1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //===----------------------------------------------------------------------===//
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Statepoint.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/Support/AtomicOrdering.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CodeGen.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MachineValueType.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Target/TargetIntrinsicInfo.h"
110 #include "llvm/Target/TargetMachine.h"
111 #include "llvm/Target/TargetOptions.h"
112 #include "llvm/Transforms/Utils/Local.h"
125 using namespace llvm
;
126 using namespace PatternMatch
;
127 using namespace SwitchCG
;
129 #define DEBUG_TYPE "isel"
131 /// LimitFloatPrecision - Generate low-precision inline sequences for
132 /// some float libcalls (6, 8 or 12 bits).
133 static unsigned LimitFloatPrecision
;
135 static cl::opt
<unsigned, true>
136 LimitFPPrecision("limit-float-precision",
137 cl::desc("Generate low-precision inline sequences "
138 "for some float libcalls"),
139 cl::location(LimitFloatPrecision
), cl::Hidden
,
142 static cl::opt
<unsigned> SwitchPeelThreshold(
143 "switch-peel-threshold", cl::Hidden
, cl::init(66),
144 cl::desc("Set the case probability threshold for peeling the case from a "
145 "switch statement. A value greater than 100 will void this "
148 // Limit the width of DAG chains. This is important in general to prevent
149 // DAG-based analysis from blowing up. For example, alias analysis and
150 // load clustering may not complete in reasonable time. It is difficult to
151 // recognize and avoid this situation within each individual analysis, and
152 // future analyses are likely to have the same behavior. Limiting DAG width is
153 // the safe approach and will be especially important with global DAGs.
155 // MaxParallelChains default is arbitrarily high to avoid affecting
156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
157 // sequence over this should have been converted to llvm.memcpy by the
158 // frontend. It is easy to induce this behavior with .ll code such as:
159 // %buffer = alloca [4096 x i8]
160 // %data = load [4096 x i8]* %argPtr
161 // store [4096 x i8] %data, [4096 x i8]* %buffer
162 static const unsigned MaxParallelChains
= 64;
164 // Return the calling convention if the Value passed requires ABI mangling as it
165 // is a parameter to a function or a return value from a function which is not
167 static Optional
<CallingConv::ID
> getABIRegCopyCC(const Value
*V
) {
168 if (auto *R
= dyn_cast
<ReturnInst
>(V
))
169 return R
->getParent()->getParent()->getCallingConv();
171 if (auto *CI
= dyn_cast
<CallInst
>(V
)) {
172 const bool IsInlineAsm
= CI
->isInlineAsm();
173 const bool IsIndirectFunctionCall
=
174 !IsInlineAsm
&& !CI
->getCalledFunction();
176 // It is possible that the call instruction is an inline asm statement or an
177 // indirect function call in which case the return value of
178 // getCalledFunction() would be nullptr.
179 const bool IsInstrinsicCall
=
180 !IsInlineAsm
&& !IsIndirectFunctionCall
&&
181 CI
->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic
;
183 if (!IsInlineAsm
&& !IsInstrinsicCall
)
184 return CI
->getCallingConv();
190 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
191 const SDValue
*Parts
, unsigned NumParts
,
192 MVT PartVT
, EVT ValueVT
, const Value
*V
,
193 Optional
<CallingConv::ID
> CC
);
195 /// getCopyFromParts - Create a value that contains the specified legal parts
196 /// combined into the value they represent. If the parts combine to a type
197 /// larger than ValueVT then AssertOp can be used to specify whether the extra
198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
199 /// (ISD::AssertSext).
200 static SDValue
getCopyFromParts(SelectionDAG
&DAG
, const SDLoc
&DL
,
201 const SDValue
*Parts
, unsigned NumParts
,
202 MVT PartVT
, EVT ValueVT
, const Value
*V
,
203 Optional
<CallingConv::ID
> CC
= None
,
204 Optional
<ISD::NodeType
> AssertOp
= None
) {
205 if (ValueVT
.isVector())
206 return getCopyFromPartsVector(DAG
, DL
, Parts
, NumParts
, PartVT
, ValueVT
, V
,
209 assert(NumParts
> 0 && "No parts to assemble!");
210 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
211 SDValue Val
= Parts
[0];
214 // Assemble the value from multiple parts.
215 if (ValueVT
.isInteger()) {
216 unsigned PartBits
= PartVT
.getSizeInBits();
217 unsigned ValueBits
= ValueVT
.getSizeInBits();
219 // Assemble the power of 2 part.
220 unsigned RoundParts
=
221 (NumParts
& (NumParts
- 1)) ? 1 << Log2_32(NumParts
) : NumParts
;
222 unsigned RoundBits
= PartBits
* RoundParts
;
223 EVT RoundVT
= RoundBits
== ValueBits
?
224 ValueVT
: EVT::getIntegerVT(*DAG
.getContext(), RoundBits
);
227 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundBits
/2);
229 if (RoundParts
> 2) {
230 Lo
= getCopyFromParts(DAG
, DL
, Parts
, RoundParts
/ 2,
232 Hi
= getCopyFromParts(DAG
, DL
, Parts
+ RoundParts
/ 2,
233 RoundParts
/ 2, PartVT
, HalfVT
, V
);
235 Lo
= DAG
.getNode(ISD::BITCAST
, DL
, HalfVT
, Parts
[0]);
236 Hi
= DAG
.getNode(ISD::BITCAST
, DL
, HalfVT
, Parts
[1]);
239 if (DAG
.getDataLayout().isBigEndian())
242 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, RoundVT
, Lo
, Hi
);
244 if (RoundParts
< NumParts
) {
245 // Assemble the trailing non-power-of-2 part.
246 unsigned OddParts
= NumParts
- RoundParts
;
247 EVT OddVT
= EVT::getIntegerVT(*DAG
.getContext(), OddParts
* PartBits
);
248 Hi
= getCopyFromParts(DAG
, DL
, Parts
+ RoundParts
, OddParts
, PartVT
,
251 // Combine the round and odd parts.
253 if (DAG
.getDataLayout().isBigEndian())
255 EVT TotalVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
256 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, TotalVT
, Hi
);
258 DAG
.getNode(ISD::SHL
, DL
, TotalVT
, Hi
,
259 DAG
.getConstant(Lo
.getValueSizeInBits(), DL
,
260 TLI
.getPointerTy(DAG
.getDataLayout())));
261 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TotalVT
, Lo
);
262 Val
= DAG
.getNode(ISD::OR
, DL
, TotalVT
, Lo
, Hi
);
264 } else if (PartVT
.isFloatingPoint()) {
265 // FP split into multiple FP parts (for ppcf128)
266 assert(ValueVT
== EVT(MVT::ppcf128
) && PartVT
== MVT::f64
&&
269 Lo
= DAG
.getNode(ISD::BITCAST
, DL
, EVT(MVT::f64
), Parts
[0]);
270 Hi
= DAG
.getNode(ISD::BITCAST
, DL
, EVT(MVT::f64
), Parts
[1]);
271 if (TLI
.hasBigEndianPartOrdering(ValueVT
, DAG
.getDataLayout()))
273 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, ValueVT
, Lo
, Hi
);
275 // FP split into integer parts (soft fp)
276 assert(ValueVT
.isFloatingPoint() && PartVT
.isInteger() &&
277 !PartVT
.isVector() && "Unexpected split");
278 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
279 Val
= getCopyFromParts(DAG
, DL
, Parts
, NumParts
, PartVT
, IntVT
, V
, CC
);
283 // There is now one part, held in Val. Correct it to match ValueVT.
284 // PartEVT is the type of the register class that holds the value.
285 // ValueVT is the type of the inline asm operation.
286 EVT PartEVT
= Val
.getValueType();
288 if (PartEVT
== ValueVT
)
291 if (PartEVT
.isInteger() && ValueVT
.isFloatingPoint() &&
292 ValueVT
.bitsLT(PartEVT
)) {
293 // For an FP value in an integer part, we need to truncate to the right
295 PartEVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
296 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, PartEVT
, Val
);
299 // Handle types that have the same size.
300 if (PartEVT
.getSizeInBits() == ValueVT
.getSizeInBits())
301 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
303 // Handle types with different sizes.
304 if (PartEVT
.isInteger() && ValueVT
.isInteger()) {
305 if (ValueVT
.bitsLT(PartEVT
)) {
306 // For a truncate, see if we have any information to
307 // indicate whether the truncated bits will always be
308 // zero or sign-extension.
309 if (AssertOp
.hasValue())
310 Val
= DAG
.getNode(*AssertOp
, DL
, PartEVT
, Val
,
311 DAG
.getValueType(ValueVT
));
312 return DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
314 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, ValueVT
, Val
);
317 if (PartEVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
318 // FP_ROUND's are always exact here.
319 if (ValueVT
.bitsLT(Val
.getValueType()))
321 ISD::FP_ROUND
, DL
, ValueVT
, Val
,
322 DAG
.getTargetConstant(1, DL
, TLI
.getPointerTy(DAG
.getDataLayout())));
324 return DAG
.getNode(ISD::FP_EXTEND
, DL
, ValueVT
, Val
);
327 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
329 if (PartEVT
== MVT::x86mmx
&& ValueVT
.isInteger() &&
330 ValueVT
.bitsLT(PartEVT
)) {
331 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, Val
);
332 return DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
335 report_fatal_error("Unknown mismatch in getCopyFromParts!");
338 static void diagnosePossiblyInvalidConstraint(LLVMContext
&Ctx
, const Value
*V
,
339 const Twine
&ErrMsg
) {
340 const Instruction
*I
= dyn_cast_or_null
<Instruction
>(V
);
342 return Ctx
.emitError(ErrMsg
);
344 const char *AsmError
= ", possible invalid constraint for vector type";
345 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
346 if (isa
<InlineAsm
>(CI
->getCalledValue()))
347 return Ctx
.emitError(I
, ErrMsg
+ AsmError
);
349 return Ctx
.emitError(I
, ErrMsg
);
352 /// getCopyFromPartsVector - Create a value that contains the specified legal
353 /// parts combined into the value they represent. If the parts combine to a
354 /// type larger than ValueVT then AssertOp can be used to specify whether the
355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
356 /// ValueVT (ISD::AssertSext).
357 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
358 const SDValue
*Parts
, unsigned NumParts
,
359 MVT PartVT
, EVT ValueVT
, const Value
*V
,
360 Optional
<CallingConv::ID
> CallConv
) {
361 assert(ValueVT
.isVector() && "Not a vector value");
362 assert(NumParts
> 0 && "No parts to assemble!");
363 const bool IsABIRegCopy
= CallConv
.hasValue();
365 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
366 SDValue Val
= Parts
[0];
368 // Handle a multi-element vector.
372 unsigned NumIntermediates
;
376 NumRegs
= TLI
.getVectorTypeBreakdownForCallingConv(
377 *DAG
.getContext(), CallConv
.getValue(), ValueVT
, IntermediateVT
,
378 NumIntermediates
, RegisterVT
);
381 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
382 NumIntermediates
, RegisterVT
);
385 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
386 NumParts
= NumRegs
; // Silence a compiler warning.
387 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
388 assert(RegisterVT
.getSizeInBits() ==
389 Parts
[0].getSimpleValueType().getSizeInBits() &&
390 "Part type sizes don't match!");
392 // Assemble the parts into intermediate operands.
393 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
394 if (NumIntermediates
== NumParts
) {
395 // If the register was not expanded, truncate or copy the value,
397 for (unsigned i
= 0; i
!= NumParts
; ++i
)
398 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
], 1,
399 PartVT
, IntermediateVT
, V
);
400 } else if (NumParts
> 0) {
401 // If the intermediate type was expanded, build the intermediate
402 // operands from the parts.
403 assert(NumParts
% NumIntermediates
== 0 &&
404 "Must expand into a divisible number of parts!");
405 unsigned Factor
= NumParts
/ NumIntermediates
;
406 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
407 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
* Factor
], Factor
,
408 PartVT
, IntermediateVT
, V
);
411 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
412 // intermediate operands.
414 EVT::getVectorVT(*DAG
.getContext(), IntermediateVT
.getScalarType(),
415 (IntermediateVT
.isVector()
416 ? IntermediateVT
.getVectorNumElements() * NumParts
417 : NumIntermediates
));
418 Val
= DAG
.getNode(IntermediateVT
.isVector() ? ISD::CONCAT_VECTORS
420 DL
, BuiltVectorTy
, Ops
);
423 // There is now one part, held in Val. Correct it to match ValueVT.
424 EVT PartEVT
= Val
.getValueType();
426 if (PartEVT
== ValueVT
)
429 if (PartEVT
.isVector()) {
430 // If the element type of the source/dest vectors are the same, but the
431 // parts vector has more elements than the value vector, then we have a
432 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
434 if (PartEVT
.getVectorElementType() == ValueVT
.getVectorElementType()) {
435 assert(PartEVT
.getVectorNumElements() > ValueVT
.getVectorNumElements() &&
436 "Cannot narrow, it would be a lossy transformation");
438 ISD::EXTRACT_SUBVECTOR
, DL
, ValueVT
, Val
,
439 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
442 // Vector/Vector bitcast.
443 if (ValueVT
.getSizeInBits() == PartEVT
.getSizeInBits())
444 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
446 assert(PartEVT
.getVectorNumElements() == ValueVT
.getVectorNumElements() &&
447 "Cannot handle this kind of promotion");
448 // Promoted vector extract
449 return DAG
.getAnyExtOrTrunc(Val
, DL
, ValueVT
);
453 // Trivial bitcast if the types are the same size and the destination
454 // vector type is legal.
455 if (PartEVT
.getSizeInBits() == ValueVT
.getSizeInBits() &&
456 TLI
.isTypeLegal(ValueVT
))
457 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
459 if (ValueVT
.getVectorNumElements() != 1) {
460 // Certain ABIs require that vectors are passed as integers. For vectors
461 // are the same size, this is an obvious bitcast.
462 if (ValueVT
.getSizeInBits() == PartEVT
.getSizeInBits()) {
463 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
464 } else if (ValueVT
.getSizeInBits() < PartEVT
.getSizeInBits()) {
465 // Bitcast Val back the original type and extract the corresponding
467 unsigned Elts
= PartEVT
.getSizeInBits() / ValueVT
.getScalarSizeInBits();
468 EVT WiderVecType
= EVT::getVectorVT(*DAG
.getContext(),
469 ValueVT
.getVectorElementType(), Elts
);
470 Val
= DAG
.getBitcast(WiderVecType
, Val
);
472 ISD::EXTRACT_SUBVECTOR
, DL
, ValueVT
, Val
,
473 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
476 diagnosePossiblyInvalidConstraint(
477 *DAG
.getContext(), V
, "non-trivial scalar-to-vector conversion");
478 return DAG
.getUNDEF(ValueVT
);
481 // Handle cases such as i8 -> <1 x i1>
482 EVT ValueSVT
= ValueVT
.getVectorElementType();
483 if (ValueVT
.getVectorNumElements() == 1 && ValueSVT
!= PartEVT
)
484 Val
= ValueVT
.isFloatingPoint() ? DAG
.getFPExtendOrRound(Val
, DL
, ValueSVT
)
485 : DAG
.getAnyExtOrTrunc(Val
, DL
, ValueSVT
);
487 return DAG
.getBuildVector(ValueVT
, DL
, Val
);
490 static void getCopyToPartsVector(SelectionDAG
&DAG
, const SDLoc
&dl
,
491 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
492 MVT PartVT
, const Value
*V
,
493 Optional
<CallingConv::ID
> CallConv
);
495 /// getCopyToParts - Create a series of nodes that contain the specified value
496 /// split into legal parts. If the parts contain more bits than Val, then, for
497 /// integers, ExtendKind can be used to specify how to generate the extra bits.
498 static void getCopyToParts(SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Val
,
499 SDValue
*Parts
, unsigned NumParts
, MVT PartVT
,
501 Optional
<CallingConv::ID
> CallConv
= None
,
502 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
) {
503 EVT ValueVT
= Val
.getValueType();
505 // Handle the vector case separately.
506 if (ValueVT
.isVector())
507 return getCopyToPartsVector(DAG
, DL
, Val
, Parts
, NumParts
, PartVT
, V
,
510 unsigned PartBits
= PartVT
.getSizeInBits();
511 unsigned OrigNumParts
= NumParts
;
512 assert(DAG
.getTargetLoweringInfo().isTypeLegal(PartVT
) &&
513 "Copying to an illegal type!");
518 assert(!ValueVT
.isVector() && "Vector case handled elsewhere");
519 EVT PartEVT
= PartVT
;
520 if (PartEVT
== ValueVT
) {
521 assert(NumParts
== 1 && "No-op copy with multiple parts!");
526 if (NumParts
* PartBits
> ValueVT
.getSizeInBits()) {
527 // If the parts cover more bits than the value has, promote the value.
528 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
529 assert(NumParts
== 1 && "Do not know what to promote to!");
530 Val
= DAG
.getNode(ISD::FP_EXTEND
, DL
, PartVT
, Val
);
532 if (ValueVT
.isFloatingPoint()) {
533 // FP values need to be bitcast, then extended if they are being put
534 // into a larger container.
535 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
536 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
538 assert((PartVT
.isInteger() || PartVT
== MVT::x86mmx
) &&
539 ValueVT
.isInteger() &&
540 "Unknown mismatch!");
541 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
542 Val
= DAG
.getNode(ExtendKind
, DL
, ValueVT
, Val
);
543 if (PartVT
== MVT::x86mmx
)
544 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
546 } else if (PartBits
== ValueVT
.getSizeInBits()) {
547 // Different types of the same size.
548 assert(NumParts
== 1 && PartEVT
!= ValueVT
);
549 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
550 } else if (NumParts
* PartBits
< ValueVT
.getSizeInBits()) {
551 // If the parts cover less bits than value has, truncate the value.
552 assert((PartVT
.isInteger() || PartVT
== MVT::x86mmx
) &&
553 ValueVT
.isInteger() &&
554 "Unknown mismatch!");
555 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
556 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
557 if (PartVT
== MVT::x86mmx
)
558 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
561 // The value may have changed - recompute ValueVT.
562 ValueVT
= Val
.getValueType();
563 assert(NumParts
* PartBits
== ValueVT
.getSizeInBits() &&
564 "Failed to tile the value with PartVT!");
567 if (PartEVT
!= ValueVT
) {
568 diagnosePossiblyInvalidConstraint(*DAG
.getContext(), V
,
569 "scalar-to-vector conversion failed");
570 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
577 // Expand the value into multiple parts.
578 if (NumParts
& (NumParts
- 1)) {
579 // The number of parts is not a power of 2. Split off and copy the tail.
580 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
581 "Do not know what to expand to!");
582 unsigned RoundParts
= 1 << Log2_32(NumParts
);
583 unsigned RoundBits
= RoundParts
* PartBits
;
584 unsigned OddParts
= NumParts
- RoundParts
;
585 SDValue OddVal
= DAG
.getNode(ISD::SRL
, DL
, ValueVT
, Val
,
586 DAG
.getShiftAmountConstant(RoundBits
, ValueVT
, DL
, /*LegalTypes*/false));
588 getCopyToParts(DAG
, DL
, OddVal
, Parts
+ RoundParts
, OddParts
, PartVT
, V
,
591 if (DAG
.getDataLayout().isBigEndian())
592 // The odd parts were reversed by getCopyToParts - unreverse them.
593 std::reverse(Parts
+ RoundParts
, Parts
+ NumParts
);
595 NumParts
= RoundParts
;
596 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
597 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
600 // The number of parts is a power of 2. Repeatedly bisect the value using
602 Parts
[0] = DAG
.getNode(ISD::BITCAST
, DL
,
603 EVT::getIntegerVT(*DAG
.getContext(),
604 ValueVT
.getSizeInBits()),
607 for (unsigned StepSize
= NumParts
; StepSize
> 1; StepSize
/= 2) {
608 for (unsigned i
= 0; i
< NumParts
; i
+= StepSize
) {
609 unsigned ThisBits
= StepSize
* PartBits
/ 2;
610 EVT ThisVT
= EVT::getIntegerVT(*DAG
.getContext(), ThisBits
);
611 SDValue
&Part0
= Parts
[i
];
612 SDValue
&Part1
= Parts
[i
+StepSize
/2];
614 Part1
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
615 ThisVT
, Part0
, DAG
.getIntPtrConstant(1, DL
));
616 Part0
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
617 ThisVT
, Part0
, DAG
.getIntPtrConstant(0, DL
));
619 if (ThisBits
== PartBits
&& ThisVT
!= PartVT
) {
620 Part0
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Part0
);
621 Part1
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Part1
);
626 if (DAG
.getDataLayout().isBigEndian())
627 std::reverse(Parts
, Parts
+ OrigNumParts
);
630 static SDValue
widenVectorToPartType(SelectionDAG
&DAG
,
631 SDValue Val
, const SDLoc
&DL
, EVT PartVT
) {
632 if (!PartVT
.isVector())
635 EVT ValueVT
= Val
.getValueType();
636 unsigned PartNumElts
= PartVT
.getVectorNumElements();
637 unsigned ValueNumElts
= ValueVT
.getVectorNumElements();
638 if (PartNumElts
> ValueNumElts
&&
639 PartVT
.getVectorElementType() == ValueVT
.getVectorElementType()) {
640 EVT ElementVT
= PartVT
.getVectorElementType();
641 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
643 SmallVector
<SDValue
, 16> Ops
;
644 DAG
.ExtractVectorElements(Val
, Ops
);
645 SDValue EltUndef
= DAG
.getUNDEF(ElementVT
);
646 for (unsigned i
= ValueNumElts
, e
= PartNumElts
; i
!= e
; ++i
)
647 Ops
.push_back(EltUndef
);
649 // FIXME: Use CONCAT for 2x -> 4x.
650 return DAG
.getBuildVector(PartVT
, DL
, Ops
);
656 /// getCopyToPartsVector - Create a series of nodes that contain the specified
657 /// value split into legal parts.
