1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
25 //===----------------------------------------------------------------------===//
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachinePostDominators.h"
44 #include "llvm/CodeGen/TailDuplicator.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Allocator.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
73 #define DEBUG_TYPE "block-placement"
75 STATISTIC(NumCondBranches
, "Number of conditional branches");
76 STATISTIC(NumUncondBranches
, "Number of unconditional branches");
77 STATISTIC(CondBranchTakenFreq
,
78 "Potential frequency of taking conditional branches");
79 STATISTIC(UncondBranchTakenFreq
,
80 "Potential frequency of taking unconditional branches");
82 static cl::opt
<unsigned> AlignAllBlock("align-all-blocks",
83 cl::desc("Force the alignment of all "
84 "blocks in the function."),
85 cl::init(0), cl::Hidden
);
87 static cl::opt
<unsigned> AlignAllNonFallThruBlocks(
88 "align-all-nofallthru-blocks",
89 cl::desc("Force the alignment of all "
90 "blocks that have no fall-through predecessors (i.e. don't add "
91 "nops that are executed)."),
92 cl::init(0), cl::Hidden
);
94 // FIXME: Find a good default for this flag and remove the flag.
95 static cl::opt
<unsigned> ExitBlockBias(
96 "block-placement-exit-block-bias",
97 cl::desc("Block frequency percentage a loop exit block needs "
98 "over the original exit to be considered the new exit."),
99 cl::init(0), cl::Hidden
);
102 // - Outlining: placement of a basic block outside the chain or hot path.
104 static cl::opt
<unsigned> LoopToColdBlockRatio(
105 "loop-to-cold-block-ratio",
106 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
107 "(frequency of block) is greater than this ratio"),
108 cl::init(5), cl::Hidden
);
110 static cl::opt
<bool> ForceLoopColdBlock(
111 "force-loop-cold-block",
112 cl::desc("Force outlining cold blocks from loops."),
113 cl::init(false), cl::Hidden
);
116 PreciseRotationCost("precise-rotation-cost",
117 cl::desc("Model the cost of loop rotation more "
118 "precisely by using profile data."),
119 cl::init(false), cl::Hidden
);
122 ForcePreciseRotationCost("force-precise-rotation-cost",
123 cl::desc("Force the use of precise cost "
124 "loop rotation strategy."),
125 cl::init(false), cl::Hidden
);
127 static cl::opt
<unsigned> MisfetchCost(
129 cl::desc("Cost that models the probabilistic risk of an instruction "
130 "misfetch due to a jump comparing to falling through, whose cost "
132 cl::init(1), cl::Hidden
);
134 static cl::opt
<unsigned> JumpInstCost("jump-inst-cost",
135 cl::desc("Cost of jump instructions."),
136 cl::init(1), cl::Hidden
);
138 TailDupPlacement("tail-dup-placement",
139 cl::desc("Perform tail duplication during placement. "
140 "Creates more fallthrough opportunites in "
141 "outline branches."),
142 cl::init(true), cl::Hidden
);
145 BranchFoldPlacement("branch-fold-placement",
146 cl::desc("Perform branch folding during placement. "
147 "Reduces code size."),
148 cl::init(true), cl::Hidden
);
150 // Heuristic for tail duplication.
151 static cl::opt
<unsigned> TailDupPlacementThreshold(
152 "tail-dup-placement-threshold",
153 cl::desc("Instruction cutoff for tail duplication during layout. "
154 "Tail merging during layout is forced to have a threshold "
155 "that won't conflict."), cl::init(2),
158 // Heuristic for aggressive tail duplication.
159 static cl::opt
<unsigned> TailDupPlacementAggressiveThreshold(
160 "tail-dup-placement-aggressive-threshold",
161 cl::desc("Instruction cutoff for aggressive tail duplication during "
162 "layout. Used at -O3. Tail merging during layout is forced to "
163 "have a threshold that won't conflict."), cl::init(4),
166 // Heuristic for tail duplication.
167 static cl::opt
<unsigned> TailDupPlacementPenalty(
168 "tail-dup-placement-penalty",
169 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
170 "Copying can increase fallthrough, but it also increases icache "
171 "pressure. This parameter controls the penalty to account for that. "
172 "Percent as integer."),
176 // Heuristic for triangle chains.
177 static cl::opt
<unsigned> TriangleChainCount(
178 "triangle-chain-count",
179 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
180 "triangle tail duplication heuristic to kick in. 0 to disable."),
184 extern cl::opt
<unsigned> StaticLikelyProb
;
185 extern cl::opt
<unsigned> ProfileLikelyProb
;
187 // Internal option used to control BFI display only after MBP pass.
188 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
189 // -view-block-layout-with-bfi=
190 extern cl::opt
<GVDAGType
> ViewBlockLayoutWithBFI
;
192 // Command line option to specify the name of the function for CFG dump
193 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
194 extern cl::opt
<std::string
> ViewBlockFreqFuncName
;
200 /// Type for our function-wide basic block -> block chain mapping.
201 using BlockToChainMapType
= DenseMap
<const MachineBasicBlock
*, BlockChain
*>;
203 /// A chain of blocks which will be laid out contiguously.
205 /// This is the datastructure representing a chain of consecutive blocks that
206 /// are profitable to layout together in order to maximize fallthrough
207 /// probabilities and code locality. We also can use a block chain to represent
208 /// a sequence of basic blocks which have some external (correctness)
209 /// requirement for sequential layout.
211 /// Chains can be built around a single basic block and can be merged to grow
212 /// them. They participate in a block-to-chain mapping, which is updated
213 /// automatically as chains are merged together.
215 /// The sequence of blocks belonging to this chain.
217 /// This is the sequence of blocks for a particular chain. These will be laid
218 /// out in-order within the function.
219 SmallVector
<MachineBasicBlock
*, 4> Blocks
;
221 /// A handle to the function-wide basic block to block chain mapping.
223 /// This is retained in each block chain to simplify the computation of child
224 /// block chains for SCC-formation and iteration. We store the edges to child
225 /// basic blocks, and map them back to their associated chains using this
227 BlockToChainMapType
&BlockToChain
;
230 /// Construct a new BlockChain.
232 /// This builds a new block chain representing a single basic block in the
233 /// function. It also registers itself as the chain that block participates
234 /// in with the BlockToChain mapping.
235 BlockChain(BlockToChainMapType
&BlockToChain
, MachineBasicBlock
*BB
)
236 : Blocks(1, BB
), BlockToChain(BlockToChain
) {
237 assert(BB
&& "Cannot create a chain with a null basic block");
238 BlockToChain
[BB
] = this;
241 /// Iterator over blocks within the chain.
242 using iterator
= SmallVectorImpl
<MachineBasicBlock
*>::iterator
;
243 using const_iterator
= SmallVectorImpl
<MachineBasicBlock
*>::const_iterator
;
245 /// Beginning of blocks within the chain.
246 iterator
begin() { return Blocks
.begin(); }
247 const_iterator
begin() const { return Blocks
.begin(); }
249 /// End of blocks within the chain.
250 iterator
end() { return Blocks
.end(); }
251 const_iterator
end() const { return Blocks
.end(); }
253 bool remove(MachineBasicBlock
* BB
) {
254 for(iterator i
= begin(); i
!= end(); ++i
) {
263 /// Merge a block chain into this one.
265 /// This routine merges a block chain into this one. It takes care of forming
266 /// a contiguous sequence of basic blocks, updating the edge list, and
267 /// updating the block -> chain mapping. It does not free or tear down the
268 /// old chain, but the old chain's block list is no longer valid.
269 void merge(MachineBasicBlock
*BB
, BlockChain
*Chain
) {
270 assert(BB
&& "Can't merge a null block.");
271 assert(!Blocks
.empty() && "Can't merge into an empty chain.");
273 // Fast path in case we don't have a chain already.
275 assert(!BlockToChain
[BB
] &&
276 "Passed chain is null, but BB has entry in BlockToChain.");
277 Blocks
.push_back(BB
);
278 BlockToChain
[BB
] = this;
282 assert(BB
== *Chain
->begin() && "Passed BB is not head of Chain.");
283 assert(Chain
->begin() != Chain
->end());
285 // Update the incoming blocks to point to this chain, and add them to the
287 for (MachineBasicBlock
*ChainBB
: *Chain
) {
288 Blocks
.push_back(ChainBB
);
289 assert(BlockToChain
[ChainBB
] == Chain
&& "Incoming blocks not in chain.");
290 BlockToChain
[ChainBB
] = this;
295 /// Dump the blocks in this chain.
296 LLVM_DUMP_METHOD
void dump() {
297 for (MachineBasicBlock
*MBB
: *this)
302 /// Count of predecessors of any block within the chain which have not
303 /// yet been scheduled. In general, we will delay scheduling this chain
304 /// until those predecessors are scheduled (or we find a sufficiently good
305 /// reason to override this heuristic.) Note that when forming loop chains,
306 /// blocks outside the loop are ignored and treated as if they were already
309 /// Note: This field is reinitialized multiple times - once for each loop,
310 /// and then once for the function as a whole.
311 unsigned UnscheduledPredecessors
= 0;
314 class MachineBlockPlacement
: public MachineFunctionPass
{
315 /// A type for a block filter set.
316 using BlockFilterSet
= SmallSetVector
<const MachineBasicBlock
*, 16>;
318 /// Pair struct containing basic block and taildup profitability
319 struct BlockAndTailDupResult
{
320 MachineBasicBlock
*BB
;
324 /// Triple struct containing edge weight and the edge.
325 struct WeightedEdge
{
326 BlockFrequency Weight
;
327 MachineBasicBlock
*Src
;
328 MachineBasicBlock
*Dest
;
331 /// work lists of blocks that are ready to be laid out
332 SmallVector
<MachineBasicBlock
*, 16> BlockWorkList
;
333 SmallVector
<MachineBasicBlock
*, 16> EHPadWorkList
;
335 /// Edges that have already been computed as optimal.
336 DenseMap
<const MachineBasicBlock
*, BlockAndTailDupResult
> ComputedEdges
;
341 /// A handle to the branch probability pass.
342 const MachineBranchProbabilityInfo
*MBPI
;
344 /// A handle to the function-wide block frequency pass.
345 std::unique_ptr
<BranchFolder::MBFIWrapper
> MBFI
;
347 /// A handle to the loop info.
348 MachineLoopInfo
*MLI
;
350 /// Preferred loop exit.
351 /// Member variable for convenience. It may be removed by duplication deep
352 /// in the call stack.
353 MachineBasicBlock
*PreferredLoopExit
;
355 /// A handle to the target's instruction info.
356 const TargetInstrInfo
*TII
;
358 /// A handle to the target's lowering info.
359 const TargetLoweringBase
*TLI
;
361 /// A handle to the post dominator tree.
362 MachinePostDominatorTree
*MPDT
;
364 /// Duplicator used to duplicate tails during placement.
366 /// Placement decisions can open up new tail duplication opportunities, but
367 /// since tail duplication affects placement decisions of later blocks, it
368 /// must be done inline.
369 TailDuplicator TailDup
;
371 /// Allocator and owner of BlockChain structures.
373 /// We build BlockChains lazily while processing the loop structure of
374 /// a function. To reduce malloc traffic, we allocate them using this
375 /// slab-like allocator, and destroy them after the pass completes. An
376 /// important guarantee is that this allocator produces stable pointers to
378 SpecificBumpPtrAllocator
<BlockChain
> ChainAllocator
;
380 /// Function wide BasicBlock to BlockChain mapping.
382 /// This mapping allows efficiently moving from any given basic block to the
383 /// BlockChain it participates in, if any. We use it to, among other things,
384 /// allow implicitly defining edges between chains as the existing edges
385 /// between basic blocks.
386 DenseMap
<const MachineBasicBlock
*, BlockChain
*> BlockToChain
;
389 /// The set of basic blocks that have terminators that cannot be fully
390 /// analyzed. These basic blocks cannot be re-ordered safely by
391 /// MachineBlockPlacement, and we must preserve physical layout of these
392 /// blocks and their successors through the pass.
393 SmallPtrSet
<MachineBasicBlock
*, 4> BlocksWithUnanalyzableExits
;
396 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
397 /// if the count goes to 0, add them to the appropriate work list.
398 void markChainSuccessors(
399 const BlockChain
&Chain
, const MachineBasicBlock
*LoopHeaderBB
,
400 const BlockFilterSet
*BlockFilter
= nullptr);
402 /// Decrease the UnscheduledPredecessors count for a single block, and
403 /// if the count goes to 0, add them to the appropriate work list.
404 void markBlockSuccessors(
405 const BlockChain
&Chain
, const MachineBasicBlock
*BB
,
406 const MachineBasicBlock
*LoopHeaderBB
,
407 const BlockFilterSet
*BlockFilter
= nullptr);
410 collectViableSuccessors(
411 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
412 const BlockFilterSet
*BlockFilter
,
413 SmallVector
<MachineBasicBlock
*, 4> &Successors
);
414 bool shouldPredBlockBeOutlined(
415 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
416 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
,
417 BranchProbability SuccProb
, BranchProbability HotProb
);
418 bool repeatedlyTailDuplicateBlock(
419 MachineBasicBlock
*BB
, MachineBasicBlock
*&LPred
,
420 const MachineBasicBlock
*LoopHeaderBB
,
421 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
422 MachineFunction::iterator
&PrevUnplacedBlockIt
);
423 bool maybeTailDuplicateBlock(
424 MachineBasicBlock
*BB
, MachineBasicBlock
*LPred
,
425 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
426 MachineFunction::iterator
&PrevUnplacedBlockIt
,
427 bool &DuplicatedToLPred
);
428 bool hasBetterLayoutPredecessor(
429 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
430 const BlockChain
&SuccChain
, BranchProbability SuccProb
,
431 BranchProbability RealSuccProb
, const BlockChain
&Chain
,
432 const BlockFilterSet
*BlockFilter
);
433 BlockAndTailDupResult
selectBestSuccessor(
434 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
435 const BlockFilterSet
*BlockFilter
);
436 MachineBasicBlock
*selectBestCandidateBlock(
437 const BlockChain
&Chain
, SmallVectorImpl
<MachineBasicBlock
*> &WorkList
);
438 MachineBasicBlock
*getFirstUnplacedBlock(
439 const BlockChain
&PlacedChain
,
440 MachineFunction::iterator
&PrevUnplacedBlockIt
,
441 const BlockFilterSet
*BlockFilter
);
443 /// Add a basic block to the work list if it is appropriate.
445 /// If the optional parameter BlockFilter is provided, only MBB
446 /// present in the set will be added to the worklist. If nullptr
447 /// is provided, no filtering occurs.
