1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Pass to verify generated machine code. The following is checked:
11 // Operand counts: All explicit operands must be present.
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
20 // command-line option -verify-machineinstrs, or by defining the environment
21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
22 // the verifier errors.
23 //===----------------------------------------------------------------------===//
25 #include "LiveRangeCalc.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
86 struct MachineVerifier
{
87 MachineVerifier(Pass
*pass
, const char *b
) : PASS(pass
), Banner(b
) {}
89 unsigned verify(MachineFunction
&MF
);
93 const MachineFunction
*MF
;
94 const TargetMachine
*TM
;
95 const TargetInstrInfo
*TII
;
96 const TargetRegisterInfo
*TRI
;
97 const MachineRegisterInfo
*MRI
;
101 // Avoid querying the MachineFunctionProperties for each operand.
102 bool isFunctionRegBankSelected
;
103 bool isFunctionSelected
;
105 using RegVector
= SmallVector
<unsigned, 16>;
106 using RegMaskVector
= SmallVector
<const uint32_t *, 4>;
107 using RegSet
= DenseSet
<unsigned>;
108 using RegMap
= DenseMap
<unsigned, const MachineInstr
*>;
109 using BlockSet
= SmallPtrSet
<const MachineBasicBlock
*, 8>;
111 const MachineInstr
*FirstNonPHI
;
112 const MachineInstr
*FirstTerminator
;
113 BlockSet FunctionBlocks
;
115 BitVector regsReserved
;
117 RegVector regsDefined
, regsDead
, regsKilled
;
118 RegMaskVector regMasks
;
122 // Add Reg and any sub-registers to RV
123 void addRegWithSubRegs(RegVector
&RV
, unsigned Reg
) {
125 if (Register::isPhysicalRegister(Reg
))
126 for (MCSubRegIterator
SubRegs(Reg
, TRI
); SubRegs
.isValid(); ++SubRegs
)
127 RV
.push_back(*SubRegs
);
131 // Is this MBB reachable from the MF entry point?
132 bool reachable
= false;
134 // Vregs that must be live in because they are used without being
135 // defined. Map value is the user.
138 // Regs killed in MBB. They may be defined again, and will then be in both
139 // regsKilled and regsLiveOut.
142 // Regs defined in MBB and live out. Note that vregs passing through may
143 // be live out without being mentioned here.
146 // Vregs that pass through MBB untouched. This set is disjoint from
147 // regsKilled and regsLiveOut.
150 // Vregs that must pass through MBB because they are needed by a successor
151 // block. This set is disjoint from regsLiveOut.
152 RegSet vregsRequired
;
154 // Set versions of block's predecessor and successor lists.
155 BlockSet Preds
, Succs
;
159 // Add register to vregsPassed if it belongs there. Return true if
161 bool addPassed(unsigned Reg
) {
162 if (!Register::isVirtualRegister(Reg
))
164 if (regsKilled
.count(Reg
) || regsLiveOut
.count(Reg
))
166 return vregsPassed
.insert(Reg
).second
;
169 // Same for a full set.
170 bool addPassed(const RegSet
&RS
) {
171 bool changed
= false;
172 for (RegSet::const_iterator I
= RS
.begin(), E
= RS
.end(); I
!= E
; ++I
)
178 // Add register to vregsRequired if it belongs there. Return true if
180 bool addRequired(unsigned Reg
) {
181 if (!Register::isVirtualRegister(Reg
))
183 if (regsLiveOut
.count(Reg
))
185 return vregsRequired
.insert(Reg
).second
;
188 // Same for a full set.
189 bool addRequired(const RegSet
&RS
) {
190 bool changed
= false;
191 for (RegSet::const_iterator I
= RS
.begin(), E
= RS
.end(); I
!= E
; ++I
)
197 // Same for a full map.
198 bool addRequired(const RegMap
&RM
) {
199 bool changed
= false;
200 for (RegMap::const_iterator I
= RM
.begin(), E
= RM
.end(); I
!= E
; ++I
)
201 if (addRequired(I
->first
))
206 // Live-out registers are either in regsLiveOut or vregsPassed.
207 bool isLiveOut(unsigned Reg
) const {
208 return regsLiveOut
.count(Reg
) || vregsPassed
.count(Reg
);
212 // Extra register info per MBB.
213 DenseMap
<const MachineBasicBlock
*, BBInfo
> MBBInfoMap
;
215 bool isReserved(unsigned Reg
) {
216 return Reg
< regsReserved
.size() && regsReserved
.test(Reg
);
219 bool isAllocatable(unsigned Reg
) const {
220 return Reg
< TRI
->getNumRegs() && TRI
->isInAllocatableClass(Reg
) &&
221 !regsReserved
.test(Reg
);
224 // Analysis information if available
225 LiveVariables
*LiveVars
;
226 LiveIntervals
*LiveInts
;
227 LiveStacks
*LiveStks
;
228 SlotIndexes
*Indexes
;
230 void visitMachineFunctionBefore();
231 void visitMachineBasicBlockBefore(const MachineBasicBlock
*MBB
);
232 void visitMachineBundleBefore(const MachineInstr
*MI
);
234 bool verifyVectorElementMatch(LLT Ty0
, LLT Ty1
, const MachineInstr
*MI
);
235 void verifyPreISelGenericInstruction(const MachineInstr
*MI
);
236 void visitMachineInstrBefore(const MachineInstr
*MI
);
237 void visitMachineOperand(const MachineOperand
*MO
, unsigned MONum
);
238 void visitMachineInstrAfter(const MachineInstr
*MI
);
239 void visitMachineBundleAfter(const MachineInstr
*MI
);
240 void visitMachineBasicBlockAfter(const MachineBasicBlock
*MBB
);
241 void visitMachineFunctionAfter();
243 void report(const char *msg
, const MachineFunction
*MF
);
244 void report(const char *msg
, const MachineBasicBlock
*MBB
);
245 void report(const char *msg
, const MachineInstr
*MI
);
246 void report(const char *msg
, const MachineOperand
*MO
, unsigned MONum
,
247 LLT MOVRegType
= LLT
{});
249 void report_context(const LiveInterval
&LI
) const;
250 void report_context(const LiveRange
&LR
, unsigned VRegUnit
,
251 LaneBitmask LaneMask
) const;
252 void report_context(const LiveRange::Segment
&S
) const;
253 void report_context(const VNInfo
&VNI
) const;
254 void report_context(SlotIndex Pos
) const;
255 void report_context(MCPhysReg PhysReg
) const;
256 void report_context_liverange(const LiveRange
&LR
) const;
257 void report_context_lanemask(LaneBitmask LaneMask
) const;
258 void report_context_vreg(unsigned VReg
) const;
259 void report_context_vreg_regunit(unsigned VRegOrUnit
) const;
261 void verifyInlineAsm(const MachineInstr
*MI
);
263 void checkLiveness(const MachineOperand
*MO
, unsigned MONum
);
264 void checkLivenessAtUse(const MachineOperand
*MO
, unsigned MONum
,
265 SlotIndex UseIdx
, const LiveRange
&LR
, unsigned VRegOrUnit
,
266 LaneBitmask LaneMask
= LaneBitmask::getNone());
267 void checkLivenessAtDef(const MachineOperand
*MO
, unsigned MONum
,
268 SlotIndex DefIdx
, const LiveRange
&LR
, unsigned VRegOrUnit
,
269 bool SubRangeCheck
= false,
270 LaneBitmask LaneMask
= LaneBitmask::getNone());
272 void markReachable(const MachineBasicBlock
*MBB
);
273 void calcRegsPassed();
274 void checkPHIOps(const MachineBasicBlock
&MBB
);
276 void calcRegsRequired();
277 void verifyLiveVariables();
278 void verifyLiveIntervals();
279 void verifyLiveInterval(const LiveInterval
&);
280 void verifyLiveRangeValue(const LiveRange
&, const VNInfo
*, unsigned,
282 void verifyLiveRangeSegment(const LiveRange
&,
283 const LiveRange::const_iterator I
, unsigned,
285 void verifyLiveRange(const LiveRange
&, unsigned,
286 LaneBitmask LaneMask
= LaneBitmask::getNone());
288 void verifyStackFrame();
290 void verifySlotIndexes() const;
291 void verifyProperties(const MachineFunction
&MF
);
294 struct MachineVerifierPass
: public MachineFunctionPass
{
295 static char ID
; // Pass ID, replacement for typeid
297 const std::string Banner
;
299 MachineVerifierPass(std::string banner
= std::string())
300 : MachineFunctionPass(ID
), Banner(std::move(banner
)) {
301 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
304 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
305 AU
.setPreservesAll();
306 MachineFunctionPass::getAnalysisUsage(AU
);
309 bool runOnMachineFunction(MachineFunction
&MF
) override
{
310 unsigned FoundErrors
= MachineVerifier(this, Banner
.c_str()).verify(MF
);
312 report_fatal_error("Found "+Twine(FoundErrors
)+" machine code errors.");
317 } // end anonymous namespace
319 char MachineVerifierPass::ID
= 0;
321 INITIALIZE_PASS(MachineVerifierPass
, "machineverifier",
322 "Verify generated machine code", false, false)
324 FunctionPass
*llvm::createMachineVerifierPass(const std::string
&Banner
) {
325 return new MachineVerifierPass(Banner
);
328 bool MachineFunction::verify(Pass
*p
, const char *Banner
, bool AbortOnErrors
)
330 MachineFunction
&MF
= const_cast<MachineFunction
&>(*this);
331 unsigned FoundErrors
= MachineVerifier(p
, Banner
).verify(MF
);
332 if (AbortOnErrors
&& FoundErrors
)
333 report_fatal_error("Found "+Twine(FoundErrors
)+" machine code errors.");
334 return FoundErrors
== 0;
337 void MachineVerifier::verifySlotIndexes() const {
338 if (Indexes
== nullptr)
341 // Ensure the IdxMBB list is sorted by slot indexes.
343 for (SlotIndexes::MBBIndexIterator I
= Indexes
->MBBIndexBegin(),
344 E
= Indexes
->MBBIndexEnd(); I
!= E
; ++I
) {
345 assert(!Last
.isValid() || I
->first
> Last
);
350 void MachineVerifier::verifyProperties(const MachineFunction
&MF
) {
351 // If a pass has introduced virtual registers without clearing the
352 // NoVRegs property (or set it without allocating the vregs)
353 // then report an error.
354 if (MF
.getProperties().hasProperty(
355 MachineFunctionProperties::Property::NoVRegs
) &&
356 MRI
->getNumVirtRegs())
357 report("Function has NoVRegs property but there are VReg operands", &MF
);
360 unsigned MachineVerifier::verify(MachineFunction
&MF
) {
364 TM
= &MF
.getTarget();
365 TII
= MF
.getSubtarget().getInstrInfo();
366 TRI
= MF
.getSubtarget().getRegisterInfo();
367 MRI
= &MF
.getRegInfo();
369 const bool isFunctionFailedISel
= MF
.getProperties().hasProperty(
370 MachineFunctionProperties::Property::FailedISel
);
372 // If we're mid-GlobalISel and we already triggered the fallback path then
373 // it's expected that the MIR is somewhat broken but that's ok since we'll
374 // reset it and clear the FailedISel attribute in ResetMachineFunctions.
375 if (isFunctionFailedISel
)
378 isFunctionRegBankSelected
=
379 !isFunctionFailedISel
&&
380 MF
.getProperties().hasProperty(
381 MachineFunctionProperties::Property::RegBankSelected
);
382 isFunctionSelected
= !isFunctionFailedISel
&&
383 MF
.getProperties().hasProperty(
384 MachineFunctionProperties::Property::Selected
);
390 LiveInts
= PASS
->getAnalysisIfAvailable
<LiveIntervals
>();
391 // We don't want to verify LiveVariables if LiveIntervals is available.
393 LiveVars
= PASS
->getAnalysisIfAvailable
<LiveVariables
>();
394 LiveStks
= PASS
->getAnalysisIfAvailable
<LiveStacks
>();
395 Indexes
= PASS
->getAnalysisIfAvailable
<SlotIndexes
>();
400 verifyProperties(MF
);
402 visitMachineFunctionBefore();
403 for (MachineFunction::const_iterator MFI
= MF
.begin(), MFE
= MF
.end();
405 visitMachineBasicBlockBefore(&*MFI
);
406 // Keep track of the current bundle header.
407 const MachineInstr
*CurBundle
= nullptr;
408 // Do we expect the next instruction to be part of the same bundle?
409 bool InBundle
= false;
411 for (MachineBasicBlock::const_instr_iterator MBBI
= MFI
->instr_begin(),
412 MBBE
= MFI
->instr_end(); MBBI
!= MBBE
; ++MBBI
) {
413 if (MBBI
->getParent() != &*MFI
) {
414 report("Bad instruction parent pointer", &*MFI
);
415 errs() << "Instruction: " << *MBBI
;
419 // Check for consistent bundle flags.
420 if (InBundle
&& !MBBI
->isBundledWithPred())
421 report("Missing BundledPred flag, "
422 "BundledSucc was set on predecessor",
424 if (!InBundle
&& MBBI
->isBundledWithPred())
425 report("BundledPred flag is set, "
426 "but BundledSucc not set on predecessor",
429 // Is this a bundle header?
430 if (!MBBI
->isInsideBundle()) {
432 visitMachineBundleAfter(CurBundle
);
434 visitMachineBundleBefore(CurBundle
);
435 } else if (!CurBundle
)
436 report("No bundle header", &*MBBI
);
437 visitMachineInstrBefore(&*MBBI
);
438 for (unsigned I
= 0, E
= MBBI
->getNumOperands(); I
!= E
; ++I
) {
439 const MachineInstr
&MI
= *MBBI
;
440 const MachineOperand
&Op
= MI
.getOperand(I
);
441 if (Op
.getParent() != &MI
) {
442 // Make sure to use correct addOperand / RemoveOperand / ChangeTo
443 // functions when replacing operands of a MachineInstr.
