[LLVM][Alignment] Introduce Alignment In MachineFrameInfo
[llvm-complete.git] / lib / CodeGen / MachineBlockPlacement.cpp
blob5347dde8b0826daf733087e595962551c52a718e
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
25 //===----------------------------------------------------------------------===//
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachinePostDominators.h"
44 #include "llvm/CodeGen/TailDuplicator.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Allocator.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
71 using namespace llvm;
73 #define DEBUG_TYPE "block-placement"
75 STATISTIC(NumCondBranches, "Number of conditional branches");
76 STATISTIC(NumUncondBranches, "Number of unconditional branches");
77 STATISTIC(CondBranchTakenFreq,
78 "Potential frequency of taking conditional branches");
79 STATISTIC(UncondBranchTakenFreq,
80 "Potential frequency of taking unconditional branches");
82 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
83 cl::desc("Force the alignment of all "
84 "blocks in the function."),
85 cl::init(0), cl::Hidden);
87 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
88 "align-all-nofallthru-blocks",
89 cl::desc("Force the alignment of all "
90 "blocks that have no fall-through predecessors (i.e. don't add "
91 "nops that are executed)."),
92 cl::init(0), cl::Hidden);
94 // FIXME: Find a good default for this flag and remove the flag.
95 static cl::opt<unsigned> ExitBlockBias(
96 "block-placement-exit-block-bias",
97 cl::desc("Block frequency percentage a loop exit block needs "
98 "over the original exit to be considered the new exit."),
99 cl::init(0), cl::Hidden);
101 // Definition:
102 // - Outlining: placement of a basic block outside the chain or hot path.
104 static cl::opt<unsigned> LoopToColdBlockRatio(
105 "loop-to-cold-block-ratio",
106 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
107 "(frequency of block) is greater than this ratio"),
108 cl::init(5), cl::Hidden);
110 static cl::opt<bool> ForceLoopColdBlock(
111 "force-loop-cold-block",
112 cl::desc("Force outlining cold blocks from loops."),
113 cl::init(false), cl::Hidden);
115 static cl::opt<bool>
116 PreciseRotationCost("precise-rotation-cost",
117 cl::desc("Model the cost of loop rotation more "
118 "precisely by using profile data."),
119 cl::init(false), cl::Hidden);
121 static cl::opt<bool>
122 ForcePreciseRotationCost("force-precise-rotation-cost",
123 cl::desc("Force the use of precise cost "
124 "loop rotation strategy."),
125 cl::init(false), cl::Hidden);
127 static cl::opt<unsigned> MisfetchCost(
128 "misfetch-cost",
129 cl::desc("Cost that models the probabilistic risk of an instruction "
130 "misfetch due to a jump comparing to falling through, whose cost "
131 "is zero."),
132 cl::init(1), cl::Hidden);
134 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
135 cl::desc("Cost of jump instructions."),
136 cl::init(1), cl::Hidden);
137 static cl::opt<bool>
138 TailDupPlacement("tail-dup-placement",
139 cl::desc("Perform tail duplication during placement. "
140 "Creates more fallthrough opportunites in "
141 "outline branches."),
142 cl::init(true), cl::Hidden);
144 static cl::opt<bool>
145 BranchFoldPlacement("branch-fold-placement",
146 cl::desc("Perform branch folding during placement. "
147 "Reduces code size."),
148 cl::init(true), cl::Hidden);
150 // Heuristic for tail duplication.
151 static cl::opt<unsigned> TailDupPlacementThreshold(
152 "tail-dup-placement-threshold",
153 cl::desc("Instruction cutoff for tail duplication during layout. "
154 "Tail merging during layout is forced to have a threshold "
155 "that won't conflict."), cl::init(2),
156 cl::Hidden);
158 // Heuristic for aggressive tail duplication.
159 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
160 "tail-dup-placement-aggressive-threshold",
161 cl::desc("Instruction cutoff for aggressive tail duplication during "
162 "layout. Used at -O3. Tail merging during layout is forced to "
163 "have a threshold that won't conflict."), cl::init(4),
164 cl::Hidden);
166 // Heuristic for tail duplication.
167 static cl::opt<unsigned> TailDupPlacementPenalty(
168 "tail-dup-placement-penalty",
169 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
170 "Copying can increase fallthrough, but it also increases icache "
171 "pressure. This parameter controls the penalty to account for that. "
172 "Percent as integer."),
173 cl::init(2),
174 cl::Hidden);
176 // Heuristic for triangle chains.
177 static cl::opt<unsigned> TriangleChainCount(
178 "triangle-chain-count",
179 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
180 "triangle tail duplication heuristic to kick in. 0 to disable."),
181 cl::init(2),
182 cl::Hidden);
184 extern cl::opt<unsigned> StaticLikelyProb;
185 extern cl::opt<unsigned> ProfileLikelyProb;
187 // Internal option used to control BFI display only after MBP pass.
188 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
189 // -view-block-layout-with-bfi=
190 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
192 // Command line option to specify the name of the function for CFG dump
193 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
194 extern cl::opt<std::string> ViewBlockFreqFuncName;
196 namespace {
198 class BlockChain;
200 /// Type for our function-wide basic block -> block chain mapping.
201 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
203 /// A chain of blocks which will be laid out contiguously.
205 /// This is the datastructure representing a chain of consecutive blocks that
206 /// are profitable to layout together in order to maximize fallthrough
207 /// probabilities and code locality. We also can use a block chain to represent
208 /// a sequence of basic blocks which have some external (correctness)
209 /// requirement for sequential layout.
211 /// Chains can be built around a single basic block and can be merged to grow
212 /// them. They participate in a block-to-chain mapping, which is updated
213 /// automatically as chains are merged together.
214 class BlockChain {
215 /// The sequence of blocks belonging to this chain.
217 /// This is the sequence of blocks for a particular chain. These will be laid
218 /// out in-order within the function.
219 SmallVector<MachineBasicBlock *, 4> Blocks;
221 /// A handle to the function-wide basic block to block chain mapping.
223 /// This is retained in each block chain to simplify the computation of child
224 /// block chains for SCC-formation and iteration. We store the edges to child
225 /// basic blocks, and map them back to their associated chains using this
226 /// structure.
227 BlockToChainMapType &BlockToChain;
229 public:
230 /// Construct a new BlockChain.
232 /// This builds a new block chain representing a single basic block in the
233 /// function. It also registers itself as the chain that block participates
234 /// in with the BlockToChain mapping.
235 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
236 : Blocks(1, BB), BlockToChain(BlockToChain) {
237 assert(BB && "Cannot create a chain with a null basic block");
238 BlockToChain[BB] = this;
241 /// Iterator over blocks within the chain.
242 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
243 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
245 /// Beginning of blocks within the chain.
246 iterator begin() { return Blocks.begin(); }
247 const_iterator begin() const { return Blocks.begin(); }
249 /// End of blocks within the chain.
250 iterator end() { return Blocks.end(); }
251 const_iterator end() const { return Blocks.end(); }
253 bool remove(MachineBasicBlock* BB) {
254 for(iterator i = begin(); i != end(); ++i) {
255 if (*i == BB) {
256 Blocks.erase(i);
257 return true;
260 return false;
263 /// Merge a block chain into this one.
265 /// This routine merges a block chain into this one. It takes care of forming
266 /// a contiguous sequence of basic blocks, updating the edge list, and
267 /// updating the block -> chain mapping. It does not free or tear down the
268 /// old chain, but the old chain's block list is no longer valid.
269 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
270 assert(BB && "Can't merge a null block.");
271 assert(!Blocks.empty() && "Can't merge into an empty chain.");
273 // Fast path in case we don't have a chain already.
274 if (!Chain) {
275 assert(!BlockToChain[BB] &&
276 "Passed chain is null, but BB has entry in BlockToChain.");
277 Blocks.push_back(BB);
278 BlockToChain[BB] = this;
279 return;
282 assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
283 assert(Chain->begin() != Chain->end());
285 // Update the incoming blocks to point to this chain, and add them to the
286 // chain structure.
287 for (MachineBasicBlock *ChainBB : *Chain) {
288 Blocks.push_back(ChainBB);
289 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
290 BlockToChain[ChainBB] = this;
294 #ifndef NDEBUG
295 /// Dump the blocks in this chain.
296 LLVM_DUMP_METHOD void dump() {
297 for (MachineBasicBlock *MBB : *this)
298 MBB->dump();
300 #endif // NDEBUG
302 /// Count of predecessors of any block within the chain which have not
303 /// yet been scheduled. In general, we will delay scheduling this chain
304 /// until those predecessors are scheduled (or we find a sufficiently good
305 /// reason to override this heuristic.) Note that when forming loop chains,
306 /// blocks outside the loop are ignored and treated as if they were already
307 /// scheduled.
309 /// Note: This field is reinitialized multiple times - once for each loop,
310 /// and then once for the function as a whole.
311 unsigned UnscheduledPredecessors = 0;
314 class MachineBlockPlacement : public MachineFunctionPass {
315 /// A type for a block filter set.
316 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
318 /// Pair struct containing basic block and taildup profitability
319 struct BlockAndTailDupResult {
320 MachineBasicBlock *BB;
321 bool ShouldTailDup;
324 /// Triple struct containing edge weight and the edge.
325 struct WeightedEdge {
326 BlockFrequency Weight;
327 MachineBasicBlock *Src;
328 MachineBasicBlock *Dest;
331 /// work lists of blocks that are ready to be laid out
332 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
333 SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
335 /// Edges that have already been computed as optimal.
336 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
338 /// Machine Function
339 MachineFunction *F;
341 /// A handle to the branch probability pass.
342 const MachineBranchProbabilityInfo *MBPI;
344 /// A handle to the function-wide block frequency pass.
345 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
347 /// A handle to the loop info.
348 MachineLoopInfo *MLI;
350 /// Preferred loop exit.
351 /// Member variable for convenience. It may be removed by duplication deep
352 /// in the call stack.
353 MachineBasicBlock *PreferredLoopExit;
355 /// A handle to the target's instruction info.
356 const TargetInstrInfo *TII;
358 /// A handle to the target's lowering info.
359 const TargetLoweringBase *TLI;
361 /// A handle to the post dominator tree.
362 MachinePostDominatorTree *MPDT;
364 /// Duplicator used to duplicate tails during placement.
366 /// Placement decisions can open up new tail duplication opportunities, but
367 /// since tail duplication affects placement decisions of later blocks, it
368 /// must be done inline.
369 TailDuplicator TailDup;
371 /// Allocator and owner of BlockChain structures.
373 /// We build BlockChains lazily while processing the loop structure of
374 /// a function. To reduce malloc traffic, we allocate them using this
375 /// slab-like allocator, and destroy them after the pass completes. An
376 /// important guarantee is that this allocator produces stable pointers to
377 /// the chains.
378 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
380 /// Function wide BasicBlock to BlockChain mapping.
382 /// This mapping allows efficiently moving from any given basic block to the
383 /// BlockChain it participates in, if any. We use it to, among other things,
384 /// allow implicitly defining edges between chains as the existing edges
385 /// between basic blocks.
386 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
388 #ifndef NDEBUG
389 /// The set of basic blocks that have terminators that cannot be fully
390 /// analyzed. These basic blocks cannot be re-ordered safely by
391 /// MachineBlockPlacement, and we must preserve physical layout of these
392 /// blocks and their successors through the pass.
393 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
394 #endif
396 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
397 /// if the count goes to 0, add them to the appropriate work list.
398 void markChainSuccessors(
399 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
400 const BlockFilterSet *BlockFilter = nullptr);
402 /// Decrease the UnscheduledPredecessors count for a single block, and
403 /// if the count goes to 0, add them to the appropriate work list.
404 void markBlockSuccessors(
405 const BlockChain &Chain, const MachineBasicBlock *BB,
406 const MachineBasicBlock *LoopHeaderBB,
407 const BlockFilterSet *BlockFilter = nullptr);
409 BranchProbability
410 collectViableSuccessors(
411 const MachineBasicBlock *BB, const BlockChain &Chain,
412 const BlockFilterSet *BlockFilter,
413 SmallVector<MachineBasicBlock *, 4> &Successors);
414 bool shouldPredBlockBeOutlined(
415 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
416 const BlockChain &Chain, const BlockFilterSet *BlockFilter,
417 BranchProbability SuccProb, BranchProbability HotProb);
418 bool repeatedlyTailDuplicateBlock(
419 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
420 const MachineBasicBlock *LoopHeaderBB,
421 BlockChain &Chain, BlockFilterSet *BlockFilter,
422 MachineFunction::iterator &PrevUnplacedBlockIt);
423 bool maybeTailDuplicateBlock(
424 MachineBasicBlock *BB, MachineBasicBlock *LPred,
425 BlockChain &Chain, BlockFilterSet *BlockFilter,
426 MachineFunction::iterator &PrevUnplacedBlockIt,
427 bool &DuplicatedToLPred);
428 bool hasBetterLayoutPredecessor(
429 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
430 const BlockChain &SuccChain, BranchProbability SuccProb,
431 BranchProbability RealSuccProb, const BlockChain &Chain,
432 const BlockFilterSet *BlockFilter);
433 BlockAndTailDupResult selectBestSuccessor(
434 const MachineBasicBlock *BB, const BlockChain &Chain,
435 const BlockFilterSet *BlockFilter);
436 MachineBasicBlock *selectBestCandidateBlock(
437 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
438 MachineBasicBlock *getFirstUnplacedBlock(
439 const BlockChain &PlacedChain,
440 MachineFunction::iterator &PrevUnplacedBlockIt,
441 const BlockFilterSet *BlockFilter);
443 /// Add a basic block to the work list if it is appropriate.