448 void fillWorkLists(const MachineBasicBlock
*MBB
,
449 SmallPtrSetImpl
<BlockChain
*> &UpdatedPreds
,
450 const BlockFilterSet
*BlockFilter
);
452 void buildChain(const MachineBasicBlock
*BB
, BlockChain
&Chain
,
453 BlockFilterSet
*BlockFilter
= nullptr);
454 bool canMoveBottomBlockToTop(const MachineBasicBlock
*BottomBlock
,
455 const MachineBasicBlock
*OldTop
);
456 bool hasViableTopFallthrough(const MachineBasicBlock
*Top
,
457 const BlockFilterSet
&LoopBlockSet
);
458 BlockFrequency
TopFallThroughFreq(const MachineBasicBlock
*Top
,
459 const BlockFilterSet
&LoopBlockSet
);
460 BlockFrequency
FallThroughGains(const MachineBasicBlock
*NewTop
,
461 const MachineBasicBlock
*OldTop
,
462 const MachineBasicBlock
*ExitBB
,
463 const BlockFilterSet
&LoopBlockSet
);
464 MachineBasicBlock
*findBestLoopTopHelper(MachineBasicBlock
*OldTop
,
465 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
);
466 MachineBasicBlock
*findBestLoopTop(
467 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
);
468 MachineBasicBlock
*findBestLoopExit(
469 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
,
470 BlockFrequency
&ExitFreq
);
471 BlockFilterSet
collectLoopBlockSet(const MachineLoop
&L
);
472 void buildLoopChains(const MachineLoop
&L
);
474 BlockChain
&LoopChain
, const MachineBasicBlock
*ExitingBB
,
475 BlockFrequency ExitFreq
, const BlockFilterSet
&LoopBlockSet
);
476 void rotateLoopWithProfile(
477 BlockChain
&LoopChain
, const MachineLoop
&L
,
478 const BlockFilterSet
&LoopBlockSet
);
479 void buildCFGChains();
480 void optimizeBranches();
482 /// Returns true if a block should be tail-duplicated to increase fallthrough
484 bool shouldTailDuplicate(MachineBasicBlock
*BB
);
485 /// Check the edge frequencies to see if tail duplication will increase
487 bool isProfitableToTailDup(
488 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
489 BranchProbability QProb
,
490 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
492 /// Check for a trellis layout.
493 bool isTrellis(const MachineBasicBlock
*BB
,
494 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
495 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
497 /// Get the best successor given a trellis layout.
498 BlockAndTailDupResult
getBestTrellisSuccessor(
499 const MachineBasicBlock
*BB
,
500 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
501 BranchProbability AdjustedSumProb
, const BlockChain
&Chain
,
502 const BlockFilterSet
*BlockFilter
);
504 /// Get the best pair of non-conflicting edges.
505 static std::pair
<WeightedEdge
, WeightedEdge
> getBestNonConflictingEdges(
506 const MachineBasicBlock
*BB
,
507 MutableArrayRef
<SmallVector
<WeightedEdge
, 8>> Edges
);
509 /// Returns true if a block can tail duplicate into all unplaced
510 /// predecessors. Filters based on loop.
511 bool canTailDuplicateUnplacedPreds(
512 const MachineBasicBlock
*BB
, MachineBasicBlock
*Succ
,
513 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
515 /// Find chains of triangles to tail-duplicate where a global analysis works,
516 /// but a local analysis would not find them.
517 void precomputeTriangleChains();
520 static char ID
; // Pass identification, replacement for typeid
522 MachineBlockPlacement() : MachineFunctionPass(ID
) {
523 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
526 bool runOnMachineFunction(MachineFunction
&F
) override
;
528 bool allowTailDupPlacement() const {
530 return TailDupPlacement
&& !F
->getTarget().requiresStructuredCFG();
533 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
534 AU
.addRequired
<MachineBranchProbabilityInfo
>();
535 AU
.addRequired
<MachineBlockFrequencyInfo
>();
536 if (TailDupPlacement
)
537 AU
.addRequired
<MachinePostDominatorTree
>();
538 AU
.addRequired
<MachineLoopInfo
>();
539 AU
.addRequired
<TargetPassConfig
>();
540 MachineFunctionPass::getAnalysisUsage(AU
);
544 } // end anonymous namespace
546 char MachineBlockPlacement::ID
= 0;
548 char &llvm::MachineBlockPlacementID
= MachineBlockPlacement::ID
;
550 INITIALIZE_PASS_BEGIN(MachineBlockPlacement
, DEBUG_TYPE
,
551 "Branch Probability Basic Block Placement", false, false)
552 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
553 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
554 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree
)
555 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
556 INITIALIZE_PASS_END(MachineBlockPlacement
, DEBUG_TYPE
,
557 "Branch Probability Basic Block Placement", false, false)
560 /// Helper to print the name of a MBB.
562 /// Only used by debug logging.
563 static std::string
getBlockName(const MachineBasicBlock
*BB
) {
565 raw_string_ostream
OS(Result
);
566 OS
<< printMBBReference(*BB
);
567 OS
<< " ('" << BB
->getName() << "')";
573 /// Mark a chain's successors as having one fewer preds.
575 /// When a chain is being merged into the "placed" chain, this routine will
576 /// quickly walk the successors of each block in the chain and mark them as
577 /// having one fewer active predecessor. It also adds any successors of this
578 /// chain which reach the zero-predecessor state to the appropriate worklist.
579 void MachineBlockPlacement::markChainSuccessors(
580 const BlockChain
&Chain
, const MachineBasicBlock
*LoopHeaderBB
,
581 const BlockFilterSet
*BlockFilter
) {
582 // Walk all the blocks in this chain, marking their successors as having
583 // a predecessor placed.
584 for (MachineBasicBlock
*MBB
: Chain
) {
585 markBlockSuccessors(Chain
, MBB
, LoopHeaderBB
, BlockFilter
);
589 /// Mark a single block's successors as having one fewer preds.
591 /// Under normal circumstances, this is only called by markChainSuccessors,
592 /// but if a block that was to be placed is completely tail-duplicated away,
593 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
594 /// for just that block.
595 void MachineBlockPlacement::markBlockSuccessors(
596 const BlockChain
&Chain
, const MachineBasicBlock
*MBB
,
597 const MachineBasicBlock
*LoopHeaderBB
, const BlockFilterSet
*BlockFilter
) {
598 // Add any successors for which this is the only un-placed in-loop
599 // predecessor to the worklist as a viable candidate for CFG-neutral
600 // placement. No subsequent placement of this block will violate the CFG
601 // shape, so we get to use heuristics to choose a favorable placement.
602 for (MachineBasicBlock
*Succ
: MBB
->successors()) {
603 if (BlockFilter
&& !BlockFilter
->count(Succ
))
605 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
606 // Disregard edges within a fixed chain, or edges to the loop header.
607 if (&Chain
== &SuccChain
|| Succ
== LoopHeaderBB
)
610 // This is a cross-chain edge that is within the loop, so decrement the
611 // loop predecessor count of the destination chain.
612 if (SuccChain
.UnscheduledPredecessors
== 0 ||
613 --SuccChain
.UnscheduledPredecessors
> 0)
616 auto *NewBB
= *SuccChain
.begin();
617 if (NewBB
->isEHPad())
618 EHPadWorkList
.push_back(NewBB
);
620 BlockWorkList
.push_back(NewBB
);
624 /// This helper function collects the set of successors of block
625 /// \p BB that are allowed to be its layout successors, and return
626 /// the total branch probability of edges from \p BB to those
628 BranchProbability
MachineBlockPlacement::collectViableSuccessors(
629 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
630 const BlockFilterSet
*BlockFilter
,
631 SmallVector
<MachineBasicBlock
*, 4> &Successors
) {
632 // Adjust edge probabilities by excluding edges pointing to blocks that is
633 // either not in BlockFilter or is already in the current chain. Consider the
642 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
643 // A->C is chosen as a fall-through, D won't be selected as a successor of C
644 // due to CFG constraint (the probability of C->D is not greater than
645 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
646 // when calculating the probability of C->D, D will be selected and we
647 // will get A C D B as the layout of this loop.
648 auto AdjustedSumProb
= BranchProbability::getOne();
649 for (MachineBasicBlock
*Succ
: BB
->successors()) {
650 bool SkipSucc
= false;
651 if (Succ
->isEHPad() || (BlockFilter
&& !BlockFilter
->count(Succ
))) {
654 BlockChain
*SuccChain
= BlockToChain
[Succ
];
655 if (SuccChain
== &Chain
) {
657 } else if (Succ
!= *SuccChain
->begin()) {
658 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ
)
659 << " -> Mid chain!\n");
664 AdjustedSumProb
-= MBPI
->getEdgeProbability(BB
, Succ
);
666 Successors
.push_back(Succ
);
669 return AdjustedSumProb
;
672 /// The helper function returns the branch probability that is adjusted
673 /// or normalized over the new total \p AdjustedSumProb.
674 static BranchProbability
675 getAdjustedProbability(BranchProbability OrigProb
,
676 BranchProbability AdjustedSumProb
) {
677 BranchProbability SuccProb
;
678 uint32_t SuccProbN
= OrigProb
.getNumerator();
679 uint32_t SuccProbD
= AdjustedSumProb
.getNumerator();
680 if (SuccProbN
>= SuccProbD
)
681 SuccProb
= BranchProbability::getOne();
683 SuccProb
= BranchProbability(SuccProbN
, SuccProbD
);
688 /// Check if \p BB has exactly the successors in \p Successors.
690 hasSameSuccessors(MachineBasicBlock
&BB
,
691 SmallPtrSetImpl
<const MachineBasicBlock
*> &Successors
) {
692 if (BB
.succ_size() != Successors
.size())
694 // We don't want to count self-loops
695 if (Successors
.count(&BB
))
697 for (MachineBasicBlock
*Succ
: BB
.successors())
698 if (!Successors
.count(Succ
))
703 /// Check if a block should be tail duplicated to increase fallthrough
705 /// \p BB Block to check.
706 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock
*BB
) {
707 // Blocks with single successors don't create additional fallthrough
708 // opportunities. Don't duplicate them. TODO: When conditional exits are
709 // analyzable, allow them to be duplicated.
710 bool IsSimple
= TailDup
.isSimpleBB(BB
);
712 if (BB
->succ_size() == 1)
714 return TailDup
.shouldTailDuplicate(IsSimple
, *BB
);
717 /// Compare 2 BlockFrequency's with a small penalty for \p A.
718 /// In order to be conservative, we apply a X% penalty to account for
719 /// increased icache pressure and static heuristics. For small frequencies
720 /// we use only the numerators to improve accuracy. For simplicity, we assume the
721 /// penalty is less than 100%
722 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
723 static bool greaterWithBias(BlockFrequency A
, BlockFrequency B
,
724 uint64_t EntryFreq
) {
725 BranchProbability
ThresholdProb(TailDupPlacementPenalty
, 100);
726 BlockFrequency Gain
= A
- B
;
727 return (Gain
/ ThresholdProb
).getFrequency() >= EntryFreq
;
730 /// Check the edge frequencies to see if tail duplication will increase
731 /// fallthroughs. It only makes sense to call this function when
732 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
733 /// always locally profitable if we would have picked \p Succ without
734 /// considering duplication.
735 bool MachineBlockPlacement::isProfitableToTailDup(
736 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
737 BranchProbability QProb
,
738 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
739 // We need to do a probability calculation to make sure this is profitable.
740 // First: does succ have a successor that post-dominates? This affects the
741 // calculation. The 2 relevant cases are:
756 // '=' : Branch taken for that CFG edge
757 // In the second case, Placing Succ while duplicating it into C prevents the
758 // fallthrough of Succ into either D or PDom, because they now have C as an
759 // unplaced predecessor
761 // Start by figuring out which case we fall into
762 MachineBasicBlock
*PDom
= nullptr;
763 SmallVector
<MachineBasicBlock
*, 4> SuccSuccs
;
764 // Only scan the relevant successors
765 auto AdjustedSuccSumProb
=
766 collectViableSuccessors(Succ
, Chain
, BlockFilter
, SuccSuccs
);
767 BranchProbability PProb
= MBPI
->getEdgeProbability(BB
, Succ
);
768 auto BBFreq
= MBFI
->getBlockFreq(BB
);
769 auto SuccFreq
= MBFI
->getBlockFreq(Succ
);
770 BlockFrequency P
= BBFreq
* PProb
;
771 BlockFrequency Qout
= BBFreq
* QProb
;
772 uint64_t EntryFreq
= MBFI
->getEntryFreq();
773 // If there are no more successors, it is profitable to copy, as it strictly
774 // increases fallthrough.
775 if (SuccSuccs
.size() == 0)
776 return greaterWithBias(P
, Qout
, EntryFreq
);
778 auto BestSuccSucc
= BranchProbability::getZero();
779 // Find the PDom or the best Succ if no PDom exists.
780 for (MachineBasicBlock
*SuccSucc
: SuccSuccs
) {
781 auto Prob
= MBPI
->getEdgeProbability(Succ
, SuccSucc
);
782 if (Prob
> BestSuccSucc
)
785 if (MPDT
->dominates(SuccSucc
, Succ
)) {
790 // For the comparisons, we need to know Succ's best incoming edge that isn't
792 auto SuccBestPred
= BlockFrequency(0);
793 for (MachineBasicBlock
*SuccPred
: Succ
->predecessors()) {
794 if (SuccPred
== Succ
|| SuccPred
== BB
795 || BlockToChain
[SuccPred
] == &Chain
796 || (BlockFilter
&& !BlockFilter
->count(SuccPred
)))
798 auto Freq
= MBFI
->getBlockFreq(SuccPred
)
799 * MBPI
->getEdgeProbability(SuccPred
, Succ
);
800 if (Freq
> SuccBestPred
)
803 // Qin is Succ's best unplaced incoming edge that isn't BB
804 BlockFrequency Qin
= SuccBestPred
;
805 // If it doesn't have a post-dominating successor, here is the calculation:
817 // '=' : Branch taken for that CFG edge
818 // Cost in the first case is: P + V
819 // For this calculation, we always assume P > Qout. If Qout > P
820 // The result of this function will be ignored at the caller.
821 // Let F = SuccFreq - Qin
822 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
824 if (PDom
== nullptr || !Succ
->isSuccessor(PDom
)) {
825 BranchProbability UProb
= BestSuccSucc
;
826 BranchProbability VProb
= AdjustedSuccSumProb
- UProb
;
827 BlockFrequency F
= SuccFreq
- Qin
;
828 BlockFrequency V
= SuccFreq
* VProb
;
829 BlockFrequency QinU
= std::min(Qin
, F
) * UProb
;
830 BlockFrequency BaseCost
= P
+ V
;
831 BlockFrequency DupCost
= Qout
+ QinU
+ std::max(Qin
, F
) * VProb
;
832 return greaterWithBias(BaseCost
, DupCost
, EntryFreq
);
834 BranchProbability UProb
= MBPI
->getEdgeProbability(Succ
, PDom
);
835 BranchProbability VProb
= AdjustedSuccSumProb
- UProb
;
836 BlockFrequency U
= SuccFreq
* UProb
;
837 BlockFrequency V
= SuccFreq
* VProb
;
838 BlockFrequency F
= SuccFreq
- Qin
;
839 // If there is a post-dominating successor, here is the calculation:
841 // | \Qout | \ | \Qout | \
843 // = C' |P C = C' |P C
844 // | /Qin | | | /Qin | |
845 // | / | C' (+Succ) | / | C' (+Succ)
846 // Succ Succ /| Succ Succ /|
847 // | \ V | \/ | | \ V | \/ |
848 // |U \ |U /\ =? |U = |U /\ |
849 // = D = = =?| | D | = =|
854 // '=' : Branch taken for that CFG edge
855 // The cost for taken branches in the first case is P + U
856 // Let F = SuccFreq - Qin
857 // The cost in the second case (assuming independence), given the layout:
858 // BB, Succ, (C+Succ), D, Dom or the layout:
859 // BB, Succ, D, Dom, (C+Succ)
860 // is Qout + max(F, Qin) * U + min(F, Qin)
861 // compare P + U vs Qout + P * U + Qin.
