[ARM] MVE compare vector splat combine
[llvm-complete.git] / lib / Target / ARM / ARMParallelDSP.cpp
blob6225fbce8027ebfcf6cc40e38f173a63774e4f42
1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The
11 /// purpose of this pass is do some IR pattern matching to create ACLE
12 /// DSP intrinsics, which map on these 32-bit SIMD operations.
13 /// This pass runs only when unaligned accesses is supported/enabled.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/LoopAccessAnalysis.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/NoFolder.h"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include "llvm/Transforms/Utils/LoopUtils.h"
28 #include "llvm/Pass.h"
29 #include "llvm/PassRegistry.h"
30 #include "llvm/PassSupport.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/CodeGen/TargetPassConfig.h"
34 #include "ARM.h"
35 #include "ARMSubtarget.h"
37 using namespace llvm;
38 using namespace PatternMatch;
40 #define DEBUG_TYPE "arm-parallel-dsp"
42 STATISTIC(NumSMLAD , "Number of smlad instructions generated");
44 static cl::opt<bool>
45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
46 cl::desc("Disable the ARM Parallel DSP pass"));
48 namespace {
49 struct OpChain;
50 struct BinOpChain;
51 class Reduction;
53 using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>;
54 using ReductionList = SmallVector<Reduction, 8>;
55 using ValueList = SmallVector<Value*, 8>;
56 using MemInstList = SmallVector<LoadInst*, 8>;
57 using PMACPair = std::pair<BinOpChain*,BinOpChain*>;
58 using PMACPairList = SmallVector<PMACPair, 8>;
59 using Instructions = SmallVector<Instruction*,16>;
60 using MemLocList = SmallVector<MemoryLocation, 4>;
62 struct OpChain {
63 Instruction *Root;
64 ValueList AllValues;
65 MemInstList VecLd; // List of all load instructions.
66 MemInstList Loads;
67 bool ReadOnly = true;
69 OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { }
70 virtual ~OpChain() = default;
72 void PopulateLoads() {
73 for (auto *V : AllValues) {
74 if (auto *Ld = dyn_cast<LoadInst>(V))
75 Loads.push_back(Ld);
79 unsigned size() const { return AllValues.size(); }
82 // 'BinOpChain' holds the multiplication instructions that are candidates
83 // for parallel execution.
84 struct BinOpChain : public OpChain {
85 ValueList LHS; // List of all (narrow) left hand operands.
86 ValueList RHS; // List of all (narrow) right hand operands.
87 bool Exchange = false;
89 BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) :
90 OpChain(I, lhs), LHS(lhs), RHS(rhs) {
91 for (auto *V : RHS)
92 AllValues.push_back(V);
95 bool AreSymmetrical(BinOpChain *Other);
98 /// Represent a sequence of multiply-accumulate operations with the aim to
99 /// perform the multiplications in parallel.
100 class Reduction {
101 Instruction *Root = nullptr;
102 Value *Acc = nullptr;
103 OpChainList Muls;
104 PMACPairList MulPairs;
105 SmallPtrSet<Instruction*, 4> Adds;
107 public:
108 Reduction() = delete;
110 Reduction (Instruction *Add) : Root(Add) { }
112 /// Record an Add instruction that is a part of the this reduction.
113 void InsertAdd(Instruction *I) { Adds.insert(I); }
115 /// Record a BinOpChain, rooted at a Mul instruction, that is a part of
116 /// this reduction.
117 void InsertMul(Instruction *I, ValueList &LHS, ValueList &RHS) {
118 Muls.push_back(make_unique<BinOpChain>(I, LHS, RHS));
121 /// Add the incoming accumulator value, returns true if a value had not
122 /// already been added. Returning false signals to the user that this
123 /// reduction already has a value to initialise the accumulator.
124 bool InsertAcc(Value *V) {
125 if (Acc)
126 return false;
127 Acc = V;
128 return true;
131 /// Set two BinOpChains, rooted at muls, that can be executed as a single
132 /// parallel operation.
133 void AddMulPair(BinOpChain *Mul0, BinOpChain *Mul1) {
134 MulPairs.push_back(std::make_pair(Mul0, Mul1));
137 /// Return true if enough mul operations are found that can be executed in
138 /// parallel.
139 bool CreateParallelPairs();
141 /// Return the add instruction which is the root of the reduction.
142 Instruction *getRoot() { return Root; }
144 /// Return the incoming value to be accumulated. This maybe null.
