[ARM] MVE compare vector splat combine
[llvm-complete.git] / lib / Target / Hexagon / HexagonVLIWPacketizer.cpp
blob3619e4c239d72ebe5f7f9a9f4cd06d4a83be20bb
1 //===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a simple VLIW packetizer using DFA. The packetizer works on
10 // machine basic blocks. For each instruction I in BB, the packetizer consults
11 // the DFA to see if machine resources are available to execute I. If so, the
12 // packetizer checks if I depends on any instruction J in the current packet.
13 // If no dependency is found, I is added to current packet and machine resource
14 // is marked as taken. If any dependency is found, a target API call is made to
15 // prune the dependence.
17 //===----------------------------------------------------------------------===//
19 #include "HexagonVLIWPacketizer.h"
20 #include "Hexagon.h"
21 #include "HexagonInstrInfo.h"
22 #include "HexagonRegisterInfo.h"
23 #include "HexagonSubtarget.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBundle.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCInstrDesc.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <cassert>
49 #include <cstdint>
50 #include <iterator>
52 using namespace llvm;
54 #define DEBUG_TYPE "packets"
56 static cl::opt<bool> DisablePacketizer("disable-packetizer", cl::Hidden,
57 cl::ZeroOrMore, cl::init(false),
58 cl::desc("Disable Hexagon packetizer pass"));
60 cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden,
61 cl::ZeroOrMore, cl::init(true),
62 cl::desc("Allow slot1 store and slot0 load"));
64 static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
65 cl::ZeroOrMore, cl::Hidden, cl::init(true),
66 cl::desc("Allow non-solo packetization of volatile memory references"));
68 static cl::opt<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false),
69 cl::Hidden, cl::ZeroOrMore, cl::desc("Generate all instruction with TC"));
71 static cl::opt<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores",
72 cl::init(false), cl::Hidden, cl::ZeroOrMore,
73 cl::desc("Disable vector double new-value-stores"));
75 extern cl::opt<bool> ScheduleInlineAsm;
77 namespace llvm {
79 FunctionPass *createHexagonPacketizer(bool Minimal);
80 void initializeHexagonPacketizerPass(PassRegistry&);
82 } // end namespace llvm
84 namespace {
86 class HexagonPacketizer : public MachineFunctionPass {
87 public:
88 static char ID;
90 HexagonPacketizer(bool Min = false)
91 : MachineFunctionPass(ID), Minimal(Min) {}
93 void getAnalysisUsage(AnalysisUsage &AU) const override {
94 AU.setPreservesCFG();
95 AU.addRequired<AAResultsWrapperPass>();
96 AU.addRequired<MachineBranchProbabilityInfo>();
97 AU.addRequired<MachineDominatorTree>();
98 AU.addRequired<MachineLoopInfo>();
99 AU.addPreserved<MachineDominatorTree>();
100 AU.addPreserved<MachineLoopInfo>();
101 MachineFunctionPass::getAnalysisUsage(AU);
104 StringRef getPassName() const override { return "Hexagon Packetizer"; }
105 bool runOnMachineFunction(MachineFunction &Fn) override;
107 MachineFunctionProperties getRequiredProperties() const override {
108 return MachineFunctionProperties().set(
109 MachineFunctionProperties::Property::NoVRegs);
112 private:
113 const HexagonInstrInfo *HII;
114 const HexagonRegisterInfo *HRI;
115 const bool Minimal;
118 } // end anonymous namespace
120 char HexagonPacketizer::ID = 0;
122 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer",
123 "Hexagon Packetizer", false, false)
124 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
125 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
126 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
127 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
128 INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer",
129 "Hexagon Packetizer", false, false)
131 HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF,
132 MachineLoopInfo &MLI, AliasAnalysis *AA,
133 const MachineBranchProbabilityInfo *MBPI, bool Minimal)
134 : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI),
135 Minimal(Minimal) {
136 HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
137 HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
139 addMutation(llvm::make_unique<HexagonSubtarget::UsrOverflowMutation>());
140 addMutation(llvm::make_unique<HexagonSubtarget::HVXMemLatencyMutation>());
141 addMutation(llvm::make_unique<HexagonSubtarget::BankConflictMutation>());
144 // Check if FirstI modifies a register that SecondI reads.
145 static bool hasWriteToReadDep(const MachineInstr &FirstI,
146 const MachineInstr &SecondI,
147 const TargetRegisterInfo *TRI) {
148 for (auto &MO : FirstI.operands()) {
149 if (!MO.isReg() || !MO.isDef())
150 continue;
151 unsigned R = MO.getReg();
152 if (SecondI.readsRegister(R, TRI))
153 return true;
155 return false;
159 static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI,
160 MachineBasicBlock::iterator BundleIt, bool Before) {
161 MachineBasicBlock::instr_iterator InsertPt;
162 if (Before)
163 InsertPt = BundleIt.getInstrIterator();
164 else
165 InsertPt = std::next(BundleIt).getInstrIterator();
167 MachineBasicBlock &B = *MI.getParent();
168 // The instruction should at least be bundled with the preceding instruction
169 // (there will always be one, i.e. BUNDLE, if nothing else).
170 assert(MI.isBundledWithPred());
171 if (MI.isBundledWithSucc()) {
172 MI.clearFlag(MachineInstr::BundledSucc);
173 MI.clearFlag(MachineInstr::BundledPred);
174 } else {
175 // If it's not bundled with the successor (i.e. it is the last one
176 // in the bundle), then we can simply unbundle it from the predecessor,
177 // which will take care of updating the predecessor's flag.
178 MI.unbundleFromPred();
180 B.splice(InsertPt, &B, MI.getIterator());
182 // Get the size of the bundle without asserting.
183 MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator();
184 MachineBasicBlock::const_instr_iterator E = B.instr_end();
185 unsigned Size = 0;
186 for (++I; I != E && I->isBundledWithPred(); ++I)
187 ++Size;
189 // If there are still two or more instructions, then there is nothing
190 // else to be done.
191 if (Size > 1)
192 return BundleIt;
194 // Otherwise, extract the single instruction out and delete the bundle.
195 MachineBasicBlock::iterator NextIt = std::next(BundleIt);
196 MachineInstr &SingleI = *BundleIt->getNextNode();
197 SingleI.unbundleFromPred();
198 assert(!SingleI.isBundledWithSucc());
199 BundleIt->eraseFromParent();
200 return NextIt;
203 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) {
204 auto &HST = MF.getSubtarget<HexagonSubtarget>();
205 HII = HST.getInstrInfo();
206 HRI = HST.getRegisterInfo();
207 auto &MLI = getAnalysis<MachineLoopInfo>();
208 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
209 auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
211 if (EnableGenAllInsnClass)
212 HII->genAllInsnTimingClasses(MF);
214 // Instantiate the packetizer.
215 bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() ||
216 skipFunction(MF.getFunction());
217 HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly);
219 // DFA state table should not be empty.
220 assert(Packetizer.getResourceTracker() && "Empty DFA table!");
222 // Loop over all basic blocks and remove KILL pseudo-instructions
223 // These instructions confuse the dependence analysis. Consider:
224 // D0 = ... (Insn 0)
225 // R0 = KILL R0, D0 (Insn 1)
226 // R0 = ... (Insn 2)
227 // Here, Insn 1 will result in the dependence graph not emitting an output
228 // dependence between Insn 0 and Insn 2. This can lead to incorrect
229 // packetization
230 for (MachineBasicBlock &MB : MF) {
231 auto End = MB.end();
232 auto MI = MB.begin();
233 while (MI != End) {
234 auto NextI = std::next(MI);
235 if (MI->isKill()) {
236 MB.erase(MI);
237 End = MB.end();
239 MI = NextI;
243 // Loop over all of the basic blocks.
244 for (auto &MB : MF) {
245 auto Begin = MB.begin(), End = MB.end();
246 while (Begin != End) {
247 // Find the first non-boundary starting from the end of the last
248 // scheduling region.