658 static void getCopyToPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
659 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
660 MVT PartVT
, const Value
*V
,
661 Optional
<CallingConv::ID
> CallConv
) {
662 EVT ValueVT
= Val
.getValueType();
663 assert(ValueVT
.isVector() && "Not a vector");
664 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
665 const bool IsABIRegCopy
= CallConv
.hasValue();
668 EVT PartEVT
= PartVT
;
669 if (PartEVT
== ValueVT
) {
671 } else if (PartVT
.getSizeInBits() == ValueVT
.getSizeInBits()) {
672 // Bitconvert vector->vector case.
673 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
674 } else if (SDValue Widened
= widenVectorToPartType(DAG
, Val
, DL
, PartVT
)) {
676 } else if (PartVT
.isVector() &&
677 PartEVT
.getVectorElementType().bitsGE(
678 ValueVT
.getVectorElementType()) &&
679 PartEVT
.getVectorNumElements() == ValueVT
.getVectorNumElements()) {
681 // Promoted vector extract
682 Val
= DAG
.getAnyExtOrTrunc(Val
, DL
, PartVT
);
684 if (ValueVT
.getVectorNumElements() == 1) {
686 ISD::EXTRACT_VECTOR_ELT
, DL
, PartVT
, Val
,
687 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
689 assert(PartVT
.getSizeInBits() > ValueVT
.getSizeInBits() &&
690 "lossy conversion of vector to scalar type");
691 EVT IntermediateType
=
692 EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
693 Val
= DAG
.getBitcast(IntermediateType
, Val
);
694 Val
= DAG
.getAnyExtOrTrunc(Val
, DL
, PartVT
);
698 assert(Val
.getValueType() == PartVT
&& "Unexpected vector part value type");
703 // Handle a multi-element vector.
706 unsigned NumIntermediates
;
709 NumRegs
= TLI
.getVectorTypeBreakdownForCallingConv(
710 *DAG
.getContext(), CallConv
.getValue(), ValueVT
, IntermediateVT
,
711 NumIntermediates
, RegisterVT
);
714 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
715 NumIntermediates
, RegisterVT
);
718 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
719 NumParts
= NumRegs
; // Silence a compiler warning.
720 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
722 unsigned IntermediateNumElts
= IntermediateVT
.isVector() ?
723 IntermediateVT
.getVectorNumElements() : 1;
725 // Convert the vector to the appropiate type if necessary.
726 unsigned DestVectorNoElts
= NumIntermediates
* IntermediateNumElts
;
728 EVT BuiltVectorTy
= EVT::getVectorVT(
729 *DAG
.getContext(), IntermediateVT
.getScalarType(), DestVectorNoElts
);
730 MVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
731 if (ValueVT
!= BuiltVectorTy
) {
732 if (SDValue Widened
= widenVectorToPartType(DAG
, Val
, DL
, BuiltVectorTy
))
735 Val
= DAG
.getNode(ISD::BITCAST
, DL
, BuiltVectorTy
, Val
);
738 // Split the vector into intermediate operands.
739 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
740 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
) {
741 if (IntermediateVT
.isVector()) {
742 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, IntermediateVT
, Val
,
743 DAG
.getConstant(i
* IntermediateNumElts
, DL
, IdxVT
));
745 Ops
[i
] = DAG
.getNode(
746 ISD::EXTRACT_VECTOR_ELT
, DL
, IntermediateVT
, Val
,
747 DAG
.getConstant(i
, DL
, IdxVT
));
751 // Split the intermediate operands into legal parts.
752 if (NumParts
== NumIntermediates
) {
753 // If the register was not expanded, promote or copy the value,
755 for (unsigned i
= 0; i
!= NumParts
; ++i
)
756 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
], 1, PartVT
, V
, CallConv
);
757 } else if (NumParts
> 0) {
758 // If the intermediate type was expanded, split each the value into
760 assert(NumIntermediates
!= 0 && "division by zero");
761 assert(NumParts
% NumIntermediates
== 0 &&
762 "Must expand into a divisible number of parts!");
763 unsigned Factor
= NumParts
/ NumIntermediates
;
764 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
765 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
* Factor
], Factor
, PartVT
, V
,
770 RegsForValue::RegsForValue(const SmallVector
<unsigned, 4> ®s
, MVT regvt
,
771 EVT valuevt
, Optional
<CallingConv::ID
> CC
)
772 : ValueVTs(1, valuevt
), RegVTs(1, regvt
), Regs(regs
),
773 RegCount(1, regs
.size()), CallConv(CC
) {}
775 RegsForValue::RegsForValue(LLVMContext
&Context
, const TargetLowering
&TLI
,
776 const DataLayout
&DL
, unsigned Reg
, Type
*Ty
,
777 Optional
<CallingConv::ID
> CC
) {
778 ComputeValueVTs(TLI
, DL
, Ty
, ValueVTs
);
782 for (EVT ValueVT
: ValueVTs
) {
785 ? TLI
.getNumRegistersForCallingConv(Context
, CC
.getValue(), ValueVT
)
786 : TLI
.getNumRegisters(Context
, ValueVT
);
789 ? TLI
.getRegisterTypeForCallingConv(Context
, CC
.getValue(), ValueVT
)
790 : TLI
.getRegisterType(Context
, ValueVT
);
791 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
792 Regs
.push_back(Reg
+ i
);
793 RegVTs
.push_back(RegisterVT
);
794 RegCount
.push_back(NumRegs
);
799 SDValue
RegsForValue::getCopyFromRegs(SelectionDAG
&DAG
,
800 FunctionLoweringInfo
&FuncInfo
,
801 const SDLoc
&dl
, SDValue
&Chain
,
802 SDValue
*Flag
, const Value
*V
) const {
803 // A Value with type {} or [0 x %t] needs no registers.
804 if (ValueVTs
.empty())
807 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
809 // Assemble the legal parts into the final values.
810 SmallVector
<SDValue
, 4> Values(ValueVTs
.size());
811 SmallVector
<SDValue
, 8> Parts
;
812 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
813 // Copy the legal parts from the registers.
814 EVT ValueVT
= ValueVTs
[Value
];
815 unsigned NumRegs
= RegCount
[Value
];
816 MVT RegisterVT
= isABIMangled() ? TLI
.getRegisterTypeForCallingConv(
818 CallConv
.getValue(), RegVTs
[Value
])
821 Parts
.resize(NumRegs
);
822 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
825 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
);
827 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
, *Flag
);
828 *Flag
= P
.getValue(2);
831 Chain
= P
.getValue(1);
834 // If the source register was virtual and if we know something about it,
835 // add an assert node.
836 if (!Register::isVirtualRegister(Regs
[Part
+ i
]) ||
837 !RegisterVT
.isInteger())
840 const FunctionLoweringInfo::LiveOutInfo
*LOI
=
841 FuncInfo
.GetLiveOutRegInfo(Regs
[Part
+i
]);
845 unsigned RegSize
= RegisterVT
.getScalarSizeInBits();
846 unsigned NumSignBits
= LOI
->NumSignBits
;
847 unsigned NumZeroBits
= LOI
->Known
.countMinLeadingZeros();
849 if (NumZeroBits
== RegSize
) {
850 // The current value is a zero.
851 // Explicitly express that as it would be easier for
852 // optimizations to kick in.
853 Parts
[i
] = DAG
.getConstant(0, dl
, RegisterVT
);
857 // FIXME: We capture more information than the dag can represent. For
858 // now, just use the tightest assertzext/assertsext possible.
860 EVT
FromVT(MVT::Other
);
862 FromVT
= EVT::getIntegerVT(*DAG
.getContext(), RegSize
- NumZeroBits
);
864 } else if (NumSignBits
> 1) {
866 EVT::getIntegerVT(*DAG
.getContext(), RegSize
- NumSignBits
+ 1);
871 // Add an assertion node.
872 assert(FromVT
!= MVT::Other
);
873 Parts
[i
] = DAG
.getNode(isSExt
? ISD::AssertSext
: ISD::AssertZext
, dl
,
874 RegisterVT
, P
, DAG
.getValueType(FromVT
));
877 Values
[Value
] = getCopyFromParts(DAG
, dl
, Parts
.begin(), NumRegs
,
878 RegisterVT
, ValueVT
, V
, CallConv
);
883 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(ValueVTs
), Values
);
886 void RegsForValue::getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
,
887 const SDLoc
&dl
, SDValue
&Chain
, SDValue
*Flag
,
889 ISD::NodeType PreferredExtendType
) const {
890 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
891 ISD::NodeType ExtendKind
= PreferredExtendType
;
893 // Get the list of the values's legal parts.
894 unsigned NumRegs
= Regs
.size();
895 SmallVector
<SDValue
, 8> Parts(NumRegs
);
896 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
897 unsigned NumParts
= RegCount
[Value
];
899 MVT RegisterVT
= isABIMangled() ? TLI
.getRegisterTypeForCallingConv(
901 CallConv
.getValue(), RegVTs
[Value
])
904 if (ExtendKind
== ISD::ANY_EXTEND
&& TLI
.isZExtFree(Val
, RegisterVT
))
905 ExtendKind
= ISD::ZERO_EXTEND
;
907 getCopyToParts(DAG
, dl
, Val
.getValue(Val
.getResNo() + Value
), &Parts
[Part
],
908 NumParts
, RegisterVT
, V
, CallConv
, ExtendKind
);
912 // Copy the parts into the registers.
913 SmallVector
<SDValue
, 8> Chains(NumRegs
);
914 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
917 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
]);
919 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
], *Flag
);
920 *Flag
= Part
.getValue(1);
923 Chains
[i
] = Part
.getValue(0);
926 if (NumRegs
== 1 || Flag
)
927 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
928 // flagged to it. That is the CopyToReg nodes and the user are considered
929 // a single scheduling unit. If we create a TokenFactor and return it as
930 // chain, then the TokenFactor is both a predecessor (operand) of the
931 // user as well as a successor (the TF operands are flagged to the user).
932 // c1, f1 = CopyToReg
933 // c2, f2 = CopyToReg
934 // c3 = TokenFactor c1, c2
937 Chain
= Chains
[NumRegs
-1];
939 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Chains
);
942 void RegsForValue::AddInlineAsmOperands(unsigned Code
, bool HasMatching
,
943 unsigned MatchingIdx
, const SDLoc
&dl
,
945 std::vector
<SDValue
> &Ops
) const {
946 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
948 unsigned Flag
= InlineAsm::getFlagWord(Code
, Regs
.size());
950 Flag
= InlineAsm::getFlagWordForMatchingOp(Flag
, MatchingIdx
);
951 else if (!Regs
.empty() && Register::isVirtualRegister(Regs
.front())) {
952 // Put the register class of the virtual registers in the flag word. That
953 // way, later passes can recompute register class constraints for inline
954 // assembly as well as normal instructions.
955 // Don't do this for tied operands that can use the regclass information
957 const MachineRegisterInfo
&MRI
= DAG
.getMachineFunction().getRegInfo();
958 const TargetRegisterClass
*RC
= MRI
.getRegClass(Regs
.front());
959 Flag
= InlineAsm::getFlagWordForRegClass(Flag
, RC
->getID());
962 SDValue Res
= DAG
.getTargetConstant(Flag
, dl
, MVT::i32
);
965 if (Code
== InlineAsm::Kind_Clobber
) {
966 // Clobbers should always have a 1:1 mapping with registers, and may
967 // reference registers that have illegal (e.g. vector) types. Hence, we
968 // shouldn't try to apply any sort of splitting logic to them.
969 assert(Regs
.size() == RegVTs
.size() && Regs
.size() == ValueVTs
.size() &&
970 "No 1:1 mapping from clobbers to regs?");
971 unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore();
973 for (unsigned I
= 0, E
= ValueVTs
.size(); I
!= E
; ++I
) {
974 Ops
.push_back(DAG
.getRegister(Regs
[I
], RegVTs
[I
]));
977 DAG
.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
978 "If we clobbered the stack pointer, MFI should know about it.");
983 for (unsigned Value
= 0, Reg
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
984 unsigned NumRegs
= TLI
.getNumRegisters(*DAG
.getContext(), ValueVTs
[Value
]);
985 MVT RegisterVT
= RegVTs
[Value
];
986 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
987 assert(Reg
< Regs
.size() && "Mismatch in # registers expected");
988 unsigned TheReg
= Regs
[Reg
++];
989 Ops
.push_back(DAG
.getRegister(TheReg
, RegisterVT
));
994 SmallVector
<std::pair
<unsigned, unsigned>, 4>
995 RegsForValue::getRegsAndSizes() const {
996 SmallVector
<std::pair
<unsigned, unsigned>, 4> OutVec
;
998 for (auto CountAndVT
: zip_first(RegCount
, RegVTs
)) {
999 unsigned RegCount
= std::get
<0>(CountAndVT
);
1000 MVT RegisterVT
= std::get
<1>(CountAndVT
);
1001 unsigned RegisterSize
= RegisterVT
.getSizeInBits();
1002 for (unsigned E
= I
+ RegCount
; I
!= E
; ++I
)
1003 OutVec
.push_back(std::make_pair(Regs
[I
], RegisterSize
));
1008 void SelectionDAGBuilder::init(GCFunctionInfo
*gfi
, AliasAnalysis
*aa
,
1009 const TargetLibraryInfo
*li
) {
1013 DL
= &DAG
.getDataLayout();
1014 Context
= DAG
.getContext();
1015 LPadToCallSiteMap
.clear();
1016 SL
->init(DAG
.getTargetLoweringInfo(), TM
, DAG
.getDataLayout());
1019 void SelectionDAGBuilder::clear() {
1021 UnusedArgNodeMap
.clear();
1022 PendingLoads
.clear();
1023 PendingExports
.clear();
1025 HasTailCall
= false;
1026 SDNodeOrder
= LowestSDNodeOrder
;
1027 StatepointLowering
.clear();
1030 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1031 DanglingDebugInfoMap
.clear();
1034 SDValue
SelectionDAGBuilder::getRoot() {
1035 if (PendingLoads
.empty())
1036 return DAG
.getRoot();
1038 if (PendingLoads
.size() == 1) {
1039 SDValue Root
= PendingLoads
[0];
1041 PendingLoads
.clear();
1045 // Otherwise, we have to make a token factor node.
1046 SDValue Root
= DAG
.getTokenFactor(getCurSDLoc(), PendingLoads
);
1047 PendingLoads
.clear();
1052 SDValue
SelectionDAGBuilder::getControlRoot() {
1053 SDValue Root
= DAG
.getRoot();
1055 if (PendingExports
.empty())
1058 // Turn all of the CopyToReg chains into one factored node.
1059 if (Root
.getOpcode() != ISD::EntryToken
) {
1060 unsigned i
= 0, e
= PendingExports
.size();
1061 for (; i
!= e
; ++i
) {
1062 assert(PendingExports
[i
].getNode()->getNumOperands() > 1);
1063 if (PendingExports
[i
].getNode()->getOperand(0) == Root
)
1064 break; // Don't add the root if we already indirectly depend on it.
1068 PendingExports
.push_back(Root
);
1071 Root
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(), MVT::Other
,
1073 PendingExports
.clear();
1078 void SelectionDAGBuilder::visit(const Instruction
&I
) {
1079 // Set up outgoing PHI node register values before emitting the terminator.
1080 if (I
.isTerminator()) {
1081 HandlePHINodesInSuccessorBlocks(I
.getParent());
1084 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1085 if (!isa
<DbgInfoIntrinsic
>(I
))
1090 visit(I
.getOpcode(), I
);
1092 if (auto *FPMO
= dyn_cast
<FPMathOperator
>(&I
)) {
1093 // Propagate the fast-math-flags of this IR instruction to the DAG node that
1094 // maps to this instruction.
1095 // TODO: We could handle all flags (nsw, etc) here.
1096 // TODO: If an IR instruction maps to >1 node, only the final node will have
1098 if (SDNode
*Node
= getNodeForIRValue(&I
)) {
1099 SDNodeFlags IncomingFlags
;
1100 IncomingFlags
.copyFMF(*FPMO
);
1101 if (!Node
->getFlags().isDefined())
1102 Node
->setFlags(IncomingFlags
);
1104 Node
->intersectFlagsWith(IncomingFlags
);
1108 if (!I
.isTerminator() && !HasTailCall
&&
1109 !isStatepoint(&I
)) // statepoints handle their exports internally
1110 CopyToExportRegsIfNeeded(&I
);
1115 void SelectionDAGBuilder::visitPHI(const PHINode
&) {
1116 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1119 void SelectionDAGBuilder::visit(unsigned Opcode
, const User
&I
) {
1120 // Note: this doesn't use InstVisitor, because it has to work with
1121 // ConstantExpr's in addition to instructions.
1123 default: llvm_unreachable("Unknown instruction type encountered!");
1124 // Build the switch statement using the Instruction.def file.
1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1126 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1127 #include "llvm/IR/Instruction.def"
1131 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable
*Variable
,
1132 const DIExpression
*Expr
) {
1133 auto isMatchingDbgValue
= [&](DanglingDebugInfo
&DDI
) {
1134 const DbgValueInst
*DI
= DDI
.getDI();
1135 DIVariable
*DanglingVariable
= DI
->getVariable();
1136 DIExpression
*DanglingExpr
= DI
->getExpression();
1137 if (DanglingVariable
== Variable
&& Expr
->fragmentsOverlap(DanglingExpr
)) {
1138 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI
<< "\n");
1144 for (auto &DDIMI
: DanglingDebugInfoMap
) {
1145 DanglingDebugInfoVector
&DDIV
= DDIMI
.second
;
1147 // If debug info is to be dropped, run it through final checks to see
1148 // whether it can be salvaged.
1149 for (auto &DDI
: DDIV
)
1150 if (isMatchingDbgValue(DDI
))
1151 salvageUnresolvedDbgValue(DDI
);
1153 DDIV
.erase(remove_if(DDIV
, isMatchingDbgValue
), DDIV
.end());
1157 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1158 // generate the debug data structures now that we've seen its definition.
1159 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value
*V
,
1161 auto DanglingDbgInfoIt
= DanglingDebugInfoMap
.find(V
);
1162 if (DanglingDbgInfoIt
== DanglingDebugInfoMap
.end())
1165 DanglingDebugInfoVector
&DDIV
= DanglingDbgInfoIt
->second
;
1166 for (auto &DDI
: DDIV
) {
1167 const DbgValueInst
*DI
= DDI
.getDI();
1168 assert(DI
&& "Ill-formed DanglingDebugInfo");
1169 DebugLoc dl
= DDI
.getdl();
1170 unsigned ValSDNodeOrder
= Val
.getNode()->getIROrder();
1171 unsigned DbgSDNodeOrder
= DDI
.getSDNodeOrder();
1172 DILocalVariable
*Variable
= DI
->getVariable();
1173 DIExpression
*Expr
= DI
->getExpression();
1174 assert(Variable
->isValidLocationForIntrinsic(dl
) &&
1175 "Expected inlined-at fields to agree");
1177 if (Val
.getNode()) {
1178 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1179 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1180 // we couldn't resolve it directly when examining the DbgValue intrinsic
1181 // in the first place we should not be more successful here). Unless we
1182 // have some test case that prove this to be correct we should avoid
1183 // calling EmitFuncArgumentDbgValue here.
1184 if (!EmitFuncArgumentDbgValue(V
, Variable
, Expr
, dl
, false, Val
)) {
1185 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1186 << DbgSDNodeOrder
<< "] for:\n " << *DI
<< "\n");
1187 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val
.dump());
1188 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1189 // inserted after the definition of Val when emitting the instructions
1190 // after ISel. An alternative could be to teach
1191 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1192 LLVM_DEBUG(if (ValSDNodeOrder
> DbgSDNodeOrder
) dbgs()
1193 << "changing SDNodeOrder from " << DbgSDNodeOrder
<< " to "
1194 << ValSDNodeOrder
<< "\n");
1195 SDV
= getDbgValue(Val
, Variable
, Expr
, dl
,
1196 std::max(DbgSDNodeOrder
, ValSDNodeOrder
));
1197 DAG
.AddDbgValue(SDV
, Val
.getNode(), false);
1199 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1200 << "in EmitFuncArgumentDbgValue\n");
1202 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
<< "\n");
1204 UndefValue::get(DDI
.getDI()->getVariableLocation()->getType());
1206 DAG
.getConstantDbgValue(Variable
, Expr
, Undef
, dl
, DbgSDNodeOrder
);
1207 DAG
.AddDbgValue(SDV
, nullptr, false);
1213 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo
&DDI
) {
1214 Value
*V
= DDI
.getDI()->getValue();
1215 DILocalVariable
*Var
= DDI
.getDI()->getVariable();
1216 DIExpression
*Expr
= DDI
.getDI()->getExpression();
1217 DebugLoc DL
= DDI
.getdl();
1218 DebugLoc InstDL
= DDI
.getDI()->getDebugLoc();
1219 unsigned SDOrder
= DDI
.getSDNodeOrder();
1221 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1222 // that DW_OP_stack_value is desired.
1223 assert(isa
<DbgValueInst
>(DDI
.getDI()));
1224 bool StackValue
= true;
1226 // Can this Value can be encoded without any further work?
1227 if (handleDebugValue(V
, Var
, Expr
, DL
, InstDL
, SDOrder
))
1230 // Attempt to salvage back through as many instructions as possible. Bail if
1231 // a non-instruction is seen, such as a constant expression or global
1232 // variable. FIXME: Further work could recover those too.
1233 while (isa
<Instruction
>(V
)) {
1234 Instruction
&VAsInst
= *cast
<Instruction
>(V
);
1235 DIExpression
*NewExpr
= salvageDebugInfoImpl(VAsInst
, Expr
, StackValue
);
1237 // If we cannot salvage any further, and haven't yet found a suitable debug
1238 // expression, bail out.
1242 // New value and expr now represent this debuginfo.
1243 V
= VAsInst
.getOperand(0);
1246 // Some kind of simplification occurred: check whether the operand of the
1247 // salvaged debug expression can be encoded in this DAG.
1248 if (handleDebugValue(V
, Var
, Expr
, DL
, InstDL
, SDOrder
)) {
1249 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n "
1250 << DDI
.getDI() << "\nBy stripping back to:\n " << V
);
1255 // This was the final opportunity to salvage this debug information, and it
1256 // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1257 // any earlier variable location.