145 Value *getAccumulator() { return Acc; }
147 /// Return the set of adds that comprise the reduction.
148 SmallPtrSetImpl<Instruction*> &getAdds() { return Adds; }
150 /// Return the BinOpChain, rooted at mul instruction, that comprise the
151 /// the reduction.
152 OpChainList &getMuls() { return Muls; }
154 /// Return the BinOpChain, rooted at mul instructions, that have been
155 /// paired for parallel execution.
156 PMACPairList &getMulPairs() { return MulPairs; }
158 /// To finalise, replace the uses of the root with the intrinsic call.
159 void UpdateRoot(Instruction *SMLAD) {
160 Root->replaceAllUsesWith(SMLAD);
164 class WidenedLoad {
165 LoadInst *NewLd = nullptr;
166 SmallVector<LoadInst*, 4> Loads;
168 public:
169 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide)
170 : NewLd(Wide) {
171 for (auto *I : Lds)
172 Loads.push_back(I);
174 LoadInst *getLoad() {
175 return NewLd;
179 class ARMParallelDSP : public LoopPass {
180 ScalarEvolution *SE;
181 AliasAnalysis *AA;
182 TargetLibraryInfo *TLI;
183 DominatorTree *DT;
184 LoopInfo *LI;
185 Loop *L;
186 const DataLayout *DL;
187 Module *M;
188 std::map<LoadInst*, LoadInst*> LoadPairs;
189 SmallPtrSet<LoadInst*, 4> OffsetLoads;
190 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads;
192 template<unsigned>
193 bool IsNarrowSequence(Value *V, ValueList &VL);
195 bool RecordMemoryOps(BasicBlock *BB);
196 void InsertParallelMACs(Reduction &Reduction);
197 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
198 LoadInst* CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads,
199 IntegerType *LoadTy);
200 bool CreateParallelPairs(Reduction &R);
202 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
203 /// Dual performs two signed 16x16-bit multiplications. It adds the
204 /// products to a 32-bit accumulate operand. Optionally, the instruction can
205 /// exchange the halfwords of the second operand before performing the
206 /// arithmetic.
207 bool MatchSMLAD(Loop *L);
209 public:
210 static char ID;
212 ARMParallelDSP() : LoopPass(ID) { }
214 bool doInitialization(Loop *L, LPPassManager &LPM) override {
215 LoadPairs.clear();
216 WideLoads.clear();
217 return true;
220 void getAnalysisUsage(AnalysisUsage &AU) const override {
221 LoopPass::getAnalysisUsage(AU);
222 AU.addRequired<AssumptionCacheTracker>();
223 AU.addRequired<ScalarEvolutionWrapperPass>();
224 AU.addRequired<AAResultsWrapperPass>();
225 AU.addRequired<TargetLibraryInfoWrapperPass>();
226 AU.addRequired<LoopInfoWrapperPass>();
227 AU.addRequired<DominatorTreeWrapperPass>();
228 AU.addRequired<TargetPassConfig>();
229 AU.addPreserved<LoopInfoWrapperPass>();
230 AU.setPreservesCFG();
233 bool runOnLoop(Loop *TheLoop, LPPassManager &) override {
234 if (DisableParallelDSP)
235 return false;
236 if (skipLoop(TheLoop))
237 return false;
239 L = TheLoop;
240 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
241 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
242 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
243 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
244 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
245 auto &TPC = getAnalysis<TargetPassConfig>();
247 BasicBlock *Header = TheLoop->getHeader();
248 if (!Header)
249 return false;
251 // TODO: We assume the loop header and latch to be the same block.
252 // This is not a fundamental restriction, but lifting this would just
253 // require more work to do the transformation and then patch up the CFG.