249 MachineBasicBlock::iterator RB = Begin;
250 while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF))
251 ++RB;
252 // Find the first boundary starting from the beginning of the new
253 // region.
254 MachineBasicBlock::iterator RE = RB;
255 while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF))
256 ++RE;
257 // Add the scheduling boundary if it's not block end.
258 if (RE != End)
259 ++RE;
260 // If RB == End, then RE == End.
261 if (RB != End)
262 Packetizer.PacketizeMIs(&MB, RB, RE);
264 Begin = RE;
268 Packetizer.unpacketizeSoloInstrs(MF);
269 return true;
272 // Reserve resources for a constant extender. Trigger an assertion if the
273 // reservation fails.
274 void HexagonPacketizerList::reserveResourcesForConstExt() {
275 if (!tryAllocateResourcesForConstExt(true))
276 llvm_unreachable("Resources not available");
279 bool HexagonPacketizerList::canReserveResourcesForConstExt() {
280 return tryAllocateResourcesForConstExt(false);
283 // Allocate resources (i.e. 4 bytes) for constant extender. If succeeded,
284 // return true, otherwise, return false.
285 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) {
286 auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc());
287 bool Avail = ResourceTracker->canReserveResources(*ExtMI);
288 if (Reserve && Avail)
289 ResourceTracker->reserveResources(*ExtMI);
290 MF.DeleteMachineInstr(ExtMI);
291 return Avail;
294 bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI,
295 SDep::Kind DepType, unsigned DepReg) {
296 // Check for LR dependence.
297 if (DepReg == HRI->getRARegister())
298 return true;
300 if (HII->isDeallocRet(MI))
301 if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister())
302 return true;
304 // Call-like instructions can be packetized with preceding instructions
305 // that define registers implicitly used or modified by the call. Explicit
306 // uses are still prohibited, as in the case of indirect calls:
307 // r0 = ...
308 // J2_jumpr r0
309 if (DepType == SDep::Data) {
310 for (const MachineOperand MO : MI.operands())
311 if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit())
312 return true;
315 return false;
318 static bool isRegDependence(const SDep::Kind DepType) {
319 return DepType == SDep::Data || DepType == SDep::Anti ||
320 DepType == SDep::Output;
323 static bool isDirectJump(const MachineInstr &MI) {
324 return MI.getOpcode() == Hexagon::J2_jump;
327 static bool isSchedBarrier(const MachineInstr &MI) {
328 switch (MI.getOpcode()) {
329 case Hexagon::Y2_barrier:
330 return true;
332 return false;
335 static bool isControlFlow(const MachineInstr &MI) {
336 return MI.getDesc().isTerminator() || MI.getDesc().isCall();
339 /// Returns true if the instruction modifies a callee-saved register.
340 static bool doesModifyCalleeSavedReg(const MachineInstr &MI,
341 const TargetRegisterInfo *TRI) {
342 const MachineFunction &MF = *MI.getParent()->getParent();
343 for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
344 if (MI.modifiesRegister(*CSR, TRI))
345 return true;
346 return false;
349 // Returns true if an instruction can be promoted to .new predicate or
350 // new-value store.
351 bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI,
352 const TargetRegisterClass *NewRC) {
353 // Vector stores can be predicated, and can be new-value stores, but
354 // they cannot be predicated on a .new predicate value.
355 if (NewRC == &Hexagon::PredRegsRegClass) {
356 if (HII->isHVXVec(MI) && MI.mayStore())
357 return false;
358 return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0;
360 // If the class is not PredRegs, it could only apply to new-value stores.
361 return HII->mayBeNewStore(MI);
364 // Promote an instructiont to its .cur form.
365 // At this time, we have already made a call to canPromoteToDotCur and made
366 // sure that it can *indeed* be promoted.
367 bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI,
368 SDep::Kind DepType, MachineBasicBlock::iterator &MII,
369 const TargetRegisterClass* RC) {
370 assert(DepType == SDep::Data);
371 int CurOpcode = HII->getDotCurOp(MI);
372 MI.setDesc(HII->get(CurOpcode));
373 return true;
376 void HexagonPacketizerList::cleanUpDotCur() {
377 MachineInstr *MI = nullptr;
378 for (auto BI : CurrentPacketMIs) {
379 LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump(););
380 if (HII->isDotCurInst(*BI)) {
381 MI = BI;
382 continue;
384 if (MI) {
385 for (auto &MO : BI->operands())
386 if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg())
387 return;
390 if (!MI)
391 return;
392 // We did not find a use of the CUR, so de-cur it.
393 MI->setDesc(HII->get(HII->getNonDotCurOp(*MI)));
394 LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump(););
397 // Check to see if an instruction can be dot cur.
398 bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI,
399 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
400 const TargetRegisterClass *RC) {
401 if (!HII->isHVXVec(MI))
402 return false;
403 if (!HII->isHVXVec(*MII))
404 return false;
406 // Already a dot new instruction.
407 if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI))
408 return false;
410 if (!HII->mayBeCurLoad(MI))
411 return false;
413 // The "cur value" cannot come from inline asm.
414 if (PacketSU->getInstr()->isInlineAsm())
415 return false;
417 // Make sure candidate instruction uses cur.
418 LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump();
419 dbgs() << "in packet\n";);
420 MachineInstr &MJ = *MII;
421 LLVM_DEBUG({
422 dbgs() << "Checking CUR against ";
423 MJ.dump();
425 unsigned DestReg = MI.getOperand(0).getReg();
426 bool FoundMatch = false;
427 for (auto &MO : MJ.operands())
428 if (MO.isReg() && MO.getReg() == DestReg)
429 FoundMatch = true;
430 if (!FoundMatch)
431 return false;
433 // Check for existing uses of a vector register within the packet which
434 // would be affected by converting a vector load into .cur formt.
435 for (auto BI : CurrentPacketMIs) {
436 LLVM_DEBUG(dbgs() << "packet has "; BI->dump(););
437 if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo()))
438 return false;
441 LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump(););
442 // We can convert the opcode into a .cur.
443 return true;
446 // Promote an instruction to its .new form. At this time, we have already
447 // made a call to canPromoteToDotNew and made sure that it can *indeed* be
448 // promoted.
449 bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI,
450 SDep::Kind DepType, MachineBasicBlock::iterator &MII,
451 const TargetRegisterClass* RC) {
452 assert(DepType == SDep::Data);
453 int NewOpcode;
454 if (RC == &Hexagon::PredRegsRegClass)
455 NewOpcode = HII->getDotNewPredOp(MI, MBPI);
456 else
457 NewOpcode = HII->getDotNewOp(MI);
458 MI.setDesc(HII->get(NewOpcode));
459 return true;
462 bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) {
463 int NewOpcode = HII->getDotOldOp(MI);
464 MI.setDesc(HII->get(NewOpcode));
465 return true;
468 bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) {
469 unsigned Opc = MI.getOpcode();
470 switch (Opc) {
471 case Hexagon::S2_storerd_io:
472 case Hexagon::S2_storeri_io:
473 case Hexagon::S2_storerh_io:
474 case Hexagon::S2_storerb_io:
475 break;
476 default:
477 llvm_unreachable("Unexpected instruction");
479 unsigned FrameSize = MF.getFrameInfo().getStackSize();
480 MachineOperand &Off = MI.getOperand(1);
481 int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE);
482 if (HII->isValidOffset(Opc, NewOff, HRI)) {
483 Off.setImm(NewOff);
484 return true;
486 return false;
489 void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) {
490 unsigned Opc = MI.getOpcode();
491 switch (Opc) {
492 case Hexagon::S2_storerd_io:
493 case Hexagon::S2_storeri_io:
494 case Hexagon::S2_storerh_io:
495 case Hexagon::S2_storerb_io:
496 break;
497 default:
498 llvm_unreachable("Unexpected instruction");
500 unsigned FrameSize = MF.getFrameInfo().getStackSize();
501 MachineOperand &Off = MI.getOperand(1);
502 Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE);
505 /// Return true if we can update the offset in MI so that MI and MJ
506 /// can be packetized together.
