ARMISD::ADDC
) ||
10837 (AddeSubeNode
->getOpcode() == ARMISD::SUBE
&&
10838 AddcSubcNode
->getOpcode() != ARMISD::SUBC
))
10841 SDValue AddcSubcOp0
= AddcSubcNode
->getOperand(0);
10842 SDValue AddcSubcOp1
= AddcSubcNode
->getOperand(1);
10844 // Check if the two operands are from the same mul_lohi node.
10845 if (AddcSubcOp0
.getNode() == AddcSubcOp1
.getNode())
10848 assert(AddcSubcNode
->getNumValues() == 2 &&
10849 AddcSubcNode
->getValueType(0) == MVT::i32
&&
10850 "Expect ADDC with two result values. First: i32");
10852 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10853 // maybe a SMLAL which multiplies two 16-bit values.
10854 if (AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
10855 AddcSubcOp0
->getOpcode() != ISD::UMUL_LOHI
&&
10856 AddcSubcOp0
->getOpcode() != ISD::SMUL_LOHI
&&
10857 AddcSubcOp1
->getOpcode() != ISD::UMUL_LOHI
&&
10858 AddcSubcOp1
->getOpcode() != ISD::SMUL_LOHI
)
10859 return AddCombineTo64BitSMLAL16(AddcSubcNode
, AddeSubeNode
, DCI
, Subtarget
);
10861 // Check for the triangle shape.
10862 SDValue AddeSubeOp0
= AddeSubeNode
->getOperand(0);
10863 SDValue AddeSubeOp1
= AddeSubeNode
->getOperand(1);
10865 // Make sure that the ADDE/SUBE operands are not coming from the same node.
10866 if (AddeSubeOp0
.getNode() == AddeSubeOp1
.getNode())
10869 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10870 bool IsLeftOperandMUL
= false;
10871 SDValue MULOp
= findMUL_LOHI(AddeSubeOp0
);
10872 if (MULOp
== SDValue())
10873 MULOp
= findMUL_LOHI(AddeSubeOp1
);
10875 IsLeftOperandMUL
= true;
10876 if (MULOp
== SDValue())
10879 // Figure out the right opcode.
10880 unsigned Opc
= MULOp
->getOpcode();
10881 unsigned FinalOpc
= (Opc
== ISD::SMUL_LOHI
) ? ARMISD::SMLAL
: ARMISD::UMLAL
;
10883 // Figure out the high and low input values to the MLAL node.
10884 SDValue
*HiAddSub
= nullptr;
10885 SDValue
*LoMul
= nullptr;
10886 SDValue
*LowAddSub
= nullptr;
10888 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
10889 if ((AddeSubeOp0
!= MULOp
.getValue(1)) && (AddeSubeOp1
!= MULOp
.getValue(1)))
10892 if (IsLeftOperandMUL
)
10893 HiAddSub
= &AddeSubeOp1
;
10895 HiAddSub
= &AddeSubeOp0
;
10897 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
10898 // whose low result is fed to the ADDC/SUBC we are checking.
10900 if (AddcSubcOp0
== MULOp
.getValue(0)) {
10901 LoMul
= &AddcSubcOp0
;
10902 LowAddSub
= &AddcSubcOp1
;
10904 if (AddcSubcOp1
== MULOp
.getValue(0)) {
10905 LoMul
= &AddcSubcOp1
;
10906 LowAddSub
= &AddcSubcOp0
;
10912 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
10913 // the replacement below will create a cycle.
10914 if (AddcSubcNode
== HiAddSub
->getNode() ||
10915 AddcSubcNode
->isPredecessorOf(HiAddSub
->getNode()))
10918 // Create the merged node.
10919 SelectionDAG
&DAG
= DCI
.DAG
;
10921 // Start building operand list.
10922 SmallVector
<SDValue
, 8> Ops
;
10923 Ops
.push_back(LoMul
->getOperand(0));
10924 Ops
.push_back(LoMul
->getOperand(1));
10926 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
10927 // the case, we must be doing signed multiplication and only use the higher
10928 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
10929 // addition or subtraction with the value of 0x800000.
10930 if (Subtarget
->hasV6Ops() && Subtarget
->hasDSP() && Subtarget
->useMulOps() &&
10931 FinalOpc
== ARMISD::SMLAL
&& !AddeSubeNode
->hasAnyUseOfValue(1) &&
10932 LowAddSub
->getNode()->getOpcode() == ISD::Constant
&&
10933 static_cast<ConstantSDNode
*>(LowAddSub
->getNode())->getZExtValue() ==
10935 Ops
.push_back(*HiAddSub
);
10936 if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
) {
10937 FinalOpc
= ARMISD::SMMLSR
;
10939 FinalOpc
= ARMISD::SMMLAR
;
10941 SDValue NewNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
), MVT::i32
, Ops
);
10942 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), NewNode
);
10944 return SDValue(AddeSubeNode
, 0);
10945 } else if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
)
10946 // SMMLS is generated during instruction selection and the rest of this
10947 // function can not handle the case where AddcSubcNode is a SUBC.
10950 // Finish building the operand list for {U/S}MLAL
10951 Ops
.push_back(*LowAddSub
);
10952 Ops
.push_back(*HiAddSub
);
10954 SDValue MLALNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
),
10955 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
10957 // Replace the ADDs' nodes uses by the MLA node's values.
10958 SDValue
HiMLALResult(MLALNode
.getNode(), 1);
10959 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), HiMLALResult
);
10961 SDValue
LoMLALResult(MLALNode
.getNode(), 0);
10962 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode
, 0), LoMLALResult
);
10964 // Return original node to notify the driver to stop replacing.
10965 return SDValue(AddeSubeNode
, 0);
10968 static SDValue
AddCombineTo64bitUMAAL(SDNode
*AddeNode
,
10969 TargetLowering::DAGCombinerInfo
&DCI
,
10970 const ARMSubtarget
*Subtarget
) {
10971 // UMAAL is similar to UMLAL except that it adds two unsigned values.
10972 // While trying to combine for the other MLAL nodes, first search for the
10973 // chance to use UMAAL. Check if Addc uses a node which has already
10974 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
10975 // as the addend, and it's handled in PerformUMLALCombine.
10977 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
10978 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
10980 // Check that we have a glued ADDC node.
10981 SDNode
* AddcNode
= AddeNode
->getOperand(2).getNode();
10982 if (AddcNode
->getOpcode() != ARMISD::ADDC
)
10985 // Find the converted UMAAL or quit if it doesn't exist.
10986 SDNode
*UmlalNode
= nullptr;
10988 if (AddcNode
->getOperand(0).getOpcode() == ARMISD::UMLAL
) {
10989 UmlalNode
= AddcNode
->getOperand(0).getNode();
10990 AddHi
= AddcNode
->getOperand(1);
10991 } else if (AddcNode
->getOperand(1).getOpcode() == ARMISD::UMLAL
) {
10992 UmlalNode
= AddcNode
->getOperand(1).getNode();
10993 AddHi
= AddcNode
->getOperand(0);
10995 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
10998 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
10999 // the ADDC as well as Zero.
11000 if (!isNullConstant(UmlalNode
->getOperand(3)))
11003 if ((isNullConstant(AddeNode
->getOperand(0)) &&
11004 AddeNode
->getOperand(1).getNode() == UmlalNode
) ||
11005 (AddeNode
->getOperand(0).getNode() == UmlalNode
&&
11006 isNullConstant(AddeNode
->getOperand(1)))) {
11007 SelectionDAG
&DAG
= DCI
.DAG
;
11008 SDValue Ops
[] = { UmlalNode
->getOperand(0), UmlalNode
->getOperand(1),
11009 UmlalNode
->getOperand(2), AddHi
};
11010 SDValue UMAAL
= DAG
.getNode(ARMISD::UMAAL
, SDLoc(AddcNode
),
11011 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11013 // Replace the ADDs' nodes uses by the UMAAL node's values.
11014 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), SDValue(UMAAL
.getNode(), 1));
11015 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), SDValue(UMAAL
.getNode(), 0));
11017 // Return original node to notify the driver to stop replacing.
11018 return SDValue(AddeNode
, 0);
11023 static SDValue
PerformUMLALCombine(SDNode
*N
, SelectionDAG
&DAG
,
11024 const ARMSubtarget
*Subtarget
) {
11025 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11028 // Check that we have a pair of ADDC and ADDE as operands.
11029 // Both addends of the ADDE must be zero.
11030 SDNode
* AddcNode
= N
->getOperand(2).getNode();
11031 SDNode
* AddeNode
= N
->getOperand(3).getNode();
11032 if ((AddcNode
->getOpcode() == ARMISD::ADDC
) &&
11033 (AddeNode
->getOpcode() == ARMISD::ADDE
) &&
11034 isNullConstant(AddeNode
->getOperand(0)) &&
11035 isNullConstant(AddeNode
->getOperand(1)) &&
11036 (AddeNode
->getOperand(2).getNode() == AddcNode
))
11037 return DAG
.getNode(ARMISD::UMAAL
, SDLoc(N
),
11038 DAG
.getVTList(MVT::i32
, MVT::i32
),
11039 {N
->getOperand(0), N
->getOperand(1),
11040 AddcNode
->getOperand(0), AddcNode
->getOperand(1)});
11045 static SDValue
PerformAddcSubcCombine(SDNode
*N
,
11046 TargetLowering::DAGCombinerInfo
&DCI
,
11047 const ARMSubtarget
*Subtarget
) {
11048 SelectionDAG
&DAG(DCI
.DAG
);
11050 if (N
->getOpcode() == ARMISD::SUBC
) {
11051 // (SUBC (ADDE 0, 0, C), 1) -> C
11052 SDValue LHS
= N
->getOperand(0);
11053 SDValue RHS
= N
->getOperand(1);
11054 if (LHS
->getOpcode() == ARMISD::ADDE
&&
11055 isNullConstant(LHS
->getOperand(0)) &&
11056 isNullConstant(LHS
->getOperand(1)) && isOneConstant(RHS
)) {
11057 return DCI
.CombineTo(N
, SDValue(N
, 0), LHS
->getOperand(2));
11061 if (Subtarget
->isThumb1Only()) {
11062 SDValue RHS
= N
->getOperand(1);
11063 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11064 int32_t imm
= C
->getSExtValue();
11065 if (imm
< 0 && imm
> std::numeric_limits
<int>::min()) {
11067 RHS
= DAG
.getConstant(-imm
, DL
, MVT::i32
);
11068 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDC
) ? ARMISD::SUBC
11070 return DAG
.getNode(Opcode
, DL
, N
->getVTList(), N
->getOperand(0), RHS
);
11078 static SDValue
PerformAddeSubeCombine(SDNode
*N
,
11079 TargetLowering::DAGCombinerInfo
&DCI
,
11080 const ARMSubtarget
*Subtarget
) {
11081 if (Subtarget
->isThumb1Only()) {
11082 SelectionDAG
&DAG
= DCI
.DAG
;
11083 SDValue RHS
= N
->getOperand(1);
11084 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11085 int64_t imm
= C
->getSExtValue();
11089 // The with-carry-in form matches bitwise not instead of the negation.
11090 // Effectively, the inverse interpretation of the carry flag already
11091 // accounts for part of the negation.
11092 RHS
= DAG
.getConstant(~imm
, DL
, MVT::i32
);
11094 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDE
) ? ARMISD::SUBE
11096 return DAG
.getNode(Opcode
, DL
, N
->getVTList(),
11097 N
->getOperand(0), RHS
, N
->getOperand(2));
11100 } else if (N
->getOperand(1)->getOpcode() == ISD::SMUL_LOHI
) {
11101 return AddCombineTo64bitMLAL(N
, DCI
, Subtarget
);
11106 static SDValue
PerformABSCombine(SDNode
*N
,
11107 TargetLowering::DAGCombinerInfo
&DCI
,
11108 const ARMSubtarget
*Subtarget
) {
11110 SelectionDAG
&DAG
= DCI
.DAG
;
11111 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11113 if (TLI
.isOperationLegal(N
->getOpcode(), N
->getValueType(0)))
11116 if (!TLI
.expandABS(N
, res
, DAG
))
11122 /// PerformADDECombine - Target-specific dag combine transform from
11123 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11124 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11125 static SDValue
PerformADDECombine(SDNode
*N
,
11126 TargetLowering::DAGCombinerInfo
&DCI
,
11127 const ARMSubtarget
*Subtarget
) {
11128 // Only ARM and Thumb2 support UMLAL/SMLAL.
11129 if (Subtarget
->isThumb1Only())
11130 return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
11132 // Only perform the checks after legalize when the pattern is available.
11133 if (DCI
.isBeforeLegalize()) return SDValue();
11135 return AddCombineTo64bitUMAAL(N
, DCI
, Subtarget
);
11138 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11139 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11140 /// called with the default operands, and if that fails, with commuted
11142 static SDValue
PerformADDCombineWithOperands(SDNode
*N
, SDValue N0
, SDValue N1
,
11143 TargetLowering::DAGCombinerInfo
&DCI
,
11144 const ARMSubtarget
*Subtarget
){
11145 // Attempt to create vpadd for this add.
11146 if (SDValue Result
= AddCombineToVPADD(N
, N0
, N1
, DCI
, Subtarget
))
11149 // Attempt to create vpaddl for this add.
11150 if (SDValue Result
= AddCombineVUZPToVPADDL(N
, N0
, N1
, DCI
, Subtarget
))
11152 if (SDValue Result
= AddCombineBUILD_VECTORToVPADDL(N
, N0
, N1
, DCI
,
11156 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11157 if (N0
.getNode()->hasOneUse())
11158 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
))
11164 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
11165 CombineLevel Level
) const {
11166 if (Level
== BeforeLegalizeTypes
)
11169 if (N
->getOpcode() != ISD::SHL
)
11172 if (Subtarget
->isThumb1Only()) {
11173 // Avoid making expensive immediates by commuting shifts. (This logic
11174 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11176 if (N
->getOpcode() != ISD::SHL
)
11178 SDValue N1
= N
->getOperand(0);
11179 if (N1
->getOpcode() != ISD::ADD
&& N1
->getOpcode() != ISD::AND
&&
11180 N1
->getOpcode() != ISD::OR
&& N1
->getOpcode() != ISD::XOR
)
11182 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1))) {
11183 if (Const
->getAPIntValue().ult(256))
11185 if (N1
->getOpcode() == ISD::ADD
&& Const
->getAPIntValue().slt(0) &&
11186 Const
->getAPIntValue().sgt(-256))
11192 // Turn off commute-with-shift transform after legalization, so it doesn't
11193 // conflict with PerformSHLSimplify. (We could try to detect when
11194 // PerformSHLSimplify would trigger more precisely, but it isn't
11195 // really necessary.)
11199 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11200 const SDNode
*N
, CombineLevel Level
) const {
11201 if (!Subtarget
->isThumb1Only())
11204 if (Level
== BeforeLegalizeTypes
)
11210 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
11211 if (!Subtarget
->hasNEON()) {
11212 if (Subtarget
->isThumb1Only())
11213 return VT
.getScalarSizeInBits() <= 32;
11216 return VT
.isScalarInteger();
11219 static SDValue
PerformSHLSimplify(SDNode
*N
,
11220 TargetLowering::DAGCombinerInfo
&DCI
,
11221 const ARMSubtarget
*ST
) {
11222 // Allow the generic combiner to identify potential bswaps.
11223 if (DCI
.isBeforeLegalize())
11226 // DAG combiner will fold:
11227 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11228 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11229 // Other code patterns that can be also be modified have the following form:
11230 // b + ((a << 1) | 510)
11231 // b + ((a << 1) & 510)
11232 // b + ((a << 1) ^ 510)
11233 // b + ((a << 1) + 510)
11235 // Many instructions can perform the shift for free, but it requires both
11236 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11237 // instruction will needed. So, unfold back to the original pattern if:
11238 // - if c1 and c2 are small enough that they don't require mov imms.
11239 // - the user(s) of the node can perform an shl
11241 // No shifted operands for 16-bit instructions.
11242 if (ST
->isThumb() && ST
->isThumb1Only())
11245 // Check that all the users could perform the shl themselves.
11246 for (auto U
: N
->uses()) {
11247 switch(U
->getOpcode()) {
11257 // Check that the user isn't already using a constant because there
11258 // aren't any instructions that support an immediate operand and a
11259 // shifted operand.
11260 if (isa
<ConstantSDNode
>(U
->getOperand(0)) ||
11261 isa
<ConstantSDNode
>(U
->getOperand(1)))
11264 // Check that it's not already using a shift.
11265 if (U
->getOperand(0).getOpcode() == ISD::SHL
||
11266 U
->getOperand(1).getOpcode() == ISD::SHL
)
11272 if (N
->getOpcode() != ISD::ADD
&& N
->getOpcode() != ISD::OR
&&
11273 N
->getOpcode() != ISD::XOR
&& N
->getOpcode() != ISD::AND
)
11276 if (N
->getOperand(0).getOpcode() != ISD::SHL
)
11279 SDValue SHL
= N
->getOperand(0);
11281 auto *C1ShlC2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11282 auto *C2
= dyn_cast
<ConstantSDNode
>(SHL
.getOperand(1));
11283 if (!C1ShlC2
|| !C2
)
11286 APInt C2Int
= C2
->getAPIntValue();
11287 APInt C1Int
= C1ShlC2
->getAPIntValue();
11289 // Check that performing a lshr will not lose any information.
11290 APInt Mask
= APInt::getHighBitsSet(C2Int
.getBitWidth(),
11291 C2Int
.getBitWidth() - C2
->getZExtValue());
11292 if ((C1Int
& Mask
) != C1Int
)
11295 // Shift the first constant.
11296 C1Int
.lshrInPlace(C2Int
);
11298 // The immediates are encoded as an 8-bit value that can be rotated.
11299 auto LargeImm
= [](const APInt
&Imm
) {
11300 unsigned Zeros
= Imm
.countLeadingZeros() + Imm
.countTrailingZeros();
11301 return Imm
.getBitWidth() - Zeros
> 8;
11304 if (LargeImm(C1Int
) || LargeImm(C2Int
))
11307 SelectionDAG
&DAG
= DCI
.DAG
;
11309 SDValue X
= SHL
.getOperand(0);
11310 SDValue BinOp
= DAG
.getNode(N
->getOpcode(), dl
, MVT::i32
, X
,
11311 DAG
.getConstant(C1Int
, dl
, MVT::i32
));
11312 // Shift left to compensate for the lshr of C1Int.
11313 SDValue Res
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, BinOp
, SHL
.getOperand(1));
11315 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL
.getOperand(0).dump();
11316 SHL
.dump(); N
->dump());
11317 LLVM_DEBUG(dbgs() << "Into:\n"; X
.dump(); BinOp
.dump(); Res
.dump());
11322 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11324 static SDValue
PerformADDCombine(SDNode
*N
,
11325 TargetLowering::DAGCombinerInfo
&DCI
,
11326 const ARMSubtarget
*Subtarget
) {
11327 SDValue N0
= N
->getOperand(0);
11328 SDValue N1
= N
->getOperand(1);
11330 // Only works one way, because it needs an immediate operand.
11331 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11334 // First try with the default operand order.
11335 if (SDValue Result
= PerformADDCombineWithOperands(N
, N0
, N1
, DCI
, Subtarget
))
11338 // If that didn't work, try again with the operands commuted.
11339 return PerformADDCombineWithOperands(N
, N1
, N0
, DCI
, Subtarget
);
11342 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11344 static SDValue
PerformSUBCombine(SDNode
*N
,
11345 TargetLowering::DAGCombinerInfo
&DCI
) {
11346 SDValue N0
= N
->getOperand(0);
11347 SDValue N1
= N
->getOperand(1);
11349 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11350 if (N1
.getNode()->hasOneUse())
11351 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
))
11357 /// PerformVMULCombine
11358 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11359 /// special multiplier accumulator forwarding.
11360 /// vmul d3, d0, d2
11361 /// vmla d3, d1, d2
11363 /// vadd d3, d0, d1
11364 /// vmul d3, d3, d2
11365 // However, for (A + B) * (A + B),
11372 static SDValue
PerformVMULCombine(SDNode
*N
,
11373 TargetLowering::DAGCombinerInfo
&DCI
,
11374 const ARMSubtarget
*Subtarget
) {
11375 if (!Subtarget
->hasVMLxForwarding())
11378 SelectionDAG
&DAG
= DCI
.DAG
;
11379 SDValue N0
= N
->getOperand(0);
11380 SDValue N1
= N
->getOperand(1);
11381 unsigned Opcode
= N0
.getOpcode();
11382 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11383 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
) {
11384 Opcode
= N1
.getOpcode();
11385 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11386 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
)
11394 EVT VT
= N
->getValueType(0);
11396 SDValue N00
= N0
->getOperand(0);
11397 SDValue N01
= N0
->getOperand(1);
11398 return DAG
.getNode(Opcode
, DL
, VT
,
11399 DAG
.getNode(ISD::MUL
, DL
, VT
, N00
, N1
),
11400 DAG
.getNode(ISD::MUL
, DL
, VT
, N01
, N1
));
11403 static SDValue
PerformMULCombine(SDNode
*N
,
11404 TargetLowering::DAGCombinerInfo
&DCI
,
11405 const ARMSubtarget
*Subtarget
) {
11406 SelectionDAG
&DAG
= DCI
.DAG
;
11408 if (Subtarget
->isThumb1Only())
11411 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11414 EVT VT
= N
->getValueType(0);
11415 if (VT
.is64BitVector() || VT
.is128BitVector())
11416 return PerformVMULCombine(N
, DCI
, Subtarget
);
11417 if (VT
!= MVT::i32
)
11420 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11424 int64_t MulAmt
= C
->getSExtValue();
11425 unsigned ShiftAmt
= countTrailingZeros
<uint64_t>(MulAmt
);
11427 ShiftAmt
= ShiftAmt
& (32 - 1);
11428 SDValue V
= N
->getOperand(0);
11432 MulAmt
>>= ShiftAmt
;
11435 if (isPowerOf2_32(MulAmt
- 1)) {
11436 // (mul x, 2^N + 1) => (add (shl x, N), x)
11437 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11439 DAG
.getNode(ISD::SHL
, DL
, VT
,
11441 DAG
.getConstant(Log2_32(MulAmt
- 1), DL
,
11443 } else if (isPowerOf2_32(MulAmt
+ 1)) {
11444 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11445 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11446 DAG
.getNode(ISD::SHL
, DL
, VT
,
11448 DAG
.getConstant(Log2_32(MulAmt
+ 1), DL
,
11454 uint64_t MulAmtAbs
= -MulAmt
;
11455 if (isPowerOf2_32(MulAmtAbs
+ 1)) {
11456 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11457 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11459 DAG
.getNode(ISD::SHL
, DL
, VT
,
11461 DAG
.getConstant(Log2_32(MulAmtAbs
+ 1), DL
,
11463 } else if (isPowerOf2_32(MulAmtAbs
- 1)) {
11464 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11465 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11467 DAG
.getNode(ISD::SHL
, DL
, VT
,
11469 DAG
.getConstant(Log2_32(MulAmtAbs
- 1), DL
,
11471 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11472 DAG
.getConstant(0, DL
, MVT::i32
), Res
);
11478 Res
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11479 Res
, DAG
.getConstant(ShiftAmt
, DL
, MVT::i32
));
11481 // Do not add new nodes to DAG combiner worklist.
11482 DCI
.CombineTo(N
, Res
, false);
11486 static SDValue
CombineANDShift(SDNode
*N
,
11487 TargetLowering::DAGCombinerInfo
&DCI
,
11488 const ARMSubtarget
*Subtarget
) {
11489 // Allow DAGCombine to pattern-match before we touch the canonical form.
11490 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11493 if (N
->getValueType(0) != MVT::i32
)
11496 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11500 uint32_t C1
= (uint32_t)N1C
->getZExtValue();
11501 // Don't transform uxtb/uxth.
11502 if (C1
== 255 || C1
== 65535)
11505 SDNode
*N0
= N
->getOperand(0).getNode();
11506 if (!N0
->hasOneUse())
11509 if (N0
->getOpcode() != ISD::SHL
&& N0
->getOpcode() != ISD::SRL
)
11512 bool LeftShift
= N0
->getOpcode() == ISD::SHL
;
11514 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
11518 uint32_t C2
= (uint32_t)N01C
->getZExtValue();
11519 if (!C2
|| C2
>= 32)
11522 // Clear irrelevant bits in the mask.
11528 SelectionDAG
&DAG
= DCI
.DAG
;
11531 // We have a pattern of the form "(and (shl x, c2) c1)" or
11532 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11533 // transform to a pair of shifts, to save materializing c1.
11535 // First pattern: right shift, then mask off leading bits.