254 if (Header != TheLoop->getLoopLatch()) {
255 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
256 "running pass ARMParallelDSP\n");
257 return false;
260 if (!TheLoop->getLoopPreheader())
261 InsertPreheaderForLoop(L, DT, LI, nullptr, true);
263 Function &F = *Header->getParent();
264 M = F.getParent();
265 DL = &M->getDataLayout();
267 auto &TM = TPC.getTM<TargetMachine>();
268 auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
270 if (!ST->allowsUnalignedMem()) {
271 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
272 "running pass ARMParallelDSP\n");
273 return false;
276 if (!ST->hasDSP()) {
277 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
278 "ARMParallelDSP\n");
279 return false;
282 if (!ST->isLittle()) {
283 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass "
284 << "ARMParallelDSP\n");
285 return false;
288 LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI);
290 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
291 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
293 if (!RecordMemoryOps(Header)) {
294 LLVM_DEBUG(dbgs() << " - No sequential loads found.\n");
295 return false;
298 bool Changes = MatchSMLAD(L);
299 return Changes;
304 template<typename MemInst>
305 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
306 const DataLayout &DL, ScalarEvolution &SE) {
307 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE))
308 return true;
309 return false;
312 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
313 MemInstList &VecMem) {
314 if (!Ld0 || !Ld1)
315 return false;
317 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1)
318 return false;
320 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
321 dbgs() << "Ld0:"; Ld0->dump();
322 dbgs() << "Ld1:"; Ld1->dump();
325 VecMem.clear();
326 VecMem.push_back(Ld0);
327 VecMem.push_back(Ld1);
328 return true;
331 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
332 // instructions, which is set to 16. So here we should collect all i8 and i16
333 // narrow operations.
334 // TODO: we currently only collect i16, and will support i8 later, so that's
335 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
336 template<unsigned MaxBitWidth>
337 bool ARMParallelDSP::IsNarrowSequence(Value *V, ValueList &VL) {
338 ConstantInt *CInt;
340 if (match(V, m_ConstantInt(CInt))) {
341 // TODO: if a constant is used, it needs to fit within the bit width.
342 return false;
345 auto *I = dyn_cast<Instruction>(V);
346 if (!I)
347 return false;
349 Value *Val, *LHS, *RHS;
350 if (match(V, m_Trunc(m_Value(Val)))) {
351 if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth)
352 return IsNarrowSequence<MaxBitWidth>(Val, VL);
353 } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) {
354 // TODO: we need to implement sadd16/sadd8 for this, which enables to
355 // also do the rewrite for smlad8.ll, but it is unsupported for now.
356 return false;
357 } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) {
358 if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth)
359 return false;
361 if (match(Val, m_Load(m_Value()))) {
362 auto *Ld = cast<LoadInst>(Val);
364 // Check that these load could be paired.
365 if (!LoadPairs.count(Ld) && !OffsetLoads.count(Ld))
366 return false;
368 VL.push_back(Val);
369 VL.push_back(I);
370 return true;
373 return false;
376 /// Iterate through the block and record base, offset pairs of loads which can
377 /// be widened into a single load.
378 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
379 SmallVector<LoadInst*, 8> Loads;
380 SmallVector<Instruction*, 8> Writes;
382 // Collect loads and instruction that may write to memory. For now we only
383 // record loads which are simple, sign-extended and have a single user.
384 // TODO: Allow zero-extended loads.
385 for (auto &I : *BB) {
386 if (I.mayWriteToMemory())
387 Writes.push_back(&I);
388 auto *Ld = dyn_cast<LoadInst>(&I);
389 if (!Ld || !Ld->isSimple() ||
390 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back()))
391 continue;
392 Loads.push_back(Ld);
395 using InstSet = std::set<Instruction*>;
396 using DepMap = std::map<Instruction*, InstSet>;
397 DepMap RAWDeps;
399 // Record any writes that may alias a load.
400 const auto Size = LocationSize::unknown();
401 for (auto Read : Loads) {
402 for (auto Write : Writes) {
403 MemoryLocation ReadLoc =
404 MemoryLocation(Read->getPointerOperand(), Size);
406 if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc),
407 ModRefInfo::ModRef)))
408 continue;
409 if (DT->dominates(Write, Read))
410 RAWDeps[Read].insert(Write);
414 // Check whether there's not a write between the two loads which would
415 // prevent them from being safely merged.
416 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) {
417 LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset;
418 LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base;
420 if (RAWDeps.count(Dominated)) {
421 InstSet &WritesBefore = RAWDeps[Dominated];
423 for (auto Before : WritesBefore) {
425 // We can't move the second load backward, past a write, to merge
426 // with the first load.
427 if (DT->dominates(Dominator, Before))
428 return false;
431 return true;
434 // Record base, offset load pairs.
435 for (auto *Base : Loads) {
436 for (auto *Offset : Loads) {
437 if (Base == Offset)
438 continue;
440 if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) &&
441 SafeToPair(Base, Offset)) {
442 LoadPairs[Base] = Offset;
443 OffsetLoads.insert(Offset);
444 break;
449 LLVM_DEBUG(if (!LoadPairs.empty()) {
450 dbgs() << "Consecutive load pairs:\n";
451 for (auto &MapIt : LoadPairs) {
452 LLVM_DEBUG(dbgs() << *MapIt.first << ", "
453 << *MapIt.second << "\n");
456 return LoadPairs.size() > 1;
459 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
460 // multiplications.