507 bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) {
508 assert(SUI->getInstr() && SUJ->getInstr());
509 MachineInstr &MI = *SUI->getInstr();
510 MachineInstr &MJ = *SUJ->getInstr();
512 unsigned BPI, OPI;
513 if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI))
514 return false;
515 unsigned BPJ, OPJ;
516 if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ))
517 return false;
518 unsigned Reg = MI.getOperand(BPI).getReg();
519 if (Reg != MJ.getOperand(BPJ).getReg())
520 return false;
521 // Make sure that the dependences do not restrict adding MI to the packet.
522 // That is, ignore anti dependences, and make sure the only data dependence
523 // involves the specific register.
524 for (const auto &PI : SUI->Preds)
525 if (PI.getKind() != SDep::Anti &&
526 (PI.getKind() != SDep::Data || PI.getReg() != Reg))
527 return false;
528 int Incr;
529 if (!HII->getIncrementValue(MJ, Incr))
530 return false;
532 int64_t Offset = MI.getOperand(OPI).getImm();
533 if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI))
534 return false;
536 MI.getOperand(OPI).setImm(Offset + Incr);
537 ChangedOffset = Offset;
538 return true;
541 /// Undo the changed offset. This is needed if the instruction cannot be
542 /// added to the current packet due to a different instruction.
543 void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) {
544 unsigned BP, OP;
545 if (!HII->getBaseAndOffsetPosition(MI, BP, OP))
546 llvm_unreachable("Unable to find base and offset operands.");
547 MI.getOperand(OP).setImm(ChangedOffset);
550 enum PredicateKind {
551 PK_False,
552 PK_True,
553 PK_Unknown
556 /// Returns true if an instruction is predicated on p0 and false if it's
557 /// predicated on !p0.
558 static PredicateKind getPredicateSense(const MachineInstr &MI,
559 const HexagonInstrInfo *HII) {
560 if (!HII->isPredicated(MI))
561 return PK_Unknown;
562 if (HII->isPredicatedTrue(MI))
563 return PK_True;
564 return PK_False;
567 static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI,
568 const HexagonInstrInfo *HII) {
569 assert(HII->isPostIncrement(MI) && "Not a post increment operation.");
570 #ifndef NDEBUG
571 // Post Increment means duplicates. Use dense map to find duplicates in the
572 // list. Caution: Densemap initializes with the minimum of 64 buckets,
573 // whereas there are at most 5 operands in the post increment.
574 DenseSet<unsigned> DefRegsSet;
575 for (auto &MO : MI.operands())
576 if (MO.isReg() && MO.isDef())
577 DefRegsSet.insert(MO.getReg());
579 for (auto &MO : MI.operands())
580 if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg()))
581 return MO;
582 #else
583 if (MI.mayLoad()) {
584 const MachineOperand &Op1 = MI.getOperand(1);
585 // The 2nd operand is always the post increment operand in load.
586 assert(Op1.isReg() && "Post increment operand has be to a register.");
587 return Op1;
589 if (MI.getDesc().mayStore()) {
590 const MachineOperand &Op0 = MI.getOperand(0);
591 // The 1st operand is always the post increment operand in store.
592 assert(Op0.isReg() && "Post increment operand has be to a register.");
593 return Op0;
595 #endif
596 // we should never come here.
597 llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
600 // Get the value being stored.
601 static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) {
602 // value being stored is always the last operand.
603 return MI.getOperand(MI.getNumOperands()-1);
606 static bool isLoadAbsSet(const MachineInstr &MI) {
607 unsigned Opc = MI.getOpcode();
608 switch (Opc) {
609 case Hexagon::L4_loadrd_ap:
610 case Hexagon::L4_loadrb_ap:
611 case Hexagon::L4_loadrh_ap:
612 case Hexagon::L4_loadrub_ap:
613 case Hexagon::L4_loadruh_ap:
614 case Hexagon::L4_loadri_ap:
615 return true;
617 return false;
620 static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) {
621 assert(isLoadAbsSet(MI));
622 return MI.getOperand(1);
625 // Can be new value store?
626 // Following restrictions are to be respected in convert a store into
627 // a new value store.
628 // 1. If an instruction uses auto-increment, its address register cannot
629 // be a new-value register. Arch Spec 5.4.2.1
630 // 2. If an instruction uses absolute-set addressing mode, its address
631 // register cannot be a new-value register. Arch Spec 5.4.2.1.
632 // 3. If an instruction produces a 64-bit result, its registers cannot be used
633 // as new-value registers. Arch Spec 5.4.2.2.
634 // 4. If the instruction that sets the new-value register is conditional, then
635 // the instruction that uses the new-value register must also be conditional,
636 // and both must always have their predicates evaluate identically.
637 // Arch Spec 5.4.2.3.
638 // 5. There is an implied restriction that a packet cannot have another store,
639 // if there is a new value store in the packet. Corollary: if there is
640 // already a store in a packet, there can not be a new value store.
641 // Arch Spec: 3.4.4.2
642 bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI,
643 const MachineInstr &PacketMI, unsigned DepReg) {
644 // Make sure we are looking at the store, that can be promoted.
645 if (!HII->mayBeNewStore(MI))
646 return false;
648 // Make sure there is dependency and can be new value'd.
649 const MachineOperand &Val = getStoreValueOperand(MI);
650 if (Val.isReg() && Val.getReg() != DepReg)
651 return false;
653 const MCInstrDesc& MCID = PacketMI.getDesc();
655 // First operand is always the result.
656 const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF);
657 // Double regs can not feed into new value store: PRM section: 5.4.2.2.
658 if (PacketRC == &Hexagon::DoubleRegsRegClass)
659 return false;
661 // New-value stores are of class NV (slot 0), dual stores require class ST
662 // in slot 0 (PRM 5.5).
663 for (auto I : CurrentPacketMIs) {
664 SUnit *PacketSU = MIToSUnit.find(I)->second;
665 if (PacketSU->getInstr()->mayStore())
666 return false;
669 // Make sure it's NOT the post increment register that we are going to
670 // new value.
671 if (HII->isPostIncrement(MI) &&
672 getPostIncrementOperand(MI, HII).getReg() == DepReg) {
673 return false;
676 if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() &&
677 getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) {
678 // If source is post_inc, or absolute-set addressing, it can not feed
679 // into new value store
680 // r3 = memw(r2++#4)
681 // memw(r30 + #-1404) = r2.new -> can not be new value store
682 // arch spec section: 5.4.2.1.
683 return false;
686 if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg)
687 return false;
689 // If the source that feeds the store is predicated, new value store must
690 // also be predicated.
691 if (HII->isPredicated(PacketMI)) {
692 if (!HII->isPredicated(MI))
693 return false;
695 // Check to make sure that they both will have their predicates
696 // evaluate identically.
697 unsigned predRegNumSrc = 0;
698 unsigned predRegNumDst = 0;
699 const TargetRegisterClass* predRegClass = nullptr;
701 // Get predicate register used in the source instruction.
702 for (auto &MO : PacketMI.operands()) {
703 if (!MO.isReg())
704 continue;
705 predRegNumSrc = MO.getReg();
706 predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc);
707 if (predRegClass == &Hexagon::PredRegsRegClass)
708 break;
710 assert((predRegClass == &Hexagon::PredRegsRegClass) &&
711 "predicate register not found in a predicated PacketMI instruction");
713 // Get predicate register used in new-value store instruction.