11536 // FIXME: Use demanded bits?
11537 if (!LeftShift
&& isMask_32(C1
)) {
11538 uint32_t C3
= countLeadingZeros(C1
);
11540 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11541 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11542 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11543 DAG
.getConstant(C3
, DL
, MVT::i32
));
11547 // First pattern, reversed: left shift, then mask off trailing bits.
11548 if (LeftShift
&& isMask_32(~C1
)) {
11549 uint32_t C3
= countTrailingZeros(C1
);
11551 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11552 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11553 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11554 DAG
.getConstant(C3
, DL
, MVT::i32
));
11558 // Second pattern: left shift, then mask off leading bits.
11559 // FIXME: Use demanded bits?
11560 if (LeftShift
&& isShiftedMask_32(C1
)) {
11561 uint32_t Trailing
= countTrailingZeros(C1
);
11562 uint32_t C3
= countLeadingZeros(C1
);
11563 if (Trailing
== C2
&& C2
+ C3
< 32) {
11564 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11565 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11566 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11567 DAG
.getConstant(C3
, DL
, MVT::i32
));
11571 // Second pattern, reversed: right shift, then mask off trailing bits.
11572 // FIXME: Handle other patterns of known/demanded bits.
11573 if (!LeftShift
&& isShiftedMask_32(C1
)) {
11574 uint32_t Leading
= countLeadingZeros(C1
);
11575 uint32_t C3
= countTrailingZeros(C1
);
11576 if (Leading
== C2
&& C2
+ C3
< 32) {
11577 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11578 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11579 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11580 DAG
.getConstant(C3
, DL
, MVT::i32
));
11584 // FIXME: Transform "(and (shl x, c2) c1)" ->
11585 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11590 static SDValue
PerformANDCombine(SDNode
*N
,
11591 TargetLowering::DAGCombinerInfo
&DCI
,
11592 const ARMSubtarget
*Subtarget
) {
11593 // Attempt to use immediate-form VBIC
11594 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11596 EVT VT
= N
->getValueType(0);
11597 SelectionDAG
&DAG
= DCI
.DAG
;
11599 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11602 APInt SplatBits
, SplatUndef
;
11603 unsigned SplatBitSize
;
11605 if (BVN
&& Subtarget
->hasNEON() &&
11606 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11607 if (SplatBitSize
<= 64) {
11609 SDValue Val
= isVMOVModifiedImm((~SplatBits
).getZExtValue(),
11610 SplatUndef
.getZExtValue(), SplatBitSize
,
11611 DAG
, dl
, VbicVT
, VT
.is128BitVector(),
11613 if (Val
.getNode()) {
11615 DAG
.getNode(ISD::BITCAST
, dl
, VbicVT
, N
->getOperand(0));
11616 SDValue Vbic
= DAG
.getNode(ARMISD::VBICIMM
, dl
, VbicVT
, Input
, Val
);
11617 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vbic
);
11622 if (!Subtarget
->isThumb1Only()) {
11623 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11624 if (SDValue Result
= combineSelectAndUseCommutative(N
, true, DCI
))
11627 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11631 if (Subtarget
->isThumb1Only())
11632 if (SDValue Result
= CombineANDShift(N
, DCI
, Subtarget
))
11638 // Try combining OR nodes to SMULWB, SMULWT.
11639 static SDValue
PerformORCombineToSMULWBT(SDNode
*OR
,
11640 TargetLowering::DAGCombinerInfo
&DCI
,
11641 const ARMSubtarget
*Subtarget
) {
11642 if (!Subtarget
->hasV6Ops() ||
11643 (Subtarget
->isThumb() &&
11644 (!Subtarget
->hasThumb2() || !Subtarget
->hasDSP())))
11647 SDValue SRL
= OR
->getOperand(0);
11648 SDValue SHL
= OR
->getOperand(1);
11650 if (SRL
.getOpcode() != ISD::SRL
|| SHL
.getOpcode() != ISD::SHL
) {
11651 SRL
= OR
->getOperand(1);
11652 SHL
= OR
->getOperand(0);
11654 if (!isSRL16(SRL
) || !isSHL16(SHL
))
11657 // The first operands to the shifts need to be the two results from the
11658 // same smul_lohi node.
11659 if ((SRL
.getOperand(0).getNode() != SHL
.getOperand(0).getNode()) ||
11660 SRL
.getOperand(0).getOpcode() != ISD::SMUL_LOHI
)
11663 SDNode
*SMULLOHI
= SRL
.getOperand(0).getNode();
11664 if (SRL
.getOperand(0) != SDValue(SMULLOHI
, 0) ||
11665 SHL
.getOperand(0) != SDValue(SMULLOHI
, 1))
11669 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
11670 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
11671 // For SMUWB the 16-bit value will signed extended somehow.
11672 // For SMULWT only the SRA is required.
11673 // Check both sides of SMUL_LOHI
11674 SDValue OpS16
= SMULLOHI
->getOperand(0);
11675 SDValue OpS32
= SMULLOHI
->getOperand(1);
11677 SelectionDAG
&DAG
= DCI
.DAG
;
11678 if (!isS16(OpS16
, DAG
) && !isSRA16(OpS16
)) {
11680 OpS32
= SMULLOHI
->getOperand(0);
11684 unsigned Opcode
= 0;
11685 if (isS16(OpS16
, DAG
))
11686 Opcode
= ARMISD::SMULWB
;
11687 else if (isSRA16(OpS16
)) {
11688 Opcode
= ARMISD::SMULWT
;
11689 OpS16
= OpS16
->getOperand(0);
11694 SDValue Res
= DAG
.getNode(Opcode
, dl
, MVT::i32
, OpS32
, OpS16
);
11695 DAG
.ReplaceAllUsesOfValueWith(SDValue(OR
, 0), Res
);
11696 return SDValue(OR
, 0);
11699 static SDValue
PerformORCombineToBFI(SDNode
*N
,
11700 TargetLowering::DAGCombinerInfo
&DCI
,
11701 const ARMSubtarget
*Subtarget
) {
11702 // BFI is only available on V6T2+
11703 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6T2Ops())
11706 EVT VT
= N
->getValueType(0);
11707 SDValue N0
= N
->getOperand(0);
11708 SDValue N1
= N
->getOperand(1);
11709 SelectionDAG
&DAG
= DCI
.DAG
;
11711 // 1) or (and A, mask), val => ARMbfi A, val, mask
11712 // iff (val & mask) == val
11714 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11715 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
11716 // && mask == ~mask2
11717 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
11718 // && ~mask == mask2
11719 // (i.e., copy a bitfield value into another bitfield of the same width)
11721 if (VT
!= MVT::i32
)
11724 SDValue N00
= N0
.getOperand(0);
11726 // The value and the mask need to be constants so we can verify this is
11727 // actually a bitfield set. If the mask is 0xffff, we can do better
11728 // via a movt instruction, so don't use BFI in that case.
11729 SDValue MaskOp
= N0
.getOperand(1);
11730 ConstantSDNode
*MaskC
= dyn_cast
<ConstantSDNode
>(MaskOp
);
11733 unsigned Mask
= MaskC
->getZExtValue();
11734 if (Mask
== 0xffff)
11737 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
11738 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
11740 unsigned Val
= N1C
->getZExtValue();
11741 if ((Val
& ~Mask
) != Val
)
11744 if (ARM::isBitFieldInvertedMask(Mask
)) {
11745 Val
>>= countTrailingZeros(~Mask
);
11747 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
,
11748 DAG
.getConstant(Val
, DL
, MVT::i32
),
11749 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11751 DCI
.CombineTo(N
, Res
, false);
11752 // Return value from the original node to inform the combiner than N is
11754 return SDValue(N
, 0);
11756 } else if (N1
.getOpcode() == ISD::AND
) {
11757 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11758 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
11761 unsigned Mask2
= N11C
->getZExtValue();
11763 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
11765 if (ARM::isBitFieldInvertedMask(Mask
) &&
11766 (Mask
== ~Mask2
)) {
11767 // The pack halfword instruction works better for masks that fit it,
11768 // so use that when it's available.
11769 if (Subtarget
->hasDSP() &&
11770 (Mask
== 0xffff || Mask
== 0xffff0000))
11773 unsigned amt
= countTrailingZeros(Mask2
);
11774 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N1
.getOperand(0),
11775 DAG
.getConstant(amt
, DL
, MVT::i32
));
11776 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
, Res
,
11777 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11778 DCI
.CombineTo(N
, Res
, false);
11779 // Return value from the original node to inform the combiner than N is
11781 return SDValue(N
, 0);
11782 } else if (ARM::isBitFieldInvertedMask(~Mask
) &&
11783 (~Mask
== Mask2
)) {
11784 // The pack halfword instruction works better for masks that fit it,
11785 // so use that when it's available.
11786 if (Subtarget
->hasDSP() &&
11787 (Mask2
== 0xffff || Mask2
== 0xffff0000))
11790 unsigned lsb
= countTrailingZeros(Mask
);
11791 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N00
,
11792 DAG
.getConstant(lsb
, DL
, MVT::i32
));
11793 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
.getOperand(0), Res
,
11794 DAG
.getConstant(Mask2
, DL
, MVT::i32
));
11795 DCI
.CombineTo(N
, Res
, false);
11796 // Return value from the original node to inform the combiner than N is
11798 return SDValue(N
, 0);
11802 if (DAG
.MaskedValueIsZero(N1
, MaskC
->getAPIntValue()) &&
11803 N00
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N00
.getOperand(1)) &&
11804 ARM::isBitFieldInvertedMask(~Mask
)) {
11805 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
11806 // where lsb(mask) == #shamt and masked bits of B are known zero.
11807 SDValue ShAmt
= N00
.getOperand(1);
11808 unsigned ShAmtC
= cast
<ConstantSDNode
>(ShAmt
)->getZExtValue();
11809 unsigned LSB
= countTrailingZeros(Mask
);
11813 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
, N00
.getOperand(0),
11814 DAG
.getConstant(~Mask
, DL
, MVT::i32
));
11816 DCI
.CombineTo(N
, Res
, false);
11817 // Return value from the original node to inform the combiner than N is
11819 return SDValue(N
, 0);
11825 static SDValue
PerformORCombine_i1(SDNode
*N
,
11826 TargetLowering::DAGCombinerInfo
&DCI
,
11827 const ARMSubtarget
*Subtarget
) {
11828 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
11829 // together with predicates
11833 } InvertCodes
[] = {
11834 {ARMISD::VCEQ
, ARMISD::VCNE
},
11835 {ARMISD::VCEQZ
, ARMISD::VCNEZ
},
11836 {ARMISD::VCGE
, ARMISD::VCLT
},
11837 {ARMISD::VCGEZ
, ARMISD::VCLTZ
},
11838 {ARMISD::VCGT
, ARMISD::VCLE
},
11839 {ARMISD::VCGTZ
, ARMISD::VCLEZ
},
11842 EVT VT
= N
->getValueType(0);
11843 SDValue N0
= N
->getOperand(0);
11844 SDValue N1
= N
->getOperand(1);
11846 unsigned Opposite0
= 0;
11847 unsigned Opposite1
= 0;
11848 for (auto Code
: InvertCodes
) {
11849 if (N0
->getOpcode() == Code
.Opcode
)
11850 Opposite0
= Code
.Opposite
;
11851 if (N0
->getOpcode() == Code
.Opposite
)
11852 Opposite0
= Code
.Opcode
;
11853 if (N1
->getOpcode() == Code
.Opcode
)
11854 Opposite1
= Code
.Opposite
;
11855 if (N1
->getOpcode() == Code
.Opposite
)
11856 Opposite1
= Code
.Opcode
;
11859 if (!Opposite0
|| !Opposite1
)
11862 SmallVector
<SDValue
, 4> Ops0
;
11863 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
)
11864 Ops0
.push_back(N0
->getOperand(i
));
11865 SmallVector
<SDValue
, 4> Ops1
;
11866 for (unsigned i
= 0, e
= N1
->getNumOperands(); i
!= e
; ++i
)
11867 Ops1
.push_back(N1
->getOperand(i
));
11869 SDValue NewN0
= DCI
.DAG
.getNode(Opposite0
, SDLoc(N0
), VT
, Ops0
);
11870 SDValue NewN1
= DCI
.DAG
.getNode(Opposite1
, SDLoc(N1
), VT
, Ops1
);
11871 SDValue And
= DCI
.DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NewN0
, NewN1
);
11872 return DCI
.DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, And
,
11873 DCI
.DAG
.getAllOnesConstant(SDLoc(N
), VT
));
11876 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
11877 static SDValue
PerformORCombine(SDNode
*N
,
11878 TargetLowering::DAGCombinerInfo
&DCI
,
11879 const ARMSubtarget
*Subtarget
) {
11880 // Attempt to use immediate-form VORR
11881 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11883 EVT VT
= N
->getValueType(0);
11884 SelectionDAG
&DAG
= DCI
.DAG
;
11886 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11889 APInt SplatBits
, SplatUndef
;
11890 unsigned SplatBitSize
;
11892 if (BVN
&& Subtarget
->hasNEON() &&
11893 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11894 if (SplatBitSize
<= 64) {
11896 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
11897 SplatUndef
.getZExtValue(), SplatBitSize
,
11898 DAG
, dl
, VorrVT
, VT
.is128BitVector(),
11900 if (Val
.getNode()) {
11902 DAG
.getNode(ISD::BITCAST
, dl
, VorrVT
, N
->getOperand(0));
11903 SDValue Vorr
= DAG
.getNode(ARMISD::VORRIMM
, dl
, VorrVT
, Input
, Val
);
11904 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vorr
);
11909 if (!Subtarget
->isThumb1Only()) {
11910 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
11911 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
11913 if (SDValue Result
= PerformORCombineToSMULWBT(N
, DCI
, Subtarget
))
11917 SDValue N0
= N
->getOperand(0);
11918 SDValue N1
= N
->getOperand(1);
11920 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
11921 if (Subtarget
->hasNEON() && N1
.getOpcode() == ISD::AND
&& VT
.isVector() &&
11922 DAG
.getTargetLoweringInfo().isTypeLegal(VT
)) {
11924 // The code below optimizes (or (and X, Y), Z).
11925 // The AND operand needs to have a single user to make these optimizations
11927 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
11931 unsigned SplatBitSize
;
11934 APInt SplatBits0
, SplatBits1
;
11935 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(1));
11936 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(1));
11937 // Ensure that the second operand of both ands are constants
11938 if (BVN0
&& BVN0
->isConstantSplat(SplatBits0
, SplatUndef
, SplatBitSize
,
11939 HasAnyUndefs
) && !HasAnyUndefs
) {
11940 if (BVN1
&& BVN1
->isConstantSplat(SplatBits1
, SplatUndef
, SplatBitSize
,
11941 HasAnyUndefs
) && !HasAnyUndefs
) {
11942 // Ensure that the bit width of the constants are the same and that
11943 // the splat arguments are logical inverses as per the pattern we
11944 // are trying to simplify.
11945 if (SplatBits0
.getBitWidth() == SplatBits1
.getBitWidth() &&
11946 SplatBits0
== ~SplatBits1
) {
11947 // Canonicalize the vector type to make instruction selection
11949 EVT CanonicalVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
11950 SDValue Result
= DAG
.getNode(ARMISD::VBSL
, dl
, CanonicalVT
,
11953 N1
->getOperand(0));
11954 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Result
);
11960 if (Subtarget
->hasMVEIntegerOps() &&
11961 (VT
== MVT::v4i1
|| VT
== MVT::v8i1
|| VT
== MVT::v16i1
))
11962 return PerformORCombine_i1(N
, DCI
, Subtarget
);
11964 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
11966 if (N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
11967 if (SDValue Res
= PerformORCombineToBFI(N
, DCI
, Subtarget
))
11971 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11977 static SDValue
PerformXORCombine(SDNode
*N
,
11978 TargetLowering::DAGCombinerInfo
&DCI
,
11979 const ARMSubtarget
*Subtarget
) {
11980 EVT VT
= N
->getValueType(0);
11981 SelectionDAG
&DAG
= DCI
.DAG
;
11983 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11986 if (!Subtarget
->isThumb1Only()) {
11987 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
11988 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
11991 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11998 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
11999 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12000 // their position in "to" (Rd).
12001 static SDValue
ParseBFI(SDNode
*N
, APInt
&ToMask
, APInt
&FromMask
) {
12002 assert(N
->getOpcode() == ARMISD::BFI
);
12004 SDValue From
= N
->getOperand(1);
12005 ToMask
= ~cast
<ConstantSDNode
>(N
->getOperand(2))->getAPIntValue();
12006 FromMask
= APInt::getLowBitsSet(ToMask
.getBitWidth(), ToMask
.countPopulation());
12008 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12009 // #C in the base of the SHR.
12010 if (From
->getOpcode() == ISD::SRL
&&
12011 isa
<ConstantSDNode
>(From
->getOperand(1))) {
12012 APInt Shift
= cast
<ConstantSDNode
>(From
->getOperand(1))->getAPIntValue();
12013 assert(Shift
.getLimitedValue() < 32 && "Shift too large!");
12014 FromMask
<<= Shift
.getLimitedValue(31);
12015 From
= From
->getOperand(0);
12021 // If A and B contain one contiguous set of bits, does A | B == A . B?
12023 // Neither A nor B must be zero.
12024 static bool BitsProperlyConcatenate(const APInt
&A
, const APInt
&B
) {
12025 unsigned LastActiveBitInA
= A
.countTrailingZeros();
12026 unsigned FirstActiveBitInB
= B
.getBitWidth() - B
.countLeadingZeros() - 1;
12027 return LastActiveBitInA
- 1 == FirstActiveBitInB
;
12030 static SDValue
FindBFIToCombineWith(SDNode
*N
) {
12031 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12033 APInt ToMask
, FromMask
;
12034 SDValue From
= ParseBFI(N
, ToMask
, FromMask
);
12035 SDValue To
= N
->getOperand(0);
12037 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12038 // aren't compatible, but not if they set the same bit in their destination as
12039 // we do (or that of any BFI we're going to combine with).
12041 APInt CombinedToMask
= ToMask
;
12042 while (V
.getOpcode() == ARMISD::BFI
) {
12043 APInt NewToMask
, NewFromMask
;
12044 SDValue NewFrom
= ParseBFI(V
.getNode(), NewToMask
, NewFromMask
);
12045 if (NewFrom
!= From
) {
12046 // This BFI has a different base. Keep going.
12047 CombinedToMask
|= NewToMask
;
12048 V
= V
.getOperand(0);
12052 // Do the written bits conflict with any we've seen so far?
12053 if ((NewToMask
& CombinedToMask
).getBoolValue())
12054 // Conflicting bits - bail out because going further is unsafe.
12057 // Are the new bits contiguous when combined with the old bits?
12058 if (BitsProperlyConcatenate(ToMask
, NewToMask
) &&
12059 BitsProperlyConcatenate(FromMask
, NewFromMask
))
12061 if (BitsProperlyConcatenate(NewToMask
, ToMask
) &&
12062 BitsProperlyConcatenate(NewFromMask
, FromMask
))
12065 // We've seen a write to some bits, so track it.
12066 CombinedToMask
|= NewToMask
;
12068 V
= V
.getOperand(0);
12074 static SDValue
PerformBFICombine(SDNode
*N
,
12075 TargetLowering::DAGCombinerInfo
&DCI
) {
12076 SDValue N1
= N
->getOperand(1);
12077 if (N1
.getOpcode() == ISD::AND
) {
12078 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12079 // the bits being cleared by the AND are not demanded by the BFI.
12080 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12083 unsigned InvMask
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
12084 unsigned LSB
= countTrailingZeros(~InvMask
);
12085 unsigned Width
= (32 - countLeadingZeros(~InvMask
)) - LSB
;
12087 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
12088 "undefined behavior");
12089 unsigned Mask
= (1u << Width
) - 1;
12090 unsigned Mask2
= N11C
->getZExtValue();
12091 if ((Mask
& (~Mask2
)) == 0)
12092 return DCI
.DAG
.getNode(ARMISD::BFI
, SDLoc(N
), N
->getValueType(0),
12093 N
->getOperand(0), N1
.getOperand(0),
12095 } else if (N
->getOperand(0).getOpcode() == ARMISD::BFI
) {
12096 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12097 // Keep track of any consecutive bits set that all come from the same base
12098 // value. We can combine these together into a single BFI.
12099 SDValue CombineBFI
= FindBFIToCombineWith(N
);
12100 if (CombineBFI
== SDValue())
12103 // We've found a BFI.
12104 APInt ToMask1
, FromMask1
;
12105 SDValue From1
= ParseBFI(N
, ToMask1
, FromMask1
);
12107 APInt ToMask2
, FromMask2
;
12108 SDValue From2
= ParseBFI(CombineBFI
.getNode(), ToMask2
, FromMask2
);
12109 assert(From1
== From2
);
12112 // First, unlink CombineBFI.
12113 DCI
.DAG
.ReplaceAllUsesWith(CombineBFI
, CombineBFI
.getOperand(0));
12114 // Then create a new BFI, combining the two together.
12115 APInt NewFromMask
= FromMask1
| FromMask2
;
12116 APInt NewToMask
= ToMask1
| ToMask2
;
12118 EVT VT
= N
->getValueType(0);
12121 if (NewFromMask
[0] == 0)
12122 From1
= DCI
.DAG
.getNode(
12123 ISD::SRL
, dl
, VT
, From1
,
12124 DCI
.DAG
.getConstant(NewFromMask
.countTrailingZeros(), dl
, VT
));
12125 return DCI
.DAG
.getNode(ARMISD::BFI
, dl
, VT
, N
->getOperand(0), From1
,
12126 DCI
.DAG
.getConstant(~NewToMask
, dl
, VT
));
12131 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12132 /// ARMISD::VMOVRRD.
12133 static SDValue
PerformVMOVRRDCombine(SDNode
*N
,
12134 TargetLowering::DAGCombinerInfo
&DCI
,
12135 const ARMSubtarget
*Subtarget
) {
12136 // vmovrrd(vmovdrr x, y) -> x,y
12137 SDValue InDouble
= N
->getOperand(0);
12138 if (InDouble
.getOpcode() == ARMISD::VMOVDRR
&& Subtarget
->hasFP64())
12139 return DCI
.CombineTo(N
, InDouble
.getOperand(0), InDouble
.getOperand(1));
12141 // vmovrrd(load f64) -> (load i32), (load i32)
12142 SDNode
*InNode
= InDouble
.getNode();
12143 if (ISD::isNormalLoad(InNode
) && InNode
->hasOneUse() &&
12144 InNode
->getValueType(0) == MVT::f64
&&
12145 InNode
->getOperand(1).getOpcode() == ISD::FrameIndex
&&
12146 !cast
<LoadSDNode
>(InNode
)->isVolatile()) {
12147 // TODO: Should this be done for non-FrameIndex operands?
12148 LoadSDNode
*LD
= cast
<LoadSDNode
>(InNode
);
12150 SelectionDAG
&DAG
= DCI
.DAG
;
12152 SDValue BasePtr
= LD
->getBasePtr();
12154 DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), BasePtr
, LD
->getPointerInfo(),
12155 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
12157 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12158 DAG
.getConstant(4, DL
, MVT::i32
));
12160 SDValue NewLD2
= DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), OffsetPtr
,
12161 LD
->getPointerInfo().getWithOffset(4),
12162 std::min(4U, LD
->getAlignment()),
12163 LD
->getMemOperand()->getFlags());
12165 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewLD2
.getValue(1));
12166 if (DCI
.DAG
.getDataLayout().isBigEndian())
12167 std::swap (NewLD1
, NewLD2
);
12168 SDValue Result
= DCI
.CombineTo(N
, NewLD1
, NewLD2
);
12175 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12176 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
12177 static SDValue
PerformVMOVDRRCombine(SDNode
*N
, SelectionDAG
&DAG
) {
12178 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12179 SDValue Op0
= N
->getOperand(0);
12180 SDValue Op1
= N
->getOperand(1);
12181 if (Op0
.getOpcode() == ISD::BITCAST
)
12182 Op0
= Op0
.getOperand(0);
12183 if (Op1
.getOpcode() == ISD::BITCAST
)
12184 Op1
= Op1
.getOperand(0);
12185 if (Op0
.getOpcode() == ARMISD::VMOVRRD
&&
12186 Op0
.getNode() == Op1
.getNode() &&
12187 Op0
.getResNo() == 0 && Op1
.getResNo() == 1)
12188 return DAG
.getNode(ISD::BITCAST
, SDLoc(N
),
12189 N
->getValueType(0), Op0
.getOperand(0));
12193 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12194 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12195 /// i64 vector to have f64 elements, since the value can then be loaded
12196 /// directly into a VFP register.