445 /// If the optional parameter BlockFilter is provided, only MBB
446 /// present in the set will be added to the worklist. If nullptr
447 /// is provided, no filtering occurs.
448 void fillWorkLists(const MachineBasicBlock *MBB,
449 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
450 const BlockFilterSet *BlockFilter);
452 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
453 BlockFilterSet *BlockFilter = nullptr);
454 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
455 const MachineBasicBlock *OldTop);
456 bool hasViableTopFallthrough(const MachineBasicBlock *Top,
457 const BlockFilterSet &LoopBlockSet);
458 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
459 const BlockFilterSet &LoopBlockSet);
460 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
461 const MachineBasicBlock *OldTop,
462 const MachineBasicBlock *ExitBB,
463 const BlockFilterSet &LoopBlockSet);
464 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
465 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
466 MachineBasicBlock *findBestLoopTop(
467 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
468 MachineBasicBlock *findBestLoopExit(
469 const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
470 BlockFrequency &ExitFreq);
471 BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
472 void buildLoopChains(const MachineLoop &L);
473 void rotateLoop(
474 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
475 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
476 void rotateLoopWithProfile(
477 BlockChain &LoopChain, const MachineLoop &L,
478 const BlockFilterSet &LoopBlockSet);
479 void buildCFGChains();
480 void optimizeBranches();
481 void alignBlocks();
482 /// Returns true if a block should be tail-duplicated to increase fallthrough
483 /// opportunities.
484 bool shouldTailDuplicate(MachineBasicBlock *BB);
485 /// Check the edge frequencies to see if tail duplication will increase
486 /// fallthroughs.
487 bool isProfitableToTailDup(
488 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
489 BranchProbability QProb,
490 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
492 /// Check for a trellis layout.
493 bool isTrellis(const MachineBasicBlock *BB,
494 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
495 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
497 /// Get the best successor given a trellis layout.
498 BlockAndTailDupResult getBestTrellisSuccessor(
499 const MachineBasicBlock *BB,
500 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
501 BranchProbability AdjustedSumProb, const BlockChain &Chain,
502 const BlockFilterSet *BlockFilter);
504 /// Get the best pair of non-conflicting edges.
505 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
506 const MachineBasicBlock *BB,
507 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
509 /// Returns true if a block can tail duplicate into all unplaced
510 /// predecessors. Filters based on loop.
511 bool canTailDuplicateUnplacedPreds(
512 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
513 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
515 /// Find chains of triangles to tail-duplicate where a global analysis works,
516 /// but a local analysis would not find them.
517 void precomputeTriangleChains();
519 public:
520 static char ID; // Pass identification, replacement for typeid
522 MachineBlockPlacement() : MachineFunctionPass(ID) {
523 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
526 bool runOnMachineFunction(MachineFunction &F) override;
528 bool allowTailDupPlacement() const {
529 assert(F);
530 return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
533 void getAnalysisUsage(AnalysisUsage &AU) const override {
534 AU.addRequired<MachineBranchProbabilityInfo>();
535 AU.addRequired<MachineBlockFrequencyInfo>();
536 if (TailDupPlacement)
537 AU.addRequired<MachinePostDominatorTree>();
538 AU.addRequired<MachineLoopInfo>();
539 AU.addRequired<TargetPassConfig>();
540 MachineFunctionPass::getAnalysisUsage(AU);
544 } // end anonymous namespace
546 char MachineBlockPlacement::ID = 0;
548 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
550 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
551 "Branch Probability Basic Block Placement", false, false)
552 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
553 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
554 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
555 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
556 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
557 "Branch Probability Basic Block Placement", false, false)
559 #ifndef NDEBUG
560 /// Helper to print the name of a MBB.
562 /// Only used by debug logging.
563 static std::string getBlockName(const MachineBasicBlock *BB) {
564 std::string Result;
565 raw_string_ostream OS(Result);
566 OS << printMBBReference(*BB);
567 OS << " ('" << BB->getName() << "')";
568 OS.flush();
569 return Result;
571 #endif
573 /// Mark a chain's successors as having one fewer preds.
575 /// When a chain is being merged into the "placed" chain, this routine will
576 /// quickly walk the successors of each block in the chain and mark them as
577 /// having one fewer active predecessor. It also adds any successors of this
578 /// chain which reach the zero-predecessor state to the appropriate worklist.
579 void MachineBlockPlacement::markChainSuccessors(
580 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
581 const BlockFilterSet *BlockFilter) {
582 // Walk all the blocks in this chain, marking their successors as having
583 // a predecessor placed.
584 for (MachineBasicBlock *MBB : Chain) {
585 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
589 /// Mark a single block's successors as having one fewer preds.
591 /// Under normal circumstances, this is only called by markChainSuccessors,
592 /// but if a block that was to be placed is completely tail-duplicated away,
593 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
594 /// for just that block.
595 void MachineBlockPlacement::markBlockSuccessors(
596 const BlockChain &Chain, const MachineBasicBlock *MBB,
597 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
598 // Add any successors for which this is the only un-placed in-loop
599 // predecessor to the worklist as a viable candidate for CFG-neutral
600 // placement. No subsequent placement of this block will violate the CFG
601 // shape, so we get to use heuristics to choose a favorable placement.
602 for (MachineBasicBlock *Succ : MBB->successors()) {
603 if (BlockFilter && !BlockFilter->count(Succ))
604 continue;
605 BlockChain &SuccChain = *BlockToChain[Succ];
606 // Disregard edges within a fixed chain, or edges to the loop header.
607 if (&Chain == &SuccChain || Succ == LoopHeaderBB)
608 continue;
610 // This is a cross-chain edge that is within the loop, so decrement the
611 // loop predecessor count of the destination chain.
612 if (SuccChain.UnscheduledPredecessors == 0 ||
613 --SuccChain.UnscheduledPredecessors > 0)
614 continue;
616 auto *NewBB = *SuccChain.begin();
617 if (NewBB->isEHPad())
618 EHPadWorkList.push_back(NewBB);
619 else
620 BlockWorkList.push_back(NewBB);
624 /// This helper function collects the set of successors of block
625 /// \p BB that are allowed to be its layout successors, and return
626 /// the total branch probability of edges from \p BB to those
627 /// blocks.
628 BranchProbability MachineBlockPlacement::collectViableSuccessors(
629 const MachineBasicBlock *BB, const BlockChain &Chain,
630 const BlockFilterSet *BlockFilter,
631 SmallVector<MachineBasicBlock *, 4> &Successors) {
632 // Adjust edge probabilities by excluding edges pointing to blocks that is
633 // either not in BlockFilter or is already in the current chain. Consider the
634 // following CFG:
636 // --->A
637 // | / \
638 // | B C
639 // | \ / \
640 // ----D E
642 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
643 // A->C is chosen as a fall-through, D won't be selected as a successor of C
644 // due to CFG constraint (the probability of C->D is not greater than
645 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
646 // when calculating the probability of C->D, D will be selected and we
647 // will get A C D B as the layout of this loop.
648 auto AdjustedSumProb = BranchProbability::getOne();
649 for (MachineBasicBlock *Succ : BB->successors()) {
650 bool SkipSucc = false;
651 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
652 SkipSucc = true;
653 } else {
654 BlockChain *SuccChain = BlockToChain[Succ];
655 if (SuccChain == &Chain) {
656 SkipSucc = true;
657 } else if (Succ != *SuccChain->begin()) {
658 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ)
659 << " -> Mid chain!\n");
660 continue;
663 if (SkipSucc)
664 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
665 else
666 Successors.push_back(Succ);
669 return AdjustedSumProb;
672 /// The helper function returns the branch probability that is adjusted
673 /// or normalized over the new total \p AdjustedSumProb.
674 static BranchProbability
675 getAdjustedProbability(BranchProbability OrigProb,
676 BranchProbability AdjustedSumProb) {
677 BranchProbability SuccProb;
678 uint32_t SuccProbN = OrigProb.getNumerator();
679 uint32_t SuccProbD = AdjustedSumProb.getNumerator();
680 if (SuccProbN >= SuccProbD)
681 SuccProb = BranchProbability::getOne();
682 else
683 SuccProb = BranchProbability(SuccProbN, SuccProbD);
685 return SuccProb;
688 /// Check if \p BB has exactly the successors in \p Successors.
689 static bool
690 hasSameSuccessors(MachineBasicBlock &BB,
691 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
692 if (BB.succ_size() != Successors.size())
693 return false;
694 // We don't want to count self-loops
695 if (Successors.count(&BB))
696 return false;
697 for (MachineBasicBlock *Succ : BB.successors())
698 if (!Successors.count(Succ))
699 return false;
700 return true;
703 /// Check if a block should be tail duplicated to increase fallthrough
704 /// opportunities.
705 /// \p BB Block to check.
706 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
707 // Blocks with single successors don't create additional fallthrough
708 // opportunities. Don't duplicate them. TODO: When conditional exits are
709 // analyzable, allow them to be duplicated.
710 bool IsSimple = TailDup.isSimpleBB(BB);
712 if (BB->succ_size() == 1)
713 return false;
714 return TailDup.shouldTailDuplicate(IsSimple, *BB);
717 /// Compare 2 BlockFrequency's with a small penalty for \p A.
718 /// In order to be conservative, we apply a X% penalty to account for
719 /// increased icache pressure and static heuristics. For small frequencies
720 /// we use only the numerators to improve accuracy. For simplicity, we assume the
721 /// penalty is less than 100%
722 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
723 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
724 uint64_t EntryFreq) {
725 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
726 BlockFrequency Gain = A - B;
727 return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
730 /// Check the edge frequencies to see if tail duplication will increase
731 /// fallthroughs. It only makes sense to call this function when
732 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
733 /// always locally profitable if we would have picked \p Succ without
734 /// considering duplication.
735 bool MachineBlockPlacement::isProfitableToTailDup(
736 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
737 BranchProbability QProb,
738 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
739 // We need to do a probability calculation to make sure this is profitable.
740 // First: does succ have a successor that post-dominates? This affects the
741 // calculation. The 2 relevant cases are:
742 // BB BB
743 // | \Qout | \Qout
744 // P| C |P C
745 // = C' = C'
746 // | /Qin | /Qin
747 // | / | /
748 // Succ Succ
749 // / \ | \ V
750 // U/ =V |U \
751 // / \ = D
752 // D E | /
753 // | /
754 // |/
755 // PDom
756 // '=' : Branch taken for that CFG edge
757 // In the second case, Placing Succ while duplicating it into C prevents the
758 // fallthrough of Succ into either D or PDom, because they now have C as an
759 // unplaced predecessor
761 // Start by figuring out which case we fall into
762 MachineBasicBlock *PDom = nullptr;
763 SmallVector<MachineBasicBlock *, 4> SuccSuccs;
764 // Only scan the relevant successors
765 auto AdjustedSuccSumProb =
766 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
767 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
768 auto BBFreq = MBFI->getBlockFreq(BB);
769 auto SuccFreq = MBFI->getBlockFreq(Succ);
770 BlockFrequency P = BBFreq * PProb;
771 BlockFrequency Qout = BBFreq * QProb;
772 uint64_t EntryFreq = MBFI->getEntryFreq();
773 // If there are no more successors, it is profitable to copy, as it strictly
774 // increases fallthrough.
775 if (SuccSuccs.size() == 0)
776 return greaterWithBias(P, Qout, EntryFreq);
778 auto BestSuccSucc = BranchProbability::getZero();
779 // Find the PDom or the best Succ if no PDom exists.
780 for (MachineBasicBlock *SuccSucc : SuccSuccs) {
781 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
782 if (Prob > BestSuccSucc)
783 BestSuccSucc = Prob;
784 if (PDom == nullptr)
785 if (MPDT->dominates(SuccSucc, Succ)) {
786 PDom = SuccSucc;
787 break;
790 // For the comparisons, we need to know Succ's best incoming edge that isn't
791 // from BB.
792 auto SuccBestPred = BlockFrequency(0);
793 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
794 if (SuccPred == Succ || SuccPred == BB
795 || BlockToChain[SuccPred] == &Chain
796 || (BlockFilter && !BlockFilter->count(SuccPred)))
797 continue;
798 auto Freq = MBFI->getBlockFreq(SuccPred)
799 * MBPI->getEdgeProbability(SuccPred, Succ);
800 if (Freq > SuccBestPred)
801 SuccBestPred = Freq;
803 // Qin is Succ's best unplaced incoming edge that isn't BB
804 BlockFrequency Qin = SuccBestPred;
805 // If it doesn't have a post-dominating successor, here is the calculation:
806 // BB BB
807 // | \Qout | \
808 // P| C | =
809 // = C' | C
810 // | /Qin | |
811 // | / | C' (+Succ)
812 // Succ Succ /|
813 // / \ | \/ |
814 // U/ =V | == |
815 // / \ | / \|
816 // D E D E
817 // '=' : Branch taken for that CFG edge
818 // Cost in the first case is: P + V
819 // For this calculation, we always assume P > Qout. If Qout > P
820 // The result of this function will be ignored at the caller.