1258 auto Undef
= UndefValue::get(DDI
.getDI()->getVariableLocation()->getType());
1259 auto SDV
= DAG
.getConstantDbgValue(Var
, Expr
, Undef
, DL
, SDNodeOrder
);
1260 DAG
.AddDbgValue(SDV
, nullptr, false);
1262 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI
.getDI()
1264 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI
.getDI()->getOperand(0)
1268 bool SelectionDAGBuilder::handleDebugValue(const Value
*V
, DILocalVariable
*Var
,
1269 DIExpression
*Expr
, DebugLoc dl
,
1270 DebugLoc InstDL
, unsigned Order
) {
1271 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1273 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
) || isa
<UndefValue
>(V
) ||
1274 isa
<ConstantPointerNull
>(V
)) {
1275 SDV
= DAG
.getConstantDbgValue(Var
, Expr
, V
, dl
, SDNodeOrder
);
1276 DAG
.AddDbgValue(SDV
, nullptr, false);
1280 // If the Value is a frame index, we can create a FrameIndex debug value
1281 // without relying on the DAG at all.
1282 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1283 auto SI
= FuncInfo
.StaticAllocaMap
.find(AI
);
1284 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
1286 DAG
.getFrameIndexDbgValue(Var
, Expr
, SI
->second
,
1287 /*IsIndirect*/ false, dl
, SDNodeOrder
);
1288 // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1289 // is still available even if the SDNode gets optimized out.
1290 DAG
.AddDbgValue(SDV
, nullptr, false);
1295 // Do not use getValue() in here; we don't want to generate code at
1296 // this point if it hasn't been done yet.
1297 SDValue N
= NodeMap
[V
];
1298 if (!N
.getNode() && isa
<Argument
>(V
)) // Check unused arguments map.
1299 N
= UnusedArgNodeMap
[V
];
1301 if (EmitFuncArgumentDbgValue(V
, Var
, Expr
, dl
, false, N
))
1303 SDV
= getDbgValue(N
, Var
, Expr
, dl
, SDNodeOrder
);
1304 DAG
.AddDbgValue(SDV
, N
.getNode(), false);
1308 // Special rules apply for the first dbg.values of parameter variables in a
1309 // function. Identify them by the fact they reference Argument Values, that
1310 // they're parameters, and they are parameters of the current function. We
1311 // need to let them dangle until they get an SDNode.
1312 bool IsParamOfFunc
= isa
<Argument
>(V
) && Var
->isParameter() &&
1313 !InstDL
.getInlinedAt();
1314 if (!IsParamOfFunc
) {
1315 // The value is not used in this block yet (or it would have an SDNode).
1316 // We still want the value to appear for the user if possible -- if it has
1317 // an associated VReg, we can refer to that instead.
1318 auto VMI
= FuncInfo
.ValueMap
.find(V
);
1319 if (VMI
!= FuncInfo
.ValueMap
.end()) {
1320 unsigned Reg
= VMI
->second
;
1321 // If this is a PHI node, it may be split up into several MI PHI nodes
1322 // (in FunctionLoweringInfo::set).
1323 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), Reg
,
1324 V
->getType(), None
);
1325 if (RFV
.occupiesMultipleRegs()) {
1326 unsigned Offset
= 0;
1327 unsigned BitsToDescribe
= 0;
1328 if (auto VarSize
= Var
->getSizeInBits())
1329 BitsToDescribe
= *VarSize
;
1330 if (auto Fragment
= Expr
->getFragmentInfo())
1331 BitsToDescribe
= Fragment
->SizeInBits
;
1332 for (auto RegAndSize
: RFV
.getRegsAndSizes()) {
1333 unsigned RegisterSize
= RegAndSize
.second
;
1334 // Bail out if all bits are described already.
1335 if (Offset
>= BitsToDescribe
)
1337 unsigned FragmentSize
= (Offset
+ RegisterSize
> BitsToDescribe
)
1338 ? BitsToDescribe
- Offset
1340 auto FragmentExpr
= DIExpression::createFragmentExpression(
1341 Expr
, Offset
, FragmentSize
);
1344 SDV
= DAG
.getVRegDbgValue(Var
, *FragmentExpr
, RegAndSize
.first
,
1345 false, dl
, SDNodeOrder
);
1346 DAG
.AddDbgValue(SDV
, nullptr, false);
1347 Offset
+= RegisterSize
;
1350 SDV
= DAG
.getVRegDbgValue(Var
, Expr
, Reg
, false, dl
, SDNodeOrder
);
1351 DAG
.AddDbgValue(SDV
, nullptr, false);
1360 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1361 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1362 for (auto &Pair
: DanglingDebugInfoMap
)
1363 for (auto &DDI
: Pair
.second
)
1364 salvageUnresolvedDbgValue(DDI
);
1365 clearDanglingDebugInfo();
1368 /// getCopyFromRegs - If there was virtual register allocated for the value V
1369 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1370 SDValue
SelectionDAGBuilder::getCopyFromRegs(const Value
*V
, Type
*Ty
) {
1371 DenseMap
<const Value
*, unsigned>::iterator It
= FuncInfo
.ValueMap
.find(V
);
1374 if (It
!= FuncInfo
.ValueMap
.end()) {
1375 unsigned InReg
= It
->second
;
1377 RegsForValue
RFV(*DAG
.getContext(), DAG
.getTargetLoweringInfo(),
1378 DAG
.getDataLayout(), InReg
, Ty
,
1379 None
); // This is not an ABI copy.
1380 SDValue Chain
= DAG
.getEntryNode();
1381 Result
= RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(), Chain
, nullptr,
1383 resolveDanglingDebugInfo(V
, Result
);
1389 /// getValue - Return an SDValue for the given Value.
1390 SDValue
SelectionDAGBuilder::getValue(const Value
*V
) {
1391 // If we already have an SDValue for this value, use it. It's important
1392 // to do this first, so that we don't create a CopyFromReg if we already
1393 // have a regular SDValue.
1394 SDValue
&N
= NodeMap
[V
];
1395 if (N
.getNode()) return N
;
1397 // If there's a virtual register allocated and initialized for this
1399 if (SDValue copyFromReg
= getCopyFromRegs(V
, V
->getType()))
1402 // Otherwise create a new SDValue and remember it.
1403 SDValue Val
= getValueImpl(V
);
1405 resolveDanglingDebugInfo(V
, Val
);
1409 // Return true if SDValue exists for the given Value
1410 bool SelectionDAGBuilder::findValue(const Value
*V
) const {
1411 return (NodeMap
.find(V
) != NodeMap
.end()) ||
1412 (FuncInfo
.ValueMap
.find(V
) != FuncInfo
.ValueMap
.end());
1415 /// getNonRegisterValue - Return an SDValue for the given Value, but
1416 /// don't look in FuncInfo.ValueMap for a virtual register.
1417 SDValue
SelectionDAGBuilder::getNonRegisterValue(const Value
*V
) {
1418 // If we already have an SDValue for this value, use it.
1419 SDValue
&N
= NodeMap
[V
];
1421 if (isa
<ConstantSDNode
>(N
) || isa
<ConstantFPSDNode
>(N
)) {
1422 // Remove the debug location from the node as the node is about to be used
1423 // in a location which may differ from the original debug location. This
1424 // is relevant to Constant and ConstantFP nodes because they can appear
1425 // as constant expressions inside PHI nodes.
1426 N
->setDebugLoc(DebugLoc());
1431 // Otherwise create a new SDValue and remember it.
1432 SDValue Val
= getValueImpl(V
);
1434 resolveDanglingDebugInfo(V
, Val
);
1438 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1439 /// Create an SDValue for the given value.
1440 SDValue
SelectionDAGBuilder::getValueImpl(const Value
*V
) {
1441 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1443 if (const Constant
*C
= dyn_cast
<Constant
>(V
)) {
1444 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), V
->getType(), true);
1446 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
1447 return DAG
.getConstant(*CI
, getCurSDLoc(), VT
);
1449 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
1450 return DAG
.getGlobalAddress(GV
, getCurSDLoc(), VT
);
1452 if (isa
<ConstantPointerNull
>(C
)) {
1453 unsigned AS
= V
->getType()->getPointerAddressSpace();
1454 return DAG
.getConstant(0, getCurSDLoc(),
1455 TLI
.getPointerTy(DAG
.getDataLayout(), AS
));
1458 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
1459 return DAG
.getConstantFP(*CFP
, getCurSDLoc(), VT
);
1461 if (isa
<UndefValue
>(C
) && !V
->getType()->isAggregateType())
1462 return DAG
.getUNDEF(VT
);
1464 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
1465 visit(CE
->getOpcode(), *CE
);
1466 SDValue N1
= NodeMap
[V
];
1467 assert(N1
.getNode() && "visit didn't populate the NodeMap!");
1471 if (isa
<ConstantStruct
>(C
) || isa
<ConstantArray
>(C
)) {
1472 SmallVector
<SDValue
, 4> Constants
;
1473 for (User::const_op_iterator OI
= C
->op_begin(), OE
= C
->op_end();
1475 SDNode
*Val
= getValue(*OI
).getNode();
1476 // If the operand is an empty aggregate, there are no values.
1478 // Add each leaf value from the operand to the Constants list
1479 // to form a flattened list of all the values.
1480 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
1481 Constants
.push_back(SDValue(Val
, i
));
1484 return DAG
.getMergeValues(Constants
, getCurSDLoc());
1487 if (const ConstantDataSequential
*CDS
=
1488 dyn_cast
<ConstantDataSequential
>(C
)) {
1489 SmallVector
<SDValue
, 4> Ops
;
1490 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
1491 SDNode
*Val
= getValue(CDS
->getElementAsConstant(i
)).getNode();
1492 // Add each leaf value from the operand to the Constants list
1493 // to form a flattened list of all the values.
1494 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
1495 Ops
.push_back(SDValue(Val
, i
));
1498 if (isa
<ArrayType
>(CDS
->getType()))
1499 return DAG
.getMergeValues(Ops
, getCurSDLoc());
1500 return NodeMap
[V
] = DAG
.getBuildVector(VT
, getCurSDLoc(), Ops
);
1503 if (C
->getType()->isStructTy() || C
->getType()->isArrayTy()) {
1504 assert((isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
)) &&
1505 "Unknown struct or array constant!");
1507 SmallVector
<EVT
, 4> ValueVTs
;
1508 ComputeValueVTs(TLI
, DAG
.getDataLayout(), C
->getType(), ValueVTs
);
1509 unsigned NumElts
= ValueVTs
.size();
1511 return SDValue(); // empty struct
1512 SmallVector
<SDValue
, 4> Constants(NumElts
);
1513 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1514 EVT EltVT
= ValueVTs
[i
];
1515 if (isa
<UndefValue
>(C
))
1516 Constants
[i
] = DAG
.getUNDEF(EltVT
);
1517 else if (EltVT
.isFloatingPoint())
1518 Constants
[i
] = DAG
.getConstantFP(0, getCurSDLoc(), EltVT
);
1520 Constants
[i
] = DAG
.getConstant(0, getCurSDLoc(), EltVT
);
1523 return DAG
.getMergeValues(Constants
, getCurSDLoc());
1526 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
))
1527 return DAG
.getBlockAddress(BA
, VT
);
1529 VectorType
*VecTy
= cast
<VectorType
>(V
->getType());
1530 unsigned NumElements
= VecTy
->getNumElements();
1532 // Now that we know the number and type of the elements, get that number of
1533 // elements into the Ops array based on what kind of constant it is.
1534 SmallVector
<SDValue
, 16> Ops
;
1535 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(C
)) {
1536 for (unsigned i
= 0; i
!= NumElements
; ++i
)
1537 Ops
.push_back(getValue(CV
->getOperand(i
)));
1539 assert(isa
<ConstantAggregateZero
>(C
) && "Unknown vector constant!");
1541 TLI
.getValueType(DAG
.getDataLayout(), VecTy
->getElementType());
1544 if (EltVT
.isFloatingPoint())
1545 Op
= DAG
.getConstantFP(0, getCurSDLoc(), EltVT
);
1547 Op
= DAG
.getConstant(0, getCurSDLoc(), EltVT
);
1548 Ops
.assign(NumElements
, Op
);
1551 // Create a BUILD_VECTOR node.
1552 return NodeMap
[V
] = DAG
.getBuildVector(VT
, getCurSDLoc(), Ops
);
1555 // If this is a static alloca, generate it as the frameindex instead of
1557 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1558 DenseMap
<const AllocaInst
*, int>::iterator SI
=
1559 FuncInfo
.StaticAllocaMap
.find(AI
);
1560 if (SI
!= FuncInfo
.StaticAllocaMap
.end())
1561 return DAG
.getFrameIndex(SI
->second
,
1562 TLI
.getFrameIndexTy(DAG
.getDataLayout()));
1565 // If this is an instruction which fast-isel has deferred, select it now.
1566 if (const Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
1567 unsigned InReg
= FuncInfo
.InitializeRegForValue(Inst
);
1569 RegsForValue
RFV(*DAG
.getContext(), TLI
, DAG
.getDataLayout(), InReg
,
1570 Inst
->getType(), getABIRegCopyCC(V
));
1571 SDValue Chain
= DAG
.getEntryNode();
1572 return RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(), Chain
, nullptr, V
);
1575 llvm_unreachable("Can't get register for value!");
1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst
&I
) {
1579 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1580 bool IsMSVCCXX
= Pers
== EHPersonality::MSVC_CXX
;
1581 bool IsCoreCLR
= Pers
== EHPersonality::CoreCLR
;
1582 bool IsSEH
= isAsynchronousEHPersonality(Pers
);
1583 bool IsWasmCXX
= Pers
== EHPersonality::Wasm_CXX
;
1584 MachineBasicBlock
*CatchPadMBB
= FuncInfo
.MBB
;
1586 CatchPadMBB
->setIsEHScopeEntry();
1587 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1588 if (IsMSVCCXX
|| IsCoreCLR
)
1589 CatchPadMBB
->setIsEHFuncletEntry();
1590 // Wasm does not need catchpads anymore
1592 DAG
.setRoot(DAG
.getNode(ISD::CATCHPAD
, getCurSDLoc(), MVT::Other
,
1596 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst
&I
) {
1597 // Update machine-CFG edge.
1598 MachineBasicBlock
*TargetMBB
= FuncInfo
.MBBMap
[I
.getSuccessor()];
1599 FuncInfo
.MBB
->addSuccessor(TargetMBB
);
1601 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1602 bool IsSEH
= isAsynchronousEHPersonality(Pers
);
1604 // If this is not a fall-through branch or optimizations are switched off,
1606 if (TargetMBB
!= NextBlock(FuncInfo
.MBB
) ||
1607 TM
.getOptLevel() == CodeGenOpt::None
)
1608 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
,
1609 getControlRoot(), DAG
.getBasicBlock(TargetMBB
)));
1613 // Figure out the funclet membership for the catchret's successor.
1614 // This will be used by the FuncletLayout pass to determine how to order the
1616 // A 'catchret' returns to the outer scope's color.
1617 Value
*ParentPad
= I
.getCatchSwitchParentPad();
1618 const BasicBlock
*SuccessorColor
;
1619 if (isa
<ConstantTokenNone
>(ParentPad
))
1620 SuccessorColor
= &FuncInfo
.Fn
->getEntryBlock();
1622 SuccessorColor
= cast
<Instruction
>(ParentPad
)->getParent();
1623 assert(SuccessorColor
&& "No parent funclet for catchret!");
1624 MachineBasicBlock
*SuccessorColorMBB
= FuncInfo
.MBBMap
[SuccessorColor
];
1625 assert(SuccessorColorMBB
&& "No MBB for SuccessorColor!");
1627 // Create the terminator node.
1628 SDValue Ret
= DAG
.getNode(ISD::CATCHRET
, getCurSDLoc(), MVT::Other
,
1629 getControlRoot(), DAG
.getBasicBlock(TargetMBB
),
1630 DAG
.getBasicBlock(SuccessorColorMBB
));
1634 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst
&CPI
) {
1635 // Don't emit any special code for the cleanuppad instruction. It just marks
1636 // the start of an EH scope/funclet.
1637 FuncInfo
.MBB
->setIsEHScopeEntry();
1638 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1639 if (Pers
!= EHPersonality::Wasm_CXX
) {
1640 FuncInfo
.MBB
->setIsEHFuncletEntry();
1641 FuncInfo
.MBB
->setIsCleanupFuncletEntry();
1645 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1646 // the control flow always stops at the single catch pad, as it does for a
1647 // cleanup pad. In case the exception caught is not of the types the catch pad
1648 // catches, it will be rethrown by a rethrow.
1649 static void findWasmUnwindDestinations(
1650 FunctionLoweringInfo
&FuncInfo
, const BasicBlock
*EHPadBB
,
1651 BranchProbability Prob
,
1652 SmallVectorImpl
<std::pair
<MachineBasicBlock
*, BranchProbability
>>
1655 const Instruction
*Pad
= EHPadBB
->getFirstNonPHI();
1656 if (isa
<CleanupPadInst
>(Pad
)) {
1657 // Stop on cleanup pads.
1658 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1659 UnwindDests
.back().first
->setIsEHScopeEntry();
1661 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Pad
)) {
1662 // Add the catchpad handlers to the possible destinations. We don't
1663 // continue to the unwind destination of the catchswitch for wasm.
1664 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
1665 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[CatchPadBB
], Prob
);
1666 UnwindDests
.back().first
->setIsEHScopeEntry();
1675 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1676 /// many places it could ultimately go. In the IR, we have a single unwind
1677 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1678 /// This function skips over imaginary basic blocks that hold catchswitch
1679 /// instructions, and finds all the "real" machine
1680 /// basic block destinations. As those destinations may not be successors of
1681 /// EHPadBB, here we also calculate the edge probability to those destinations.
1682 /// The passed-in Prob is the edge probability to EHPadBB.
1683 static void findUnwindDestinations(
1684 FunctionLoweringInfo
&FuncInfo
, const BasicBlock
*EHPadBB
,
1685 BranchProbability Prob
,
1686 SmallVectorImpl
<std::pair
<MachineBasicBlock
*, BranchProbability
>>
1688 EHPersonality Personality
=
1689 classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1690 bool IsMSVCCXX
= Personality
== EHPersonality::MSVC_CXX
;
1691 bool IsCoreCLR
= Personality
== EHPersonality::CoreCLR
;
1692 bool IsWasmCXX
= Personality
== EHPersonality::Wasm_CXX
;
1693 bool IsSEH
= isAsynchronousEHPersonality(Personality
);
1696 findWasmUnwindDestinations(FuncInfo
, EHPadBB
, Prob
, UnwindDests
);
1697 assert(UnwindDests
.size() <= 1 &&
1698 "There should be at most one unwind destination for wasm");
1703 const Instruction
*Pad
= EHPadBB
->getFirstNonPHI();
1704 BasicBlock
*NewEHPadBB
= nullptr;
1705 if (isa
<LandingPadInst
>(Pad
)) {
1706 // Stop on landingpads. They are not funclets.
1707 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1709 } else if (isa
<CleanupPadInst
>(Pad
)) {
1710 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1712 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1713 UnwindDests
.back().first
->setIsEHScopeEntry();
1714 UnwindDests
.back().first
->setIsEHFuncletEntry();
1716 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Pad
)) {
1717 // Add the catchpad handlers to the possible destinations.
1718 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
1719 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[CatchPadBB
], Prob
);
1720 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1721 if (IsMSVCCXX
|| IsCoreCLR
)
1722 UnwindDests
.back().first
->setIsEHFuncletEntry();
1724 UnwindDests
.back().first
->setIsEHScopeEntry();
1726 NewEHPadBB
= CatchSwitch
->getUnwindDest();
1731 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1732 if (BPI
&& NewEHPadBB
)
1733 Prob
*= BPI
->getEdgeProbability(EHPadBB
, NewEHPadBB
);
1734 EHPadBB
= NewEHPadBB
;
1738 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst
&I
) {
1739 // Update successor info.
1740 SmallVector
<std::pair
<MachineBasicBlock
*, BranchProbability
>, 1> UnwindDests
;
1741 auto UnwindDest
= I
.getUnwindDest();
1742 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1743 BranchProbability UnwindDestProb
=
1745 ? BPI
->getEdgeProbability(FuncInfo
.MBB
->getBasicBlock(), UnwindDest
)
1746 : BranchProbability::getZero();
1747 findUnwindDestinations(FuncInfo
, UnwindDest
, UnwindDestProb
, UnwindDests
);
1748 for (auto &UnwindDest
: UnwindDests
) {
1749 UnwindDest
.first
->setIsEHPad();
1750 addSuccessorWithProb(FuncInfo
.MBB
, UnwindDest
.first
, UnwindDest
.second
);
1752 FuncInfo
.MBB
->normalizeSuccProbs();
1754 // Create the terminator node.
1756 DAG
.getNode(ISD::CLEANUPRET
, getCurSDLoc(), MVT::Other
, getControlRoot());
1760 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst
&CSI
) {
1761 report_fatal_error("visitCatchSwitch not yet implemented!");
1764 void SelectionDAGBuilder::visitRet(const ReturnInst
&I
) {
1765 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1766 auto &DL
= DAG
.getDataLayout();
1767 SDValue Chain
= getControlRoot();
1768 SmallVector
<ISD::OutputArg
, 8> Outs
;
1769 SmallVector
<SDValue
, 8> OutVals
;
1771 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1774 // %val = call <ty> @llvm.experimental.deoptimize()
1778 if (I
.getParent()->getTerminatingDeoptimizeCall()) {
1779 LowerDeoptimizingReturn();
1783 if (!FuncInfo
.CanLowerReturn
) {
1784 unsigned DemoteReg
= FuncInfo
.DemoteRegister
;
1785 const Function
*F
= I
.getParent()->getParent();
1787 // Emit a store of the return value through the virtual register.
1788 // Leave Outs empty so that LowerReturn won't try to load return
1789 // registers the usual way.