714 for (auto &MO : MI.operands()) {
715 if (!MO.isReg())
716 continue;
717 predRegNumDst = MO.getReg();
718 predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst);
719 if (predRegClass == &Hexagon::PredRegsRegClass)
720 break;
722 assert((predRegClass == &Hexagon::PredRegsRegClass) &&
723 "predicate register not found in a predicated MI instruction");
725 // New-value register producer and user (store) need to satisfy these
726 // constraints:
727 // 1) Both instructions should be predicated on the same register.
728 // 2) If producer of the new-value register is .new predicated then store
729 // should also be .new predicated and if producer is not .new predicated
730 // then store should not be .new predicated.
731 // 3) Both new-value register producer and user should have same predicate
732 // sense, i.e, either both should be negated or both should be non-negated.
733 if (predRegNumDst != predRegNumSrc ||
734 HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) ||
735 getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII))
736 return false;
739 // Make sure that other than the new-value register no other store instruction
740 // register has been modified in the same packet. Predicate registers can be
741 // modified by they should not be modified between the producer and the store
742 // instruction as it will make them both conditional on different values.
743 // We already know this to be true for all the instructions before and
744 // including PacketMI. Howerver, we need to perform the check for the
745 // remaining instructions in the packet.
747 unsigned StartCheck = 0;
749 for (auto I : CurrentPacketMIs) {
750 SUnit *TempSU = MIToSUnit.find(I)->second;
751 MachineInstr &TempMI = *TempSU->getInstr();
753 // Following condition is true for all the instructions until PacketMI is
754 // reached (StartCheck is set to 0 before the for loop).
755 // StartCheck flag is 1 for all the instructions after PacketMI.
756 if (&TempMI != &PacketMI && !StartCheck) // Start processing only after
757 continue; // encountering PacketMI.
759 StartCheck = 1;
760 if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence.
761 continue;
763 for (auto &MO : MI.operands())
764 if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI))
765 return false;
768 // Make sure that for non-POST_INC stores:
769 // 1. The only use of reg is DepReg and no other registers.
770 // This handles base+index registers.
771 // The following store can not be dot new.
772 // Eg. r0 = add(r0, #3)
773 // memw(r1+r0<<#2) = r0
774 if (!HII->isPostIncrement(MI)) {
775 for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) {
776 const MachineOperand &MO = MI.getOperand(opNum);
777 if (MO.isReg() && MO.getReg() == DepReg)
778 return false;
782 // If data definition is because of implicit definition of the register,
783 // do not newify the store. Eg.
784 // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12
785 // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343]
786 for (auto &MO : PacketMI.operands()) {
787 if (MO.isRegMask() && MO.clobbersPhysReg(DepReg))
788 return false;
789 if (!MO.isReg() || !MO.isDef() || !MO.isImplicit())
790 continue;
791 unsigned R = MO.getReg();
792 if (R == DepReg || HRI->isSuperRegister(DepReg, R))
793 return false;
796 // Handle imp-use of super reg case. There is a target independent side
797 // change that should prevent this situation but I am handling it for
798 // just-in-case. For example, we cannot newify R2 in the following case:
799 // %r3 = A2_tfrsi 0;
800 // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1;
801 for (auto &MO : MI.operands()) {
802 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg)
803 return false;
806 // Can be dot new store.
807 return true;
810 // Can this MI to promoted to either new value store or new value jump.
811 bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI,
812 const SUnit *PacketSU, unsigned DepReg,
813 MachineBasicBlock::iterator &MII) {
814 if (!HII->mayBeNewStore(MI))
815 return false;
817 // Check to see the store can be new value'ed.
818 MachineInstr &PacketMI = *PacketSU->getInstr();
819 if (canPromoteToNewValueStore(MI, PacketMI, DepReg))
820 return true;
822 // Check to see the compare/jump can be new value'ed.
823 // This is done as a pass on its own. Don't need to check it here.
824 return false;
827 static bool isImplicitDependency(const MachineInstr &I, bool CheckDef,
828 unsigned DepReg) {
829 for (auto &MO : I.operands()) {
830 if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg))
831 return true;
832 if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit())
833 continue;
834 if (CheckDef == MO.isDef())
835 return true;
837 return false;
840 // Check to see if an instruction can be dot new.
841 bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI,
842 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
843 const TargetRegisterClass* RC) {
844 // Already a dot new instruction.
845 if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI))
846 return false;
848 if (!isNewifiable(MI, RC))
849 return false;
851 const MachineInstr &PI = *PacketSU->getInstr();
853 // The "new value" cannot come from inline asm.
854 if (PI.isInlineAsm())
855 return false;
857 // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no
858 // sense.
859 if (PI.isImplicitDef())
860 return false;
862 // If dependency is trough an implicitly defined register, we should not
863 // newify the use.
864 if (isImplicitDependency(PI, true, DepReg) ||
865 isImplicitDependency(MI, false, DepReg))
866 return false;
868 const MCInstrDesc& MCID = PI.getDesc();
869 const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF);
870 if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass)
871 return false;
873 // predicate .new
874 if (RC == &Hexagon::PredRegsRegClass)
875 return HII->predCanBeUsedAsDotNew(PI, DepReg);
877 if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI))
878 return false;
880 // Create a dot new machine instruction to see if resources can be
881 // allocated. If not, bail out now.
882 int NewOpcode = HII->getDotNewOp(MI);
883 const MCInstrDesc &D = HII->get(NewOpcode);
884 MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc());
885 bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI);
886 MF.DeleteMachineInstr(NewMI);
887 if (!ResourcesAvailable)
888 return false;
890 // New Value Store only. New Value Jump generated as a separate pass.
891 if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII))
892 return false;
894 return true;
897 // Go through the packet instructions and search for an anti dependency between
898 // them and DepReg from MI. Consider this case:
899 // Trying to add
900 // a) %r1 = TFRI_cdNotPt %p3, 2
901 // to this packet:
902 // {
903 // b) %p0 = C2_or killed %p3, killed %p0
904 // c) %p3 = C2_tfrrp %r23
905 // d) %r1 = C2_cmovenewit %p3, 4
906 // }
907 // The P3 from a) and d) will be complements after
908 // a)'s P3 is converted to .new form
909 // Anti-dep between c) and b) is irrelevant for this case
910 bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI,
911 unsigned DepReg) {
912 SUnit *PacketSUDep = MIToSUnit.find(&MI)->second;
914 for (auto I : CurrentPacketMIs) {
915 // We only care for dependencies to predicated instructions
916 if (!HII->isPredicated(*I))
917 continue;
919 // Scheduling Unit for current insn in the packet
920 SUnit *PacketSU = MIToSUnit.find(I)->second;
922 // Look at dependencies between current members of the packet and
923 // predicate defining instruction MI. Make sure that dependency is
924 // on the exact register we care about.
925 if (PacketSU->isSucc(PacketSUDep)) {
926 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
927 auto &Dep = PacketSU->Succs[i];
928 if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti &&
929 Dep.getReg() == DepReg)
930 return true;
935 return false;
938 /// Gets the predicate register of a predicated instruction.
939 static unsigned getPredicatedRegister(MachineInstr &MI,
940 const HexagonInstrInfo *QII) {
941 /// We use the following rule: The first predicate register that is a use is
942 /// the predicate register of a predicated instruction.
943 assert(QII->isPredicated(MI) && "Must be predicated instruction");
945 for (auto &Op : MI.operands()) {
946 if (Op.isReg() && Op.getReg() && Op.isUse() &&
947 Hexagon::PredRegsRegClass.contains(Op.getReg()))
948 return Op.getReg();
951 llvm_unreachable("Unknown instruction operand layout");
952 return 0;
955 // Given two predicated instructions, this function detects whether
956 // the predicates are complements.
957 bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1,
958 MachineInstr &MI2) {
959 // If we don't know the predicate sense of the instructions bail out early, we
960 // need it later.
961 if (getPredicateSense(MI1, HII) == PK_Unknown ||
962 getPredicateSense(MI2, HII) == PK_Unknown)
963 return false;
965 // Scheduling unit for candidate.