12197 static bool hasNormalLoadOperand(SDNode
*N
) {
12198 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
12199 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12200 SDNode
*Elt
= N
->getOperand(i
).getNode();
12201 if (ISD::isNormalLoad(Elt
) && !cast
<LoadSDNode
>(Elt
)->isVolatile())
12207 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12208 /// ISD::BUILD_VECTOR.
12209 static SDValue
PerformBUILD_VECTORCombine(SDNode
*N
,
12210 TargetLowering::DAGCombinerInfo
&DCI
,
12211 const ARMSubtarget
*Subtarget
) {
12212 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12213 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12214 // into a pair of GPRs, which is fine when the value is used as a scalar,
12215 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12216 SelectionDAG
&DAG
= DCI
.DAG
;
12217 if (N
->getNumOperands() == 2)
12218 if (SDValue RV
= PerformVMOVDRRCombine(N
, DAG
))
12221 // Load i64 elements as f64 values so that type legalization does not split
12222 // them up into i32 values.
12223 EVT VT
= N
->getValueType(0);
12224 if (VT
.getVectorElementType() != MVT::i64
|| !hasNormalLoadOperand(N
))
12227 SmallVector
<SDValue
, 8> Ops
;
12228 unsigned NumElts
= VT
.getVectorNumElements();
12229 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12230 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(i
));
12232 // Make the DAGCombiner fold the bitcast.
12233 DCI
.AddToWorklist(V
.getNode());
12235 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
, NumElts
);
12236 SDValue BV
= DAG
.getBuildVector(FloatVT
, dl
, Ops
);
12237 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, BV
);
12240 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12242 PerformARMBUILD_VECTORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12243 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12244 // At that time, we may have inserted bitcasts from integer to float.
12245 // If these bitcasts have survived DAGCombine, change the lowering of this
12246 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12247 // force to use floating point types.
12249 // Make sure we can change the type of the vector.
12250 // This is possible iff:
12251 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12252 // 1.1. Vector is used only once.
12253 // 1.2. Use is a bit convert to an integer type.
12254 // 2. The size of its operands are 32-bits (64-bits are not legal).
12255 EVT VT
= N
->getValueType(0);
12256 EVT EltVT
= VT
.getVectorElementType();
12258 // Check 1.1. and 2.
12259 if (EltVT
.getSizeInBits() != 32 || !N
->hasOneUse())
12262 // By construction, the input type must be float.
12263 assert(EltVT
== MVT::f32
&& "Unexpected type!");
12266 SDNode
*Use
= *N
->use_begin();
12267 if (Use
->getOpcode() != ISD::BITCAST
||
12268 Use
->getValueType(0).isFloatingPoint())
12271 // Check profitability.
12272 // Model is, if more than half of the relevant operands are bitcast from
12273 // i32, turn the build_vector into a sequence of insert_vector_elt.
12274 // Relevant operands are everything that is not statically
12275 // (i.e., at compile time) bitcasted.
12276 unsigned NumOfBitCastedElts
= 0;
12277 unsigned NumElts
= VT
.getVectorNumElements();
12278 unsigned NumOfRelevantElts
= NumElts
;
12279 for (unsigned Idx
= 0; Idx
< NumElts
; ++Idx
) {
12280 SDValue Elt
= N
->getOperand(Idx
);
12281 if (Elt
->getOpcode() == ISD::BITCAST
) {
12282 // Assume only bit cast to i32 will go away.
12283 if (Elt
->getOperand(0).getValueType() == MVT::i32
)
12284 ++NumOfBitCastedElts
;
12285 } else if (Elt
.isUndef() || isa
<ConstantSDNode
>(Elt
))
12286 // Constants are statically casted, thus do not count them as
12287 // relevant operands.
12288 --NumOfRelevantElts
;
12291 // Check if more than half of the elements require a non-free bitcast.
12292 if (NumOfBitCastedElts
<= NumOfRelevantElts
/ 2)
12295 SelectionDAG
&DAG
= DCI
.DAG
;
12296 // Create the new vector type.
12297 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElts
);
12298 // Check if the type is legal.
12299 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12300 if (!TLI
.isTypeLegal(VecVT
))
12304 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12305 // => BITCAST INSERT_VECTOR_ELT
12306 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12307 // (BITCAST EN), N.
12308 SDValue Vec
= DAG
.getUNDEF(VecVT
);
12310 for (unsigned Idx
= 0 ; Idx
< NumElts
; ++Idx
) {
12311 SDValue V
= N
->getOperand(Idx
);
12314 if (V
.getOpcode() == ISD::BITCAST
&&
12315 V
->getOperand(0).getValueType() == MVT::i32
)
12316 // Fold obvious case.
12317 V
= V
.getOperand(0);
12319 V
= DAG
.getNode(ISD::BITCAST
, SDLoc(V
), MVT::i32
, V
);
12320 // Make the DAGCombiner fold the bitcasts.
12321 DCI
.AddToWorklist(V
.getNode());
12323 SDValue LaneIdx
= DAG
.getConstant(Idx
, dl
, MVT::i32
);
12324 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecVT
, Vec
, V
, LaneIdx
);
12326 Vec
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vec
);
12327 // Make the DAGCombiner fold the bitcasts.
12328 DCI
.AddToWorklist(Vec
.getNode());
12332 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12333 /// ISD::INSERT_VECTOR_ELT.
12334 static SDValue
PerformInsertEltCombine(SDNode
*N
,
12335 TargetLowering::DAGCombinerInfo
&DCI
) {
12336 // Bitcast an i64 load inserted into a vector to f64.
12337 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12338 EVT VT
= N
->getValueType(0);
12339 SDNode
*Elt
= N
->getOperand(1).getNode();
12340 if (VT
.getVectorElementType() != MVT::i64
||
12341 !ISD::isNormalLoad(Elt
) || cast
<LoadSDNode
>(Elt
)->isVolatile())
12344 SelectionDAG
&DAG
= DCI
.DAG
;
12346 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12347 VT
.getVectorNumElements());
12348 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, N
->getOperand(0));
12349 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(1));
12350 // Make the DAGCombiner fold the bitcasts.
12351 DCI
.AddToWorklist(Vec
.getNode());
12352 DCI
.AddToWorklist(V
.getNode());
12353 SDValue InsElt
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, FloatVT
,
12354 Vec
, V
, N
->getOperand(2));
12355 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, InsElt
);
12358 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
12359 /// ISD::VECTOR_SHUFFLE.
12360 static SDValue
PerformVECTOR_SHUFFLECombine(SDNode
*N
, SelectionDAG
&DAG
) {
12361 // The LLVM shufflevector instruction does not require the shuffle mask
12362 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
12363 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
12364 // operands do not match the mask length, they are extended by concatenating
12365 // them with undef vectors. That is probably the right thing for other
12366 // targets, but for NEON it is better to concatenate two double-register
12367 // size vector operands into a single quad-register size vector. Do that
12368 // transformation here:
12369 // shuffle(concat(v1, undef), concat(v2, undef)) ->
12370 // shuffle(concat(v1, v2), undef)
12371 SDValue Op0
= N
->getOperand(0);
12372 SDValue Op1
= N
->getOperand(1);
12373 if (Op0
.getOpcode() != ISD::CONCAT_VECTORS
||
12374 Op1
.getOpcode() != ISD::CONCAT_VECTORS
||
12375 Op0
.getNumOperands() != 2 ||
12376 Op1
.getNumOperands() != 2)
12378 SDValue Concat0Op1
= Op0
.getOperand(1);
12379 SDValue Concat1Op1
= Op1
.getOperand(1);
12380 if (!Concat0Op1
.isUndef() || !Concat1Op1
.isUndef())
12382 // Skip the transformation if any of the types are illegal.
12383 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12384 EVT VT
= N
->getValueType(0);
12385 if (!TLI
.isTypeLegal(VT
) ||
12386 !TLI
.isTypeLegal(Concat0Op1
.getValueType()) ||
12387 !TLI
.isTypeLegal(Concat1Op1
.getValueType()))
12390 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
12391 Op0
.getOperand(0), Op1
.getOperand(0));
12392 // Translate the shuffle mask.
12393 SmallVector
<int, 16> NewMask
;
12394 unsigned NumElts
= VT
.getVectorNumElements();
12395 unsigned HalfElts
= NumElts
/2;
12396 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
12397 for (unsigned n
= 0; n
< NumElts
; ++n
) {
12398 int MaskElt
= SVN
->getMaskElt(n
);
12400 if (MaskElt
< (int)HalfElts
)
12402 else if (MaskElt
>= (int)NumElts
&& MaskElt
< (int)(NumElts
+ HalfElts
))
12403 NewElt
= HalfElts
+ MaskElt
- NumElts
;
12404 NewMask
.push_back(NewElt
);
12406 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewConcat
,
12407 DAG
.getUNDEF(VT
), NewMask
);
12410 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
12411 /// NEON load/store intrinsics, and generic vector load/stores, to merge
12412 /// base address updates.
12413 /// For generic load/stores, the memory type is assumed to be a vector.
12414 /// The caller is assumed to have checked legality.
12415 static SDValue
CombineBaseUpdate(SDNode
*N
,
12416 TargetLowering::DAGCombinerInfo
&DCI
) {
12417 SelectionDAG
&DAG
= DCI
.DAG
;
12418 const bool isIntrinsic
= (N
->getOpcode() == ISD::INTRINSIC_VOID
||
12419 N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
);
12420 const bool isStore
= N
->getOpcode() == ISD::STORE
;
12421 const unsigned AddrOpIdx
= ((isIntrinsic
|| isStore
) ? 2 : 1);
12422 SDValue Addr
= N
->getOperand(AddrOpIdx
);
12423 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
12426 // Search for a use of the address operand that is an increment.
12427 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
12428 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
12429 SDNode
*User
= *UI
;
12430 if (User
->getOpcode() != ISD::ADD
||
12431 UI
.getUse().getResNo() != Addr
.getResNo())
12434 // Check that the add is independent of the load/store. Otherwise, folding
12435 // it would create a cycle. We can avoid searching through Addr as it's a
12436 // predecessor to both.
12437 SmallPtrSet
<const SDNode
*, 32> Visited
;
12438 SmallVector
<const SDNode
*, 16> Worklist
;
12439 Visited
.insert(Addr
.getNode());
12440 Worklist
.push_back(N
);
12441 Worklist
.push_back(User
);
12442 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
12443 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
12446 // Find the new opcode for the updating load/store.
12447 bool isLoadOp
= true;
12448 bool isLaneOp
= false;
12449 unsigned NewOpc
= 0;
12450 unsigned NumVecs
= 0;
12452 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
12454 default: llvm_unreachable("unexpected intrinsic for Neon base update");
12455 case Intrinsic::arm_neon_vld1
: NewOpc
= ARMISD::VLD1_UPD
;
12456 NumVecs
= 1; break;
12457 case Intrinsic::arm_neon_vld2
: NewOpc
= ARMISD::VLD2_UPD
;
12458 NumVecs
= 2; break;
12459 case Intrinsic::arm_neon_vld3
: NewOpc
= ARMISD::VLD3_UPD
;
12460 NumVecs
= 3; break;
12461 case Intrinsic::arm_neon_vld4
: NewOpc
= ARMISD::VLD4_UPD
;
12462 NumVecs
= 4; break;
12463 case Intrinsic::arm_neon_vld2dup
:
12464 case Intrinsic::arm_neon_vld3dup
:
12465 case Intrinsic::arm_neon_vld4dup
:
12466 // TODO: Support updating VLDxDUP nodes. For now, we just skip
12467 // combining base updates for such intrinsics.
12469 case Intrinsic::arm_neon_vld2lane
: NewOpc
= ARMISD::VLD2LN_UPD
;
12470 NumVecs
= 2; isLaneOp
= true; break;
12471 case Intrinsic::arm_neon_vld3lane
: NewOpc
= ARMISD::VLD3LN_UPD
;
12472 NumVecs
= 3; isLaneOp
= true; break;
12473 case Intrinsic::arm_neon_vld4lane
: NewOpc
= ARMISD::VLD4LN_UPD
;
12474 NumVecs
= 4; isLaneOp
= true; break;
12475 case Intrinsic::arm_neon_vst1
: NewOpc
= ARMISD::VST1_UPD
;
12476 NumVecs
= 1; isLoadOp
= false; break;
12477 case Intrinsic::arm_neon_vst2
: NewOpc
= ARMISD::VST2_UPD
;
12478 NumVecs
= 2; isLoadOp
= false; break;
12479 case Intrinsic::arm_neon_vst3
: NewOpc
= ARMISD::VST3_UPD
;
12480 NumVecs
= 3; isLoadOp
= false; break;
12481 case Intrinsic::arm_neon_vst4
: NewOpc
= ARMISD::VST4_UPD
;
12482 NumVecs
= 4; isLoadOp
= false; break;
12483 case Intrinsic::arm_neon_vst2lane
: NewOpc
= ARMISD::VST2LN_UPD
;
12484 NumVecs
= 2; isLoadOp
= false; isLaneOp
= true; break;
12485 case Intrinsic::arm_neon_vst3lane
: NewOpc
= ARMISD::VST3LN_UPD
;
12486 NumVecs
= 3; isLoadOp
= false; isLaneOp
= true; break;
12487 case Intrinsic::arm_neon_vst4lane
: NewOpc
= ARMISD::VST4LN_UPD
;
12488 NumVecs
= 4; isLoadOp
= false; isLaneOp
= true; break;
12492 switch (N
->getOpcode()) {
12493 default: llvm_unreachable("unexpected opcode for Neon base update");
12494 case ARMISD::VLD1DUP
: NewOpc
= ARMISD::VLD1DUP_UPD
; NumVecs
= 1; break;
12495 case ARMISD::VLD2DUP
: NewOpc
= ARMISD::VLD2DUP_UPD
; NumVecs
= 2; break;
12496 case ARMISD::VLD3DUP
: NewOpc
= ARMISD::VLD3DUP_UPD
; NumVecs
= 3; break;
12497 case ARMISD::VLD4DUP
: NewOpc
= ARMISD::VLD4DUP_UPD
; NumVecs
= 4; break;
12498 case ISD::LOAD
: NewOpc
= ARMISD::VLD1_UPD
;
12499 NumVecs
= 1; isLaneOp
= false; break;
12500 case ISD::STORE
: NewOpc
= ARMISD::VST1_UPD
;
12501 NumVecs
= 1; isLaneOp
= false; isLoadOp
= false; break;
12505 // Find the size of memory referenced by the load/store.
12508 VecTy
= N
->getValueType(0);
12509 } else if (isIntrinsic
) {
12510 VecTy
= N
->getOperand(AddrOpIdx
+1).getValueType();
12512 assert(isStore
&& "Node has to be a load, a store, or an intrinsic!");
12513 VecTy
= N
->getOperand(1).getValueType();
12516 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
12518 NumBytes
/= VecTy
.getVectorNumElements();
12520 // If the increment is a constant, it must match the memory ref size.
12521 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
12522 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
12523 if (NumBytes
>= 3 * 16 && (!CInc
|| CInc
->getZExtValue() != NumBytes
)) {
12524 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12525 // separate instructions that make it harder to use a non-constant update.
12529 // OK, we found an ADD we can fold into the base update.
12530 // Now, create a _UPD node, taking care of not breaking alignment.
12532 EVT AlignedVecTy
= VecTy
;
12533 unsigned Alignment
= MemN
->getAlignment();
12535 // If this is a less-than-standard-aligned load/store, change the type to
12536 // match the standard alignment.
12537 // The alignment is overlooked when selecting _UPD variants; and it's
12538 // easier to introduce bitcasts here than fix that.
12539 // There are 3 ways to get to this base-update combine:
12540 // - intrinsics: they are assumed to be properly aligned (to the standard
12541 // alignment of the memory type), so we don't need to do anything.
12542 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12543 // intrinsics, so, likewise, there's nothing to do.
12544 // - generic load/store instructions: the alignment is specified as an
12545 // explicit operand, rather than implicitly as the standard alignment
12546 // of the memory type (like the intrisics). We need to change the
12547 // memory type to match the explicit alignment. That way, we don't
12548 // generate non-standard-aligned ARMISD::VLDx nodes.
12549 if (isa
<LSBaseSDNode
>(N
)) {
12550 if (Alignment
== 0)
12552 if (Alignment
< VecTy
.getScalarSizeInBits() / 8) {
12553 MVT EltTy
= MVT::getIntegerVT(Alignment
* 8);
12554 assert(NumVecs
== 1 && "Unexpected multi-element generic load/store.");
12555 assert(!isLaneOp
&& "Unexpected generic load/store lane.");
12556 unsigned NumElts
= NumBytes
/ (EltTy
.getSizeInBits() / 8);
12557 AlignedVecTy
= MVT::getVectorVT(EltTy
, NumElts
);
12559 // Don't set an explicit alignment on regular load/stores that we want
12560 // to transform to VLD/VST 1_UPD nodes.
12561 // This matches the behavior of regular load/stores, which only get an
12562 // explicit alignment if the MMO alignment is larger than the standard
12563 // alignment of the memory type.
12564 // Intrinsics, however, always get an explicit alignment, set to the
12565 // alignment of the MMO.
12569 // Create the new updating load/store node.
12570 // First, create an SDVTList for the new updating node's results.
12572 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
12574 for (n
= 0; n
< NumResultVecs
; ++n
)
12575 Tys
[n
] = AlignedVecTy
;
12576 Tys
[n
++] = MVT::i32
;
12577 Tys
[n
] = MVT::Other
;
12578 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+2));
12580 // Then, gather the new node's operands.
12581 SmallVector
<SDValue
, 8> Ops
;
12582 Ops
.push_back(N
->getOperand(0)); // incoming chain
12583 Ops
.push_back(N
->getOperand(AddrOpIdx
));
12584 Ops
.push_back(Inc
);
12586 if (StoreSDNode
*StN
= dyn_cast
<StoreSDNode
>(N
)) {
12587 // Try to match the intrinsic's signature
12588 Ops
.push_back(StN
->getValue());
12590 // Loads (and of course intrinsics) match the intrinsics' signature,
12591 // so just add all but the alignment operand.
12592 for (unsigned i
= AddrOpIdx
+ 1; i
< N
->getNumOperands() - 1; ++i
)
12593 Ops
.push_back(N
->getOperand(i
));
12596 // For all node types, the alignment operand is always the last one.
12597 Ops
.push_back(DAG
.getConstant(Alignment
, dl
, MVT::i32
));
12599 // If this is a non-standard-aligned STORE, the penultimate operand is the
12600 // stored value. Bitcast it to the aligned type.
12601 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::STORE
) {
12602 SDValue
&StVal
= Ops
[Ops
.size()-2];
12603 StVal
= DAG
.getNode(ISD::BITCAST
, dl
, AlignedVecTy
, StVal
);
12606 EVT LoadVT
= isLaneOp
? VecTy
.getVectorElementType() : AlignedVecTy
;
12607 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, LoadVT
,
12608 MemN
->getMemOperand());
12610 // Update the uses.
12611 SmallVector
<SDValue
, 5> NewResults
;
12612 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
12613 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
12615 // If this is an non-standard-aligned LOAD, the first result is the loaded
12616 // value. Bitcast it to the expected result type.
12617 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::LOAD
) {
12618 SDValue
&LdVal
= NewResults
[0];
12619 LdVal
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, LdVal
);
12622 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+1)); // chain
12623 DCI
.CombineTo(N
, NewResults
);
12624 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
12631 static SDValue
PerformVLDCombine(SDNode
*N
,
12632 TargetLowering::DAGCombinerInfo
&DCI
) {
12633 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
12636 return CombineBaseUpdate(N
, DCI
);
12639 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
12640 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
12641 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
12643 static bool CombineVLDDUP(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12644 SelectionDAG
&DAG
= DCI
.DAG
;
12645 EVT VT
= N
->getValueType(0);
12646 // vldN-dup instructions only support 64-bit vectors for N > 1.
12647 if (!VT
.is64BitVector())
12650 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
12651 SDNode
*VLD
= N
->getOperand(0).getNode();
12652 if (VLD
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
12654 unsigned NumVecs
= 0;
12655 unsigned NewOpc
= 0;
12656 unsigned IntNo
= cast
<ConstantSDNode
>(VLD
->getOperand(1))->getZExtValue();
12657 if (IntNo
== Intrinsic::arm_neon_vld2lane
) {
12659 NewOpc
= ARMISD::VLD2DUP
;
12660 } else if (IntNo
== Intrinsic::arm_neon_vld3lane
) {
12662 NewOpc
= ARMISD::VLD3DUP
;
12663 } else if (IntNo
== Intrinsic::arm_neon_vld4lane
) {
12665 NewOpc
= ARMISD::VLD4DUP
;
12670 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
12671 // numbers match the load.
12672 unsigned VLDLaneNo
=
12673 cast
<ConstantSDNode
>(VLD
->getOperand(NumVecs
+3))->getZExtValue();
12674 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12676 // Ignore uses of the chain result.
12677 if (UI
.getUse().getResNo() == NumVecs
)
12679 SDNode
*User
= *UI
;
12680 if (User
->getOpcode() != ARMISD::VDUPLANE
||
12681 VLDLaneNo
!= cast
<ConstantSDNode
>(User
->getOperand(1))->getZExtValue())
12685 // Create the vldN-dup node.
12688 for (n
= 0; n
< NumVecs
; ++n
)
12690 Tys
[n
] = MVT::Other
;
12691 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumVecs
+1));
12692 SDValue Ops
[] = { VLD
->getOperand(0), VLD
->getOperand(2) };
12693 MemIntrinsicSDNode
*VLDMemInt
= cast
<MemIntrinsicSDNode
>(VLD
);
12694 SDValue VLDDup
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(VLD
), SDTys
,
12695 Ops
, VLDMemInt
->getMemoryVT(),
12696 VLDMemInt
->getMemOperand());
12698 // Update the uses.
12699 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12701 unsigned ResNo
= UI
.getUse().getResNo();
12702 // Ignore uses of the chain result.
12703 if (ResNo
== NumVecs
)
12705 SDNode
*User
= *UI
;
12706 DCI
.CombineTo(User
, SDValue(VLDDup
.getNode(), ResNo
));
12709 // Now the vldN-lane intrinsic is dead except for its chain result.
12710 // Update uses of the chain.
12711 std::vector
<SDValue
> VLDDupResults
;
12712 for (unsigned n
= 0; n
< NumVecs
; ++n
)
12713 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), n
));
12714 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), NumVecs
));
12715 DCI
.CombineTo(VLD
, VLDDupResults
);
12720 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
12721 /// ARMISD::VDUPLANE.
12722 static SDValue
PerformVDUPLANECombine(SDNode
*N
,
12723 TargetLowering::DAGCombinerInfo
&DCI
) {
12724 SDValue Op
= N
->getOperand(0);
12726 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
12727 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
12728 if (CombineVLDDUP(N
, DCI
))
12729 return SDValue(N
, 0);
12731 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
12732 // redundant. Ignore bit_converts for now; element sizes are checked below.
12733 while (Op
.getOpcode() == ISD::BITCAST
)
12734 Op
= Op
.getOperand(0);
12735 if (Op
.getOpcode() != ARMISD::VMOVIMM
&& Op
.getOpcode() != ARMISD::VMVNIMM
)
12738 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
12739 unsigned EltSize
= Op
.getScalarValueSizeInBits();
12740 // The canonical VMOV for a zero vector uses a 32-bit element size.
12741 unsigned Imm
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
12743 if (ARM_AM::decodeVMOVModImm(Imm
, EltBits
) == 0)
12745 EVT VT
= N
->getValueType(0);
12746 if (EltSize
> VT
.getScalarSizeInBits())
12749 return DCI
.DAG
.getNode(ISD::BITCAST
, SDLoc(N
), VT
, Op
);
12752 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
12753 static SDValue
PerformVDUPCombine(SDNode
*N
,
12754 TargetLowering::DAGCombinerInfo
&DCI
,
12755 const ARMSubtarget
*Subtarget
) {
12756 SelectionDAG
&DAG
= DCI
.DAG
;
12757 SDValue Op
= N
->getOperand(0);
12759 if (!Subtarget
->hasNEON())
12762 // Match VDUP(LOAD) -> VLD1DUP.
12763 // We match this pattern here rather than waiting for isel because the
12764 // transform is only legal for unindexed loads.