1790 SmallVector
<EVT
, 1> PtrValueVTs
;
1791 ComputeValueVTs(TLI
, DL
,
1792 F
->getReturnType()->getPointerTo(
1793 DAG
.getDataLayout().getAllocaAddrSpace()),
1796 SDValue RetPtr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), getCurSDLoc(),
1797 DemoteReg
, PtrValueVTs
[0]);
1798 SDValue RetOp
= getValue(I
.getOperand(0));
1800 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
1801 SmallVector
<uint64_t, 4> Offsets
;
1802 ComputeValueVTs(TLI
, DL
, I
.getOperand(0)->getType(), ValueVTs
, &MemVTs
,
1804 unsigned NumValues
= ValueVTs
.size();
1806 SmallVector
<SDValue
, 4> Chains(NumValues
);
1807 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
1808 // An aggregate return value cannot wrap around the address space, so
1809 // offsets to its parts don't wrap either.
1810 SDValue Ptr
= DAG
.getObjectPtrOffset(getCurSDLoc(), RetPtr
, Offsets
[i
]);
1812 SDValue Val
= RetOp
.getValue(i
);
1813 if (MemVTs
[i
] != ValueVTs
[i
])
1814 Val
= DAG
.getPtrExtOrTrunc(Val
, getCurSDLoc(), MemVTs
[i
]);
1815 Chains
[i
] = DAG
.getStore(Chain
, getCurSDLoc(), Val
,
1816 // FIXME: better loc info would be nice.
1817 Ptr
, MachinePointerInfo::getUnknownStack(DAG
.getMachineFunction()));
1820 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(),
1821 MVT::Other
, Chains
);
1822 } else if (I
.getNumOperands() != 0) {
1823 SmallVector
<EVT
, 4> ValueVTs
;
1824 ComputeValueVTs(TLI
, DL
, I
.getOperand(0)->getType(), ValueVTs
);
1825 unsigned NumValues
= ValueVTs
.size();
1827 SDValue RetOp
= getValue(I
.getOperand(0));
1829 const Function
*F
= I
.getParent()->getParent();
1831 bool NeedsRegBlock
= TLI
.functionArgumentNeedsConsecutiveRegisters(
1832 I
.getOperand(0)->getType(), F
->getCallingConv(),
1833 /*IsVarArg*/ false);
1835 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
1836 if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1838 ExtendKind
= ISD::SIGN_EXTEND
;
1839 else if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1841 ExtendKind
= ISD::ZERO_EXTEND
;
1843 LLVMContext
&Context
= F
->getContext();
1844 bool RetInReg
= F
->getAttributes().hasAttribute(
1845 AttributeList::ReturnIndex
, Attribute::InReg
);
1847 for (unsigned j
= 0; j
!= NumValues
; ++j
) {
1848 EVT VT
= ValueVTs
[j
];
1850 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger())
1851 VT
= TLI
.getTypeForExtReturn(Context
, VT
, ExtendKind
);
1853 CallingConv::ID CC
= F
->getCallingConv();
1855 unsigned NumParts
= TLI
.getNumRegistersForCallingConv(Context
, CC
, VT
);
1856 MVT PartVT
= TLI
.getRegisterTypeForCallingConv(Context
, CC
, VT
);
1857 SmallVector
<SDValue
, 4> Parts(NumParts
);
1858 getCopyToParts(DAG
, getCurSDLoc(),
1859 SDValue(RetOp
.getNode(), RetOp
.getResNo() + j
),
1860 &Parts
[0], NumParts
, PartVT
, &I
, CC
, ExtendKind
);
1862 // 'inreg' on function refers to return value
1863 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1867 if (I
.getOperand(0)->getType()->isPointerTy()) {
1869 Flags
.setPointerAddrSpace(
1870 cast
<PointerType
>(I
.getOperand(0)->getType())->getAddressSpace());
1873 if (NeedsRegBlock
) {
1874 Flags
.setInConsecutiveRegs();
1875 if (j
== NumValues
- 1)
1876 Flags
.setInConsecutiveRegsLast();
1879 // Propagate extension type if any
1880 if (ExtendKind
== ISD::SIGN_EXTEND
)
1882 else if (ExtendKind
== ISD::ZERO_EXTEND
)
1885 for (unsigned i
= 0; i
< NumParts
; ++i
) {
1886 Outs
.push_back(ISD::OutputArg(Flags
, Parts
[i
].getValueType(),
1887 VT
, /*isfixed=*/true, 0, 0));
1888 OutVals
.push_back(Parts
[i
]);
1894 // Push in swifterror virtual register as the last element of Outs. This makes
1895 // sure swifterror virtual register will be returned in the swifterror
1896 // physical register.
1897 const Function
*F
= I
.getParent()->getParent();
1898 if (TLI
.supportSwiftError() &&
1899 F
->getAttributes().hasAttrSomewhere(Attribute::SwiftError
)) {
1900 assert(SwiftError
.getFunctionArg() && "Need a swift error argument");
1901 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1902 Flags
.setSwiftError();
1903 Outs
.push_back(ISD::OutputArg(Flags
, EVT(TLI
.getPointerTy(DL
)) /*vt*/,
1904 EVT(TLI
.getPointerTy(DL
)) /*argvt*/,
1905 true /*isfixed*/, 1 /*origidx*/,
1907 // Create SDNode for the swifterror virtual register.
1909 DAG
.getRegister(SwiftError
.getOrCreateVRegUseAt(
1910 &I
, FuncInfo
.MBB
, SwiftError
.getFunctionArg()),
1911 EVT(TLI
.getPointerTy(DL
))));
1914 bool isVarArg
= DAG
.getMachineFunction().getFunction().isVarArg();
1915 CallingConv::ID CallConv
=
1916 DAG
.getMachineFunction().getFunction().getCallingConv();
1917 Chain
= DAG
.getTargetLoweringInfo().LowerReturn(
1918 Chain
, CallConv
, isVarArg
, Outs
, OutVals
, getCurSDLoc(), DAG
);
1920 // Verify that the target's LowerReturn behaved as expected.
1921 assert(Chain
.getNode() && Chain
.getValueType() == MVT::Other
&&
1922 "LowerReturn didn't return a valid chain!");
1924 // Update the DAG with the new chain value resulting from return lowering.
1928 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1929 /// created for it, emit nodes to copy the value into the virtual
1931 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value
*V
) {
1933 if (V
->getType()->isEmptyTy())
1936 DenseMap
<const Value
*, unsigned>::iterator VMI
= FuncInfo
.ValueMap
.find(V
);
1937 if (VMI
!= FuncInfo
.ValueMap
.end()) {
1938 assert(!V
->use_empty() && "Unused value assigned virtual registers!");
1939 CopyValueToVirtualRegister(V
, VMI
->second
);
1943 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1944 /// the current basic block, add it to ValueMap now so that we'll get a
1946 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value
*V
) {
1947 // No need to export constants.
1948 if (!isa
<Instruction
>(V
) && !isa
<Argument
>(V
)) return;
1950 // Already exported?
1951 if (FuncInfo
.isExportedInst(V
)) return;
1953 unsigned Reg
= FuncInfo
.InitializeRegForValue(V
);
1954 CopyValueToVirtualRegister(V
, Reg
);
1957 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value
*V
,
1958 const BasicBlock
*FromBB
) {
1959 // The operands of the setcc have to be in this block. We don't know
1960 // how to export them from some other block.
1961 if (const Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
1962 // Can export from current BB.
1963 if (VI
->getParent() == FromBB
)
1966 // Is already exported, noop.
1967 return FuncInfo
.isExportedInst(V
);
1970 // If this is an argument, we can export it if the BB is the entry block or
1971 // if it is already exported.
1972 if (isa
<Argument
>(V
)) {
1973 if (FromBB
== &FromBB
->getParent()->getEntryBlock())
1976 // Otherwise, can only export this if it is already exported.
1977 return FuncInfo
.isExportedInst(V
);
1980 // Otherwise, constants can always be exported.
1984 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1986 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock
*Src
,
1987 const MachineBasicBlock
*Dst
) const {
1988 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1989 const BasicBlock
*SrcBB
= Src
->getBasicBlock();
1990 const BasicBlock
*DstBB
= Dst
->getBasicBlock();
1992 // If BPI is not available, set the default probability as 1 / N, where N is
1993 // the number of successors.
1994 auto SuccSize
= std::max
<uint32_t>(succ_size(SrcBB
), 1);
1995 return BranchProbability(1, SuccSize
);
1997 return BPI
->getEdgeProbability(SrcBB
, DstBB
);
2000 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock
*Src
,
2001 MachineBasicBlock
*Dst
,
2002 BranchProbability Prob
) {
2004 Src
->addSuccessorWithoutProb(Dst
);
2006 if (Prob
.isUnknown())
2007 Prob
= getEdgeProbability(Src
, Dst
);
2008 Src
->addSuccessor(Dst
, Prob
);
2012 static bool InBlock(const Value
*V
, const BasicBlock
*BB
) {
2013 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
2014 return I
->getParent() == BB
;
2018 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2019 /// This function emits a branch and is used at the leaves of an OR or an
2020 /// AND operator tree.
2022 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value
*Cond
,
2023 MachineBasicBlock
*TBB
,
2024 MachineBasicBlock
*FBB
,
2025 MachineBasicBlock
*CurBB
,
2026 MachineBasicBlock
*SwitchBB
,
2027 BranchProbability TProb
,
2028 BranchProbability FProb
,
2030 const BasicBlock
*BB
= CurBB
->getBasicBlock();
2032 // If the leaf of the tree is a comparison, merge the condition into
2034 if (const CmpInst
*BOp
= dyn_cast
<CmpInst
>(Cond
)) {
2035 // The operands of the cmp have to be in this block. We don't know
2036 // how to export them from some other block. If this is the first block
2037 // of the sequence, no exporting is needed.
2038 if (CurBB
== SwitchBB
||
2039 (isExportableFromCurrentBlock(BOp
->getOperand(0), BB
) &&
2040 isExportableFromCurrentBlock(BOp
->getOperand(1), BB
))) {
2041 ISD::CondCode Condition
;
2042 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(Cond
)) {
2043 ICmpInst::Predicate Pred
=
2044 InvertCond
? IC
->getInversePredicate() : IC
->getPredicate();
2045 Condition
= getICmpCondCode(Pred
);
2047 const FCmpInst
*FC
= cast
<FCmpInst
>(Cond
);
2048 FCmpInst::Predicate Pred
=
2049 InvertCond
? FC
->getInversePredicate() : FC
->getPredicate();
2050 Condition
= getFCmpCondCode(Pred
);
2051 if (TM
.Options
.NoNaNsFPMath
)
2052 Condition
= getFCmpCodeWithoutNaN(Condition
);
2055 CaseBlock
CB(Condition
, BOp
->getOperand(0), BOp
->getOperand(1), nullptr,
2056 TBB
, FBB
, CurBB
, getCurSDLoc(), TProb
, FProb
);
2057 SL
->SwitchCases
.push_back(CB
);
2062 // Create a CaseBlock record representing this branch.
2063 ISD::CondCode Opc
= InvertCond
? ISD::SETNE
: ISD::SETEQ
;
2064 CaseBlock
CB(Opc
, Cond
, ConstantInt::getTrue(*DAG
.getContext()),
2065 nullptr, TBB
, FBB
, CurBB
, getCurSDLoc(), TProb
, FProb
);
2066 SL
->SwitchCases
.push_back(CB
);
2069 void SelectionDAGBuilder::FindMergedConditions(const Value
*Cond
,
2070 MachineBasicBlock
*TBB
,
2071 MachineBasicBlock
*FBB
,
2072 MachineBasicBlock
*CurBB
,
2073 MachineBasicBlock
*SwitchBB
,
2074 Instruction::BinaryOps Opc
,
2075 BranchProbability TProb
,
2076 BranchProbability FProb
,
2078 // Skip over not part of the tree and remember to invert op and operands at
2081 if (match(Cond
, m_OneUse(m_Not(m_Value(NotCond
)))) &&
2082 InBlock(NotCond
, CurBB
->getBasicBlock())) {
2083 FindMergedConditions(NotCond
, TBB
, FBB
, CurBB
, SwitchBB
, Opc
, TProb
, FProb
,
2088 const Instruction
*BOp
= dyn_cast
<Instruction
>(Cond
);
2089 // Compute the effective opcode for Cond, taking into account whether it needs
2090 // to be inverted, e.g.
2091 // and (not (or A, B)), C
2093 // and (and (not A, not B), C)
2096 BOpc
= BOp
->getOpcode();
2098 if (BOpc
== Instruction::And
)
2099 BOpc
= Instruction::Or
;
2100 else if (BOpc
== Instruction::Or
)
2101 BOpc
= Instruction::And
;
2105 // If this node is not part of the or/and tree, emit it as a branch.
2106 if (!BOp
|| !(isa
<BinaryOperator
>(BOp
) || isa
<CmpInst
>(BOp
)) ||
2107 BOpc
!= unsigned(Opc
) || !BOp
->hasOneUse() ||
2108 BOp
->getParent() != CurBB
->getBasicBlock() ||
2109 !InBlock(BOp
->getOperand(0), CurBB
->getBasicBlock()) ||
2110 !InBlock(BOp
->getOperand(1), CurBB
->getBasicBlock())) {
2111 EmitBranchForMergedCondition(Cond
, TBB
, FBB
, CurBB
, SwitchBB
,
2112 TProb
, FProb
, InvertCond
);
2116 // Create TmpBB after CurBB.
2117 MachineFunction::iterator
BBI(CurBB
);
2118 MachineFunction
&MF
= DAG
.getMachineFunction();
2119 MachineBasicBlock
*TmpBB
= MF
.CreateMachineBasicBlock(CurBB
->getBasicBlock());
2120 CurBB
->getParent()->insert(++BBI
, TmpBB
);
2122 if (Opc
== Instruction::Or
) {
2123 // Codegen X | Y as:
2132 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2133 // The requirement is that
2134 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2135 // = TrueProb for original BB.
2136 // Assuming the original probabilities are A and B, one choice is to set
2137 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2138 // A/(1+B) and 2B/(1+B). This choice assumes that
2139 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2140 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2141 // TmpBB, but the math is more complicated.
2143 auto NewTrueProb
= TProb
/ 2;
2144 auto NewFalseProb
= TProb
/ 2 + FProb
;
2145 // Emit the LHS condition.
2146 FindMergedConditions(BOp
->getOperand(0), TBB
, TmpBB
, CurBB
, SwitchBB
, Opc
,
2147 NewTrueProb
, NewFalseProb
, InvertCond
);
2149 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2150 SmallVector
<BranchProbability
, 2> Probs
{TProb
/ 2, FProb
};
2151 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
2152 // Emit the RHS condition into TmpBB.
2153 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, SwitchBB
, Opc
,
2154 Probs
[0], Probs
[1], InvertCond
);
2156 assert(Opc
== Instruction::And
&& "Unknown merge op!");
2157 // Codegen X & Y as:
2165 // This requires creation of TmpBB after CurBB.
2167 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2168 // The requirement is that
2169 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2170 // = FalseProb for original BB.
2171 // Assuming the original probabilities are A and B, one choice is to set
2172 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2173 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2174 // TrueProb for BB1 * FalseProb for TmpBB.
2176 auto NewTrueProb
= TProb
+ FProb
/ 2;
2177 auto NewFalseProb
= FProb
/ 2;
2178 // Emit the LHS condition.
2179 FindMergedConditions(BOp
->getOperand(0), TmpBB
, FBB
, CurBB
, SwitchBB
, Opc
,
2180 NewTrueProb
, NewFalseProb
, InvertCond
);
2182 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2183 SmallVector
<BranchProbability
, 2> Probs
{TProb
, FProb
/ 2};
2184 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
2185 // Emit the RHS condition into TmpBB.
2186 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, SwitchBB
, Opc
,
2187 Probs
[0], Probs
[1], InvertCond
);
2191 /// If the set of cases should be emitted as a series of branches, return true.
2192 /// If we should emit this as a bunch of and/or'd together conditions, return
2195 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector
<CaseBlock
> &Cases
) {
2196 if (Cases
.size() != 2) return true;
2198 // If this is two comparisons of the same values or'd or and'd together, they
2199 // will get folded into a single comparison, so don't emit two blocks.
2200 if ((Cases
[0].CmpLHS
== Cases
[1].CmpLHS
&&
2201 Cases
[0].CmpRHS
== Cases
[1].CmpRHS
) ||
2202 (Cases
[0].CmpRHS
== Cases
[1].CmpLHS
&&
2203 Cases
[0].CmpLHS
== Cases
[1].CmpRHS
)) {
2207 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2208 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2209 if (Cases
[0].CmpRHS
== Cases
[1].CmpRHS
&&
2210 Cases
[0].CC
== Cases
[1].CC
&&
2211 isa
<Constant
>(Cases
[0].CmpRHS
) &&
2212 cast
<Constant
>(Cases
[0].CmpRHS
)->isNullValue()) {
2213 if (Cases
[0].CC
== ISD::SETEQ
&& Cases
[0].TrueBB
== Cases
[1].ThisBB
)
2215 if (Cases
[0].CC
== ISD::SETNE
&& Cases
[0].FalseBB
== Cases
[1].ThisBB
)
2222 void SelectionDAGBuilder::visitBr(const BranchInst
&I
) {
2223 MachineBasicBlock
*BrMBB
= FuncInfo
.MBB
;
2225 // Update machine-CFG edges.
2226 MachineBasicBlock
*Succ0MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
2228 if (I
.isUnconditional()) {
2229 // Update machine-CFG edges.
2230 BrMBB
->addSuccessor(Succ0MBB
);
2232 // If this is not a fall-through branch or optimizations are switched off,
2234 if (Succ0MBB
!= NextBlock(BrMBB
) || TM
.getOptLevel() == CodeGenOpt::None
)
2235 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(),
2236 MVT::Other
, getControlRoot(),
2237 DAG
.getBasicBlock(Succ0MBB
)));
2242 // If this condition is one of the special cases we handle, do special stuff
2244 const Value
*CondVal
= I
.getCondition();
2245 MachineBasicBlock
*Succ1MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
2247 // If this is a series of conditions that are or'd or and'd together, emit
2248 // this as a sequence of branches instead of setcc's with and/or operations.
2249 // As long as jumps are not expensive, this should improve performance.
2250 // For example, instead of something like:
2262 if (const BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(CondVal
)) {
2263 Instruction::BinaryOps Opcode
= BOp
->getOpcode();
2264 if (!DAG
.getTargetLoweringInfo().isJumpExpensive() && BOp
->hasOneUse() &&
2265 !I
.getMetadata(LLVMContext::MD_unpredictable
) &&
2266 (Opcode
== Instruction::And
|| Opcode
== Instruction::Or
)) {
2267 FindMergedConditions(BOp
, Succ0MBB
, Succ1MBB
, BrMBB
, BrMBB
,
2269 getEdgeProbability(BrMBB
, Succ0MBB
),
2270 getEdgeProbability(BrMBB
, Succ1MBB
),
2271 /*InvertCond=*/false);
2272 // If the compares in later blocks need to use values not currently
2273 // exported from this block, export them now. This block should always
2274 // be the first entry.
2275 assert(SL
->SwitchCases
[0].ThisBB
== BrMBB
&& "Unexpected lowering!");
2277 // Allow some cases to be rejected.
2278 if (ShouldEmitAsBranches(SL
->SwitchCases
)) {
2279 for (unsigned i
= 1, e
= SL
->SwitchCases
.size(); i
!= e
; ++i
) {
2280 ExportFromCurrentBlock(SL
->SwitchCases
[i
].CmpLHS
);
2281 ExportFromCurrentBlock(SL
->SwitchCases
[i
].CmpRHS
);
2284 // Emit the branch for this block.
2285 visitSwitchCase(SL
->SwitchCases
[0], BrMBB
);
2286 SL
->SwitchCases
.erase(SL
->SwitchCases
.begin());
2290 // Okay, we decided not to do this, remove any inserted MBB's and clear
2292 for (unsigned i
= 1, e
= SL
->SwitchCases
.size(); i
!= e
; ++i
)
2293 FuncInfo
.MF
->erase(SL
->SwitchCases
[i
].ThisBB
);
2295 SL
->SwitchCases
.clear();
2299 // Create a CaseBlock record representing this branch.
2300 CaseBlock
CB(ISD::SETEQ
, CondVal
, ConstantInt::getTrue(*DAG
.getContext()),
2301 nullptr, Succ0MBB
, Succ1MBB
, BrMBB
, getCurSDLoc());
2303 // Use visitSwitchCase to actually insert the fast branch sequence for this
2305 visitSwitchCase(CB
, BrMBB
);
2308 /// visitSwitchCase - Emits the necessary code to represent a single node in
2309 /// the binary search tree resulting from lowering a switch instruction.
2310 void SelectionDAGBuilder::visitSwitchCase(CaseBlock
&CB
,
2311 MachineBasicBlock
*SwitchBB
) {
2313 SDValue CondLHS
= getValue(CB
.CmpLHS
);
2316 if (CB
.CC
== ISD::SETTRUE
) {
2317 // Branch or fall through to TrueBB.
2318 addSuccessorWithProb(SwitchBB
, CB
.TrueBB
, CB
.TrueProb
);
2319 SwitchBB
->normalizeSuccProbs();
2320 if (CB
.TrueBB
!= NextBlock(SwitchBB
)) {
2321 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, getControlRoot(),
2322 DAG
.getBasicBlock(CB
.TrueBB
)));
2327 auto &TLI
= DAG
.getTargetLoweringInfo();
2328 EVT MemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), CB
.CmpLHS
->getType());
2330 // Build the setcc now.
2332 // Fold "(X == true)" to X and "(X == false)" to !X to
2333 // handle common cases produced by branch lowering.
2334 if (CB
.CmpRHS
== ConstantInt::getTrue(*DAG
.getContext()) &&
2335 CB
.CC
== ISD::SETEQ
)
2337 else if (CB
.CmpRHS
== ConstantInt::getFalse(*DAG
.getContext()) &&
2338 CB
.CC
== ISD::SETEQ
) {
2339 SDValue True
= DAG
.getConstant(1, dl
, CondLHS
.getValueType());
2340 Cond
= DAG
.getNode(ISD::XOR
, dl
, CondLHS
.getValueType(), CondLHS
, True
);
2342 SDValue CondRHS
= getValue(CB
.CmpRHS
);
2344 // If a pointer's DAG type is larger than its memory type then the DAG
2345 // values are zero-extended. This breaks signed comparisons so truncate
2346 // back to the underlying type before doing the compare.