863 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
865 // For the 3rd case, the cost is P + 2 * V
866 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
867 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
868 if (UProb
> AdjustedSuccSumProb
/ 2 &&
869 !hasBetterLayoutPredecessor(Succ
, PDom
, *BlockToChain
[PDom
], UProb
, UProb
,
872 return greaterWithBias(
873 (P
+ V
), (Qout
+ std::max(Qin
, F
) * VProb
+ std::min(Qin
, F
) * UProb
),
876 return greaterWithBias((P
+ U
),
877 (Qout
+ std::min(Qin
, F
) * AdjustedSuccSumProb
+
878 std::max(Qin
, F
) * UProb
),
882 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
883 /// successors form the lower part of a trellis. A successor set S forms the
884 /// lower part of a trellis if all of the predecessors of S are either in S or
885 /// have all of S as successors. We ignore trellises where BB doesn't have 2
886 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
887 /// are very uncommon and complex to compute optimally. Allowing edges within S
888 /// is not strictly a trellis, but the same algorithm works, so we allow it.
889 bool MachineBlockPlacement::isTrellis(
890 const MachineBasicBlock
*BB
,
891 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
892 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
893 // Technically BB could form a trellis with branching factor higher than 2.
894 // But that's extremely uncommon.
895 if (BB
->succ_size() != 2 || ViableSuccs
.size() != 2)
898 SmallPtrSet
<const MachineBasicBlock
*, 2> Successors(BB
->succ_begin(),
900 // To avoid reviewing the same predecessors twice.
901 SmallPtrSet
<const MachineBasicBlock
*, 8> SeenPreds
;
903 for (MachineBasicBlock
*Succ
: ViableSuccs
) {
905 for (auto SuccPred
: Succ
->predecessors()) {
906 // Allow triangle successors, but don't count them.
907 if (Successors
.count(SuccPred
)) {
908 // Make sure that it is actually a triangle.
909 for (MachineBasicBlock
*CheckSucc
: SuccPred
->successors())
910 if (!Successors
.count(CheckSucc
))
914 const BlockChain
*PredChain
= BlockToChain
[SuccPred
];
915 if (SuccPred
== BB
|| (BlockFilter
&& !BlockFilter
->count(SuccPred
)) ||
916 PredChain
== &Chain
|| PredChain
== BlockToChain
[Succ
])
919 // Perform the successor check only once.
920 if (!SeenPreds
.insert(SuccPred
).second
)
922 if (!hasSameSuccessors(*SuccPred
, Successors
))
925 // If one of the successors has only BB as a predecessor, it is not a
933 /// Pick the highest total weight pair of edges that can both be laid out.
934 /// The edges in \p Edges[0] are assumed to have a different destination than
935 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
936 /// the individual highest weight edges to the 2 different destinations, or in
937 /// case of a conflict, one of them should be replaced with a 2nd best edge.
938 std::pair
<MachineBlockPlacement::WeightedEdge
,
939 MachineBlockPlacement::WeightedEdge
>
940 MachineBlockPlacement::getBestNonConflictingEdges(
941 const MachineBasicBlock
*BB
,
942 MutableArrayRef
<SmallVector
<MachineBlockPlacement::WeightedEdge
, 8>>
944 // Sort the edges, and then for each successor, find the best incoming
945 // predecessor. If the best incoming predecessors aren't the same,
946 // then that is clearly the best layout. If there is a conflict, one of the
947 // successors will have to fallthrough from the second best predecessor. We
948 // compare which combination is better overall.
950 // Sort for highest frequency.
951 auto Cmp
= [](WeightedEdge A
, WeightedEdge B
) { return A
.Weight
> B
.Weight
; };
953 llvm::stable_sort(Edges
[0], Cmp
);
954 llvm::stable_sort(Edges
[1], Cmp
);
955 auto BestA
= Edges
[0].begin();
956 auto BestB
= Edges
[1].begin();
957 // Arrange for the correct answer to be in BestA and BestB
958 // If the 2 best edges don't conflict, the answer is already there.
959 if (BestA
->Src
== BestB
->Src
) {
960 // Compare the total fallthrough of (Best + Second Best) for both pairs
961 auto SecondBestA
= std::next(BestA
);
962 auto SecondBestB
= std::next(BestB
);
963 BlockFrequency BestAScore
= BestA
->Weight
+ SecondBestB
->Weight
;
964 BlockFrequency BestBScore
= BestB
->Weight
+ SecondBestA
->Weight
;
965 if (BestAScore
< BestBScore
)
970 // Arrange for the BB edge to be in BestA if it exists.
971 if (BestB
->Src
== BB
)
972 std::swap(BestA
, BestB
);
973 return std::make_pair(*BestA
, *BestB
);
976 /// Get the best successor from \p BB based on \p BB being part of a trellis.
977 /// We only handle trellises with 2 successors, so the algorithm is
978 /// straightforward: Find the best pair of edges that don't conflict. We find
979 /// the best incoming edge for each successor in the trellis. If those conflict,
980 /// we consider which of them should be replaced with the second best.
981 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
982 /// comes from \p BB, it will be in \p BestEdges[0]
983 MachineBlockPlacement::BlockAndTailDupResult
984 MachineBlockPlacement::getBestTrellisSuccessor(
985 const MachineBasicBlock
*BB
,
986 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
987 BranchProbability AdjustedSumProb
, const BlockChain
&Chain
,
988 const BlockFilterSet
*BlockFilter
) {
990 BlockAndTailDupResult Result
= {nullptr, false};
991 SmallPtrSet
<const MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
994 // We assume size 2 because it's common. For general n, we would have to do
995 // the Hungarian algorithm, but it's not worth the complexity because more
996 // than 2 successors is fairly uncommon, and a trellis even more so.
997 if (Successors
.size() != 2 || ViableSuccs
.size() != 2)
1000 // Collect the edge frequencies of all edges that form the trellis.
1001 SmallVector
<WeightedEdge
, 8> Edges
[2];
1003 for (auto Succ
: ViableSuccs
) {
1004 for (MachineBasicBlock
*SuccPred
: Succ
->predecessors()) {
1005 // Skip any placed predecessors that are not BB
1007 if ((BlockFilter
&& !BlockFilter
->count(SuccPred
)) ||
1008 BlockToChain
[SuccPred
] == &Chain
||
1009 BlockToChain
[SuccPred
] == BlockToChain
[Succ
])
1011 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(SuccPred
) *
1012 MBPI
->getEdgeProbability(SuccPred
, Succ
);
1013 Edges
[SuccIndex
].push_back({EdgeFreq
, SuccPred
, Succ
});
1018 // Pick the best combination of 2 edges from all the edges in the trellis.
1019 WeightedEdge BestA
, BestB
;
1020 std::tie(BestA
, BestB
) = getBestNonConflictingEdges(BB
, Edges
);
1022 if (BestA
.Src
!= BB
) {
1023 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1024 // we shouldn't choose any successor. We've already looked and there's a
1025 // better fallthrough edge for all the successors.
1026 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1030 // Did we pick the triangle edge? If tail-duplication is profitable, do
1031 // that instead. Otherwise merge the triangle edge now while we know it is
1033 if (BestA
.Dest
== BestB
.Src
) {
1034 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1036 MachineBasicBlock
*Succ1
= BestA
.Dest
;
1037 MachineBasicBlock
*Succ2
= BestB
.Dest
;
1038 // Check to see if tail-duplication would be profitable.
1039 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2
) &&
1040 canTailDuplicateUnplacedPreds(BB
, Succ2
, Chain
, BlockFilter
) &&
1041 isProfitableToTailDup(BB
, Succ2
, MBPI
->getEdgeProbability(BB
, Succ1
),
1042 Chain
, BlockFilter
)) {
1043 LLVM_DEBUG(BranchProbability Succ2Prob
= getAdjustedProbability(
1044 MBPI
->getEdgeProbability(BB
, Succ2
), AdjustedSumProb
);
1045 dbgs() << " Selected: " << getBlockName(Succ2
)
1046 << ", probability: " << Succ2Prob
1047 << " (Tail Duplicate)\n");
1049 Result
.ShouldTailDup
= true;
1053 // We have already computed the optimal edge for the other side of the
1055 ComputedEdges
[BestB
.Src
] = { BestB
.Dest
, false };
1057 auto TrellisSucc
= BestA
.Dest
;
1058 LLVM_DEBUG(BranchProbability SuccProb
= getAdjustedProbability(
1059 MBPI
->getEdgeProbability(BB
, TrellisSucc
), AdjustedSumProb
);
1060 dbgs() << " Selected: " << getBlockName(TrellisSucc
)
1061 << ", probability: " << SuccProb
<< " (Trellis)\n");
1062 Result
.BB
= TrellisSucc
;
1066 /// When the option allowTailDupPlacement() is on, this method checks if the
1067 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1068 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1069 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1070 const MachineBasicBlock
*BB
, MachineBasicBlock
*Succ
,
1071 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
1072 if (!shouldTailDuplicate(Succ
))
1075 // For CFG checking.
1076 SmallPtrSet
<const MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
1078 for (MachineBasicBlock
*Pred
: Succ
->predecessors()) {
1079 // Make sure all unplaced and unfiltered predecessors can be
1080 // tail-duplicated into.
1081 // Skip any blocks that are already placed or not in this loop.
1082 if (Pred
== BB
|| (BlockFilter
&& !BlockFilter
->count(Pred
))
1083 || BlockToChain
[Pred
] == &Chain
)
1085 if (!TailDup
.canTailDuplicate(Succ
, Pred
)) {
1086 if (Successors
.size() > 1 && hasSameSuccessors(*Pred
, Successors
))
1087 // This will result in a trellis after tail duplication, so we don't
1088 // need to copy Succ into this predecessor. In the presence
1089 // of a trellis tail duplication can continue to be profitable.
1105 // After BB was duplicated into C, the layout looks like the one on the
1106 // right. BB and C now have the same successors. When considering
1107 // whether Succ can be duplicated into all its unplaced predecessors, we
1109 // We can do this because C already has a profitable fallthrough, namely
1110 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1111 // duplication and for this test.
1113 // This allows trellises to be laid out in 2 separate chains
1114 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1115 // because it allows the creation of 2 fallthrough paths with links
1116 // between them, and we correctly identify the best layout for these
1117 // CFGs. We want to extend trellises that the user created in addition
1118 // to trellises created by tail-duplication, so we just look for the
1127 /// Find chains of triangles where we believe it would be profitable to
1128 /// tail-duplicate them all, but a local analysis would not find them.
1129 /// There are 3 ways this can be profitable:
1130 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1132 /// 2) The chains are statically correlated. Branch probabilities have a very
1133 /// U-shaped distribution.
1134 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1135 /// If the branches in a chain are likely to be from the same side of the
1136 /// distribution as their predecessor, but are independent at runtime, this
1137 /// transformation is profitable. (Because the cost of being wrong is a small
1138 /// fixed cost, unlike the standard triangle layout where the cost of being
1139 /// wrong scales with the # of triangles.)
1140 /// 3) The chains are dynamically correlated. If the probability that a previous
1141 /// branch was taken positively influences whether the next branch will be
1143 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1144 void MachineBlockPlacement::precomputeTriangleChains() {
1145 struct TriangleChain
{
1146 std::vector
<MachineBasicBlock
*> Edges
;
1148 TriangleChain(MachineBasicBlock
*src
, MachineBasicBlock
*dst
)
1149 : Edges({src
, dst
}) {}
1151 void append(MachineBasicBlock
*dst
) {
1152 assert(getKey()->isSuccessor(dst
) &&
1153 "Attempting to append a block that is not a successor.");
1154 Edges
.push_back(dst
);
1157 unsigned count() const { return Edges
.size() - 1; }
1159 MachineBasicBlock
*getKey() const {
1160 return Edges
.back();
1164 if (TriangleChainCount
== 0)
1167 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1168 // Map from last block to the chain that contains it. This allows us to extend
1169 // chains as we find new triangles.
1170 DenseMap
<const MachineBasicBlock
*, TriangleChain
> TriangleChainMap
;
1171 for (MachineBasicBlock
&BB
: *F
) {
1172 // If BB doesn't have 2 successors, it doesn't start a triangle.
1173 if (BB
.succ_size() != 2)
1175 MachineBasicBlock
*PDom
= nullptr;
1176 for (MachineBasicBlock
*Succ
: BB
.successors()) {
1177 if (!MPDT
->dominates(Succ
, &BB
))
1182 // If BB doesn't have a post-dominating successor, it doesn't form a
1184 if (PDom
== nullptr)
1186 // If PDom has a hint that it is low probability, skip this triangle.
1187 if (MBPI
->getEdgeProbability(&BB
, PDom
) < BranchProbability(50, 100))
1189 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1190 // we're looking for.
1191 if (!shouldTailDuplicate(PDom
))
1193 bool CanTailDuplicate
= true;
1194 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1195 // isn't the kind of triangle we're looking for.
1196 for (MachineBasicBlock
* Pred
: PDom
->predecessors()) {
1199 if (!TailDup
.canTailDuplicate(PDom
, Pred
)) {
1200 CanTailDuplicate
= false;
1204 // If we can't tail-duplicate PDom to its predecessors, then skip this
1206 if (!CanTailDuplicate
)
1209 // Now we have an interesting triangle. Insert it if it's not part of an
1211 // Note: This cannot be replaced with a call insert() or emplace() because
1212 // the find key is BB, but the insert/emplace key is PDom.
1213 auto Found
= TriangleChainMap
.find(&BB
);
1214 // If it is, remove the chain from the map, grow it, and put it back in the
1215 // map with the end as the new key.
1216 if (Found
!= TriangleChainMap
.end()) {
1217 TriangleChain Chain
= std::move(Found
->second
);
1218 TriangleChainMap
.erase(Found
);
1220 TriangleChainMap
.insert(std::make_pair(Chain
.getKey(), std::move(Chain
)));
1222 auto InsertResult
= TriangleChainMap
.try_emplace(PDom
, &BB
, PDom
);
1223 assert(InsertResult
.second
&& "Block seen twice.");
1228 // Iterating over a DenseMap is safe here, because the only thing in the body
1229 // of the loop is inserting into another DenseMap (ComputedEdges).
1230 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1231 for (auto &ChainPair
: TriangleChainMap
) {
1232 TriangleChain
&Chain
= ChainPair
.second
;
1233 // Benchmarking has shown that due to branch correlation duplicating 2 or
1234 // more triangles is profitable, despite the calculations assuming
1236 if (Chain
.count() < TriangleChainCount
)
1238 MachineBasicBlock
*dst
= Chain
.Edges
.back();
1239 Chain
.Edges
.pop_back();
1240 for (MachineBasicBlock
*src
: reverse(Chain
.Edges
)) {
1241 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src
) << "->"
1242 << getBlockName(dst
)
1243 << " as pre-computed based on triangles.\n");
1245 auto InsertResult
= ComputedEdges
.insert({src
, {dst
, true}});
1246 assert(InsertResult
.second
&& "Block seen twice.");
1254 // When profile is not present, return the StaticLikelyProb.
1255 // When profile is available, we need to handle the triangle-shape CFG.