444 report("Instruction has operand with wrong parent set", &MI
);
447 visitMachineOperand(&Op
, I
);
450 visitMachineInstrAfter(&*MBBI
);
452 // Was this the last bundled instruction?
453 InBundle
= MBBI
->isBundledWithSucc();
456 visitMachineBundleAfter(CurBundle
);
458 report("BundledSucc flag set on last instruction in block", &MFI
->back());
459 visitMachineBasicBlockAfter(&*MFI
);
461 visitMachineFunctionAfter();
474 void MachineVerifier::report(const char *msg
, const MachineFunction
*MF
) {
477 if (!foundErrors
++) {
479 errs() << "# " << Banner
<< '\n';
480 if (LiveInts
!= nullptr)
481 LiveInts
->print(errs());
483 MF
->print(errs(), Indexes
);
485 errs() << "*** Bad machine code: " << msg
<< " ***\n"
486 << "- function: " << MF
->getName() << "\n";
489 void MachineVerifier::report(const char *msg
, const MachineBasicBlock
*MBB
) {
491 report(msg
, MBB
->getParent());
492 errs() << "- basic block: " << printMBBReference(*MBB
) << ' '
493 << MBB
->getName() << " (" << (const void *)MBB
<< ')';
495 errs() << " [" << Indexes
->getMBBStartIdx(MBB
)
496 << ';' << Indexes
->getMBBEndIdx(MBB
) << ')';
500 void MachineVerifier::report(const char *msg
, const MachineInstr
*MI
) {
502 report(msg
, MI
->getParent());
503 errs() << "- instruction: ";
504 if (Indexes
&& Indexes
->hasIndex(*MI
))
505 errs() << Indexes
->getInstructionIndex(*MI
) << '\t';
506 MI
->print(errs(), /*SkipOpers=*/true);
509 void MachineVerifier::report(const char *msg
, const MachineOperand
*MO
,
510 unsigned MONum
, LLT MOVRegType
) {
512 report(msg
, MO
->getParent());
513 errs() << "- operand " << MONum
<< ": ";
514 MO
->print(errs(), MOVRegType
, TRI
);
518 void MachineVerifier::report_context(SlotIndex Pos
) const {
519 errs() << "- at: " << Pos
<< '\n';
522 void MachineVerifier::report_context(const LiveInterval
&LI
) const {
523 errs() << "- interval: " << LI
<< '\n';
526 void MachineVerifier::report_context(const LiveRange
&LR
, unsigned VRegUnit
,
527 LaneBitmask LaneMask
) const {
528 report_context_liverange(LR
);
529 report_context_vreg_regunit(VRegUnit
);
531 report_context_lanemask(LaneMask
);
534 void MachineVerifier::report_context(const LiveRange::Segment
&S
) const {
535 errs() << "- segment: " << S
<< '\n';
538 void MachineVerifier::report_context(const VNInfo
&VNI
) const {
539 errs() << "- ValNo: " << VNI
.id
<< " (def " << VNI
.def
<< ")\n";
542 void MachineVerifier::report_context_liverange(const LiveRange
&LR
) const {
543 errs() << "- liverange: " << LR
<< '\n';
546 void MachineVerifier::report_context(MCPhysReg PReg
) const {
547 errs() << "- p. register: " << printReg(PReg
, TRI
) << '\n';
550 void MachineVerifier::report_context_vreg(unsigned VReg
) const {
551 errs() << "- v. register: " << printReg(VReg
, TRI
) << '\n';
554 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit
) const {
555 if (Register::isVirtualRegister(VRegOrUnit
)) {
556 report_context_vreg(VRegOrUnit
);
558 errs() << "- regunit: " << printRegUnit(VRegOrUnit
, TRI
) << '\n';
562 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask
) const {
563 errs() << "- lanemask: " << PrintLaneMask(LaneMask
) << '\n';
566 void MachineVerifier::markReachable(const MachineBasicBlock
*MBB
) {
567 BBInfo
&MInfo
= MBBInfoMap
[MBB
];
568 if (!MInfo
.reachable
) {
569 MInfo
.reachable
= true;
570 for (MachineBasicBlock::const_succ_iterator SuI
= MBB
->succ_begin(),
571 SuE
= MBB
->succ_end(); SuI
!= SuE
; ++SuI
)
576 void MachineVerifier::visitMachineFunctionBefore() {
577 lastIndex
= SlotIndex();
578 regsReserved
= MRI
->reservedRegsFrozen() ? MRI
->getReservedRegs()
579 : TRI
->getReservedRegs(*MF
);
582 markReachable(&MF
->front());
584 // Build a set of the basic blocks in the function.
585 FunctionBlocks
.clear();
586 for (const auto &MBB
: *MF
) {
587 FunctionBlocks
.insert(&MBB
);
588 BBInfo
&MInfo
= MBBInfoMap
[&MBB
];
590 MInfo
.Preds
.insert(MBB
.pred_begin(), MBB
.pred_end());
591 if (MInfo
.Preds
.size() != MBB
.pred_size())
592 report("MBB has duplicate entries in its predecessor list.", &MBB
);
594 MInfo
.Succs
.insert(MBB
.succ_begin(), MBB
.succ_end());
595 if (MInfo
.Succs
.size() != MBB
.succ_size())
596 report("MBB has duplicate entries in its successor list.", &MBB
);
599 // Check that the register use lists are sane.
600 MRI
->verifyUseLists();
606 // Does iterator point to a and b as the first two elements?
607 static bool matchPair(MachineBasicBlock::const_succ_iterator i
,
608 const MachineBasicBlock
*a
, const MachineBasicBlock
*b
) {
617 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock
*MBB
) {
618 FirstTerminator
= nullptr;
619 FirstNonPHI
= nullptr;
621 if (!MF
->getProperties().hasProperty(
622 MachineFunctionProperties::Property::NoPHIs
) && MRI
->tracksLiveness()) {
623 // If this block has allocatable physical registers live-in, check that
624 // it is an entry block or landing pad.
625 for (const auto &LI
: MBB
->liveins()) {
626 if (isAllocatable(LI
.PhysReg
) && !MBB
->isEHPad() &&
627 MBB
->getIterator() != MBB
->getParent()->begin()) {
628 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB
);
629 report_context(LI
.PhysReg
);
634 // Count the number of landing pad successors.
635 SmallPtrSet
<MachineBasicBlock
*, 4> LandingPadSuccs
;
636 for (MachineBasicBlock::const_succ_iterator I
= MBB
->succ_begin(),
637 E
= MBB
->succ_end(); I
!= E
; ++I
) {
639 LandingPadSuccs
.insert(*I
);
640 if (!FunctionBlocks
.count(*I
))
641 report("MBB has successor that isn't part of the function.", MBB
);
642 if (!MBBInfoMap
[*I
].Preds
.count(MBB
)) {
643 report("Inconsistent CFG", MBB
);
644 errs() << "MBB is not in the predecessor list of the successor "
645 << printMBBReference(*(*I
)) << ".\n";
649 // Check the predecessor list.
650 for (MachineBasicBlock::const_pred_iterator I
= MBB
->pred_begin(),
651 E
= MBB
->pred_end(); I
!= E
; ++I
) {
652 if (!FunctionBlocks
.count(*I
))
653 report("MBB has predecessor that isn't part of the function.", MBB
);
654 if (!MBBInfoMap
[*I
].Succs
.count(MBB
)) {
655 report("Inconsistent CFG", MBB
);
656 errs() << "MBB is not in the successor list of the predecessor "
657 << printMBBReference(*(*I
)) << ".\n";
661 const MCAsmInfo
*AsmInfo
= TM
->getMCAsmInfo();
662 const BasicBlock
*BB
= MBB
->getBasicBlock();
663 const Function
&F
= MF
->getFunction();
664 if (LandingPadSuccs
.size() > 1 &&
666 AsmInfo
->getExceptionHandlingType() == ExceptionHandling::SjLj
&&
667 BB
&& isa
<SwitchInst
>(BB
->getTerminator())) &&
668 !isScopedEHPersonality(classifyEHPersonality(F
.getPersonalityFn())))
669 report("MBB has more than one landing pad successor", MBB
);
671 // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
672 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
673 SmallVector
<MachineOperand
, 4> Cond
;
674 if (!TII
->analyzeBranch(*const_cast<MachineBasicBlock
*>(MBB
), TBB
, FBB
,
676 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
677 // check whether its answers match up with reality.
679 // Block falls through to its successor.
680 MachineFunction::const_iterator MBBI
= MBB
->getIterator();
682 if (MBBI
== MF
->end()) {
683 // It's possible that the block legitimately ends with a noreturn
684 // call or an unreachable, in which case it won't actually fall
685 // out the bottom of the function.
686 } else if (MBB
->succ_size() == LandingPadSuccs
.size()) {
687 // It's possible that the block legitimately ends with a noreturn
688 // call or an unreachable, in which case it won't actually fall
690 } else if (MBB
->succ_size() != 1+LandingPadSuccs
.size()) {
691 report("MBB exits via unconditional fall-through but doesn't have "
692 "exactly one CFG successor!", MBB
);
693 } else if (!MBB
->isSuccessor(&*MBBI
)) {
694 report("MBB exits via unconditional fall-through but its successor "
695 "differs from its CFG successor!", MBB
);
697 if (!MBB
->empty() && MBB
->back().isBarrier() &&
698 !TII
->isPredicated(MBB
->back())) {
699 report("MBB exits via unconditional fall-through but ends with a "
700 "barrier instruction!", MBB
);
703 report("MBB exits via unconditional fall-through but has a condition!",
706 } else if (TBB
&& !FBB
&& Cond
.empty()) {
707 // Block unconditionally branches somewhere.
708 // If the block has exactly one successor, that happens to be a
709 // landingpad, accept it as valid control flow.
710 if (MBB
->succ_size() != 1+LandingPadSuccs
.size() &&
711 (MBB
->succ_size() != 1 || LandingPadSuccs
.size() != 1 ||
712 *MBB
->succ_begin() != *LandingPadSuccs
.begin())) {
713 report("MBB exits via unconditional branch but doesn't have "
714 "exactly one CFG successor!", MBB
);
715 } else if (!MBB
->isSuccessor(TBB
)) {
716 report("MBB exits via unconditional branch but the CFG "
717 "successor doesn't match the actual successor!", MBB
);
720 report("MBB exits via unconditional branch but doesn't contain "
721 "any instructions!", MBB
);
722 } else if (!MBB
->back().isBarrier()) {
723 report("MBB exits via unconditional branch but doesn't end with a "
724 "barrier instruction!", MBB
);
725 } else if (!MBB
->back().isTerminator()) {
726 report("MBB exits via unconditional branch but the branch isn't a "
727 "terminator instruction!", MBB
);
729 } else if (TBB
&& !FBB
&& !Cond
.empty()) {
730 // Block conditionally branches somewhere, otherwise falls through.
731 MachineFunction::const_iterator MBBI
= MBB
->getIterator();
733 if (MBBI
== MF
->end()) {
734 report("MBB conditionally falls through out of function!", MBB
);
735 } else if (MBB
->succ_size() == 1) {
736 // A conditional branch with only one successor is weird, but allowed.
738 report("MBB exits via conditional branch/fall-through but only has "
739 "one CFG successor!", MBB
);
740 else if (TBB
!= *MBB
->succ_begin())
741 report("MBB exits via conditional branch/fall-through but the CFG "
742 "successor don't match the actual successor!", MBB
);
743 } else if (MBB
->succ_size() != 2) {
744 report("MBB exits via conditional branch/fall-through but doesn't have "
745 "exactly two CFG successors!", MBB
);
746 } else if (!matchPair(MBB
->succ_begin(), TBB
, &*MBBI
)) {
747 report("MBB exits via conditional branch/fall-through but the CFG "
748 "successors don't match the actual successors!", MBB
);
751 report("MBB exits via conditional branch/fall-through but doesn't "
752 "contain any instructions!", MBB
);
753 } else if (MBB
->back().isBarrier()) {
754 report("MBB exits via conditional branch/fall-through but ends with a "
755 "barrier instruction!", MBB
);
756 } else if (!MBB
->back().isTerminator()) {
757 report("MBB exits via conditional branch/fall-through but the branch "
758 "isn't a terminator instruction!", MBB
);
760 } else if (TBB
&& FBB
) {
761 // Block conditionally branches somewhere, otherwise branches
763 if (MBB
->succ_size() == 1) {
764 // A conditional branch with only one successor is weird, but allowed.