2347 if (CondLHS
.getValueType() != MemVT
) {
2348 CondLHS
= DAG
.getPtrExtOrTrunc(CondLHS
, getCurSDLoc(), MemVT
);
2349 CondRHS
= DAG
.getPtrExtOrTrunc(CondRHS
, getCurSDLoc(), MemVT
);
2351 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CondLHS
, CondRHS
, CB
.CC
);
2354 assert(CB
.CC
== ISD::SETLE
&& "Can handle only LE ranges now");
2356 const APInt
& Low
= cast
<ConstantInt
>(CB
.CmpLHS
)->getValue();
2357 const APInt
& High
= cast
<ConstantInt
>(CB
.CmpRHS
)->getValue();
2359 SDValue CmpOp
= getValue(CB
.CmpMHS
);
2360 EVT VT
= CmpOp
.getValueType();
2362 if (cast
<ConstantInt
>(CB
.CmpLHS
)->isMinValue(true)) {
2363 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CmpOp
, DAG
.getConstant(High
, dl
, VT
),
2366 SDValue SUB
= DAG
.getNode(ISD::SUB
, dl
,
2367 VT
, CmpOp
, DAG
.getConstant(Low
, dl
, VT
));
2368 Cond
= DAG
.getSetCC(dl
, MVT::i1
, SUB
,
2369 DAG
.getConstant(High
-Low
, dl
, VT
), ISD::SETULE
);
2373 // Update successor info
2374 addSuccessorWithProb(SwitchBB
, CB
.TrueBB
, CB
.TrueProb
);
2375 // TrueBB and FalseBB are always different unless the incoming IR is
2376 // degenerate. This only happens when running llc on weird IR.
2377 if (CB
.TrueBB
!= CB
.FalseBB
)
2378 addSuccessorWithProb(SwitchBB
, CB
.FalseBB
, CB
.FalseProb
);
2379 SwitchBB
->normalizeSuccProbs();
2381 // If the lhs block is the next block, invert the condition so that we can
2382 // fall through to the lhs instead of the rhs block.
2383 if (CB
.TrueBB
== NextBlock(SwitchBB
)) {
2384 std::swap(CB
.TrueBB
, CB
.FalseBB
);
2385 SDValue True
= DAG
.getConstant(1, dl
, Cond
.getValueType());
2386 Cond
= DAG
.getNode(ISD::XOR
, dl
, Cond
.getValueType(), Cond
, True
);
2389 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2390 MVT::Other
, getControlRoot(), Cond
,
2391 DAG
.getBasicBlock(CB
.TrueBB
));
2393 // Insert the false branch. Do this even if it's a fall through branch,
2394 // this makes it easier to do DAG optimizations which require inverting
2395 // the branch condition.
2396 BrCond
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
2397 DAG
.getBasicBlock(CB
.FalseBB
));
2399 DAG
.setRoot(BrCond
);
2402 /// visitJumpTable - Emit JumpTable node in the current MBB
2403 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable
&JT
) {
2404 // Emit the code for the jump table
2405 assert(JT
.Reg
!= -1U && "Should lower JT Header first!");
2406 EVT PTy
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2407 SDValue Index
= DAG
.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2409 SDValue Table
= DAG
.getJumpTable(JT
.JTI
, PTy
);
2410 SDValue BrJumpTable
= DAG
.getNode(ISD::BR_JT
, getCurSDLoc(),
2411 MVT::Other
, Index
.getValue(1),
2413 DAG
.setRoot(BrJumpTable
);
2416 /// visitJumpTableHeader - This function emits necessary code to produce index
2417 /// in the JumpTable from switch case.
2418 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable
&JT
,
2419 JumpTableHeader
&JTH
,
2420 MachineBasicBlock
*SwitchBB
) {
2421 SDLoc dl
= getCurSDLoc();
2423 // Subtract the lowest switch case value from the value being switched on.
2424 SDValue SwitchOp
= getValue(JTH
.SValue
);
2425 EVT VT
= SwitchOp
.getValueType();
2426 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, SwitchOp
,
2427 DAG
.getConstant(JTH
.First
, dl
, VT
));
2429 // The SDNode we just created, which holds the value being switched on minus
2430 // the smallest case value, needs to be copied to a virtual register so it
2431 // can be used as an index into the jump table in a subsequent basic block.
2432 // This value may be smaller or larger than the target's pointer type, and
2433 // therefore require extension or truncating.
2434 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2435 SwitchOp
= DAG
.getZExtOrTrunc(Sub
, dl
, TLI
.getPointerTy(DAG
.getDataLayout()));
2437 unsigned JumpTableReg
=
2438 FuncInfo
.CreateReg(TLI
.getPointerTy(DAG
.getDataLayout()));
2439 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), dl
,
2440 JumpTableReg
, SwitchOp
);
2441 JT
.Reg
= JumpTableReg
;
2443 if (!JTH
.OmitRangeCheck
) {
2444 // Emit the range check for the jump table, and branch to the default block
2445 // for the switch statement if the value being switched on exceeds the
2446 // largest case in the switch.
2447 SDValue CMP
= DAG
.getSetCC(
2448 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
2449 Sub
.getValueType()),
2450 Sub
, DAG
.getConstant(JTH
.Last
- JTH
.First
, dl
, VT
), ISD::SETUGT
);
2452 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2453 MVT::Other
, CopyTo
, CMP
,
2454 DAG
.getBasicBlock(JT
.Default
));
2456 // Avoid emitting unnecessary branches to the next block.
2457 if (JT
.MBB
!= NextBlock(SwitchBB
))
2458 BrCond
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
2459 DAG
.getBasicBlock(JT
.MBB
));
2461 DAG
.setRoot(BrCond
);
2463 // Avoid emitting unnecessary branches to the next block.
2464 if (JT
.MBB
!= NextBlock(SwitchBB
))
2465 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, CopyTo
,
2466 DAG
.getBasicBlock(JT
.MBB
)));
2468 DAG
.setRoot(CopyTo
);
2472 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2473 /// variable if there exists one.
2474 static SDValue
getLoadStackGuard(SelectionDAG
&DAG
, const SDLoc
&DL
,
2476 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2477 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
2478 EVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout());
2479 MachineFunction
&MF
= DAG
.getMachineFunction();
2480 Value
*Global
= TLI
.getSDagStackGuard(*MF
.getFunction().getParent());
2481 MachineSDNode
*Node
=
2482 DAG
.getMachineNode(TargetOpcode::LOAD_STACK_GUARD
, DL
, PtrTy
, Chain
);
2484 MachinePointerInfo
MPInfo(Global
);
2485 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOInvariant
|
2486 MachineMemOperand::MODereferenceable
;
2487 MachineMemOperand
*MemRef
= MF
.getMachineMemOperand(
2488 MPInfo
, Flags
, PtrTy
.getSizeInBits() / 8, DAG
.getEVTAlignment(PtrTy
));
2489 DAG
.setNodeMemRefs(Node
, {MemRef
});
2491 if (PtrTy
!= PtrMemTy
)
2492 return DAG
.getPtrExtOrTrunc(SDValue(Node
, 0), DL
, PtrMemTy
);
2493 return SDValue(Node
, 0);
2496 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2497 /// tail spliced into a stack protector check success bb.
2499 /// For a high level explanation of how this fits into the stack protector
2500 /// generation see the comment on the declaration of class
2501 /// StackProtectorDescriptor.
2502 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor
&SPD
,
2503 MachineBasicBlock
*ParentBB
) {
2505 // First create the loads to the guard/stack slot for the comparison.
2506 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2507 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
2508 EVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout());
2510 MachineFrameInfo
&MFI
= ParentBB
->getParent()->getFrameInfo();
2511 int FI
= MFI
.getStackProtectorIndex();
2514 SDLoc dl
= getCurSDLoc();
2515 SDValue StackSlotPtr
= DAG
.getFrameIndex(FI
, PtrTy
);
2516 const Module
&M
= *ParentBB
->getParent()->getFunction().getParent();
2517 unsigned Align
= DL
->getPrefTypeAlignment(Type::getInt8PtrTy(M
.getContext()));
2519 // Generate code to load the content of the guard slot.
2520 SDValue GuardVal
= DAG
.getLoad(
2521 PtrMemTy
, dl
, DAG
.getEntryNode(), StackSlotPtr
,
2522 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
), Align
,
2523 MachineMemOperand::MOVolatile
);
2525 if (TLI
.useStackGuardXorFP())
2526 GuardVal
= TLI
.emitStackGuardXorFP(DAG
, GuardVal
, dl
);
2528 // Retrieve guard check function, nullptr if instrumentation is inlined.
2529 if (const Function
*GuardCheckFn
= TLI
.getSSPStackGuardCheck(M
)) {
2530 // The target provides a guard check function to validate the guard value.
2531 // Generate a call to that function with the content of the guard slot as
2533 FunctionType
*FnTy
= GuardCheckFn
->getFunctionType();
2534 assert(FnTy
->getNumParams() == 1 && "Invalid function signature");
2536 TargetLowering::ArgListTy Args
;
2537 TargetLowering::ArgListEntry Entry
;
2538 Entry
.Node
= GuardVal
;
2539 Entry
.Ty
= FnTy
->getParamType(0);
2540 if (GuardCheckFn
->hasAttribute(1, Attribute::AttrKind::InReg
))
2541 Entry
.IsInReg
= true;
2542 Args
.push_back(Entry
);
2544 TargetLowering::CallLoweringInfo
CLI(DAG
);
2545 CLI
.setDebugLoc(getCurSDLoc())
2546 .setChain(DAG
.getEntryNode())
2547 .setCallee(GuardCheckFn
->getCallingConv(), FnTy
->getReturnType(),
2548 getValue(GuardCheckFn
), std::move(Args
));
2550 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
2551 DAG
.setRoot(Result
.second
);
2555 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2556 // Otherwise, emit a volatile load to retrieve the stack guard value.
2557 SDValue Chain
= DAG
.getEntryNode();
2558 if (TLI
.useLoadStackGuardNode()) {
2559 Guard
= getLoadStackGuard(DAG
, dl
, Chain
);
2561 const Value
*IRGuard
= TLI
.getSDagStackGuard(M
);
2562 SDValue GuardPtr
= getValue(IRGuard
);
2564 Guard
= DAG
.getLoad(PtrMemTy
, dl
, Chain
, GuardPtr
,
2565 MachinePointerInfo(IRGuard
, 0), Align
,
2566 MachineMemOperand::MOVolatile
);
2569 // Perform the comparison via a subtract/getsetcc.
2570 EVT VT
= Guard
.getValueType();
2571 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, Guard
, GuardVal
);
2573 SDValue Cmp
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(),
2575 Sub
.getValueType()),
2576 Sub
, DAG
.getConstant(0, dl
, VT
), ISD::SETNE
);
2578 // If the sub is not 0, then we know the guard/stackslot do not equal, so
2579 // branch to failure MBB.
2580 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2581 MVT::Other
, GuardVal
.getOperand(0),
2582 Cmp
, DAG
.getBasicBlock(SPD
.getFailureMBB()));
2583 // Otherwise branch to success MBB.
2584 SDValue Br
= DAG
.getNode(ISD::BR
, dl
,
2586 DAG
.getBasicBlock(SPD
.getSuccessMBB()));
2591 /// Codegen the failure basic block for a stack protector check.
2593 /// A failure stack protector machine basic block consists simply of a call to
2594 /// __stack_chk_fail().
2596 /// For a high level explanation of how this fits into the stack protector
2597 /// generation see the comment on the declaration of class
2598 /// StackProtectorDescriptor.
2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor
&SPD
) {
2601 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2603 TLI
.makeLibCall(DAG
, RTLIB::STACKPROTECTOR_CHECK_FAIL
, MVT::isVoid
,
2604 None
, false, getCurSDLoc(), false, false).second
;
2605 // On PS4, the "return address" must still be within the calling function,
2606 // even if it's at the very end, so emit an explicit TRAP here.
2607 // Passing 'true' for doesNotReturn above won't generate the trap for us.
2608 if (TM
.getTargetTriple().isPS4CPU())
2609 Chain
= DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, Chain
);
2614 /// visitBitTestHeader - This function emits necessary code to produce value
2615 /// suitable for "bit tests"
2616 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock
&B
,
2617 MachineBasicBlock
*SwitchBB
) {
2618 SDLoc dl
= getCurSDLoc();
2620 // Subtract the minimum value
2621 SDValue SwitchOp
= getValue(B
.SValue
);
2622 EVT VT
= SwitchOp
.getValueType();
2623 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, SwitchOp
,
2624 DAG
.getConstant(B
.First
, dl
, VT
));
2627 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2628 SDValue RangeCmp
= DAG
.getSetCC(
2629 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
2630 Sub
.getValueType()),
2631 Sub
, DAG
.getConstant(B
.Range
, dl
, VT
), ISD::SETUGT
);
2633 // Determine the type of the test operands.
2634 bool UsePtrType
= false;
2635 if (!TLI
.isTypeLegal(VT
))
2638 for (unsigned i
= 0, e
= B
.Cases
.size(); i
!= e
; ++i
)
2639 if (!isUIntN(VT
.getSizeInBits(), B
.Cases
[i
].Mask
)) {
2640 // Switch table case range are encoded into series of masks.
2641 // Just use pointer type, it's guaranteed to fit.
2647 VT
= TLI
.getPointerTy(DAG
.getDataLayout());
2648 Sub
= DAG
.getZExtOrTrunc(Sub
, dl
, VT
);
2651 B
.RegVT
= VT
.getSimpleVT();
2652 B
.Reg
= FuncInfo
.CreateReg(B
.RegVT
);
2653 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), dl
, B
.Reg
, Sub
);
2655 MachineBasicBlock
* MBB
= B
.Cases
[0].ThisBB
;
2657 addSuccessorWithProb(SwitchBB
, B
.Default
, B
.DefaultProb
);
2658 addSuccessorWithProb(SwitchBB
, MBB
, B
.Prob
);
2659 SwitchBB
->normalizeSuccProbs();
2661 SDValue BrRange
= DAG
.getNode(ISD::BRCOND
, dl
,
2662 MVT::Other
, CopyTo
, RangeCmp
,
2663 DAG
.getBasicBlock(B
.Default
));
2665 // Avoid emitting unnecessary branches to the next block.
2666 if (MBB
!= NextBlock(SwitchBB
))
2667 BrRange
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrRange
,
2668 DAG
.getBasicBlock(MBB
));
2670 DAG
.setRoot(BrRange
);
2673 /// visitBitTestCase - this function produces one "bit test"
2674 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock
&BB
,
2675 MachineBasicBlock
* NextMBB
,
2676 BranchProbability BranchProbToNext
,
2679 MachineBasicBlock
*SwitchBB
) {
2680 SDLoc dl
= getCurSDLoc();
2682 SDValue ShiftOp
= DAG
.getCopyFromReg(getControlRoot(), dl
, Reg
, VT
);
2684 unsigned PopCount
= countPopulation(B
.Mask
);
2685 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2686 if (PopCount
== 1) {
2687 // Testing for a single bit; just compare the shift count with what it
2688 // would need to be to shift a 1 bit in that position.
2690 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2691 ShiftOp
, DAG
.getConstant(countTrailingZeros(B
.Mask
), dl
, VT
),
2693 } else if (PopCount
== BB
.Range
) {
2694 // There is only one zero bit in the range, test for it directly.
2696 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2697 ShiftOp
, DAG
.getConstant(countTrailingOnes(B
.Mask
), dl
, VT
),
2700 // Make desired shift
2701 SDValue SwitchVal
= DAG
.getNode(ISD::SHL
, dl
, VT
,
2702 DAG
.getConstant(1, dl
, VT
), ShiftOp
);
2704 // Emit bit tests and jumps
2705 SDValue AndOp
= DAG
.getNode(ISD::AND
, dl
,
2706 VT
, SwitchVal
, DAG
.getConstant(B
.Mask
, dl
, VT
));
2708 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2709 AndOp
, DAG
.getConstant(0, dl
, VT
), ISD::SETNE
);
2712 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2713 addSuccessorWithProb(SwitchBB
, B
.TargetBB
, B
.ExtraProb
);
2714 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2715 addSuccessorWithProb(SwitchBB
, NextMBB
, BranchProbToNext
);
2716 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2717 // one as they are relative probabilities (and thus work more like weights),
2718 // and hence we need to normalize them to let the sum of them become one.
2719 SwitchBB
->normalizeSuccProbs();
2721 SDValue BrAnd
= DAG
.getNode(ISD::BRCOND
, dl
,
2722 MVT::Other
, getControlRoot(),
2723 Cmp
, DAG
.getBasicBlock(B
.TargetBB
));
2725 // Avoid emitting unnecessary branches to the next block.
2726 if (NextMBB
!= NextBlock(SwitchBB
))
2727 BrAnd
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrAnd
,
2728 DAG
.getBasicBlock(NextMBB
));
2733 void SelectionDAGBuilder::visitInvoke(const InvokeInst
&I
) {
2734 MachineBasicBlock
*InvokeMBB
= FuncInfo
.MBB
;
2736 // Retrieve successors. Look through artificial IR level blocks like
2737 // catchswitch for successors.
2738 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
2739 const BasicBlock
*EHPadBB
= I
.getSuccessor(1);
2741 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2742 // have to do anything here to lower funclet bundles.
2743 assert(!I
.hasOperandBundlesOtherThan(
2744 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
}) &&
2745 "Cannot lower invokes with arbitrary operand bundles yet!");
2747 const Value
*Callee(I
.getCalledValue());
2748 const Function
*Fn
= dyn_cast
<Function
>(Callee
);
2749 if (isa
<InlineAsm
>(Callee
))
2751 else if (Fn
&& Fn
->isIntrinsic()) {
2752 switch (Fn
->getIntrinsicID()) {
2754 llvm_unreachable("Cannot invoke this intrinsic");
2755 case Intrinsic::donothing
:
2756 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2758 case Intrinsic::experimental_patchpoint_void
:
2759 case Intrinsic::experimental_patchpoint_i64
:
2760 visitPatchpoint(&I
, EHPadBB
);
2762 case Intrinsic::experimental_gc_statepoint
:
2763 LowerStatepoint(ImmutableStatepoint(&I
), EHPadBB
);
2765 case Intrinsic::wasm_rethrow_in_catch
: {
2766 // This is usually done in visitTargetIntrinsic, but this intrinsic is
2767 // special because it can be invoked, so we manually lower it to a DAG
2769 SmallVector
<SDValue
, 8> Ops
;
2770 Ops
.push_back(getRoot()); // inchain
2771 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2773 DAG
.getTargetConstant(Intrinsic::wasm_rethrow_in_catch
, getCurSDLoc(),
2774 TLI
.getPointerTy(DAG
.getDataLayout())));
2775 SDVTList VTs
= DAG
.getVTList(ArrayRef
<EVT
>({MVT::Other
})); // outchain
2776 DAG
.setRoot(DAG
.getNode(ISD::INTRINSIC_VOID
, getCurSDLoc(), VTs
, Ops
));
2780 } else if (I
.countOperandBundlesOfType(LLVMContext::OB_deopt
)) {
2781 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2782 // Eventually we will support lowering the @llvm.experimental.deoptimize
2783 // intrinsic, and right now there are no plans to support other intrinsics
2784 // with deopt state.
2785 LowerCallSiteWithDeoptBundle(&I
, getValue(Callee
), EHPadBB
);
2787 LowerCallTo(&I
, getValue(Callee
), false, EHPadBB
);
2790 // If the value of the invoke is used outside of its defining block, make it
2791 // available as a virtual register.
2792 // We already took care of the exported value for the statepoint instruction
2793 // during call to the LowerStatepoint.
2794 if (!isStatepoint(I
)) {
2795 CopyToExportRegsIfNeeded(&I
);
2798 SmallVector
<std::pair
<MachineBasicBlock
*, BranchProbability
>, 1> UnwindDests
;
2799 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
2800 BranchProbability EHPadBBProb
=
2801 BPI
? BPI
->getEdgeProbability(InvokeMBB
->getBasicBlock(), EHPadBB
)
2802 : BranchProbability::getZero();
2803 findUnwindDestinations(FuncInfo
, EHPadBB
, EHPadBBProb
, UnwindDests
);
2805 // Update successor info.
2806 addSuccessorWithProb(InvokeMBB
, Return
);
2807 for (auto &UnwindDest
: UnwindDests
) {
2808 UnwindDest
.first
->setIsEHPad();
2809 addSuccessorWithProb(InvokeMBB
, UnwindDest
.first
, UnwindDest
.second
);
2811 InvokeMBB
->normalizeSuccProbs();
2813 // Drop into normal successor.
2814 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
, getControlRoot(),
2815 DAG
.getBasicBlock(Return
)));
2818 void SelectionDAGBuilder::visitCallBr(const CallBrInst
&I
) {
2819 MachineBasicBlock
*CallBrMBB
= FuncInfo
.MBB
;
2821 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2822 // have to do anything here to lower funclet bundles.
2823 assert(!I
.hasOperandBundlesOtherThan(
2824 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
}) &&
2825 "Cannot lower callbrs with arbitrary operand bundles yet!");
2827 assert(isa
<InlineAsm
>(I
.getCalledValue()) &&
2828 "Only know how to handle inlineasm callbr");
2831 // Retrieve successors.
2832 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getDefaultDest()];
2834 // Update successor info.
2835 addSuccessorWithProb(CallBrMBB
, Return
);
2836 for (unsigned i
= 0, e
= I
.getNumIndirectDests(); i
< e
; ++i
) {
2837 MachineBasicBlock
*Target
= FuncInfo
.MBBMap
[I
.getIndirectDest(i
)];
2838 addSuccessorWithProb(CallBrMBB
, Target
);
2840 CallBrMBB
->normalizeSuccProbs();
2842 // Drop into default successor.