1256 static BranchProbability
getLayoutSuccessorProbThreshold(
1257 const MachineBasicBlock
*BB
) {
1258 if (!BB
->getParent()->getFunction().hasProfileData())
1259 return BranchProbability(StaticLikelyProb
, 100);
1260 if (BB
->succ_size() == 2) {
1261 const MachineBasicBlock
*Succ1
= *BB
->succ_begin();
1262 const MachineBasicBlock
*Succ2
= *(BB
->succ_begin() + 1);
1263 if (Succ1
->isSuccessor(Succ2
) || Succ2
->isSuccessor(Succ1
)) {
1264 /* See case 1 below for the cost analysis. For BB->Succ to
1265 * be taken with smaller cost, the following needs to hold:
1266 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1267 * So the threshold T in the calculation below
1268 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1269 * So T / (1 - T) = 2, Yielding T = 2/3
1270 * Also adding user specified branch bias, we have
1271 * T = (2/3)*(ProfileLikelyProb/50)
1272 * = (2*ProfileLikelyProb)/150)
1274 return BranchProbability(2 * ProfileLikelyProb
, 150);
1277 return BranchProbability(ProfileLikelyProb
, 100);
1280 /// Checks to see if the layout candidate block \p Succ has a better layout
1281 /// predecessor than \c BB. If yes, returns true.
1282 /// \p SuccProb: The probability adjusted for only remaining blocks.
1283 /// Only used for logging
1284 /// \p RealSuccProb: The un-adjusted probability.
1285 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1286 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1288 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1289 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
1290 const BlockChain
&SuccChain
, BranchProbability SuccProb
,
1291 BranchProbability RealSuccProb
, const BlockChain
&Chain
,
1292 const BlockFilterSet
*BlockFilter
) {
1294 // There isn't a better layout when there are no unscheduled predecessors.
1295 if (SuccChain
.UnscheduledPredecessors
== 0)
1298 // There are two basic scenarios here:
1299 // -------------------------------------
1300 // Case 1: triangular shape CFG (if-then):
1307 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1308 // set Succ as the layout successor of BB. Picking Succ as BB's
1309 // successor breaks the CFG constraints (FIXME: define these constraints).
1310 // With this layout, Pred BB
1311 // is forced to be outlined, so the overall cost will be cost of the
1312 // branch taken from BB to Pred, plus the cost of back taken branch
1313 // from Pred to Succ, as well as the additional cost associated
1314 // with the needed unconditional jump instruction from Pred To Succ.
1316 // The cost of the topological order layout is the taken branch cost
1317 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1319 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1320 // < freq(BB->Succ) * taken_branch_cost.
1321 // Ignoring unconditional jump cost, we get
1322 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1323 // prob(BB->Succ) > 2 * prob(BB->Pred)
1325 // When real profile data is available, we can precisely compute the
1326 // probability threshold that is needed for edge BB->Succ to be considered.
1327 // Without profile data, the heuristic requires the branch bias to be
1328 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1329 // -----------------------------------------------------------------
1330 // Case 2: diamond like CFG (if-then-else):
1339 // The current block is BB and edge BB->Succ is now being evaluated.
1340 // Note that edge S->BB was previously already selected because
1341 // prob(S->BB) > prob(S->Pred).
1342 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1343 // choose Pred, we will have a topological ordering as shown on the left
1344 // in the picture below. If we choose Succ, we have the solution as shown
1353 // | Pred-- | Succ--
1355 // ---Succ ---Pred--
1357 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1358 // = freq(S->Pred) + freq(S->BB)
1360 // If we have profile data (i.e, branch probabilities can be trusted), the
1361 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1362 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1363 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1364 // means the cost of topological order is greater.
1365 // When profile data is not available, however, we need to be more
1366 // conservative. If the branch prediction is wrong, breaking the topo-order
1367 // will actually yield a layout with large cost. For this reason, we need
1368 // strong biased branch at block S with Prob(S->BB) in order to select
1369 // BB->Succ. This is equivalent to looking the CFG backward with backward
1370 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1372 // --------------------------------------------------------------------------
1373 // Case 3: forked diamond
1385 // The current block is BB and edge BB->S1 is now being evaluated.
1386 // As above S->BB was already selected because
1387 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1395 // | Pred----| | S1----
1397 // --(S1 or S2) ---Pred--
1401 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1402 // + min(freq(Pred->S1), freq(Pred->S2))
1403 // Non-topo-order cost:
1404 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1405 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1406 // is 0. Then the non topo layout is better when
1407 // freq(S->Pred) < freq(BB->S1).
1408 // This is exactly what is checked below.
1409 // Note there are other shapes that apply (Pred may not be a single block,
1410 // but they all fit this general pattern.)
1411 BranchProbability HotProb
= getLayoutSuccessorProbThreshold(BB
);
1413 // Make sure that a hot successor doesn't have a globally more
1414 // important predecessor.
1415 BlockFrequency CandidateEdgeFreq
= MBFI
->getBlockFreq(BB
) * RealSuccProb
;
1416 bool BadCFGConflict
= false;
1418 for (MachineBasicBlock
*Pred
: Succ
->predecessors()) {
1419 if (Pred
== Succ
|| BlockToChain
[Pred
] == &SuccChain
||
1420 (BlockFilter
&& !BlockFilter
->count(Pred
)) ||
1421 BlockToChain
[Pred
] == &Chain
||
1422 // This check is redundant except for look ahead. This function is
1423 // called for lookahead by isProfitableToTailDup when BB hasn't been
1427 // Do backward checking.
1428 // For all cases above, we need a backward checking to filter out edges that
1429 // are not 'strongly' biased.
1433 // We select edge BB->Succ if
1434 // freq(BB->Succ) > freq(Succ) * HotProb
1435 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1437 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1438 // Case 1 is covered too, because the first equation reduces to:
1439 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1440 BlockFrequency PredEdgeFreq
=
1441 MBFI
->getBlockFreq(Pred
) * MBPI
->getEdgeProbability(Pred
, Succ
);
1442 if (PredEdgeFreq
* HotProb
>= CandidateEdgeFreq
* HotProb
.getCompl()) {
1443 BadCFGConflict
= true;
1448 if (BadCFGConflict
) {
1449 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ
) << " -> "
1450 << SuccProb
<< " (prob) (non-cold CFG conflict)\n");
1457 /// Select the best successor for a block.
1459 /// This looks across all successors of a particular block and attempts to
1460 /// select the "best" one to be the layout successor. It only considers direct
1461 /// successors which also pass the block filter. It will attempt to avoid
1462 /// breaking CFG structure, but cave and break such structures in the case of
1463 /// very hot successor edges.
1465 /// \returns The best successor block found, or null if none are viable, along
1466 /// with a boolean indicating if tail duplication is necessary.
1467 MachineBlockPlacement::BlockAndTailDupResult
1468 MachineBlockPlacement::selectBestSuccessor(
1469 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
1470 const BlockFilterSet
*BlockFilter
) {
1471 const BranchProbability
HotProb(StaticLikelyProb
, 100);
1473 BlockAndTailDupResult BestSucc
= { nullptr, false };
1474 auto BestProb
= BranchProbability::getZero();
1476 SmallVector
<MachineBasicBlock
*, 4> Successors
;
1477 auto AdjustedSumProb
=
1478 collectViableSuccessors(BB
, Chain
, BlockFilter
, Successors
);
1480 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB
)
1483 // if we already precomputed the best successor for BB, return that if still
1485 auto FoundEdge
= ComputedEdges
.find(BB
);
1486 if (FoundEdge
!= ComputedEdges
.end()) {
1487 MachineBasicBlock
*Succ
= FoundEdge
->second
.BB
;
1488 ComputedEdges
.erase(FoundEdge
);
1489 BlockChain
*SuccChain
= BlockToChain
[Succ
];
1490 if (BB
->isSuccessor(Succ
) && (!BlockFilter
|| BlockFilter
->count(Succ
)) &&
1491 SuccChain
!= &Chain
&& Succ
== *SuccChain
->begin())
1492 return FoundEdge
->second
;
1495 // if BB is part of a trellis, Use the trellis to determine the optimal
1496 // fallthrough edges
1497 if (isTrellis(BB
, Successors
, Chain
, BlockFilter
))
1498 return getBestTrellisSuccessor(BB
, Successors
, AdjustedSumProb
, Chain
,
1501 // For blocks with CFG violations, we may be able to lay them out anyway with
1502 // tail-duplication. We keep this vector so we can perform the probability
1503 // calculations the minimum number of times.
1504 SmallVector
<std::tuple
<BranchProbability
, MachineBasicBlock
*>, 4>
1506 for (MachineBasicBlock
*Succ
: Successors
) {
1507 auto RealSuccProb
= MBPI
->getEdgeProbability(BB
, Succ
);
1508 BranchProbability SuccProb
=
1509 getAdjustedProbability(RealSuccProb
, AdjustedSumProb
);
1511 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
1512 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1513 // predecessor that yields lower global cost.
1514 if (hasBetterLayoutPredecessor(BB
, Succ
, SuccChain
, SuccProb
, RealSuccProb
,
1515 Chain
, BlockFilter
)) {
1516 // If tail duplication would make Succ profitable, place it.
1517 if (allowTailDupPlacement() && shouldTailDuplicate(Succ
))
1518 DupCandidates
.push_back(std::make_tuple(SuccProb
, Succ
));
1523 dbgs() << " Candidate: " << getBlockName(Succ
)
1524 << ", probability: " << SuccProb
1525 << (SuccChain
.UnscheduledPredecessors
!= 0 ? " (CFG break)" : "")
1528 if (BestSucc
.BB
&& BestProb
>= SuccProb
) {
1529 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1533 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1535 BestProb
= SuccProb
;
1537 // Handle the tail duplication candidates in order of decreasing probability.
1538 // Stop at the first one that is profitable. Also stop if they are less
1539 // profitable than BestSucc. Position is important because we preserve it and
1540 // prefer first best match. Here we aren't comparing in order, so we capture
1541 // the position instead.
1542 llvm::stable_sort(DupCandidates
,
1543 [](std::tuple
<BranchProbability
, MachineBasicBlock
*> L
,
1544 std::tuple
<BranchProbability
, MachineBasicBlock
*> R
) {
1545 return std::get
<0>(L
) > std::get
<0>(R
);
1547 for (auto &Tup
: DupCandidates
) {
1548 BranchProbability DupProb
;
1549 MachineBasicBlock
*Succ
;
1550 std::tie(DupProb
, Succ
) = Tup
;
1551 if (DupProb
< BestProb
)
1553 if (canTailDuplicateUnplacedPreds(BB
, Succ
, Chain
, BlockFilter
)
1554 && (isProfitableToTailDup(BB
, Succ
, BestProb
, Chain
, BlockFilter
))) {
1555 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ
)
1556 << ", probability: " << DupProb
1557 << " (Tail Duplicate)\n");
1559 BestSucc
.ShouldTailDup
= true;
1565 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc
.BB
) << "\n");
1570 /// Select the best block from a worklist.
1572 /// This looks through the provided worklist as a list of candidate basic
1573 /// blocks and select the most profitable one to place. The definition of
1574 /// profitable only really makes sense in the context of a loop. This returns
1575 /// the most frequently visited block in the worklist, which in the case of
1576 /// a loop, is the one most desirable to be physically close to the rest of the
1577 /// loop body in order to improve i-cache behavior.
1579 /// \returns The best block found, or null if none are viable.
1580 MachineBasicBlock
*MachineBlockPlacement::selectBestCandidateBlock(
1581 const BlockChain
&Chain
, SmallVectorImpl
<MachineBasicBlock
*> &WorkList
) {
1582 // Once we need to walk the worklist looking for a candidate, cleanup the
1583 // worklist of already placed entries.
1584 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1585 // some code complexity) into the loop below.
1586 WorkList
.erase(llvm::remove_if(WorkList
,
1587 [&](MachineBasicBlock
*BB
) {
1588 return BlockToChain
.lookup(BB
) == &Chain
;
1592 if (WorkList
.empty())
1595 bool IsEHPad
= WorkList
[0]->isEHPad();
1597 MachineBasicBlock
*BestBlock
= nullptr;
1598 BlockFrequency BestFreq
;
1599 for (MachineBasicBlock
*MBB
: WorkList
) {
1600 assert(MBB
->isEHPad() == IsEHPad
&&
1601 "EHPad mismatch between block and work list.");
1603 BlockChain
&SuccChain
= *BlockToChain
[MBB
];
1604 if (&SuccChain
== &Chain
)
1607 assert(SuccChain
.UnscheduledPredecessors
== 0 &&
1608 "Found CFG-violating block");
1610 BlockFrequency CandidateFreq
= MBFI
->getBlockFreq(MBB
);
1611 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB
) << " -> ";
1612 MBFI
->printBlockFreq(dbgs(), CandidateFreq
) << " (freq)\n");
1614 // For ehpad, we layout the least probable first as to avoid jumping back
1615 // from least probable landingpads to more probable ones.
1617 // FIXME: Using probability is probably (!) not the best way to achieve
1618 // this. We should probably have a more principled approach to layout
1621 // The goal is to get:
1623 // +--------------------------+
1625 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1629 // +-------------------------------------+
1631 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1632 if (BestBlock
&& (IsEHPad
^ (BestFreq
>= CandidateFreq
)))
1636 BestFreq
= CandidateFreq
;
1642 /// Retrieve the first unplaced basic block.
1644 /// This routine is called when we are unable to use the CFG to walk through
1645 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1646 /// We walk through the function's blocks in order, starting from the
1647 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1648 /// re-scanning the entire sequence on repeated calls to this routine.
1649 MachineBasicBlock
*MachineBlockPlacement::getFirstUnplacedBlock(
1650 const BlockChain
&PlacedChain
,
1651 MachineFunction::iterator
&PrevUnplacedBlockIt
,
1652 const BlockFilterSet
*BlockFilter
) {
1653 for (MachineFunction::iterator I
= PrevUnplacedBlockIt
, E
= F
->end(); I
!= E
;
1655 if (BlockFilter
&& !BlockFilter
->count(&*I
))
1657 if (BlockToChain
[&*I
] != &PlacedChain
) {
1658 PrevUnplacedBlockIt
= I
;
1659 // Now select the head of the chain to which the unplaced block belongs
1660 // as the block to place. This will force the entire chain to be placed,
1661 // and satisfies the requirements of merging chains.
1662 return *BlockToChain
[&*I
]->begin();
1668 void MachineBlockPlacement::fillWorkLists(
1669 const MachineBasicBlock
*MBB
,
1670 SmallPtrSetImpl
<BlockChain
*> &UpdatedPreds
,
1671 const BlockFilterSet
*BlockFilter
= nullptr) {
1672 BlockChain
&Chain
= *BlockToChain
[MBB
];
1673 if (!UpdatedPreds
.insert(&Chain
).second
)
1677 Chain
.UnscheduledPredecessors
== 0 &&
1678 "Attempting to place block with unscheduled predecessors in worklist.");
1679 for (MachineBasicBlock
*ChainBB
: Chain
) {
1680 assert(BlockToChain
[ChainBB
] == &Chain
&&
1681 "Block in chain doesn't match BlockToChain map.");
1682 for (MachineBasicBlock
*Pred
: ChainBB
->predecessors()) {
1683 if (BlockFilter
&& !BlockFilter
->count(Pred
))
1685 if (BlockToChain
[Pred
] == &Chain
)
1687 ++Chain
.UnscheduledPredecessors
;
1691 if (Chain
.UnscheduledPredecessors
!= 0)
1694 MachineBasicBlock
*BB
= *Chain
.begin();
1696 EHPadWorkList
.push_back(BB
);
1698 BlockWorkList
.push_back(BB
);
1701 void MachineBlockPlacement::buildChain(
1702 const MachineBasicBlock
*HeadBB
, BlockChain
&Chain
,
1703 BlockFilterSet
*BlockFilter
) {
1704 assert(HeadBB
&& "BB must not be null.\n");
1705 assert(BlockToChain
[HeadBB
] == &Chain
&& "BlockToChainMap mis-match.\n");
1706 MachineFunction::iterator PrevUnplacedBlockIt
= F
->begin();
1708 const MachineBasicBlock
*LoopHeaderBB
= HeadBB
;
1709 markChainSuccessors(Chain
, LoopHeaderBB
, BlockFilter
);
1710 MachineBasicBlock
*BB
= *std::prev(Chain
.end());
1712 assert(BB
&& "null block found at end of chain in loop.");
1713 assert(BlockToChain
[BB
] == &Chain
&& "BlockToChainMap mis-match in loop.");
1714 assert(*std::prev(Chain
.end()) == BB
&& "BB Not found at end of chain.");
1717 // Look for the best viable successor if there is one to place immediately
1718 // after this block.