966 SUnit *SU = MIToSUnit[&MI1];
968 // One corner case deals with the following scenario:
969 // Trying to add
970 // a) %r24 = A2_tfrt %p0, %r25
971 // to this packet:
972 // {
973 // b) %r25 = A2_tfrf %p0, %r24
974 // c) %p0 = C2_cmpeqi %r26, 1
975 // }
977 // On general check a) and b) are complements, but presence of c) will
978 // convert a) to .new form, and then it is not a complement.
979 // We attempt to detect it by analyzing existing dependencies in the packet.
981 // Analyze relationships between all existing members of the packet.
982 // Look for Anti dependecy on the same predicate reg as used in the
983 // candidate.
984 for (auto I : CurrentPacketMIs) {
985 // Scheduling Unit for current insn in the packet.
986 SUnit *PacketSU = MIToSUnit.find(I)->second;
988 // If this instruction in the packet is succeeded by the candidate...
989 if (PacketSU->isSucc(SU)) {
990 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
991 auto Dep = PacketSU->Succs[i];
992 // The corner case exist when there is true data dependency between
993 // candidate and one of current packet members, this dep is on
994 // predicate reg, and there already exist anti dep on the same pred in
995 // the packet.
996 if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data &&
997 Hexagon::PredRegsRegClass.contains(Dep.getReg())) {
998 // Here I know that I is predicate setting instruction with true
999 // data dep to candidate on the register we care about - c) in the
1000 // above example. Now I need to see if there is an anti dependency
1001 // from c) to any other instruction in the same packet on the pred
1002 // reg of interest.
1003 if (restrictingDepExistInPacket(*I, Dep.getReg()))
1004 return false;
1010 // If the above case does not apply, check regular complement condition.
1011 // Check that the predicate register is the same and that the predicate
1012 // sense is different We also need to differentiate .old vs. .new: !p0
1013 // is not complementary to p0.new.
1014 unsigned PReg1 = getPredicatedRegister(MI1, HII);
1015 unsigned PReg2 = getPredicatedRegister(MI2, HII);
1016 return PReg1 == PReg2 &&
1017 Hexagon::PredRegsRegClass.contains(PReg1) &&
1018 Hexagon::PredRegsRegClass.contains(PReg2) &&
1019 getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) &&
1020 HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2);
1023 // Initialize packetizer flags.
1024 void HexagonPacketizerList::initPacketizerState() {
1025 Dependence = false;
1026 PromotedToDotNew = false;
1027 GlueToNewValueJump = false;
1028 GlueAllocframeStore = false;
1029 FoundSequentialDependence = false;
1030 ChangedOffset = INT64_MAX;
1033 // Ignore bundling of pseudo instructions.
1034 bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI,
1035 const MachineBasicBlock *) {
1036 if (MI.isDebugInstr())
1037 return true;
1039 if (MI.isCFIInstruction())
1040 return false;
1042 // We must print out inline assembly.
1043 if (MI.isInlineAsm())
1044 return false;
1046 if (MI.isImplicitDef())
1047 return false;
1049 // We check if MI has any functional units mapped to it. If it doesn't,
1050 // we ignore the instruction.
1051 const MCInstrDesc& TID = MI.getDesc();
1052 auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass());
1053 unsigned FuncUnits = IS->getUnits();
1054 return !FuncUnits;
1057 bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) {
1058 // Ensure any bundles created by gather packetize remain seperate.
1059 if (MI.isBundle())
1060 return true;
1062 if (MI.isEHLabel() || MI.isCFIInstruction())
1063 return true;
1065 // Consider inline asm to not be a solo instruction by default.
1066 // Inline asm will be put in a packet temporarily, but then it will be
1067 // removed, and placed outside of the packet (before or after, depending
1068 // on dependencies). This is to reduce the impact of inline asm as a
1069 // "packet splitting" instruction.
1070 if (MI.isInlineAsm() && !ScheduleInlineAsm)
1071 return true;
1073 if (isSchedBarrier(MI))
1074 return true;
1076 if (HII->isSolo(MI))
1077 return true;
1079 if (MI.getOpcode() == Hexagon::A2_nop)
1080 return true;
1082 return false;
1085 // Quick check if instructions MI and MJ cannot coexist in the same packet.
1086 // Limit the tests to be "one-way", e.g. "if MI->isBranch and MJ->isInlineAsm",
1087 // but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm".
1088 // For full test call this function twice:
1089 // cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI)
1090 // Doing the test only one way saves the amount of code in this function,
1091 // since every test would need to be repeated with the MI and MJ reversed.
1092 static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ,
1093 const HexagonInstrInfo &HII) {
1094 const MachineFunction *MF = MI.getParent()->getParent();
1095 if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() &&
1096 HII.isHVXMemWithAIndirect(MI, MJ))
1097 return true;
1099 // An inline asm cannot be together with a branch, because we may not be
1100 // able to remove the asm out after packetizing (i.e. if the asm must be
1101 // moved past the bundle). Similarly, two asms cannot be together to avoid
1102 // complications when determining their relative order outside of a bundle.
1103 if (MI.isInlineAsm())
1104 return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() ||
1105 MJ.isCall() || MJ.isTerminator();
1107 // New-value stores cannot coexist with any other stores.
1108 if (HII.isNewValueStore(MI) && MJ.mayStore())
1109 return true;
1111 switch (MI.getOpcode()) {
1112 case Hexagon::S2_storew_locked:
1113 case Hexagon::S4_stored_locked:
1114 case Hexagon::L2_loadw_locked:
1115 case Hexagon::L4_loadd_locked:
1116 case Hexagon::Y2_dccleana:
1117 case Hexagon::Y2_dccleaninva:
1118 case Hexagon::Y2_dcinva:
1119 case Hexagon::Y2_dczeroa:
1120 case Hexagon::Y4_l2fetch:
1121 case Hexagon::Y5_l2fetch: {
1122 // These instructions can only be grouped with ALU32 or non-floating-point
1123 // XTYPE instructions. Since there is no convenient way of identifying fp
1124 // XTYPE instructions, only allow grouping with ALU32 for now.
1125 unsigned TJ = HII.getType(MJ);
1126 if (TJ != HexagonII::TypeALU32_2op &&
1127 TJ != HexagonII::TypeALU32_3op &&
1128 TJ != HexagonII::TypeALU32_ADDI)
1129 return true;
1130 break;
1132 default:
1133 break;
1136 // "False" really means that the quick check failed to determine if
1137 // I and J cannot coexist.
1138 return false;
1141 // Full, symmetric check.
1142 bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI,
1143 const MachineInstr &MJ) {
1144 return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII);
1147 void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) {
1148 for (auto &B : MF) {
1149 MachineBasicBlock::iterator BundleIt;
1150 MachineBasicBlock::instr_iterator NextI;
1151 for (auto I = B.instr_begin(), E = B.instr_end(); I != E; I = NextI) {
1152 NextI = std::next(I);
1153 MachineInstr &MI = *I;
1154 if (MI.isBundle())
1155 BundleIt = I;
1156 if (!MI.isInsideBundle())
1157 continue;
1159 // Decide on where to insert the instruction that we are pulling out.
1160 // Debug instructions always go before the bundle, but the placement of
1161 // INLINE_ASM depends on potential dependencies. By default, try to
1162 // put it before the bundle, but if the asm writes to a register that
1163 // other instructions in the bundle read, then we need to place it
1164 // after the bundle (to preserve the bundle semantics).
1165 bool InsertBeforeBundle;
1166 if (MI.isInlineAsm())
1167 InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI);
1168 else if (MI.isDebugValue())
1169 InsertBeforeBundle = true;
1170 else
1171 continue;
1173 BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle);
1178 // Check if a given instruction is of class "system".