2843 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(),
2844 MVT::Other
, getControlRoot(),
2845 DAG
.getBasicBlock(Return
)));
2848 void SelectionDAGBuilder::visitResume(const ResumeInst
&RI
) {
2849 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2852 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst
&LP
) {
2853 assert(FuncInfo
.MBB
->isEHPad() &&
2854 "Call to landingpad not in landing pad!");
2856 // If there aren't registers to copy the values into (e.g., during SjLj
2857 // exceptions), then don't bother to create these DAG nodes.
2858 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2859 const Constant
*PersonalityFn
= FuncInfo
.Fn
->getPersonalityFn();
2860 if (TLI
.getExceptionPointerRegister(PersonalityFn
) == 0 &&
2861 TLI
.getExceptionSelectorRegister(PersonalityFn
) == 0)
2864 // If landingpad's return type is token type, we don't create DAG nodes
2865 // for its exception pointer and selector value. The extraction of exception
2866 // pointer or selector value from token type landingpads is not currently
2868 if (LP
.getType()->isTokenTy())
2871 SmallVector
<EVT
, 2> ValueVTs
;
2872 SDLoc dl
= getCurSDLoc();
2873 ComputeValueVTs(TLI
, DAG
.getDataLayout(), LP
.getType(), ValueVTs
);
2874 assert(ValueVTs
.size() == 2 && "Only two-valued landingpads are supported");
2876 // Get the two live-in registers as SDValues. The physregs have already been
2877 // copied into virtual registers.
2879 if (FuncInfo
.ExceptionPointerVirtReg
) {
2880 Ops
[0] = DAG
.getZExtOrTrunc(
2881 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
2882 FuncInfo
.ExceptionPointerVirtReg
,
2883 TLI
.getPointerTy(DAG
.getDataLayout())),
2886 Ops
[0] = DAG
.getConstant(0, dl
, TLI
.getPointerTy(DAG
.getDataLayout()));
2888 Ops
[1] = DAG
.getZExtOrTrunc(
2889 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
2890 FuncInfo
.ExceptionSelectorVirtReg
,
2891 TLI
.getPointerTy(DAG
.getDataLayout())),
2895 SDValue Res
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
2896 DAG
.getVTList(ValueVTs
), Ops
);
2900 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock
*First
,
2901 MachineBasicBlock
*Last
) {
2903 for (unsigned i
= 0, e
= SL
->JTCases
.size(); i
!= e
; ++i
)
2904 if (SL
->JTCases
[i
].first
.HeaderBB
== First
)
2905 SL
->JTCases
[i
].first
.HeaderBB
= Last
;
2907 // Update BitTestCases.
2908 for (unsigned i
= 0, e
= SL
->BitTestCases
.size(); i
!= e
; ++i
)
2909 if (SL
->BitTestCases
[i
].Parent
== First
)
2910 SL
->BitTestCases
[i
].Parent
= Last
;
2913 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst
&I
) {
2914 MachineBasicBlock
*IndirectBrMBB
= FuncInfo
.MBB
;
2916 // Update machine-CFG edges with unique successors.
2917 SmallSet
<BasicBlock
*, 32> Done
;
2918 for (unsigned i
= 0, e
= I
.getNumSuccessors(); i
!= e
; ++i
) {
2919 BasicBlock
*BB
= I
.getSuccessor(i
);
2920 bool Inserted
= Done
.insert(BB
).second
;
2924 MachineBasicBlock
*Succ
= FuncInfo
.MBBMap
[BB
];
2925 addSuccessorWithProb(IndirectBrMBB
, Succ
);
2927 IndirectBrMBB
->normalizeSuccProbs();
2929 DAG
.setRoot(DAG
.getNode(ISD::BRIND
, getCurSDLoc(),
2930 MVT::Other
, getControlRoot(),
2931 getValue(I
.getAddress())));
2934 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst
&I
) {
2935 if (!DAG
.getTarget().Options
.TrapUnreachable
)
2938 // We may be able to ignore unreachable behind a noreturn call.
2939 if (DAG
.getTarget().Options
.NoTrapAfterNoreturn
) {
2940 const BasicBlock
&BB
= *I
.getParent();
2941 if (&I
!= &BB
.front()) {
2942 BasicBlock::const_iterator PredI
=
2943 std::prev(BasicBlock::const_iterator(&I
));
2944 if (const CallInst
*Call
= dyn_cast
<CallInst
>(&*PredI
)) {
2945 if (Call
->doesNotReturn())
2951 DAG
.setRoot(DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, DAG
.getRoot()));
2954 void SelectionDAGBuilder::visitFSub(const User
&I
) {
2955 // -0.0 - X --> fneg
2956 Type
*Ty
= I
.getType();
2957 if (isa
<Constant
>(I
.getOperand(0)) &&
2958 I
.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty
)) {
2959 SDValue Op2
= getValue(I
.getOperand(1));
2960 setValue(&I
, DAG
.getNode(ISD::FNEG
, getCurSDLoc(),
2961 Op2
.getValueType(), Op2
));
2965 visitBinary(I
, ISD::FSUB
);
2968 /// Checks if the given instruction performs a vector reduction, in which case
2969 /// we have the freedom to alter the elements in the result as long as the
2970 /// reduction of them stays unchanged.
2971 static bool isVectorReductionOp(const User
*I
) {
2972 const Instruction
*Inst
= dyn_cast
<Instruction
>(I
);
2973 if (!Inst
|| !Inst
->getType()->isVectorTy())
2976 auto OpCode
= Inst
->getOpcode();
2978 case Instruction::Add
:
2979 case Instruction::Mul
:
2980 case Instruction::And
:
2981 case Instruction::Or
:
2982 case Instruction::Xor
:
2984 case Instruction::FAdd
:
2985 case Instruction::FMul
:
2986 if (const FPMathOperator
*FPOp
= dyn_cast
<const FPMathOperator
>(Inst
))
2987 if (FPOp
->getFastMathFlags().isFast())
2994 unsigned ElemNum
= Inst
->getType()->getVectorNumElements();
2995 // Ensure the reduction size is a power of 2.
2996 if (!isPowerOf2_32(ElemNum
))
2999 unsigned ElemNumToReduce
= ElemNum
;
3001 // Do DFS search on the def-use chain from the given instruction. We only
3002 // allow four kinds of operations during the search until we reach the
3003 // instruction that extracts the first element from the vector:
3005 // 1. The reduction operation of the same opcode as the given instruction.
3009 // 3. ShuffleVector instruction together with a reduction operation that
3010 // does a partial reduction.
3012 // 4. ExtractElement that extracts the first element from the vector, and we
3013 // stop searching the def-use chain here.
3015 // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3016 // from 1-3 to the stack to continue the DFS. The given instruction is not
3017 // a reduction operation if we meet any other instructions other than those
3020 SmallVector
<const User
*, 16> UsersToVisit
{Inst
};
3021 SmallPtrSet
<const User
*, 16> Visited
;
3022 bool ReduxExtracted
= false;
3024 while (!UsersToVisit
.empty()) {
3025 auto User
= UsersToVisit
.back();
3026 UsersToVisit
.pop_back();
3027 if (!Visited
.insert(User
).second
)
3030 for (const auto &U
: User
->users()) {
3031 auto Inst
= dyn_cast
<Instruction
>(U
);
3035 if (Inst
->getOpcode() == OpCode
|| isa
<PHINode
>(U
)) {
3036 if (const FPMathOperator
*FPOp
= dyn_cast
<const FPMathOperator
>(Inst
))
3037 if (!isa
<PHINode
>(FPOp
) && !FPOp
->getFastMathFlags().isFast())
3039 UsersToVisit
.push_back(U
);
3040 } else if (const ShuffleVectorInst
*ShufInst
=
3041 dyn_cast
<ShuffleVectorInst
>(U
)) {
3042 // Detect the following pattern: A ShuffleVector instruction together
3043 // with a reduction that do partial reduction on the first and second
3044 // ElemNumToReduce / 2 elements, and store the result in
3045 // ElemNumToReduce / 2 elements in another vector.
3047 unsigned ResultElements
= ShufInst
->getType()->getVectorNumElements();
3048 if (ResultElements
< ElemNum
)
3051 if (ElemNumToReduce
== 1)
3053 if (!isa
<UndefValue
>(U
->getOperand(1)))
3055 for (unsigned i
= 0; i
< ElemNumToReduce
/ 2; ++i
)
3056 if (ShufInst
->getMaskValue(i
) != int(i
+ ElemNumToReduce
/ 2))
3058 for (unsigned i
= ElemNumToReduce
/ 2; i
< ElemNum
; ++i
)
3059 if (ShufInst
->getMaskValue(i
) != -1)
3062 // There is only one user of this ShuffleVector instruction, which
3063 // must be a reduction operation.
3064 if (!U
->hasOneUse())
3067 auto U2
= dyn_cast
<Instruction
>(*U
->user_begin());
3068 if (!U2
|| U2
->getOpcode() != OpCode
)
3071 // Check operands of the reduction operation.
3072 if ((U2
->getOperand(0) == U
->getOperand(0) && U2
->getOperand(1) == U
) ||
3073 (U2
->getOperand(1) == U
->getOperand(0) && U2
->getOperand(0) == U
)) {
3074 UsersToVisit
.push_back(U2
);
3075 ElemNumToReduce
/= 2;
3078 } else if (isa
<ExtractElementInst
>(U
)) {
3079 // At this moment we should have reduced all elements in the vector.
3080 if (ElemNumToReduce
!= 1)
3083 const ConstantInt
*Val
= dyn_cast
<ConstantInt
>(U
->getOperand(1));
3084 if (!Val
|| !Val
->isZero())
3087 ReduxExtracted
= true;
3092 return ReduxExtracted
;
3095 void SelectionDAGBuilder::visitUnary(const User
&I
, unsigned Opcode
) {
3098 SDValue Op
= getValue(I
.getOperand(0));
3099 SDValue UnNodeValue
= DAG
.getNode(Opcode
, getCurSDLoc(), Op
.getValueType(),
3101 setValue(&I
, UnNodeValue
);
3104 void SelectionDAGBuilder::visitBinary(const User
&I
, unsigned Opcode
) {
3106 if (auto *OFBinOp
= dyn_cast
<OverflowingBinaryOperator
>(&I
)) {
3107 Flags
.setNoSignedWrap(OFBinOp
->hasNoSignedWrap());
3108 Flags
.setNoUnsignedWrap(OFBinOp
->hasNoUnsignedWrap());
3110 if (auto *ExactOp
= dyn_cast
<PossiblyExactOperator
>(&I
)) {
3111 Flags
.setExact(ExactOp
->isExact());
3113 if (isVectorReductionOp(&I
)) {
3114 Flags
.setVectorReduction(true);
3115 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I
<< "\n");
3118 SDValue Op1
= getValue(I
.getOperand(0));
3119 SDValue Op2
= getValue(I
.getOperand(1));
3120 SDValue BinNodeValue
= DAG
.getNode(Opcode
, getCurSDLoc(), Op1
.getValueType(),
3122 setValue(&I
, BinNodeValue
);
3125 void SelectionDAGBuilder::visitShift(const User
&I
, unsigned Opcode
) {
3126 SDValue Op1
= getValue(I
.getOperand(0));
3127 SDValue Op2
= getValue(I
.getOperand(1));
3129 EVT ShiftTy
= DAG
.getTargetLoweringInfo().getShiftAmountTy(
3130 Op1
.getValueType(), DAG
.getDataLayout());
3132 // Coerce the shift amount to the right type if we can.
3133 if (!I
.getType()->isVectorTy() && Op2
.getValueType() != ShiftTy
) {
3134 unsigned ShiftSize
= ShiftTy
.getSizeInBits();
3135 unsigned Op2Size
= Op2
.getValueSizeInBits();
3136 SDLoc DL
= getCurSDLoc();
3138 // If the operand is smaller than the shift count type, promote it.
3139 if (ShiftSize
> Op2Size
)
3140 Op2
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, ShiftTy
, Op2
);
3142 // If the operand is larger than the shift count type but the shift
3143 // count type has enough bits to represent any shift value, truncate
3144 // it now. This is a common case and it exposes the truncate to
3145 // optimization early.
3146 else if (ShiftSize
>= Log2_32_Ceil(Op2
.getValueSizeInBits()))
3147 Op2
= DAG
.getNode(ISD::TRUNCATE
, DL
, ShiftTy
, Op2
);
3148 // Otherwise we'll need to temporarily settle for some other convenient
3149 // type. Type legalization will make adjustments once the shiftee is split.
3151 Op2
= DAG
.getZExtOrTrunc(Op2
, DL
, MVT::i32
);
3158 if (Opcode
== ISD::SRL
|| Opcode
== ISD::SRA
|| Opcode
== ISD::SHL
) {
3160 if (const OverflowingBinaryOperator
*OFBinOp
=
3161 dyn_cast
<const OverflowingBinaryOperator
>(&I
)) {
3162 nuw
= OFBinOp
->hasNoUnsignedWrap();
3163 nsw
= OFBinOp
->hasNoSignedWrap();
3165 if (const PossiblyExactOperator
*ExactOp
=
3166 dyn_cast
<const PossiblyExactOperator
>(&I
))
3167 exact
= ExactOp
->isExact();
3170 Flags
.setExact(exact
);
3171 Flags
.setNoSignedWrap(nsw
);
3172 Flags
.setNoUnsignedWrap(nuw
);
3173 SDValue Res
= DAG
.getNode(Opcode
, getCurSDLoc(), Op1
.getValueType(), Op1
, Op2
,
3178 void SelectionDAGBuilder::visitSDiv(const User
&I
) {
3179 SDValue Op1
= getValue(I
.getOperand(0));
3180 SDValue Op2
= getValue(I
.getOperand(1));
3183 Flags
.setExact(isa
<PossiblyExactOperator
>(&I
) &&
3184 cast
<PossiblyExactOperator
>(&I
)->isExact());
3185 setValue(&I
, DAG
.getNode(ISD::SDIV
, getCurSDLoc(), Op1
.getValueType(), Op1
,
3189 void SelectionDAGBuilder::visitICmp(const User
&I
) {
3190 ICmpInst::Predicate predicate
= ICmpInst::BAD_ICMP_PREDICATE
;
3191 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(&I
))
3192 predicate
= IC
->getPredicate();
3193 else if (const ConstantExpr
*IC
= dyn_cast
<ConstantExpr
>(&I
))
3194 predicate
= ICmpInst::Predicate(IC
->getPredicate());
3195 SDValue Op1
= getValue(I
.getOperand(0));
3196 SDValue Op2
= getValue(I
.getOperand(1));
3197 ISD::CondCode Opcode
= getICmpCondCode(predicate
);
3199 auto &TLI
= DAG
.getTargetLoweringInfo();
3201 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getOperand(0)->getType());
3203 // If a pointer's DAG type is larger than its memory type then the DAG values
3204 // are zero-extended. This breaks signed comparisons so truncate back to the
3205 // underlying type before doing the compare.
3206 if (Op1
.getValueType() != MemVT
) {
3207 Op1
= DAG
.getPtrExtOrTrunc(Op1
, getCurSDLoc(), MemVT
);
3208 Op2
= DAG
.getPtrExtOrTrunc(Op2
, getCurSDLoc(), MemVT
);
3211 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3213 setValue(&I
, DAG
.getSetCC(getCurSDLoc(), DestVT
, Op1
, Op2
, Opcode
));
3216 void SelectionDAGBuilder::visitFCmp(const User
&I
) {
3217 FCmpInst::Predicate predicate
= FCmpInst::BAD_FCMP_PREDICATE
;
3218 if (const FCmpInst
*FC
= dyn_cast
<FCmpInst
>(&I
))
3219 predicate
= FC
->getPredicate();
3220 else if (const ConstantExpr
*FC
= dyn_cast
<ConstantExpr
>(&I
))
3221 predicate
= FCmpInst::Predicate(FC
->getPredicate());
3222 SDValue Op1
= getValue(I
.getOperand(0));
3223 SDValue Op2
= getValue(I
.getOperand(1));
3225 ISD::CondCode Condition
= getFCmpCondCode(predicate
);
3226 auto *FPMO
= dyn_cast
<FPMathOperator
>(&I
);
3227 if ((FPMO
&& FPMO
->hasNoNaNs()) || TM
.Options
.NoNaNsFPMath
)
3228 Condition
= getFCmpCodeWithoutNaN(Condition
);
3230 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3232 setValue(&I
, DAG
.getSetCC(getCurSDLoc(), DestVT
, Op1
, Op2
, Condition
));
3235 // Check if the condition of the select has one use or two users that are both
3236 // selects with the same condition.
3237 static bool hasOnlySelectUsers(const Value
*Cond
) {
3238 return llvm::all_of(Cond
->users(), [](const Value
*V
) {
3239 return isa
<SelectInst
>(V
);
3243 void SelectionDAGBuilder::visitSelect(const User
&I
) {
3244 SmallVector
<EVT
, 4> ValueVTs
;
3245 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(), I
.getType(),
3247 unsigned NumValues
= ValueVTs
.size();
3248 if (NumValues
== 0) return;
3250 SmallVector
<SDValue
, 4> Values(NumValues
);
3251 SDValue Cond
= getValue(I
.getOperand(0));
3252 SDValue LHSVal
= getValue(I
.getOperand(1));
3253 SDValue RHSVal
= getValue(I
.getOperand(2));
3254 auto BaseOps
= {Cond
};
3255 ISD::NodeType OpCode
= Cond
.getValueType().isVector() ?
3256 ISD::VSELECT
: ISD::SELECT
;
3258 bool IsUnaryAbs
= false;
3260 // Min/max matching is only viable if all output VTs are the same.
3261 if (is_splat(ValueVTs
)) {
3262 EVT VT
= ValueVTs
[0];
3263 LLVMContext
&Ctx
= *DAG
.getContext();
3264 auto &TLI
= DAG
.getTargetLoweringInfo();
3266 // We care about the legality of the operation after it has been type
3268 while (TLI
.getTypeAction(Ctx
, VT
) != TargetLoweringBase::TypeLegal
&&
3269 VT
!= TLI
.getTypeToTransformTo(Ctx
, VT
))
3270 VT
= TLI
.getTypeToTransformTo(Ctx
, VT
);
3272 // If the vselect is legal, assume we want to leave this as a vector setcc +
3273 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3274 // min/max is legal on the scalar type.
3275 bool UseScalarMinMax
= VT
.isVector() &&
3276 !TLI
.isOperationLegalOrCustom(ISD::VSELECT
, VT
);
3279 auto SPR
= matchSelectPattern(const_cast<User
*>(&I
), LHS
, RHS
);
3280 ISD::NodeType Opc
= ISD::DELETED_NODE
;
3281 switch (SPR
.Flavor
) {
3282 case SPF_UMAX
: Opc
= ISD::UMAX
; break;
3283 case SPF_UMIN
: Opc
= ISD::UMIN
; break;
3284 case SPF_SMAX
: Opc
= ISD::SMAX
; break;
3285 case SPF_SMIN
: Opc
= ISD::SMIN
; break;
3287 switch (SPR
.NaNBehavior
) {
3288 case SPNB_NA
: llvm_unreachable("No NaN behavior for FP op?");
3289 case SPNB_RETURNS_NAN
: Opc
= ISD::FMINIMUM
; break;
3290 case SPNB_RETURNS_OTHER
: Opc
= ISD::FMINNUM
; break;
3291 case SPNB_RETURNS_ANY
: {
3292 if (TLI
.isOperationLegalOrCustom(ISD::FMINNUM
, VT
))
3294 else if (TLI
.isOperationLegalOrCustom(ISD::FMINIMUM
, VT
))
3295 Opc
= ISD::FMINIMUM
;
3296 else if (UseScalarMinMax
)
3297 Opc
= TLI
.isOperationLegalOrCustom(ISD::FMINNUM
, VT
.getScalarType()) ?
3298 ISD::FMINNUM
: ISD::FMINIMUM
;
3304 switch (SPR
.NaNBehavior
) {
3305 case SPNB_NA
: llvm_unreachable("No NaN behavior for FP op?");
3306 case SPNB_RETURNS_NAN
: Opc
= ISD::FMAXIMUM
; break;
3307 case SPNB_RETURNS_OTHER
: Opc
= ISD::FMAXNUM
; break;
3308 case SPNB_RETURNS_ANY
:
3310 if (TLI
.isOperationLegalOrCustom(ISD::FMAXNUM
, VT
))
3312 else if (TLI
.isOperationLegalOrCustom(ISD::FMAXIMUM
, VT
))
3313 Opc
= ISD::FMAXIMUM
;
3314 else if (UseScalarMinMax
)
3315 Opc
= TLI
.isOperationLegalOrCustom(ISD::FMAXNUM
, VT
.getScalarType()) ?
3316 ISD::FMAXNUM
: ISD::FMAXIMUM
;
3325 // TODO: we need to produce sub(0, abs(X)).
3329 if (!IsUnaryAbs
&& Opc
!= ISD::DELETED_NODE
&&
3330 (TLI
.isOperationLegalOrCustom(Opc
, VT
) ||
3332 TLI
.isOperationLegalOrCustom(Opc
, VT
.getScalarType()))) &&
3333 // If the underlying comparison instruction is used by any other
3334 // instruction, the consumed instructions won't be destroyed, so it is
3335 // not profitable to convert to a min/max.