766 report("MBB exits via conditional branch/branch through but only has "
767 "one CFG successor!", MBB
);
768 else if (TBB
!= *MBB
->succ_begin())
769 report("MBB exits via conditional branch/branch through but the CFG "
770 "successor don't match the actual successor!", MBB
);
771 } else if (MBB
->succ_size() != 2) {
772 report("MBB exits via conditional branch/branch but doesn't have "
773 "exactly two CFG successors!", MBB
);
774 } else if (!matchPair(MBB
->succ_begin(), TBB
, FBB
)) {
775 report("MBB exits via conditional branch/branch but the CFG "
776 "successors don't match the actual successors!", MBB
);
779 report("MBB exits via conditional branch/branch but doesn't "
780 "contain any instructions!", MBB
);
781 } else if (!MBB
->back().isBarrier()) {
782 report("MBB exits via conditional branch/branch but doesn't end with a "
783 "barrier instruction!", MBB
);
784 } else if (!MBB
->back().isTerminator()) {
785 report("MBB exits via conditional branch/branch but the branch "
786 "isn't a terminator instruction!", MBB
);
789 report("MBB exits via conditional branch/branch but there's no "
793 report("AnalyzeBranch returned invalid data!", MBB
);
798 if (MRI
->tracksLiveness()) {
799 for (const auto &LI
: MBB
->liveins()) {
800 if (!Register::isPhysicalRegister(LI
.PhysReg
)) {
801 report("MBB live-in list contains non-physical register", MBB
);
804 for (MCSubRegIterator
SubRegs(LI
.PhysReg
, TRI
, /*IncludeSelf=*/true);
805 SubRegs
.isValid(); ++SubRegs
)
806 regsLive
.insert(*SubRegs
);
810 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
811 BitVector PR
= MFI
.getPristineRegs(*MF
);
812 for (unsigned I
: PR
.set_bits()) {
813 for (MCSubRegIterator
SubRegs(I
, TRI
, /*IncludeSelf=*/true);
814 SubRegs
.isValid(); ++SubRegs
)
815 regsLive
.insert(*SubRegs
);
822 lastIndex
= Indexes
->getMBBStartIdx(MBB
);
825 // This function gets called for all bundle headers, including normal
826 // stand-alone unbundled instructions.
827 void MachineVerifier::visitMachineBundleBefore(const MachineInstr
*MI
) {
828 if (Indexes
&& Indexes
->hasIndex(*MI
)) {
829 SlotIndex idx
= Indexes
->getInstructionIndex(*MI
);
830 if (!(idx
> lastIndex
)) {
831 report("Instruction index out of order", MI
);
832 errs() << "Last instruction was at " << lastIndex
<< '\n';
837 // Ensure non-terminators don't follow terminators.
838 // Ignore predicated terminators formed by if conversion.
839 // FIXME: If conversion shouldn't need to violate this rule.
840 if (MI
->isTerminator() && !TII
->isPredicated(*MI
)) {
841 if (!FirstTerminator
)
842 FirstTerminator
= MI
;
843 } else if (FirstTerminator
&& !MI
->isDebugEntryValue()) {
844 report("Non-terminator instruction after the first terminator", MI
);
845 errs() << "First terminator was:\t" << *FirstTerminator
;
849 // The operands on an INLINEASM instruction must follow a template.
850 // Verify that the flag operands make sense.
851 void MachineVerifier::verifyInlineAsm(const MachineInstr
*MI
) {
852 // The first two operands on INLINEASM are the asm string and global flags.
853 if (MI
->getNumOperands() < 2) {
854 report("Too few operands on inline asm", MI
);
857 if (!MI
->getOperand(0).isSymbol())
858 report("Asm string must be an external symbol", MI
);
859 if (!MI
->getOperand(1).isImm())
860 report("Asm flags must be an immediate", MI
);
861 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
862 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
863 // and Extra_IsConvergent = 32.
864 if (!isUInt
<6>(MI
->getOperand(1).getImm()))
865 report("Unknown asm flags", &MI
->getOperand(1), 1);
867 static_assert(InlineAsm::MIOp_FirstOperand
== 2, "Asm format changed");
869 unsigned OpNo
= InlineAsm::MIOp_FirstOperand
;
871 for (unsigned e
= MI
->getNumOperands(); OpNo
< e
; OpNo
+= NumOps
) {
872 const MachineOperand
&MO
= MI
->getOperand(OpNo
);
873 // There may be implicit ops after the fixed operands.
876 NumOps
= 1 + InlineAsm::getNumOperandRegisters(MO
.getImm());
879 if (OpNo
> MI
->getNumOperands())
880 report("Missing operands in last group", MI
);
882 // An optional MDNode follows the groups.
883 if (OpNo
< MI
->getNumOperands() && MI
->getOperand(OpNo
).isMetadata())
886 // All trailing operands must be implicit registers.
887 for (unsigned e
= MI
->getNumOperands(); OpNo
< e
; ++OpNo
) {
888 const MachineOperand
&MO
= MI
->getOperand(OpNo
);
889 if (!MO
.isReg() || !MO
.isImplicit())
890 report("Expected implicit register after groups", &MO
, OpNo
);
894 /// Check that types are consistent when two operands need to have the same
895 /// number of vector elements.
896 /// \return true if the types are valid.
897 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0
, LLT Ty1
,
898 const MachineInstr
*MI
) {
899 if (Ty0
.isVector() != Ty1
.isVector()) {
900 report("operand types must be all-vector or all-scalar", MI
);
901 // Generally we try to report as many issues as possible at once, but in
902 // this case it's not clear what should we be comparing the size of the
903 // scalar with: the size of the whole vector or its lane. Instead of
904 // making an arbitrary choice and emitting not so helpful message, let's
905 // avoid the extra noise and stop here.
909 if (Ty0
.isVector() && Ty0
.getNumElements() != Ty1
.getNumElements()) {
910 report("operand types must preserve number of vector elements", MI
);
917 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr
*MI
) {
918 if (isFunctionSelected
)
919 report("Unexpected generic instruction in a Selected function", MI
);
921 const MCInstrDesc
&MCID
= MI
->getDesc();
922 unsigned NumOps
= MI
->getNumOperands();
925 SmallVector
<LLT
, 4> Types
;
926 for (unsigned I
= 0, E
= std::min(MCID
.getNumOperands(), NumOps
);
928 if (!MCID
.OpInfo
[I
].isGenericType())
930 // Generic instructions specify type equality constraints between some of
931 // their operands. Make sure these are consistent.
932 size_t TypeIdx
= MCID
.OpInfo
[I
].getGenericTypeIndex();
933 Types
.resize(std::max(TypeIdx
+ 1, Types
.size()));
935 const MachineOperand
*MO
= &MI
->getOperand(I
);
937 report("generic instruction must use register operands", MI
);
941 LLT OpTy
= MRI
->getType(MO
->getReg());
942 // Don't report a type mismatch if there is no actual mismatch, only a
943 // type missing, to reduce noise:
944 if (OpTy
.isValid()) {
945 // Only the first valid type for a type index will be printed: don't
946 // overwrite it later so it's always clear which type was expected:
947 if (!Types
[TypeIdx
].isValid())
948 Types
[TypeIdx
] = OpTy
;
949 else if (Types
[TypeIdx
] != OpTy
)
950 report("Type mismatch in generic instruction", MO
, I
, OpTy
);
952 // Generic instructions must have types attached to their operands.
953 report("Generic instruction is missing a virtual register type", MO
, I
);
957 // Generic opcodes must not have physical register operands.
958 for (unsigned I
= 0; I
< MI
->getNumOperands(); ++I
) {
959 const MachineOperand
*MO
= &MI
->getOperand(I
);
960 if (MO
->isReg() && Register::isPhysicalRegister(MO
->getReg()))
961 report("Generic instruction cannot have physical register", MO
, I
);
964 // Avoid out of bounds in checks below. This was already reported earlier.
965 if (MI
->getNumOperands() < MCID
.getNumOperands())
969 if (!TII
->verifyInstruction(*MI
, ErrorInfo
))
970 report(ErrorInfo
.data(), MI
);
972 // Verify properties of various specific instruction types
973 switch (MI
->getOpcode()) {
974 case TargetOpcode::G_CONSTANT
:
975 case TargetOpcode::G_FCONSTANT
: {
976 if (MI
->getNumOperands() < MCID
.getNumOperands())
979 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
980 if (DstTy
.isVector())
981 report("Instruction cannot use a vector result type", MI
);
983 if (MI
->getOpcode() == TargetOpcode::G_CONSTANT
) {
984 if (!MI
->getOperand(1).isCImm()) {
985 report("G_CONSTANT operand must be cimm", MI
);
989 const ConstantInt
*CI
= MI
->getOperand(1).getCImm();
990 if (CI
->getBitWidth() != DstTy
.getSizeInBits())
991 report("inconsistent constant size", MI
);
993 if (!MI
->getOperand(1).isFPImm()) {
994 report("G_FCONSTANT operand must be fpimm", MI
);
997 const ConstantFP
*CF
= MI
->getOperand(1).getFPImm();
999 if (APFloat::getSizeInBits(CF
->getValueAPF().getSemantics()) !=
1000 DstTy
.getSizeInBits()) {
1001 report("inconsistent constant size", MI
);
1007 case TargetOpcode::G_LOAD
:
1008 case TargetOpcode::G_STORE
:
1009 case TargetOpcode::G_ZEXTLOAD
:
1010 case TargetOpcode::G_SEXTLOAD
: {
1011 LLT ValTy
= MRI
->getType(MI
->getOperand(0).getReg());
1012 LLT PtrTy
= MRI
->getType(MI
->getOperand(1).getReg());
1013 if (!PtrTy
.isPointer())
1014 report("Generic memory instruction must access a pointer", MI
);
1016 // Generic loads and stores must have a single MachineMemOperand
1017 // describing that access.
1018 if (!MI
->hasOneMemOperand()) {
1019 report("Generic instruction accessing memory must have one mem operand",
1022 const MachineMemOperand
&MMO
= **MI
->memoperands_begin();
1023 if (MI
->getOpcode() == TargetOpcode::G_ZEXTLOAD
||
1024 MI
->getOpcode() == TargetOpcode::G_SEXTLOAD
) {
1025 if (MMO
.getSizeInBits() >= ValTy
.getSizeInBits())
1026 report("Generic extload must have a narrower memory type", MI
);
1027 } else if (MI
->getOpcode() == TargetOpcode::G_LOAD
) {
1028 if (MMO
.getSize() > ValTy
.getSizeInBytes())
1029 report("load memory size cannot exceed result size", MI
);
1030 } else if (MI
->getOpcode() == TargetOpcode::G_STORE
) {
1031 if (ValTy
.getSizeInBytes() < MMO
.getSize())
1032 report("store memory size cannot exceed value size", MI
);
1038 case TargetOpcode::G_PHI
: {
1039 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1040 if (!DstTy
.isValid() ||
1041 !std::all_of(MI
->operands_begin() + 1, MI
->operands_end(),
1042 [this, &DstTy
](const MachineOperand
&MO
) {
1045 LLT Ty
= MRI
->getType(MO
.getReg());
1046 if (!Ty
.isValid() || (Ty
!= DstTy
))
1050 report("Generic Instruction G_PHI has operands with incompatible/missing "
1055 case TargetOpcode::G_BITCAST
: {
1056 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1057 LLT SrcTy
= MRI
->getType(MI
->getOperand(1).getReg());
1058 if (!DstTy
.isValid() || !SrcTy
.isValid())
1061 if (SrcTy
.isPointer() != DstTy
.isPointer())
1062 report("bitcast cannot convert between pointers and other types", MI
);
1064 if (SrcTy
.getSizeInBits() != DstTy
.getSizeInBits())
1065 report("bitcast sizes must match", MI
);
1068 case TargetOpcode::G_INTTOPTR
:
1069 case TargetOpcode::G_PTRTOINT
:
1070 case TargetOpcode::G_ADDRSPACE_CAST
: {
1071 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1072 LLT SrcTy
= MRI
->getType(MI
->getOperand(1).getReg());
1073 if (!DstTy
.isValid() || !SrcTy
.isValid())
1076 verifyVectorElementMatch(DstTy
, SrcTy
, MI
);
1078 DstTy
= DstTy
.getScalarType();
1079 SrcTy
= SrcTy
.getScalarType();
1081 if (MI
->getOpcode() == TargetOpcode::G_INTTOPTR
) {
1082 if (!DstTy
.isPointer())
1083 report("inttoptr result type must be a pointer", MI
);
1084 if (SrcTy
.isPointer())
1085 report("inttoptr source type must not be a pointer", MI
);
1086 } else if (MI
->getOpcode() == TargetOpcode::G_PTRTOINT
) {
1087 if (!SrcTy
.isPointer())
1088 report("ptrtoint source type must be a pointer", MI
);
1089 if (DstTy
.isPointer())
1090 report("ptrtoint result type must not be a pointer", MI
);
1092 assert(MI
->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST
);
1093 if (!SrcTy
.isPointer() || !DstTy
.isPointer())
1094 report("addrspacecast types must be pointers", MI
);
1096 if (SrcTy
.getAddressSpace() == DstTy
.getAddressSpace())
1097 report("addrspacecast must convert different address spaces", MI
);
1103 case TargetOpcode::G_GEP
: {
1104 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1105 LLT PtrTy
= MRI
->getType(MI
->getOperand(1).getReg());
1106 LLT OffsetTy
= MRI
->getType(MI
->getOperand(2).getReg());
1107 if (!DstTy
.isValid() || !PtrTy
.isValid() || !OffsetTy
.isValid())
1110 if (!PtrTy
.getScalarType().isPointer())
1111 report("gep first operand must be a pointer", MI
);
1113 if (OffsetTy
.getScalarType().isPointer())
1114 report("gep offset operand must not be a pointer", MI
);
1116 // TODO: Is the offset allowed to be a scalar with a vector?