461 // To use SMLAD:
462 // 1) we first need to find integer add then look for this pattern:
464 // acc0 = ...
465 // ld0 = load i16
466 // sext0 = sext i16 %ld0 to i32
467 // ld1 = load i16
468 // sext1 = sext i16 %ld1 to i32
469 // mul0 = mul %sext0, %sext1
470 // ld2 = load i16
471 // sext2 = sext i16 %ld2 to i32
472 // ld3 = load i16
473 // sext3 = sext i16 %ld3 to i32
474 // mul1 = mul i32 %sext2, %sext3
475 // add0 = add i32 %mul0, %acc0
476 // acc1 = add i32 %add0, %mul1
478 // Which can be selected to:
480 // ldr r0
481 // ldr r1
482 // smlad r2, r0, r1, r2
484 // If constants are used instead of loads, these will need to be hoisted
485 // out and into a register.
487 // If loop invariants are used instead of loads, these need to be packed
488 // before the loop begins.
490 bool ARMParallelDSP::MatchSMLAD(Loop *L) {
491 // Search recursively back through the operands to find a tree of values that
492 // form a multiply-accumulate chain. The search records the Add and Mul
493 // instructions that form the reduction and allows us to find a single value
494 // to be used as the initial input to the accumlator.
495 std::function<bool(Value*, Reduction&)> Search = [&]
496 (Value *V, Reduction &R) -> bool {
498 // If we find a non-instruction, try to use it as the initial accumulator
499 // value. This may have already been found during the search in which case
500 // this function will return false, signaling a search fail.
501 auto *I = dyn_cast<Instruction>(V);
502 if (!I)
503 return R.InsertAcc(V);
505 switch (I->getOpcode()) {
506 default:
507 break;
508 case Instruction::PHI:
509 // Could be the accumulator value.
510 return R.InsertAcc(V);
511 case Instruction::Add: {
512 // Adds should be adding together two muls, or another add and a mul to
513 // be within the mac chain. One of the operands may also be the
514 // accumulator value at which point we should stop searching.
515 bool ValidLHS = Search(I->getOperand(0), R);
516 bool ValidRHS = Search(I->getOperand(1), R);
517 if (!ValidLHS && !ValidLHS)
518 return false;
519 else if (ValidLHS && ValidRHS) {
520 R.InsertAdd(I);
521 return true;
522 } else {
523 R.InsertAdd(I);
524 return R.InsertAcc(I);
527 case Instruction::Mul: {
528 Value *MulOp0 = I->getOperand(0);
529 Value *MulOp1 = I->getOperand(1);
530 if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1)) {
531 ValueList LHS;
532 ValueList RHS;
533 if (IsNarrowSequence<16>(MulOp0, LHS) &&
534 IsNarrowSequence<16>(MulOp1, RHS)) {
535 R.InsertMul(I, LHS, RHS);
536 return true;
539 return false;
541 case Instruction::SExt:
542 return Search(I->getOperand(0), R);
544 return false;
547 bool Changed = false;
548 SmallPtrSet<Instruction*, 4> AllAdds;
549 BasicBlock *Latch = L->getLoopLatch();
551 for (Instruction &I : reverse(*Latch)) {
552 if (I.getOpcode() != Instruction::Add)
553 continue;
555 if (AllAdds.count(&I))
556 continue;
558 const auto *Ty = I.getType();
559 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
560 continue;
562 Reduction R(&I);
563 if (!Search(&I, R))
564 continue;
566 if (!CreateParallelPairs(R))
567 continue;
569 InsertParallelMACs(R);
570 Changed = true;
571 AllAdds.insert(R.getAdds().begin(), R.getAdds().end());
574 return Changed;
577 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) {
579 // Not enough mul operations to make a pair.
580 if (R.getMuls().size() < 2)
581 return false;
583 // Check that the muls operate directly upon sign extended loads.
584 for (auto &MulChain : R.getMuls()) {
585 // A mul has 2 operands, and a narrow op consist of sext and a load; thus
586 // we expect at least 4 items in this operand value list.
587 if (MulChain->size() < 4) {
588 LLVM_DEBUG(dbgs() << "Operand list too short.\n");
589 return false;
591 MulChain->PopulateLoads();
592 ValueList &LHS = static_cast<BinOpChain*>(MulChain.get())->LHS;
593 ValueList &RHS = static_cast<BinOpChain*>(MulChain.get())->RHS;
595 // Use +=2 to skip over the expected extend instructions.