821 // Let F = SuccFreq - Qin
822 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
824 if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
825 BranchProbability UProb = BestSuccSucc;
826 BranchProbability VProb = AdjustedSuccSumProb - UProb;
827 BlockFrequency F = SuccFreq - Qin;
828 BlockFrequency V = SuccFreq * VProb;
829 BlockFrequency QinU = std::min(Qin, F) * UProb;
830 BlockFrequency BaseCost = P + V;
831 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
832 return greaterWithBias(BaseCost, DupCost, EntryFreq);
834 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
835 BranchProbability VProb = AdjustedSuccSumProb - UProb;
836 BlockFrequency U = SuccFreq * UProb;
837 BlockFrequency V = SuccFreq * VProb;
838 BlockFrequency F = SuccFreq - Qin;
839 // If there is a post-dominating successor, here is the calculation:
840 // BB BB BB BB
841 // | \Qout | \ | \Qout | \
842 // |P C | = |P C | =
843 // = C' |P C = C' |P C
844 // | /Qin | | | /Qin | |
845 // | / | C' (+Succ) | / | C' (+Succ)
846 // Succ Succ /| Succ Succ /|
847 // | \ V | \/ | | \ V | \/ |
848 // |U \ |U /\ =? |U = |U /\ |
849 // = D = = =?| | D | = =|
850 // | / |/ D | / |/ D
851 // | / | / | = | /
852 // |/ | / |/ | =
853 // Dom Dom Dom Dom
854 // '=' : Branch taken for that CFG edge
855 // The cost for taken branches in the first case is P + U
856 // Let F = SuccFreq - Qin
857 // The cost in the second case (assuming independence), given the layout:
858 // BB, Succ, (C+Succ), D, Dom or the layout:
859 // BB, Succ, D, Dom, (C+Succ)
860 // is Qout + max(F, Qin) * U + min(F, Qin)
861 // compare P + U vs Qout + P * U + Qin.
863 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
865 // For the 3rd case, the cost is P + 2 * V
866 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
867 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
868 if (UProb > AdjustedSuccSumProb / 2 &&
869 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
870 Chain, BlockFilter))
871 // Cases 3 & 4
872 return greaterWithBias(
873 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
874 EntryFreq);
875 // Cases 1 & 2
876 return greaterWithBias((P + U),
877 (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
878 std::max(Qin, F) * UProb),
879 EntryFreq);
882 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
883 /// successors form the lower part of a trellis. A successor set S forms the
884 /// lower part of a trellis if all of the predecessors of S are either in S or
885 /// have all of S as successors. We ignore trellises where BB doesn't have 2
886 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
887 /// are very uncommon and complex to compute optimally. Allowing edges within S
888 /// is not strictly a trellis, but the same algorithm works, so we allow it.
889 bool MachineBlockPlacement::isTrellis(
890 const MachineBasicBlock *BB,
891 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
892 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
893 // Technically BB could form a trellis with branching factor higher than 2.
894 // But that's extremely uncommon.
895 if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
896 return false;
898 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
899 BB->succ_end());
900 // To avoid reviewing the same predecessors twice.
901 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
903 for (MachineBasicBlock *Succ : ViableSuccs) {
904 int PredCount = 0;
905 for (auto SuccPred : Succ->predecessors()) {
906 // Allow triangle successors, but don't count them.
907 if (Successors.count(SuccPred)) {
908 // Make sure that it is actually a triangle.
909 for (MachineBasicBlock *CheckSucc : SuccPred->successors())
910 if (!Successors.count(CheckSucc))
911 return false;
912 continue;
914 const BlockChain *PredChain = BlockToChain[SuccPred];
915 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
916 PredChain == &Chain || PredChain == BlockToChain[Succ])
917 continue;
918 ++PredCount;
919 // Perform the successor check only once.
920 if (!SeenPreds.insert(SuccPred).second)
921 continue;
922 if (!hasSameSuccessors(*SuccPred, Successors))
923 return false;
925 // If one of the successors has only BB as a predecessor, it is not a
926 // trellis.
927 if (PredCount < 1)
928 return false;
930 return true;
933 /// Pick the highest total weight pair of edges that can both be laid out.
934 /// The edges in \p Edges[0] are assumed to have a different destination than
935 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
936 /// the individual highest weight edges to the 2 different destinations, or in
937 /// case of a conflict, one of them should be replaced with a 2nd best edge.
938 std::pair<MachineBlockPlacement::WeightedEdge,
939 MachineBlockPlacement::WeightedEdge>
940 MachineBlockPlacement::getBestNonConflictingEdges(
941 const MachineBasicBlock *BB,
942 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
943 Edges) {
944 // Sort the edges, and then for each successor, find the best incoming
945 // predecessor. If the best incoming predecessors aren't the same,
946 // then that is clearly the best layout. If there is a conflict, one of the
947 // successors will have to fallthrough from the second best predecessor. We
948 // compare which combination is better overall.
950 // Sort for highest frequency.
951 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
953 llvm::stable_sort(Edges[0], Cmp);
954 llvm::stable_sort(Edges[1], Cmp);
955 auto BestA = Edges[0].begin();
956 auto BestB = Edges[1].begin();
957 // Arrange for the correct answer to be in BestA and BestB
958 // If the 2 best edges don't conflict, the answer is already there.
959 if (BestA->Src == BestB->Src) {
960 // Compare the total fallthrough of (Best + Second Best) for both pairs
961 auto SecondBestA = std::next(BestA);
962 auto SecondBestB = std::next(BestB);
963 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
964 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
965 if (BestAScore < BestBScore)
966 BestA = SecondBestA;
967 else
968 BestB = SecondBestB;
970 // Arrange for the BB edge to be in BestA if it exists.
971 if (BestB->Src == BB)
972 std::swap(BestA, BestB);
973 return std::make_pair(*BestA, *BestB);
976 /// Get the best successor from \p BB based on \p BB being part of a trellis.
977 /// We only handle trellises with 2 successors, so the algorithm is
978 /// straightforward: Find the best pair of edges that don't conflict. We find
979 /// the best incoming edge for each successor in the trellis. If those conflict,
980 /// we consider which of them should be replaced with the second best.
981 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
982 /// comes from \p BB, it will be in \p BestEdges[0]
983 MachineBlockPlacement::BlockAndTailDupResult
984 MachineBlockPlacement::getBestTrellisSuccessor(
985 const MachineBasicBlock *BB,
986 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
987 BranchProbability AdjustedSumProb, const BlockChain &Chain,
988 const BlockFilterSet *BlockFilter) {
990 BlockAndTailDupResult Result = {nullptr, false};
991 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
992 BB->succ_end());
994 // We assume size 2 because it's common. For general n, we would have to do
995 // the Hungarian algorithm, but it's not worth the complexity because more
996 // than 2 successors is fairly uncommon, and a trellis even more so.
997 if (Successors.size() != 2 || ViableSuccs.size() != 2)
998 return Result;
1000 // Collect the edge frequencies of all edges that form the trellis.
1001 SmallVector<WeightedEdge, 8> Edges[2];
1002 int SuccIndex = 0;
1003 for (auto Succ : ViableSuccs) {
1004 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1005 // Skip any placed predecessors that are not BB
1006 if (SuccPred != BB)
1007 if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1008 BlockToChain[SuccPred] == &Chain ||
1009 BlockToChain[SuccPred] == BlockToChain[Succ])
1010 continue;
1011 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1012 MBPI->getEdgeProbability(SuccPred, Succ);
1013 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1015 ++SuccIndex;
1018 // Pick the best combination of 2 edges from all the edges in the trellis.
1019 WeightedEdge BestA, BestB;
1020 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1022 if (BestA.Src != BB) {
1023 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1024 // we shouldn't choose any successor. We've already looked and there's a
1025 // better fallthrough edge for all the successors.
1026 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1027 return Result;
1030 // Did we pick the triangle edge? If tail-duplication is profitable, do
1031 // that instead. Otherwise merge the triangle edge now while we know it is
1032 // optimal.
1033 if (BestA.Dest == BestB.Src) {
1034 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1035 // would be better.
1036 MachineBasicBlock *Succ1 = BestA.Dest;
1037 MachineBasicBlock *Succ2 = BestB.Dest;
1038 // Check to see if tail-duplication would be profitable.
1039 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1040 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1041 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1042 Chain, BlockFilter)) {
1043 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1044 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1045 dbgs() << " Selected: " << getBlockName(Succ2)
1046 << ", probability: " << Succ2Prob
1047 << " (Tail Duplicate)\n");
1048 Result.BB = Succ2;
1049 Result.ShouldTailDup = true;
1050 return Result;
1053 // We have already computed the optimal edge for the other side of the
1054 // trellis.
1055 ComputedEdges[BestB.Src] = { BestB.Dest, false };
1057 auto TrellisSucc = BestA.Dest;
1058 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1059 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1060 dbgs() << " Selected: " << getBlockName(TrellisSucc)
1061 << ", probability: " << SuccProb << " (Trellis)\n");
1062 Result.BB = TrellisSucc;
1063 return Result;
1066 /// When the option allowTailDupPlacement() is on, this method checks if the
1067 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1068 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1069 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1070 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1071 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1072 if (!shouldTailDuplicate(Succ))
1073 return false;
1075 // For CFG checking.
1076 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1077 BB->succ_end());
1078 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1079 // Make sure all unplaced and unfiltered predecessors can be
1080 // tail-duplicated into.
1081 // Skip any blocks that are already placed or not in this loop.
1082 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1083 || BlockToChain[Pred] == &Chain)
1084 continue;
1085 if (!TailDup.canTailDuplicate(Succ, Pred)) {
1086 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1087 // This will result in a trellis after tail duplication, so we don't
1088 // need to copy Succ into this predecessor. In the presence
1089 // of a trellis tail duplication can continue to be profitable.
1090 // For example:
1091 // A A
1092 // |\ |\
1093 // | \ | \
1094 // | C | C+BB
1095 // | / | |
1096 // |/ | |
1097 // BB => BB |
1098 // |\ |\/|
1099 // | \ |/\|
1100 // | D | D
1101 // | / | /
1102 // |/ |/
1103 // Succ Succ
1105 // After BB was duplicated into C, the layout looks like the one on the
1106 // right. BB and C now have the same successors. When considering
1107 // whether Succ can be duplicated into all its unplaced predecessors, we
1108 // ignore C.
1109 // We can do this because C already has a profitable fallthrough, namely
1110 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1111 // duplication and for this test.
1113 // This allows trellises to be laid out in 2 separate chains
1114 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1115 // because it allows the creation of 2 fallthrough paths with links
1116 // between them, and we correctly identify the best layout for these
1117 // CFGs. We want to extend trellises that the user created in addition
1118 // to trellises created by tail-duplication, so we just look for the
1119 // CFG.
1120 continue;
1121 return false;
1124 return true;
1127 /// Find chains of triangles where we believe it would be profitable to
1128 /// tail-duplicate them all, but a local analysis would not find them.
1129 /// There are 3 ways this can be profitable:
1130 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1131 /// longer chains)
1132 /// 2) The chains are statically correlated. Branch probabilities have a very
1133 /// U-shaped distribution.
1134 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1135 /// If the branches in a chain are likely to be from the same side of the
1136 /// distribution as their predecessor, but are independent at runtime, this
1137 /// transformation is profitable. (Because the cost of being wrong is a small
1138 /// fixed cost, unlike the standard triangle layout where the cost of being
1139 /// wrong scales with the # of triangles.)
1140 /// 3) The chains are dynamically correlated. If the probability that a previous
1141 /// branch was taken positively influences whether the next branch will be
1142 /// taken
1143 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1144 void MachineBlockPlacement::precomputeTriangleChains() {
1145 struct TriangleChain {
1146 std::vector<MachineBasicBlock *> Edges;
1148 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1149 : Edges({src, dst}) {}
1151 void append(MachineBasicBlock *dst) {
1152 assert(getKey()->isSuccessor(dst) &&
1153 "Attempting to append a block that is not a successor.");
1154 Edges.push_back(dst);
1157 unsigned count() const { return Edges.size() - 1; }
1159 MachineBasicBlock *getKey() const {
1160 return Edges.back();
1164 if (TriangleChainCount == 0)
1165 return;
1167 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1168 // Map from last block to the chain that contains it. This allows us to extend
1169 // chains as we find new triangles.
1170 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1171 for (MachineBasicBlock &BB : *F) {
1172 // If BB doesn't have 2 successors, it doesn't start a triangle.
1173 if (BB.succ_size() != 2)
1174 continue;
1175 MachineBasicBlock *PDom = nullptr;
1176 for (MachineBasicBlock *Succ : BB.successors()) {
1177 if (!MPDT->dominates(Succ, &BB))
1178 continue;
1179 PDom = Succ;
1180 break;
1182 // If BB doesn't have a post-dominating successor, it doesn't form a
1183 // triangle.
1184 if (PDom == nullptr)
1185 continue;
1186 // If PDom has a hint that it is low probability, skip this triangle.
1187 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1188 continue;
1189 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1190 // we're looking for.
1191 if (!shouldTailDuplicate(PDom))
1192 continue;
1193 bool CanTailDuplicate = true;
1194 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1195 // isn't the kind of triangle we're looking for.
1196 for (MachineBasicBlock* Pred : PDom->predecessors()) {
1197 if (Pred == &BB)
1198 continue;
1199 if (!TailDup.canTailDuplicate(PDom, Pred)) {
1200 CanTailDuplicate = false;
1201 break;
1204 // If we can't tail-duplicate PDom to its predecessors, then skip this
1205 // triangle.
1206 if (!CanTailDuplicate)
1207 continue;
1209 // Now we have an interesting triangle. Insert it if it's not part of an
1210 // existing chain.
1211 // Note: This cannot be replaced with a call insert() or emplace() because
1212 // the find key is BB, but the insert/emplace key is PDom.
1213 auto Found = TriangleChainMap.find(&BB);
1214 // If it is, remove the chain from the map, grow it, and put it back in the
1215 // map with the end as the new key.
1216 if (Found != TriangleChainMap.end()) {
1217 TriangleChain Chain = std::move(Found->second);
1218 TriangleChainMap.erase(Found);
1219 Chain.append(PDom);
1220 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1221 } else {
1222 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1223 assert(InsertResult.second && "Block seen twice.");
1224 (void)InsertResult;
1228 // Iterating over a DenseMap is safe here, because the only thing in the body
1229 // of the loop is inserting into another DenseMap (ComputedEdges).