1179 static bool isSystemInstr(const MachineInstr &MI) {
1180 unsigned Opc = MI.getOpcode();
1181 switch (Opc) {
1182 case Hexagon::Y2_barrier:
1183 case Hexagon::Y2_dcfetchbo:
1184 case Hexagon::Y4_l2fetch:
1185 case Hexagon::Y5_l2fetch:
1186 return true;
1188 return false;
1191 bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I,
1192 const MachineInstr &J) {
1193 // The dependence graph may not include edges between dead definitions,
1194 // so without extra checks, we could end up packetizing two instruction
1195 // defining the same (dead) register.
1196 if (I.isCall() || J.isCall())
1197 return false;
1198 if (HII->isPredicated(I) || HII->isPredicated(J))
1199 return false;
1201 BitVector DeadDefs(Hexagon::NUM_TARGET_REGS);
1202 for (auto &MO : I.operands()) {
1203 if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1204 continue;
1205 DeadDefs[MO.getReg()] = true;
1208 for (auto &MO : J.operands()) {
1209 if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1210 continue;
1211 unsigned R = MO.getReg();
1212 if (R != Hexagon::USR_OVF && DeadDefs[R])
1213 return true;
1215 return false;
1218 bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I,
1219 const MachineInstr &J) {
1220 // A save callee-save register function call can only be in a packet
1221 // with instructions that don't write to the callee-save registers.
1222 if ((HII->isSaveCalleeSavedRegsCall(I) &&
1223 doesModifyCalleeSavedReg(J, HRI)) ||
1224 (HII->isSaveCalleeSavedRegsCall(J) &&
1225 doesModifyCalleeSavedReg(I, HRI)))
1226 return true;
1228 // Two control flow instructions cannot go in the same packet.
1229 if (isControlFlow(I) && isControlFlow(J))
1230 return true;
1232 // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot
1233 // contain a speculative indirect jump,
1234 // a new-value compare jump or a dealloc_return.
1235 auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool {
1236 if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI))
1237 return true;
1238 if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI))
1239 return true;
1240 return false;
1243 if (HII->isLoopN(I) && isBadForLoopN(J))
1244 return true;
1245 if (HII->isLoopN(J) && isBadForLoopN(I))
1246 return true;
1248 // dealloc_return cannot appear in the same packet as a conditional or
1249 // unconditional jump.
1250 return HII->isDeallocRet(I) &&
1251 (J.isBranch() || J.isCall() || J.isBarrier());
1254 bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I,
1255 const MachineInstr &J) {
1256 // Adding I to a packet that has J.
1258 // Regmasks are not reflected in the scheduling dependency graph, so
1259 // we need to check them manually. This code assumes that regmasks only
1260 // occur on calls, and the problematic case is when we add an instruction
1261 // defining a register R to a packet that has a call that clobbers R via
1262 // a regmask. Those cannot be packetized together, because the call will
1263 // be executed last. That's also a reson why it is ok to add a call
1264 // clobbering R to a packet that defines R.
1266 // Look for regmasks in J.
1267 for (const MachineOperand &OpJ : J.operands()) {
1268 if (!OpJ.isRegMask())
1269 continue;
1270 assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call");
1271 for (const MachineOperand &OpI : I.operands()) {
1272 if (OpI.isReg()) {
1273 if (OpJ.clobbersPhysReg(OpI.getReg()))
1274 return true;
1275 } else if (OpI.isRegMask()) {
1276 // Both are regmasks. Assume that they intersect.
1277 return true;
1281 return false;
1284 bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I,
1285 const MachineInstr &J) {
1286 bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J);
1287 bool StoreI = I.mayStore(), StoreJ = J.mayStore();
1288 if ((SysI && StoreJ) || (SysJ && StoreI))
1289 return true;
1291 if (StoreI && StoreJ) {
1292 if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I))
1293 return true;
1294 } else {
1295 // A memop cannot be in the same packet with another memop or a store.
1296 // Two stores can be together, but here I and J cannot both be stores.
1297 bool MopStI = HII->isMemOp(I) || StoreI;
1298 bool MopStJ = HII->isMemOp(J) || StoreJ;
1299 if (MopStI && MopStJ)
1300 return true;
1303 return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J));
1306 // SUI is the current instruction that is out side of the current packet.
1307 // SUJ is the current instruction inside the current packet against which that
1308 // SUI will be packetized.
1309 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
1310 assert(SUI->getInstr() && SUJ->getInstr());
1311 MachineInstr &I = *SUI->getInstr();
1312 MachineInstr &J = *SUJ->getInstr();
1314 // Clear IgnoreDepMIs when Packet starts.
1315 if (CurrentPacketMIs.size() == 1)
1316 IgnoreDepMIs.clear();
1318 MachineBasicBlock::iterator II = I.getIterator();
1320 // Solo instructions cannot go in the packet.
1321 assert(!isSoloInstruction(I) && "Unexpected solo instr!");
1323 if (cannotCoexist(I, J))
1324 return false;
1326 Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J);
1327 if (Dependence)
1328 return false;
1330 // Regmasks are not accounted for in the scheduling graph, so we need
1331 // to explicitly check for dependencies caused by them. They should only
1332 // appear on calls, so it's not too pessimistic to reject all regmask
1333 // dependencies.
1334 Dependence = hasRegMaskDependence(I, J);
1335 if (Dependence)
1336 return false;
1338 // Dual-store does not allow second store, if the first store is not
1339 // in SLOT0. New value store, new value jump, dealloc_return and memop
1340 // always take SLOT0. Arch spec 3.4.4.2.
1341 Dependence = hasDualStoreDependence(I, J);
1342 if (Dependence)
1343 return false;
1345 // If an instruction feeds new value jump, glue it.
1346 MachineBasicBlock::iterator NextMII = I.getIterator();
1347 ++NextMII;
1348 if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) {
1349 MachineInstr &NextMI = *NextMII;
1351 bool secondRegMatch = false;
1352 const MachineOperand &NOp0 = NextMI.getOperand(0);
1353 const MachineOperand &NOp1 = NextMI.getOperand(1);
1355 if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg())
1356 secondRegMatch = true;
1358 for (MachineInstr *PI : CurrentPacketMIs) {
1359 // NVJ can not be part of the dual jump - Arch Spec: section 7.8.
1360 if (PI->isCall()) {
1361 Dependence = true;
1362 break;
1364 // Validate:
1365 // 1. Packet does not have a store in it.
1366 // 2. If the first operand of the nvj is newified, and the second
1367 // operand is also a reg, it (second reg) is not defined in
1368 // the same packet.
1369 // 3. If the second operand of the nvj is newified, (which means
1370 // first operand is also a reg), first reg is not defined in
1371 // the same packet.
1372 if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() ||
1373 HII->isLoopN(*PI)) {
1374 Dependence = true;
1375 break;
1377 // Check #2/#3.
1378 const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1;
1379 if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) {
1380 Dependence = true;
1381 break;
1385 GlueToNewValueJump = true;
1386 if (Dependence)
1387 return false;
1390 // There no dependency between a prolog instruction and its successor.
1391 if (!SUJ->isSucc(SUI))
1392 return true;
1394 for (unsigned i = 0; i < SUJ->Succs.size(); ++i) {
1395 if (FoundSequentialDependence)
1396 break;
1398 if (SUJ->Succs[i].getSUnit() != SUI)
1399 continue;
1401 SDep::Kind DepType = SUJ->Succs[i].getKind();
1402 // For direct calls:
1403 // Ignore register dependences for call instructions for packetization
1404 // purposes except for those due to r31 and predicate registers.
1406 // For indirect calls:
1407 // Same as direct calls + check for true dependences to the register
1408 // used in the indirect call.
1410 // We completely ignore Order dependences for call instructions.
1412 // For returns:
1413 // Ignore register dependences for return instructions like jumpr,
1414 // dealloc return unless we have dependencies on the explicit uses
1415 // of the registers used by jumpr (like r31) or dealloc return
1416 // (like r29 or r30).