1119 case TargetOpcode::G_SEXT
:
1120 case TargetOpcode::G_ZEXT
:
1121 case TargetOpcode::G_ANYEXT
:
1122 case TargetOpcode::G_TRUNC
:
1123 case TargetOpcode::G_FPEXT
:
1124 case TargetOpcode::G_FPTRUNC
: {
1125 // Number of operands and presense of types is already checked (and
1126 // reported in case of any issues), so no need to report them again. As
1127 // we're trying to report as many issues as possible at once, however, the
1128 // instructions aren't guaranteed to have the right number of operands or
1129 // types attached to them at this point
1130 assert(MCID
.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1131 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1132 LLT SrcTy
= MRI
->getType(MI
->getOperand(1).getReg());
1133 if (!DstTy
.isValid() || !SrcTy
.isValid())
1136 LLT DstElTy
= DstTy
.getScalarType();
1137 LLT SrcElTy
= SrcTy
.getScalarType();
1138 if (DstElTy
.isPointer() || SrcElTy
.isPointer())
1139 report("Generic extend/truncate can not operate on pointers", MI
);
1141 verifyVectorElementMatch(DstTy
, SrcTy
, MI
);
1143 unsigned DstSize
= DstElTy
.getSizeInBits();
1144 unsigned SrcSize
= SrcElTy
.getSizeInBits();
1145 switch (MI
->getOpcode()) {
1147 if (DstSize
<= SrcSize
)
1148 report("Generic extend has destination type no larger than source", MI
);
1150 case TargetOpcode::G_TRUNC
:
1151 case TargetOpcode::G_FPTRUNC
:
1152 if (DstSize
>= SrcSize
)
1153 report("Generic truncate has destination type no smaller than source",
1159 case TargetOpcode::G_SELECT
: {
1160 LLT SelTy
= MRI
->getType(MI
->getOperand(0).getReg());
1161 LLT CondTy
= MRI
->getType(MI
->getOperand(1).getReg());
1162 if (!SelTy
.isValid() || !CondTy
.isValid())
1165 // Scalar condition select on a vector is valid.
1166 if (CondTy
.isVector())
1167 verifyVectorElementMatch(SelTy
, CondTy
, MI
);
1170 case TargetOpcode::G_MERGE_VALUES
: {
1171 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1172 // e.g. s2N = MERGE sN, sN
1173 // Merging multiple scalars into a vector is not allowed, should use
1174 // G_BUILD_VECTOR for that.
1175 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1176 LLT SrcTy
= MRI
->getType(MI
->getOperand(1).getReg());
1177 if (DstTy
.isVector() || SrcTy
.isVector())
1178 report("G_MERGE_VALUES cannot operate on vectors", MI
);
1180 const unsigned NumOps
= MI
->getNumOperands();
1181 if (DstTy
.getSizeInBits() != SrcTy
.getSizeInBits() * (NumOps
- 1))
1182 report("G_MERGE_VALUES result size is inconsistent", MI
);
1184 for (unsigned I
= 2; I
!= NumOps
; ++I
) {
1185 if (MRI
->getType(MI
->getOperand(I
).getReg()) != SrcTy
)
1186 report("G_MERGE_VALUES source types do not match", MI
);
1191 case TargetOpcode::G_UNMERGE_VALUES
: {
1192 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1193 LLT SrcTy
= MRI
->getType(MI
->getOperand(MI
->getNumOperands()-1).getReg());
1194 // For now G_UNMERGE can split vectors.
1195 for (unsigned i
= 0; i
< MI
->getNumOperands()-1; ++i
) {
1196 if (MRI
->getType(MI
->getOperand(i
).getReg()) != DstTy
)
1197 report("G_UNMERGE_VALUES destination types do not match", MI
);
1199 if (SrcTy
.getSizeInBits() !=
1200 (DstTy
.getSizeInBits() * (MI
->getNumOperands() - 1))) {
1201 report("G_UNMERGE_VALUES source operand does not cover dest operands",
1206 case TargetOpcode::G_BUILD_VECTOR
: {
1207 // Source types must be scalars, dest type a vector. Total size of scalars
1208 // must match the dest vector size.
1209 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1210 LLT SrcEltTy
= MRI
->getType(MI
->getOperand(1).getReg());
1211 if (!DstTy
.isVector() || SrcEltTy
.isVector()) {
1212 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI
);
1216 if (DstTy
.getElementType() != SrcEltTy
)
1217 report("G_BUILD_VECTOR result element type must match source type", MI
);
1219 if (DstTy
.getNumElements() != MI
->getNumOperands() - 1)
1220 report("G_BUILD_VECTOR must have an operand for each elemement", MI
);
1222 for (unsigned i
= 2; i
< MI
->getNumOperands(); ++i
) {
1223 if (MRI
->getType(MI
->getOperand(1).getReg()) !=
1224 MRI
->getType(MI
->getOperand(i
).getReg()))
1225 report("G_BUILD_VECTOR source operand types are not homogeneous", MI
);
1230 case TargetOpcode::G_BUILD_VECTOR_TRUNC
: {
1231 // Source types must be scalars, dest type a vector. Scalar types must be
1232 // larger than the dest vector elt type, as this is a truncating operation.
1233 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1234 LLT SrcEltTy
= MRI
->getType(MI
->getOperand(1).getReg());
1235 if (!DstTy
.isVector() || SrcEltTy
.isVector())
1236 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1238 for (unsigned i
= 2; i
< MI
->getNumOperands(); ++i
) {
1239 if (MRI
->getType(MI
->getOperand(1).getReg()) !=
1240 MRI
->getType(MI
->getOperand(i
).getReg()))
1241 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1244 if (SrcEltTy
.getSizeInBits() <= DstTy
.getElementType().getSizeInBits())
1245 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1250 case TargetOpcode::G_CONCAT_VECTORS
: {
1251 // Source types should be vectors, and total size should match the dest
1253 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1254 LLT SrcTy
= MRI
->getType(MI
->getOperand(1).getReg());
1255 if (!DstTy
.isVector() || !SrcTy
.isVector())
1256 report("G_CONCAT_VECTOR requires vector source and destination operands",
1258 for (unsigned i
= 2; i
< MI
->getNumOperands(); ++i
) {
1259 if (MRI
->getType(MI
->getOperand(1).getReg()) !=
1260 MRI
->getType(MI
->getOperand(i
).getReg()))
1261 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI
);
1263 if (DstTy
.getNumElements() !=
1264 SrcTy
.getNumElements() * (MI
->getNumOperands() - 1))
1265 report("G_CONCAT_VECTOR num dest and source elements should match", MI
);
1268 case TargetOpcode::G_ICMP
:
1269 case TargetOpcode::G_FCMP
: {
1270 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1271 LLT SrcTy
= MRI
->getType(MI
->getOperand(2).getReg());
1273 if ((DstTy
.isVector() != SrcTy
.isVector()) ||
1274 (DstTy
.isVector() && DstTy
.getNumElements() != SrcTy
.getNumElements()))
1275 report("Generic vector icmp/fcmp must preserve number of lanes", MI
);
1279 case TargetOpcode::G_EXTRACT
: {
1280 const MachineOperand
&SrcOp
= MI
->getOperand(1);
1281 if (!SrcOp
.isReg()) {
1282 report("extract source must be a register", MI
);
1286 const MachineOperand
&OffsetOp
= MI
->getOperand(2);
1287 if (!OffsetOp
.isImm()) {
1288 report("extract offset must be a constant", MI
);
1292 unsigned DstSize
= MRI
->getType(MI
->getOperand(0).getReg()).getSizeInBits();
1293 unsigned SrcSize
= MRI
->getType(SrcOp
.getReg()).getSizeInBits();
1294 if (SrcSize
== DstSize
)
1295 report("extract source must be larger than result", MI
);
1297 if (DstSize
+ OffsetOp
.getImm() > SrcSize
)
1298 report("extract reads past end of register", MI
);
1301 case TargetOpcode::G_INSERT
: {
1302 const MachineOperand
&SrcOp
= MI
->getOperand(2);
1303 if (!SrcOp
.isReg()) {
1304 report("insert source must be a register", MI
);
1308 const MachineOperand
&OffsetOp
= MI
->getOperand(3);
1309 if (!OffsetOp
.isImm()) {
1310 report("insert offset must be a constant", MI
);
1314 unsigned DstSize
= MRI
->getType(MI
->getOperand(0).getReg()).getSizeInBits();
1315 unsigned SrcSize
= MRI
->getType(SrcOp
.getReg()).getSizeInBits();
1317 if (DstSize
<= SrcSize
)
1318 report("inserted size must be smaller than total register", MI
);
1320 if (SrcSize
+ OffsetOp
.getImm() > DstSize
)
1321 report("insert writes past end of register", MI
);
1325 case TargetOpcode::G_JUMP_TABLE
: {
1326 if (!MI
->getOperand(1).isJTI())
1327 report("G_JUMP_TABLE source operand must be a jump table index", MI
);
1328 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1329 if (!DstTy
.isPointer())
1330 report("G_JUMP_TABLE dest operand must have a pointer type", MI
);
1333 case TargetOpcode::G_BRJT
: {
1334 if (!MRI
->getType(MI
->getOperand(0).getReg()).isPointer())
1335 report("G_BRJT src operand 0 must be a pointer type", MI
);
1337 if (!MI
->getOperand(1).isJTI())
1338 report("G_BRJT src operand 1 must be a jump table index", MI
);
1340 const auto &IdxOp
= MI
->getOperand(2);
1341 if (!IdxOp
.isReg() || MRI
->getType(IdxOp
.getReg()).isPointer())
1342 report("G_BRJT src operand 2 must be a scalar reg type", MI
);
1345 case TargetOpcode::G_INTRINSIC
:
1346 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS
: {
1347 // TODO: Should verify number of def and use operands, but the current
1348 // interface requires passing in IR types for mangling.
1349 const MachineOperand
&IntrIDOp
= MI
->getOperand(MI
->getNumExplicitDefs());
1350 if (!IntrIDOp
.isIntrinsicID()) {
1351 report("G_INTRINSIC first src operand must be an intrinsic ID", MI
);
1355 bool NoSideEffects
= MI
->getOpcode() == TargetOpcode::G_INTRINSIC
;
1356 unsigned IntrID
= IntrIDOp
.getIntrinsicID();
1357 if (IntrID
!= 0 && IntrID
< Intrinsic::num_intrinsics
) {
1359 = Intrinsic::getAttributes(MF
->getFunction().getContext(),
1360 static_cast<Intrinsic::ID
>(IntrID
));
1361 bool DeclHasSideEffects
= !Attrs
.hasFnAttribute(Attribute::ReadNone
);
1362 if (NoSideEffects
&& DeclHasSideEffects
) {
1363 report("G_INTRINSIC used with intrinsic that accesses memory", MI
);
1366 if (!NoSideEffects
&& !DeclHasSideEffects
) {
1367 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI
);
1373 case TargetOpcode::G_SEXT_INREG
: {
1374 if (!MI
->getOperand(2).isImm()) {
1375 report("G_SEXT_INREG expects an immediate operand #2", MI
);
1379 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1380 LLT SrcTy
= MRI
->getType(MI
->getOperand(1).getReg());
1381 verifyVectorElementMatch(DstTy
, SrcTy
, MI
);
1383 int64_t Imm
= MI
->getOperand(2).getImm();
1385 report("G_SEXT_INREG size must be >= 1", MI
);
1386 if (Imm
>= SrcTy
.getScalarSizeInBits())
1387 report("G_SEXT_INREG size must be less than source bit width", MI
);
1390 case TargetOpcode::G_SHUFFLE_VECTOR
: {
1391 const MachineOperand
&MaskOp
= MI
->getOperand(3);
1392 if (!MaskOp
.isShuffleMask()) {
1393 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI
);
1397 const Constant
*Mask
= MaskOp
.getShuffleMask();
1398 auto *MaskVT
= dyn_cast
<VectorType
>(Mask
->getType());
1399 if (!MaskVT
|| !MaskVT
->getElementType()->isIntegerTy(32)) {
1400 report("Invalid shufflemask constant type", MI
);
1404 if (!Mask
->getAggregateElement(0u)) {
1405 report("Invalid shufflemask constant type", MI
);
1409 LLT DstTy
= MRI
->getType(MI
->getOperand(0).getReg());
1410 LLT Src0Ty
= MRI
->getType(MI
->getOperand(1).getReg());
1411 LLT Src1Ty
= MRI
->getType(MI
->getOperand(2).getReg());
1413 if (Src0Ty
!= Src1Ty
)
1414 report("Source operands must be the same type", MI
);
1416 if (Src0Ty
.getScalarType() != DstTy
.getScalarType())
1417 report("G_SHUFFLE_VECTOR cannot change element type", MI
);
1419 // Don't check that all operands are vector because scalars are used in
1420 // place of 1 element vectors.
1421 int SrcNumElts
= Src0Ty
.isVector() ? Src0Ty
.getNumElements() : 1;
1422 int DstNumElts
= DstTy
.isVector() ? DstTy
.getNumElements() : 1;
1424 SmallVector
<int, 32> MaskIdxes
;
1425 ShuffleVectorInst::getShuffleMask(Mask
, MaskIdxes
);
1427 if (static_cast<int>(MaskIdxes
.size()) != DstNumElts
)
1428 report("Wrong result type for shufflemask", MI
);
1430 for (int Idx
: MaskIdxes
) {
1434 if (Idx
>= 2 * SrcNumElts
)
1435 report("Out of bounds shuffle index", MI
);
1445 void MachineVerifier::visitMachineInstrBefore(const MachineInstr
*MI
) {
1446 const MCInstrDesc
&MCID
= MI
->getDesc();
1447 if (MI
->getNumOperands() < MCID
.getNumOperands()) {
1448 report("Too few operands", MI
);
1449 errs() << MCID
.getNumOperands() << " operands expected, but "
1450 << MI
->getNumOperands() << " given.\n";
1454 if (MF
->getProperties().hasProperty(
1455 MachineFunctionProperties::Property::NoPHIs
))
1456 report("Found PHI instruction with NoPHIs property set", MI
);
1459 report("Found PHI instruction after non-PHI", MI
);
1460 } else if (FirstNonPHI
== nullptr)
1463 // Check the tied operands.
1464 if (MI
->isInlineAsm())
1465 verifyInlineAsm(MI
);
1467 // Check the MachineMemOperands for basic consistency.