1230 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1231 for (auto &ChainPair : TriangleChainMap) {
1232 TriangleChain &Chain = ChainPair.second;
1233 // Benchmarking has shown that due to branch correlation duplicating 2 or
1234 // more triangles is profitable, despite the calculations assuming
1235 // independence.
1236 if (Chain.count() < TriangleChainCount)
1237 continue;
1238 MachineBasicBlock *dst = Chain.Edges.back();
1239 Chain.Edges.pop_back();
1240 for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1241 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1242 << getBlockName(dst)
1243 << " as pre-computed based on triangles.\n");
1245 auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1246 assert(InsertResult.second && "Block seen twice.");
1247 (void)InsertResult;
1249 dst = src;
1254 // When profile is not present, return the StaticLikelyProb.
1255 // When profile is available, we need to handle the triangle-shape CFG.
1256 static BranchProbability getLayoutSuccessorProbThreshold(
1257 const MachineBasicBlock *BB) {
1258 if (!BB->getParent()->getFunction().hasProfileData())
1259 return BranchProbability(StaticLikelyProb, 100);
1260 if (BB->succ_size() == 2) {
1261 const MachineBasicBlock *Succ1 = *BB->succ_begin();
1262 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1263 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1264 /* See case 1 below for the cost analysis. For BB->Succ to
1265 * be taken with smaller cost, the following needs to hold:
1266 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1267 * So the threshold T in the calculation below
1268 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1269 * So T / (1 - T) = 2, Yielding T = 2/3
1270 * Also adding user specified branch bias, we have
1271 * T = (2/3)*(ProfileLikelyProb/50)
1272 * = (2*ProfileLikelyProb)/150)
1274 return BranchProbability(2 * ProfileLikelyProb, 150);
1277 return BranchProbability(ProfileLikelyProb, 100);
1280 /// Checks to see if the layout candidate block \p Succ has a better layout
1281 /// predecessor than \c BB. If yes, returns true.
1282 /// \p SuccProb: The probability adjusted for only remaining blocks.
1283 /// Only used for logging
1284 /// \p RealSuccProb: The un-adjusted probability.
1285 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1286 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1287 /// considered
1288 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1289 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1290 const BlockChain &SuccChain, BranchProbability SuccProb,
1291 BranchProbability RealSuccProb, const BlockChain &Chain,
1292 const BlockFilterSet *BlockFilter) {
1294 // There isn't a better layout when there are no unscheduled predecessors.
1295 if (SuccChain.UnscheduledPredecessors == 0)
1296 return false;
1298 // There are two basic scenarios here:
1299 // -------------------------------------
1300 // Case 1: triangular shape CFG (if-then):
1301 // BB
1302 // | \
1303 // | \
1304 // | Pred
1305 // | /
1306 // Succ
1307 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1308 // set Succ as the layout successor of BB. Picking Succ as BB's
1309 // successor breaks the CFG constraints (FIXME: define these constraints).
1310 // With this layout, Pred BB
1311 // is forced to be outlined, so the overall cost will be cost of the
1312 // branch taken from BB to Pred, plus the cost of back taken branch
1313 // from Pred to Succ, as well as the additional cost associated
1314 // with the needed unconditional jump instruction from Pred To Succ.
1316 // The cost of the topological order layout is the taken branch cost
1317 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1318 // must hold:
1319 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1320 // < freq(BB->Succ) * taken_branch_cost.
1321 // Ignoring unconditional jump cost, we get
1322 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1323 // prob(BB->Succ) > 2 * prob(BB->Pred)
1325 // When real profile data is available, we can precisely compute the
1326 // probability threshold that is needed for edge BB->Succ to be considered.
1327 // Without profile data, the heuristic requires the branch bias to be
1328 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1329 // -----------------------------------------------------------------
1330 // Case 2: diamond like CFG (if-then-else):
1331 // S
1332 // / \
1333 // | \
1334 // BB Pred
1335 // \ /
1336 // Succ
1337 // ..
1339 // The current block is BB and edge BB->Succ is now being evaluated.
1340 // Note that edge S->BB was previously already selected because
1341 // prob(S->BB) > prob(S->Pred).
1342 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1343 // choose Pred, we will have a topological ordering as shown on the left
1344 // in the picture below. If we choose Succ, we have the solution as shown
1345 // on the right:
1347 // topo-order:
1349 // S----- ---S
1350 // | | | |
1351 // ---BB | | BB
1352 // | | | |
1353 // | Pred-- | Succ--
1354 // | | | |
1355 // ---Succ ---Pred--
1357 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1358 // = freq(S->Pred) + freq(S->BB)
1360 // If we have profile data (i.e, branch probabilities can be trusted), the
1361 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1362 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1363 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1364 // means the cost of topological order is greater.
1365 // When profile data is not available, however, we need to be more
1366 // conservative. If the branch prediction is wrong, breaking the topo-order
1367 // will actually yield a layout with large cost. For this reason, we need
1368 // strong biased branch at block S with Prob(S->BB) in order to select
1369 // BB->Succ. This is equivalent to looking the CFG backward with backward
1370 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1371 // profile data).
1372 // --------------------------------------------------------------------------
1373 // Case 3: forked diamond
1374 // S
1375 // / \
1376 // / \
1377 // BB Pred
1378 // | \ / |
1379 // | \ / |
1380 // | X |
1381 // | / \ |
1382 // | / \ |
1383 // S1 S2
1385 // The current block is BB and edge BB->S1 is now being evaluated.
1386 // As above S->BB was already selected because
1387 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1389 // topo-order:
1391 // S-------| ---S
1392 // | | | |
1393 // ---BB | | BB
1394 // | | | |
1395 // | Pred----| | S1----
1396 // | | | |
1397 // --(S1 or S2) ---Pred--
1398 // |
1399 // S2
1401 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1402 // + min(freq(Pred->S1), freq(Pred->S2))
1403 // Non-topo-order cost:
1404 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1405 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1406 // is 0. Then the non topo layout is better when
1407 // freq(S->Pred) < freq(BB->S1).
1408 // This is exactly what is checked below.
1409 // Note there are other shapes that apply (Pred may not be a single block,
1410 // but they all fit this general pattern.)
1411 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1413 // Make sure that a hot successor doesn't have a globally more
1414 // important predecessor.
1415 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1416 bool BadCFGConflict = false;
1418 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1419 if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
1420 (BlockFilter && !BlockFilter->count(Pred)) ||
1421 BlockToChain[Pred] == &Chain ||
1422 // This check is redundant except for look ahead. This function is
1423 // called for lookahead by isProfitableToTailDup when BB hasn't been
1424 // placed yet.
1425 (Pred == BB))
1426 continue;
1427 // Do backward checking.
1428 // For all cases above, we need a backward checking to filter out edges that
1429 // are not 'strongly' biased.
1430 // BB Pred
1431 // \ /
1432 // Succ
1433 // We select edge BB->Succ if
1434 // freq(BB->Succ) > freq(Succ) * HotProb
1435 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1436 // HotProb
1437 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1438 // Case 1 is covered too, because the first equation reduces to:
1439 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1440 BlockFrequency PredEdgeFreq =
1441 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1442 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1443 BadCFGConflict = true;
1444 break;
1448 if (BadCFGConflict) {
1449 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> "
1450 << SuccProb << " (prob) (non-cold CFG conflict)\n");
1451 return true;
1454 return false;
1457 /// Select the best successor for a block.
1459 /// This looks across all successors of a particular block and attempts to
1460 /// select the "best" one to be the layout successor. It only considers direct
1461 /// successors which also pass the block filter. It will attempt to avoid
1462 /// breaking CFG structure, but cave and break such structures in the case of
1463 /// very hot successor edges.
1465 /// \returns The best successor block found, or null if none are viable, along
1466 /// with a boolean indicating if tail duplication is necessary.
1467 MachineBlockPlacement::BlockAndTailDupResult
1468 MachineBlockPlacement::selectBestSuccessor(
1469 const MachineBasicBlock *BB, const BlockChain &Chain,
1470 const BlockFilterSet *BlockFilter) {
1471 const BranchProbability HotProb(StaticLikelyProb, 100);
1473 BlockAndTailDupResult BestSucc = { nullptr, false };
1474 auto BestProb = BranchProbability::getZero();
1476 SmallVector<MachineBasicBlock *, 4> Successors;
1477 auto AdjustedSumProb =
1478 collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1480 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1481 << "\n");
1483 // if we already precomputed the best successor for BB, return that if still
1484 // applicable.
1485 auto FoundEdge = ComputedEdges.find(BB);
1486 if (FoundEdge != ComputedEdges.end()) {
1487 MachineBasicBlock *Succ = FoundEdge->second.BB;
1488 ComputedEdges.erase(FoundEdge);
1489 BlockChain *SuccChain = BlockToChain[Succ];
1490 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1491 SuccChain != &Chain && Succ == *SuccChain->begin())
1492 return FoundEdge->second;
1495 // if BB is part of a trellis, Use the trellis to determine the optimal
1496 // fallthrough edges
1497 if (isTrellis(BB, Successors, Chain, BlockFilter))
1498 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1499 BlockFilter);
1501 // For blocks with CFG violations, we may be able to lay them out anyway with
1502 // tail-duplication. We keep this vector so we can perform the probability
1503 // calculations the minimum number of times.
1504 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
1505 DupCandidates;
1506 for (MachineBasicBlock *Succ : Successors) {
1507 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1508 BranchProbability SuccProb =
1509 getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1511 BlockChain &SuccChain = *BlockToChain[Succ];
1512 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1513 // predecessor that yields lower global cost.
1514 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1515 Chain, BlockFilter)) {
1516 // If tail duplication would make Succ profitable, place it.
1517 if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1518 DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
1519 continue;
1522 LLVM_DEBUG(
1523 dbgs() << " Candidate: " << getBlockName(Succ)
1524 << ", probability: " << SuccProb
1525 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1526 << "\n");
1528 if (BestSucc.BB && BestProb >= SuccProb) {
1529 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1530 continue;
1533 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1534 BestSucc.BB = Succ;
1535 BestProb = SuccProb;
1537 // Handle the tail duplication candidates in order of decreasing probability.
1538 // Stop at the first one that is profitable. Also stop if they are less
1539 // profitable than BestSucc. Position is important because we preserve it and
1540 // prefer first best match. Here we aren't comparing in order, so we capture
1541 // the position instead.
1542 llvm::stable_sort(DupCandidates,
1543 [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1544 std::tuple<BranchProbability, MachineBasicBlock *> R) {
1545 return std::get<0>(L) > std::get<0>(R);
1547 for (auto &Tup : DupCandidates) {
1548 BranchProbability DupProb;
1549 MachineBasicBlock *Succ;
1550 std::tie(DupProb, Succ) = Tup;
1551 if (DupProb < BestProb)
1552 break;
1553 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1554 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1555 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ)
1556 << ", probability: " << DupProb
1557 << " (Tail Duplicate)\n");
1558 BestSucc.BB = Succ;
1559 BestSucc.ShouldTailDup = true;
1560 break;
1564 if (BestSucc.BB)
1565 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n");
1567 return BestSucc;
1570 /// Select the best block from a worklist.
1572 /// This looks through the provided worklist as a list of candidate basic
1573 /// blocks and select the most profitable one to place. The definition of
1574 /// profitable only really makes sense in the context of a loop. This returns
1575 /// the most frequently visited block in the worklist, which in the case of
1576 /// a loop, is the one most desirable to be physically close to the rest of the
1577 /// loop body in order to improve i-cache behavior.
1579 /// \returns The best block found, or null if none are viable.
1580 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1581 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1582 // Once we need to walk the worklist looking for a candidate, cleanup the
1583 // worklist of already placed entries.
1584 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1585 // some code complexity) into the loop below.
1586 WorkList.erase(llvm::remove_if(WorkList,
1587 [&](MachineBasicBlock *BB) {
1588 return BlockToChain.lookup(BB) == &Chain;
1590 WorkList.end());
1592 if (WorkList.empty())
1593 return nullptr;
1595 bool IsEHPad = WorkList[0]->isEHPad();
1597 MachineBasicBlock *BestBlock = nullptr;
1598 BlockFrequency BestFreq;
1599 for (MachineBasicBlock *MBB : WorkList) {
1600 assert(MBB->isEHPad() == IsEHPad &&
1601 "EHPad mismatch between block and work list.");
1603 BlockChain &SuccChain = *BlockToChain[MBB];
1604 if (&SuccChain == &Chain)
1605 continue;
1607 assert(SuccChain.UnscheduledPredecessors == 0 &&
1608 "Found CFG-violating block");
1610 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1611 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
1612 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1614 // For ehpad, we layout the least probable first as to avoid jumping back
1615 // from least probable landingpads to more probable ones.
1617 // FIXME: Using probability is probably (!) not the best way to achieve
1618 // this. We should probably have a more principled approach to layout
1619 // cleanup code.
1621 // The goal is to get:
1623 // +--------------------------+
1624 // | V
1625 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1627 // Rather than:
1629 // +-------------------------------------+
1630 // V |
1631 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1632 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1633 continue;
1635 BestBlock = MBB;
1636 BestFreq = CandidateFreq;
1639 return BestBlock;
1642 /// Retrieve the first unplaced basic block.
1644 /// This routine is called when we are unable to use the CFG to walk through
1645 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1646 /// We walk through the function's blocks in order, starting from the
1647 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1648 /// re-scanning the entire sequence on repeated calls to this routine.
1649 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1650 const BlockChain &PlacedChain,
1651 MachineFunction::iterator &PrevUnplacedBlockIt,
1652 const BlockFilterSet *BlockFilter) {
1653 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1654 ++I) {
1655 if (BlockFilter && !BlockFilter->count(&*I))
1656 continue;
1657 if (BlockToChain[&*I] != &PlacedChain) {
1658 PrevUnplacedBlockIt = I;
1659 // Now select the head of the chain to which the unplaced block belongs
1660 // as the block to place. This will force the entire chain to be placed,
1661 // and satisfies the requirements of merging chains.