1417 unsigned DepReg = 0;
1418 const TargetRegisterClass *RC = nullptr;
1419 if (DepType == SDep::Data) {
1420 DepReg = SUJ->Succs[i].getReg();
1421 RC = HRI->getMinimalPhysRegClass(DepReg);
1424 if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) {
1425 if (!isRegDependence(DepType))
1426 continue;
1427 if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg()))
1428 continue;
1431 if (DepType == SDep::Data) {
1432 if (canPromoteToDotCur(J, SUJ, DepReg, II, RC))
1433 if (promoteToDotCur(J, DepType, II, RC))
1434 continue;
1437 // Data dpendence ok if we have load.cur.
1438 if (DepType == SDep::Data && HII->isDotCurInst(J)) {
1439 if (HII->isHVXVec(I))
1440 continue;
1443 // For instructions that can be promoted to dot-new, try to promote.
1444 if (DepType == SDep::Data) {
1445 if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) {
1446 if (promoteToDotNew(I, DepType, II, RC)) {
1447 PromotedToDotNew = true;
1448 if (cannotCoexist(I, J))
1449 FoundSequentialDependence = true;
1450 continue;
1453 if (HII->isNewValueJump(I))
1454 continue;
1457 // For predicated instructions, if the predicates are complements then
1458 // there can be no dependence.
1459 if (HII->isPredicated(I) && HII->isPredicated(J) &&
1460 arePredicatesComplements(I, J)) {
1461 // Not always safe to do this translation.
1462 // DAG Builder attempts to reduce dependence edges using transitive
1463 // nature of dependencies. Here is an example:
1465 // r0 = tfr_pt ... (1)
1466 // r0 = tfr_pf ... (2)
1467 // r0 = tfr_pt ... (3)
1469 // There will be an output dependence between (1)->(2) and (2)->(3).
1470 // However, there is no dependence edge between (1)->(3). This results
1471 // in all 3 instructions going in the same packet. We ignore dependce
1472 // only once to avoid this situation.
1473 auto Itr = find(IgnoreDepMIs, &J);
1474 if (Itr != IgnoreDepMIs.end()) {
1475 Dependence = true;
1476 return false;
1478 IgnoreDepMIs.push_back(&I);
1479 continue;
1482 // Ignore Order dependences between unconditional direct branches
1483 // and non-control-flow instructions.
1484 if (isDirectJump(I) && !J.isBranch() && !J.isCall() &&
1485 DepType == SDep::Order)
1486 continue;
1488 // Ignore all dependences for jumps except for true and output
1489 // dependences.
1490 if (I.isConditionalBranch() && DepType != SDep::Data &&
1491 DepType != SDep::Output)
1492 continue;
1494 if (DepType == SDep::Output) {
1495 FoundSequentialDependence = true;
1496 break;
1499 // For Order dependences:
1500 // 1. Volatile loads/stores can be packetized together, unless other
1501 // rules prevent is.
1502 // 2. Store followed by a load is not allowed.
1503 // 3. Store followed by a store is valid.
1504 // 4. Load followed by any memory operation is allowed.
1505 if (DepType == SDep::Order) {
1506 if (!PacketizeVolatiles) {
1507 bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef();
1508 if (OrdRefs) {
1509 FoundSequentialDependence = true;
1510 break;
1513 // J is first, I is second.
1514 bool LoadJ = J.mayLoad(), StoreJ = J.mayStore();
1515 bool LoadI = I.mayLoad(), StoreI = I.mayStore();
1516 bool NVStoreJ = HII->isNewValueStore(J);
1517 bool NVStoreI = HII->isNewValueStore(I);
1518 bool IsVecJ = HII->isHVXVec(J);
1519 bool IsVecI = HII->isHVXVec(I);
1521 if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() &&
1522 ((LoadJ && StoreI && !NVStoreI) ||
1523 (StoreJ && LoadI && !NVStoreJ)) &&
1524 (J.getOpcode() != Hexagon::S2_allocframe &&
1525 I.getOpcode() != Hexagon::S2_allocframe) &&
1526 (J.getOpcode() != Hexagon::L2_deallocframe &&
1527 I.getOpcode() != Hexagon::L2_deallocframe) &&
1528 (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI))
1529 setmemShufDisabled(true);
1530 else
1531 if (StoreJ && LoadI && alias(J, I)) {
1532 FoundSequentialDependence = true;
1533 break;
1536 if (!StoreJ)
1537 if (!LoadJ || (!LoadI && !StoreI)) {
1538 // If J is neither load nor store, assume a dependency.
1539 // If J is a load, but I is neither, also assume a dependency.
1540 FoundSequentialDependence = true;
1541 break;
1543 // Store followed by store: not OK on V2.
1544 // Store followed by load: not OK on all.
1545 // Load followed by store: OK on all.
1546 // Load followed by load: OK on all.
1547 continue;
1550 // Special case for ALLOCFRAME: even though there is dependency
1551 // between ALLOCFRAME and subsequent store, allow it to be packetized
1552 // in a same packet. This implies that the store is using the caller's
1553 // SP. Hence, offset needs to be updated accordingly.
1554 if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) {
1555 unsigned Opc = I.getOpcode();
1556 switch (Opc) {
1557 case Hexagon::S2_storerd_io:
1558 case Hexagon::S2_storeri_io:
1559 case Hexagon::S2_storerh_io:
1560 case Hexagon::S2_storerb_io:
1561 if (I.getOperand(0).getReg() == HRI->getStackRegister()) {
1562 // Since this store is to be glued with allocframe in the same
1563 // packet, it will use SP of the previous stack frame, i.e.
1564 // caller's SP. Therefore, we need to recalculate offset
1565 // according to this change.
1566 GlueAllocframeStore = useCallersSP(I);
1567 if (GlueAllocframeStore)
1568 continue;
1570 break;
1571 default:
1572 break;
1576 // There are certain anti-dependencies that cannot be ignored.
1577 // Specifically:
1578 // J2_call ... implicit-def %r0 ; SUJ
1579 // R0 = ... ; SUI
1580 // Those cannot be packetized together, since the call will observe
1581 // the effect of the assignment to R0.
1582 if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) {
1583 // Check if I defines any volatile register. We should also check
1584 // registers that the call may read, but these happen to be a
1585 // subset of the volatile register set.
1586 for (const MachineOperand &Op : I.operands()) {
1587 if (Op.isReg() && Op.isDef()) {
1588 unsigned R = Op.getReg();
1589 if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI))
1590 continue;
1591 } else if (!Op.isRegMask()) {
1592 // If I has a regmask assume dependency.
1593 continue;
1595 FoundSequentialDependence = true;
1596 break;
1600 // Skip over remaining anti-dependences. Two instructions that are
1601 // anti-dependent can share a packet, since in most such cases all
1602 // operands are read before any modifications take place.
1603 // The exceptions are branch and call instructions, since they are
1604 // executed after all other instructions have completed (at least
1605 // conceptually).
1606 if (DepType != SDep::Anti) {
1607 FoundSequentialDependence = true;
1608 break;
1612 if (FoundSequentialDependence) {
1613 Dependence = true;
1614 return false;
1617 return true;
1620 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1621 assert(SUI->getInstr() && SUJ->getInstr());
1622 MachineInstr &I = *SUI->getInstr();
1623 MachineInstr &J = *SUJ->getInstr();
1625 bool Coexist = !cannotCoexist(I, J);
1627 if (Coexist && !Dependence)
1628 return true;
1630 // Check if the instruction was promoted to a dot-new. If so, demote it
1631 // back into a dot-old.
1632 if (PromotedToDotNew)
1633 demoteToDotOld(I);
1635 cleanUpDotCur();
1636 // Check if the instruction (must be a store) was glued with an allocframe
1637 // instruction. If so, restore its offset to its original value, i.e. use
1638 // current SP instead of caller's SP.