12765 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode());
12766 if (LD
&& Op
.hasOneUse() && LD
->isUnindexed() &&
12767 LD
->getMemoryVT() == N
->getValueType(0).getVectorElementType()) {
12768 SDValue Ops
[] = { LD
->getOperand(0), LD
->getOperand(1),
12769 DAG
.getConstant(LD
->getAlignment(), SDLoc(N
), MVT::i32
) };
12770 SDVTList SDTys
= DAG
.getVTList(N
->getValueType(0), MVT::Other
);
12771 SDValue VLDDup
= DAG
.getMemIntrinsicNode(ARMISD::VLD1DUP
, SDLoc(N
), SDTys
,
12772 Ops
, LD
->getMemoryVT(),
12773 LD
->getMemOperand());
12774 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), VLDDup
.getValue(1));
12781 static SDValue
PerformLOADCombine(SDNode
*N
,
12782 TargetLowering::DAGCombinerInfo
&DCI
) {
12783 EVT VT
= N
->getValueType(0);
12785 // If this is a legal vector load, try to combine it into a VLD1_UPD.
12786 if (ISD::isNormalLoad(N
) && VT
.isVector() &&
12787 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12788 return CombineBaseUpdate(N
, DCI
);
12793 /// PerformSTORECombine - Target-specific dag combine xforms for
12795 static SDValue
PerformSTORECombine(SDNode
*N
,
12796 TargetLowering::DAGCombinerInfo
&DCI
) {
12797 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
12798 if (St
->isVolatile())
12801 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
12802 // pack all of the elements in one place. Next, store to memory in fewer
12804 SDValue StVal
= St
->getValue();
12805 EVT VT
= StVal
.getValueType();
12806 if (St
->isTruncatingStore() && VT
.isVector()) {
12807 SelectionDAG
&DAG
= DCI
.DAG
;
12808 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12809 EVT StVT
= St
->getMemoryVT();
12810 unsigned NumElems
= VT
.getVectorNumElements();
12811 assert(StVT
!= VT
&& "Cannot truncate to the same type");
12812 unsigned FromEltSz
= VT
.getScalarSizeInBits();
12813 unsigned ToEltSz
= StVT
.getScalarSizeInBits();
12815 // From, To sizes and ElemCount must be pow of two
12816 if (!isPowerOf2_32(NumElems
* FromEltSz
* ToEltSz
)) return SDValue();
12818 // We are going to use the original vector elt for storing.
12819 // Accumulated smaller vector elements must be a multiple of the store size.
12820 if (0 != (NumElems
* FromEltSz
) % ToEltSz
) return SDValue();
12822 unsigned SizeRatio
= FromEltSz
/ ToEltSz
;
12823 assert(SizeRatio
* NumElems
* ToEltSz
== VT
.getSizeInBits());
12825 // Create a type on which we perform the shuffle.
12826 EVT WideVecVT
= EVT::getVectorVT(*DAG
.getContext(), StVT
.getScalarType(),
12827 NumElems
*SizeRatio
);
12828 assert(WideVecVT
.getSizeInBits() == VT
.getSizeInBits());
12831 SDValue WideVec
= DAG
.getNode(ISD::BITCAST
, DL
, WideVecVT
, StVal
);
12832 SmallVector
<int, 8> ShuffleVec(NumElems
* SizeRatio
, -1);
12833 for (unsigned i
= 0; i
< NumElems
; ++i
)
12834 ShuffleVec
[i
] = DAG
.getDataLayout().isBigEndian()
12835 ? (i
+ 1) * SizeRatio
- 1
12838 // Can't shuffle using an illegal type.
12839 if (!TLI
.isTypeLegal(WideVecVT
)) return SDValue();
12841 SDValue Shuff
= DAG
.getVectorShuffle(WideVecVT
, DL
, WideVec
,
12842 DAG
.getUNDEF(WideVec
.getValueType()),
12844 // At this point all of the data is stored at the bottom of the
12845 // register. We now need to save it to mem.
12847 // Find the largest store unit
12848 MVT StoreType
= MVT::i8
;
12849 for (MVT Tp
: MVT::integer_valuetypes()) {
12850 if (TLI
.isTypeLegal(Tp
) && Tp
.getSizeInBits() <= NumElems
* ToEltSz
)
12853 // Didn't find a legal store type.
12854 if (!TLI
.isTypeLegal(StoreType
))
12857 // Bitcast the original vector into a vector of store-size units
12858 EVT StoreVecVT
= EVT::getVectorVT(*DAG
.getContext(),
12859 StoreType
, VT
.getSizeInBits()/EVT(StoreType
).getSizeInBits());
12860 assert(StoreVecVT
.getSizeInBits() == VT
.getSizeInBits());
12861 SDValue ShuffWide
= DAG
.getNode(ISD::BITCAST
, DL
, StoreVecVT
, Shuff
);
12862 SmallVector
<SDValue
, 8> Chains
;
12863 SDValue Increment
= DAG
.getConstant(StoreType
.getSizeInBits() / 8, DL
,
12864 TLI
.getPointerTy(DAG
.getDataLayout()));
12865 SDValue BasePtr
= St
->getBasePtr();
12867 // Perform one or more big stores into memory.
12868 unsigned E
= (ToEltSz
*NumElems
)/StoreType
.getSizeInBits();
12869 for (unsigned I
= 0; I
< E
; I
++) {
12870 SDValue SubVec
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
12871 StoreType
, ShuffWide
,
12872 DAG
.getIntPtrConstant(I
, DL
));
12873 SDValue Ch
= DAG
.getStore(St
->getChain(), DL
, SubVec
, BasePtr
,
12874 St
->getPointerInfo(), St
->getAlignment(),
12875 St
->getMemOperand()->getFlags());
12876 BasePtr
= DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
,
12878 Chains
.push_back(Ch
);
12880 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
12883 if (!ISD::isNormalStore(St
))
12886 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
12887 // ARM stores of arguments in the same cache line.
12888 if (StVal
.getNode()->getOpcode() == ARMISD::VMOVDRR
&&
12889 StVal
.getNode()->hasOneUse()) {
12890 SelectionDAG
&DAG
= DCI
.DAG
;
12891 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
12893 SDValue BasePtr
= St
->getBasePtr();
12894 SDValue NewST1
= DAG
.getStore(
12895 St
->getChain(), DL
, StVal
.getNode()->getOperand(isBigEndian
? 1 : 0),
12896 BasePtr
, St
->getPointerInfo(), St
->getAlignment(),
12897 St
->getMemOperand()->getFlags());
12899 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12900 DAG
.getConstant(4, DL
, MVT::i32
));
12901 return DAG
.getStore(NewST1
.getValue(0), DL
,
12902 StVal
.getNode()->getOperand(isBigEndian
? 0 : 1),
12903 OffsetPtr
, St
->getPointerInfo(),
12904 std::min(4U, St
->getAlignment() / 2),
12905 St
->getMemOperand()->getFlags());
12908 if (StVal
.getValueType() == MVT::i64
&&
12909 StVal
.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
12911 // Bitcast an i64 store extracted from a vector to f64.
12912 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12913 SelectionDAG
&DAG
= DCI
.DAG
;
12915 SDValue IntVec
= StVal
.getOperand(0);
12916 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12917 IntVec
.getValueType().getVectorNumElements());
12918 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, IntVec
);
12919 SDValue ExtElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
12920 Vec
, StVal
.getOperand(1));
12922 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, ExtElt
);
12923 // Make the DAGCombiner fold the bitcasts.
12924 DCI
.AddToWorklist(Vec
.getNode());
12925 DCI
.AddToWorklist(ExtElt
.getNode());
12926 DCI
.AddToWorklist(V
.getNode());
12927 return DAG
.getStore(St
->getChain(), dl
, V
, St
->getBasePtr(),
12928 St
->getPointerInfo(), St
->getAlignment(),
12929 St
->getMemOperand()->getFlags(), St
->getAAInfo());
12932 // If this is a legal vector store, try to combine it into a VST1_UPD.
12933 if (ISD::isNormalStore(N
) && VT
.isVector() &&
12934 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12935 return CombineBaseUpdate(N
, DCI
);
12940 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
12941 /// can replace combinations of VMUL and VCVT (floating-point to integer)
12942 /// when the VMUL has a constant operand that is a power of 2.
12944 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12945 /// vmul.f32 d16, d17, d16
12946 /// vcvt.s32.f32 d16, d16
12948 /// vcvt.s32.f32 d16, d16, #3
12949 static SDValue
PerformVCVTCombine(SDNode
*N
, SelectionDAG
&DAG
,
12950 const ARMSubtarget
*Subtarget
) {
12951 if (!Subtarget
->hasNEON())
12954 SDValue Op
= N
->getOperand(0);
12955 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
12956 Op
.getOpcode() != ISD::FMUL
)
12959 SDValue ConstVec
= Op
->getOperand(1);
12960 if (!isa
<BuildVectorSDNode
>(ConstVec
))
12963 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
12964 uint32_t FloatBits
= FloatTy
.getSizeInBits();
12965 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
12966 uint32_t IntBits
= IntTy
.getSizeInBits();
12967 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
12968 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
12969 // These instructions only exist converting from f32 to i32. We can handle
12970 // smaller integers by generating an extra truncate, but larger ones would
12971 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
12972 // these intructions only support v2i32/v4i32 types.
12976 BitVector UndefElements
;
12977 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
12978 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
12979 if (C
== -1 || C
== 0 || C
> 32)
12983 bool isSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
12984 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfp2fxs
:
12985 Intrinsic::arm_neon_vcvtfp2fxu
;
12986 SDValue FixConv
= DAG
.getNode(
12987 ISD::INTRINSIC_WO_CHAIN
, dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
12988 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
), Op
->getOperand(0),
12989 DAG
.getConstant(C
, dl
, MVT::i32
));
12991 if (IntBits
< FloatBits
)
12992 FixConv
= DAG
.getNode(ISD::TRUNCATE
, dl
, N
->getValueType(0), FixConv
);
12997 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
12998 /// can replace combinations of VCVT (integer to floating-point) and VDIV
12999 /// when the VDIV has a constant operand that is a power of 2.
13001 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13002 /// vcvt.f32.s32 d16, d16
13003 /// vdiv.f32 d16, d17, d16
13005 /// vcvt.f32.s32 d16, d16, #3
13006 static SDValue
PerformVDIVCombine(SDNode
*N
, SelectionDAG
&DAG
,
13007 const ARMSubtarget
*Subtarget
) {
13008 if (!Subtarget
->hasNEON())
13011 SDValue Op
= N
->getOperand(0);
13012 unsigned OpOpcode
= Op
.getNode()->getOpcode();
13013 if (!N
->getValueType(0).isVector() || !N
->getValueType(0).isSimple() ||
13014 (OpOpcode
!= ISD::SINT_TO_FP
&& OpOpcode
!= ISD::UINT_TO_FP
))
13017 SDValue ConstVec
= N
->getOperand(1);
13018 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13021 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
13022 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13023 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
13024 uint32_t IntBits
= IntTy
.getSizeInBits();
13025 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13026 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13027 // These instructions only exist converting from i32 to f32. We can handle
13028 // smaller integers by generating an extra extend, but larger ones would
13029 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13030 // these intructions only support v2i32/v4i32 types.
13034 BitVector UndefElements
;
13035 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13036 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13037 if (C
== -1 || C
== 0 || C
> 32)
13041 bool isSigned
= OpOpcode
== ISD::SINT_TO_FP
;
13042 SDValue ConvInput
= Op
.getOperand(0);
13043 if (IntBits
< FloatBits
)
13044 ConvInput
= DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
13045 dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13048 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfxs2fp
:
13049 Intrinsic::arm_neon_vcvtfxu2fp
;
13050 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
,
13052 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
),
13053 ConvInput
, DAG
.getConstant(C
, dl
, MVT::i32
));
13056 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13057 static SDValue
PerformIntrinsicCombine(SDNode
*N
, SelectionDAG
&DAG
) {
13058 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
13061 // Don't do anything for most intrinsics.
13064 // Vector shifts: check for immediate versions and lower them.
13065 // Note: This is done during DAG combining instead of DAG legalizing because
13066 // the build_vectors for 64-bit vector element shift counts are generally
13067 // not legal, and it is hard to see their values after they get legalized to
13068 // loads from a constant pool.
13069 case Intrinsic::arm_neon_vshifts
:
13070 case Intrinsic::arm_neon_vshiftu
:
13071 case Intrinsic::arm_neon_vrshifts
:
13072 case Intrinsic::arm_neon_vrshiftu
:
13073 case Intrinsic::arm_neon_vrshiftn
:
13074 case Intrinsic::arm_neon_vqshifts
:
13075 case Intrinsic::arm_neon_vqshiftu
:
13076 case Intrinsic::arm_neon_vqshiftsu
:
13077 case Intrinsic::arm_neon_vqshiftns
:
13078 case Intrinsic::arm_neon_vqshiftnu
:
13079 case Intrinsic::arm_neon_vqshiftnsu
:
13080 case Intrinsic::arm_neon_vqrshiftns
:
13081 case Intrinsic::arm_neon_vqrshiftnu
:
13082 case Intrinsic::arm_neon_vqrshiftnsu
: {
13083 EVT VT
= N
->getOperand(1).getValueType();
13085 unsigned VShiftOpc
= 0;
13088 case Intrinsic::arm_neon_vshifts
:
13089 case Intrinsic::arm_neon_vshiftu
:
13090 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
)) {
13091 VShiftOpc
= ARMISD::VSHLIMM
;
13094 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
)) {
13095 VShiftOpc
= (IntNo
== Intrinsic::arm_neon_vshifts
? ARMISD::VSHRsIMM
13096 : ARMISD::VSHRuIMM
);
13101 case Intrinsic::arm_neon_vrshifts
:
13102 case Intrinsic::arm_neon_vrshiftu
:
13103 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
))
13107 case Intrinsic::arm_neon_vqshifts
:
13108 case Intrinsic::arm_neon_vqshiftu
:
13109 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13113 case Intrinsic::arm_neon_vqshiftsu
:
13114 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13116 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13118 case Intrinsic::arm_neon_vrshiftn
:
13119 case Intrinsic::arm_neon_vqshiftns
:
13120 case Intrinsic::arm_neon_vqshiftnu
:
13121 case Intrinsic::arm_neon_vqshiftnsu
:
13122 case Intrinsic::arm_neon_vqrshiftns
:
13123 case Intrinsic::arm_neon_vqrshiftnu
:
13124 case Intrinsic::arm_neon_vqrshiftnsu
:
13125 // Narrowing shifts require an immediate right shift.
13126 if (isVShiftRImm(N
->getOperand(2), VT
, true, true, Cnt
))
13128 llvm_unreachable("invalid shift count for narrowing vector shift "
13132 llvm_unreachable("unhandled vector shift");
13136 case Intrinsic::arm_neon_vshifts
:
13137 case Intrinsic::arm_neon_vshiftu
:
13138 // Opcode already set above.
13140 case Intrinsic::arm_neon_vrshifts
:
13141 VShiftOpc
= ARMISD::VRSHRsIMM
;
13143 case Intrinsic::arm_neon_vrshiftu
:
13144 VShiftOpc
= ARMISD::VRSHRuIMM
;
13146 case Intrinsic::arm_neon_vrshiftn
:
13147 VShiftOpc
= ARMISD::VRSHRNIMM
;
13149 case Intrinsic::arm_neon_vqshifts
:
13150 VShiftOpc
= ARMISD::VQSHLsIMM
;
13152 case Intrinsic::arm_neon_vqshiftu
:
13153 VShiftOpc
= ARMISD::VQSHLuIMM
;
13155 case Intrinsic::arm_neon_vqshiftsu
:
13156 VShiftOpc
= ARMISD::VQSHLsuIMM
;
13158 case Intrinsic::arm_neon_vqshiftns
:
13159 VShiftOpc
= ARMISD::VQSHRNsIMM
;
13161 case Intrinsic::arm_neon_vqshiftnu
:
13162 VShiftOpc
= ARMISD::VQSHRNuIMM
;
13164 case Intrinsic::arm_neon_vqshiftnsu
:
13165 VShiftOpc
= ARMISD::VQSHRNsuIMM
;
13167 case Intrinsic::arm_neon_vqrshiftns
:
13168 VShiftOpc
= ARMISD::VQRSHRNsIMM
;
13170 case Intrinsic::arm_neon_vqrshiftnu
:
13171 VShiftOpc
= ARMISD::VQRSHRNuIMM
;
13173 case Intrinsic::arm_neon_vqrshiftnsu
:
13174 VShiftOpc
= ARMISD::VQRSHRNsuIMM
;
13179 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13180 N
->getOperand(1), DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13183 case Intrinsic::arm_neon_vshiftins
: {
13184 EVT VT
= N
->getOperand(1).getValueType();
13186 unsigned VShiftOpc
= 0;
13188 if (isVShiftLImm(N
->getOperand(3), VT
, false, Cnt
))
13189 VShiftOpc
= ARMISD::VSLIIMM
;
13190 else if (isVShiftRImm(N
->getOperand(3), VT
, false, true, Cnt
))
13191 VShiftOpc
= ARMISD::VSRIIMM
;
13193 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13197 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13198 N
->getOperand(1), N
->getOperand(2),
13199 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13202 case Intrinsic::arm_neon_vqrshifts
:
13203 case Intrinsic::arm_neon_vqrshiftu
:
13204 // No immediate versions of these to check for.
13211 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13212 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13213 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13214 /// vector element shift counts are generally not legal, and it is hard to see
13215 /// their values after they get legalized to loads from a constant pool.
13216 static SDValue
PerformShiftCombine(SDNode
*N
,
13217 TargetLowering::DAGCombinerInfo
&DCI
,
13218 const ARMSubtarget
*ST
) {
13219 SelectionDAG
&DAG
= DCI
.DAG
;
13220 EVT VT
= N
->getValueType(0);
13221 if (N
->getOpcode() == ISD::SRL
&& VT
== MVT::i32
&& ST
->hasV6Ops()) {
13222 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13223 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13224 SDValue N1
= N
->getOperand(1);
13225 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
13226 SDValue N0
= N
->getOperand(0);
13227 if (C
->getZExtValue() == 16 && N0
.getOpcode() == ISD::BSWAP
&&
13228 DAG
.MaskedValueIsZero(N0
.getOperand(0),
13229 APInt::getHighBitsSet(32, 16)))
13230 return DAG
.getNode(ISD::ROTR
, SDLoc(N
), VT
, N0
, N1
);
13234 if (ST
->isThumb1Only() && N
->getOpcode() == ISD::SHL
&& VT
== MVT::i32
&&
13235 N
->getOperand(0)->getOpcode() == ISD::AND
&&
13236 N
->getOperand(0)->hasOneUse()) {
13237 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
13239 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13240 // usually show up because instcombine prefers to canonicalize it to
13241 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13242 // out of GEP lowering in some cases.
13243 SDValue N0
= N
->getOperand(0);
13244 ConstantSDNode
*ShiftAmtNode
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13247 uint32_t ShiftAmt
= static_cast<uint32_t>(ShiftAmtNode
->getZExtValue());
13248 ConstantSDNode
*AndMaskNode
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
13251 uint32_t AndMask
= static_cast<uint32_t>(AndMaskNode
->getZExtValue());
13252 // Don't transform uxtb/uxth.
13253 if (AndMask
== 255 || AndMask
== 65535)
13255 if (isMask_32(AndMask
)) {
13256 uint32_t MaskedBits
= countLeadingZeros(AndMask
);
13257 if (MaskedBits
> ShiftAmt
) {
13259 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
13260 DAG
.getConstant(MaskedBits
, DL
, MVT::i32
));
13261 return DAG
.getNode(
13262 ISD::SRL
, DL
, MVT::i32
, SHL
,
13263 DAG
.getConstant(MaskedBits
- ShiftAmt
, DL
, MVT::i32
));
13268 // Nothing to be done for scalar shifts.
13269 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13270 if (!VT
.isVector() || !TLI
.isTypeLegal(VT
))
13272 if (ST
->hasMVEIntegerOps() && VT
== MVT::v2i64
)
13277 switch (N
->getOpcode()) {
13278 default: llvm_unreachable("unexpected shift opcode");
13281 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
)) {
13283 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
13284 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13290 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
13291 unsigned VShiftOpc
=
13292 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
13294 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
13295 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13301 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
13302 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
13303 static SDValue
PerformExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
13304 const ARMSubtarget
*ST
) {
13305 SDValue N0
= N
->getOperand(0);
13307 // Check for sign- and zero-extensions of vector extract operations of 8-
13308 // and 16-bit vector elements. NEON supports these directly. They are
13309 // handled during DAG combining because type legalization will promote them
13310 // to 32-bit types and it is messy to recognize the operations after that.
13311 if (ST
->hasNEON() && N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13312 SDValue Vec
= N0
.getOperand(0);
13313 SDValue Lane
= N0
.getOperand(1);
13314 EVT VT
= N
->getValueType(0);
13315 EVT EltVT
= N0
.getValueType();
13316 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13318 if (VT
== MVT::i32
&&
13319 (EltVT
== MVT::i8
|| EltVT
== MVT::i16
) &&
13320 TLI
.isTypeLegal(Vec
.getValueType()) &&
13321 isa
<ConstantSDNode
>(Lane
)) {
13324 switch (N
->getOpcode()) {
13325 default: llvm_unreachable("unexpected opcode");
13326 case ISD::SIGN_EXTEND
:
13327 Opc
= ARMISD::VGETLANEs
;
13329 case ISD::ZERO_EXTEND
:
13330 case ISD::ANY_EXTEND
:
13331 Opc
= ARMISD::VGETLANEu
;
13334 return DAG
.getNode(Opc
, SDLoc(N
), VT
, Vec
, Lane
);
13341 static const APInt
*isPowerOf2Constant(SDValue V
) {
13342 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(V
);
13345 const APInt
*CV
= &C
->getAPIntValue();
13346 return CV
->isPowerOf2() ? CV
: nullptr;
13349 SDValue
ARMTargetLowering::PerformCMOVToBFICombine(SDNode
*CMOV
, SelectionDAG
&DAG
) const {
13350 // If we have a CMOV, OR and AND combination such as:
13355 // * CN is a single bit;
13356 // * All bits covered by CM are known zero in y
13358 // Then we can convert this into a sequence of BFI instructions. This will
13359 // always be a win if CM is a single bit, will always be no worse than the
13360 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
13361 // three bits (due to the extra IT instruction).
13363 SDValue Op0
= CMOV
->getOperand(0);
13364 SDValue Op1
= CMOV
->getOperand(1);
13365 auto CCNode
= cast
<ConstantSDNode
>(CMOV
->getOperand(2));
13366 auto CC
= CCNode
->getAPIntValue().getLimitedValue();
13367 SDValue CmpZ
= CMOV
->getOperand(4);
13369 // The compare must be against zero.
13370 if (!isNullConstant(CmpZ
->getOperand(1)))
13373 assert(CmpZ
->getOpcode() == ARMISD::CMPZ
);
13374 SDValue And
= CmpZ
->getOperand(0);
13375 if (And
->getOpcode() != ISD::AND
)
13377 const APInt
*AndC
= isPowerOf2Constant(And
->getOperand(1));
13380 SDValue X
= And
->getOperand(0);
13382 if (CC
== ARMCC::EQ
) {
13383 // We're performing an "equal to zero" compare. Swap the operands so we
13384 // canonicalize on a "not equal to zero" compare.
13385 std::swap(Op0
, Op1
);
13387 assert(CC
== ARMCC::NE
&& "How can a CMPZ node not be EQ or NE?");
13390 if (Op1
->getOpcode() != ISD::OR
)
13393 ConstantSDNode
*OrC
= dyn_cast
<ConstantSDNode
>(Op1
->getOperand(1));
13396 SDValue Y
= Op1
->getOperand(0);
13401 // Now, is it profitable to continue?
13402 APInt OrCI
= OrC
->getAPIntValue();
13403 unsigned Heuristic
= Subtarget
->isThumb() ? 3 : 2;
13404 if (OrCI
.countPopulation() > Heuristic
)
13407 // Lastly, can we determine that the bits defined by OrCI
13409 KnownBits Known
= DAG
.computeKnownBits(Y
);
13410 if ((OrCI
& Known
.Zero
) != OrCI
)
13413 // OK, we can do the combine.
13416 EVT VT
= X
.getValueType();
13417 unsigned BitInX
= AndC
->logBase2();
13420 // We must shift X first.
13421 X
= DAG
.getNode(ISD::SRL
, dl
, VT
, X
,
13422 DAG
.getConstant(BitInX
, dl
, VT
));
13425 for (unsigned BitInY
= 0, NumActiveBits
= OrCI
.getActiveBits();
13426 BitInY
< NumActiveBits
; ++BitInY
) {
13427 if (OrCI
[BitInY
] == 0)
13429 APInt
Mask(VT
.getSizeInBits(), 0);
13430 Mask
.setBit(BitInY
);
13431 V
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, V
, X
,
13432 // Confusingly, the operand is an *inverted* mask.