1662 return *BlockToChain[&*I]->begin();
1665 return nullptr;
1668 void MachineBlockPlacement::fillWorkLists(
1669 const MachineBasicBlock *MBB,
1670 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1671 const BlockFilterSet *BlockFilter = nullptr) {
1672 BlockChain &Chain = *BlockToChain[MBB];
1673 if (!UpdatedPreds.insert(&Chain).second)
1674 return;
1676 assert(
1677 Chain.UnscheduledPredecessors == 0 &&
1678 "Attempting to place block with unscheduled predecessors in worklist.");
1679 for (MachineBasicBlock *ChainBB : Chain) {
1680 assert(BlockToChain[ChainBB] == &Chain &&
1681 "Block in chain doesn't match BlockToChain map.");
1682 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1683 if (BlockFilter && !BlockFilter->count(Pred))
1684 continue;
1685 if (BlockToChain[Pred] == &Chain)
1686 continue;
1687 ++Chain.UnscheduledPredecessors;
1691 if (Chain.UnscheduledPredecessors != 0)
1692 return;
1694 MachineBasicBlock *BB = *Chain.begin();
1695 if (BB->isEHPad())
1696 EHPadWorkList.push_back(BB);
1697 else
1698 BlockWorkList.push_back(BB);
1701 void MachineBlockPlacement::buildChain(
1702 const MachineBasicBlock *HeadBB, BlockChain &Chain,
1703 BlockFilterSet *BlockFilter) {
1704 assert(HeadBB && "BB must not be null.\n");
1705 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1706 MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1708 const MachineBasicBlock *LoopHeaderBB = HeadBB;
1709 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1710 MachineBasicBlock *BB = *std::prev(Chain.end());
1711 while (true) {
1712 assert(BB && "null block found at end of chain in loop.");
1713 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1714 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1717 // Look for the best viable successor if there is one to place immediately
1718 // after this block.
1719 auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1720 MachineBasicBlock* BestSucc = Result.BB;
1721 bool ShouldTailDup = Result.ShouldTailDup;
1722 if (allowTailDupPlacement())
1723 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc));
1725 // If an immediate successor isn't available, look for the best viable
1726 // block among those we've identified as not violating the loop's CFG at
1727 // this point. This won't be a fallthrough, but it will increase locality.
1728 if (!BestSucc)
1729 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1730 if (!BestSucc)
1731 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1733 if (!BestSucc) {
1734 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1735 if (!BestSucc)
1736 break;
1738 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1739 "layout successor until the CFG reduces\n");
1742 // Placement may have changed tail duplication opportunities.
1743 // Check for that now.
1744 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1745 // If the chosen successor was duplicated into all its predecessors,
1746 // don't bother laying it out, just go round the loop again with BB as
1747 // the chain end.
1748 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1749 BlockFilter, PrevUnplacedBlockIt))
1750 continue;
1753 // Place this block, updating the datastructures to reflect its placement.
1754 BlockChain &SuccChain = *BlockToChain[BestSucc];
1755 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1756 // we selected a successor that didn't fit naturally into the CFG.
1757 SuccChain.UnscheduledPredecessors = 0;
1758 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1759 << getBlockName(BestSucc) << "\n");
1760 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1761 Chain.merge(BestSucc, &SuccChain);
1762 BB = *std::prev(Chain.end());
1765 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1766 << getBlockName(*Chain.begin()) << "\n");
1769 // If bottom of block BB has only one successor OldTop, in most cases it is
1770 // profitable to move it before OldTop, except the following case:
1772 // -->OldTop<-
1773 // | . |
1774 // | . |
1775 // | . |
1776 // ---Pred |
1777 // | |
1778 // BB-----
1780 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1781 // layout the other successor below it, so it can't reduce taken branch.
1782 // In this case we keep its original layout.
1783 bool
1784 MachineBlockPlacement::canMoveBottomBlockToTop(
1785 const MachineBasicBlock *BottomBlock,
1786 const MachineBasicBlock *OldTop) {
1787 if (BottomBlock->pred_size() != 1)
1788 return true;
1789 MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1790 if (Pred->succ_size() != 2)
1791 return true;
1793 MachineBasicBlock *OtherBB = *Pred->succ_begin();
1794 if (OtherBB == BottomBlock)
1795 OtherBB = *Pred->succ_rbegin();
1796 if (OtherBB == OldTop)
1797 return false;
1799 return true;
1802 // Find out the possible fall through frequence to the top of a loop.
1803 BlockFrequency
1804 MachineBlockPlacement::TopFallThroughFreq(
1805 const MachineBasicBlock *Top,
1806 const BlockFilterSet &LoopBlockSet) {
1807 BlockFrequency MaxFreq = 0;
1808 for (MachineBasicBlock *Pred : Top->predecessors()) {
1809 BlockChain *PredChain = BlockToChain[Pred];
1810 if (!LoopBlockSet.count(Pred) &&
1811 (!PredChain || Pred == *std::prev(PredChain->end()))) {
1812 // Found a Pred block can be placed before Top.
1813 // Check if Top is the best successor of Pred.
1814 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1815 bool TopOK = true;
1816 for (MachineBasicBlock *Succ : Pred->successors()) {
1817 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1818 BlockChain *SuccChain = BlockToChain[Succ];
1819 // Check if Succ can be placed after Pred.
1820 // Succ should not be in any chain, or it is the head of some chain.
1821 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1822 (!SuccChain || Succ == *SuccChain->begin())) {
1823 TopOK = false;
1824 break;
1827 if (TopOK) {
1828 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1829 MBPI->getEdgeProbability(Pred, Top);
1830 if (EdgeFreq > MaxFreq)
1831 MaxFreq = EdgeFreq;
1835 return MaxFreq;
1838 // Compute the fall through gains when move NewTop before OldTop.
1840 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1841 // marked as "+" are increased fallthrough, this function computes
1843 // SUM(increased fallthrough) - SUM(decreased fallthrough)
1845 // |
1846 // | -
1847 // V
1848 // --->OldTop
1849 // | .
1850 // | .
1851 // +| . +
1852 // | Pred --->
1853 // | |-
1854 // | V
1855 // --- NewTop <---
1856 // |-
1857 // V
1859 BlockFrequency
1860 MachineBlockPlacement::FallThroughGains(
1861 const MachineBasicBlock *NewTop,
1862 const MachineBasicBlock *OldTop,
1863 const MachineBasicBlock *ExitBB,
1864 const BlockFilterSet &LoopBlockSet) {
1865 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1866 BlockFrequency FallThrough2Exit = 0;
1867 if (ExitBB)
1868 FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1869 MBPI->getEdgeProbability(NewTop, ExitBB);
1870 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1871 MBPI->getEdgeProbability(NewTop, OldTop);
1873 // Find the best Pred of NewTop.
1874 MachineBasicBlock *BestPred = nullptr;
1875 BlockFrequency FallThroughFromPred = 0;
1876 for (MachineBasicBlock *Pred : NewTop->predecessors()) {
1877 if (!LoopBlockSet.count(Pred))
1878 continue;
1879 BlockChain *PredChain = BlockToChain[Pred];
1880 if (!PredChain || Pred == *std::prev(PredChain->end())) {
1881 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1882 MBPI->getEdgeProbability(Pred, NewTop);
1883 if (EdgeFreq > FallThroughFromPred) {
1884 FallThroughFromPred = EdgeFreq;
1885 BestPred = Pred;
1890 // If NewTop is not placed after Pred, another successor can be placed
1891 // after Pred.
1892 BlockFrequency NewFreq = 0;
1893 if (BestPred) {
1894 for (MachineBasicBlock *Succ : BestPred->successors()) {
1895 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
1896 continue;
1897 if (ComputedEdges.find(Succ) != ComputedEdges.end())
1898 continue;
1899 BlockChain *SuccChain = BlockToChain[Succ];
1900 if ((SuccChain && (Succ != *SuccChain->begin())) ||
1901 (SuccChain == BlockToChain[BestPred]))
1902 continue;
1903 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
1904 MBPI->getEdgeProbability(BestPred, Succ);
1905 if (EdgeFreq > NewFreq)
1906 NewFreq = EdgeFreq;
1908 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
1909 MBPI->getEdgeProbability(BestPred, NewTop);
1910 if (NewFreq > OrigEdgeFreq) {
1911 // If NewTop is not the best successor of Pred, then Pred doesn't
1912 // fallthrough to NewTop. So there is no FallThroughFromPred and
1913 // NewFreq.
1914 NewFreq = 0;
1915 FallThroughFromPred = 0;
1919 BlockFrequency Result = 0;
1920 BlockFrequency Gains = BackEdgeFreq + NewFreq;
1921 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
1922 FallThroughFromPred;
1923 if (Gains > Lost)
1924 Result = Gains - Lost;
1925 return Result;
1928 /// Helper function of findBestLoopTop. Find the best loop top block
1929 /// from predecessors of old top.
1931 /// Look for a block which is strictly better than the old top for laying
1932 /// out before the old top of the loop. This looks for only two patterns:
1934 /// 1. a block has only one successor, the old loop top
1936 /// Because such a block will always result in an unconditional jump,
1937 /// rotating it in front of the old top is always profitable.
1939 /// 2. a block has two successors, one is old top, another is exit
1940 /// and it has more than one predecessors
1942 /// If it is below one of its predecessors P, only P can fall through to
1943 /// it, all other predecessors need a jump to it, and another conditional
1944 /// jump to loop header. If it is moved before loop header, all its
1945 /// predecessors jump to it, then fall through to loop header. So all its
1946 /// predecessors except P can reduce one taken branch.
1947 /// At the same time, move it before old top increases the taken branch
1948 /// to loop exit block, so the reduced taken branch will be compared with
1949 /// the increased taken branch to the loop exit block.
1950 MachineBasicBlock *
1951 MachineBlockPlacement::findBestLoopTopHelper(
1952 MachineBasicBlock *OldTop,
1953 const MachineLoop &L,
1954 const BlockFilterSet &LoopBlockSet) {
1955 // Check that the header hasn't been fused with a preheader block due to
1956 // crazy branches. If it has, we need to start with the header at the top to
1957 // prevent pulling the preheader into the loop body.
1958 BlockChain &HeaderChain = *BlockToChain[OldTop];
1959 if (!LoopBlockSet.count(*HeaderChain.begin()))
1960 return OldTop;
1962 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
1963 << "\n");
1965 BlockFrequency BestGains = 0;
1966 MachineBasicBlock *BestPred = nullptr;
1967 for (MachineBasicBlock *Pred : OldTop->predecessors()) {
1968 if (!LoopBlockSet.count(Pred))
1969 continue;
1970 if (Pred == L.getHeader())
1971 continue;
1972 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has "
1973 << Pred->succ_size() << " successors, ";
1974 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1975 if (Pred->succ_size() > 2)
1976 continue;
1978 MachineBasicBlock *OtherBB = nullptr;
1979 if (Pred->succ_size() == 2) {
1980 OtherBB = *Pred->succ_begin();
1981 if (OtherBB == OldTop)
1982 OtherBB = *Pred->succ_rbegin();
1985 if (!canMoveBottomBlockToTop(Pred, OldTop))
1986 continue;
1988 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
1989 LoopBlockSet);
1990 if ((Gains > 0) && (Gains > BestGains ||
1991 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
1992 BestPred = Pred;
1993 BestGains = Gains;
1997 // If no direct predecessor is fine, just use the loop header.
1998 if (!BestPred) {
1999 LLVM_DEBUG(dbgs() << " final top unchanged\n");
2000 return OldTop;
2003 // Walk backwards through any straight line of predecessors.
2004 while (BestPred->pred_size() == 1 &&
2005 (*BestPred->pred_begin())->succ_size() == 1 &&
2006 *BestPred->pred_begin() != L.getHeader())
2007 BestPred = *BestPred->pred_begin();
2009 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
2010 return BestPred;
2013 /// Find the best loop top block for layout.
2015 /// This function iteratively calls findBestLoopTopHelper, until no new better
2016 /// BB can be found.
2017 MachineBasicBlock *
2018 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2019 const BlockFilterSet &LoopBlockSet) {
2020 // Placing the latch block before the header may introduce an extra branch
2021 // that skips this block the first time the loop is executed, which we want
2022 // to avoid when optimising for size.
2023 // FIXME: in theory there is a case that does not introduce a new branch,
2024 // i.e. when the layout predecessor does not fallthrough to the loop header.
2025 // In practice this never happens though: there always seems to be a preheader
2026 // that can fallthrough and that is also placed before the header.
2027 if (F->getFunction().hasOptSize())
2028 return L.getHeader();
2030 MachineBasicBlock *OldTop = nullptr;
2031 MachineBasicBlock *NewTop = L.getHeader();
2032 while (NewTop != OldTop) {
2033 OldTop = NewTop;
2034 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2035 if (NewTop != OldTop)
2036 ComputedEdges[NewTop] = { OldTop, false };
2038 return NewTop;
2041 /// Find the best loop exiting block for layout.
2043 /// This routine implements the logic to analyze the loop looking for the best
2044 /// block to layout at the top of the loop. Typically this is done to maximize
2045 /// fallthrough opportunities.
2046 MachineBasicBlock *
2047 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2048 const BlockFilterSet &LoopBlockSet,
2049 BlockFrequency &ExitFreq) {
2050 // We don't want to layout the loop linearly in all cases. If the loop header
2051 // is just a normal basic block in the loop, we want to look for what block
2052 // within the loop is the best one to layout at the top. However, if the loop
2053 // header has be pre-merged into a chain due to predecessors not having
2054 // analyzable branches, *and* the predecessor it is merged with is *not* part
2055 // of the loop, rotating the header into the middle of the loop will create
2056 // a non-contiguous range of blocks which is Very Bad. So start with the
2057 // header and only rotate if safe.