1468 for (MachineInstr::mmo_iterator I
= MI
->memoperands_begin(),
1469 E
= MI
->memoperands_end();
1471 if ((*I
)->isLoad() && !MI
->mayLoad())
1472 report("Missing mayLoad flag", MI
);
1473 if ((*I
)->isStore() && !MI
->mayStore())
1474 report("Missing mayStore flag", MI
);
1477 // Debug values must not have a slot index.
1478 // Other instructions must have one, unless they are inside a bundle.
1480 bool mapped
= !LiveInts
->isNotInMIMap(*MI
);
1481 if (MI
->isDebugInstr()) {
1483 report("Debug instruction has a slot index", MI
);
1484 } else if (MI
->isInsideBundle()) {
1486 report("Instruction inside bundle has a slot index", MI
);
1489 report("Missing slot index", MI
);
1493 if (isPreISelGenericOpcode(MCID
.getOpcode())) {
1494 verifyPreISelGenericInstruction(MI
);
1498 StringRef ErrorInfo
;
1499 if (!TII
->verifyInstruction(*MI
, ErrorInfo
))
1500 report(ErrorInfo
.data(), MI
);
1502 // Verify properties of various specific instruction types
1503 switch (MI
->getOpcode()) {
1504 case TargetOpcode::COPY
: {
1507 const MachineOperand
&DstOp
= MI
->getOperand(0);
1508 const MachineOperand
&SrcOp
= MI
->getOperand(1);
1509 LLT DstTy
= MRI
->getType(DstOp
.getReg());
1510 LLT SrcTy
= MRI
->getType(SrcOp
.getReg());
1511 if (SrcTy
.isValid() && DstTy
.isValid()) {
1512 // If both types are valid, check that the types are the same.
1513 if (SrcTy
!= DstTy
) {
1514 report("Copy Instruction is illegal with mismatching types", MI
);
1515 errs() << "Def = " << DstTy
<< ", Src = " << SrcTy
<< "\n";
1518 if (SrcTy
.isValid() || DstTy
.isValid()) {
1519 // If one of them have valid types, let's just check they have the same
1521 unsigned SrcSize
= TRI
->getRegSizeInBits(SrcOp
.getReg(), *MRI
);
1522 unsigned DstSize
= TRI
->getRegSizeInBits(DstOp
.getReg(), *MRI
);
1523 assert(SrcSize
&& "Expecting size here");
1524 assert(DstSize
&& "Expecting size here");
1525 if (SrcSize
!= DstSize
)
1526 if (!DstOp
.getSubReg() && !SrcOp
.getSubReg()) {
1527 report("Copy Instruction is illegal with mismatching sizes", MI
);
1528 errs() << "Def Size = " << DstSize
<< ", Src Size = " << SrcSize
1534 case TargetOpcode::STATEPOINT
:
1535 if (!MI
->getOperand(StatepointOpers::IDPos
).isImm() ||
1536 !MI
->getOperand(StatepointOpers::NBytesPos
).isImm() ||
1537 !MI
->getOperand(StatepointOpers::NCallArgsPos
).isImm())
1538 report("meta operands to STATEPOINT not constant!", MI
);
1541 auto VerifyStackMapConstant
= [&](unsigned Offset
) {
1542 if (!MI
->getOperand(Offset
).isImm() ||
1543 MI
->getOperand(Offset
).getImm() != StackMaps::ConstantOp
||
1544 !MI
->getOperand(Offset
+ 1).isImm())
1545 report("stack map constant to STATEPOINT not well formed!", MI
);
1547 const unsigned VarStart
= StatepointOpers(MI
).getVarIdx();
1548 VerifyStackMapConstant(VarStart
+ StatepointOpers::CCOffset
);
1549 VerifyStackMapConstant(VarStart
+ StatepointOpers::FlagsOffset
);
1550 VerifyStackMapConstant(VarStart
+ StatepointOpers::NumDeoptOperandsOffset
);
1552 // TODO: verify we have properly encoded deopt arguments
1558 MachineVerifier::visitMachineOperand(const MachineOperand
*MO
, unsigned MONum
) {
1559 const MachineInstr
*MI
= MO
->getParent();
1560 const MCInstrDesc
&MCID
= MI
->getDesc();
1561 unsigned NumDefs
= MCID
.getNumDefs();
1562 if (MCID
.getOpcode() == TargetOpcode::PATCHPOINT
)
1563 NumDefs
= (MONum
== 0 && MO
->isReg()) ? NumDefs
: 0;
1565 // The first MCID.NumDefs operands must be explicit register defines
1566 if (MONum
< NumDefs
) {
1567 const MCOperandInfo
&MCOI
= MCID
.OpInfo
[MONum
];
1569 report("Explicit definition must be a register", MO
, MONum
);
1570 else if (!MO
->isDef() && !MCOI
.isOptionalDef())
1571 report("Explicit definition marked as use", MO
, MONum
);
1572 else if (MO
->isImplicit())
1573 report("Explicit definition marked as implicit", MO
, MONum
);
1574 } else if (MONum
< MCID
.getNumOperands()) {
1575 const MCOperandInfo
&MCOI
= MCID
.OpInfo
[MONum
];
1576 // Don't check if it's the last operand in a variadic instruction. See,
1577 // e.g., LDM_RET in the arm back end.
1579 !(MI
->isVariadic() && MONum
== MCID
.getNumOperands()-1)) {
1580 if (MO
->isDef() && !MCOI
.isOptionalDef())
1581 report("Explicit operand marked as def", MO
, MONum
);
1582 if (MO
->isImplicit())
1583 report("Explicit operand marked as implicit", MO
, MONum
);
1586 int TiedTo
= MCID
.getOperandConstraint(MONum
, MCOI::TIED_TO
);
1589 report("Tied use must be a register", MO
, MONum
);
1590 else if (!MO
->isTied())
1591 report("Operand should be tied", MO
, MONum
);
1592 else if (unsigned(TiedTo
) != MI
->findTiedOperandIdx(MONum
))
1593 report("Tied def doesn't match MCInstrDesc", MO
, MONum
);
1594 else if (Register::isPhysicalRegister(MO
->getReg())) {
1595 const MachineOperand
&MOTied
= MI
->getOperand(TiedTo
);
1596 if (!MOTied
.isReg())
1597 report("Tied counterpart must be a register", &MOTied
, TiedTo
);
1598 else if (Register::isPhysicalRegister(MOTied
.getReg()) &&
1599 MO
->getReg() != MOTied
.getReg())
1600 report("Tied physical registers must match.", &MOTied
, TiedTo
);
1602 } else if (MO
->isReg() && MO
->isTied())
1603 report("Explicit operand should not be tied", MO
, MONum
);
1605 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1606 if (MO
->isReg() && !MO
->isImplicit() && !MI
->isVariadic() && MO
->getReg())
1607 report("Extra explicit operand on non-variadic instruction", MO
, MONum
);
1610 switch (MO
->getType()) {
1611 case MachineOperand::MO_Register
: {
1612 const Register Reg
= MO
->getReg();
1615 if (MRI
->tracksLiveness() && !MI
->isDebugValue())
1616 checkLiveness(MO
, MONum
);
1618 // Verify the consistency of tied operands.
1620 unsigned OtherIdx
= MI
->findTiedOperandIdx(MONum
);
1621 const MachineOperand
&OtherMO
= MI
->getOperand(OtherIdx
);
1622 if (!OtherMO
.isReg())
1623 report("Must be tied to a register", MO
, MONum
);
1624 if (!OtherMO
.isTied())
1625 report("Missing tie flags on tied operand", MO
, MONum
);
1626 if (MI
->findTiedOperandIdx(OtherIdx
) != MONum
)
1627 report("Inconsistent tie links", MO
, MONum
);
1628 if (MONum
< MCID
.getNumDefs()) {
1629 if (OtherIdx
< MCID
.getNumOperands()) {
1630 if (-1 == MCID
.getOperandConstraint(OtherIdx
, MCOI::TIED_TO
))
1631 report("Explicit def tied to explicit use without tie constraint",
1634 if (!OtherMO
.isImplicit())
1635 report("Explicit def should be tied to implicit use", MO
, MONum
);
1640 // Verify two-address constraints after leaving SSA form.
1642 if (!MRI
->isSSA() && MO
->isUse() &&
1643 MI
->isRegTiedToDefOperand(MONum
, &DefIdx
) &&
1644 Reg
!= MI
->getOperand(DefIdx
).getReg())
1645 report("Two-address instruction operands must be identical", MO
, MONum
);
1647 // Check register classes.
1648 unsigned SubIdx
= MO
->getSubReg();
1650 if (Register::isPhysicalRegister(Reg
)) {
1652 report("Illegal subregister index for physical register", MO
, MONum
);
1655 if (MONum
< MCID
.getNumOperands()) {
1656 if (const TargetRegisterClass
*DRC
=
1657 TII
->getRegClass(MCID
, MONum
, TRI
, *MF
)) {
1658 if (!DRC
->contains(Reg
)) {
1659 report("Illegal physical register for instruction", MO
, MONum
);
1660 errs() << printReg(Reg
, TRI
) << " is not a "
1661 << TRI
->getRegClassName(DRC
) << " register.\n";
1665 if (MO
->isRenamable()) {
1666 if (MRI
->isReserved(Reg
)) {
1667 report("isRenamable set on reserved register", MO
, MONum
);
1671 if (MI
->isDebugValue() && MO
->isUse() && !MO
->isDebug()) {
1672 report("Use-reg is not IsDebug in a DBG_VALUE", MO
, MONum
);
1676 // Virtual register.
1677 const TargetRegisterClass
*RC
= MRI
->getRegClassOrNull(Reg
);
1679 // This is a generic virtual register.
1681 // If we're post-Select, we can't have gvregs anymore.
1682 if (isFunctionSelected
) {
1683 report("Generic virtual register invalid in a Selected function",
1688 // The gvreg must have a type and it must not have a SubIdx.
1689 LLT Ty
= MRI
->getType(Reg
);
1690 if (!Ty
.isValid()) {
1691 report("Generic virtual register must have a valid type", MO
,
1696 const RegisterBank
*RegBank
= MRI
->getRegBankOrNull(Reg
);
1698 // If we're post-RegBankSelect, the gvreg must have a bank.
1699 if (!RegBank
&& isFunctionRegBankSelected
) {
1700 report("Generic virtual register must have a bank in a "
1701 "RegBankSelected function",
1706 // Make sure the register fits into its register bank if any.
1707 if (RegBank
&& Ty
.isValid() &&
1708 RegBank
->getSize() < Ty
.getSizeInBits()) {
1709 report("Register bank is too small for virtual register", MO
,
1711 errs() << "Register bank " << RegBank
->getName() << " too small("
1712 << RegBank
->getSize() << ") to fit " << Ty
.getSizeInBits()
1717 report("Generic virtual register does not allow subregister index", MO
,
1722 // If this is a target specific instruction and this operand
1723 // has register class constraint, the virtual register must
1725 if (!isPreISelGenericOpcode(MCID
.getOpcode()) &&
1726 MONum
< MCID
.getNumOperands() &&
1727 TII
->getRegClass(MCID
, MONum
, TRI
, *MF
)) {
1728 report("Virtual register does not match instruction constraint", MO
,
1730 errs() << "Expect register class "
1731 << TRI
->getRegClassName(
1732 TII
->getRegClass(MCID
, MONum
, TRI
, *MF
))
1733 << " but got nothing\n";
1740 const TargetRegisterClass
*SRC
=
1741 TRI
->getSubClassWithSubReg(RC
, SubIdx
);
1743 report("Invalid subregister index for virtual register", MO
, MONum
);
1744 errs() << "Register class " << TRI
->getRegClassName(RC
)
1745 << " does not support subreg index " << SubIdx
<< "\n";
1749 report("Invalid register class for subregister index", MO
, MONum
);
1750 errs() << "Register class " << TRI
->getRegClassName(RC
)
1751 << " does not fully support subreg index " << SubIdx
<< "\n";
1755 if (MONum
< MCID
.getNumOperands()) {
1756 if (const TargetRegisterClass
*DRC
=
1757 TII
->getRegClass(MCID
, MONum
, TRI
, *MF
)) {
1759 const TargetRegisterClass
*SuperRC
=
1760 TRI
->getLargestLegalSuperClass(RC
, *MF
);
1762 report("No largest legal super class exists.", MO
, MONum
);
1765 DRC
= TRI
->getMatchingSuperRegClass(SuperRC
, DRC
, SubIdx
);
1767 report("No matching super-reg register class.", MO
, MONum
);
1771 if (!RC
->hasSuperClassEq(DRC
)) {
1772 report("Illegal virtual register for instruction", MO
, MONum
);
1773 errs() << "Expected a " << TRI
->getRegClassName(DRC
)
1774 << " register, but got a " << TRI
->getRegClassName(RC
)
1783 case MachineOperand::MO_RegisterMask
:
1784 regMasks
.push_back(MO
->getRegMask());
1787 case MachineOperand::MO_MachineBasicBlock
:
1788 if (MI
->isPHI() && !MO
->getMBB()->isSuccessor(MI
->getParent()))
1789 report("PHI operand is not in the CFG", MO
, MONum
);
1792 case MachineOperand::MO_FrameIndex
:
1793 if (LiveStks
&& LiveStks
->hasInterval(MO
->getIndex()) &&
1794 LiveInts
&& !LiveInts
->isNotInMIMap(*MI
)) {
1795 int FI
= MO
->getIndex();
1796 LiveInterval
&LI
= LiveStks
->getInterval(FI
);
1797 SlotIndex Idx
= LiveInts
->getInstructionIndex(*MI
);
1799 bool stores
= MI
->mayStore();
1800 bool loads
= MI
->mayLoad();
1801 // For a memory-to-memory move, we need to check if the frame
1802 // index is used for storing or loading, by inspecting the
1804 if (stores
&& loads
) {
1805 for (auto *MMO
: MI
->memoperands()) {
1806 const PseudoSourceValue
*PSV
= MMO
->getPseudoValue();
1807 if (PSV
== nullptr) continue;
1808 const FixedStackPseudoSourceValue
*Value
=
1809 dyn_cast
<FixedStackPseudoSourceValue
>(PSV
);
1810 if (Value
== nullptr) continue;
1811 if (Value
->getFrameIndex() != FI
) continue;
1819 if (loads
== stores
)
1820 report("Missing fixed stack memoperand.", MI
);
1822 if (loads
&& !LI
.liveAt(Idx
.getRegSlot(true))) {
1823 report("Instruction loads from dead spill slot", MO
, MONum
);
1824 errs() << "Live stack: " << LI
<< '\n';
1826 if (stores
&& !LI
.liveAt(Idx
.getRegSlot())) {
1827 report("Instruction stores to dead spill slot", MO
, MONum
);
1828 errs() << "Live stack: " << LI
<< '\n';
1838 void MachineVerifier::checkLivenessAtUse(const MachineOperand
*MO
,
1839 unsigned MONum
, SlotIndex UseIdx
, const LiveRange
&LR
, unsigned VRegOrUnit
,
1840 LaneBitmask LaneMask
) {
1841 LiveQueryResult LRQ
= LR
.Query(UseIdx
);
1842 // Check if we have a segment at the use, note however that we only need one
1843 // live subregister range, the others may be dead.