1639 if (GlueAllocframeStore) {
1640 useCalleesSP(I);
1641 GlueAllocframeStore = false;
1644 if (ChangedOffset != INT64_MAX)
1645 undoChangedOffset(I);
1647 if (GlueToNewValueJump) {
1648 // Putting I and J together would prevent the new-value jump from being
1649 // packetized with the producer. In that case I and J must be separated.
1650 GlueToNewValueJump = false;
1651 return false;
1654 if (!Coexist)
1655 return false;
1657 if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) {
1658 FoundSequentialDependence = false;
1659 Dependence = false;
1660 return true;
1663 return false;
1667 bool HexagonPacketizerList::foundLSInPacket() {
1668 bool FoundLoad = false;
1669 bool FoundStore = false;
1671 for (auto MJ : CurrentPacketMIs) {
1672 unsigned Opc = MJ->getOpcode();
1673 if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe)
1674 continue;
1675 if (HII->isMemOp(*MJ))
1676 continue;
1677 if (MJ->mayLoad())
1678 FoundLoad = true;
1679 if (MJ->mayStore() && !HII->isNewValueStore(*MJ))
1680 FoundStore = true;
1682 return FoundLoad && FoundStore;
1686 MachineBasicBlock::iterator
1687 HexagonPacketizerList::addToPacket(MachineInstr &MI) {
1688 MachineBasicBlock::iterator MII = MI.getIterator();
1689 MachineBasicBlock *MBB = MI.getParent();
1691 if (CurrentPacketMIs.empty())
1692 PacketStalls = false;
1693 PacketStalls |= producesStall(MI);
1695 if (MI.isImplicitDef()) {
1696 // Add to the packet to allow subsequent instructions to be checked
1697 // properly.
1698 CurrentPacketMIs.push_back(&MI);
1699 return MII;
1701 assert(ResourceTracker->canReserveResources(MI));
1703 bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI);
1704 bool Good = true;
1706 if (GlueToNewValueJump) {
1707 MachineInstr &NvjMI = *++MII;
1708 // We need to put both instructions in the same packet: MI and NvjMI.
1709 // Either of them can require a constant extender. Try to add both to
1710 // the current packet, and if that fails, end the packet and start a
1711 // new one.
1712 ResourceTracker->reserveResources(MI);
1713 if (ExtMI)
1714 Good = tryAllocateResourcesForConstExt(true);
1716 bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI);
1717 if (Good) {
1718 if (ResourceTracker->canReserveResources(NvjMI))
1719 ResourceTracker->reserveResources(NvjMI);
1720 else
1721 Good = false;
1723 if (Good && ExtNvjMI)
1724 Good = tryAllocateResourcesForConstExt(true);
1726 if (!Good) {
1727 endPacket(MBB, MI);
1728 assert(ResourceTracker->canReserveResources(MI));
1729 ResourceTracker->reserveResources(MI);
1730 if (ExtMI) {
1731 assert(canReserveResourcesForConstExt());
1732 tryAllocateResourcesForConstExt(true);
1734 assert(ResourceTracker->canReserveResources(NvjMI));
1735 ResourceTracker->reserveResources(NvjMI);
1736 if (ExtNvjMI) {
1737 assert(canReserveResourcesForConstExt());
1738 reserveResourcesForConstExt();
1741 CurrentPacketMIs.push_back(&MI);
1742 CurrentPacketMIs.push_back(&NvjMI);
1743 return MII;
1746 ResourceTracker->reserveResources(MI);
1747 if (ExtMI && !tryAllocateResourcesForConstExt(true)) {
1748 endPacket(MBB, MI);
1749 if (PromotedToDotNew)
1750 demoteToDotOld(MI);
1751 if (GlueAllocframeStore) {
1752 useCalleesSP(MI);
1753 GlueAllocframeStore = false;
1755 ResourceTracker->reserveResources(MI);
1756 reserveResourcesForConstExt();
1759 CurrentPacketMIs.push_back(&MI);
1760 return MII;
1763 void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB,
1764 MachineBasicBlock::iterator EndMI) {
1765 // Replace VLIWPacketizerList::endPacket(MBB, EndMI).
1767 bool memShufDisabled = getmemShufDisabled();
1768 if (memShufDisabled && !foundLSInPacket()) {
1769 setmemShufDisabled(false);
1770 LLVM_DEBUG(dbgs() << " Not added to NoShufPacket\n");
1772 memShufDisabled = getmemShufDisabled();
1774 OldPacketMIs.clear();
1775 for (MachineInstr *MI : CurrentPacketMIs) {
1776 MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator());
1777 for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI))
1778 OldPacketMIs.push_back(&I);
1780 CurrentPacketMIs.clear();
1782 if (OldPacketMIs.size() > 1) {
1783 MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front());
1784 MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator());
1785 finalizeBundle(*MBB, FirstMI, LastMI);
1786 auto BundleMII = std::prev(FirstMI);
1787 if (memShufDisabled)
1788 HII->setBundleNoShuf(BundleMII);
1790 setmemShufDisabled(false);
1793 ResourceTracker->clearResources();
1794 LLVM_DEBUG(dbgs() << "End packet\n");
1797 bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) {
1798 if (Minimal)
1799 return false;
1800 return !producesStall(MI);
1803 // V60 forward scheduling.
1804 bool HexagonPacketizerList::producesStall(const MachineInstr &I) {
1805 // If the packet already stalls, then ignore the stall from a subsequent
1806 // instruction in the same packet.
1807 if (PacketStalls)
1808 return false;
1810 // Check whether the previous packet is in a different loop. If this is the
1811 // case, there is little point in trying to avoid a stall because that would
1812 // favor the rare case (loop entry) over the common case (loop iteration).
1814 // TODO: We should really be able to check all the incoming edges if this is
1815 // the first packet in a basic block, so we can avoid stalls from the loop
1816 // backedge.
1817 if (!OldPacketMIs.empty()) {
1818 auto *OldBB = OldPacketMIs.front()->getParent();
1819 auto *ThisBB = I.getParent();
1820 if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB))
1821 return false;
1824 SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)];
1826 // If the latency is 0 and there is a data dependence between this
1827 // instruction and any instruction in the current packet, we disregard any
1828 // potential stalls due to the instructions in the previous packet. Most of
1829 // the instruction pairs that can go together in the same packet have 0
1830 // latency between them. The exceptions are
1831 // 1. NewValueJumps as they're generated much later and the latencies can't
1832 // be changed at that point.
1833 // 2. .cur instructions, if its consumer has a 0 latency successor (such as
1834 // .new). In this case, the latency between .cur and the consumer stays
1835 // non-zero even though we can have both .cur and .new in the same packet.
1836 // Changing the latency to 0 is not an option as it causes software pipeliner
1837 // to not pipeline in some cases.
1839 // For Example:
1840 // {
1841 // I1: v6.cur = vmem(r0++#1)
1842 // I2: v7 = valign(v6,v4,r2)
1843 // I3: vmem(r5++#1) = v7.new
1844 // }
1845 // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2.
1847 for (auto J : CurrentPacketMIs) {
1848 SUnit *SUJ = MIToSUnit[J];
1849 for (auto &Pred : SUI->Preds)
1850 if (Pred.getSUnit() == SUJ)
1851 if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) ||
1852 HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I))
1853 return false;
1856 // Check if the latency is greater than one between this instruction and any
1857 // instruction in the previous packet.
1858 for (auto J : OldPacketMIs) {
1859 SUnit *SUJ = MIToSUnit[J];
1860 for (auto &Pred : SUI->Preds)
1861 if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1)
1862 return true;
1865 return false;
1868 //===----------------------------------------------------------------------===//
1869 // Public Constructor Functions
1870 //===----------------------------------------------------------------------===//
1872 FunctionPass *llvm::createHexagonPacketizer(bool Minimal) {
1873 return new HexagonPacketizer(Minimal);