2058 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2059 if (!LoopBlockSet.count(*HeaderChain.begin()))
2060 return nullptr;
2062 BlockFrequency BestExitEdgeFreq;
2063 unsigned BestExitLoopDepth = 0;
2064 MachineBasicBlock *ExitingBB = nullptr;
2065 // If there are exits to outer loops, loop rotation can severely limit
2066 // fallthrough opportunities unless it selects such an exit. Keep a set of
2067 // blocks where rotating to exit with that block will reach an outer loop.
2068 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2070 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2071 << getBlockName(L.getHeader()) << "\n");
2072 for (MachineBasicBlock *MBB : L.getBlocks()) {
2073 BlockChain &Chain = *BlockToChain[MBB];
2074 // Ensure that this block is at the end of a chain; otherwise it could be
2075 // mid-way through an inner loop or a successor of an unanalyzable branch.
2076 if (MBB != *std::prev(Chain.end()))
2077 continue;
2079 // Now walk the successors. We need to establish whether this has a viable
2080 // exiting successor and whether it has a viable non-exiting successor.
2081 // We store the old exiting state and restore it if a viable looping
2082 // successor isn't found.
2083 MachineBasicBlock *OldExitingBB = ExitingBB;
2084 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2085 bool HasLoopingSucc = false;
2086 for (MachineBasicBlock *Succ : MBB->successors()) {
2087 if (Succ->isEHPad())
2088 continue;
2089 if (Succ == MBB)
2090 continue;
2091 BlockChain &SuccChain = *BlockToChain[Succ];
2092 // Don't split chains, either this chain or the successor's chain.
2093 if (&Chain == &SuccChain) {
2094 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2095 << getBlockName(Succ) << " (chain conflict)\n");
2096 continue;
2099 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2100 if (LoopBlockSet.count(Succ)) {
2101 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
2102 << getBlockName(Succ) << " (" << SuccProb << ")\n");
2103 HasLoopingSucc = true;
2104 continue;
2107 unsigned SuccLoopDepth = 0;
2108 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2109 SuccLoopDepth = ExitLoop->getLoopDepth();
2110 if (ExitLoop->contains(&L))
2111 BlocksExitingToOuterLoop.insert(MBB);
2114 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2115 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2116 << getBlockName(Succ) << " [L:" << SuccLoopDepth
2117 << "] (";
2118 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2119 // Note that we bias this toward an existing layout successor to retain
2120 // incoming order in the absence of better information. The exit must have
2121 // a frequency higher than the current exit before we consider breaking
2122 // the layout.
2123 BranchProbability Bias(100 - ExitBlockBias, 100);
2124 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2125 ExitEdgeFreq > BestExitEdgeFreq ||
2126 (MBB->isLayoutSuccessor(Succ) &&
2127 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2128 BestExitEdgeFreq = ExitEdgeFreq;
2129 ExitingBB = MBB;
2133 if (!HasLoopingSucc) {
2134 // Restore the old exiting state, no viable looping successor was found.
2135 ExitingBB = OldExitingBB;
2136 BestExitEdgeFreq = OldBestExitEdgeFreq;
2139 // Without a candidate exiting block or with only a single block in the
2140 // loop, just use the loop header to layout the loop.
2141 if (!ExitingBB) {
2142 LLVM_DEBUG(
2143 dbgs() << " No other candidate exit blocks, using loop header\n");
2144 return nullptr;
2146 if (L.getNumBlocks() == 1) {
2147 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
2148 return nullptr;
2151 // Also, if we have exit blocks which lead to outer loops but didn't select
2152 // one of them as the exiting block we are rotating toward, disable loop
2153 // rotation altogether.
2154 if (!BlocksExitingToOuterLoop.empty() &&
2155 !BlocksExitingToOuterLoop.count(ExitingBB))
2156 return nullptr;
2158 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB)
2159 << "\n");
2160 ExitFreq = BestExitEdgeFreq;
2161 return ExitingBB;
2164 /// Check if there is a fallthrough to loop header Top.
2166 /// 1. Look for a Pred that can be layout before Top.
2167 /// 2. Check if Top is the most possible successor of Pred.
2168 bool
2169 MachineBlockPlacement::hasViableTopFallthrough(
2170 const MachineBasicBlock *Top,
2171 const BlockFilterSet &LoopBlockSet) {
2172 for (MachineBasicBlock *Pred : Top->predecessors()) {
2173 BlockChain *PredChain = BlockToChain[Pred];
2174 if (!LoopBlockSet.count(Pred) &&
2175 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2176 // Found a Pred block can be placed before Top.
2177 // Check if Top is the best successor of Pred.
2178 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2179 bool TopOK = true;
2180 for (MachineBasicBlock *Succ : Pred->successors()) {
2181 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2182 BlockChain *SuccChain = BlockToChain[Succ];
2183 // Check if Succ can be placed after Pred.
2184 // Succ should not be in any chain, or it is the head of some chain.
2185 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2186 TopOK = false;
2187 break;
2190 if (TopOK)
2191 return true;
2194 return false;
2197 /// Attempt to rotate an exiting block to the bottom of the loop.
2199 /// Once we have built a chain, try to rotate it to line up the hot exit block
2200 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2201 /// branches. For example, if the loop has fallthrough into its header and out
2202 /// of its bottom already, don't rotate it.
2203 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2204 const MachineBasicBlock *ExitingBB,
2205 BlockFrequency ExitFreq,
2206 const BlockFilterSet &LoopBlockSet) {
2207 if (!ExitingBB)
2208 return;
2210 MachineBasicBlock *Top = *LoopChain.begin();
2211 MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2213 // If ExitingBB is already the last one in a chain then nothing to do.
2214 if (Bottom == ExitingBB)
2215 return;
2217 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2219 // If the header has viable fallthrough, check whether the current loop
2220 // bottom is a viable exiting block. If so, bail out as rotating will
2221 // introduce an unnecessary branch.
2222 if (ViableTopFallthrough) {
2223 for (MachineBasicBlock *Succ : Bottom->successors()) {
2224 BlockChain *SuccChain = BlockToChain[Succ];
2225 if (!LoopBlockSet.count(Succ) &&
2226 (!SuccChain || Succ == *SuccChain->begin()))
2227 return;
2230 // Rotate will destroy the top fallthrough, we need to ensure the new exit
2231 // frequency is larger than top fallthrough.
2232 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2233 if (FallThrough2Top >= ExitFreq)
2234 return;
2237 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2238 if (ExitIt == LoopChain.end())
2239 return;
2241 // Rotating a loop exit to the bottom when there is a fallthrough to top
2242 // trades the entry fallthrough for an exit fallthrough.
2243 // If there is no bottom->top edge, but the chosen exit block does have
2244 // a fallthrough, we break that fallthrough for nothing in return.
2246 // Let's consider an example. We have a built chain of basic blocks
2247 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2248 // By doing a rotation we get
2249 // Bk+1, ..., Bn, B1, ..., Bk
2250 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2251 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2252 // It might be compensated by fallthrough Bn -> B1.
2253 // So we have a condition to avoid creation of extra branch by loop rotation.
2254 // All below must be true to avoid loop rotation:
2255 // If there is a fallthrough to top (B1)
2256 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2257 // There is no fallthrough from bottom (Bn) to top (B1).
2258 // Please note that there is no exit fallthrough from Bn because we checked it
2259 // above.
2260 if (ViableTopFallthrough) {
2261 assert(std::next(ExitIt) != LoopChain.end() &&
2262 "Exit should not be last BB");
2263 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2264 if (ExitingBB->isSuccessor(NextBlockInChain))
2265 if (!Bottom->isSuccessor(Top))
2266 return;
2269 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2270 << " at bottom\n");
2271 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2274 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2276 /// With profile data, we can determine the cost in terms of missed fall through
2277 /// opportunities when rotating a loop chain and select the best rotation.
2278 /// Basically, there are three kinds of cost to consider for each rotation:
2279 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2280 /// the loop to the loop header.
2281 /// 2. The possibly missed fall through edges (if they exist) from the loop
2282 /// exits to BB out of the loop.
2283 /// 3. The missed fall through edge (if it exists) from the last BB to the
2284 /// first BB in the loop chain.
2285 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2286 /// We select the best rotation with the smallest cost.
2287 void MachineBlockPlacement::rotateLoopWithProfile(
2288 BlockChain &LoopChain, const MachineLoop &L,
2289 const BlockFilterSet &LoopBlockSet) {
2290 auto RotationPos = LoopChain.end();
2292 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2294 // A utility lambda that scales up a block frequency by dividing it by a
2295 // branch probability which is the reciprocal of the scale.
2296 auto ScaleBlockFrequency = [](BlockFrequency Freq,
2297 unsigned Scale) -> BlockFrequency {
2298 if (Scale == 0)
2299 return 0;
2300 // Use operator / between BlockFrequency and BranchProbability to implement
2301 // saturating multiplication.
2302 return Freq / BranchProbability(1, Scale);
2305 // Compute the cost of the missed fall-through edge to the loop header if the
2306 // chain head is not the loop header. As we only consider natural loops with
2307 // single header, this computation can be done only once.
2308 BlockFrequency HeaderFallThroughCost(0);
2309 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2310 for (auto *Pred : ChainHeaderBB->predecessors()) {
2311 BlockChain *PredChain = BlockToChain[Pred];
2312 if (!LoopBlockSet.count(Pred) &&
2313 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2314 auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2315 MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2316 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2317 // If the predecessor has only an unconditional jump to the header, we
2318 // need to consider the cost of this jump.
2319 if (Pred->succ_size() == 1)
2320 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2321 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2325 // Here we collect all exit blocks in the loop, and for each exit we find out
2326 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2327 // as the sum of frequencies of exit edges we collect here, excluding the exit
2328 // edge from the tail of the loop chain.
2329 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2330 for (auto BB : LoopChain) {
2331 auto LargestExitEdgeProb = BranchProbability::getZero();
2332 for (auto *Succ : BB->successors()) {
2333 BlockChain *SuccChain = BlockToChain[Succ];
2334 if (!LoopBlockSet.count(Succ) &&
2335 (!SuccChain || Succ == *SuccChain->begin())) {
2336 auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2337 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2340 if (LargestExitEdgeProb > BranchProbability::getZero()) {
2341 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2342 ExitsWithFreq.emplace_back(BB, ExitFreq);
2346 // In this loop we iterate every block in the loop chain and calculate the
2347 // cost assuming the block is the head of the loop chain. When the loop ends,
2348 // we should have found the best candidate as the loop chain's head.
2349 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2350 EndIter = LoopChain.end();
2351 Iter != EndIter; Iter++, TailIter++) {
2352 // TailIter is used to track the tail of the loop chain if the block we are
2353 // checking (pointed by Iter) is the head of the chain.
2354 if (TailIter == LoopChain.end())
2355 TailIter = LoopChain.begin();
2357 auto TailBB = *TailIter;
2359 // Calculate the cost by putting this BB to the top.
2360 BlockFrequency Cost = 0;
2362 // If the current BB is the loop header, we need to take into account the
2363 // cost of the missed fall through edge from outside of the loop to the
2364 // header.
2365 if (Iter != LoopChain.begin())
2366 Cost += HeaderFallThroughCost;
2368 // Collect the loop exit cost by summing up frequencies of all exit edges
2369 // except the one from the chain tail.
2370 for (auto &ExitWithFreq : ExitsWithFreq)
2371 if (TailBB != ExitWithFreq.first)
2372 Cost += ExitWithFreq.second;
2374 // The cost of breaking the once fall-through edge from the tail to the top
2375 // of the loop chain. Here we need to consider three cases:
2376 // 1. If the tail node has only one successor, then we will get an
2377 // additional jmp instruction. So the cost here is (MisfetchCost +
2378 // JumpInstCost) * tail node frequency.
2379 // 2. If the tail node has two successors, then we may still get an
2380 // additional jmp instruction if the layout successor after the loop
2381 // chain is not its CFG successor. Note that the more frequently executed
2382 // jmp instruction will be put ahead of the other one. Assume the
2383 // frequency of those two branches are x and y, where x is the frequency
2384 // of the edge to the chain head, then the cost will be
2385 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2386 // 3. If the tail node has more than two successors (this rarely happens),
2387 // we won't consider any additional cost.
2388 if (TailBB->isSuccessor(*Iter)) {
2389 auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2390 if (TailBB->succ_size() == 1)
2391 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2392 MisfetchCost + JumpInstCost);
2393 else if (TailBB->succ_size() == 2) {
2394 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2395 auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2396 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2397 ? TailBBFreq * TailToHeadProb.getCompl()
2398 : TailToHeadFreq;
2399 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2400 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2404 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2405 << getBlockName(*Iter)
2406 << " to the top: " << Cost.getFrequency() << "\n");
2408 if (Cost < SmallestRotationCost) {
2409 SmallestRotationCost = Cost;
2410 RotationPos = Iter;
2414 if (RotationPos != LoopChain.end()) {
2415 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2416 << " to the top\n");
2417 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2421 /// Collect blocks in the given loop that are to be placed.
2423 /// When profile data is available, exclude cold blocks from the returned set;
2424 /// otherwise, collect all blocks in the loop.
2425 MachineBlockPlacement::BlockFilterSet
2426 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2427 BlockFilterSet LoopBlockSet;
2429 // Filter cold blocks off from LoopBlockSet when profile data is available.