1844 if (!LRQ
.valueIn() && LaneMask
.none()) {
1845 report("No live segment at use", MO
, MONum
);
1846 report_context_liverange(LR
);
1847 report_context_vreg_regunit(VRegOrUnit
);
1848 report_context(UseIdx
);
1850 if (MO
->isKill() && !LRQ
.isKill()) {
1851 report("Live range continues after kill flag", MO
, MONum
);
1852 report_context_liverange(LR
);
1853 report_context_vreg_regunit(VRegOrUnit
);
1855 report_context_lanemask(LaneMask
);
1856 report_context(UseIdx
);
1860 void MachineVerifier::checkLivenessAtDef(const MachineOperand
*MO
,
1861 unsigned MONum
, SlotIndex DefIdx
, const LiveRange
&LR
, unsigned VRegOrUnit
,
1862 bool SubRangeCheck
, LaneBitmask LaneMask
) {
1863 if (const VNInfo
*VNI
= LR
.getVNInfoAt(DefIdx
)) {
1864 assert(VNI
&& "NULL valno is not allowed");
1865 if (VNI
->def
!= DefIdx
) {
1866 report("Inconsistent valno->def", MO
, MONum
);
1867 report_context_liverange(LR
);
1868 report_context_vreg_regunit(VRegOrUnit
);
1870 report_context_lanemask(LaneMask
);
1871 report_context(*VNI
);
1872 report_context(DefIdx
);
1875 report("No live segment at def", MO
, MONum
);
1876 report_context_liverange(LR
);
1877 report_context_vreg_regunit(VRegOrUnit
);
1879 report_context_lanemask(LaneMask
);
1880 report_context(DefIdx
);
1882 // Check that, if the dead def flag is present, LiveInts agree.
1884 LiveQueryResult LRQ
= LR
.Query(DefIdx
);
1885 if (!LRQ
.isDeadDef()) {
1886 assert(Register::isVirtualRegister(VRegOrUnit
) &&
1887 "Expecting a virtual register.");
1888 // A dead subreg def only tells us that the specific subreg is dead. There
1889 // could be other non-dead defs of other subregs, or we could have other
1890 // parts of the register being live through the instruction. So unless we
1891 // are checking liveness for a subrange it is ok for the live range to
1892 // continue, given that we have a dead def of a subregister.
1893 if (SubRangeCheck
|| MO
->getSubReg() == 0) {
1894 report("Live range continues after dead def flag", MO
, MONum
);
1895 report_context_liverange(LR
);
1896 report_context_vreg_regunit(VRegOrUnit
);
1898 report_context_lanemask(LaneMask
);
1904 void MachineVerifier::checkLiveness(const MachineOperand
*MO
, unsigned MONum
) {
1905 const MachineInstr
*MI
= MO
->getParent();
1906 const unsigned Reg
= MO
->getReg();
1908 // Both use and def operands can read a register.
1909 if (MO
->readsReg()) {
1911 addRegWithSubRegs(regsKilled
, Reg
);
1913 // Check that LiveVars knows this kill.
1914 if (LiveVars
&& Register::isVirtualRegister(Reg
) && MO
->isKill()) {
1915 LiveVariables::VarInfo
&VI
= LiveVars
->getVarInfo(Reg
);
1916 if (!is_contained(VI
.Kills
, MI
))
1917 report("Kill missing from LiveVariables", MO
, MONum
);
1920 // Check LiveInts liveness and kill.
1921 if (LiveInts
&& !LiveInts
->isNotInMIMap(*MI
)) {
1922 SlotIndex UseIdx
= LiveInts
->getInstructionIndex(*MI
);
1923 // Check the cached regunit intervals.
1924 if (Register::isPhysicalRegister(Reg
) && !isReserved(Reg
)) {
1925 for (MCRegUnitIterator
Units(Reg
, TRI
); Units
.isValid(); ++Units
) {
1926 if (MRI
->isReservedRegUnit(*Units
))
1928 if (const LiveRange
*LR
= LiveInts
->getCachedRegUnit(*Units
))
1929 checkLivenessAtUse(MO
, MONum
, UseIdx
, *LR
, *Units
);
1933 if (Register::isVirtualRegister(Reg
)) {
1934 if (LiveInts
->hasInterval(Reg
)) {
1935 // This is a virtual register interval.
1936 const LiveInterval
&LI
= LiveInts
->getInterval(Reg
);
1937 checkLivenessAtUse(MO
, MONum
, UseIdx
, LI
, Reg
);
1939 if (LI
.hasSubRanges() && !MO
->isDef()) {
1940 unsigned SubRegIdx
= MO
->getSubReg();
1941 LaneBitmask MOMask
= SubRegIdx
!= 0
1942 ? TRI
->getSubRegIndexLaneMask(SubRegIdx
)
1943 : MRI
->getMaxLaneMaskForVReg(Reg
);
1944 LaneBitmask LiveInMask
;
1945 for (const LiveInterval::SubRange
&SR
: LI
.subranges()) {
1946 if ((MOMask
& SR
.LaneMask
).none())
1948 checkLivenessAtUse(MO
, MONum
, UseIdx
, SR
, Reg
, SR
.LaneMask
);
1949 LiveQueryResult LRQ
= SR
.Query(UseIdx
);
1951 LiveInMask
|= SR
.LaneMask
;
1953 // At least parts of the register has to be live at the use.
1954 if ((LiveInMask
& MOMask
).none()) {
1955 report("No live subrange at use", MO
, MONum
);
1957 report_context(UseIdx
);
1961 report("Virtual register has no live interval", MO
, MONum
);
1966 // Use of a dead register.
1967 if (!regsLive
.count(Reg
)) {
1968 if (Register::isPhysicalRegister(Reg
)) {
1969 // Reserved registers may be used even when 'dead'.
1970 bool Bad
= !isReserved(Reg
);
1971 // We are fine if just any subregister has a defined value.
1973 for (MCSubRegIterator
SubRegs(Reg
, TRI
); SubRegs
.isValid();
1975 if (regsLive
.count(*SubRegs
)) {
1981 // If there is an additional implicit-use of a super register we stop
1982 // here. By definition we are fine if the super register is not
1983 // (completely) dead, if the complete super register is dead we will
1984 // get a report for its operand.
1986 for (const MachineOperand
&MOP
: MI
->uses()) {
1987 if (!MOP
.isReg() || !MOP
.isImplicit())
1990 if (!Register::isPhysicalRegister(MOP
.getReg()))
1993 for (MCSubRegIterator
SubRegs(MOP
.getReg(), TRI
); SubRegs
.isValid();
1995 if (*SubRegs
== Reg
) {
2003 report("Using an undefined physical register", MO
, MONum
);
2004 } else if (MRI
->def_empty(Reg
)) {
2005 report("Reading virtual register without a def", MO
, MONum
);
2007 BBInfo
&MInfo
= MBBInfoMap
[MI
->getParent()];
2008 // We don't know which virtual registers are live in, so only complain
2009 // if vreg was killed in this MBB. Otherwise keep track of vregs that
2010 // must be live in. PHI instructions are handled separately.
2011 if (MInfo
.regsKilled
.count(Reg
))
2012 report("Using a killed virtual register", MO
, MONum
);
2013 else if (!MI
->isPHI())
2014 MInfo
.vregsLiveIn
.insert(std::make_pair(Reg
, MI
));
2020 // Register defined.
2021 // TODO: verify that earlyclobber ops are not used.
2023 addRegWithSubRegs(regsDead
, Reg
);
2025 addRegWithSubRegs(regsDefined
, Reg
);
2028 if (MRI
->isSSA() && Register::isVirtualRegister(Reg
) &&
2029 std::next(MRI
->def_begin(Reg
)) != MRI
->def_end())
2030 report("Multiple virtual register defs in SSA form", MO
, MONum
);
2032 // Check LiveInts for a live segment, but only for virtual registers.
2033 if (LiveInts
&& !LiveInts
->isNotInMIMap(*MI
)) {
2034 SlotIndex DefIdx
= LiveInts
->getInstructionIndex(*MI
);
2035 DefIdx
= DefIdx
.getRegSlot(MO
->isEarlyClobber());
2037 if (Register::isVirtualRegister(Reg
)) {
2038 if (LiveInts
->hasInterval(Reg
)) {
2039 const LiveInterval
&LI
= LiveInts
->getInterval(Reg
);
2040 checkLivenessAtDef(MO
, MONum
, DefIdx
, LI
, Reg
);
2042 if (LI
.hasSubRanges()) {
2043 unsigned SubRegIdx
= MO
->getSubReg();
2044 LaneBitmask MOMask
= SubRegIdx
!= 0
2045 ? TRI
->getSubRegIndexLaneMask(SubRegIdx
)
2046 : MRI
->getMaxLaneMaskForVReg(Reg
);
2047 for (const LiveInterval::SubRange
&SR
: LI
.subranges()) {
2048 if ((SR
.LaneMask
& MOMask
).none())
2050 checkLivenessAtDef(MO
, MONum
, DefIdx
, SR
, Reg
, true, SR
.LaneMask
);
2054 report("Virtual register has no Live interval", MO
, MONum
);
2061 void MachineVerifier::visitMachineInstrAfter(const MachineInstr
*MI
) {}
2063 // This function gets called after visiting all instructions in a bundle. The
2064 // argument points to the bundle header.
2065 // Normal stand-alone instructions are also considered 'bundles', and this
2066 // function is called for all of them.
2067 void MachineVerifier::visitMachineBundleAfter(const MachineInstr
*MI
) {
2068 BBInfo
&MInfo
= MBBInfoMap
[MI
->getParent()];
2069 set_union(MInfo
.regsKilled
, regsKilled
);
2070 set_subtract(regsLive
, regsKilled
); regsKilled
.clear();
2071 // Kill any masked registers.
2072 while (!regMasks
.empty()) {
2073 const uint32_t *Mask
= regMasks
.pop_back_val();
2074 for (RegSet::iterator I
= regsLive
.begin(), E
= regsLive
.end(); I
!= E
; ++I
)
2075 if (Register::isPhysicalRegister(*I
) &&
2076 MachineOperand::clobbersPhysReg(Mask
, *I
))
2077 regsDead
.push_back(*I
);
2079 set_subtract(regsLive
, regsDead
); regsDead
.clear();
2080 set_union(regsLive
, regsDefined
); regsDefined
.clear();
2084 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock
*MBB
) {
2085 MBBInfoMap
[MBB
].regsLiveOut
= regsLive
;
2089 SlotIndex stop
= Indexes
->getMBBEndIdx(MBB
);
2090 if (!(stop
> lastIndex
)) {
2091 report("Block ends before last instruction index", MBB
);
2092 errs() << "Block ends at " << stop
2093 << " last instruction was at " << lastIndex
<< '\n';
2099 // Calculate the largest possible vregsPassed sets. These are the registers that
2100 // can pass through an MBB live, but may not be live every time. It is assumed
2101 // that all vregsPassed sets are empty before the call.
2102 void MachineVerifier::calcRegsPassed() {
2103 // First push live-out regs to successors' vregsPassed. Remember the MBBs that
2104 // have any vregsPassed.
2105 SmallPtrSet
<const MachineBasicBlock
*, 8> todo
;
2106 for (const auto &MBB
: *MF
) {
2107 BBInfo
&MInfo
= MBBInfoMap
[&MBB
];
2108 if (!MInfo
.reachable
)
2110 for (MachineBasicBlock::const_succ_iterator SuI
= MBB
.succ_begin(),
2111 SuE
= MBB
.succ_end(); SuI
!= SuE
; ++SuI
) {
2112 BBInfo
&SInfo
= MBBInfoMap
[*SuI
];
2113 if (SInfo
.addPassed(MInfo
.regsLiveOut
))
2118 // Iteratively push vregsPassed to successors. This will converge to the same
2119 // final state regardless of DenseSet iteration order.