1719 auto Result
= selectBestSuccessor(BB
, Chain
, BlockFilter
);
1720 MachineBasicBlock
* BestSucc
= Result
.BB
;
1721 bool ShouldTailDup
= Result
.ShouldTailDup
;
1722 if (allowTailDupPlacement())
1723 ShouldTailDup
|= (BestSucc
&& shouldTailDuplicate(BestSucc
));
1725 // If an immediate successor isn't available, look for the best viable
1726 // block among those we've identified as not violating the loop's CFG at
1727 // this point. This won't be a fallthrough, but it will increase locality.
1729 BestSucc
= selectBestCandidateBlock(Chain
, BlockWorkList
);
1731 BestSucc
= selectBestCandidateBlock(Chain
, EHPadWorkList
);
1734 BestSucc
= getFirstUnplacedBlock(Chain
, PrevUnplacedBlockIt
, BlockFilter
);
1738 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1739 "layout successor until the CFG reduces\n");
1742 // Placement may have changed tail duplication opportunities.
1743 // Check for that now.
1744 if (allowTailDupPlacement() && BestSucc
&& ShouldTailDup
) {
1745 // If the chosen successor was duplicated into all its predecessors,
1746 // don't bother laying it out, just go round the loop again with BB as
1748 if (repeatedlyTailDuplicateBlock(BestSucc
, BB
, LoopHeaderBB
, Chain
,
1749 BlockFilter
, PrevUnplacedBlockIt
))
1753 // Place this block, updating the datastructures to reflect its placement.
1754 BlockChain
&SuccChain
= *BlockToChain
[BestSucc
];
1755 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1756 // we selected a successor that didn't fit naturally into the CFG.
1757 SuccChain
.UnscheduledPredecessors
= 0;
1758 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB
) << " to "
1759 << getBlockName(BestSucc
) << "\n");
1760 markChainSuccessors(SuccChain
, LoopHeaderBB
, BlockFilter
);
1761 Chain
.merge(BestSucc
, &SuccChain
);
1762 BB
= *std::prev(Chain
.end());
1765 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1766 << getBlockName(*Chain
.begin()) << "\n");
1769 // If bottom of block BB has only one successor OldTop, in most cases it is
1770 // profitable to move it before OldTop, except the following case:
1780 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1781 // layout the other successor below it, so it can't reduce taken branch.
1782 // In this case we keep its original layout.
1784 MachineBlockPlacement::canMoveBottomBlockToTop(
1785 const MachineBasicBlock
*BottomBlock
,
1786 const MachineBasicBlock
*OldTop
) {
1787 if (BottomBlock
->pred_size() != 1)
1789 MachineBasicBlock
*Pred
= *BottomBlock
->pred_begin();
1790 if (Pred
->succ_size() != 2)
1793 MachineBasicBlock
*OtherBB
= *Pred
->succ_begin();
1794 if (OtherBB
== BottomBlock
)
1795 OtherBB
= *Pred
->succ_rbegin();
1796 if (OtherBB
== OldTop
)
1802 // Find out the possible fall through frequence to the top of a loop.
1804 MachineBlockPlacement::TopFallThroughFreq(
1805 const MachineBasicBlock
*Top
,
1806 const BlockFilterSet
&LoopBlockSet
) {
1807 BlockFrequency MaxFreq
= 0;
1808 for (MachineBasicBlock
*Pred
: Top
->predecessors()) {
1809 BlockChain
*PredChain
= BlockToChain
[Pred
];
1810 if (!LoopBlockSet
.count(Pred
) &&
1811 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
1812 // Found a Pred block can be placed before Top.
1813 // Check if Top is the best successor of Pred.
1814 auto TopProb
= MBPI
->getEdgeProbability(Pred
, Top
);
1816 for (MachineBasicBlock
*Succ
: Pred
->successors()) {
1817 auto SuccProb
= MBPI
->getEdgeProbability(Pred
, Succ
);
1818 BlockChain
*SuccChain
= BlockToChain
[Succ
];
1819 // Check if Succ can be placed after Pred.
1820 // Succ should not be in any chain, or it is the head of some chain.
1821 if (!LoopBlockSet
.count(Succ
) && (SuccProb
> TopProb
) &&
1822 (!SuccChain
|| Succ
== *SuccChain
->begin())) {
1828 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(Pred
) *
1829 MBPI
->getEdgeProbability(Pred
, Top
);
1830 if (EdgeFreq
> MaxFreq
)
1838 // Compute the fall through gains when move NewTop before OldTop.
1840 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1841 // marked as "+" are increased fallthrough, this function computes
1843 // SUM(increased fallthrough) - SUM(decreased fallthrough)
1860 MachineBlockPlacement::FallThroughGains(
1861 const MachineBasicBlock
*NewTop
,
1862 const MachineBasicBlock
*OldTop
,
1863 const MachineBasicBlock
*ExitBB
,
1864 const BlockFilterSet
&LoopBlockSet
) {
1865 BlockFrequency FallThrough2Top
= TopFallThroughFreq(OldTop
, LoopBlockSet
);
1866 BlockFrequency FallThrough2Exit
= 0;
1868 FallThrough2Exit
= MBFI
->getBlockFreq(NewTop
) *
1869 MBPI
->getEdgeProbability(NewTop
, ExitBB
);
1870 BlockFrequency BackEdgeFreq
= MBFI
->getBlockFreq(NewTop
) *
1871 MBPI
->getEdgeProbability(NewTop
, OldTop
);
1873 // Find the best Pred of NewTop.
1874 MachineBasicBlock
*BestPred
= nullptr;
1875 BlockFrequency FallThroughFromPred
= 0;
1876 for (MachineBasicBlock
*Pred
: NewTop
->predecessors()) {
1877 if (!LoopBlockSet
.count(Pred
))
1879 BlockChain
*PredChain
= BlockToChain
[Pred
];
1880 if (!PredChain
|| Pred
== *std::prev(PredChain
->end())) {
1881 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(Pred
) *
1882 MBPI
->getEdgeProbability(Pred
, NewTop
);
1883 if (EdgeFreq
> FallThroughFromPred
) {
1884 FallThroughFromPred
= EdgeFreq
;
1890 // If NewTop is not placed after Pred, another successor can be placed
1892 BlockFrequency NewFreq
= 0;
1894 for (MachineBasicBlock
*Succ
: BestPred
->successors()) {
1895 if ((Succ
== NewTop
) || (Succ
== BestPred
) || !LoopBlockSet
.count(Succ
))
1897 if (ComputedEdges
.find(Succ
) != ComputedEdges
.end())
1899 BlockChain
*SuccChain
= BlockToChain
[Succ
];
1900 if ((SuccChain
&& (Succ
!= *SuccChain
->begin())) ||
1901 (SuccChain
== BlockToChain
[BestPred
]))
1903 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(BestPred
) *
1904 MBPI
->getEdgeProbability(BestPred
, Succ
);
1905 if (EdgeFreq
> NewFreq
)
1908 BlockFrequency OrigEdgeFreq
= MBFI
->getBlockFreq(BestPred
) *
1909 MBPI
->getEdgeProbability(BestPred
, NewTop
);
1910 if (NewFreq
> OrigEdgeFreq
) {
1911 // If NewTop is not the best successor of Pred, then Pred doesn't
1912 // fallthrough to NewTop. So there is no FallThroughFromPred and
1915 FallThroughFromPred
= 0;
1919 BlockFrequency Result
= 0;
1920 BlockFrequency Gains
= BackEdgeFreq
+ NewFreq
;
1921 BlockFrequency Lost
= FallThrough2Top
+ FallThrough2Exit
+
1922 FallThroughFromPred
;
1924 Result
= Gains
- Lost
;
1928 /// Helper function of findBestLoopTop. Find the best loop top block
1929 /// from predecessors of old top.
1931 /// Look for a block which is strictly better than the old top for laying
1932 /// out before the old top of the loop. This looks for only two patterns:
1934 /// 1. a block has only one successor, the old loop top
1936 /// Because such a block will always result in an unconditional jump,
1937 /// rotating it in front of the old top is always profitable.
1939 /// 2. a block has two successors, one is old top, another is exit
1940 /// and it has more than one predecessors
1942 /// If it is below one of its predecessors P, only P can fall through to
1943 /// it, all other predecessors need a jump to it, and another conditional
1944 /// jump to loop header. If it is moved before loop header, all its
1945 /// predecessors jump to it, then fall through to loop header. So all its
1946 /// predecessors except P can reduce one taken branch.
1947 /// At the same time, move it before old top increases the taken branch
1948 /// to loop exit block, so the reduced taken branch will be compared with
1949 /// the increased taken branch to the loop exit block.
1951 MachineBlockPlacement::findBestLoopTopHelper(
1952 MachineBasicBlock
*OldTop
,
1953 const MachineLoop
&L
,
1954 const BlockFilterSet
&LoopBlockSet
) {
1955 // Check that the header hasn't been fused with a preheader block due to
1956 // crazy branches. If it has, we need to start with the header at the top to
1957 // prevent pulling the preheader into the loop body.
1958 BlockChain
&HeaderChain
= *BlockToChain
[OldTop
];
1959 if (!LoopBlockSet
.count(*HeaderChain
.begin()))
1962 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop
)
1965 BlockFrequency BestGains
= 0;
1966 MachineBasicBlock
*BestPred
= nullptr;
1967 for (MachineBasicBlock
*Pred
: OldTop
->predecessors()) {
1968 if (!LoopBlockSet
.count(Pred
))
1970 if (Pred
== L
.getHeader())
1972 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred
) << ", has "
1973 << Pred
->succ_size() << " successors, ";
1974 MBFI
->printBlockFreq(dbgs(), Pred
) << " freq\n");
1975 if (Pred
->succ_size() > 2)
1978 MachineBasicBlock
*OtherBB
= nullptr;
1979 if (Pred
->succ_size() == 2) {
1980 OtherBB
= *Pred
->succ_begin();
1981 if (OtherBB
== OldTop
)
1982 OtherBB
= *Pred
->succ_rbegin();
1985 if (!canMoveBottomBlockToTop(Pred
, OldTop
))
1988 BlockFrequency Gains
= FallThroughGains(Pred
, OldTop
, OtherBB
,
1990 if ((Gains
> 0) && (Gains
> BestGains
||
1991 ((Gains
== BestGains
) && Pred
->isLayoutSuccessor(OldTop
)))) {
1997 // If no direct predecessor is fine, just use the loop header.
1999 LLVM_DEBUG(dbgs() << " final top unchanged\n");
2003 // Walk backwards through any straight line of predecessors.
2004 while (BestPred
->pred_size() == 1 &&
2005 (*BestPred
->pred_begin())->succ_size() == 1 &&
2006 *BestPred
->pred_begin() != L
.getHeader())
2007 BestPred
= *BestPred
->pred_begin();
2009 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred
) << "\n");
2013 /// Find the best loop top block for layout.
2015 /// This function iteratively calls findBestLoopTopHelper, until no new better
2016 /// BB can be found.
2018 MachineBlockPlacement::findBestLoopTop(const MachineLoop
&L
,
2019 const BlockFilterSet
&LoopBlockSet
) {
2020 // Placing the latch block before the header may introduce an extra branch
2021 // that skips this block the first time the loop is executed, which we want
2022 // to avoid when optimising for size.
2023 // FIXME: in theory there is a case that does not introduce a new branch,
2024 // i.e. when the layout predecessor does not fallthrough to the loop header.
2025 // In practice this never happens though: there always seems to be a preheader
2026 // that can fallthrough and that is also placed before the header.
2027 if (F
->getFunction().hasOptSize())
2028 return L
.getHeader();
2030 MachineBasicBlock
*OldTop
= nullptr;
2031 MachineBasicBlock
*NewTop
= L
.getHeader();
2032 while (NewTop
!= OldTop
) {
2034 NewTop
= findBestLoopTopHelper(OldTop
, L
, LoopBlockSet
);
2035 if (NewTop
!= OldTop
)
2036 ComputedEdges
[NewTop
] = { OldTop
, false };
2041 /// Find the best loop exiting block for layout.
2043 /// This routine implements the logic to analyze the loop looking for the best
2044 /// block to layout at the top of the loop. Typically this is done to maximize
2045 /// fallthrough opportunities.
2047 MachineBlockPlacement::findBestLoopExit(const MachineLoop
&L
,
2048 const BlockFilterSet
&LoopBlockSet
,
2049 BlockFrequency
&ExitFreq
) {
2050 // We don't want to layout the loop linearly in all cases. If the loop header
2051 // is just a normal basic block in the loop, we want to look for what block
2052 // within the loop is the best one to layout at the top. However, if the loop
2053 // header has be pre-merged into a chain due to predecessors not having
2054 // analyzable branches, *and* the predecessor it is merged with is *not* part
2055 // of the loop, rotating the header into the middle of the loop will create
2056 // a non-contiguous range of blocks which is Very Bad. So start with the
2057 // header and only rotate if safe.
2058 BlockChain
&HeaderChain
= *BlockToChain
[L
.getHeader()];
2059 if (!LoopBlockSet
.count(*HeaderChain
.begin()))
2062 BlockFrequency BestExitEdgeFreq
;
2063 unsigned BestExitLoopDepth
= 0;
2064 MachineBasicBlock
*ExitingBB
= nullptr;
2065 // If there are exits to outer loops, loop rotation can severely limit
2066 // fallthrough opportunities unless it selects such an exit. Keep a set of
2067 // blocks where rotating to exit with that block will reach an outer loop.
2068 SmallPtrSet
<MachineBasicBlock
*, 4> BlocksExitingToOuterLoop
;
2070 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2071 << getBlockName(L
.getHeader()) << "\n");
2072 for (MachineBasicBlock
*MBB
: L
.getBlocks()) {
2073 BlockChain
&Chain
= *BlockToChain
[MBB
];
2074 // Ensure that this block is at the end of a chain; otherwise it could be
2075 // mid-way through an inner loop or a successor of an unanalyzable branch.
2076 if (MBB
!= *std::prev(Chain
.end()))
2079 // Now walk the successors. We need to establish whether this has a viable
2080 // exiting successor and whether it has a viable non-exiting successor.
2081 // We store the old exiting state and restore it if a viable looping
2082 // successor isn't found.
2083 MachineBasicBlock
*OldExitingBB
= ExitingBB
;
2084 BlockFrequency OldBestExitEdgeFreq
= BestExitEdgeFreq
;
2085 bool HasLoopingSucc
= false;
2086 for (MachineBasicBlock
*Succ
: MBB
->successors()) {
2087 if (Succ
->isEHPad())
2091 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
2092 // Don't split chains, either this chain or the successor's chain.