2430 // Collect the sum of frequencies of incoming edges to the loop header from
2431 // outside. If we treat the loop as a super block, this is the frequency of
2432 // the loop. Then for each block in the loop, we calculate the ratio between
2433 // its frequency and the frequency of the loop block. When it is too small,
2434 // don't add it to the loop chain. If there are outer loops, then this block
2435 // will be merged into the first outer loop chain for which this block is not
2436 // cold anymore. This needs precise profile data and we only do this when
2437 // profile data is available.
2438 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2439 BlockFrequency LoopFreq(0);
2440 for (auto LoopPred : L.getHeader()->predecessors())
2441 if (!L.contains(LoopPred))
2442 LoopFreq += MBFI->getBlockFreq(LoopPred) *
2443 MBPI->getEdgeProbability(LoopPred, L.getHeader());
2445 for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2446 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2447 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2448 continue;
2449 LoopBlockSet.insert(LoopBB);
2451 } else
2452 LoopBlockSet.insert(L.block_begin(), L.block_end());
2454 return LoopBlockSet;
2457 /// Forms basic block chains from the natural loop structures.
2459 /// These chains are designed to preserve the existing *structure* of the code
2460 /// as much as possible. We can then stitch the chains together in a way which
2461 /// both preserves the topological structure and minimizes taken conditional
2462 /// branches.
2463 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2464 // First recurse through any nested loops, building chains for those inner
2465 // loops.
2466 for (const MachineLoop *InnerLoop : L)
2467 buildLoopChains(*InnerLoop);
2469 assert(BlockWorkList.empty() &&
2470 "BlockWorkList not empty when starting to build loop chains.");
2471 assert(EHPadWorkList.empty() &&
2472 "EHPadWorkList not empty when starting to build loop chains.");
2473 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2475 // Check if we have profile data for this function. If yes, we will rotate
2476 // this loop by modeling costs more precisely which requires the profile data
2477 // for better layout.
2478 bool RotateLoopWithProfile =
2479 ForcePreciseRotationCost ||
2480 (PreciseRotationCost && F->getFunction().hasProfileData());
2482 // First check to see if there is an obviously preferable top block for the
2483 // loop. This will default to the header, but may end up as one of the
2484 // predecessors to the header if there is one which will result in strictly
2485 // fewer branches in the loop body.
2486 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2488 // If we selected just the header for the loop top, look for a potentially
2489 // profitable exit block in the event that rotating the loop can eliminate
2490 // branches by placing an exit edge at the bottom.
2492 // Loops are processed innermost to uttermost, make sure we clear
2493 // PreferredLoopExit before processing a new loop.
2494 PreferredLoopExit = nullptr;
2495 BlockFrequency ExitFreq;
2496 if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2497 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2499 BlockChain &LoopChain = *BlockToChain[LoopTop];
2501 // FIXME: This is a really lame way of walking the chains in the loop: we
2502 // walk the blocks, and use a set to prevent visiting a particular chain
2503 // twice.
2504 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2505 assert(LoopChain.UnscheduledPredecessors == 0 &&
2506 "LoopChain should not have unscheduled predecessors.");
2507 UpdatedPreds.insert(&LoopChain);
2509 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2510 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2512 buildChain(LoopTop, LoopChain, &LoopBlockSet);
2514 if (RotateLoopWithProfile)
2515 rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2516 else
2517 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2519 LLVM_DEBUG({
2520 // Crash at the end so we get all of the debugging output first.
2521 bool BadLoop = false;
2522 if (LoopChain.UnscheduledPredecessors) {
2523 BadLoop = true;
2524 dbgs() << "Loop chain contains a block without its preds placed!\n"
2525 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2526 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2528 for (MachineBasicBlock *ChainBB : LoopChain) {
2529 dbgs() << " ... " << getBlockName(ChainBB) << "\n";
2530 if (!LoopBlockSet.remove(ChainBB)) {
2531 // We don't mark the loop as bad here because there are real situations
2532 // where this can occur. For example, with an unanalyzable fallthrough
2533 // from a loop block to a non-loop block or vice versa.
2534 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2535 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2536 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2537 << " Bad block: " << getBlockName(ChainBB) << "\n";
2541 if (!LoopBlockSet.empty()) {
2542 BadLoop = true;
2543 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2544 dbgs() << "Loop contains blocks never placed into a chain!\n"
2545 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2546 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2547 << " Bad block: " << getBlockName(LoopBB) << "\n";
2549 assert(!BadLoop && "Detected problems with the placement of this loop.");
2552 BlockWorkList.clear();
2553 EHPadWorkList.clear();
2556 void MachineBlockPlacement::buildCFGChains() {
2557 // Ensure that every BB in the function has an associated chain to simplify
2558 // the assumptions of the remaining algorithm.
2559 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2560 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2561 ++FI) {
2562 MachineBasicBlock *BB = &*FI;
2563 BlockChain *Chain =
2564 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2565 // Also, merge any blocks which we cannot reason about and must preserve
2566 // the exact fallthrough behavior for.
2567 while (true) {
2568 Cond.clear();
2569 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2570 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2571 break;
2573 MachineFunction::iterator NextFI = std::next(FI);
2574 MachineBasicBlock *NextBB = &*NextFI;
2575 // Ensure that the layout successor is a viable block, as we know that
2576 // fallthrough is a possibility.
2577 assert(NextFI != FE && "Can't fallthrough past the last block.");
2578 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2579 << getBlockName(BB) << " -> " << getBlockName(NextBB)
2580 << "\n");
2581 Chain->merge(NextBB, nullptr);
2582 #ifndef NDEBUG
2583 BlocksWithUnanalyzableExits.insert(&*BB);
2584 #endif
2585 FI = NextFI;
2586 BB = NextBB;
2590 // Build any loop-based chains.
2591 PreferredLoopExit = nullptr;
2592 for (MachineLoop *L : *MLI)
2593 buildLoopChains(*L);
2595 assert(BlockWorkList.empty() &&
2596 "BlockWorkList should be empty before building final chain.");
2597 assert(EHPadWorkList.empty() &&
2598 "EHPadWorkList should be empty before building final chain.");
2600 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2601 for (MachineBasicBlock &MBB : *F)
2602 fillWorkLists(&MBB, UpdatedPreds);
2604 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2605 buildChain(&F->front(), FunctionChain);
2607 #ifndef NDEBUG
2608 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2609 #endif
2610 LLVM_DEBUG({
2611 // Crash at the end so we get all of the debugging output first.
2612 bool BadFunc = false;
2613 FunctionBlockSetType FunctionBlockSet;
2614 for (MachineBasicBlock &MBB : *F)
2615 FunctionBlockSet.insert(&MBB);
2617 for (MachineBasicBlock *ChainBB : FunctionChain)
2618 if (!FunctionBlockSet.erase(ChainBB)) {
2619 BadFunc = true;
2620 dbgs() << "Function chain contains a block not in the function!\n"
2621 << " Bad block: " << getBlockName(ChainBB) << "\n";
2624 if (!FunctionBlockSet.empty()) {
2625 BadFunc = true;
2626 for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2627 dbgs() << "Function contains blocks never placed into a chain!\n"
2628 << " Bad block: " << getBlockName(RemainingBB) << "\n";
2630 assert(!BadFunc && "Detected problems with the block placement.");
2633 // Splice the blocks into place.
2634 MachineFunction::iterator InsertPos = F->begin();
2635 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2636 for (MachineBasicBlock *ChainBB : FunctionChain) {
2637 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2638 : " ... ")
2639 << getBlockName(ChainBB) << "\n");
2640 if (InsertPos != MachineFunction::iterator(ChainBB))
2641 F->splice(InsertPos, ChainBB);
2642 else
2643 ++InsertPos;
2645 // Update the terminator of the previous block.
2646 if (ChainBB == *FunctionChain.begin())
2647 continue;
2648 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2650 // FIXME: It would be awesome of updateTerminator would just return rather
2651 // than assert when the branch cannot be analyzed in order to remove this
2652 // boiler plate.
2653 Cond.clear();
2654 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2656 #ifndef NDEBUG
2657 if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2658 // Given the exact block placement we chose, we may actually not _need_ to
2659 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2660 // do that at this point is a bug.
2661 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2662 !PrevBB->canFallThrough()) &&
2663 "Unexpected block with un-analyzable fallthrough!");
2664 Cond.clear();
2665 TBB = FBB = nullptr;
2667 #endif
2669 // The "PrevBB" is not yet updated to reflect current code layout, so,
2670 // o. it may fall-through to a block without explicit "goto" instruction
2671 // before layout, and no longer fall-through it after layout; or
2672 // o. just opposite.
2674 // analyzeBranch() may return erroneous value for FBB when these two
2675 // situations take place. For the first scenario FBB is mistakenly set NULL;
2676 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2677 // mistakenly pointing to "*BI".
2678 // Thus, if the future change needs to use FBB before the layout is set, it
2679 // has to correct FBB first by using the code similar to the following:
2681 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2682 // PrevBB->updateTerminator();
2683 // Cond.clear();
2684 // TBB = FBB = nullptr;
2685 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2686 // // FIXME: This should never take place.
2687 // TBB = FBB = nullptr;
2688 // }
2689 // }
2690 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
2691 PrevBB->updateTerminator();
2694 // Fixup the last block.
2695 Cond.clear();
2696 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2697 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
2698 F->back().updateTerminator();
2700 BlockWorkList.clear();
2701 EHPadWorkList.clear();
2704 void MachineBlockPlacement::optimizeBranches() {
2705 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2706 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2708 // Now that all the basic blocks in the chain have the proper layout,
2709 // make a final call to AnalyzeBranch with AllowModify set.
2710 // Indeed, the target may be able to optimize the branches in a way we
2711 // cannot because all branches may not be analyzable.
2712 // E.g., the target may be able to remove an unconditional branch to
2713 // a fallthrough when it occurs after predicated terminators.
2714 SmallVector<MachineBasicBlock*, 4> EmptyBB;
2715 for (MachineBasicBlock *ChainBB : FunctionChain) {
2716 Cond.clear();
2717 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2718 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2719 // If PrevBB has a two-way branch, try to re-order the branches
2720 // such that we branch to the successor with higher probability first.
2721 if (TBB && !Cond.empty() && FBB &&
2722 MBPI->getEdgeProbability(ChainBB, FBB) >
2723 MBPI->getEdgeProbability(ChainBB, TBB) &&
2724 !TII->reverseBranchCondition(Cond)) {
2725 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2726 << getBlockName(ChainBB) << "\n");
2727 LLVM_DEBUG(dbgs() << " Edge probability: "
2728 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2729 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2730 DebugLoc dl; // FIXME: this is nowhere
2731 TII->removeBranch(*ChainBB);
2732 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2733 ChainBB->updateTerminator();
2734 } else if (Cond.empty() && TBB && ChainBB != TBB && !TBB->empty() &&
2735 !TBB->canFallThrough()) {
2736 // When ChainBB is unconditional branch to the TBB, and TBB has no
2737 // fallthrough predecessor and fallthrough successor, try to merge
2738 // ChainBB and TBB. This is legal under the one of following conditions:
2739 // 1. ChainBB is empty except for an unconditional branch.
2740 // 2. TBB has only one predecessor.
2741 MachineFunction::iterator I(TBB);
2742 if (((TBB == &*F->begin()) || !std::prev(I)->canFallThrough()) &&
2743 (TailDup.isSimpleBB(ChainBB) || (TBB->pred_size() == 1))) {
2744 TII->removeBranch(*ChainBB);
2745 ChainBB->removeSuccessor(TBB);
2747 // Update the CFG.
2748 while (!TBB->pred_empty()) {
2749 MachineBasicBlock *Pred = *(TBB->pred_end() - 1);
2750 Pred->ReplaceUsesOfBlockWith(TBB, ChainBB);
2753 while (!TBB->succ_empty()) {
2754 MachineBasicBlock *Succ = *(TBB->succ_end() - 1);
2755 ChainBB->addSuccessor(Succ, MBPI->getEdgeProbability(TBB, Succ));
2756 TBB->removeSuccessor(Succ);
2759 // Move all the instructions of TBB to ChainBB.
2760 ChainBB->splice(ChainBB->end(), TBB, TBB->begin(), TBB->end());
2761 EmptyBB.push_back(TBB);
2767 for (auto BB: EmptyBB) {
2768 MLI->removeBlock(BB);
2769 FunctionChain.remove(BB);
2770 BlockToChain.erase(BB);
2771 F->erase(BB);
2775 void MachineBlockPlacement::alignBlocks() {
2776 // Walk through the backedges of the function now that we have fully laid out
2777 // the basic blocks and align the destination of each backedge. We don't rely
2778 // exclusively on the loop info here so that we can align backedges in
2779 // unnatural CFGs and backedges that were introduced purely because of the
2780 // loop rotations done during this layout pass.
2781 if (F->getFunction().hasMinSize() ||
2782 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2783 return;
2784 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2785 if (FunctionChain.begin() == FunctionChain.end())
2786 return; // Empty chain.
2788 const BranchProbability ColdProb(1, 5); // 20%
2789 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2790 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2791 for (MachineBasicBlock *ChainBB : FunctionChain) {
2792 if (ChainBB == *FunctionChain.begin())
2793 continue;
2795 // Don't align non-looping basic blocks. These are unlikely to execute
2796 // enough times to matter in practice. Note that we'll still handle
2797 // unnatural CFGs inside of a natural outer loop (the common case) and
2798 // rotated loops.
2799 MachineLoop *L = MLI->getLoopFor(ChainBB);
2800 if (!L)
2801 continue;
2803 unsigned Align = TLI->getPrefLoopAlignment(L);
2804 if (!Align)
2805 continue; // Don't care about loop alignment.
2807 // If the block is cold relative to the function entry don't waste space
2808 // aligning it.