596 for (unsigned i = 0, e = LHS.size(); i < e; i += 2) {
597 if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i]))
598 return false;
602 auto CanPair = [&](Reduction &R, BinOpChain *PMul0, BinOpChain *PMul1) {
603 if (!PMul0->AreSymmetrical(PMul1))
604 return false;
606 // The first elements of each vector should be loads with sexts. If we
607 // find that its two pairs of consecutive loads, then these can be
608 // transformed into two wider loads and the users can be replaced with
609 // DSP intrinsics.
610 for (unsigned x = 0; x < PMul0->LHS.size(); x += 2) {
611 auto *Ld0 = dyn_cast<LoadInst>(PMul0->LHS[x]);
612 auto *Ld1 = dyn_cast<LoadInst>(PMul1->LHS[x]);
613 auto *Ld2 = dyn_cast<LoadInst>(PMul0->RHS[x]);
614 auto *Ld3 = dyn_cast<LoadInst>(PMul1->RHS[x]);
616 if (!Ld0 || !Ld1 || !Ld2 || !Ld3)
617 return false;
619 LLVM_DEBUG(dbgs() << "Loads:\n"
620 << " - " << *Ld0 << "\n"
621 << " - " << *Ld1 << "\n"
622 << " - " << *Ld2 << "\n"
623 << " - " << *Ld3 << "\n");
625 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
626 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
627 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
628 R.AddMulPair(PMul0, PMul1);
629 return true;
630 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
631 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
632 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n");
633 PMul1->Exchange = true;
634 R.AddMulPair(PMul0, PMul1);
635 return true;
637 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
638 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
639 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
640 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n");
641 LLVM_DEBUG(dbgs() << " and swapping muls\n");
642 PMul0->Exchange = true;
643 // Only the second operand can be exchanged, so swap the muls.
644 R.AddMulPair(PMul1, PMul0);
645 return true;
648 return false;
651 OpChainList &Muls = R.getMuls();
652 const unsigned Elems = Muls.size();
653 SmallPtrSet<const Instruction*, 4> Paired;
654 for (unsigned i = 0; i < Elems; ++i) {
655 BinOpChain *PMul0 = static_cast<BinOpChain*>(Muls[i].get());
656 if (Paired.count(PMul0->Root))
657 continue;
659 for (unsigned j = 0; j < Elems; ++j) {
660 if (i == j)
661 continue;
663 BinOpChain *PMul1 = static_cast<BinOpChain*>(Muls[j].get());
664 if (Paired.count(PMul1->Root))
665 continue;
667 const Instruction *Mul0 = PMul0->Root;
668 const Instruction *Mul1 = PMul1->Root;
669 if (Mul0 == Mul1)
670 continue;
672 assert(PMul0 != PMul1 && "expected different chains");
674 if (CanPair(R, PMul0, PMul1)) {
675 Paired.insert(Mul0);
676 Paired.insert(Mul1);
677 break;
681 return !R.getMulPairs().empty();
685 void ARMParallelDSP::InsertParallelMACs(Reduction &R) {
687 auto CreateSMLADCall = [&](SmallVectorImpl<LoadInst*> &VecLd0,
688 SmallVectorImpl<LoadInst*> &VecLd1,
689 Value *Acc, bool Exchange,
690 Instruction *InsertAfter) {
691 // Replace the reduction chain with an intrinsic call
692 IntegerType *Ty = IntegerType::get(M->getContext(), 32);
693 LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ?
694 WideLoads[VecLd0[0]]->getLoad() : CreateWideLoad(VecLd0, Ty);
695 LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ?
696 WideLoads[VecLd1[0]]->getLoad() : CreateWideLoad(VecLd1, Ty);
698 Value* Args[] = { WideLd0, WideLd1, Acc };
699 Function *SMLAD = nullptr;
700 if (Exchange)