2093 if (&Chain
== &SuccChain
) {
2094 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB
) << " -> "
2095 << getBlockName(Succ
) << " (chain conflict)\n");
2099 auto SuccProb
= MBPI
->getEdgeProbability(MBB
, Succ
);
2100 if (LoopBlockSet
.count(Succ
)) {
2101 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB
) << " -> "
2102 << getBlockName(Succ
) << " (" << SuccProb
<< ")\n");
2103 HasLoopingSucc
= true;
2107 unsigned SuccLoopDepth
= 0;
2108 if (MachineLoop
*ExitLoop
= MLI
->getLoopFor(Succ
)) {
2109 SuccLoopDepth
= ExitLoop
->getLoopDepth();
2110 if (ExitLoop
->contains(&L
))
2111 BlocksExitingToOuterLoop
.insert(MBB
);
2114 BlockFrequency ExitEdgeFreq
= MBFI
->getBlockFreq(MBB
) * SuccProb
;
2115 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB
) << " -> "
2116 << getBlockName(Succ
) << " [L:" << SuccLoopDepth
2118 MBFI
->printBlockFreq(dbgs(), ExitEdgeFreq
) << ")\n");
2119 // Note that we bias this toward an existing layout successor to retain
2120 // incoming order in the absence of better information. The exit must have
2121 // a frequency higher than the current exit before we consider breaking
2123 BranchProbability
Bias(100 - ExitBlockBias
, 100);
2124 if (!ExitingBB
|| SuccLoopDepth
> BestExitLoopDepth
||
2125 ExitEdgeFreq
> BestExitEdgeFreq
||
2126 (MBB
->isLayoutSuccessor(Succ
) &&
2127 !(ExitEdgeFreq
< BestExitEdgeFreq
* Bias
))) {
2128 BestExitEdgeFreq
= ExitEdgeFreq
;
2133 if (!HasLoopingSucc
) {
2134 // Restore the old exiting state, no viable looping successor was found.
2135 ExitingBB
= OldExitingBB
;
2136 BestExitEdgeFreq
= OldBestExitEdgeFreq
;
2139 // Without a candidate exiting block or with only a single block in the
2140 // loop, just use the loop header to layout the loop.
2143 dbgs() << " No other candidate exit blocks, using loop header\n");
2146 if (L
.getNumBlocks() == 1) {
2147 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
2151 // Also, if we have exit blocks which lead to outer loops but didn't select
2152 // one of them as the exiting block we are rotating toward, disable loop
2153 // rotation altogether.
2154 if (!BlocksExitingToOuterLoop
.empty() &&
2155 !BlocksExitingToOuterLoop
.count(ExitingBB
))
2158 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB
)
2160 ExitFreq
= BestExitEdgeFreq
;
2164 /// Check if there is a fallthrough to loop header Top.
2166 /// 1. Look for a Pred that can be layout before Top.
2167 /// 2. Check if Top is the most possible successor of Pred.
2169 MachineBlockPlacement::hasViableTopFallthrough(
2170 const MachineBasicBlock
*Top
,
2171 const BlockFilterSet
&LoopBlockSet
) {
2172 for (MachineBasicBlock
*Pred
: Top
->predecessors()) {
2173 BlockChain
*PredChain
= BlockToChain
[Pred
];
2174 if (!LoopBlockSet
.count(Pred
) &&
2175 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
2176 // Found a Pred block can be placed before Top.
2177 // Check if Top is the best successor of Pred.
2178 auto TopProb
= MBPI
->getEdgeProbability(Pred
, Top
);
2180 for (MachineBasicBlock
*Succ
: Pred
->successors()) {
2181 auto SuccProb
= MBPI
->getEdgeProbability(Pred
, Succ
);
2182 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2183 // Check if Succ can be placed after Pred.
2184 // Succ should not be in any chain, or it is the head of some chain.
2185 if ((!SuccChain
|| Succ
== *SuccChain
->begin()) && SuccProb
> TopProb
) {
2197 /// Attempt to rotate an exiting block to the bottom of the loop.
2199 /// Once we have built a chain, try to rotate it to line up the hot exit block
2200 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2201 /// branches. For example, if the loop has fallthrough into its header and out
2202 /// of its bottom already, don't rotate it.
2203 void MachineBlockPlacement::rotateLoop(BlockChain
&LoopChain
,
2204 const MachineBasicBlock
*ExitingBB
,
2205 BlockFrequency ExitFreq
,
2206 const BlockFilterSet
&LoopBlockSet
) {
2210 MachineBasicBlock
*Top
= *LoopChain
.begin();
2211 MachineBasicBlock
*Bottom
= *std::prev(LoopChain
.end());
2213 // If ExitingBB is already the last one in a chain then nothing to do.
2214 if (Bottom
== ExitingBB
)
2217 bool ViableTopFallthrough
= hasViableTopFallthrough(Top
, LoopBlockSet
);
2219 // If the header has viable fallthrough, check whether the current loop
2220 // bottom is a viable exiting block. If so, bail out as rotating will
2221 // introduce an unnecessary branch.
2222 if (ViableTopFallthrough
) {
2223 for (MachineBasicBlock
*Succ
: Bottom
->successors()) {
2224 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2225 if (!LoopBlockSet
.count(Succ
) &&
2226 (!SuccChain
|| Succ
== *SuccChain
->begin()))
2230 // Rotate will destroy the top fallthrough, we need to ensure the new exit
2231 // frequency is larger than top fallthrough.
2232 BlockFrequency FallThrough2Top
= TopFallThroughFreq(Top
, LoopBlockSet
);
2233 if (FallThrough2Top
>= ExitFreq
)
2237 BlockChain::iterator ExitIt
= llvm::find(LoopChain
, ExitingBB
);
2238 if (ExitIt
== LoopChain
.end())
2241 // Rotating a loop exit to the bottom when there is a fallthrough to top
2242 // trades the entry fallthrough for an exit fallthrough.
2243 // If there is no bottom->top edge, but the chosen exit block does have
2244 // a fallthrough, we break that fallthrough for nothing in return.
2246 // Let's consider an example. We have a built chain of basic blocks
2247 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2248 // By doing a rotation we get
2249 // Bk+1, ..., Bn, B1, ..., Bk
2250 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2251 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2252 // It might be compensated by fallthrough Bn -> B1.
2253 // So we have a condition to avoid creation of extra branch by loop rotation.
2254 // All below must be true to avoid loop rotation:
2255 // If there is a fallthrough to top (B1)
2256 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2257 // There is no fallthrough from bottom (Bn) to top (B1).
2258 // Please note that there is no exit fallthrough from Bn because we checked it
2260 if (ViableTopFallthrough
) {
2261 assert(std::next(ExitIt
) != LoopChain
.end() &&
2262 "Exit should not be last BB");
2263 MachineBasicBlock
*NextBlockInChain
= *std::next(ExitIt
);
2264 if (ExitingBB
->isSuccessor(NextBlockInChain
))
2265 if (!Bottom
->isSuccessor(Top
))
2269 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB
)
2271 std::rotate(LoopChain
.begin(), std::next(ExitIt
), LoopChain
.end());
2274 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2276 /// With profile data, we can determine the cost in terms of missed fall through
2277 /// opportunities when rotating a loop chain and select the best rotation.
2278 /// Basically, there are three kinds of cost to consider for each rotation:
2279 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2280 /// the loop to the loop header.
2281 /// 2. The possibly missed fall through edges (if they exist) from the loop
2282 /// exits to BB out of the loop.
2283 /// 3. The missed fall through edge (if it exists) from the last BB to the
2284 /// first BB in the loop chain.
2285 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2286 /// We select the best rotation with the smallest cost.
2287 void MachineBlockPlacement::rotateLoopWithProfile(
2288 BlockChain
&LoopChain
, const MachineLoop
&L
,
2289 const BlockFilterSet
&LoopBlockSet
) {
2290 auto RotationPos
= LoopChain
.end();
2292 BlockFrequency SmallestRotationCost
= BlockFrequency::getMaxFrequency();
2294 // A utility lambda that scales up a block frequency by dividing it by a
2295 // branch probability which is the reciprocal of the scale.
2296 auto ScaleBlockFrequency
= [](BlockFrequency Freq
,
2297 unsigned Scale
) -> BlockFrequency
{
2300 // Use operator / between BlockFrequency and BranchProbability to implement
2301 // saturating multiplication.
2302 return Freq
/ BranchProbability(1, Scale
);
2305 // Compute the cost of the missed fall-through edge to the loop header if the
2306 // chain head is not the loop header. As we only consider natural loops with
2307 // single header, this computation can be done only once.
2308 BlockFrequency
HeaderFallThroughCost(0);
2309 MachineBasicBlock
*ChainHeaderBB
= *LoopChain
.begin();
2310 for (auto *Pred
: ChainHeaderBB
->predecessors()) {
2311 BlockChain
*PredChain
= BlockToChain
[Pred
];
2312 if (!LoopBlockSet
.count(Pred
) &&
2313 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
2314 auto EdgeFreq
= MBFI
->getBlockFreq(Pred
) *
2315 MBPI
->getEdgeProbability(Pred
, ChainHeaderBB
);
2316 auto FallThruCost
= ScaleBlockFrequency(EdgeFreq
, MisfetchCost
);
2317 // If the predecessor has only an unconditional jump to the header, we
2318 // need to consider the cost of this jump.
2319 if (Pred
->succ_size() == 1)
2320 FallThruCost
+= ScaleBlockFrequency(EdgeFreq
, JumpInstCost
);
2321 HeaderFallThroughCost
= std::max(HeaderFallThroughCost
, FallThruCost
);
2325 // Here we collect all exit blocks in the loop, and for each exit we find out
2326 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2327 // as the sum of frequencies of exit edges we collect here, excluding the exit
2328 // edge from the tail of the loop chain.
2329 SmallVector
<std::pair
<MachineBasicBlock
*, BlockFrequency
>, 4> ExitsWithFreq
;
2330 for (auto BB
: LoopChain
) {
2331 auto LargestExitEdgeProb
= BranchProbability::getZero();
2332 for (auto *Succ
: BB
->successors()) {
2333 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2334 if (!LoopBlockSet
.count(Succ
) &&
2335 (!SuccChain
|| Succ
== *SuccChain
->begin())) {
2336 auto SuccProb
= MBPI
->getEdgeProbability(BB
, Succ
);
2337 LargestExitEdgeProb
= std::max(LargestExitEdgeProb
, SuccProb
);
2340 if (LargestExitEdgeProb
> BranchProbability::getZero()) {
2341 auto ExitFreq
= MBFI
->getBlockFreq(BB
) * LargestExitEdgeProb
;
2342 ExitsWithFreq
.emplace_back(BB
, ExitFreq
);
2346 // In this loop we iterate every block in the loop chain and calculate the
2347 // cost assuming the block is the head of the loop chain. When the loop ends,
2348 // we should have found the best candidate as the loop chain's head.
2349 for (auto Iter
= LoopChain
.begin(), TailIter
= std::prev(LoopChain
.end()),
2350 EndIter
= LoopChain
.end();
2351 Iter
!= EndIter
; Iter
++, TailIter
++) {
2352 // TailIter is used to track the tail of the loop chain if the block we are
2353 // checking (pointed by Iter) is the head of the chain.
2354 if (TailIter
== LoopChain
.end())
2355 TailIter
= LoopChain
.begin();
2357 auto TailBB
= *TailIter
;
2359 // Calculate the cost by putting this BB to the top.
2360 BlockFrequency Cost
= 0;
2362 // If the current BB is the loop header, we need to take into account the
2363 // cost of the missed fall through edge from outside of the loop to the
2365 if (Iter
!= LoopChain
.begin())
2366 Cost
+= HeaderFallThroughCost
;
2368 // Collect the loop exit cost by summing up frequencies of all exit edges
2369 // except the one from the chain tail.
2370 for (auto &ExitWithFreq
: ExitsWithFreq
)
2371 if (TailBB
!= ExitWithFreq
.first
)
2372 Cost
+= ExitWithFreq
.second
;
2374 // The cost of breaking the once fall-through edge from the tail to the top
2375 // of the loop chain. Here we need to consider three cases:
2376 // 1. If the tail node has only one successor, then we will get an
2377 // additional jmp instruction. So the cost here is (MisfetchCost +
2378 // JumpInstCost) * tail node frequency.
2379 // 2. If the tail node has two successors, then we may still get an
2380 // additional jmp instruction if the layout successor after the loop
2381 // chain is not its CFG successor. Note that the more frequently executed
2382 // jmp instruction will be put ahead of the other one. Assume the
2383 // frequency of those two branches are x and y, where x is the frequency
2384 // of the edge to the chain head, then the cost will be
2385 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2386 // 3. If the tail node has more than two successors (this rarely happens),
2387 // we won't consider any additional cost.
2388 if (TailBB
->isSuccessor(*Iter
)) {
2389 auto TailBBFreq
= MBFI
->getBlockFreq(TailBB
);
2390 if (TailBB
->succ_size() == 1)
2391 Cost
+= ScaleBlockFrequency(TailBBFreq
.getFrequency(),
2392 MisfetchCost
+ JumpInstCost
);
2393 else if (TailBB
->succ_size() == 2) {
2394 auto TailToHeadProb
= MBPI
->getEdgeProbability(TailBB
, *Iter
);
2395 auto TailToHeadFreq
= TailBBFreq
* TailToHeadProb
;
2396 auto ColderEdgeFreq
= TailToHeadProb
> BranchProbability(1, 2)
2397 ? TailBBFreq
* TailToHeadProb
.getCompl()
2399 Cost
+= ScaleBlockFrequency(TailToHeadFreq
, MisfetchCost
) +
2400 ScaleBlockFrequency(ColderEdgeFreq
, JumpInstCost
);
2404 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2405 << getBlockName(*Iter
)
2406 << " to the top: " << Cost
.getFrequency() << "\n");
2408 if (Cost
< SmallestRotationCost
) {
2409 SmallestRotationCost
= Cost
;
2414 if (RotationPos
!= LoopChain
.end()) {
2415 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos
)
2416 << " to the top\n");
2417 std::rotate(LoopChain
.begin(), RotationPos
, LoopChain
.end());
2421 /// Collect blocks in the given loop that are to be placed.
2423 /// When profile data is available, exclude cold blocks from the returned set;
2424 /// otherwise, collect all blocks in the loop.
2425 MachineBlockPlacement::BlockFilterSet
2426 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop
&L
) {
2427 BlockFilterSet LoopBlockSet
;
2429 // Filter cold blocks off from LoopBlockSet when profile data is available.
2430 // Collect the sum of frequencies of incoming edges to the loop header from
2431 // outside. If we treat the loop as a super block, this is the frequency of
2432 // the loop. Then for each block in the loop, we calculate the ratio between
2433 // its frequency and the frequency of the loop block. When it is too small,
2434 // don't add it to the loop chain. If there are outer loops, then this block
2435 // will be merged into the first outer loop chain for which this block is not
2436 // cold anymore. This needs precise profile data and we only do this when
2437 // profile data is available.
2438 if (F
->getFunction().hasProfileData() || ForceLoopColdBlock
) {
2439 BlockFrequency
LoopFreq(0);
2440 for (auto LoopPred
: L
.getHeader()->predecessors())
2441 if (!L
.contains(LoopPred
))
2442 LoopFreq
+= MBFI
->getBlockFreq(LoopPred
) *
2443 MBPI
->getEdgeProbability(LoopPred
, L
.getHeader());
2445 for (MachineBasicBlock
*LoopBB
: L
.getBlocks()) {
2446 auto Freq
= MBFI
->getBlockFreq(LoopBB
).getFrequency();
2447 if (Freq
== 0 || LoopFreq
.getFrequency() / Freq
> LoopToColdBlockRatio
)
2449 LoopBlockSet
.insert(LoopBB
);
2452 LoopBlockSet
.insert(L
.block_begin(), L
.block_end());
2454 return LoopBlockSet
;
2457 /// Forms basic block chains from the natural loop structures.