3336 hasOnlySelectUsers(cast
<SelectInst
>(I
).getCondition())) {
3338 LHSVal
= getValue(LHS
);
3339 RHSVal
= getValue(RHS
);
3345 LHSVal
= getValue(LHS
);
3351 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
3353 DAG
.getNode(OpCode
, getCurSDLoc(),
3354 LHSVal
.getNode()->getValueType(LHSVal
.getResNo() + i
),
3355 SDValue(LHSVal
.getNode(), LHSVal
.getResNo() + i
));
3358 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
3359 SmallVector
<SDValue
, 3> Ops(BaseOps
.begin(), BaseOps
.end());
3360 Ops
.push_back(SDValue(LHSVal
.getNode(), LHSVal
.getResNo() + i
));
3361 Ops
.push_back(SDValue(RHSVal
.getNode(), RHSVal
.getResNo() + i
));
3362 Values
[i
] = DAG
.getNode(
3363 OpCode
, getCurSDLoc(),
3364 LHSVal
.getNode()->getValueType(LHSVal
.getResNo() + i
), Ops
);
3368 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3369 DAG
.getVTList(ValueVTs
), Values
));
3372 void SelectionDAGBuilder::visitTrunc(const User
&I
) {
3373 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3374 SDValue N
= getValue(I
.getOperand(0));
3375 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3377 setValue(&I
, DAG
.getNode(ISD::TRUNCATE
, getCurSDLoc(), DestVT
, N
));
3380 void SelectionDAGBuilder::visitZExt(const User
&I
) {
3381 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3382 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3383 SDValue N
= getValue(I
.getOperand(0));
3384 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3386 setValue(&I
, DAG
.getNode(ISD::ZERO_EXTEND
, getCurSDLoc(), DestVT
, N
));
3389 void SelectionDAGBuilder::visitSExt(const User
&I
) {
3390 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3391 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3392 SDValue N
= getValue(I
.getOperand(0));
3393 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3395 setValue(&I
, DAG
.getNode(ISD::SIGN_EXTEND
, getCurSDLoc(), DestVT
, N
));
3398 void SelectionDAGBuilder::visitFPTrunc(const User
&I
) {
3399 // FPTrunc is never a no-op cast, no need to check
3400 SDValue N
= getValue(I
.getOperand(0));
3401 SDLoc dl
= getCurSDLoc();
3402 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3403 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3404 setValue(&I
, DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, N
,
3405 DAG
.getTargetConstant(
3406 0, dl
, TLI
.getPointerTy(DAG
.getDataLayout()))));
3409 void SelectionDAGBuilder::visitFPExt(const User
&I
) {
3410 // FPExt is never a no-op cast, no need to check
3411 SDValue N
= getValue(I
.getOperand(0));
3412 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3414 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, getCurSDLoc(), DestVT
, N
));
3417 void SelectionDAGBuilder::visitFPToUI(const User
&I
) {
3418 // FPToUI is never a no-op cast, no need to check
3419 SDValue N
= getValue(I
.getOperand(0));
3420 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3422 setValue(&I
, DAG
.getNode(ISD::FP_TO_UINT
, getCurSDLoc(), DestVT
, N
));
3425 void SelectionDAGBuilder::visitFPToSI(const User
&I
) {
3426 // FPToSI is never a no-op cast, no need to check
3427 SDValue N
= getValue(I
.getOperand(0));
3428 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3430 setValue(&I
, DAG
.getNode(ISD::FP_TO_SINT
, getCurSDLoc(), DestVT
, N
));
3433 void SelectionDAGBuilder::visitUIToFP(const User
&I
) {
3434 // UIToFP is never a no-op cast, no need to check
3435 SDValue N
= getValue(I
.getOperand(0));
3436 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3438 setValue(&I
, DAG
.getNode(ISD::UINT_TO_FP
, getCurSDLoc(), DestVT
, N
));
3441 void SelectionDAGBuilder::visitSIToFP(const User
&I
) {
3442 // SIToFP is never a no-op cast, no need to check
3443 SDValue N
= getValue(I
.getOperand(0));
3444 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3446 setValue(&I
, DAG
.getNode(ISD::SINT_TO_FP
, getCurSDLoc(), DestVT
, N
));
3449 void SelectionDAGBuilder::visitPtrToInt(const User
&I
) {
3450 // What to do depends on the size of the integer and the size of the pointer.
3451 // We can either truncate, zero extend, or no-op, accordingly.
3452 SDValue N
= getValue(I
.getOperand(0));
3453 auto &TLI
= DAG
.getTargetLoweringInfo();
3454 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3457 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getOperand(0)->getType());
3458 N
= DAG
.getPtrExtOrTrunc(N
, getCurSDLoc(), PtrMemVT
);
3459 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), DestVT
);
3463 void SelectionDAGBuilder::visitIntToPtr(const User
&I
) {
3464 // What to do depends on the size of the integer and the size of the pointer.
3465 // We can either truncate, zero extend, or no-op, accordingly.
3466 SDValue N
= getValue(I
.getOperand(0));
3467 auto &TLI
= DAG
.getTargetLoweringInfo();
3468 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3469 EVT PtrMemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType());
3470 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), PtrMemVT
);
3471 N
= DAG
.getPtrExtOrTrunc(N
, getCurSDLoc(), DestVT
);
3475 void SelectionDAGBuilder::visitBitCast(const User
&I
) {
3476 SDValue N
= getValue(I
.getOperand(0));
3477 SDLoc dl
= getCurSDLoc();
3478 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3481 // BitCast assures us that source and destination are the same size so this is
3482 // either a BITCAST or a no-op.
3483 if (DestVT
!= N
.getValueType())
3484 setValue(&I
, DAG
.getNode(ISD::BITCAST
, dl
,
3485 DestVT
, N
)); // convert types.
3486 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3487 // might fold any kind of constant expression to an integer constant and that
3488 // is not what we are looking for. Only recognize a bitcast of a genuine
3489 // constant integer as an opaque constant.
3490 else if(ConstantInt
*C
= dyn_cast
<ConstantInt
>(I
.getOperand(0)))
3491 setValue(&I
, DAG
.getConstant(C
->getValue(), dl
, DestVT
, /*isTarget=*/false,
3494 setValue(&I
, N
); // noop cast.
3497 void SelectionDAGBuilder::visitAddrSpaceCast(const User
&I
) {
3498 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3499 const Value
*SV
= I
.getOperand(0);
3500 SDValue N
= getValue(SV
);
3501 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3503 unsigned SrcAS
= SV
->getType()->getPointerAddressSpace();
3504 unsigned DestAS
= I
.getType()->getPointerAddressSpace();
3506 if (!TLI
.isNoopAddrSpaceCast(SrcAS
, DestAS
))
3507 N
= DAG
.getAddrSpaceCast(getCurSDLoc(), DestVT
, N
, SrcAS
, DestAS
);
3512 void SelectionDAGBuilder::visitInsertElement(const User
&I
) {
3513 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3514 SDValue InVec
= getValue(I
.getOperand(0));
3515 SDValue InVal
= getValue(I
.getOperand(1));
3516 SDValue InIdx
= DAG
.getSExtOrTrunc(getValue(I
.getOperand(2)), getCurSDLoc(),
3517 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
3518 setValue(&I
, DAG
.getNode(ISD::INSERT_VECTOR_ELT
, getCurSDLoc(),
3519 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
3520 InVec
, InVal
, InIdx
));
3523 void SelectionDAGBuilder::visitExtractElement(const User
&I
) {
3524 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3525 SDValue InVec
= getValue(I
.getOperand(0));
3526 SDValue InIdx
= DAG
.getSExtOrTrunc(getValue(I
.getOperand(1)), getCurSDLoc(),
3527 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
3528 setValue(&I
, DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurSDLoc(),
3529 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
3533 void SelectionDAGBuilder::visitShuffleVector(const User
&I
) {
3534 SDValue Src1
= getValue(I
.getOperand(0));
3535 SDValue Src2
= getValue(I
.getOperand(1));
3536 SDLoc DL
= getCurSDLoc();
3538 SmallVector
<int, 8> Mask
;
3539 ShuffleVectorInst::getShuffleMask(cast
<Constant
>(I
.getOperand(2)), Mask
);
3540 unsigned MaskNumElts
= Mask
.size();
3542 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3543 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3544 EVT SrcVT
= Src1
.getValueType();
3545 unsigned SrcNumElts
= SrcVT
.getVectorNumElements();
3547 if (SrcNumElts
== MaskNumElts
) {
3548 setValue(&I
, DAG
.getVectorShuffle(VT
, DL
, Src1
, Src2
, Mask
));
3552 // Normalize the shuffle vector since mask and vector length don't match.
3553 if (SrcNumElts
< MaskNumElts
) {
3554 // Mask is longer than the source vectors. We can use concatenate vector to
3555 // make the mask and vectors lengths match.
3557 if (MaskNumElts
% SrcNumElts
== 0) {
3558 // Mask length is a multiple of the source vector length.
3559 // Check if the shuffle is some kind of concatenation of the input
3561 unsigned NumConcat
= MaskNumElts
/ SrcNumElts
;
3562 bool IsConcat
= true;
3563 SmallVector
<int, 8> ConcatSrcs(NumConcat
, -1);
3564 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
3568 // Ensure the indices in each SrcVT sized piece are sequential and that
3569 // the same source is used for the whole piece.
3570 if ((Idx
% SrcNumElts
!= (i
% SrcNumElts
)) ||
3571 (ConcatSrcs
[i
/ SrcNumElts
] >= 0 &&
3572 ConcatSrcs
[i
/ SrcNumElts
] != (int)(Idx
/ SrcNumElts
))) {
3576 // Remember which source this index came from.
3577 ConcatSrcs
[i
/ SrcNumElts
] = Idx
/ SrcNumElts
;
3580 // The shuffle is concatenating multiple vectors together. Just emit
3581 // a CONCAT_VECTORS operation.
3583 SmallVector
<SDValue
, 8> ConcatOps
;
3584 for (auto Src
: ConcatSrcs
) {
3586 ConcatOps
.push_back(DAG
.getUNDEF(SrcVT
));
3588 ConcatOps
.push_back(Src1
);
3590 ConcatOps
.push_back(Src2
);
3592 setValue(&I
, DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
));
3597 unsigned PaddedMaskNumElts
= alignTo(MaskNumElts
, SrcNumElts
);
3598 unsigned NumConcat
= PaddedMaskNumElts
/ SrcNumElts
;
3599 EVT PaddedVT
= EVT::getVectorVT(*DAG
.getContext(), VT
.getScalarType(),
3602 // Pad both vectors with undefs to make them the same length as the mask.
3603 SDValue UndefVal
= DAG
.getUNDEF(SrcVT
);
3605 SmallVector
<SDValue
, 8> MOps1(NumConcat
, UndefVal
);
3606 SmallVector
<SDValue
, 8> MOps2(NumConcat
, UndefVal
);
3610 Src1
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, PaddedVT
, MOps1
);
3611 Src2
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, PaddedVT
, MOps2
);
3613 // Readjust mask for new input vector length.
3614 SmallVector
<int, 8> MappedOps(PaddedMaskNumElts
, -1);
3615 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
3617 if (Idx
>= (int)SrcNumElts
)
3618 Idx
-= SrcNumElts
- PaddedMaskNumElts
;
3622 SDValue Result
= DAG
.getVectorShuffle(PaddedVT
, DL
, Src1
, Src2
, MappedOps
);
3624 // If the concatenated vector was padded, extract a subvector with the
3625 // correct number of elements.
3626 if (MaskNumElts
!= PaddedMaskNumElts
)
3627 Result
= DAG
.getNode(
3628 ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Result
,
3629 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
3631 setValue(&I
, Result
);
3635 if (SrcNumElts
> MaskNumElts
) {
3636 // Analyze the access pattern of the vector to see if we can extract
3637 // two subvectors and do the shuffle.
3638 int StartIdx
[2] = { -1, -1 }; // StartIdx to extract from
3639 bool CanExtract
= true;
3640 for (int Idx
: Mask
) {
3645 if (Idx
>= (int)SrcNumElts
) {
3650 // If all the indices come from the same MaskNumElts sized portion of
3651 // the sources we can use extract. Also make sure the extract wouldn't
3652 // extract past the end of the source.
3653 int NewStartIdx
= alignDown(Idx
, MaskNumElts
);
3654 if (NewStartIdx
+ MaskNumElts
> SrcNumElts
||
3655 (StartIdx
[Input
] >= 0 && StartIdx
[Input
] != NewStartIdx
))
3657 // Make sure we always update StartIdx as we use it to track if all
3658 // elements are undef.
3659 StartIdx
[Input
] = NewStartIdx
;
3662 if (StartIdx
[0] < 0 && StartIdx
[1] < 0) {
3663 setValue(&I
, DAG
.getUNDEF(VT
)); // Vectors are not used.
3667 // Extract appropriate subvector and generate a vector shuffle
3668 for (unsigned Input
= 0; Input
< 2; ++Input
) {
3669 SDValue
&Src
= Input
== 0 ? Src1
: Src2
;
3670 if (StartIdx
[Input
] < 0)
3671 Src
= DAG
.getUNDEF(VT
);
3674 ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Src
,
3675 DAG
.getConstant(StartIdx
[Input
], DL
,
3676 TLI
.getVectorIdxTy(DAG
.getDataLayout())));
3680 // Calculate new mask.
3681 SmallVector
<int, 8> MappedOps(Mask
.begin(), Mask
.end());
3682 for (int &Idx
: MappedOps
) {
3683 if (Idx
>= (int)SrcNumElts
)
3684 Idx
-= SrcNumElts
+ StartIdx
[1] - MaskNumElts
;
3689 setValue(&I
, DAG
.getVectorShuffle(VT
, DL
, Src1
, Src2
, MappedOps
));
3694 // We can't use either concat vectors or extract subvectors so fall back to
3695 // replacing the shuffle with extract and build vector.
3696 // to insert and build vector.
3697 EVT EltVT
= VT
.getVectorElementType();
3698 EVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
3699 SmallVector
<SDValue
,8> Ops
;
3700 for (int Idx
: Mask
) {
3704 Res
= DAG
.getUNDEF(EltVT
);
3706 SDValue
&Src
= Idx
< (int)SrcNumElts
? Src1
: Src2
;
3707 if (Idx
>= (int)SrcNumElts
) Idx
-= SrcNumElts
;
3709 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
3710 EltVT
, Src
, DAG
.getConstant(Idx
, DL
, IdxVT
));
3716 setValue(&I
, DAG
.getBuildVector(VT
, DL
, Ops
));
3719 void SelectionDAGBuilder::visitInsertValue(const User
&I
) {
3720 ArrayRef
<unsigned> Indices
;
3721 if (const InsertValueInst
*IV
= dyn_cast
<InsertValueInst
>(&I
))
3722 Indices
= IV
->getIndices();
3724 Indices
= cast
<ConstantExpr
>(&I
)->getIndices();
3726 const Value
*Op0
= I
.getOperand(0);
3727 const Value
*Op1
= I
.getOperand(1);
3728 Type
*AggTy
= I
.getType();
3729 Type
*ValTy
= Op1
->getType();
3730 bool IntoUndef
= isa
<UndefValue
>(Op0
);
3731 bool FromUndef
= isa
<UndefValue
>(Op1
);
3733 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, Indices
);
3735 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3736 SmallVector
<EVT
, 4> AggValueVTs
;
3737 ComputeValueVTs(TLI
, DAG
.getDataLayout(), AggTy
, AggValueVTs
);
3738 SmallVector
<EVT
, 4> ValValueVTs
;
3739 ComputeValueVTs(TLI
, DAG
.getDataLayout(), ValTy
, ValValueVTs
);
3741 unsigned NumAggValues
= AggValueVTs
.size();
3742 unsigned NumValValues
= ValValueVTs
.size();
3743 SmallVector
<SDValue
, 4> Values(NumAggValues
);
3745 // Ignore an insertvalue that produces an empty object
3746 if (!NumAggValues
) {
3747 setValue(&I
, DAG
.getUNDEF(MVT(MVT::Other
)));
3751 SDValue Agg
= getValue(Op0
);
3753 // Copy the beginning value(s) from the original aggregate.
3754 for (; i
!= LinearIndex
; ++i
)
3755 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3756 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3757 // Copy values from the inserted value(s).
3759 SDValue Val
= getValue(Op1
);
3760 for (; i
!= LinearIndex
+ NumValValues
; ++i
)
3761 Values
[i
] = FromUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3762 SDValue(Val
.getNode(), Val
.getResNo() + i
- LinearIndex
);
3764 // Copy remaining value(s) from the original aggregate.
3765 for (; i
!= NumAggValues
; ++i
)
3766 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3767 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3769 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3770 DAG
.getVTList(AggValueVTs
), Values
));
3773 void SelectionDAGBuilder::visitExtractValue(const User
&I
) {
3774 ArrayRef
<unsigned> Indices
;
3775 if (const ExtractValueInst
*EV
= dyn_cast
<ExtractValueInst
>(&I
))
3776 Indices
= EV
->getIndices();
3778 Indices
= cast
<ConstantExpr
>(&I
)->getIndices();
3780 const Value
*Op0
= I
.getOperand(0);
3781 Type
*AggTy
= Op0
->getType();
3782 Type
*ValTy
= I
.getType();
3783 bool OutOfUndef
= isa
<UndefValue
>(Op0
);
3785 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, Indices
);
3787 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3788 SmallVector
<EVT
, 4> ValValueVTs
;
3789 ComputeValueVTs(TLI
, DAG
.getDataLayout(), ValTy
, ValValueVTs
);
3791 unsigned NumValValues
= ValValueVTs
.size();
3793 // Ignore a extractvalue that produces an empty object
3794 if (!NumValValues
) {
3795 setValue(&I
, DAG
.getUNDEF(MVT(MVT::Other
)));
3799 SmallVector
<SDValue
, 4> Values(NumValValues
);
3801 SDValue Agg
= getValue(Op0
);
3802 // Copy out the selected value(s).
3803 for (unsigned i
= LinearIndex
; i
!= LinearIndex
+ NumValValues
; ++i
)
3804 Values
[i
- LinearIndex
] =
3806 DAG
.getUNDEF(Agg
.getNode()->getValueType(Agg
.getResNo() + i
)) :
3807 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3809 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3810 DAG
.getVTList(ValValueVTs
), Values
));
3813 void SelectionDAGBuilder::visitGetElementPtr(const User
&I
) {
3814 Value
*Op0
= I
.getOperand(0);
3815 // Note that the pointer operand may be a vector of pointers. Take the scalar
3816 // element which holds a pointer.
3817 unsigned AS
= Op0
->getType()->getScalarType()->getPointerAddressSpace();
3818 SDValue N
= getValue(Op0
);
3819 SDLoc dl
= getCurSDLoc();
3820 auto &TLI
= DAG
.getTargetLoweringInfo();
3821 MVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout(), AS
);
3822 MVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout(), AS
);
3824 // Normalize Vector GEP - all scalar operands should be converted to the
3826 unsigned VectorWidth
= I
.getType()->isVectorTy() ?
3827 cast
<VectorType
>(I
.getType())->getVectorNumElements() : 0;
3829 if (VectorWidth
&& !N
.getValueType().isVector()) {
3830 LLVMContext
&Context
= *DAG
.getContext();
3831 EVT VT
= EVT::getVectorVT(Context
, N
.getValueType(), VectorWidth
);
3832 N
= DAG
.getSplatBuildVector(VT
, dl
, N
);
3835 for (gep_type_iterator GTI
= gep_type_begin(&I
), E
= gep_type_end(&I
);
3837 const Value
*Idx
= GTI
.getOperand();
3838 if (StructType
*StTy
= GTI
.getStructTypeOrNull()) {
3839 unsigned Field
= cast
<Constant
>(Idx
)->getUniqueInteger().getZExtValue();
3842 uint64_t Offset
= DL
->getStructLayout(StTy
)->getElementOffset(Field
);
3844 // In an inbounds GEP with an offset that is nonnegative even when
3845 // interpreted as signed, assume there is no unsigned overflow.
3847 if (int64_t(Offset
) >= 0 && cast
<GEPOperator
>(I
).isInBounds())
3848 Flags
.setNoUnsignedWrap(true);
3850 N
= DAG
.getNode(ISD::ADD
, dl
, N
.getValueType(), N
,
3851 DAG
.getConstant(Offset
, dl
, N
.getValueType()), Flags
);
3854 unsigned IdxSize
= DAG
.getDataLayout().getIndexSizeInBits(AS
);
3855 MVT IdxTy
= MVT::getIntegerVT(IdxSize
);
3856 APInt
ElementSize(IdxSize
, DL
->getTypeAllocSize(GTI
.getIndexedType()));
3858 // If this is a scalar constant or a splat vector of constants,
3859 // handle it quickly.
3860 const auto *CI
= dyn_cast
<ConstantInt
>(Idx
);
3861 if (!CI
&& isa
<ConstantDataVector
>(Idx
) &&
3862 cast
<ConstantDataVector
>(Idx
)->getSplatValue())
3863 CI
= cast
<ConstantInt
>(cast
<ConstantDataVector
>(Idx
)->getSplatValue());
3868 APInt Offs
= ElementSize
* CI
->getValue().sextOrTrunc(IdxSize
);
3869 LLVMContext
&Context
= *DAG
.getContext();
3870 SDValue OffsVal
= VectorWidth
?
3871 DAG
.getConstant(Offs
, dl
, EVT::getVectorVT(Context
, IdxTy
, VectorWidth
)) :
3872 DAG
.getConstant(Offs
, dl
, IdxTy
);
3874 // In an inbouds GEP with an offset that is nonnegative even when
3875 // interpreted as signed, assume there is no unsigned overflow.
3877 if (Offs
.isNonNegative() && cast
<GEPOperator
>(I
).isInBounds())
3878 Flags
.setNoUnsignedWrap(true);
3880 OffsVal
= DAG
.getSExtOrTrunc(OffsVal
, dl
, N
.getValueType());
3882 N
= DAG
.getNode(ISD::ADD
, dl
, N
.getValueType(), N
, OffsVal
, Flags
);
3886 // N = N + Idx * ElementSize;
3887 SDValue IdxN
= getValue(Idx
);
3889 if (!IdxN
.getValueType().isVector() && VectorWidth
) {
3890 EVT VT
= EVT::getVectorVT(*Context
, IdxN
.getValueType(), VectorWidth
);
3891 IdxN
= DAG
.getSplatBuildVector(VT
, dl
, IdxN
);
3894 // If the index is smaller or larger than intptr_t, truncate or extend
3896 IdxN
= DAG
.getSExtOrTrunc(IdxN
, dl
, N
.getValueType());
3898 // If this is a multiply by a power of two, turn it into a shl
3899 // immediately. This is a very common case.