701 SMLAD = Acc->getType()->isIntegerTy(32) ?
702 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
703 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
704 else
705 SMLAD = Acc->getType()->isIntegerTy(32) ?
706 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
707 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
709 IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
710 ++BasicBlock::iterator(InsertAfter));
711 Instruction *Call = Builder.CreateCall(SMLAD, Args);
712 NumSMLAD++;
713 return Call;
716 Instruction *InsertAfter = R.getRoot();
717 Value *Acc = R.getAccumulator();
718 if (!Acc)
719 Acc = ConstantInt::get(IntegerType::get(M->getContext(), 32), 0);
721 LLVM_DEBUG(dbgs() << "Root: " << *InsertAfter << "\n"
722 << "Acc: " << *Acc << "\n");
723 for (auto &Pair : R.getMulPairs()) {
724 BinOpChain *PMul0 = Pair.first;
725 BinOpChain *PMul1 = Pair.second;
726 LLVM_DEBUG(dbgs() << "Muls:\n"
727 << "- " << *PMul0->Root << "\n"
728 << "- " << *PMul1->Root << "\n");
730 Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange,
731 InsertAfter);
732 InsertAfter = cast<Instruction>(Acc);
734 R.UpdateRoot(cast<Instruction>(Acc));
737 LoadInst* ARMParallelDSP::CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads,
738 IntegerType *LoadTy) {
739 assert(Loads.size() == 2 && "currently only support widening two loads");
741 LoadInst *Base = Loads[0];
742 LoadInst *Offset = Loads[1];
744 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back());
745 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back());
747 assert((BaseSExt && OffsetSExt)
748 && "Loads should have a single, extending, user");
750 std::function<void(Value*, Value*)> MoveBefore =
751 [&](Value *A, Value *B) -> void {
752 if (!isa<Instruction>(A) || !isa<Instruction>(B))
753 return;
755 auto *Source = cast<Instruction>(A);
756 auto *Sink = cast<Instruction>(B);
758 if (DT->dominates(Source, Sink) ||
759 Source->getParent() != Sink->getParent() ||
760 isa<PHINode>(Source) || isa<PHINode>(Sink))
761 return;
763 Source->moveBefore(Sink);
764 for (auto &Op : Source->operands())
765 MoveBefore(Op, Source);
768 // Insert the load at the point of the original dominating load.
769 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset;
770 IRBuilder<NoFolder> IRB(DomLoad->getParent(),
771 ++BasicBlock::iterator(DomLoad));
773 // Bitcast the pointer to a wider type and create the wide load, while making
774 // sure to maintain the original alignment as this prevents ldrd from being
775 // generated when it could be illegal due to memory alignment.
776 const unsigned AddrSpace = DomLoad->getPointerAddressSpace();
777 Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(),
778 LoadTy->getPointerTo(AddrSpace));
779 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr,
780 Base->getAlignment());
782 // Make sure everything is in the correct order in the basic block.
783 MoveBefore(Base->getPointerOperand(), VecPtr);
784 MoveBefore(VecPtr, WideLoad);
786 // From the wide load, create two values that equal the original two loads.
787 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
788 // TODO: Support big-endian as well.
789 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType());
790 BaseSExt->setOperand(0, Bottom);
792 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType());
793 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth());
794 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal);
795 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy);
796 OffsetSExt->setOperand(0, Trunc);
798 WideLoads.emplace(std::make_pair(Base,
799 make_unique<WidenedLoad>(Loads, WideLoad)));
800 return WideLoad;
803 // Compare the value lists in Other to this chain.
804 bool BinOpChain::AreSymmetrical(BinOpChain *Other) {
805 // Element-by-element comparison of Value lists returning true if they are
806 // instructions with the same opcode or constants with the same value.
807 auto CompareValueList = [](const ValueList &VL0,
808 const ValueList &VL1) {
809 if (VL0.size() != VL1.size()) {
810 LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: "
811 << VL0.size() << " != " << VL1.size() << "\n");
812 return false;
815 const unsigned Pairs = VL0.size();
817 for (unsigned i = 0; i < Pairs; ++i) {
818 const Value *V0 = VL0[i];
819 const Value *V1 = VL1[i];
820 const auto *Inst0 = dyn_cast<Instruction>(V0);
821 const auto *Inst1 = dyn_cast<Instruction>(V1);
823 if (!Inst0 || !Inst1)
824 return false;
826 if (Inst0->isSameOperationAs(Inst1))
827 continue;
829 const APInt *C0, *C1;
830 if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1))
831 return false;
834 return true;
837 return CompareValueList(LHS, Other->LHS) &&
838 CompareValueList(RHS, Other->RHS);
841 Pass *llvm::createARMParallelDSPPass() {
842 return new ARMParallelDSP();
845 char ARMParallelDSP::ID = 0;
847 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
848 "Transform loops to use DSP intrinsics", false, false)
849 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
850 "Transform loops to use DSP intrinsics", false, false)