2459 /// These chains are designed to preserve the existing *structure* of the code
2460 /// as much as possible. We can then stitch the chains together in a way which
2461 /// both preserves the topological structure and minimizes taken conditional
2463 void MachineBlockPlacement::buildLoopChains(const MachineLoop
&L
) {
2464 // First recurse through any nested loops, building chains for those inner
2466 for (const MachineLoop
*InnerLoop
: L
)
2467 buildLoopChains(*InnerLoop
);
2469 assert(BlockWorkList
.empty() &&
2470 "BlockWorkList not empty when starting to build loop chains.");
2471 assert(EHPadWorkList
.empty() &&
2472 "EHPadWorkList not empty when starting to build loop chains.");
2473 BlockFilterSet LoopBlockSet
= collectLoopBlockSet(L
);
2475 // Check if we have profile data for this function. If yes, we will rotate
2476 // this loop by modeling costs more precisely which requires the profile data
2477 // for better layout.
2478 bool RotateLoopWithProfile
=
2479 ForcePreciseRotationCost
||
2480 (PreciseRotationCost
&& F
->getFunction().hasProfileData());
2482 // First check to see if there is an obviously preferable top block for the
2483 // loop. This will default to the header, but may end up as one of the
2484 // predecessors to the header if there is one which will result in strictly
2485 // fewer branches in the loop body.
2486 MachineBasicBlock
*LoopTop
= findBestLoopTop(L
, LoopBlockSet
);
2488 // If we selected just the header for the loop top, look for a potentially
2489 // profitable exit block in the event that rotating the loop can eliminate
2490 // branches by placing an exit edge at the bottom.
2492 // Loops are processed innermost to uttermost, make sure we clear
2493 // PreferredLoopExit before processing a new loop.
2494 PreferredLoopExit
= nullptr;
2495 BlockFrequency ExitFreq
;
2496 if (!RotateLoopWithProfile
&& LoopTop
== L
.getHeader())
2497 PreferredLoopExit
= findBestLoopExit(L
, LoopBlockSet
, ExitFreq
);
2499 BlockChain
&LoopChain
= *BlockToChain
[LoopTop
];
2501 // FIXME: This is a really lame way of walking the chains in the loop: we
2502 // walk the blocks, and use a set to prevent visiting a particular chain
2504 SmallPtrSet
<BlockChain
*, 4> UpdatedPreds
;
2505 assert(LoopChain
.UnscheduledPredecessors
== 0 &&
2506 "LoopChain should not have unscheduled predecessors.");
2507 UpdatedPreds
.insert(&LoopChain
);
2509 for (const MachineBasicBlock
*LoopBB
: LoopBlockSet
)
2510 fillWorkLists(LoopBB
, UpdatedPreds
, &LoopBlockSet
);
2512 buildChain(LoopTop
, LoopChain
, &LoopBlockSet
);
2514 if (RotateLoopWithProfile
)
2515 rotateLoopWithProfile(LoopChain
, L
, LoopBlockSet
);
2517 rotateLoop(LoopChain
, PreferredLoopExit
, ExitFreq
, LoopBlockSet
);
2520 // Crash at the end so we get all of the debugging output first.
2521 bool BadLoop
= false;
2522 if (LoopChain
.UnscheduledPredecessors
) {
2524 dbgs() << "Loop chain contains a block without its preds placed!\n"
2525 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2526 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n";
2528 for (MachineBasicBlock
*ChainBB
: LoopChain
) {
2529 dbgs() << " ... " << getBlockName(ChainBB
) << "\n";
2530 if (!LoopBlockSet
.remove(ChainBB
)) {
2531 // We don't mark the loop as bad here because there are real situations
2532 // where this can occur. For example, with an unanalyzable fallthrough
2533 // from a loop block to a non-loop block or vice versa.
2534 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2535 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2536 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n"
2537 << " Bad block: " << getBlockName(ChainBB
) << "\n";
2541 if (!LoopBlockSet
.empty()) {
2543 for (const MachineBasicBlock
*LoopBB
: LoopBlockSet
)
2544 dbgs() << "Loop contains blocks never placed into a chain!\n"
2545 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2546 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n"
2547 << " Bad block: " << getBlockName(LoopBB
) << "\n";
2549 assert(!BadLoop
&& "Detected problems with the placement of this loop.");
2552 BlockWorkList
.clear();
2553 EHPadWorkList
.clear();
2556 void MachineBlockPlacement::buildCFGChains() {
2557 // Ensure that every BB in the function has an associated chain to simplify
2558 // the assumptions of the remaining algorithm.
2559 SmallVector
<MachineOperand
, 4> Cond
; // For AnalyzeBranch.
2560 for (MachineFunction::iterator FI
= F
->begin(), FE
= F
->end(); FI
!= FE
;
2562 MachineBasicBlock
*BB
= &*FI
;
2564 new (ChainAllocator
.Allocate()) BlockChain(BlockToChain
, BB
);
2565 // Also, merge any blocks which we cannot reason about and must preserve
2566 // the exact fallthrough behavior for.
2569 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2570 if (!TII
->analyzeBranch(*BB
, TBB
, FBB
, Cond
) || !FI
->canFallThrough())
2573 MachineFunction::iterator NextFI
= std::next(FI
);
2574 MachineBasicBlock
*NextBB
= &*NextFI
;
2575 // Ensure that the layout successor is a viable block, as we know that
2576 // fallthrough is a possibility.
2577 assert(NextFI
!= FE
&& "Can't fallthrough past the last block.");
2578 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2579 << getBlockName(BB
) << " -> " << getBlockName(NextBB
)
2581 Chain
->merge(NextBB
, nullptr);
2583 BlocksWithUnanalyzableExits
.insert(&*BB
);
2590 // Build any loop-based chains.
2591 PreferredLoopExit
= nullptr;
2592 for (MachineLoop
*L
: *MLI
)
2593 buildLoopChains(*L
);
2595 assert(BlockWorkList
.empty() &&
2596 "BlockWorkList should be empty before building final chain.");
2597 assert(EHPadWorkList
.empty() &&
2598 "EHPadWorkList should be empty before building final chain.");
2600 SmallPtrSet
<BlockChain
*, 4> UpdatedPreds
;
2601 for (MachineBasicBlock
&MBB
: *F
)
2602 fillWorkLists(&MBB
, UpdatedPreds
);
2604 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2605 buildChain(&F
->front(), FunctionChain
);
2608 using FunctionBlockSetType
= SmallPtrSet
<MachineBasicBlock
*, 16>;
2611 // Crash at the end so we get all of the debugging output first.
2612 bool BadFunc
= false;
2613 FunctionBlockSetType FunctionBlockSet
;
2614 for (MachineBasicBlock
&MBB
: *F
)
2615 FunctionBlockSet
.insert(&MBB
);
2617 for (MachineBasicBlock
*ChainBB
: FunctionChain
)
2618 if (!FunctionBlockSet
.erase(ChainBB
)) {
2620 dbgs() << "Function chain contains a block not in the function!\n"
2621 << " Bad block: " << getBlockName(ChainBB
) << "\n";
2624 if (!FunctionBlockSet
.empty()) {
2626 for (MachineBasicBlock
*RemainingBB
: FunctionBlockSet
)
2627 dbgs() << "Function contains blocks never placed into a chain!\n"
2628 << " Bad block: " << getBlockName(RemainingBB
) << "\n";
2630 assert(!BadFunc
&& "Detected problems with the block placement.");
2633 // Splice the blocks into place.
2634 MachineFunction::iterator InsertPos
= F
->begin();
2635 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F
->getName() << "\n");
2636 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2637 LLVM_DEBUG(dbgs() << (ChainBB
== *FunctionChain
.begin() ? "Placing chain "
2639 << getBlockName(ChainBB
) << "\n");
2640 if (InsertPos
!= MachineFunction::iterator(ChainBB
))
2641 F
->splice(InsertPos
, ChainBB
);
2645 // Update the terminator of the previous block.
2646 if (ChainBB
== *FunctionChain
.begin())
2648 MachineBasicBlock
*PrevBB
= &*std::prev(MachineFunction::iterator(ChainBB
));
2650 // FIXME: It would be awesome of updateTerminator would just return rather
2651 // than assert when the branch cannot be analyzed in order to remove this
2654 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2657 if (!BlocksWithUnanalyzableExits
.count(PrevBB
)) {
2658 // Given the exact block placement we chose, we may actually not _need_ to
2659 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2660 // do that at this point is a bug.
2661 assert((!TII
->analyzeBranch(*PrevBB
, TBB
, FBB
, Cond
) ||
2662 !PrevBB
->canFallThrough()) &&
2663 "Unexpected block with un-analyzable fallthrough!");
2665 TBB
= FBB
= nullptr;
2669 // The "PrevBB" is not yet updated to reflect current code layout, so,
2670 // o. it may fall-through to a block without explicit "goto" instruction
2671 // before layout, and no longer fall-through it after layout; or
2672 // o. just opposite.
2674 // analyzeBranch() may return erroneous value for FBB when these two
2675 // situations take place. For the first scenario FBB is mistakenly set NULL;
2676 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2677 // mistakenly pointing to "*BI".
2678 // Thus, if the future change needs to use FBB before the layout is set, it
2679 // has to correct FBB first by using the code similar to the following:
2681 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2682 // PrevBB->updateTerminator();
2684 // TBB = FBB = nullptr;
2685 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2686 // // FIXME: This should never take place.
2687 // TBB = FBB = nullptr;
2690 if (!TII
->analyzeBranch(*PrevBB
, TBB
, FBB
, Cond
))
2691 PrevBB
->updateTerminator();
2694 // Fixup the last block.
2696 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2697 if (!TII
->analyzeBranch(F
->back(), TBB
, FBB
, Cond
))
2698 F
->back().updateTerminator();
2700 BlockWorkList
.clear();
2701 EHPadWorkList
.clear();
2704 void MachineBlockPlacement::optimizeBranches() {
2705 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2706 SmallVector
<MachineOperand
, 4> Cond
; // For AnalyzeBranch.
2708 // Now that all the basic blocks in the chain have the proper layout,
2709 // make a final call to AnalyzeBranch with AllowModify set.
2710 // Indeed, the target may be able to optimize the branches in a way we
2711 // cannot because all branches may not be analyzable.
2712 // E.g., the target may be able to remove an unconditional branch to
2713 // a fallthrough when it occurs after predicated terminators.
2714 SmallVector
<MachineBasicBlock
*, 4> EmptyBB
;
2715 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2717 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2718 if (!TII
->analyzeBranch(*ChainBB
, TBB
, FBB
, Cond
, /*AllowModify*/ true)) {
2719 // If PrevBB has a two-way branch, try to re-order the branches
2720 // such that we branch to the successor with higher probability first.
2721 if (TBB
&& !Cond
.empty() && FBB
&&
2722 MBPI
->getEdgeProbability(ChainBB
, FBB
) >
2723 MBPI
->getEdgeProbability(ChainBB
, TBB
) &&
2724 !TII
->reverseBranchCondition(Cond
)) {
2725 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2726 << getBlockName(ChainBB
) << "\n");
2727 LLVM_DEBUG(dbgs() << " Edge probability: "
2728 << MBPI
->getEdgeProbability(ChainBB
, FBB
) << " vs "
2729 << MBPI
->getEdgeProbability(ChainBB
, TBB
) << "\n");
2730 DebugLoc dl
; // FIXME: this is nowhere
2731 TII
->removeBranch(*ChainBB
);
2732 TII
->insertBranch(*ChainBB
, FBB
, TBB
, Cond
, dl
);
2733 ChainBB
->updateTerminator();
2734 } else if (Cond
.empty() && TBB
&& ChainBB
!= TBB
&& !TBB
->empty() &&
2735 !TBB
->canFallThrough()) {
2736 // When ChainBB is unconditional branch to the TBB, and TBB has no
2737 // fallthrough predecessor and fallthrough successor, try to merge
2738 // ChainBB and TBB. This is legal under the one of following conditions:
2739 // 1. ChainBB is empty except for an unconditional branch.
2740 // 2. TBB has only one predecessor.
2741 MachineFunction::iterator
I(TBB
);
2742 if (((TBB
== &*F
->begin()) || !std::prev(I
)->canFallThrough()) &&
2743 (TailDup
.isSimpleBB(ChainBB
) || (TBB
->pred_size() == 1))) {
2744 TII
->removeBranch(*ChainBB
);
2745 ChainBB
->removeSuccessor(TBB
);
2748 while (!TBB
->pred_empty()) {
2749 MachineBasicBlock
*Pred
= *(TBB
->pred_end() - 1);
2750 Pred
->ReplaceUsesOfBlockWith(TBB
, ChainBB
);
2753 while (!TBB
->succ_empty()) {
2754 MachineBasicBlock
*Succ
= *(TBB
->succ_end() - 1);
2755 ChainBB
->addSuccessor(Succ
, MBPI
->getEdgeProbability(TBB
, Succ
));
2756 TBB
->removeSuccessor(Succ
);
2759 // Move all the instructions of TBB to ChainBB.
2760 ChainBB
->splice(ChainBB
->end(), TBB
, TBB
->begin(), TBB
->end());
2761 EmptyBB
.push_back(TBB
);
2767 for (auto BB
: EmptyBB
) {
2768 MLI
->removeBlock(BB
);
2769 FunctionChain
.remove(BB
);
2770 BlockToChain
.erase(BB
);
2775 void MachineBlockPlacement::alignBlocks() {
2776 // Walk through the backedges of the function now that we have fully laid out
2777 // the basic blocks and align the destination of each backedge. We don't rely
2778 // exclusively on the loop info here so that we can align backedges in
2779 // unnatural CFGs and backedges that were introduced purely because of the
2780 // loop rotations done during this layout pass.
2781 if (F
->getFunction().hasMinSize() ||
2782 (F
->getFunction().hasOptSize() && !TLI
->alignLoopsWithOptSize()))
2784 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2785 if (FunctionChain
.begin() == FunctionChain
.end())
2786 return; // Empty chain.
2788 const BranchProbability
ColdProb(1, 5); // 20%
2789 BlockFrequency EntryFreq
= MBFI
->getBlockFreq(&F
->front());
2790 BlockFrequency WeightedEntryFreq
= EntryFreq
* ColdProb
;
2791 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2792 if (ChainBB
== *FunctionChain
.begin())
2795 // Don't align non-looping basic blocks. These are unlikely to execute
2796 // enough times to matter in practice. Note that we'll still handle
2797 // unnatural CFGs inside of a natural outer loop (the common case) and
2799 MachineLoop
*L
= MLI
->getLoopFor(ChainBB
);
2803 unsigned Align
= TLI
->getPrefLoopAlignment(L
);
2805 continue; // Don't care about loop alignment.
2807 // If the block is cold relative to the function entry don't waste space
2809 BlockFrequency Freq
= MBFI
->getBlockFreq(ChainBB
);
2810 if (Freq
< WeightedEntryFreq
)
2813 // If the block is cold relative to its loop header, don't align it
2814 // regardless of what edges into the block exist.