2809 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2810 if (Freq < WeightedEntryFreq)
2811 continue;
2813 // If the block is cold relative to its loop header, don't align it
2814 // regardless of what edges into the block exist.
2815 MachineBasicBlock *LoopHeader = L->getHeader();
2816 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2817 if (Freq < (LoopHeaderFreq * ColdProb))
2818 continue;
2820 // Check for the existence of a non-layout predecessor which would benefit
2821 // from aligning this block.
2822 MachineBasicBlock *LayoutPred =
2823 &*std::prev(MachineFunction::iterator(ChainBB));
2825 // Force alignment if all the predecessors are jumps. We already checked
2826 // that the block isn't cold above.
2827 if (!LayoutPred->isSuccessor(ChainBB)) {
2828 ChainBB->setAlignment(Align);
2829 continue;
2832 // Align this block if the layout predecessor's edge into this block is
2833 // cold relative to the block. When this is true, other predecessors make up
2834 // all of the hot entries into the block and thus alignment is likely to be
2835 // important.
2836 BranchProbability LayoutProb =
2837 MBPI->getEdgeProbability(LayoutPred, ChainBB);
2838 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2839 if (LayoutEdgeFreq <= (Freq * ColdProb))
2840 ChainBB->setAlignment(Align);
2844 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2845 /// it was duplicated into its chain predecessor and removed.
2846 /// \p BB - Basic block that may be duplicated.
2848 /// \p LPred - Chosen layout predecessor of \p BB.
2849 /// Updated to be the chain end if LPred is removed.
2850 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2851 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2852 /// Used to identify which blocks to update predecessor
2853 /// counts.
2854 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2855 /// chosen in the given order due to unnatural CFG
2856 /// only needed if \p BB is removed and
2857 /// \p PrevUnplacedBlockIt pointed to \p BB.
2858 /// @return true if \p BB was removed.
2859 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2860 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2861 const MachineBasicBlock *LoopHeaderBB,
2862 BlockChain &Chain, BlockFilterSet *BlockFilter,
2863 MachineFunction::iterator &PrevUnplacedBlockIt) {
2864 bool Removed, DuplicatedToLPred;
2865 bool DuplicatedToOriginalLPred;
2866 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2867 PrevUnplacedBlockIt,
2868 DuplicatedToLPred);
2869 if (!Removed)
2870 return false;
2871 DuplicatedToOriginalLPred = DuplicatedToLPred;
2872 // Iteratively try to duplicate again. It can happen that a block that is
2873 // duplicated into is still small enough to be duplicated again.
2874 // No need to call markBlockSuccessors in this case, as the blocks being
2875 // duplicated from here on are already scheduled.
2876 // Note that DuplicatedToLPred always implies Removed.
2877 while (DuplicatedToLPred) {
2878 assert(Removed && "Block must have been removed to be duplicated into its "
2879 "layout predecessor.");
2880 MachineBasicBlock *DupBB, *DupPred;
2881 // The removal callback causes Chain.end() to be updated when a block is
2882 // removed. On the first pass through the loop, the chain end should be the
2883 // same as it was on function entry. On subsequent passes, because we are
2884 // duplicating the block at the end of the chain, if it is removed the
2885 // chain will have shrunk by one block.
2886 BlockChain::iterator ChainEnd = Chain.end();
2887 DupBB = *(--ChainEnd);
2888 // Now try to duplicate again.
2889 if (ChainEnd == Chain.begin())
2890 break;
2891 DupPred = *std::prev(ChainEnd);
2892 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2893 PrevUnplacedBlockIt,
2894 DuplicatedToLPred);
2896 // If BB was duplicated into LPred, it is now scheduled. But because it was
2897 // removed, markChainSuccessors won't be called for its chain. Instead we
2898 // call markBlockSuccessors for LPred to achieve the same effect. This must go
2899 // at the end because repeating the tail duplication can increase the number
2900 // of unscheduled predecessors.
2901 LPred = *std::prev(Chain.end());
2902 if (DuplicatedToOriginalLPred)
2903 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2904 return true;
2907 /// Tail duplicate \p BB into (some) predecessors if profitable.
2908 /// \p BB - Basic block that may be duplicated
2909 /// \p LPred - Chosen layout predecessor of \p BB
2910 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2911 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2912 /// Used to identify which blocks to update predecessor
2913 /// counts.
2914 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2915 /// chosen in the given order due to unnatural CFG
2916 /// only needed if \p BB is removed and
2917 /// \p PrevUnplacedBlockIt pointed to \p BB.
2918 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2919 /// only be true if the block was removed.
2920 /// \return - True if the block was duplicated into all preds and removed.
2921 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2922 MachineBasicBlock *BB, MachineBasicBlock *LPred,
2923 BlockChain &Chain, BlockFilterSet *BlockFilter,
2924 MachineFunction::iterator &PrevUnplacedBlockIt,
2925 bool &DuplicatedToLPred) {
2926 DuplicatedToLPred = false;
2927 if (!shouldTailDuplicate(BB))
2928 return false;
2930 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
2931 << "\n");
2933 // This has to be a callback because none of it can be done after
2934 // BB is deleted.
2935 bool Removed = false;
2936 auto RemovalCallback =
2937 [&](MachineBasicBlock *RemBB) {
2938 // Signal to outer function
2939 Removed = true;
2941 // Conservative default.
2942 bool InWorkList = true;
2943 // Remove from the Chain and Chain Map
2944 if (BlockToChain.count(RemBB)) {
2945 BlockChain *Chain = BlockToChain[RemBB];
2946 InWorkList = Chain->UnscheduledPredecessors == 0;
2947 Chain->remove(RemBB);
2948 BlockToChain.erase(RemBB);
2951 // Handle the unplaced block iterator
2952 if (&(*PrevUnplacedBlockIt) == RemBB) {
2953 PrevUnplacedBlockIt++;
2956 // Handle the Work Lists
2957 if (InWorkList) {
2958 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
2959 if (RemBB->isEHPad())
2960 RemoveList = EHPadWorkList;
2961 RemoveList.erase(
2962 llvm::remove_if(RemoveList,
2963 [RemBB](MachineBasicBlock *BB) {
2964 return BB == RemBB;
2966 RemoveList.end());
2969 // Handle the filter set
2970 if (BlockFilter) {
2971 BlockFilter->remove(RemBB);
2974 // Remove the block from loop info.
2975 MLI->removeBlock(RemBB);
2976 if (RemBB == PreferredLoopExit)
2977 PreferredLoopExit = nullptr;
2979 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
2980 << getBlockName(RemBB) << "\n");
2982 auto RemovalCallbackRef =
2983 function_ref<void(MachineBasicBlock*)>(RemovalCallback);
2985 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
2986 bool IsSimple = TailDup.isSimpleBB(BB);
2987 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
2988 &DuplicatedPreds, &RemovalCallbackRef);
2990 // Update UnscheduledPredecessors to reflect tail-duplication.
2991 DuplicatedToLPred = false;
2992 for (MachineBasicBlock *Pred : DuplicatedPreds) {
2993 // We're only looking for unscheduled predecessors that match the filter.
2994 BlockChain* PredChain = BlockToChain[Pred];
2995 if (Pred == LPred)
2996 DuplicatedToLPred = true;
2997 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
2998 || PredChain == &Chain)
2999 continue;
3000 for (MachineBasicBlock *NewSucc : Pred->successors()) {
3001 if (BlockFilter && !BlockFilter->count(NewSucc))
3002 continue;
3003 BlockChain *NewChain = BlockToChain[NewSucc];
3004 if (NewChain != &Chain && NewChain != PredChain)
3005 NewChain->UnscheduledPredecessors++;
3008 return Removed;
3011 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3012 if (skipFunction(MF.getFunction()))
3013 return false;
3015 // Check for single-block functions and skip them.
3016 if (std::next(MF.begin()) == MF.end())
3017 return false;
3019 F = &MF;
3020 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3021 MBFI = std::make_unique<BranchFolder::MBFIWrapper>(
3022 getAnalysis<MachineBlockFrequencyInfo>());
3023 MLI = &getAnalysis<MachineLoopInfo>();
3024 TII = MF.getSubtarget().getInstrInfo();
3025 TLI = MF.getSubtarget().getTargetLowering();
3026 MPDT = nullptr;
3028 // Initialize PreferredLoopExit to nullptr here since it may never be set if
3029 // there are no MachineLoops.
3030 PreferredLoopExit = nullptr;
3032 assert(BlockToChain.empty() &&
3033 "BlockToChain map should be empty before starting placement.");
3034 assert(ComputedEdges.empty() &&
3035 "Computed Edge map should be empty before starting placement.");
3037 unsigned TailDupSize = TailDupPlacementThreshold;
3038 // If only the aggressive threshold is explicitly set, use it.
3039 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3040 TailDupPlacementThreshold.getNumOccurrences() == 0)
3041 TailDupSize = TailDupPlacementAggressiveThreshold;
3043 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3044 // For aggressive optimization, we can adjust some thresholds to be less
3045 // conservative.
3046 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3047 // At O3 we should be more willing to copy blocks for tail duplication. This
3048 // increases size pressure, so we only do it at O3
3049 // Do this unless only the regular threshold is explicitly set.
3050 if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3051 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3052 TailDupSize = TailDupPlacementAggressiveThreshold;
3055 if (allowTailDupPlacement()) {
3056 MPDT = &getAnalysis<MachinePostDominatorTree>();
3057 if (MF.getFunction().hasOptSize())
3058 TailDupSize = 1;
3059 bool PreRegAlloc = false;
3060 TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize);
3061 precomputeTriangleChains();
3064 buildCFGChains();
3066 // Changing the layout can create new tail merging opportunities.
3067 // TailMerge can create jump into if branches that make CFG irreducible for
3068 // HW that requires structured CFG.
3069 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3070 PassConfig->getEnableTailMerge() &&
3071 BranchFoldPlacement;
3072 // No tail merging opportunities if the block number is less than four.
3073 if (MF.size() > 3 && EnableTailMerge) {
3074 unsigned TailMergeSize = TailDupSize + 1;
3075 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
3076 *MBPI, TailMergeSize);
3078 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
3079 getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
3080 /*AfterPlacement=*/true)) {
3081 // Redo the layout if tail merging creates/removes/moves blocks.
3082 BlockToChain.clear();
3083 ComputedEdges.clear();
3084 // Must redo the post-dominator tree if blocks were changed.
3085 if (MPDT)
3086 MPDT->runOnMachineFunction(MF);
3087 ChainAllocator.DestroyAll();
3088 buildCFGChains();
3092 // optimizeBranches() may change the blocks, but we haven't updated the
3093 // post-dominator tree. Because the post-dominator tree won't be used after
3094 // this function and this pass don't preserve the post-dominator tree.
3095 optimizeBranches();
3096 alignBlocks();
3098 BlockToChain.clear();
3099 ComputedEdges.clear();
3100 ChainAllocator.DestroyAll();
3102 if (AlignAllBlock)
3103 // Align all of the blocks in the function to a specific alignment.
3104 for (MachineBasicBlock &MBB : MF)
3105 MBB.setAlignment(AlignAllBlock);
3106 else if (AlignAllNonFallThruBlocks) {
3107 // Align all of the blocks that have no fall-through predecessors to a
3108 // specific alignment.
3109 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3110 auto LayoutPred = std::prev(MBI);
3111 if (!LayoutPred->isSuccessor(&*MBI))
3112 MBI->setAlignment(AlignAllNonFallThruBlocks);
3115 if (ViewBlockLayoutWithBFI != GVDT_None &&
3116 (ViewBlockFreqFuncName.empty() ||
3117 F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3118 MBFI->view("MBP." + MF.getName(), false);
3122 // We always return true as we have no way to track whether the final order
3123 // differs from the original order.
3124 return true;
3127 namespace {
3129 /// A pass to compute block placement statistics.
3131 /// A separate pass to compute interesting statistics for evaluating block
3132 /// placement. This is separate from the actual placement pass so that they can
3133 /// be computed in the absence of any placement transformations or when using
3134 /// alternative placement strategies.
3135 class MachineBlockPlacementStats : public MachineFunctionPass {
3136 /// A handle to the branch probability pass.
3137 const MachineBranchProbabilityInfo *MBPI;
3139 /// A handle to the function-wide block frequency pass.
3140 const MachineBlockFrequencyInfo *MBFI;
3142 public:
3143 static char ID; // Pass identification, replacement for typeid
3145 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3146 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3149 bool runOnMachineFunction(MachineFunction &F) override;
3151 void getAnalysisUsage(AnalysisUsage &AU) const override {
3152 AU.addRequired<MachineBranchProbabilityInfo>();
3153 AU.addRequired<MachineBlockFrequencyInfo>();
3154 AU.setPreservesAll();
3155 MachineFunctionPass::getAnalysisUsage(AU);
3159 } // end anonymous namespace
3161 char MachineBlockPlacementStats::ID = 0;
3163 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3165 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3166 "Basic Block Placement Stats", false, false)
3167 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3168 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3169 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3170 "Basic Block Placement Stats", false, false)
3172 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3173 // Check for single-block functions and skip them.
3174 if (std::next(F.begin()) == F.end())
3175 return false;
3177 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3178 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3180 for (MachineBasicBlock &MBB : F) {
3181 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3182 Statistic &NumBranches =
3183 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3184 Statistic &BranchTakenFreq =
3185 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3186 for (MachineBasicBlock *Succ : MBB.successors()) {
3187 // Skip if this successor is a fallthrough.
3188 if (MBB.isLayoutSuccessor(Succ))
3189 continue;
3191 BlockFrequency EdgeFreq =
3192 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3193 ++NumBranches;
3194 BranchTakenFreq += EdgeFreq.getFrequency();
3198 return false;