13433 DAG
.getConstant(~Mask
, dl
, VT
));
13439 // Given N, the value controlling the conditional branch, search for the loop
13440 // intrinsic, returning it, along with how the value is used. We need to handle
13441 // patterns such as the following:
13442 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
13443 // (brcond (setcc (loop.decrement), 0, eq), exit)
13444 // (brcond (setcc (loop.decrement), 0, ne), header)
13445 static SDValue
SearchLoopIntrinsic(SDValue N
, ISD::CondCode
&CC
, int &Imm
,
13447 switch (N
->getOpcode()) {
13451 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
13453 if (!cast
<ConstantSDNode
>(N
.getOperand(1))->isOne())
13456 return SearchLoopIntrinsic(N
.getOperand(0), CC
, Imm
, Negate
);
13459 auto *Const
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
13462 if (Const
->isNullValue())
13464 else if (Const
->isOne())
13468 CC
= cast
<CondCodeSDNode
>(N
.getOperand(2))->get();
13469 return SearchLoopIntrinsic(N
->getOperand(0), CC
, Imm
, Negate
);
13471 case ISD::INTRINSIC_W_CHAIN
: {
13472 unsigned IntOp
= cast
<ConstantSDNode
>(N
.getOperand(1))->getZExtValue();
13473 if (IntOp
!= Intrinsic::test_set_loop_iterations
&&
13474 IntOp
!= Intrinsic::loop_decrement_reg
)
13482 static SDValue
PerformHWLoopCombine(SDNode
*N
,
13483 TargetLowering::DAGCombinerInfo
&DCI
,
13484 const ARMSubtarget
*ST
) {
13486 // The hwloop intrinsics that we're interested are used for control-flow,
13487 // either for entering or exiting the loop:
13488 // - test.set.loop.iterations will test whether its operand is zero. If it
13489 // is zero, the proceeding branch should not enter the loop.
13490 // - loop.decrement.reg also tests whether its operand is zero. If it is
13491 // zero, the proceeding branch should not branch back to the beginning of
13493 // So here, we need to check that how the brcond is using the result of each
13494 // of the intrinsics to ensure that we're branching to the right place at the
13500 bool Negate
= false;
13501 SDValue Chain
= N
->getOperand(0);
13504 if (N
->getOpcode() == ISD::BRCOND
) {
13506 Cond
= N
->getOperand(1);
13507 Dest
= N
->getOperand(2);
13509 assert(N
->getOpcode() == ISD::BR_CC
&& "Expected BRCOND or BR_CC!");
13510 CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
13511 Cond
= N
->getOperand(2);
13512 Dest
= N
->getOperand(4);
13513 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(3))) {
13514 if (!Const
->isOne() && !Const
->isNullValue())
13516 Imm
= Const
->getZExtValue();
13521 SDValue Int
= SearchLoopIntrinsic(Cond
, CC
, Imm
, Negate
);
13526 CC
= ISD::getSetCCInverse(CC
, true);
13528 auto IsTrueIfZero
= [](ISD::CondCode CC
, int Imm
) {
13529 return (CC
== ISD::SETEQ
&& Imm
== 0) ||
13530 (CC
== ISD::SETNE
&& Imm
== 1) ||
13531 (CC
== ISD::SETLT
&& Imm
== 1) ||
13532 (CC
== ISD::SETULT
&& Imm
== 1);
13535 auto IsFalseIfZero
= [](ISD::CondCode CC
, int Imm
) {
13536 return (CC
== ISD::SETEQ
&& Imm
== 1) ||
13537 (CC
== ISD::SETNE
&& Imm
== 0) ||
13538 (CC
== ISD::SETGT
&& Imm
== 0) ||
13539 (CC
== ISD::SETUGT
&& Imm
== 0) ||
13540 (CC
== ISD::SETGE
&& Imm
== 1) ||
13541 (CC
== ISD::SETUGE
&& Imm
== 1);
13544 assert((IsTrueIfZero(CC
, Imm
) || IsFalseIfZero(CC
, Imm
)) &&
13545 "unsupported condition");
13548 SelectionDAG
&DAG
= DCI
.DAG
;
13549 SDValue Elements
= Int
.getOperand(2);
13550 unsigned IntOp
= cast
<ConstantSDNode
>(Int
->getOperand(1))->getZExtValue();
13551 assert((N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BR
)
13552 && "expected single br user");
13553 SDNode
*Br
= *N
->use_begin();
13554 SDValue OtherTarget
= Br
->getOperand(1);
13556 // Update the unconditional branch to branch to the given Dest.
13557 auto UpdateUncondBr
= [](SDNode
*Br
, SDValue Dest
, SelectionDAG
&DAG
) {
13558 SDValue NewBrOps
[] = { Br
->getOperand(0), Dest
};
13559 SDValue NewBr
= DAG
.getNode(ISD::BR
, SDLoc(Br
), MVT::Other
, NewBrOps
);
13560 DAG
.ReplaceAllUsesOfValueWith(SDValue(Br
, 0), NewBr
);
13563 if (IntOp
== Intrinsic::test_set_loop_iterations
) {
13565 // We expect this 'instruction' to branch when the counter is zero.
13566 if (IsTrueIfZero(CC
, Imm
)) {
13567 SDValue Ops
[] = { Chain
, Elements
, Dest
};
13568 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13570 // The logic is the reverse of what we need for WLS, so find the other
13571 // basic block target: the target of the proceeding br.
13572 UpdateUncondBr(Br
, Dest
, DAG
);
13574 SDValue Ops
[] = { Chain
, Elements
, OtherTarget
};
13575 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13577 DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(1), Int
.getOperand(0));
13580 SDValue Size
= DAG
.getTargetConstant(
13581 cast
<ConstantSDNode
>(Int
.getOperand(3))->getZExtValue(), dl
, MVT::i32
);
13582 SDValue Args
[] = { Int
.getOperand(0), Elements
, Size
, };
13583 SDValue LoopDec
= DAG
.getNode(ARMISD::LOOP_DEC
, dl
,
13584 DAG
.getVTList(MVT::i32
, MVT::Other
), Args
);
13585 DAG
.ReplaceAllUsesWith(Int
.getNode(), LoopDec
.getNode());
13587 // We expect this instruction to branch when the count is not zero.
13588 SDValue Target
= IsFalseIfZero(CC
, Imm
) ? Dest
: OtherTarget
;
13590 // Update the unconditional branch to target the loop preheader if we've
13591 // found the condition has been reversed.
13592 if (Target
== OtherTarget
)
13593 UpdateUncondBr(Br
, Dest
, DAG
);
13595 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
13596 SDValue(LoopDec
.getNode(), 1), Chain
);
13598 SDValue EndArgs
[] = { Chain
, SDValue(LoopDec
.getNode(), 0), Target
};
13599 return DAG
.getNode(ARMISD::LE
, dl
, MVT::Other
, EndArgs
);
13604 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
13606 ARMTargetLowering::PerformBRCONDCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13607 SDValue Cmp
= N
->getOperand(4);
13608 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13609 // Only looking at NE cases.
13612 EVT VT
= N
->getValueType(0);
13614 SDValue LHS
= Cmp
.getOperand(0);
13615 SDValue RHS
= Cmp
.getOperand(1);
13616 SDValue Chain
= N
->getOperand(0);
13617 SDValue BB
= N
->getOperand(1);
13618 SDValue ARMcc
= N
->getOperand(2);
13619 ARMCC::CondCodes CC
=
13620 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13622 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
13623 // -> (brcond Chain BB CC CPSR Cmp)
13624 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ISD::AND
&& LHS
->hasOneUse() &&
13625 LHS
->getOperand(0)->getOpcode() == ARMISD::CMOV
&&
13626 LHS
->getOperand(0)->hasOneUse()) {
13627 auto *LHS00C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(0));
13628 auto *LHS01C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(1));
13629 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13630 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13631 if ((LHS00C
&& LHS00C
->getZExtValue() == 0) &&
13632 (LHS01C
&& LHS01C
->getZExtValue() == 1) &&
13633 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13634 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13635 return DAG
.getNode(
13636 ARMISD::BRCOND
, dl
, VT
, Chain
, BB
, LHS
->getOperand(0)->getOperand(2),
13637 LHS
->getOperand(0)->getOperand(3), LHS
->getOperand(0)->getOperand(4));
13644 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
13646 ARMTargetLowering::PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13647 SDValue Cmp
= N
->getOperand(4);
13648 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13649 // Only looking at EQ and NE cases.
13652 EVT VT
= N
->getValueType(0);
13654 SDValue LHS
= Cmp
.getOperand(0);
13655 SDValue RHS
= Cmp
.getOperand(1);
13656 SDValue FalseVal
= N
->getOperand(0);
13657 SDValue TrueVal
= N
->getOperand(1);
13658 SDValue ARMcc
= N
->getOperand(2);
13659 ARMCC::CondCodes CC
=
13660 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13662 // BFI is only available on V6T2+.
13663 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops()) {
13664 SDValue R
= PerformCMOVToBFICombine(N
, DAG
);
13685 /// FIXME: Turn this into a target neutral optimization?
13687 if (CC
== ARMCC::NE
&& FalseVal
== RHS
&& FalseVal
!= LHS
) {
13688 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, TrueVal
, ARMcc
,
13689 N
->getOperand(3), Cmp
);
13690 } else if (CC
== ARMCC::EQ
&& TrueVal
== RHS
) {
13692 SDValue NewCmp
= getARMCmp(LHS
, RHS
, ISD::SETNE
, ARMcc
, DAG
, dl
);
13693 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, FalseVal
, ARMcc
,
13694 N
->getOperand(3), NewCmp
);
13697 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
13698 // -> (cmov F T CC CPSR Cmp)
13699 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ARMISD::CMOV
&& LHS
->hasOneUse()) {
13700 auto *LHS0C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0));
13701 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13702 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13703 if ((LHS0C
&& LHS0C
->getZExtValue() == 0) &&
13704 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13705 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13706 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
,
13707 LHS
->getOperand(2), LHS
->getOperand(3),
13708 LHS
->getOperand(4));
13712 if (!VT
.isInteger())
13715 // Materialize a boolean comparison for integers so we can avoid branching.
13716 if (isNullConstant(FalseVal
)) {
13717 if (CC
== ARMCC::EQ
&& isOneConstant(TrueVal
)) {
13718 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TOps()) {
13719 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
13720 // right 5 bits will make that 32 be 1, otherwise it will be 0.
13721 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
13722 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13723 Res
= DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::CTLZ
, dl
, VT
, Sub
),
13724 DAG
.getConstant(5, dl
, MVT::i32
));
13726 // CMOV 0, 1, ==, (CMPZ x, y) ->
13727 // (ADDCARRY (SUB x, y), t:0, t:1)
13728 // where t = (SUBCARRY 0, (SUB x, y), 0)
13730 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
13731 // x != y. In other words, a carry C == 1 when x == y, C == 0
13733 // The final ADDCARRY computes
13734 // x - y + (0 - (x - y)) + C == C
13735 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13736 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13737 SDValue Neg
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, Sub
);
13738 // ISD::SUBCARRY returns a borrow but we want the carry here
13741 DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
13742 DAG
.getConstant(1, dl
, MVT::i32
), Neg
.getValue(1));
13743 Res
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTs
, Sub
, Neg
, Carry
);
13745 } else if (CC
== ARMCC::NE
&& !isNullConstant(RHS
) &&
13746 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(TrueVal
))) {
13747 // This seems pointless but will allow us to combine it further below.
13748 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13750 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13751 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13752 Sub
.getValue(1), SDValue());
13753 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, TrueVal
, ARMcc
,
13754 N
->getOperand(3), CPSRGlue
.getValue(1));
13757 } else if (isNullConstant(TrueVal
)) {
13758 if (CC
== ARMCC::EQ
&& !isNullConstant(RHS
) &&
13759 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(FalseVal
))) {
13760 // This seems pointless but will allow us to combine it further below
13761 // Note that we change == for != as this is the dual for the case above.
13762 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13764 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13765 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13766 Sub
.getValue(1), SDValue());
13767 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, FalseVal
,
13768 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
),
13769 N
->getOperand(3), CPSRGlue
.getValue(1));
13774 // On Thumb1, the DAG above may be further combined if z is a power of 2
13776 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
13777 // t1 = (USUBO (SUB x, y), 1)
13778 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
13779 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13781 // This also handles the special case of comparing against zero; it's
13782 // essentially, the same pattern, except there's no SUBS:
13783 // CMOV x, z, !=, (CMPZ x, 0) ->
13784 // t1 = (USUBO x, 1)
13785 // t2 = (SUBCARRY x, t1:0, t1:1)
13786 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13787 const APInt
*TrueConst
;
13788 if (Subtarget
->isThumb1Only() && CC
== ARMCC::NE
&&
13789 ((FalseVal
.getOpcode() == ARMISD::SUBS
&&
13790 FalseVal
.getOperand(0) == LHS
&& FalseVal
.getOperand(1) == RHS
) ||
13791 (FalseVal
== LHS
&& isNullConstant(RHS
))) &&
13792 (TrueConst
= isPowerOf2Constant(TrueVal
))) {
13793 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13794 unsigned ShiftAmount
= TrueConst
->logBase2();
13796 TrueVal
= DAG
.getConstant(1, dl
, VT
);
13797 SDValue Subc
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, TrueVal
);
13798 Res
= DAG
.getNode(ISD::SUBCARRY
, dl
, VTs
, FalseVal
, Subc
, Subc
.getValue(1));
13801 Res
= DAG
.getNode(ISD::SHL
, dl
, VT
, Res
,
13802 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
13805 if (Res
.getNode()) {
13806 KnownBits Known
= DAG
.computeKnownBits(SDValue(N
,0));
13807 // Capture demanded bits information that would be otherwise lost.
13808 if (Known
.Zero
== 0xfffffffe)
13809 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13810 DAG
.getValueType(MVT::i1
));
13811 else if (Known
.Zero
== 0xffffff00)
13812 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13813 DAG
.getValueType(MVT::i8
));
13814 else if (Known
.Zero
== 0xffff0000)
13815 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
13816 DAG
.getValueType(MVT::i16
));
13822 SDValue
ARMTargetLowering::PerformDAGCombine(SDNode
*N
,
13823 DAGCombinerInfo
&DCI
) const {
13824 switch (N
->getOpcode()) {
13826 case ISD::ABS
: return PerformABSCombine(N
, DCI
, Subtarget
);
13827 case ARMISD::ADDE
: return PerformADDECombine(N
, DCI
, Subtarget
);
13828 case ARMISD::UMLAL
: return PerformUMLALCombine(N
, DCI
.DAG
, Subtarget
);
13829 case ISD::ADD
: return PerformADDCombine(N
, DCI
, Subtarget
);
13830 case ISD::SUB
: return PerformSUBCombine(N
, DCI
);
13831 case ISD::MUL
: return PerformMULCombine(N
, DCI
, Subtarget
);
13832 case ISD::OR
: return PerformORCombine(N
, DCI
, Subtarget
);
13833 case ISD::XOR
: return PerformXORCombine(N
, DCI
, Subtarget
);
13834 case ISD::AND
: return PerformANDCombine(N
, DCI
, Subtarget
);
13836 case ISD::BR_CC
: return PerformHWLoopCombine(N
, DCI
, Subtarget
);
13838 case ARMISD::SUBC
: return PerformAddcSubcCombine(N
, DCI
, Subtarget
);
13839 case ARMISD::SUBE
: return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
13840 case ARMISD::BFI
: return PerformBFICombine(N
, DCI
);
13841 case ARMISD::VMOVRRD
: return PerformVMOVRRDCombine(N
, DCI
, Subtarget
);
13842 case ARMISD::VMOVDRR
: return PerformVMOVDRRCombine(N
, DCI
.DAG
);
13843 case ISD::STORE
: return PerformSTORECombine(N
, DCI
);
13844 case ISD::BUILD_VECTOR
: return PerformBUILD_VECTORCombine(N
, DCI
, Subtarget
);
13845 case ISD::INSERT_VECTOR_ELT
: return PerformInsertEltCombine(N
, DCI
);
13846 case ISD::VECTOR_SHUFFLE
: return PerformVECTOR_SHUFFLECombine(N
, DCI
.DAG
);
13847 case ARMISD::VDUPLANE
: return PerformVDUPLANECombine(N
, DCI
);
13848 case ARMISD::VDUP
: return PerformVDUPCombine(N
, DCI
, Subtarget
);
13849 case ISD::FP_TO_SINT
:
13850 case ISD::FP_TO_UINT
:
13851 return PerformVCVTCombine(N
, DCI
.DAG
, Subtarget
);
13853 return PerformVDIVCombine(N
, DCI
.DAG
, Subtarget
);
13854 case ISD::INTRINSIC_WO_CHAIN
: return PerformIntrinsicCombine(N
, DCI
.DAG
);
13858 return PerformShiftCombine(N
, DCI
, Subtarget
);
13859 case ISD::SIGN_EXTEND
:
13860 case ISD::ZERO_EXTEND
:
13861 case ISD::ANY_EXTEND
: return PerformExtendCombine(N
, DCI
.DAG
, Subtarget
);
13862 case ARMISD::CMOV
: return PerformCMOVCombine(N
, DCI
.DAG
);
13863 case ARMISD::BRCOND
: return PerformBRCONDCombine(N
, DCI
.DAG
);
13864 case ISD::LOAD
: return PerformLOADCombine(N
, DCI
);
13865 case ARMISD::VLD1DUP
:
13866 case ARMISD::VLD2DUP
:
13867 case ARMISD::VLD3DUP
:
13868 case ARMISD::VLD4DUP
:
13869 return PerformVLDCombine(N
, DCI
);
13870 case ARMISD::BUILD_VECTOR
:
13871 return PerformARMBUILD_VECTORCombine(N
, DCI
);
13872 case ARMISD::SMULWB
: {
13873 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13874 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
13875 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
13879 case ARMISD::SMULWT
: {
13880 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13881 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
13882 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
13886 case ARMISD::SMLALBB
: {
13887 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13888 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
13889 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
13890 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
13894 case ARMISD::SMLALBT
: {
13895 unsigned LowWidth
= N
->getOperand(0).getValueType().getSizeInBits();
13896 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
13897 unsigned HighWidth
= N
->getOperand(1).getValueType().getSizeInBits();
13898 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
13899 if ((SimplifyDemandedBits(N
->getOperand(0), LowMask
, DCI
)) ||
13900 (SimplifyDemandedBits(N
->getOperand(1), HighMask
, DCI
)))
13904 case ARMISD::SMLALTB
: {
13905 unsigned HighWidth
= N
->getOperand(0).getValueType().getSizeInBits();
13906 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
13907 unsigned LowWidth
= N
->getOperand(1).getValueType().getSizeInBits();
13908 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
13909 if ((SimplifyDemandedBits(N
->getOperand(0), HighMask
, DCI
)) ||
13910 (SimplifyDemandedBits(N
->getOperand(1), LowMask
, DCI
)))
13914 case ARMISD::SMLALTT
: {
13915 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
13916 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
13917 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
13918 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
13922 case ISD::INTRINSIC_VOID
:
13923 case ISD::INTRINSIC_W_CHAIN
:
13924 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
13925 case Intrinsic::arm_neon_vld1
:
13926 case Intrinsic::arm_neon_vld1x2
:
13927 case Intrinsic::arm_neon_vld1x3
:
13928 case Intrinsic::arm_neon_vld1x4
:
13929 case Intrinsic::arm_neon_vld2
:
13930 case Intrinsic::arm_neon_vld3
:
13931 case Intrinsic::arm_neon_vld4
:
13932 case Intrinsic::arm_neon_vld2lane
:
13933 case Intrinsic::arm_neon_vld3lane
:
13934 case Intrinsic::arm_neon_vld4lane
:
13935 case Intrinsic::arm_neon_vld2dup
:
13936 case Intrinsic::arm_neon_vld3dup
:
13937 case Intrinsic::arm_neon_vld4dup
:
13938 case Intrinsic::arm_neon_vst1
:
13939 case Intrinsic::arm_neon_vst1x2
:
13940 case Intrinsic::arm_neon_vst1x3
:
13941 case Intrinsic::arm_neon_vst1x4
:
13942 case Intrinsic::arm_neon_vst2
:
13943 case Intrinsic::arm_neon_vst3
:
13944 case Intrinsic::arm_neon_vst4
:
13945 case Intrinsic::arm_neon_vst2lane
:
13946 case Intrinsic::arm_neon_vst3lane
:
13947 case Intrinsic::arm_neon_vst4lane
:
13948 return PerformVLDCombine(N
, DCI
);
13956 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc
,
13958 return (VT
== MVT::f32
) && (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
);
13961 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned,
13962 unsigned Alignment
,
13963 MachineMemOperand::Flags
,
13964 bool *Fast
) const {
13965 // Depends what it gets converted into if the type is weird.
13966 if (!VT
.isSimple())
13969 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
13970 bool AllowsUnaligned
= Subtarget
->allowsUnalignedMem();
13971 auto Ty
= VT
.getSimpleVT().SimpleTy
;
13973 if (Ty
== MVT::i8
|| Ty
== MVT::i16
|| Ty
== MVT::i32
) {
13974 // Unaligned access can use (for example) LRDB, LRDH, LDR
13975 if (AllowsUnaligned
) {
13977 *Fast
= Subtarget
->hasV7Ops();
13982 if (Ty
== MVT::f64
|| Ty
== MVT::v2f64
) {
13983 // For any little-endian targets with neon, we can support unaligned ld/st
13984 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
13985 // A big-endian target may also explicitly support unaligned accesses
13986 if (Subtarget
->hasNEON() && (AllowsUnaligned
|| Subtarget
->isLittle())) {
13993 if (!Subtarget
->hasMVEIntegerOps())
13996 // These are for predicates
13997 if ((Ty
== MVT::v16i1
|| Ty
== MVT::v8i1
|| Ty
== MVT::v4i1
)) {
14003 if (Ty
!= MVT::v16i8
&& Ty
!= MVT::v8i16
&& Ty
!= MVT::v8f16
&&
14004 Ty
!= MVT::v4i32
&& Ty
!= MVT::v4f32
&& Ty
!= MVT::v2i64
&&
14005 Ty
!= MVT::v2f64
&&
14006 // These are for truncated stores
14007 Ty
!= MVT::v4i8
&& Ty
!= MVT::v8i8
&& Ty
!= MVT::v4i16
)
14010 if (Subtarget
->isLittle()) {
14011 // In little-endian MVE, the store instructions VSTRB.U8,
14012 // VSTRH.U16 and VSTRW.U32 all store the vector register in
14013 // exactly the same format, and differ only in the range of
14014 // their immediate offset field and the required alignment.
14016 // In particular, VSTRB.U8 can store a vector at byte alignment.
14017 // So at this stage we can simply say that loads/stores of all
14018 // 128-bit wide vector types are permitted at any alignment,
14019 // because we know at least _one_ instruction can manage that.
14021 // Later on we might find that some of those loads are better
14022 // generated as VLDRW.U32 if alignment permits, to take
14023 // advantage of the larger immediate range. But for the moment,
14024 // all that matters is that if we don't lower the load then
14025 // _some_ instruction can handle it.
14030 // In big-endian MVE, those instructions aren't so similar
14031 // after all, because they reorder the bytes of the vector
14032 // differently. So this time we can only store a particular
14033 // kind of vector if its alignment is at least the element
14034 // type. And we can't store vectors of i64 or f64 at all
14035 // without having to do some postprocessing, because there's
14037 if (Ty
== MVT::v16i8
||
14038 ((Ty
== MVT::v8i16
|| Ty
== MVT::v8f16
) && Alignment
>= 2) ||
14039 ((Ty
== MVT::v4i32
|| Ty
== MVT::v4f32
) && Alignment
>= 4)) {
14049 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
14050 unsigned AlignCheck
) {
14051 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
14052 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
14055 EVT
ARMTargetLowering::getOptimalMemOpType(
14056 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
14057 bool ZeroMemset
, bool MemcpyStrSrc
,
14058 const AttributeList
&FuncAttributes
) const {
14059 // See if we can use NEON instructions for this...
14060 if ((!IsMemset
|| ZeroMemset
) && Subtarget
->hasNEON() &&
14061 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
)) {
14064 (memOpAlign(SrcAlign
, DstAlign
, 16) ||
14065 (allowsMisalignedMemoryAccesses(MVT::v2f64
, 0, 1,
14066 MachineMemOperand::MONone
, &Fast
) &&
14069 } else if (Size
>= 8 &&
14070 (memOpAlign(SrcAlign
, DstAlign
, 8) ||
14071 (allowsMisalignedMemoryAccesses(
14072 MVT::f64
, 0, 1, MachineMemOperand::MONone
, &Fast
) &&
14078 // Let the target-independent logic figure it out.