2815 MachineBasicBlock
*LoopHeader
= L
->getHeader();
2816 BlockFrequency LoopHeaderFreq
= MBFI
->getBlockFreq(LoopHeader
);
2817 if (Freq
< (LoopHeaderFreq
* ColdProb
))
2820 // Check for the existence of a non-layout predecessor which would benefit
2821 // from aligning this block.
2822 MachineBasicBlock
*LayoutPred
=
2823 &*std::prev(MachineFunction::iterator(ChainBB
));
2825 // Force alignment if all the predecessors are jumps. We already checked
2826 // that the block isn't cold above.
2827 if (!LayoutPred
->isSuccessor(ChainBB
)) {
2828 ChainBB
->setAlignment(Align
);
2832 // Align this block if the layout predecessor's edge into this block is
2833 // cold relative to the block. When this is true, other predecessors make up
2834 // all of the hot entries into the block and thus alignment is likely to be
2836 BranchProbability LayoutProb
=
2837 MBPI
->getEdgeProbability(LayoutPred
, ChainBB
);
2838 BlockFrequency LayoutEdgeFreq
= MBFI
->getBlockFreq(LayoutPred
) * LayoutProb
;
2839 if (LayoutEdgeFreq
<= (Freq
* ColdProb
))
2840 ChainBB
->setAlignment(Align
);
2844 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2845 /// it was duplicated into its chain predecessor and removed.
2846 /// \p BB - Basic block that may be duplicated.
2848 /// \p LPred - Chosen layout predecessor of \p BB.
2849 /// Updated to be the chain end if LPred is removed.
2850 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2851 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2852 /// Used to identify which blocks to update predecessor
2854 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2855 /// chosen in the given order due to unnatural CFG
2856 /// only needed if \p BB is removed and
2857 /// \p PrevUnplacedBlockIt pointed to \p BB.
2858 /// @return true if \p BB was removed.
2859 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2860 MachineBasicBlock
*BB
, MachineBasicBlock
*&LPred
,
2861 const MachineBasicBlock
*LoopHeaderBB
,
2862 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
2863 MachineFunction::iterator
&PrevUnplacedBlockIt
) {
2864 bool Removed
, DuplicatedToLPred
;
2865 bool DuplicatedToOriginalLPred
;
2866 Removed
= maybeTailDuplicateBlock(BB
, LPred
, Chain
, BlockFilter
,
2867 PrevUnplacedBlockIt
,
2871 DuplicatedToOriginalLPred
= DuplicatedToLPred
;
2872 // Iteratively try to duplicate again. It can happen that a block that is
2873 // duplicated into is still small enough to be duplicated again.
2874 // No need to call markBlockSuccessors in this case, as the blocks being
2875 // duplicated from here on are already scheduled.
2876 // Note that DuplicatedToLPred always implies Removed.
2877 while (DuplicatedToLPred
) {
2878 assert(Removed
&& "Block must have been removed to be duplicated into its "
2879 "layout predecessor.");
2880 MachineBasicBlock
*DupBB
, *DupPred
;
2881 // The removal callback causes Chain.end() to be updated when a block is
2882 // removed. On the first pass through the loop, the chain end should be the
2883 // same as it was on function entry. On subsequent passes, because we are
2884 // duplicating the block at the end of the chain, if it is removed the
2885 // chain will have shrunk by one block.
2886 BlockChain::iterator ChainEnd
= Chain
.end();
2887 DupBB
= *(--ChainEnd
);
2888 // Now try to duplicate again.
2889 if (ChainEnd
== Chain
.begin())
2891 DupPred
= *std::prev(ChainEnd
);
2892 Removed
= maybeTailDuplicateBlock(DupBB
, DupPred
, Chain
, BlockFilter
,
2893 PrevUnplacedBlockIt
,
2896 // If BB was duplicated into LPred, it is now scheduled. But because it was
2897 // removed, markChainSuccessors won't be called for its chain. Instead we
2898 // call markBlockSuccessors for LPred to achieve the same effect. This must go
2899 // at the end because repeating the tail duplication can increase the number
2900 // of unscheduled predecessors.
2901 LPred
= *std::prev(Chain
.end());
2902 if (DuplicatedToOriginalLPred
)
2903 markBlockSuccessors(Chain
, LPred
, LoopHeaderBB
, BlockFilter
);
2907 /// Tail duplicate \p BB into (some) predecessors if profitable.
2908 /// \p BB - Basic block that may be duplicated
2909 /// \p LPred - Chosen layout predecessor of \p BB
2910 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2911 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2912 /// Used to identify which blocks to update predecessor
2914 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2915 /// chosen in the given order due to unnatural CFG
2916 /// only needed if \p BB is removed and
2917 /// \p PrevUnplacedBlockIt pointed to \p BB.
2918 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2919 /// only be true if the block was removed.
2920 /// \return - True if the block was duplicated into all preds and removed.
2921 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2922 MachineBasicBlock
*BB
, MachineBasicBlock
*LPred
,
2923 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
2924 MachineFunction::iterator
&PrevUnplacedBlockIt
,
2925 bool &DuplicatedToLPred
) {
2926 DuplicatedToLPred
= false;
2927 if (!shouldTailDuplicate(BB
))
2930 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB
->getNumber()
2933 // This has to be a callback because none of it can be done after
2935 bool Removed
= false;
2936 auto RemovalCallback
=
2937 [&](MachineBasicBlock
*RemBB
) {
2938 // Signal to outer function
2941 // Conservative default.
2942 bool InWorkList
= true;
2943 // Remove from the Chain and Chain Map
2944 if (BlockToChain
.count(RemBB
)) {
2945 BlockChain
*Chain
= BlockToChain
[RemBB
];
2946 InWorkList
= Chain
->UnscheduledPredecessors
== 0;
2947 Chain
->remove(RemBB
);
2948 BlockToChain
.erase(RemBB
);
2951 // Handle the unplaced block iterator
2952 if (&(*PrevUnplacedBlockIt
) == RemBB
) {
2953 PrevUnplacedBlockIt
++;
2956 // Handle the Work Lists
2958 SmallVectorImpl
<MachineBasicBlock
*> &RemoveList
= BlockWorkList
;
2959 if (RemBB
->isEHPad())
2960 RemoveList
= EHPadWorkList
;
2962 llvm::remove_if(RemoveList
,
2963 [RemBB
](MachineBasicBlock
*BB
) {
2969 // Handle the filter set
2971 BlockFilter
->remove(RemBB
);
2974 // Remove the block from loop info.
2975 MLI
->removeBlock(RemBB
);
2976 if (RemBB
== PreferredLoopExit
)
2977 PreferredLoopExit
= nullptr;
2979 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
2980 << getBlockName(RemBB
) << "\n");
2982 auto RemovalCallbackRef
=
2983 function_ref
<void(MachineBasicBlock
*)>(RemovalCallback
);
2985 SmallVector
<MachineBasicBlock
*, 8> DuplicatedPreds
;
2986 bool IsSimple
= TailDup
.isSimpleBB(BB
);
2987 TailDup
.tailDuplicateAndUpdate(IsSimple
, BB
, LPred
,
2988 &DuplicatedPreds
, &RemovalCallbackRef
);
2990 // Update UnscheduledPredecessors to reflect tail-duplication.
2991 DuplicatedToLPred
= false;
2992 for (MachineBasicBlock
*Pred
: DuplicatedPreds
) {
2993 // We're only looking for unscheduled predecessors that match the filter.
2994 BlockChain
* PredChain
= BlockToChain
[Pred
];
2996 DuplicatedToLPred
= true;
2997 if (Pred
== LPred
|| (BlockFilter
&& !BlockFilter
->count(Pred
))
2998 || PredChain
== &Chain
)
3000 for (MachineBasicBlock
*NewSucc
: Pred
->successors()) {
3001 if (BlockFilter
&& !BlockFilter
->count(NewSucc
))
3003 BlockChain
*NewChain
= BlockToChain
[NewSucc
];
3004 if (NewChain
!= &Chain
&& NewChain
!= PredChain
)
3005 NewChain
->UnscheduledPredecessors
++;
3011 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction
&MF
) {
3012 if (skipFunction(MF
.getFunction()))
3015 // Check for single-block functions and skip them.
3016 if (std::next(MF
.begin()) == MF
.end())
3020 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
3021 MBFI
= std::make_unique
<BranchFolder::MBFIWrapper
>(
3022 getAnalysis
<MachineBlockFrequencyInfo
>());
3023 MLI
= &getAnalysis
<MachineLoopInfo
>();
3024 TII
= MF
.getSubtarget().getInstrInfo();
3025 TLI
= MF
.getSubtarget().getTargetLowering();
3028 // Initialize PreferredLoopExit to nullptr here since it may never be set if
3029 // there are no MachineLoops.
3030 PreferredLoopExit
= nullptr;
3032 assert(BlockToChain
.empty() &&
3033 "BlockToChain map should be empty before starting placement.");
3034 assert(ComputedEdges
.empty() &&
3035 "Computed Edge map should be empty before starting placement.");
3037 unsigned TailDupSize
= TailDupPlacementThreshold
;
3038 // If only the aggressive threshold is explicitly set, use it.
3039 if (TailDupPlacementAggressiveThreshold
.getNumOccurrences() != 0 &&
3040 TailDupPlacementThreshold
.getNumOccurrences() == 0)
3041 TailDupSize
= TailDupPlacementAggressiveThreshold
;
3043 TargetPassConfig
*PassConfig
= &getAnalysis
<TargetPassConfig
>();
3044 // For aggressive optimization, we can adjust some thresholds to be less
3046 if (PassConfig
->getOptLevel() >= CodeGenOpt::Aggressive
) {
3047 // At O3 we should be more willing to copy blocks for tail duplication. This
3048 // increases size pressure, so we only do it at O3
3049 // Do this unless only the regular threshold is explicitly set.
3050 if (TailDupPlacementThreshold
.getNumOccurrences() == 0 ||
3051 TailDupPlacementAggressiveThreshold
.getNumOccurrences() != 0)
3052 TailDupSize
= TailDupPlacementAggressiveThreshold
;
3055 if (allowTailDupPlacement()) {
3056 MPDT
= &getAnalysis
<MachinePostDominatorTree
>();
3057 if (MF
.getFunction().hasOptSize())
3059 bool PreRegAlloc
= false;
3060 TailDup
.initMF(MF
, PreRegAlloc
, MBPI
, /* LayoutMode */ true, TailDupSize
);
3061 precomputeTriangleChains();
3066 // Changing the layout can create new tail merging opportunities.
3067 // TailMerge can create jump into if branches that make CFG irreducible for
3068 // HW that requires structured CFG.
3069 bool EnableTailMerge
= !MF
.getTarget().requiresStructuredCFG() &&
3070 PassConfig
->getEnableTailMerge() &&
3071 BranchFoldPlacement
;
3072 // No tail merging opportunities if the block number is less than four.
3073 if (MF
.size() > 3 && EnableTailMerge
) {
3074 unsigned TailMergeSize
= TailDupSize
+ 1;
3075 BranchFolder
BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI
,
3076 *MBPI
, TailMergeSize
);
3078 if (BF
.OptimizeFunction(MF
, TII
, MF
.getSubtarget().getRegisterInfo(),
3079 getAnalysisIfAvailable
<MachineModuleInfo
>(), MLI
,
3080 /*AfterPlacement=*/true)) {
3081 // Redo the layout if tail merging creates/removes/moves blocks.
3082 BlockToChain
.clear();
3083 ComputedEdges
.clear();
3084 // Must redo the post-dominator tree if blocks were changed.
3086 MPDT
->runOnMachineFunction(MF
);
3087 ChainAllocator
.DestroyAll();
3092 // optimizeBranches() may change the blocks, but we haven't updated the
3093 // post-dominator tree. Because the post-dominator tree won't be used after
3094 // this function and this pass don't preserve the post-dominator tree.
3098 BlockToChain
.clear();
3099 ComputedEdges
.clear();
3100 ChainAllocator
.DestroyAll();
3103 // Align all of the blocks in the function to a specific alignment.
3104 for (MachineBasicBlock
&MBB
: MF
)
3105 MBB
.setAlignment(AlignAllBlock
);
3106 else if (AlignAllNonFallThruBlocks
) {
3107 // Align all of the blocks that have no fall-through predecessors to a
3108 // specific alignment.
3109 for (auto MBI
= std::next(MF
.begin()), MBE
= MF
.end(); MBI
!= MBE
; ++MBI
) {
3110 auto LayoutPred
= std::prev(MBI
);
3111 if (!LayoutPred
->isSuccessor(&*MBI
))
3112 MBI
->setAlignment(AlignAllNonFallThruBlocks
);
3115 if (ViewBlockLayoutWithBFI
!= GVDT_None
&&
3116 (ViewBlockFreqFuncName
.empty() ||
3117 F
->getFunction().getName().equals(ViewBlockFreqFuncName
))) {
3118 MBFI
->view("MBP." + MF
.getName(), false);
3122 // We always return true as we have no way to track whether the final order
3123 // differs from the original order.
3129 /// A pass to compute block placement statistics.
3131 /// A separate pass to compute interesting statistics for evaluating block
3132 /// placement. This is separate from the actual placement pass so that they can
3133 /// be computed in the absence of any placement transformations or when using
3134 /// alternative placement strategies.
3135 class MachineBlockPlacementStats
: public MachineFunctionPass
{
3136 /// A handle to the branch probability pass.
3137 const MachineBranchProbabilityInfo
*MBPI
;
3139 /// A handle to the function-wide block frequency pass.
3140 const MachineBlockFrequencyInfo
*MBFI
;
3143 static char ID
; // Pass identification, replacement for typeid
3145 MachineBlockPlacementStats() : MachineFunctionPass(ID
) {
3146 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3149 bool runOnMachineFunction(MachineFunction
&F
) override
;
3151 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
3152 AU
.addRequired
<MachineBranchProbabilityInfo
>();
3153 AU
.addRequired
<MachineBlockFrequencyInfo
>();
3154 AU
.setPreservesAll();
3155 MachineFunctionPass::getAnalysisUsage(AU
);
3159 } // end anonymous namespace
3161 char MachineBlockPlacementStats::ID
= 0;
3163 char &llvm::MachineBlockPlacementStatsID
= MachineBlockPlacementStats::ID
;
3165 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats
, "block-placement-stats",
3166 "Basic Block Placement Stats", false, false)
3167 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
3168 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
3169 INITIALIZE_PASS_END(MachineBlockPlacementStats
, "block-placement-stats",
3170 "Basic Block Placement Stats", false, false)
3172 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction
&F
) {
3173 // Check for single-block functions and skip them.
3174 if (std::next(F
.begin()) == F
.end())
3177 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
3178 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
3180 for (MachineBasicBlock
&MBB
: F
) {
3181 BlockFrequency BlockFreq
= MBFI
->getBlockFreq(&MBB
);
3182 Statistic
&NumBranches
=
3183 (MBB
.succ_size() > 1) ? NumCondBranches
: NumUncondBranches
;
3184 Statistic
&BranchTakenFreq
=
3185 (MBB
.succ_size() > 1) ? CondBranchTakenFreq
: UncondBranchTakenFreq
;
3186 for (MachineBasicBlock
*Succ
: MBB
.successors()) {
3187 // Skip if this successor is a fallthrough.
3188 if (MBB
.isLayoutSuccessor(Succ
))
3191 BlockFrequency EdgeFreq
=
3192 BlockFreq
* MBPI
->getEdgeProbability(&MBB
, Succ
);
3194 BranchTakenFreq
+= EdgeFreq
.getFrequency();