2120 while (!todo
.empty()) {
2121 const MachineBasicBlock
*MBB
= *todo
.begin();
2123 BBInfo
&MInfo
= MBBInfoMap
[MBB
];
2124 for (MachineBasicBlock::const_succ_iterator SuI
= MBB
->succ_begin(),
2125 SuE
= MBB
->succ_end(); SuI
!= SuE
; ++SuI
) {
2128 BBInfo
&SInfo
= MBBInfoMap
[*SuI
];
2129 if (SInfo
.addPassed(MInfo
.vregsPassed
))
2135 // Calculate the set of virtual registers that must be passed through each basic
2136 // block in order to satisfy the requirements of successor blocks. This is very
2137 // similar to calcRegsPassed, only backwards.
2138 void MachineVerifier::calcRegsRequired() {
2139 // First push live-in regs to predecessors' vregsRequired.
2140 SmallPtrSet
<const MachineBasicBlock
*, 8> todo
;
2141 for (const auto &MBB
: *MF
) {
2142 BBInfo
&MInfo
= MBBInfoMap
[&MBB
];
2143 for (MachineBasicBlock::const_pred_iterator PrI
= MBB
.pred_begin(),
2144 PrE
= MBB
.pred_end(); PrI
!= PrE
; ++PrI
) {
2145 BBInfo
&PInfo
= MBBInfoMap
[*PrI
];
2146 if (PInfo
.addRequired(MInfo
.vregsLiveIn
))
2151 // Iteratively push vregsRequired to predecessors. This will converge to the
2152 // same final state regardless of DenseSet iteration order.
2153 while (!todo
.empty()) {
2154 const MachineBasicBlock
*MBB
= *todo
.begin();
2156 BBInfo
&MInfo
= MBBInfoMap
[MBB
];
2157 for (MachineBasicBlock::const_pred_iterator PrI
= MBB
->pred_begin(),
2158 PrE
= MBB
->pred_end(); PrI
!= PrE
; ++PrI
) {
2161 BBInfo
&SInfo
= MBBInfoMap
[*PrI
];
2162 if (SInfo
.addRequired(MInfo
.vregsRequired
))
2168 // Check PHI instructions at the beginning of MBB. It is assumed that
2169 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2170 void MachineVerifier::checkPHIOps(const MachineBasicBlock
&MBB
) {
2171 BBInfo
&MInfo
= MBBInfoMap
[&MBB
];
2173 SmallPtrSet
<const MachineBasicBlock
*, 8> seen
;
2174 for (const MachineInstr
&Phi
: MBB
) {
2179 const MachineOperand
&MODef
= Phi
.getOperand(0);
2180 if (!MODef
.isReg() || !MODef
.isDef()) {
2181 report("Expected first PHI operand to be a register def", &MODef
, 0);
2184 if (MODef
.isTied() || MODef
.isImplicit() || MODef
.isInternalRead() ||
2185 MODef
.isEarlyClobber() || MODef
.isDebug())
2186 report("Unexpected flag on PHI operand", &MODef
, 0);
2187 Register DefReg
= MODef
.getReg();
2188 if (!Register::isVirtualRegister(DefReg
))
2189 report("Expected first PHI operand to be a virtual register", &MODef
, 0);
2191 for (unsigned I
= 1, E
= Phi
.getNumOperands(); I
!= E
; I
+= 2) {
2192 const MachineOperand
&MO0
= Phi
.getOperand(I
);
2194 report("Expected PHI operand to be a register", &MO0
, I
);
2197 if (MO0
.isImplicit() || MO0
.isInternalRead() || MO0
.isEarlyClobber() ||
2198 MO0
.isDebug() || MO0
.isTied())
2199 report("Unexpected flag on PHI operand", &MO0
, I
);
2201 const MachineOperand
&MO1
= Phi
.getOperand(I
+ 1);
2203 report("Expected PHI operand to be a basic block", &MO1
, I
+ 1);
2207 const MachineBasicBlock
&Pre
= *MO1
.getMBB();
2208 if (!Pre
.isSuccessor(&MBB
)) {
2209 report("PHI input is not a predecessor block", &MO1
, I
+ 1);
2213 if (MInfo
.reachable
) {
2215 BBInfo
&PrInfo
= MBBInfoMap
[&Pre
];
2216 if (!MO0
.isUndef() && PrInfo
.reachable
&&
2217 !PrInfo
.isLiveOut(MO0
.getReg()))
2218 report("PHI operand is not live-out from predecessor", &MO0
, I
);
2222 // Did we see all predecessors?
2223 if (MInfo
.reachable
) {
2224 for (MachineBasicBlock
*Pred
: MBB
.predecessors()) {
2225 if (!seen
.count(Pred
)) {
2226 report("Missing PHI operand", &Phi
);
2227 errs() << printMBBReference(*Pred
)
2228 << " is a predecessor according to the CFG.\n";
2235 void MachineVerifier::visitMachineFunctionAfter() {
2238 for (const MachineBasicBlock
&MBB
: *MF
)
2241 // Now check liveness info if available
2244 // Check for killed virtual registers that should be live out.
2245 for (const auto &MBB
: *MF
) {
2246 BBInfo
&MInfo
= MBBInfoMap
[&MBB
];
2247 for (RegSet::iterator
2248 I
= MInfo
.vregsRequired
.begin(), E
= MInfo
.vregsRequired
.end(); I
!= E
;
2250 if (MInfo
.regsKilled
.count(*I
)) {
2251 report("Virtual register killed in block, but needed live out.", &MBB
);
2252 errs() << "Virtual register " << printReg(*I
)
2253 << " is used after the block.\n";
2258 BBInfo
&MInfo
= MBBInfoMap
[&MF
->front()];
2259 for (RegSet::iterator
2260 I
= MInfo
.vregsRequired
.begin(), E
= MInfo
.vregsRequired
.end(); I
!= E
;
2262 report("Virtual register defs don't dominate all uses.", MF
);
2263 report_context_vreg(*I
);
2268 verifyLiveVariables();
2270 verifyLiveIntervals();
2272 for (auto CSInfo
: MF
->getCallSitesInfo())
2273 if (!CSInfo
.first
->isCall())
2274 report("Call site info referencing instruction that is not call", MF
);
2277 void MachineVerifier::verifyLiveVariables() {
2278 assert(LiveVars
&& "Don't call verifyLiveVariables without LiveVars");
2279 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
2280 unsigned Reg
= Register::index2VirtReg(i
);
2281 LiveVariables::VarInfo
&VI
= LiveVars
->getVarInfo(Reg
);
2282 for (const auto &MBB
: *MF
) {
2283 BBInfo
&MInfo
= MBBInfoMap
[&MBB
];
2285 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2286 if (MInfo
.vregsRequired
.count(Reg
)) {
2287 if (!VI
.AliveBlocks
.test(MBB
.getNumber())) {
2288 report("LiveVariables: Block missing from AliveBlocks", &MBB
);
2289 errs() << "Virtual register " << printReg(Reg
)
2290 << " must be live through the block.\n";
2293 if (VI
.AliveBlocks
.test(MBB
.getNumber())) {
2294 report("LiveVariables: Block should not be in AliveBlocks", &MBB
);
2295 errs() << "Virtual register " << printReg(Reg
)
2296 << " is not needed live through the block.\n";
2303 void MachineVerifier::verifyLiveIntervals() {
2304 assert(LiveInts
&& "Don't call verifyLiveIntervals without LiveInts");
2305 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
2306 unsigned Reg
= Register::index2VirtReg(i
);
2308 // Spilling and splitting may leave unused registers around. Skip them.
2309 if (MRI
->reg_nodbg_empty(Reg
))
2312 if (!LiveInts
->hasInterval(Reg
)) {
2313 report("Missing live interval for virtual register", MF
);
2314 errs() << printReg(Reg
, TRI
) << " still has defs or uses\n";
2318 const LiveInterval
&LI
= LiveInts
->getInterval(Reg
);
2319 assert(Reg
== LI
.reg
&& "Invalid reg to interval mapping");
2320 verifyLiveInterval(LI
);
2323 // Verify all the cached regunit intervals.
2324 for (unsigned i
= 0, e
= TRI
->getNumRegUnits(); i
!= e
; ++i
)
2325 if (const LiveRange
*LR
= LiveInts
->getCachedRegUnit(i
))
2326 verifyLiveRange(*LR
, i
);
2329 void MachineVerifier::verifyLiveRangeValue(const LiveRange
&LR
,
2330 const VNInfo
*VNI
, unsigned Reg
,
2331 LaneBitmask LaneMask
) {
2332 if (VNI
->isUnused())
2335 const VNInfo
*DefVNI
= LR
.getVNInfoAt(VNI
->def
);
2338 report("Value not live at VNInfo def and not marked unused", MF
);
2339 report_context(LR
, Reg
, LaneMask
);
2340 report_context(*VNI
);
2344 if (DefVNI
!= VNI
) {
2345 report("Live segment at def has different VNInfo", MF
);
2346 report_context(LR
, Reg
, LaneMask
);
2347 report_context(*VNI
);
2351 const MachineBasicBlock
*MBB
= LiveInts
->getMBBFromIndex(VNI
->def
);
2353 report("Invalid VNInfo definition index", MF
);
2354 report_context(LR
, Reg
, LaneMask
);
2355 report_context(*VNI
);
2359 if (VNI
->isPHIDef()) {
2360 if (VNI
->def
!= LiveInts
->getMBBStartIdx(MBB
)) {
2361 report("PHIDef VNInfo is not defined at MBB start", MBB
);
2362 report_context(LR
, Reg
, LaneMask
);
2363 report_context(*VNI
);
2369 const MachineInstr
*MI
= LiveInts
->getInstructionFromIndex(VNI
->def
);
2371 report("No instruction at VNInfo def index", MBB
);
2372 report_context(LR
, Reg
, LaneMask
);
2373 report_context(*VNI
);
2378 bool hasDef
= false;
2379 bool isEarlyClobber
= false;
2380 for (ConstMIBundleOperands
MOI(*MI
); MOI
.isValid(); ++MOI
) {
2381 if (!MOI
->isReg() || !MOI
->isDef())
2383 if (Register::isVirtualRegister(Reg
)) {
2384 if (MOI
->getReg() != Reg
)
2387 if (!Register::isPhysicalRegister(MOI
->getReg()) ||
2388 !TRI
->hasRegUnit(MOI
->getReg(), Reg
))
2391 if (LaneMask
.any() &&
2392 (TRI
->getSubRegIndexLaneMask(MOI
->getSubReg()) & LaneMask
).none())
2395 if (MOI
->isEarlyClobber())
2396 isEarlyClobber
= true;
2400 report("Defining instruction does not modify register", MI
);
2401 report_context(LR
, Reg
, LaneMask
);
2402 report_context(*VNI
);
2405 // Early clobber defs begin at USE slots, but other defs must begin at
2407 if (isEarlyClobber
) {
2408 if (!VNI
->def
.isEarlyClobber()) {
2409 report("Early clobber def must be at an early-clobber slot", MBB
);
2410 report_context(LR
, Reg
, LaneMask
);
2411 report_context(*VNI
);
2413 } else if (!VNI
->def
.isRegister()) {
2414 report("Non-PHI, non-early clobber def must be at a register slot", MBB
);
2415 report_context(LR
, Reg
, LaneMask
);
2416 report_context(*VNI
);
2421 void MachineVerifier::verifyLiveRangeSegment(const LiveRange
&LR
,
2422 const LiveRange::const_iterator I
,
2423 unsigned Reg
, LaneBitmask LaneMask
)
2425 const LiveRange::Segment
&S
= *I
;
2426 const VNInfo
*VNI
= S
.valno
;
2427 assert(VNI
&& "Live segment has no valno");
2429 if (VNI
->id
>= LR
.getNumValNums() || VNI
!= LR
.getValNumInfo(VNI
->id
)) {
2430 report("Foreign valno in live segment", MF
);
2431 report_context(LR
, Reg
, LaneMask
);
2433 report_context(*VNI
);
2436 if (VNI
->isUnused()) {
2437 report("Live segment valno is marked unused", MF
);
2438 report_context(LR
, Reg
, LaneMask
);
2442 const MachineBasicBlock
*MBB
= LiveInts
->getMBBFromIndex(S
.start
);
2444 report("Bad start of live segment, no basic block", MF
);
2445 report_context(LR
, Reg
, LaneMask
);
2449 SlotIndex MBBStartIdx
= LiveInts
->getMBBStartIdx(MBB
);
2450 if (S
.start
!= MBBStartIdx
&& S
.start
!= VNI
->def
) {
2451 report("Live segment must begin at MBB entry or valno def", MBB
);
2452 report_context(LR
, Reg
, LaneMask
);
2456 const MachineBasicBlock
*EndMBB
=
2457 LiveInts
->getMBBFromIndex(S
.end
.getPrevSlot());
2459 report("Bad end of live segment, no basic block", MF
);
2460 report_context(LR
, Reg
, LaneMask
);
2465 // No more checks for live-out segments.
2466 if (S
.end
== LiveInts
->getMBBEndIdx(EndMBB
))
2469 // RegUnit intervals are allowed dead phis.
2470 if (!Register::isVirtualRegister(Reg
) && VNI
->isPHIDef() &&
2471 S
.start
== VNI
->def
&& S
.end
== VNI
->def
.getDeadSlot())
2474 // The live segment is ending inside EndMBB
2475 const MachineInstr
*MI
=
2476 LiveInts
->getInstructionFromIndex(S
.end
.getPrevSlot());
2478 report("Live segment doesn't end at a valid instruction", EndMBB
);
2479 report_context(LR
, Reg
, LaneMask
);
2484 // The block slot must refer to a basic block boundary.
2485 if (S
.end
.isBlock()) {
2486 report("Live segment ends at B slot of an instruction", EndMBB
);
2487 report_context(LR
, Reg
, LaneMask
);
2491 if (S
.end
.isDead()) {
2492 // Segment ends on the dead slot.