14082 // 64-bit integers are split into their high and low parts and held in two
14083 // different registers, so the trunc is free since the low register can just
14085 bool ARMTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
14086 if (!SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
14088 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
14089 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
14090 return (SrcBits
== 64 && DestBits
== 32);
14093 bool ARMTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
14094 if (SrcVT
.isVector() || DstVT
.isVector() || !SrcVT
.isInteger() ||
14095 !DstVT
.isInteger())
14097 unsigned SrcBits
= SrcVT
.getSizeInBits();
14098 unsigned DestBits
= DstVT
.getSizeInBits();
14099 return (SrcBits
== 64 && DestBits
== 32);
14102 bool ARMTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
14103 if (Val
.getOpcode() != ISD::LOAD
)
14106 EVT VT1
= Val
.getValueType();
14107 if (!VT1
.isSimple() || !VT1
.isInteger() ||
14108 !VT2
.isSimple() || !VT2
.isInteger())
14111 switch (VT1
.getSimpleVT().SimpleTy
) {
14116 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14123 bool ARMTargetLowering::isFNegFree(EVT VT
) const {
14124 if (!VT
.isSimple())
14127 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14128 // negate values directly (fneg is free). So, we don't want to let the DAG
14129 // combiner rewrite fneg into xors and some other instructions. For f16 and
14130 // FullFP16 argument passing, some bitcast nodes may be introduced,
14131 // triggering this DAG combine rewrite, so we are avoiding that with this.
14132 switch (VT
.getSimpleVT().SimpleTy
) {
14135 return Subtarget
->hasFullFP16();
14141 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14142 /// of the vector elements.
14143 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
14144 auto areExtDoubled
= [](Instruction
*Ext
) {
14145 return Ext
->getType()->getScalarSizeInBits() ==
14146 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
14149 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
14150 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
14151 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
14152 !areExtDoubled(cast
<Instruction
>(Ext2
)))
14158 /// Check if sinking \p I's operands to I's basic block is profitable, because
14159 /// the operands can be folded into a target instruction, e.g.
14160 /// sext/zext can be folded into vsubl.
14161 bool ARMTargetLowering::shouldSinkOperands(Instruction
*I
,
14162 SmallVectorImpl
<Use
*> &Ops
) const {
14163 if (!Subtarget
->hasNEON() || !I
->getType()->isVectorTy())
14166 switch (I
->getOpcode()) {
14167 case Instruction::Sub
:
14168 case Instruction::Add
: {
14169 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
14171 Ops
.push_back(&I
->getOperandUse(0));
14172 Ops
.push_back(&I
->getOperandUse(1));
14181 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
14182 EVT VT
= ExtVal
.getValueType();
14184 if (!isTypeLegal(VT
))
14187 // Don't create a loadext if we can fold the extension into a wide/long
14189 // If there's more than one user instruction, the loadext is desirable no
14190 // matter what. There can be two uses by the same instruction.
14191 if (ExtVal
->use_empty() ||
14192 !ExtVal
->use_begin()->isOnlyUserOf(ExtVal
.getNode()))
14195 SDNode
*U
= *ExtVal
->use_begin();
14196 if ((U
->getOpcode() == ISD::ADD
|| U
->getOpcode() == ISD::SUB
||
14197 U
->getOpcode() == ISD::SHL
|| U
->getOpcode() == ARMISD::VSHLIMM
))
14203 bool ARMTargetLowering::allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const {
14204 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
14207 if (!isTypeLegal(EVT::getEVT(Ty1
)))
14210 assert(Ty1
->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
14212 // Assuming the caller doesn't have a zeroext or signext return parameter,
14213 // truncation all the way down to i1 is valid.
14217 int ARMTargetLowering::getScalingFactorCost(const DataLayout
&DL
,
14218 const AddrMode
&AM
, Type
*Ty
,
14219 unsigned AS
) const {
14220 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
)) {
14221 if (Subtarget
->hasFPAO())
14222 return AM
.Scale
< 0 ? 1 : 0; // positive offsets execute faster
14228 static bool isLegalT1AddressImmediate(int64_t V
, EVT VT
) {
14232 unsigned Scale
= 1;
14233 switch (VT
.getSimpleVT().SimpleTy
) {
14243 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
14249 if ((V
& (Scale
- 1)) != 0)
14251 return isUInt
<5>(V
/ Scale
);
14254 static bool isLegalT2AddressImmediate(int64_t V
, EVT VT
,
14255 const ARMSubtarget
*Subtarget
) {
14256 if (!VT
.isInteger() && !VT
.isFloatingPoint())
14258 if (VT
.isVector() && Subtarget
->hasNEON())
14260 if (VT
.isVector() && VT
.isFloatingPoint() && Subtarget
->hasMVEIntegerOps() &&
14261 !Subtarget
->hasMVEFloatOps())
14264 bool IsNeg
= false;
14270 unsigned NumBytes
= std::max(VT
.getSizeInBits() / 8, 1U);
14272 // MVE: size * imm7
14273 if (VT
.isVector() && Subtarget
->hasMVEIntegerOps()) {
14274 switch (VT
.getSimpleVT().getVectorElementType().SimpleTy
) {
14277 return isShiftedUInt
<7,2>(V
);
14280 return isShiftedUInt
<7,1>(V
);
14282 return isUInt
<7>(V
);
14288 // half VLDR: 2 * imm8
14289 if (VT
.isFloatingPoint() && NumBytes
== 2 && Subtarget
->hasFPRegs16())
14290 return isShiftedUInt
<8, 1>(V
);
14291 // VLDR and LDRD: 4 * imm8
14292 if ((VT
.isFloatingPoint() && Subtarget
->hasVFP2Base()) || NumBytes
== 8)
14293 return isShiftedUInt
<8, 2>(V
);
14295 if (NumBytes
== 1 || NumBytes
== 2 || NumBytes
== 4) {
14296 // + imm12 or - imm8
14298 return isUInt
<8>(V
);
14299 return isUInt
<12>(V
);
14305 /// isLegalAddressImmediate - Return true if the integer value can be used
14306 /// as the offset of the target addressing mode for load / store of the
14308 static bool isLegalAddressImmediate(int64_t V
, EVT VT
,
14309 const ARMSubtarget
*Subtarget
) {
14313 if (!VT
.isSimple())
14316 if (Subtarget
->isThumb1Only())
14317 return isLegalT1AddressImmediate(V
, VT
);
14318 else if (Subtarget
->isThumb2())
14319 return isLegalT2AddressImmediate(V
, VT
, Subtarget
);
14324 switch (VT
.getSimpleVT().SimpleTy
) {
14325 default: return false;
14330 return isUInt
<12>(V
);
14333 return isUInt
<8>(V
);
14336 if (!Subtarget
->hasVFP2Base()) // FIXME: NEON?
14338 return isShiftedUInt
<8, 2>(V
);
14342 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode
&AM
,
14344 int Scale
= AM
.Scale
;
14348 switch (VT
.getSimpleVT().SimpleTy
) {
14349 default: return false;
14357 Scale
= Scale
& ~1;
14358 return Scale
== 2 || Scale
== 4 || Scale
== 8;
14360 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
14361 // version in Thumb mode.
14365 // r * 2 (this can be lowered to r + r).
14366 if (!AM
.HasBaseReg
&& Scale
== 2)
14370 // Note, we allow "void" uses (basically, uses that aren't loads or
14371 // stores), because arm allows folding a scale into many arithmetic
14372 // operations. This should be made more precise and revisited later.
14374 // Allow r << imm, but the imm has to be a multiple of two.
14375 if (Scale
& 1) return false;
14376 return isPowerOf2_32(Scale
);
14380 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode
&AM
,
14382 const int Scale
= AM
.Scale
;
14384 // Negative scales are not supported in Thumb1.
14388 // Thumb1 addressing modes do not support register scaling excepting the
14389 // following cases:
14390 // 1. Scale == 1 means no scaling.
14391 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
14392 return (Scale
== 1) || (!AM
.HasBaseReg
&& Scale
== 2);
14395 /// isLegalAddressingMode - Return true if the addressing mode represented
14396 /// by AM is legal for this target, for a load/store of the specified type.
14397 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
14398 const AddrMode
&AM
, Type
*Ty
,
14399 unsigned AS
, Instruction
*I
) const {
14400 EVT VT
= getValueType(DL
, Ty
, true);
14401 if (!isLegalAddressImmediate(AM
.BaseOffs
, VT
, Subtarget
))
14404 // Can never fold addr of global into load/store.
14408 switch (AM
.Scale
) {
14409 case 0: // no scale reg, must be "r+i" or "r", or "i".
14412 // ARM doesn't support any R+R*scale+imm addr modes.
14416 if (!VT
.isSimple())
14419 if (Subtarget
->isThumb1Only())
14420 return isLegalT1ScaledAddressingMode(AM
, VT
);
14422 if (Subtarget
->isThumb2())
14423 return isLegalT2ScaledAddressingMode(AM
, VT
);
14425 int Scale
= AM
.Scale
;
14426 switch (VT
.getSimpleVT().SimpleTy
) {
14427 default: return false;
14431 if (Scale
< 0) Scale
= -Scale
;
14435 return isPowerOf2_32(Scale
& ~1);
14439 if (Scale
== 1 || (AM
.HasBaseReg
&& Scale
== -1))
14441 // r * 2 (this can be lowered to r + r).
14442 if (!AM
.HasBaseReg
&& Scale
== 2)
14447 // Note, we allow "void" uses (basically, uses that aren't loads or
14448 // stores), because arm allows folding a scale into many arithmetic
14449 // operations. This should be made more precise and revisited later.
14451 // Allow r << imm, but the imm has to be a multiple of two.
14452 if (Scale
& 1) return false;
14453 return isPowerOf2_32(Scale
);
14459 /// isLegalICmpImmediate - Return true if the specified immediate is legal
14460 /// icmp immediate, that is the target has icmp instructions which can compare
14461 /// a register against the immediate without having to materialize the
14462 /// immediate into a register.
14463 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
14464 // Thumb2 and ARM modes can use cmn for negative immediates.
14465 if (!Subtarget
->isThumb())
14466 return ARM_AM::getSOImmVal((uint32_t)Imm
) != -1 ||
14467 ARM_AM::getSOImmVal(-(uint32_t)Imm
) != -1;
14468 if (Subtarget
->isThumb2())
14469 return ARM_AM::getT2SOImmVal((uint32_t)Imm
) != -1 ||
14470 ARM_AM::getT2SOImmVal(-(uint32_t)Imm
) != -1;
14471 // Thumb1 doesn't have cmn, and only 8-bit immediates.
14472 return Imm
>= 0 && Imm
<= 255;
14475 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
14476 /// *or sub* immediate, that is the target has add or sub instructions which can
14477 /// add a register with the immediate without having to materialize the
14478 /// immediate into a register.
14479 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
14480 // Same encoding for add/sub, just flip the sign.
14481 int64_t AbsImm
= std::abs(Imm
);
14482 if (!Subtarget
->isThumb())
14483 return ARM_AM::getSOImmVal(AbsImm
) != -1;
14484 if (Subtarget
->isThumb2())
14485 return ARM_AM::getT2SOImmVal(AbsImm
) != -1;
14486 // Thumb1 only has 8-bit unsigned immediate.
14487 return AbsImm
>= 0 && AbsImm
<= 255;
14490 static bool getARMIndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14491 bool isSEXTLoad
, SDValue
&Base
,
14492 SDValue
&Offset
, bool &isInc
,
14493 SelectionDAG
&DAG
) {
14494 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14497 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
14498 // AddressingMode 3
14499 Base
= Ptr
->getOperand(0);
14500 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14501 int RHSC
= (int)RHS
->getZExtValue();
14502 if (RHSC
< 0 && RHSC
> -256) {
14503 assert(Ptr
->getOpcode() == ISD::ADD
);
14505 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14509 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14510 Offset
= Ptr
->getOperand(1);
14512 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
14513 // AddressingMode 2
14514 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14515 int RHSC
= (int)RHS
->getZExtValue();
14516 if (RHSC
< 0 && RHSC
> -0x1000) {
14517 assert(Ptr
->getOpcode() == ISD::ADD
);
14519 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14520 Base
= Ptr
->getOperand(0);
14525 if (Ptr
->getOpcode() == ISD::ADD
) {
14527 ARM_AM::ShiftOpc ShOpcVal
=
14528 ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0).getOpcode());
14529 if (ShOpcVal
!= ARM_AM::no_shift
) {
14530 Base
= Ptr
->getOperand(1);
14531 Offset
= Ptr
->getOperand(0);
14533 Base
= Ptr
->getOperand(0);
14534 Offset
= Ptr
->getOperand(1);
14539 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14540 Base
= Ptr
->getOperand(0);
14541 Offset
= Ptr
->getOperand(1);
14545 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
14549 static bool getT2IndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14550 bool isSEXTLoad
, SDValue
&Base
,
14551 SDValue
&Offset
, bool &isInc
,
14552 SelectionDAG
&DAG
) {
14553 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14556 Base
= Ptr
->getOperand(0);
14557 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14558 int RHSC
= (int)RHS
->getZExtValue();
14559 if (RHSC
< 0 && RHSC
> -0x100) { // 8 bits.
14560 assert(Ptr
->getOpcode() == ISD::ADD
);
14562 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14564 } else if (RHSC
> 0 && RHSC
< 0x100) { // 8 bit, no zero.
14565 isInc
= Ptr
->getOpcode() == ISD::ADD
;
14566 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14574 /// getPreIndexedAddressParts - returns true by value, base pointer and
14575 /// offset pointer and addressing mode by reference if the node's address
14576 /// can be legally represented as pre-indexed load / store address.
14578 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
14580 ISD::MemIndexedMode
&AM
,
14581 SelectionDAG
&DAG
) const {
14582 if (Subtarget
->isThumb1Only())
14587 bool isSEXTLoad
= false;
14588 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14589 Ptr
= LD
->getBasePtr();
14590 VT
= LD
->getMemoryVT();
14591 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14592 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14593 Ptr
= ST
->getBasePtr();
14594 VT
= ST
->getMemoryVT();
14599 bool isLegal
= false;
14600 if (Subtarget
->isThumb2())
14601 isLegal
= getT2IndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14602 Offset
, isInc
, DAG
);
14604 isLegal
= getARMIndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14605 Offset
, isInc
, DAG
);
14609 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
14613 /// getPostIndexedAddressParts - returns true by value, base pointer and
14614 /// offset pointer and addressing mode by reference if this node can be
14615 /// combined with a load / store to form a post-indexed load / store.
14616 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
14619 ISD::MemIndexedMode
&AM
,
14620 SelectionDAG
&DAG
) const {
14623 bool isSEXTLoad
= false, isNonExt
;
14624 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14625 VT
= LD
->getMemoryVT();
14626 Ptr
= LD
->getBasePtr();
14627 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14628 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
14629 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14630 VT
= ST
->getMemoryVT();
14631 Ptr
= ST
->getBasePtr();
14632 isNonExt
= !ST
->isTruncatingStore();
14636 if (Subtarget
->isThumb1Only()) {
14637 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
14638 // must be non-extending/truncating, i32, with an offset of 4.
14639 assert(Op
->getValueType(0) == MVT::i32
&& "Non-i32 post-inc op?!");
14640 if (Op
->getOpcode() != ISD::ADD
|| !isNonExt
)
14642 auto *RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
14643 if (!RHS
|| RHS
->getZExtValue() != 4)
14646 Offset
= Op
->getOperand(1);
14647 Base
= Op
->getOperand(0);
14648 AM
= ISD::POST_INC
;
14653 bool isLegal
= false;
14654 if (Subtarget
->isThumb2())
14655 isLegal
= getT2IndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14658 isLegal
= getARMIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14664 // Swap base ptr and offset to catch more post-index load / store when
14665 // it's legal. In Thumb2 mode, offset must be an immediate.
14666 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
&&
14667 !Subtarget
->isThumb2())
14668 std::swap(Base
, Offset
);
14670 // Post-indexed load / store update the base pointer.
14675 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
14679 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
14681 const APInt
&DemandedElts
,
14682 const SelectionDAG
&DAG
,
14683 unsigned Depth
) const {
14684 unsigned BitWidth
= Known
.getBitWidth();
14686 switch (Op
.getOpcode()) {
14692 // Special cases when we convert a carry to a boolean.
14693 if (Op
.getResNo() == 0) {
14694 SDValue LHS
= Op
.getOperand(0);
14695 SDValue RHS
= Op
.getOperand(1);
14696 // (ADDE 0, 0, C) will give us a single bit.
14697 if (Op
->getOpcode() == ARMISD::ADDE
&& isNullConstant(LHS
) &&
14698 isNullConstant(RHS
)) {
14699 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
14704 case ARMISD::CMOV
: {
14705 // Bits are known zero/one if known on the LHS and RHS.
14706 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+1);
14707 if (Known
.isUnknown())
14710 KnownBits KnownRHS
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+1);
14711 Known
.Zero
&= KnownRHS
.Zero
;
14712 Known
.One
&= KnownRHS
.One
;
14715 case ISD::INTRINSIC_W_CHAIN
: {
14716 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
14717 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
14720 case Intrinsic::arm_ldaex
:
14721 case Intrinsic::arm_ldrex
: {
14722 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
14723 unsigned MemBits
= VT
.getScalarSizeInBits();
14724 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
14729 case ARMISD::BFI
: {
14730 // Conservatively, we can recurse down the first operand
14731 // and just mask out all affected bits.
14732 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
14734 // The operand to BFI is already a mask suitable for removing the bits it
14736 ConstantSDNode
*CI
= cast
<ConstantSDNode
>(Op
.getOperand(2));
14737 const APInt
&Mask
= CI
->getAPIntValue();
14738 Known
.Zero
&= Mask
;
14742 case ARMISD::VGETLANEs
:
14743 case ARMISD::VGETLANEu
: {
14744 const SDValue
&SrcSV
= Op
.getOperand(0);
14745 EVT VecVT
= SrcSV
.getValueType();
14746 assert(VecVT
.isVector() && "VGETLANE expected a vector type");
14747 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
14748 ConstantSDNode
*Pos
= cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
14749 assert(Pos
->getAPIntValue().ult(NumSrcElts
) &&
14750 "VGETLANE index out of bounds");
14751 unsigned Idx
= Pos
->getZExtValue();
14752 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
14753 Known
= DAG
.computeKnownBits(SrcSV
, DemandedElt
, Depth
+ 1);
14755 EVT VT
= Op
.getValueType();
14756 const unsigned DstSz
= VT
.getScalarSizeInBits();
14757 const unsigned SrcSz
= VecVT
.getVectorElementType().getSizeInBits();
14759 assert(SrcSz
== Known
.getBitWidth());
14760 assert(DstSz
> SrcSz
);
14761 if (Op
.getOpcode() == ARMISD::VGETLANEs
)
14762 Known
= Known
.sext(DstSz
);
14764 Known
= Known
.zext(DstSz
, true /* extended bits are known zero */);
14766 assert(DstSz
== Known
.getBitWidth());
14773 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op
,
14774 const APInt
&DemandedAPInt
,
14775 TargetLoweringOpt
&TLO
) const {
14776 // Delay optimization, so we don't have to deal with illegal types, or block
14781 // Only optimize AND for now.
14782 if (Op
.getOpcode() != ISD::AND
)
14785 EVT VT
= Op
.getValueType();
14791 assert(VT
== MVT::i32
&& "Unexpected integer type");
14793 // Make sure the RHS really is a constant.
14794 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
14798 unsigned Mask
= C
->getZExtValue();
14800 unsigned Demanded
= DemandedAPInt
.getZExtValue();
14801 unsigned ShrunkMask
= Mask
& Demanded
;
14802 unsigned ExpandedMask
= Mask
| ~Demanded
;
14804 // If the mask is all zeros, let the target-independent code replace the
14805 // result with zero.
14806 if (ShrunkMask
== 0)
14809 // If the mask is all ones, erase the AND. (Currently, the target-independent
14810 // code won't do this, so we have to do it explicitly to avoid an infinite
14811 // loop in obscure cases.)
14812 if (ExpandedMask
== ~0U)
14813 return TLO
.CombineTo(Op
, Op
.getOperand(0));
14815 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](unsigned Mask
) -> bool {
14816 return (ShrunkMask
& Mask
) == ShrunkMask
&& (~ExpandedMask
& Mask
) == 0;
14818 auto UseMask
= [Mask
, Op
, VT
, &TLO
](unsigned NewMask
) -> bool {
14819 if (NewMask
== Mask
)
14822 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
14823 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
14824 return TLO
.CombineTo(Op
, NewOp
);
14827 // Prefer uxtb mask.
14828 if (IsLegalMask(0xFF))
14829 return UseMask(0xFF);
14831 // Prefer uxth mask.
14832 if (IsLegalMask(0xFFFF))
14833 return UseMask(0xFFFF);
14835 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
14836 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14837 if (ShrunkMask
< 256)
14838 return UseMask(ShrunkMask
);
14840 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
14841 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14842 if ((int)ExpandedMask
<= -2 && (int)ExpandedMask
>= -256)
14843 return UseMask(ExpandedMask
);
14845 // Potential improvements:
14847 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
14848 // We could try to prefer Thumb1 immediates which can be lowered to a
14849 // two-instruction sequence.
14850 // We could try to recognize more legal ARM/Thumb2 immediates here.
14856 //===----------------------------------------------------------------------===//
14857 // ARM Inline Assembly Support
14858 //===----------------------------------------------------------------------===//
14860 bool ARMTargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
14861 // Looking for "rev" which is V6+.
14862 if (!Subtarget
->hasV6Ops())
14865 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
14866 std::string AsmStr
= IA
->getAsmString();
14867 SmallVector
<StringRef
, 4> AsmPieces
;
14868 SplitString(AsmStr
, AsmPieces
, ";\n");
14870 switch (AsmPieces
.size()) {
14871 default: return false;
14873 AsmStr
= AsmPieces
[0];
14875 SplitString(AsmStr
, AsmPieces
, " \t,");
14878 if (AsmPieces
.size() == 3 &&
14879 AsmPieces
[0] == "rev" && AsmPieces
[1] == "$0" && AsmPieces
[2] == "$1" &&
14880 IA
->getConstraintString().compare(0, 4, "=l,l") == 0) {
14881 IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
14882 if (Ty
&& Ty
->getBitWidth() == 32)
14883 return IntrinsicLowering::LowerToByteSwap(CI
);
14891 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
14892 // At this point, we have to lower this constraint to something else, so we
14893 // lower it to an "r" or "w". However, by doing this we will force the result
14894 // to be in register, while the X constraint is much more permissive.
14896 // Although we are correct (we are free to emit anything, without
14897 // constraints), we might break use cases that would expect us to be more
14898 // efficient and emit something else.
14899 if (!Subtarget
->hasVFP2Base())
14901 if (ConstraintVT
.isFloatingPoint())
14903 if (ConstraintVT
.isVector() && Subtarget
->hasNEON() &&
14904 (ConstraintVT
.getSizeInBits() == 64 ||
14905 ConstraintVT
.getSizeInBits() == 128))
14911 /// getConstraintType - Given a constraint letter, return the type of
14912 /// constraint it is for this target.
14913 ARMTargetLowering::ConstraintType
14914 ARMTargetLowering::getConstraintType(StringRef Constraint
) const {
14915 if (Constraint
.size() == 1) {
14916 switch (Constraint
[0]) {
14918 case 'l': return C_RegisterClass
;
14919 case 'w': return C_RegisterClass
;
14920 case 'h': return C_RegisterClass
;
14921 case 'x': return C_RegisterClass
;
14922 case 't': return C_RegisterClass
;
14923 case 'j': return C_Other
; // Constant for movw.
14924 // An address with a single base register. Due to the way we
14925 // currently handle addresses it is the same as an 'r' memory constraint.
14926 case 'Q': return C_Memory
;
14928 } else if (Constraint
.size() == 2) {
14929 switch (Constraint
[0]) {
14931 case 'T': return C_RegisterClass
;
14932 // All 'U+' constraints are addresses.
14933 case 'U': return C_Memory
;
14936 return TargetLowering::getConstraintType(Constraint
);
14939 /// Examine constraint type and operand type and determine a weight value.
14940 /// This object must already have been set up with the operand type
14941 /// and the current alternative constraint selected.
14942 TargetLowering::ConstraintWeight
14943 ARMTargetLowering::getSingleConstraintMatchWeight(
14944 AsmOperandInfo
&info
, const char *constraint
) const {
14945 ConstraintWeight weight
= CW_Invalid
;
14946 Value
*CallOperandVal
= info
.CallOperandVal
;
14947 // If we don't have a value, we can't do a match,
14948 // but allow it at the lowest weight.