2493 // That means there must be a dead def.
2494 if (!SlotIndex::isSameInstr(S
.start
, S
.end
)) {
2495 report("Live segment ending at dead slot spans instructions", EndMBB
);
2496 report_context(LR
, Reg
, LaneMask
);
2501 // A live segment can only end at an early-clobber slot if it is being
2502 // redefined by an early-clobber def.
2503 if (S
.end
.isEarlyClobber()) {
2504 if (I
+1 == LR
.end() || (I
+1)->start
!= S
.end
) {
2505 report("Live segment ending at early clobber slot must be "
2506 "redefined by an EC def in the same instruction", EndMBB
);
2507 report_context(LR
, Reg
, LaneMask
);
2512 // The following checks only apply to virtual registers. Physreg liveness
2513 // is too weird to check.
2514 if (Register::isVirtualRegister(Reg
)) {
2515 // A live segment can end with either a redefinition, a kill flag on a
2516 // use, or a dead flag on a def.
2517 bool hasRead
= false;
2518 bool hasSubRegDef
= false;
2519 bool hasDeadDef
= false;
2520 for (ConstMIBundleOperands
MOI(*MI
); MOI
.isValid(); ++MOI
) {
2521 if (!MOI
->isReg() || MOI
->getReg() != Reg
)
2523 unsigned Sub
= MOI
->getSubReg();
2524 LaneBitmask SLM
= Sub
!= 0 ? TRI
->getSubRegIndexLaneMask(Sub
)
2525 : LaneBitmask::getAll();
2528 hasSubRegDef
= true;
2529 // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2530 // mask for subregister defs. Read-undef defs will be handled by
2537 if (LaneMask
.any() && (LaneMask
& SLM
).none())
2539 if (MOI
->readsReg())
2542 if (S
.end
.isDead()) {
2543 // Make sure that the corresponding machine operand for a "dead" live
2544 // range has the dead flag. We cannot perform this check for subregister
2545 // liveranges as partially dead values are allowed.
2546 if (LaneMask
.none() && !hasDeadDef
) {
2547 report("Instruction ending live segment on dead slot has no dead flag",
2549 report_context(LR
, Reg
, LaneMask
);
2554 // When tracking subregister liveness, the main range must start new
2555 // values on partial register writes, even if there is no read.
2556 if (!MRI
->shouldTrackSubRegLiveness(Reg
) || LaneMask
.any() ||
2558 report("Instruction ending live segment doesn't read the register",
2560 report_context(LR
, Reg
, LaneMask
);
2567 // Now check all the basic blocks in this live segment.
2568 MachineFunction::const_iterator MFI
= MBB
->getIterator();
2569 // Is this live segment the beginning of a non-PHIDef VN?
2570 if (S
.start
== VNI
->def
&& !VNI
->isPHIDef()) {
2571 // Not live-in to any blocks.
2578 SmallVector
<SlotIndex
, 4> Undefs
;
2579 if (LaneMask
.any()) {
2580 LiveInterval
&OwnerLI
= LiveInts
->getInterval(Reg
);
2581 OwnerLI
.computeSubRangeUndefs(Undefs
, LaneMask
, *MRI
, *Indexes
);
2585 assert(LiveInts
->isLiveInToMBB(LR
, &*MFI
));
2586 // We don't know how to track physregs into a landing pad.
2587 if (!Register::isVirtualRegister(Reg
) && MFI
->isEHPad()) {
2588 if (&*MFI
== EndMBB
)
2594 // Is VNI a PHI-def in the current block?
2595 bool IsPHI
= VNI
->isPHIDef() &&
2596 VNI
->def
== LiveInts
->getMBBStartIdx(&*MFI
);
2598 // Check that VNI is live-out of all predecessors.
2599 for (MachineBasicBlock::const_pred_iterator PI
= MFI
->pred_begin(),
2600 PE
= MFI
->pred_end(); PI
!= PE
; ++PI
) {
2601 SlotIndex PEnd
= LiveInts
->getMBBEndIdx(*PI
);
2602 const VNInfo
*PVNI
= LR
.getVNInfoBefore(PEnd
);
2604 // All predecessors must have a live-out value. However for a phi
2605 // instruction with subregister intervals
2606 // only one of the subregisters (not necessarily the current one) needs to
2608 if (!PVNI
&& (LaneMask
.none() || !IsPHI
)) {
2609 if (LiveRangeCalc::isJointlyDominated(*PI
, Undefs
, *Indexes
))
2611 report("Register not marked live out of predecessor", *PI
);
2612 report_context(LR
, Reg
, LaneMask
);
2613 report_context(*VNI
);
2614 errs() << " live into " << printMBBReference(*MFI
) << '@'
2615 << LiveInts
->getMBBStartIdx(&*MFI
) << ", not live before "
2620 // Only PHI-defs can take different predecessor values.
2621 if (!IsPHI
&& PVNI
!= VNI
) {
2622 report("Different value live out of predecessor", *PI
);
2623 report_context(LR
, Reg
, LaneMask
);
2624 errs() << "Valno #" << PVNI
->id
<< " live out of "
2625 << printMBBReference(*(*PI
)) << '@' << PEnd
<< "\nValno #"
2626 << VNI
->id
<< " live into " << printMBBReference(*MFI
) << '@'
2627 << LiveInts
->getMBBStartIdx(&*MFI
) << '\n';
2630 if (&*MFI
== EndMBB
)
2636 void MachineVerifier::verifyLiveRange(const LiveRange
&LR
, unsigned Reg
,
2637 LaneBitmask LaneMask
) {
2638 for (const VNInfo
*VNI
: LR
.valnos
)
2639 verifyLiveRangeValue(LR
, VNI
, Reg
, LaneMask
);
2641 for (LiveRange::const_iterator I
= LR
.begin(), E
= LR
.end(); I
!= E
; ++I
)
2642 verifyLiveRangeSegment(LR
, I
, Reg
, LaneMask
);
2645 void MachineVerifier::verifyLiveInterval(const LiveInterval
&LI
) {
2646 unsigned Reg
= LI
.reg
;
2647 assert(Register::isVirtualRegister(Reg
));
2648 verifyLiveRange(LI
, Reg
);
2651 LaneBitmask MaxMask
= MRI
->getMaxLaneMaskForVReg(Reg
);
2652 for (const LiveInterval::SubRange
&SR
: LI
.subranges()) {
2653 if ((Mask
& SR
.LaneMask
).any()) {
2654 report("Lane masks of sub ranges overlap in live interval", MF
);
2657 if ((SR
.LaneMask
& ~MaxMask
).any()) {
2658 report("Subrange lanemask is invalid", MF
);
2662 report("Subrange must not be empty", MF
);
2663 report_context(SR
, LI
.reg
, SR
.LaneMask
);
2665 Mask
|= SR
.LaneMask
;
2666 verifyLiveRange(SR
, LI
.reg
, SR
.LaneMask
);
2667 if (!LI
.covers(SR
)) {
2668 report("A Subrange is not covered by the main range", MF
);
2673 // Check the LI only has one connected component.
2674 ConnectedVNInfoEqClasses
ConEQ(*LiveInts
);
2675 unsigned NumComp
= ConEQ
.Classify(LI
);
2677 report("Multiple connected components in live interval", MF
);
2679 for (unsigned comp
= 0; comp
!= NumComp
; ++comp
) {
2680 errs() << comp
<< ": valnos";
2681 for (LiveInterval::const_vni_iterator I
= LI
.vni_begin(),
2682 E
= LI
.vni_end(); I
!=E
; ++I
)
2683 if (comp
== ConEQ
.getEqClass(*I
))
2684 errs() << ' ' << (*I
)->id
;
2692 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2693 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2695 // We use a bool plus an integer to capture the stack state.
2696 struct StackStateOfBB
{
2697 StackStateOfBB() = default;
2698 StackStateOfBB(int EntryVal
, int ExitVal
, bool EntrySetup
, bool ExitSetup
) :
2699 EntryValue(EntryVal
), ExitValue(ExitVal
), EntryIsSetup(EntrySetup
),
2700 ExitIsSetup(ExitSetup
) {}
2702 // Can be negative, which means we are setting up a frame.
2705 bool EntryIsSetup
= false;
2706 bool ExitIsSetup
= false;
2709 } // end anonymous namespace
2711 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2712 /// by a FrameDestroy <n>, stack adjustments are identical on all
2713 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2714 void MachineVerifier::verifyStackFrame() {
2715 unsigned FrameSetupOpcode
= TII
->getCallFrameSetupOpcode();
2716 unsigned FrameDestroyOpcode
= TII
->getCallFrameDestroyOpcode();
2717 if (FrameSetupOpcode
== ~0u && FrameDestroyOpcode
== ~0u)
2720 SmallVector
<StackStateOfBB
, 8> SPState
;
2721 SPState
.resize(MF
->getNumBlockIDs());
2722 df_iterator_default_set
<const MachineBasicBlock
*> Reachable
;
2724 // Visit the MBBs in DFS order.
2725 for (df_ext_iterator
<const MachineFunction
*,
2726 df_iterator_default_set
<const MachineBasicBlock
*>>
2727 DFI
= df_ext_begin(MF
, Reachable
), DFE
= df_ext_end(MF
, Reachable
);
2728 DFI
!= DFE
; ++DFI
) {
2729 const MachineBasicBlock
*MBB
= *DFI
;
2731 StackStateOfBB BBState
;
2732 // Check the exit state of the DFS stack predecessor.
2733 if (DFI
.getPathLength() >= 2) {
2734 const MachineBasicBlock
*StackPred
= DFI
.getPath(DFI
.getPathLength() - 2);
2735 assert(Reachable
.count(StackPred
) &&
2736 "DFS stack predecessor is already visited.\n");
2737 BBState
.EntryValue
= SPState
[StackPred
->getNumber()].ExitValue
;
2738 BBState
.EntryIsSetup
= SPState
[StackPred
->getNumber()].ExitIsSetup
;
2739 BBState
.ExitValue
= BBState
.EntryValue
;
2740 BBState
.ExitIsSetup
= BBState
.EntryIsSetup
;
2743 // Update stack state by checking contents of MBB.
2744 for (const auto &I
: *MBB
) {
2745 if (I
.getOpcode() == FrameSetupOpcode
) {
2746 if (BBState
.ExitIsSetup
)
2747 report("FrameSetup is after another FrameSetup", &I
);
2748 BBState
.ExitValue
-= TII
->getFrameTotalSize(I
);
2749 BBState
.ExitIsSetup
= true;
2752 if (I
.getOpcode() == FrameDestroyOpcode
) {
2753 int Size
= TII
->getFrameTotalSize(I
);
2754 if (!BBState
.ExitIsSetup
)
2755 report("FrameDestroy is not after a FrameSetup", &I
);
2756 int AbsSPAdj
= BBState
.ExitValue
< 0 ? -BBState
.ExitValue
:
2758 if (BBState
.ExitIsSetup
&& AbsSPAdj
!= Size
) {
2759 report("FrameDestroy <n> is after FrameSetup <m>", &I
);
2760 errs() << "FrameDestroy <" << Size
<< "> is after FrameSetup <"
2761 << AbsSPAdj
<< ">.\n";
2763 BBState
.ExitValue
+= Size
;
2764 BBState
.ExitIsSetup
= false;
2767 SPState
[MBB
->getNumber()] = BBState
;
2769 // Make sure the exit state of any predecessor is consistent with the entry
2771 for (MachineBasicBlock::const_pred_iterator I
= MBB
->pred_begin(),
2772 E
= MBB
->pred_end(); I
!= E
; ++I
) {
2773 if (Reachable
.count(*I
) &&
2774 (SPState
[(*I
)->getNumber()].ExitValue
!= BBState
.EntryValue
||
2775 SPState
[(*I
)->getNumber()].ExitIsSetup
!= BBState
.EntryIsSetup
)) {
2776 report("The exit stack state of a predecessor is inconsistent.", MBB
);
2777 errs() << "Predecessor " << printMBBReference(*(*I
))
2778 << " has exit state (" << SPState
[(*I
)->getNumber()].ExitValue
2779 << ", " << SPState
[(*I
)->getNumber()].ExitIsSetup
<< "), while "
2780 << printMBBReference(*MBB
) << " has entry state ("
2781 << BBState
.EntryValue
<< ", " << BBState
.EntryIsSetup
<< ").\n";
2785 // Make sure the entry state of any successor is consistent with the exit
2787 for (MachineBasicBlock::const_succ_iterator I
= MBB
->succ_begin(),
2788 E
= MBB
->succ_end(); I
!= E
; ++I
) {
2789 if (Reachable
.count(*I
) &&
2790 (SPState
[(*I
)->getNumber()].EntryValue
!= BBState
.ExitValue
||
2791 SPState
[(*I
)->getNumber()].EntryIsSetup
!= BBState
.ExitIsSetup
)) {
2792 report("The entry stack state of a successor is inconsistent.", MBB
);
2793 errs() << "Successor " << printMBBReference(*(*I
))
2794 << " has entry state (" << SPState
[(*I
)->getNumber()].EntryValue
2795 << ", " << SPState
[(*I
)->getNumber()].EntryIsSetup
<< "), while "
2796 << printMBBReference(*MBB
) << " has exit state ("
2797 << BBState
.ExitValue
<< ", " << BBState
.ExitIsSetup
<< ").\n";
2801 // Make sure a basic block with return ends with zero stack adjustment.
2802 if (!MBB
->empty() && MBB
->back().isReturn()) {
2803 if (BBState
.ExitIsSetup
)
2804 report("A return block ends with a FrameSetup.", MBB
);
2805 if (BBState
.ExitValue
)
2806 report("A return block ends with a nonzero stack adjustment.", MBB
);