14949 if (!CallOperandVal
)
14951 Type
*type
= CallOperandVal
->getType();
14952 // Look at the constraint type.
14953 switch (*constraint
) {
14955 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
14958 if (type
->isIntegerTy()) {
14959 if (Subtarget
->isThumb())
14960 weight
= CW_SpecificReg
;
14962 weight
= CW_Register
;
14966 if (type
->isFloatingPointTy())
14967 weight
= CW_Register
;
14973 using RCPair
= std::pair
<unsigned, const TargetRegisterClass
*>;
14975 RCPair
ARMTargetLowering::getRegForInlineAsmConstraint(
14976 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
14977 switch (Constraint
.size()) {
14979 // GCC ARM Constraint Letters
14980 switch (Constraint
[0]) {
14981 case 'l': // Low regs or general regs.
14982 if (Subtarget
->isThumb())
14983 return RCPair(0U, &ARM::tGPRRegClass
);
14984 return RCPair(0U, &ARM::GPRRegClass
);
14985 case 'h': // High regs or no regs.
14986 if (Subtarget
->isThumb())
14987 return RCPair(0U, &ARM::hGPRRegClass
);
14990 if (Subtarget
->isThumb1Only())
14991 return RCPair(0U, &ARM::tGPRRegClass
);
14992 return RCPair(0U, &ARM::GPRRegClass
);
14994 if (VT
== MVT::Other
)
14996 if (VT
== MVT::f32
)
14997 return RCPair(0U, &ARM::SPRRegClass
);
14998 if (VT
.getSizeInBits() == 64)
14999 return RCPair(0U, &ARM::DPRRegClass
);
15000 if (VT
.getSizeInBits() == 128)
15001 return RCPair(0U, &ARM::QPRRegClass
);
15004 if (VT
== MVT::Other
)
15006 if (VT
== MVT::f32
)
15007 return RCPair(0U, &ARM::SPR_8RegClass
);
15008 if (VT
.getSizeInBits() == 64)
15009 return RCPair(0U, &ARM::DPR_8RegClass
);
15010 if (VT
.getSizeInBits() == 128)
15011 return RCPair(0U, &ARM::QPR_8RegClass
);
15014 if (VT
== MVT::Other
)
15016 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15017 return RCPair(0U, &ARM::SPRRegClass
);
15018 if (VT
.getSizeInBits() == 64)
15019 return RCPair(0U, &ARM::DPR_VFP2RegClass
);
15020 if (VT
.getSizeInBits() == 128)
15021 return RCPair(0U, &ARM::QPR_VFP2RegClass
);
15027 if (Constraint
[0] == 'T') {
15028 switch (Constraint
[1]) {
15032 return RCPair(0U, &ARM::tGPREvenRegClass
);
15034 return RCPair(0U, &ARM::tGPROddRegClass
);
15043 if (StringRef("{cc}").equals_lower(Constraint
))
15044 return std::make_pair(unsigned(ARM::CPSR
), &ARM::CCRRegClass
);
15046 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
15049 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15050 /// vector. If it is invalid, don't add anything to Ops.
15051 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
15052 std::string
&Constraint
,
15053 std::vector
<SDValue
>&Ops
,
15054 SelectionDAG
&DAG
) const {
15057 // Currently only support length 1 constraints.
15058 if (Constraint
.length() != 1) return;
15060 char ConstraintLetter
= Constraint
[0];
15061 switch (ConstraintLetter
) {
15064 case 'I': case 'J': case 'K': case 'L':
15065 case 'M': case 'N': case 'O':
15066 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
15070 int64_t CVal64
= C
->getSExtValue();
15071 int CVal
= (int) CVal64
;
15072 // None of these constraints allow values larger than 32 bits. Check
15073 // that the value fits in an int.
15074 if (CVal
!= CVal64
)
15077 switch (ConstraintLetter
) {
15079 // Constant suitable for movw, must be between 0 and
15081 if (Subtarget
->hasV6T2Ops())
15082 if (CVal
>= 0 && CVal
<= 65535)
15086 if (Subtarget
->isThumb1Only()) {
15087 // This must be a constant between 0 and 255, for ADD
15089 if (CVal
>= 0 && CVal
<= 255)
15091 } else if (Subtarget
->isThumb2()) {
15092 // A constant that can be used as an immediate value in a
15093 // data-processing instruction.
15094 if (ARM_AM::getT2SOImmVal(CVal
) != -1)
15097 // A constant that can be used as an immediate value in a
15098 // data-processing instruction.
15099 if (ARM_AM::getSOImmVal(CVal
) != -1)
15105 if (Subtarget
->isThumb1Only()) {
15106 // This must be a constant between -255 and -1, for negated ADD
15107 // immediates. This can be used in GCC with an "n" modifier that
15108 // prints the negated value, for use with SUB instructions. It is
15109 // not useful otherwise but is implemented for compatibility.
15110 if (CVal
>= -255 && CVal
<= -1)
15113 // This must be a constant between -4095 and 4095. It is not clear
15114 // what this constraint is intended for. Implemented for
15115 // compatibility with GCC.
15116 if (CVal
>= -4095 && CVal
<= 4095)
15122 if (Subtarget
->isThumb1Only()) {
15123 // A 32-bit value where only one byte has a nonzero value. Exclude
15124 // zero to match GCC. This constraint is used by GCC internally for
15125 // constants that can be loaded with a move/shift combination.
15126 // It is not useful otherwise but is implemented for compatibility.
15127 if (CVal
!= 0 && ARM_AM::isThumbImmShiftedVal(CVal
))
15129 } else if (Subtarget
->isThumb2()) {
15130 // A constant whose bitwise inverse can be used as an immediate
15131 // value in a data-processing instruction. This can be used in GCC
15132 // with a "B" modifier that prints the inverted value, for use with
15133 // BIC and MVN instructions. It is not useful otherwise but is
15134 // implemented for compatibility.
15135 if (ARM_AM::getT2SOImmVal(~CVal
) != -1)
15138 // A constant whose bitwise inverse can be used as an immediate
15139 // value in a data-processing instruction. This can be used in GCC
15140 // with a "B" modifier that prints the inverted value, for use with
15141 // BIC and MVN instructions. It is not useful otherwise but is
15142 // implemented for compatibility.
15143 if (ARM_AM::getSOImmVal(~CVal
) != -1)
15149 if (Subtarget
->isThumb1Only()) {
15150 // This must be a constant between -7 and 7,
15151 // for 3-operand ADD/SUB immediate instructions.
15152 if (CVal
>= -7 && CVal
< 7)
15154 } else if (Subtarget
->isThumb2()) {
15155 // A constant whose negation can be used as an immediate value in a
15156 // data-processing instruction. This can be used in GCC with an "n"
15157 // modifier that prints the negated value, for use with SUB
15158 // instructions. It is not useful otherwise but is implemented for
15160 if (ARM_AM::getT2SOImmVal(-CVal
) != -1)
15163 // A constant whose negation can be used as an immediate value in a
15164 // data-processing instruction. This can be used in GCC with an "n"
15165 // modifier that prints the negated value, for use with SUB
15166 // instructions. It is not useful otherwise but is implemented for
15168 if (ARM_AM::getSOImmVal(-CVal
) != -1)
15174 if (Subtarget
->isThumb1Only()) {
15175 // This must be a multiple of 4 between 0 and 1020, for
15176 // ADD sp + immediate.
15177 if ((CVal
>= 0 && CVal
<= 1020) && ((CVal
& 3) == 0))
15180 // A power of two or a constant between 0 and 32. This is used in
15181 // GCC for the shift amount on shifted register operands, but it is
15182 // useful in general for any shift amounts.
15183 if ((CVal
>= 0 && CVal
<= 32) || ((CVal
& (CVal
- 1)) == 0))
15189 if (Subtarget
->isThumb()) { // FIXME thumb2
15190 // This must be a constant between 0 and 31, for shift amounts.
15191 if (CVal
>= 0 && CVal
<= 31)
15197 if (Subtarget
->isThumb()) { // FIXME thumb2
15198 // This must be a multiple of 4 between -508 and 508, for
15199 // ADD/SUB sp = sp + immediate.
15200 if ((CVal
>= -508 && CVal
<= 508) && ((CVal
& 3) == 0))
15205 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), Op
.getValueType());
15209 if (Result
.getNode()) {
15210 Ops
.push_back(Result
);
15213 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
15216 static RTLIB::Libcall
getDivRemLibcall(
15217 const SDNode
*N
, MVT::SimpleValueType SVT
) {
15218 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15219 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15220 "Unhandled Opcode in getDivRemLibcall");
15221 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15222 N
->getOpcode() == ISD::SREM
;
15225 default: llvm_unreachable("Unexpected request for libcall!");
15226 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
15227 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
15228 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
15229 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
15234 static TargetLowering::ArgListTy
getDivRemArgList(
15235 const SDNode
*N
, LLVMContext
*Context
, const ARMSubtarget
*Subtarget
) {
15236 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15237 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15238 "Unhandled Opcode in getDivRemArgList");
15239 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15240 N
->getOpcode() == ISD::SREM
;
15241 TargetLowering::ArgListTy Args
;
15242 TargetLowering::ArgListEntry Entry
;
15243 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
15244 EVT ArgVT
= N
->getOperand(i
).getValueType();
15245 Type
*ArgTy
= ArgVT
.getTypeForEVT(*Context
);
15246 Entry
.Node
= N
->getOperand(i
);
15248 Entry
.IsSExt
= isSigned
;
15249 Entry
.IsZExt
= !isSigned
;
15250 Args
.push_back(Entry
);
15252 if (Subtarget
->isTargetWindows() && Args
.size() >= 2)
15253 std::swap(Args
[0], Args
[1]);
15257 SDValue
ARMTargetLowering::LowerDivRem(SDValue Op
, SelectionDAG
&DAG
) const {
15258 assert((Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
15259 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
15260 Subtarget
->isTargetWindows()) &&
15261 "Register-based DivRem lowering only");
15262 unsigned Opcode
= Op
->getOpcode();
15263 assert((Opcode
== ISD::SDIVREM
|| Opcode
== ISD::UDIVREM
) &&
15264 "Invalid opcode for Div/Rem lowering");
15265 bool isSigned
= (Opcode
== ISD::SDIVREM
);
15266 EVT VT
= Op
->getValueType(0);
15267 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
15270 // If the target has hardware divide, use divide + multiply + subtract:
15272 // rem = a - b * div
15273 // return {div, rem}
15274 // This should be lowered into UDIV/SDIV + MLS later on.
15275 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
15276 : Subtarget
->hasDivideInARMMode();
15277 if (hasDivide
&& Op
->getValueType(0).isSimple() &&
15278 Op
->getSimpleValueType(0) == MVT::i32
) {
15279 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
15280 const SDValue Dividend
= Op
->getOperand(0);
15281 const SDValue Divisor
= Op
->getOperand(1);
15282 SDValue Div
= DAG
.getNode(DivOpcode
, dl
, VT
, Dividend
, Divisor
);
15283 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, VT
, Div
, Divisor
);
15284 SDValue Rem
= DAG
.getNode(ISD::SUB
, dl
, VT
, Dividend
, Mul
);
15286 SDValue Values
[2] = {Div
, Rem
};
15287 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VT
, VT
), Values
);
15290 RTLIB::Libcall LC
= getDivRemLibcall(Op
.getNode(),
15291 VT
.getSimpleVT().SimpleTy
);
15292 SDValue InChain
= DAG
.getEntryNode();
15294 TargetLowering::ArgListTy Args
= getDivRemArgList(Op
.getNode(),
15298 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15299 getPointerTy(DAG
.getDataLayout()));
15301 Type
*RetTy
= StructType::get(Ty
, Ty
);
15303 if (Subtarget
->isTargetWindows())
15304 InChain
= WinDBZCheckDenominator(DAG
, Op
.getNode(), InChain
);
15306 TargetLowering::CallLoweringInfo
CLI(DAG
);
15307 CLI
.setDebugLoc(dl
).setChain(InChain
)
15308 .setCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
15309 .setInRegister().setSExtResult(isSigned
).setZExtResult(!isSigned
);
15311 std::pair
<SDValue
, SDValue
> CallInfo
= LowerCallTo(CLI
);
15312 return CallInfo
.first
;
15315 // Lowers REM using divmod helpers
15316 // see RTABI section 4.2/4.3
15317 SDValue
ARMTargetLowering::LowerREM(SDNode
*N
, SelectionDAG
&DAG
) const {
15318 // Build return types (div and rem)
15319 std::vector
<Type
*> RetTyParams
;
15320 Type
*RetTyElement
;
15322 switch (N
->getValueType(0).getSimpleVT().SimpleTy
) {
15323 default: llvm_unreachable("Unexpected request for libcall!");
15324 case MVT::i8
: RetTyElement
= Type::getInt8Ty(*DAG
.getContext()); break;
15325 case MVT::i16
: RetTyElement
= Type::getInt16Ty(*DAG
.getContext()); break;
15326 case MVT::i32
: RetTyElement
= Type::getInt32Ty(*DAG
.getContext()); break;
15327 case MVT::i64
: RetTyElement
= Type::getInt64Ty(*DAG
.getContext()); break;
15330 RetTyParams
.push_back(RetTyElement
);
15331 RetTyParams
.push_back(RetTyElement
);
15332 ArrayRef
<Type
*> ret
= ArrayRef
<Type
*>(RetTyParams
);
15333 Type
*RetTy
= StructType::get(*DAG
.getContext(), ret
);
15335 RTLIB::Libcall LC
= getDivRemLibcall(N
, N
->getValueType(0).getSimpleVT().
15337 SDValue InChain
= DAG
.getEntryNode();
15338 TargetLowering::ArgListTy Args
= getDivRemArgList(N
, DAG
.getContext(),
15340 bool isSigned
= N
->getOpcode() == ISD::SREM
;
15341 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15342 getPointerTy(DAG
.getDataLayout()));
15344 if (Subtarget
->isTargetWindows())
15345 InChain
= WinDBZCheckDenominator(DAG
, N
, InChain
);
15348 CallLoweringInfo
CLI(DAG
);
15349 CLI
.setChain(InChain
)
15350 .setCallee(CallingConv::ARM_AAPCS
, RetTy
, Callee
, std::move(Args
))
15351 .setSExtResult(isSigned
).setZExtResult(!isSigned
).setDebugLoc(SDLoc(N
));
15352 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
15354 // Return second (rem) result operand (first contains div)
15355 SDNode
*ResNode
= CallResult
.first
.getNode();
15356 assert(ResNode
->getNumOperands() == 2 && "divmod should return two operands");
15357 return ResNode
->getOperand(1);
15361 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const {
15362 assert(Subtarget
->isTargetWindows() && "unsupported target platform");
15366 SDValue Chain
= Op
.getOperand(0);
15367 SDValue Size
= Op
.getOperand(1);
15369 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
15370 "no-stack-arg-probe")) {
15371 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
15372 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15373 Chain
= SP
.getValue(1);
15374 SP
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, SP
, Size
);
15376 SP
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, SP
.getValue(0),
15377 DAG
.getConstant(-(uint64_t)Align
, DL
, MVT::i32
));
15378 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::SP
, SP
);
15379 SDValue Ops
[2] = { SP
, Chain
};
15380 return DAG
.getMergeValues(Ops
, DL
);
15383 SDValue Words
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Size
,
15384 DAG
.getConstant(2, DL
, MVT::i32
));
15387 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R4
, Words
, Flag
);
15388 Flag
= Chain
.getValue(1);
15390 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
15391 Chain
= DAG
.getNode(ARMISD::WIN__CHKSTK
, DL
, NodeTys
, Chain
, Flag
);
15393 SDValue NewSP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15394 Chain
= NewSP
.getValue(1);
15396 SDValue Ops
[2] = { NewSP
, Chain
};
15397 return DAG
.getMergeValues(Ops
, DL
);
15400 SDValue
ARMTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
15401 SDValue SrcVal
= Op
.getOperand(0);
15402 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15403 const unsigned SrcSz
= SrcVal
.getValueType().getSizeInBits();
15404 assert(DstSz
> SrcSz
&& DstSz
<= 64 && SrcSz
>= 16 &&
15405 "Unexpected type for custom-lowering FP_EXTEND");
15407 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15408 "With both FP DP and 16, any FP conversion is legal!");
15410 assert(!(DstSz
== 32 && Subtarget
->hasFP16()) &&
15411 "With FP16, 16 to 32 conversion is legal!");
15413 // Either we are converting from 16 -> 64, without FP16 and/or
15414 // FP.double-precision or without Armv8-fp. So we must do it in two
15416 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
15417 // without FP16. So we must do a function call.
15421 // Instruction from 16 -> 32
15422 if (Subtarget
->hasFP16())
15423 SrcVal
= DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f32
, SrcVal
);
15424 // Lib call from 16 -> 32
15426 LC
= RTLIB::getFPEXT(MVT::f16
, MVT::f32
);
15427 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15428 "Unexpected type for custom-lowering FP_EXTEND");
15430 makeLibCall(DAG
, LC
, MVT::f32
, SrcVal
, /*isSigned*/ false, Loc
).first
;
15436 // For sure now SrcVal is 32 bits
15437 if (Subtarget
->hasFP64()) // Instruction from 32 -> 64
15438 return DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f64
, SrcVal
);
15440 LC
= RTLIB::getFPEXT(MVT::f32
, MVT::f64
);
15441 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15442 "Unexpected type for custom-lowering FP_EXTEND");
15443 return makeLibCall(DAG
, LC
, MVT::f64
, SrcVal
, /*isSigned*/ false, Loc
).first
;
15446 SDValue
ARMTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
15447 SDValue SrcVal
= Op
.getOperand(0);
15448 EVT SrcVT
= SrcVal
.getValueType();
15449 EVT DstVT
= Op
.getValueType();
15450 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15451 const unsigned SrcSz
= SrcVT
.getSizeInBits();
15453 assert(DstSz
< SrcSz
&& SrcSz
<= 64 && DstSz
>= 16 &&
15454 "Unexpected type for custom-lowering FP_ROUND");
15456 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15457 "With both FP DP and 16, any FP conversion is legal!");
15461 // Instruction from 32 -> 16 if hasFP16 is valid
15462 if (SrcSz
== 32 && Subtarget
->hasFP16())
15465 // Lib call from 32 -> 16 / 64 -> [32, 16]
15466 RTLIB::Libcall LC
= RTLIB::getFPROUND(SrcVT
, DstVT
);
15467 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15468 "Unexpected type for custom-lowering FP_ROUND");
15469 return makeLibCall(DAG
, LC
, DstVT
, SrcVal
, /*isSigned*/ false, Loc
).first
;
15472 void ARMTargetLowering::lowerABS(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
15473 SelectionDAG
&DAG
) const {
15474 assert(N
->getValueType(0) == MVT::i64
&& "Unexpected type (!= i64) on ABS.");
15475 MVT HalfT
= MVT::i32
;
15477 SDValue Hi
, Lo
, Tmp
;
15479 if (!isOperationLegalOrCustom(ISD::ADDCARRY
, HalfT
) ||
15480 !isOperationLegalOrCustom(ISD::UADDO
, HalfT
))
15483 unsigned OpTypeBits
= HalfT
.getScalarSizeInBits();
15484 SDVTList VTList
= DAG
.getVTList(HalfT
, MVT::i1
);
15486 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15487 DAG
.getConstant(0, dl
, HalfT
));
15488 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15489 DAG
.getConstant(1, dl
, HalfT
));
15491 Tmp
= DAG
.getNode(ISD::SRA
, dl
, HalfT
, Hi
,
15492 DAG
.getConstant(OpTypeBits
- 1, dl
,
15493 getShiftAmountTy(HalfT
, DAG
.getDataLayout())));
15494 Lo
= DAG
.getNode(ISD::UADDO
, dl
, VTList
, Tmp
, Lo
);
15495 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTList
, Tmp
, Hi
,
15496 SDValue(Lo
.getNode(), 1));
15497 Hi
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Hi
);
15498 Lo
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Lo
);
15500 Results
.push_back(Lo
);
15501 Results
.push_back(Hi
);
15505 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
15506 // The ARM target isn't yet aware of offsets.
15510 bool ARM::isBitFieldInvertedMask(unsigned v
) {
15511 if (v
== 0xffffffff)
15514 // there can be 1's on either or both "outsides", all the "inside"
15515 // bits must be 0's
15516 return isShiftedMask_32(~v
);
15519 /// isFPImmLegal - Returns true if the target can instruction select the
15520 /// specified FP immediate natively. If false, the legalizer will
15521 /// materialize the FP immediate as a load from a constant pool.
15522 bool ARMTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
15523 bool ForCodeSize
) const {
15524 if (!Subtarget
->hasVFP3Base())
15526 if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
15527 return ARM_AM::getFP16Imm(Imm
) != -1;
15528 if (VT
== MVT::f32
)
15529 return ARM_AM::getFP32Imm(Imm
) != -1;
15530 if (VT
== MVT::f64
&& Subtarget
->hasFP64())
15531 return ARM_AM::getFP64Imm(Imm
) != -1;
15535 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
15536 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
15537 /// specified in the intrinsic calls.
15538 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
15540 MachineFunction
&MF
,
15541 unsigned Intrinsic
) const {
15542 switch (Intrinsic
) {
15543 case Intrinsic::arm_neon_vld1
:
15544 case Intrinsic::arm_neon_vld2
:
15545 case Intrinsic::arm_neon_vld3
:
15546 case Intrinsic::arm_neon_vld4
:
15547 case Intrinsic::arm_neon_vld2lane
:
15548 case Intrinsic::arm_neon_vld3lane
:
15549 case Intrinsic::arm_neon_vld4lane
:
15550 case Intrinsic::arm_neon_vld2dup
:
15551 case Intrinsic::arm_neon_vld3dup
:
15552 case Intrinsic::arm_neon_vld4dup
: {
15553 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15554 // Conservatively set memVT to the entire set of vectors loaded.
15555 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15556 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15557 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15558 Info
.ptrVal
= I
.getArgOperand(0);
15560 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15561 Info
.align
= cast
<ConstantInt
>(AlignArg
)->getZExtValue();
15562 // volatile loads with NEON intrinsics not supported
15563 Info
.flags
= MachineMemOperand::MOLoad
;
15566 case Intrinsic::arm_neon_vld1x2
:
15567 case Intrinsic::arm_neon_vld1x3
:
15568 case Intrinsic::arm_neon_vld1x4
: {
15569 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15570 // Conservatively set memVT to the entire set of vectors loaded.
15571 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15572 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15573 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15574 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15577 // volatile loads with NEON intrinsics not supported
15578 Info
.flags
= MachineMemOperand::MOLoad
;
15581 case Intrinsic::arm_neon_vst1
:
15582 case Intrinsic::arm_neon_vst2
:
15583 case Intrinsic::arm_neon_vst3
:
15584 case Intrinsic::arm_neon_vst4
:
15585 case Intrinsic::arm_neon_vst2lane
:
15586 case Intrinsic::arm_neon_vst3lane
:
15587 case Intrinsic::arm_neon_vst4lane
: {
15588 Info
.opc
= ISD::INTRINSIC_VOID
;
15589 // Conservatively set memVT to the entire set of vectors stored.
15590 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15591 unsigned NumElts
= 0;
15592 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15593 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15594 if (!ArgTy
->isVectorTy())
15596 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15598 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15599 Info
.ptrVal
= I
.getArgOperand(0);
15601 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15602 Info
.align
= cast
<ConstantInt
>(AlignArg
)->getZExtValue();
15603 // volatile stores with NEON intrinsics not supported
15604 Info
.flags
= MachineMemOperand::MOStore
;
15607 case Intrinsic::arm_neon_vst1x2
:
15608 case Intrinsic::arm_neon_vst1x3
:
15609 case Intrinsic::arm_neon_vst1x4
: {
15610 Info
.opc
= ISD::INTRINSIC_VOID
;
15611 // Conservatively set memVT to the entire set of vectors stored.
15612 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15613 unsigned NumElts
= 0;
15614 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15615 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15616 if (!ArgTy
->isVectorTy())
15618 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15620 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15621 Info
.ptrVal
= I
.getArgOperand(0);
15624 // volatile stores with NEON intrinsics not supported
15625 Info
.flags
= MachineMemOperand::MOStore
;
15628 case Intrinsic::arm_ldaex
:
15629 case Intrinsic::arm_ldrex
: {
15630 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15631 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
15632 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15633 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15634 Info
.ptrVal
= I
.getArgOperand(0);
15636 Info
.align
= DL
.getABITypeAlignment(PtrTy
->getElementType());
15637 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15640 case Intrinsic::arm_stlex
:
15641 case Intrinsic::arm_strex
: {
15642 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15643 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
15644 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15645 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15646 Info
.ptrVal
= I
.getArgOperand(1);
15648 Info
.align
= DL
.getABITypeAlignment(PtrTy
->getElementType());
15649 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15652 case Intrinsic::arm_stlexd
:
15653 case Intrinsic::arm_strexd
:
15654 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15655 Info
.memVT
= MVT::i64
;
15656 Info
.ptrVal
= I
.getArgOperand(2);
15659 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15662 case Intrinsic::arm_ldaexd
:
15663 case Intrinsic::arm_ldrexd
:
15664 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15665 Info
.memVT
= MVT::i64
;
15666 Info
.ptrVal
= I
.getArgOperand(0);
15669 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15679 /// Returns true if it is beneficial to convert a load of a constant
15680 /// to just the constant itself.
15681 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
15683 assert(Ty
->isIntegerTy());
15685 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
15686 if (Bits
== 0 || Bits
> 32)
15691 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
15692 unsigned Index
) const {
15693 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
15696 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
15699 Instruction
* ARMTargetLowering::makeDMB(IRBuilder
<> &Builder
,
15700 ARM_MB::MemBOpt Domain
) const {
15701 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15703 // First, if the target has no DMB, see what fallback we can use.
15704 if (!Subtarget
->hasDataBarrier()) {
15705 // Some ARMv6 cpus can support data barriers with an mcr instruction.
15706 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
15708 if (Subtarget
->hasV6Ops() && !Subtarget
->isThumb()) {
15709 Function
*MCR
= Intrinsic::getDeclaration(M
, Intrinsic::arm_mcr
);
15710 Value
* args
[6] = {Builder
.getInt32(15), Builder
.getInt32(0),
15711 Builder
.getInt32(0), Builder
.getInt32(7),
15712 Builder
.getInt32(10), Builder
.getInt32(5)};
15713 return Builder
.CreateCall(MCR
, args
);
15715 // Instead of using barriers, atomic accesses on these subtargets use
15717 llvm_unreachable("makeDMB on a target so old that it has no barriers");
15720 Function
*DMB
= Intrinsic::getDeclaration(M
, Intrinsic::arm_dmb
);
15721 // Only a full system barrier exists in the M-class architectures.
15722 Domain
= Subtarget
->isMClass() ? ARM_MB::SY
: Domain
;
15723 Constant
*CDomain
= Builder
.getInt32(Domain
);
15724 return Builder
.CreateCall(DMB
, CDomain
);
15728 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
15729 Instruction
*ARMTargetLowering::emitLeadingFence(IRBuilder
<> &Builder
,
15731 AtomicOrdering Ord
) const {
15733 case AtomicOrdering::NotAtomic
:
15734 case AtomicOrdering::Unordered
:
15735 llvm_unreachable("Invalid fence: unordered/non-atomic");
15736 case AtomicOrdering::Monotonic
:
15737 case AtomicOrdering::Acquire
:
15738 return nullptr; // Nothing to do
15739 case AtomicOrdering::SequentiallyConsistent
:
15740 if (!Inst
->hasAtomicStore())
15741 return nullptr; // Nothing to do
15743 case AtomicOrdering::Release
:
15744 case AtomicOrdering::AcquireRelease
:
15745 if (Subtarget
->preferISHSTBarriers())
15746 return makeDMB(Builder
, ARM_MB::ISHST
);
15747 // FIXME: add a comment with a link to documentation justifying this.
15749 return makeDMB(Builder
, ARM_MB::ISH
);
15751 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
15754 Instruction
*ARMTargetLowering::emitTrailingFence(IRBuilder
<> &Builder
,
15756 AtomicOrdering Ord
) const {
15758 case AtomicOrdering::NotAtomic
:
15759 case AtomicOrdering::Unordered
:
15760 llvm_unreachable("Invalid fence: unordered/not-atomic");
15761 case AtomicOrdering::Monotonic
:
15762 case AtomicOrdering::Release
:
15763 return nullptr; // Nothing to do
15764 case AtomicOrdering::Acquire
:
15765 case AtomicOrdering::AcquireRelease
:
15766 case AtomicOrdering::SequentiallyConsistent
:
15767 return makeDMB(Builder
, ARM_MB::ISH
);
15769 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
15772 // Loads and stores less than 64-bits are already atomic; ones above that
15773 // are doomed anyway, so defer to the default libcall and blame the OS when
15774 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15775 // anything for those.
15776 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
15777 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
15778 return (Size
== 64) && !Subtarget
->isMClass();
15781 // Loads and stores less than 64-bits are already atomic; ones above that
15782 // are doomed anyway, so defer to the default libcall and blame the OS when
15783 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15784 // anything for those.
15785 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
15786 // guarantee, see DDI0406C ARM architecture reference manual,
15787 // sections A8.8.72-74 LDRD)
15788 TargetLowering::AtomicExpansionKind
15789 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
15790 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
15791 return ((Size
== 64) && !Subtarget
->isMClass()) ? AtomicExpansionKind::LLOnly
15792 : AtomicExpansionKind::None
;
15795 // For the real atomic operations, we have ldrex/strex up to 32 bits,
15796 // and up to 64 bits on the non-M profiles
15797 TargetLowering::AtomicExpansionKind
15798 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
15799 if (AI
->isFloatingPointOperation())
15800 return AtomicExpansionKind::CmpXChg
;
15802 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
15803 bool hasAtomicRMW
= !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
15804 return (Size
<= (Subtarget
->isMClass() ? 32U : 64U) && hasAtomicRMW
)
15805 ? AtomicExpansionKind::LLSC
15806 : AtomicExpansionKind::None
;
15809 TargetLowering::AtomicExpansionKind
15810 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
15811 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
15812 // implement cmpxchg without spilling. If the address being exchanged is also
15813 // on the stack and close enough to the spill slot, this can lead to a
15814 // situation where the monitor always gets cleared and the atomic operation
15815 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
15816 bool HasAtomicCmpXchg
=
15817 !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
15818 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg
)
15819 return AtomicExpansionKind::LLSC
;
15820 return AtomicExpansionKind::None
;
15823 bool ARMTargetLowering::shouldInsertFencesForAtomic(
15824 const Instruction
*I
) const {
15825 return InsertFencesForAtomic
;
15828 // This has so far only been implemented for MachO.
15829 bool ARMTargetLowering::useLoadStackGuardNode() const {
15830 return Subtarget
->isTargetMachO();
15833 void ARMTargetLowering::insertSSPDeclarations(Module
&M
) const {
15834 if (!Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
15835 return TargetLowering::insertSSPDeclarations(M
);
15837 // MSVC CRT has a global variable holding security cookie.
15838 M
.getOrInsertGlobal("__security_cookie",
15839 Type::getInt8PtrTy(M
.getContext()));
15841 // MSVC CRT has a function to validate security cookie.
15842 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
15843 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
15844 Type::getInt8PtrTy(M
.getContext()));
15845 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee()))
15846 F
->addAttribute(1, Attribute::AttrKind::InReg
);
15849 Value
*ARMTargetLowering::getSDagStackGuard(const Module
&M
) const {
15850 // MSVC CRT has a global variable holding security cookie.
15851 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
15852 return M
.getGlobalVariable("__security_cookie");
15853 return TargetLowering::getSDagStackGuard(M
);
15856 Function
*ARMTargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
15857 // MSVC CRT has a function to validate security cookie.
15858 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
15859 return M
.getFunction("__security_check_cookie");
15860 return TargetLowering::getSSPStackGuardCheck(M
);
15863 bool ARMTargetLowering::canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
15864 unsigned &Cost
) const {
15865 // If we do not have NEON, vector types are not natively supported.
15866 if (!Subtarget
->hasNEON())
15869 // Floating point values and vector values map to the same register file.
15870 // Therefore, although we could do a store extract of a vector type, this is
15871 // better to leave at float as we have more freedom in the addressing mode for
15873 if (VectorTy
->isFPOrFPVectorTy())
15876 // If the index is unknown at compile time, this is very expensive to lower
15877 // and it is not possible to combine the store with the extract.
15878 if (!isa
<ConstantInt
>(Idx
))
15881 assert(VectorTy
->isVectorTy() && "VectorTy is not a vector type");
15882 unsigned BitWidth
= cast
<VectorType
>(VectorTy
)->getBitWidth();
15883 // We can do a store + vector extract on any vector that fits perfectly in a D
15885 if (BitWidth
== 64 || BitWidth
== 128) {
15892 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
15893 return Subtarget
->hasV6T2Ops();
15896 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
15897 return Subtarget
->hasV6T2Ops();
15900 bool ARMTargetLowering::shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const {
15901 return !Subtarget
->hasMinSize();
15904 Value
*ARMTargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
15905 AtomicOrdering Ord
) const {
15906 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15907 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
15908 bool IsAcquire
= isAcquireOrStronger(Ord
);
15910 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
15911 // intrinsic must return {i32, i32} and we have to recombine them into a
15912 // single i64 here.
15913 if (ValTy
->getPrimitiveSizeInBits() == 64) {
15914 Intrinsic::ID Int
=
15915 IsAcquire
? Intrinsic::arm_ldaexd
: Intrinsic::arm_ldrexd
;
15916 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
);
15918 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
15919 Value
*LoHi
= Builder
.CreateCall(Ldrex
, Addr
, "lohi");
15921 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
15922 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
15923 if (!Subtarget
->isLittle())
15924 std::swap (Lo
, Hi
);
15925 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
15926 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
15927 return Builder
.CreateOr(
15928 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 32)), "val64");
15931 Type
*Tys
[] = { Addr
->getType() };
15932 Intrinsic::ID Int
= IsAcquire
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex
;
15933 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
15935 return Builder
.CreateTruncOrBitCast(
15936 Builder
.CreateCall(Ldrex
, Addr
),
15937 cast
<PointerType
>(Addr
->getType())->getElementType());
15940 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
15941 IRBuilder
<> &Builder
) const {
15942 if (!Subtarget
->hasV7Ops())
15944 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15945 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::arm_clrex
));
15948 Value
*ARMTargetLowering::emitStoreConditional(IRBuilder
<> &Builder
, Value
*Val
,
15950 AtomicOrdering Ord
) const {
15951 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15952 bool IsRelease
= isReleaseOrStronger(Ord
);
15954 // Since the intrinsics must have legal type, the i64 intrinsics take two
15955 // parameters: "i32, i32". We must marshal Val into the appropriate form
15956 // before the call.
15957 if (Val
->getType()->getPrimitiveSizeInBits() == 64) {
15958 Intrinsic::ID Int
=
15959 IsRelease
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd
;
15960 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
);
15961 Type
*Int32Ty
= Type::getInt32Ty(M
->getContext());
15963 Value
*Lo
= Builder
.CreateTrunc(Val
, Int32Ty
, "lo");
15964 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 32), Int32Ty
, "hi");
15965 if (!Subtarget
->isLittle())
15967 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
15968 return Builder
.CreateCall(Strex
, {Lo
, Hi
, Addr
});
15971 Intrinsic::ID Int
= IsRelease
? Intrinsic::arm_stlex
: Intrinsic::arm_strex
;
15972 Type
*Tys
[] = { Addr
->getType() };
15973 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
15975 return Builder
.CreateCall(
15976 Strex
, {Builder
.CreateZExtOrBitCast(
15977 Val
, Strex
->getFunctionType()->getParamType(0)),
15982 bool ARMTargetLowering::alignLoopsWithOptSize() const {
15983 return Subtarget
->isMClass();
15986 /// A helper function for determining the number of interleaved accesses we
15987 /// will generate when lowering accesses of the given type.
15989 ARMTargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
15990 const DataLayout
&DL
) const {
15991 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
15994 bool ARMTargetLowering::isLegalInterleavedAccessType(
15995 VectorType
*VecTy
, const DataLayout
&DL
) const {
15997 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
15998 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
16000 // Ensure the vector doesn't have f16 elements. Even though we could do an
16001 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16003 if (VecTy
->getElementType()->isHalfTy())
16006 // Ensure the number of vector elements is greater than 1.
16007 if (VecTy
->getNumElements() < 2)
16010 // Ensure the element type is legal.
16011 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32)
16014 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16015 // 128 will be split into multiple interleaved accesses.
16016 return VecSize
== 64 || VecSize
% 128 == 0;
16019 /// Lower an interleaved load into a vldN intrinsic.
16021 /// E.g. Lower an interleaved load (Factor = 2):
16022 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
16023 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
16024 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
16027 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
16028 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
16029 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
16030 bool ARMTargetLowering::lowerInterleavedLoad(
16031 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
16032 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
16033 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16034 "Invalid interleave factor");
16035 assert(!Shuffles
.empty() && "Empty shufflevector input");
16036 assert(Shuffles
.size() == Indices
.size() &&
16037 "Unmatched number of shufflevectors and indices");
16039 VectorType
*VecTy
= Shuffles
[0]->getType();
16040 Type
*EltTy
= VecTy
->getVectorElementType();
16042 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
16044 // Skip if we do not have NEON and skip illegal vector types. We can
16045 // "legalize" wide vector types into multiple interleaved accesses as long as
16046 // the vector types are divisible by 128.
16047 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
16050 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
16052 // A pointer vector can not be the return type of the ldN intrinsics. Need to
16053 // load integer vectors first and then convert to pointer vectors.
16054 if (EltTy
->isPointerTy())
16056 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
16058 IRBuilder
<> Builder(LI
);
16060 // The base address of the load.
16061 Value
*BaseAddr
= LI
->getPointerOperand();
16063 if (NumLoads
> 1) {
16064 // If we're going to generate more than one load, reset the sub-vector type
16065 // to something legal.
16066 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
16067 VecTy
->getVectorNumElements() / NumLoads
);
16069 // We will compute the pointer operand of each load from the original base
16070 // address using GEPs. Cast the base address to a pointer to the scalar
16072 BaseAddr
= Builder
.CreateBitCast(
16073 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
16074 LI
->getPointerAddressSpace()));
16077 assert(isTypeLegal(EVT::getEVT(VecTy
)) && "Illegal vldN vector type!");
16079 Type
*Int8Ptr
= Builder
.getInt8PtrTy(LI
->getPointerAddressSpace());
16080 Type
*Tys
[] = {VecTy
, Int8Ptr
};
16081 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::arm_neon_vld2
,
16082 Intrinsic::arm_neon_vld3
,
16083 Intrinsic::arm_neon_vld4
};
16084 Function
*VldnFunc
=
16085 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
16087 // Holds sub-vectors extracted from the load intrinsic return values. The
16088 // sub-vectors are associated with the shufflevector instructions they will
16090 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
16092 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
16093 // If we're generating more than one load, compute the base address of
16094 // subsequent loads as an offset from the previous.
16097 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
16098 VecTy
->getVectorNumElements() * Factor
);
16100 SmallVector
<Value
*, 2> Ops
;
16101 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16102 Ops
.push_back(Builder
.getInt32(LI
->getAlignment()));
16104 CallInst
*VldN
= Builder
.CreateCall(VldnFunc
, Ops
, "vldN");
16106 // Replace uses of each shufflevector with the corresponding vector loaded
16108 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
16109 ShuffleVectorInst
*SV
= Shuffles
[i
];
16110 unsigned Index
= Indices
[i
];
16112 Value
*SubVec
= Builder
.CreateExtractValue(VldN
, Index
);
16114 // Convert the integer vector to pointer vector if the element is pointer.
16115 if (EltTy
->isPointerTy())
16116 SubVec
= Builder
.CreateIntToPtr(
16117 SubVec
, VectorType::get(SV
->getType()->getVectorElementType(),
16118 VecTy
->getVectorNumElements()));
16120 SubVecs
[SV
].push_back(SubVec
);
16124 // Replace uses of the shufflevector instructions with the sub-vectors
16125 // returned by the load intrinsic. If a shufflevector instruction is
16126 // associated with more than one sub-vector, those sub-vectors will be
16127 // concatenated into a single wide vector.
16128 for (ShuffleVectorInst
*SVI
: Shuffles
) {
16129 auto &SubVec
= SubVecs
[SVI
];
16131 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
16132 SVI
->replaceAllUsesWith(WideVec
);
16138 /// Lower an interleaved store into a vstN intrinsic.
16140 /// E.g. Lower an interleaved store (Factor = 3):
16141 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
16142 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
16143 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
16146 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
16147 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
16148 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
16149 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16151 /// Note that the new shufflevectors will be removed and we'll only generate one
16152 /// vst3 instruction in CodeGen.
16154 /// Example for a more general valid mask (Factor 3). Lower:
16155 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
16156 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
16157 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
16160 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
16161 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
16162 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
16163 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16164 bool ARMTargetLowering::lowerInterleavedStore(StoreInst
*SI
,
16165 ShuffleVectorInst
*SVI
,
16166 unsigned Factor
) const {
16167 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16168 "Invalid interleave factor");
16170 VectorType
*VecTy
= SVI
->getType();
16171 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
16172 "Invalid interleaved store");
16174 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
16175 Type
*EltTy
= VecTy
->getVectorElementType();
16176 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
16178 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
16180 // Skip if we do not have NEON and skip illegal vector types. We can
16181 // "legalize" wide vector types into multiple interleaved accesses as long as
16182 // the vector types are divisible by 128.
16183 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
16186 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
16188 Value
*Op0
= SVI
->getOperand(0);
16189 Value
*Op1
= SVI
->getOperand(1);
16190 IRBuilder
<> Builder(SI
);
16192 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
16193 // vectors to integer vectors.
16194 if (EltTy
->isPointerTy()) {
16195 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
16197 // Convert to the corresponding integer vector.
16199 VectorType::get(IntTy
, Op0
->getType()->getVectorNumElements());
16200 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
16201 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
16203 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
16206 // The base address of the store.
16207 Value
*BaseAddr
= SI
->getPointerOperand();
16209 if (NumStores
> 1) {
16210 // If we're going to generate more than one store, reset the lane length
16211 // and sub-vector type to something legal.
16212 LaneLen
/= NumStores
;
16213 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
16215 // We will compute the pointer operand of each store from the original base
16216 // address using GEPs. Cast the base address to a pointer to the scalar
16218 BaseAddr
= Builder
.CreateBitCast(
16219 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
16220 SI
->getPointerAddressSpace()));
16223 assert(isTypeLegal(EVT::getEVT(SubVecTy
)) && "Illegal vstN vector type!");
16225 auto Mask
= SVI
->getShuffleMask();
16227 Type
*Int8Ptr
= Builder
.getInt8PtrTy(SI
->getPointerAddressSpace());
16228 Type
*Tys
[] = {Int8Ptr
, SubVecTy
};
16229 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::arm_neon_vst2
,
16230 Intrinsic::arm_neon_vst3
,
16231 Intrinsic::arm_neon_vst4
};
16233 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
16234 // If we generating more than one store, we compute the base address of
16235 // subsequent stores as an offset from the previous.
16236 if (StoreCount
> 0)
16237 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
16238 BaseAddr
, LaneLen
* Factor
);
16240 SmallVector
<Value
*, 6> Ops
;
16241 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16243 Function
*VstNFunc
=
16244 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
16246 // Split the shufflevector operands into sub vectors for the new vstN call.
16247 for (unsigned i
= 0; i
< Factor
; i
++) {
16248 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
16249 if (Mask
[IdxI
] >= 0) {
16250 Ops
.push_back(Builder
.CreateShuffleVector(
16251 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
16253 unsigned StartMask
= 0;
16254 for (unsigned j
= 1; j
< LaneLen
; j
++) {
16255 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
16256 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
16257 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
16261 // Note: If all elements in a chunk are undefs, StartMask=0!
16262 // Note: Filling undef gaps with random elements is ok, since
16263 // those elements were being written anyway (with undefs).
16264 // In the case of all undefs we're defaulting to using elems from 0
16265 // Note: StartMask cannot be negative, it's checked in
16266 // isReInterleaveMask
16267 Ops
.push_back(Builder
.CreateShuffleVector(
16268 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
16272 Ops
.push_back(Builder
.getInt32(SI
->getAlignment()));
16273 Builder
.CreateCall(VstNFunc
, Ops
);
16286 static bool isHomogeneousAggregate(Type
*Ty
, HABaseType
&Base
,
16287 uint64_t &Members
) {
16288 if (auto *ST
= dyn_cast
<StructType
>(Ty
)) {
16289 for (unsigned i
= 0; i
< ST
->getNumElements(); ++i
) {
16290 uint64_t SubMembers
= 0;
16291 if (!isHomogeneousAggregate(ST
->getElementType(i
), Base
, SubMembers
))
16293 Members
+= SubMembers
;
16295 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
16296 uint64_t SubMembers
= 0;
16297 if (!isHomogeneousAggregate(AT
->getElementType(), Base
, SubMembers
))
16299 Members
+= SubMembers
* AT
->getNumElements();
16300 } else if (Ty
->isFloatTy()) {
16301 if (Base
!= HA_UNKNOWN
&& Base
!= HA_FLOAT
)
16305 } else if (Ty
->isDoubleTy()) {
16306 if (Base
!= HA_UNKNOWN
&& Base
!= HA_DOUBLE
)
16310 } else if (auto *VT
= dyn_cast
<VectorType
>(Ty
)) {
16317 return VT
->getBitWidth() == 64;
16319 return VT
->getBitWidth() == 128;
16321 switch (VT
->getBitWidth()) {
16334 return (Members
> 0 && Members
<= 4);
16337 /// Return the correct alignment for the current calling convention.
16339 ARMTargetLowering::getABIAlignmentForCallingConv(Type
*ArgTy
,
16340 DataLayout DL
) const {
16341 if (!ArgTy
->isVectorTy())
16342 return DL
.getABITypeAlignment(ArgTy
);
16344 // Avoid over-aligning vector parameters. It would require realigning the
16345 // stack and waste space for no real benefit.
16346 return std::min(DL
.getABITypeAlignment(ArgTy
), DL
.getStackAlignment());
16349 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
16350 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
16351 /// passing according to AAPCS rules.
16352 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
16353 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
16354 if (getEffectiveCallingConv(CallConv
, isVarArg
) !=
16355 CallingConv::ARM_AAPCS_VFP
)
16358 HABaseType Base
= HA_UNKNOWN
;
16359 uint64_t Members
= 0;
16360 bool IsHA
= isHomogeneousAggregate(Ty
, Base
, Members
);
16361 LLVM_DEBUG(dbgs() << "isHA: " << IsHA
<< " "; Ty
->dump());
16363 bool IsIntArray
= Ty
->isArrayTy() && Ty
->getArrayElementType()->isIntegerTy();
16364 return IsHA
|| IsIntArray
;
16367 unsigned ARMTargetLowering::getExceptionPointerRegister(
16368 const Constant
*PersonalityFn
) const {
16369 // Platforms which do not use SjLj EH may return values in these registers
16370 // via the personality function.
16371 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R0
;
16374 unsigned ARMTargetLowering::getExceptionSelectorRegister(
16375 const Constant
*PersonalityFn
) const {
16376 // Platforms which do not use SjLj EH may return values in these registers
16377 // via the personality function.
16378 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R1
;
16381 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
16382 // Update IsSplitCSR in ARMFunctionInfo.
16383 ARMFunctionInfo
*AFI
= Entry
->getParent()->getInfo
<ARMFunctionInfo
>();
16384 AFI
->setIsSplitCSR(true);
16387 void ARMTargetLowering::insertCopiesSplitCSR(
16388 MachineBasicBlock
*Entry
,
16389 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
16390 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
16391 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
16395 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
16396 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
16397 MachineBasicBlock::iterator MBBI
= Entry
->begin();
16398 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
16399 const TargetRegisterClass
*RC
= nullptr;
16400 if (ARM::GPRRegClass
.contains(*I
))
16401 RC
= &ARM::GPRRegClass
;
16402 else if (ARM::DPRRegClass
.contains(*I
))
16403 RC
= &ARM::DPRRegClass
;
16405 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
16407 unsigned NewVR
= MRI
->createVirtualRegister(RC
);
16408 // Create copy from CSR to a virtual register.
16409 // FIXME: this currently does not emit CFI pseudo-instructions, it works
16410 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
16411 // nounwind. If we want to generalize this later, we may need to emit
16412 // CFI pseudo-instructions.
16413 assert(Entry
->getParent()->getFunction().hasFnAttribute(
16414 Attribute::NoUnwind
) &&
16415 "Function should be nounwind in insertCopiesSplitCSR!");
16416 Entry
->addLiveIn(*I
);
16417 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
16420 // Insert the copy-back instructions right before the terminator.
16421 for (auto *Exit
: Exits
)
16422 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
16423 TII
->get(TargetOpcode::COPY
), *I
)
16428 void ARMTargetLowering::finalizeLowering(MachineFunction
&MF
) const {
16429 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
16430 TargetLoweringBase::finalizeLowering(MF
);