3900 if (ElementSize
!= 1) {
3901 if (ElementSize
.isPowerOf2()) {
3902 unsigned Amt
= ElementSize
.logBase2();
3903 IdxN
= DAG
.getNode(ISD::SHL
, dl
,
3904 N
.getValueType(), IdxN
,
3905 DAG
.getConstant(Amt
, dl
, IdxN
.getValueType()));
3907 SDValue Scale
= DAG
.getConstant(ElementSize
.getZExtValue(), dl
,
3908 IdxN
.getValueType());
3909 IdxN
= DAG
.getNode(ISD::MUL
, dl
,
3910 N
.getValueType(), IdxN
, Scale
);
3914 N
= DAG
.getNode(ISD::ADD
, dl
,
3915 N
.getValueType(), N
, IdxN
);
3919 if (PtrMemTy
!= PtrTy
&& !cast
<GEPOperator
>(I
).isInBounds())
3920 N
= DAG
.getPtrExtendInReg(N
, dl
, PtrMemTy
);
3925 void SelectionDAGBuilder::visitAlloca(const AllocaInst
&I
) {
3926 // If this is a fixed sized alloca in the entry block of the function,
3927 // allocate it statically on the stack.
3928 if (FuncInfo
.StaticAllocaMap
.count(&I
))
3929 return; // getValue will auto-populate this.
3931 SDLoc dl
= getCurSDLoc();
3932 Type
*Ty
= I
.getAllocatedType();
3933 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3934 auto &DL
= DAG
.getDataLayout();
3935 uint64_t TySize
= DL
.getTypeAllocSize(Ty
);
3937 std::max((unsigned)DL
.getPrefTypeAlignment(Ty
), I
.getAlignment());
3939 SDValue AllocSize
= getValue(I
.getArraySize());
3941 EVT IntPtr
= TLI
.getPointerTy(DAG
.getDataLayout(), DL
.getAllocaAddrSpace());
3942 if (AllocSize
.getValueType() != IntPtr
)
3943 AllocSize
= DAG
.getZExtOrTrunc(AllocSize
, dl
, IntPtr
);
3945 AllocSize
= DAG
.getNode(ISD::MUL
, dl
, IntPtr
,
3947 DAG
.getConstant(TySize
, dl
, IntPtr
));
3949 // Handle alignment. If the requested alignment is less than or equal to
3950 // the stack alignment, ignore it. If the size is greater than or equal to
3951 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3952 unsigned StackAlign
=
3953 DAG
.getSubtarget().getFrameLowering()->getStackAlignment();
3954 if (Align
<= StackAlign
)
3957 // Round the size of the allocation up to the stack alignment size
3958 // by add SA-1 to the size. This doesn't overflow because we're computing
3959 // an address inside an alloca.
3961 Flags
.setNoUnsignedWrap(true);
3962 AllocSize
= DAG
.getNode(ISD::ADD
, dl
, AllocSize
.getValueType(), AllocSize
,
3963 DAG
.getConstant(StackAlign
- 1, dl
, IntPtr
), Flags
);
3965 // Mask out the low bits for alignment purposes.
3967 DAG
.getNode(ISD::AND
, dl
, AllocSize
.getValueType(), AllocSize
,
3968 DAG
.getConstant(~(uint64_t)(StackAlign
- 1), dl
, IntPtr
));
3970 SDValue Ops
[] = {getRoot(), AllocSize
, DAG
.getConstant(Align
, dl
, IntPtr
)};
3971 SDVTList VTs
= DAG
.getVTList(AllocSize
.getValueType(), MVT::Other
);
3972 SDValue DSA
= DAG
.getNode(ISD::DYNAMIC_STACKALLOC
, dl
, VTs
, Ops
);
3974 DAG
.setRoot(DSA
.getValue(1));
3976 assert(FuncInfo
.MF
->getFrameInfo().hasVarSizedObjects());
3979 void SelectionDAGBuilder::visitLoad(const LoadInst
&I
) {
3981 return visitAtomicLoad(I
);
3983 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3984 const Value
*SV
= I
.getOperand(0);
3985 if (TLI
.supportSwiftError()) {
3986 // Swifterror values can come from either a function parameter with
3987 // swifterror attribute or an alloca with swifterror attribute.
3988 if (const Argument
*Arg
= dyn_cast
<Argument
>(SV
)) {
3989 if (Arg
->hasSwiftErrorAttr())
3990 return visitLoadFromSwiftError(I
);
3993 if (const AllocaInst
*Alloca
= dyn_cast
<AllocaInst
>(SV
)) {
3994 if (Alloca
->isSwiftError())
3995 return visitLoadFromSwiftError(I
);
3999 SDValue Ptr
= getValue(SV
);
4001 Type
*Ty
= I
.getType();
4003 bool isVolatile
= I
.isVolatile();
4004 bool isNonTemporal
= I
.getMetadata(LLVMContext::MD_nontemporal
) != nullptr;
4005 bool isInvariant
= I
.getMetadata(LLVMContext::MD_invariant_load
) != nullptr;
4006 bool isDereferenceable
=
4007 isDereferenceablePointer(SV
, I
.getType(), DAG
.getDataLayout());
4008 unsigned Alignment
= I
.getAlignment();
4011 I
.getAAMetadata(AAInfo
);
4012 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4014 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
4015 SmallVector
<uint64_t, 4> Offsets
;
4016 ComputeValueVTs(TLI
, DAG
.getDataLayout(), Ty
, ValueVTs
, &MemVTs
, &Offsets
);
4017 unsigned NumValues
= ValueVTs
.size();
4022 bool ConstantMemory
= false;
4023 if (isVolatile
|| NumValues
> MaxParallelChains
)
4024 // Serialize volatile loads with other side effects.
4027 AA
->pointsToConstantMemory(MemoryLocation(
4029 LocationSize::precise(DAG
.getDataLayout().getTypeStoreSize(Ty
)),
4031 // Do not serialize (non-volatile) loads of constant memory with anything.
4032 Root
= DAG
.getEntryNode();
4033 ConstantMemory
= true;
4035 // Do not serialize non-volatile loads against each other.
4036 Root
= DAG
.getRoot();
4039 SDLoc dl
= getCurSDLoc();
4042 Root
= TLI
.prepareVolatileOrAtomicLoad(Root
, dl
, DAG
);
4044 // An aggregate load cannot wrap around the address space, so offsets to its
4045 // parts don't wrap either.
4047 Flags
.setNoUnsignedWrap(true);
4049 SmallVector
<SDValue
, 4> Values(NumValues
);
4050 SmallVector
<SDValue
, 4> Chains(std::min(MaxParallelChains
, NumValues
));
4051 EVT PtrVT
= Ptr
.getValueType();
4052 unsigned ChainI
= 0;
4053 for (unsigned i
= 0; i
!= NumValues
; ++i
, ++ChainI
) {
4054 // Serializing loads here may result in excessive register pressure, and
4055 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4056 // could recover a bit by hoisting nodes upward in the chain by recognizing
4057 // they are side-effect free or do not alias. The optimizer should really
4058 // avoid this case by converting large object/array copies to llvm.memcpy
4059 // (MaxParallelChains should always remain as failsafe).
4060 if (ChainI
== MaxParallelChains
) {
4061 assert(PendingLoads
.empty() && "PendingLoads must be serialized first");
4062 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4063 makeArrayRef(Chains
.data(), ChainI
));
4067 SDValue A
= DAG
.getNode(ISD::ADD
, dl
,
4069 DAG
.getConstant(Offsets
[i
], dl
, PtrVT
),
4071 auto MMOFlags
= MachineMemOperand::MONone
;
4073 MMOFlags
|= MachineMemOperand::MOVolatile
;
4075 MMOFlags
|= MachineMemOperand::MONonTemporal
;
4077 MMOFlags
|= MachineMemOperand::MOInvariant
;
4078 if (isDereferenceable
)
4079 MMOFlags
|= MachineMemOperand::MODereferenceable
;
4080 MMOFlags
|= TLI
.getMMOFlags(I
);
4082 SDValue L
= DAG
.getLoad(MemVTs
[i
], dl
, Root
, A
,
4083 MachinePointerInfo(SV
, Offsets
[i
]), Alignment
,
4084 MMOFlags
, AAInfo
, Ranges
);
4085 Chains
[ChainI
] = L
.getValue(1);
4087 if (MemVTs
[i
] != ValueVTs
[i
])
4088 L
= DAG
.getZExtOrTrunc(L
, dl
, ValueVTs
[i
]);
4093 if (!ConstantMemory
) {
4094 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4095 makeArrayRef(Chains
.data(), ChainI
));
4099 PendingLoads
.push_back(Chain
);
4102 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, dl
,
4103 DAG
.getVTList(ValueVTs
), Values
));
4106 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst
&I
) {
4107 assert(DAG
.getTargetLoweringInfo().supportSwiftError() &&
4108 "call visitStoreToSwiftError when backend supports swifterror");
4110 SmallVector
<EVT
, 4> ValueVTs
;
4111 SmallVector
<uint64_t, 4> Offsets
;
4112 const Value
*SrcV
= I
.getOperand(0);
4113 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(),
4114 SrcV
->getType(), ValueVTs
, &Offsets
);
4115 assert(ValueVTs
.size() == 1 && Offsets
[0] == 0 &&
4116 "expect a single EVT for swifterror");
4118 SDValue Src
= getValue(SrcV
);
4119 // Create a virtual register, then update the virtual register.
4121 SwiftError
.getOrCreateVRegDefAt(&I
, FuncInfo
.MBB
, I
.getPointerOperand());
4122 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4123 // Chain can be getRoot or getControlRoot.
4124 SDValue CopyNode
= DAG
.getCopyToReg(getRoot(), getCurSDLoc(), VReg
,
4125 SDValue(Src
.getNode(), Src
.getResNo()));
4126 DAG
.setRoot(CopyNode
);
4129 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst
&I
) {
4130 assert(DAG
.getTargetLoweringInfo().supportSwiftError() &&
4131 "call visitLoadFromSwiftError when backend supports swifterror");
4133 assert(!I
.isVolatile() &&
4134 I
.getMetadata(LLVMContext::MD_nontemporal
) == nullptr &&
4135 I
.getMetadata(LLVMContext::MD_invariant_load
) == nullptr &&
4136 "Support volatile, non temporal, invariant for load_from_swift_error");
4138 const Value
*SV
= I
.getOperand(0);
4139 Type
*Ty
= I
.getType();
4141 I
.getAAMetadata(AAInfo
);
4144 !AA
->pointsToConstantMemory(MemoryLocation(
4145 SV
, LocationSize::precise(DAG
.getDataLayout().getTypeStoreSize(Ty
)),
4147 "load_from_swift_error should not be constant memory");
4149 SmallVector
<EVT
, 4> ValueVTs
;
4150 SmallVector
<uint64_t, 4> Offsets
;
4151 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(), Ty
,
4152 ValueVTs
, &Offsets
);
4153 assert(ValueVTs
.size() == 1 && Offsets
[0] == 0 &&
4154 "expect a single EVT for swifterror");
4156 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4157 SDValue L
= DAG
.getCopyFromReg(
4158 getRoot(), getCurSDLoc(),
4159 SwiftError
.getOrCreateVRegUseAt(&I
, FuncInfo
.MBB
, SV
), ValueVTs
[0]);
4164 void SelectionDAGBuilder::visitStore(const StoreInst
&I
) {
4166 return visitAtomicStore(I
);
4168 const Value
*SrcV
= I
.getOperand(0);
4169 const Value
*PtrV
= I
.getOperand(1);
4171 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4172 if (TLI
.supportSwiftError()) {
4173 // Swifterror values can come from either a function parameter with
4174 // swifterror attribute or an alloca with swifterror attribute.
4175 if (const Argument
*Arg
= dyn_cast
<Argument
>(PtrV
)) {
4176 if (Arg
->hasSwiftErrorAttr())
4177 return visitStoreToSwiftError(I
);
4180 if (const AllocaInst
*Alloca
= dyn_cast
<AllocaInst
>(PtrV
)) {
4181 if (Alloca
->isSwiftError())
4182 return visitStoreToSwiftError(I
);
4186 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
4187 SmallVector
<uint64_t, 4> Offsets
;
4188 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(),
4189 SrcV
->getType(), ValueVTs
, &MemVTs
, &Offsets
);
4190 unsigned NumValues
= ValueVTs
.size();
4194 // Get the lowered operands. Note that we do this after
4195 // checking if NumResults is zero, because with zero results
4196 // the operands won't have values in the map.
4197 SDValue Src
= getValue(SrcV
);
4198 SDValue Ptr
= getValue(PtrV
);
4200 SDValue Root
= getRoot();
4201 SmallVector
<SDValue
, 4> Chains(std::min(MaxParallelChains
, NumValues
));
4202 SDLoc dl
= getCurSDLoc();
4203 EVT PtrVT
= Ptr
.getValueType();
4204 unsigned Alignment
= I
.getAlignment();
4206 I
.getAAMetadata(AAInfo
);
4208 auto MMOFlags
= MachineMemOperand::MONone
;
4210 MMOFlags
|= MachineMemOperand::MOVolatile
;
4211 if (I
.getMetadata(LLVMContext::MD_nontemporal
) != nullptr)
4212 MMOFlags
|= MachineMemOperand::MONonTemporal
;
4213 MMOFlags
|= TLI
.getMMOFlags(I
);
4215 // An aggregate load cannot wrap around the address space, so offsets to its
4216 // parts don't wrap either.
4218 Flags
.setNoUnsignedWrap(true);
4220 unsigned ChainI
= 0;
4221 for (unsigned i
= 0; i
!= NumValues
; ++i
, ++ChainI
) {
4222 // See visitLoad comments.
4223 if (ChainI
== MaxParallelChains
) {
4224 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4225 makeArrayRef(Chains
.data(), ChainI
));
4229 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Ptr
,
4230 DAG
.getConstant(Offsets
[i
], dl
, PtrVT
), Flags
);
4231 SDValue Val
= SDValue(Src
.getNode(), Src
.getResNo() + i
);
4232 if (MemVTs
[i
] != ValueVTs
[i
])
4233 Val
= DAG
.getPtrExtOrTrunc(Val
, dl
, MemVTs
[i
]);
4235 DAG
.getStore(Root
, dl
, Val
, Add
, MachinePointerInfo(PtrV
, Offsets
[i
]),
4236 Alignment
, MMOFlags
, AAInfo
);
4237 Chains
[ChainI
] = St
;
4240 SDValue StoreNode
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4241 makeArrayRef(Chains
.data(), ChainI
));
4242 DAG
.setRoot(StoreNode
);
4245 void SelectionDAGBuilder::visitMaskedStore(const CallInst
&I
,
4246 bool IsCompressing
) {
4247 SDLoc sdl
= getCurSDLoc();
4249 auto getMaskedStoreOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4250 unsigned& Alignment
) {
4251 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4252 Src0
= I
.getArgOperand(0);
4253 Ptr
= I
.getArgOperand(1);
4254 Alignment
= cast
<ConstantInt
>(I
.getArgOperand(2))->getZExtValue();
4255 Mask
= I
.getArgOperand(3);
4257 auto getCompressingStoreOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4258 unsigned& Alignment
) {
4259 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4260 Src0
= I
.getArgOperand(0);
4261 Ptr
= I
.getArgOperand(1);
4262 Mask
= I
.getArgOperand(2);
4266 Value
*PtrOperand
, *MaskOperand
, *Src0Operand
;
4269 getCompressingStoreOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4271 getMaskedStoreOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4273 SDValue Ptr
= getValue(PtrOperand
);
4274 SDValue Src0
= getValue(Src0Operand
);
4275 SDValue Mask
= getValue(MaskOperand
);
4277 EVT VT
= Src0
.getValueType();
4279 Alignment
= DAG
.getEVTAlignment(VT
);
4282 I
.getAAMetadata(AAInfo
);
4284 MachineMemOperand
*MMO
=
4285 DAG
.getMachineFunction().
4286 getMachineMemOperand(MachinePointerInfo(PtrOperand
),
4287 MachineMemOperand::MOStore
, VT
.getStoreSize(),
4289 SDValue StoreNode
= DAG
.getMaskedStore(getRoot(), sdl
, Src0
, Ptr
, Mask
, VT
,
4290 MMO
, false /* Truncating */,
4292 DAG
.setRoot(StoreNode
);
4293 setValue(&I
, StoreNode
);
4296 // Get a uniform base for the Gather/Scatter intrinsic.
4297 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4298 // We try to represent it as a base pointer + vector of indices.
4299 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4300 // The first operand of the GEP may be a single pointer or a vector of pointers
4302 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4304 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4305 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4307 // When the first GEP operand is a single pointer - it is the uniform base we
4308 // are looking for. If first operand of the GEP is a splat vector - we
4309 // extract the splat value and use it as a uniform base.
4310 // In all other cases the function returns 'false'.
4311 static bool getUniformBase(const Value
*&Ptr
, SDValue
&Base
, SDValue
&Index
,
4312 ISD::MemIndexType
&IndexType
, SDValue
&Scale
,
4313 SelectionDAGBuilder
*SDB
) {
4314 SelectionDAG
& DAG
= SDB
->DAG
;
4315 LLVMContext
&Context
= *DAG
.getContext();
4317 assert(Ptr
->getType()->isVectorTy() && "Uexpected pointer type");
4318 const GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
4322 const Value
*GEPPtr
= GEP
->getPointerOperand();
4323 if (!GEPPtr
->getType()->isVectorTy())
4325 else if (!(Ptr
= getSplatValue(GEPPtr
)))
4328 unsigned FinalIndex
= GEP
->getNumOperands() - 1;
4329 Value
*IndexVal
= GEP
->getOperand(FinalIndex
);
4331 // Ensure all the other indices are 0.
4332 for (unsigned i
= 1; i
< FinalIndex
; ++i
) {
4333 auto *C
= dyn_cast
<Constant
>(GEP
->getOperand(i
));
4336 if (isa
<VectorType
>(C
->getType()))
4337 C
= C
->getSplatValue();
4338 auto *CI
= dyn_cast_or_null
<ConstantInt
>(C
);
4339 if (!CI
|| !CI
->isZero())
4343 // The operands of the GEP may be defined in another basic block.
4344 // In this case we'll not find nodes for the operands.
4345 if (!SDB
->findValue(Ptr
) || !SDB
->findValue(IndexVal
))
4348 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4349 const DataLayout
&DL
= DAG
.getDataLayout();
4350 Scale
= DAG
.getTargetConstant(DL
.getTypeAllocSize(GEP
->getResultElementType()),
4351 SDB
->getCurSDLoc(), TLI
.getPointerTy(DL
));
4352 Base
= SDB
->getValue(Ptr
);
4353 Index
= SDB
->getValue(IndexVal
);
4354 IndexType
= ISD::SIGNED_SCALED
;
4356 if (!Index
.getValueType().isVector()) {
4357 unsigned GEPWidth
= GEP
->getType()->getVectorNumElements();
4358 EVT VT
= EVT::getVectorVT(Context
, Index
.getValueType(), GEPWidth
);
4359 Index
= DAG
.getSplatBuildVector(VT
, SDLoc(Index
), Index
);
4364 void SelectionDAGBuilder::visitMaskedScatter(const CallInst
&I
) {
4365 SDLoc sdl
= getCurSDLoc();
4367 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4368 const Value
*Ptr
= I
.getArgOperand(1);
4369 SDValue Src0
= getValue(I
.getArgOperand(0));
4370 SDValue Mask
= getValue(I
.getArgOperand(3));
4371 EVT VT
= Src0
.getValueType();
4372 unsigned Alignment
= (cast
<ConstantInt
>(I
.getArgOperand(2)))->getZExtValue();
4374 Alignment
= DAG
.getEVTAlignment(VT
);
4375 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4378 I
.getAAMetadata(AAInfo
);
4382 ISD::MemIndexType IndexType
;
4384 const Value
*BasePtr
= Ptr
;
4385 bool UniformBase
= getUniformBase(BasePtr
, Base
, Index
, IndexType
, Scale
,
4388 const Value
*MemOpBasePtr
= UniformBase
? BasePtr
: nullptr;
4389 MachineMemOperand
*MMO
= DAG
.getMachineFunction().
4390 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr
),
4391 MachineMemOperand::MOStore
, VT
.getStoreSize(),
4394 Base
= DAG
.getConstant(0, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4395 Index
= getValue(Ptr
);
4396 IndexType
= ISD::SIGNED_SCALED
;
4397 Scale
= DAG
.getTargetConstant(1, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4399 SDValue Ops
[] = { getRoot(), Src0
, Mask
, Base
, Index
, Scale
};
4400 SDValue Scatter
= DAG
.getMaskedScatter(DAG
.getVTList(MVT::Other
), VT
, sdl
,
4401 Ops
, MMO
, IndexType
);
4402 DAG
.setRoot(Scatter
);
4403 setValue(&I
, Scatter
);
4406 void SelectionDAGBuilder::visitMaskedLoad(const CallInst
&I
, bool IsExpanding
) {
4407 SDLoc sdl
= getCurSDLoc();
4409 auto getMaskedLoadOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4410 unsigned& Alignment
) {
4411 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4412 Ptr
= I
.getArgOperand(0);
4413 Alignment
= cast
<ConstantInt
>(I
.getArgOperand(1))->getZExtValue();
4414 Mask
= I
.getArgOperand(2);
4415 Src0
= I
.getArgOperand(3);
4417 auto getExpandingLoadOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4418 unsigned& Alignment
) {
4419 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4420 Ptr
= I
.getArgOperand(0);
4422 Mask
= I
.getArgOperand(1);
4423 Src0
= I
.getArgOperand(2);
4426 Value
*PtrOperand
, *MaskOperand
, *Src0Operand
;
4429 getExpandingLoadOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4431 getMaskedLoadOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4433 SDValue Ptr
= getValue(PtrOperand
);
4434 SDValue Src0
= getValue(Src0Operand
);
4435 SDValue Mask
= getValue(MaskOperand
);
4437 EVT VT
= Src0
.getValueType();
4439 Alignment
= DAG
.getEVTAlignment(VT
);
4442 I
.getAAMetadata(AAInfo
);
4443 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4445 // Do not serialize masked loads of constant memory with anything.
4447 !AA
|| !AA
->pointsToConstantMemory(MemoryLocation(
4449 LocationSize::precise(
4450 DAG
.getDataLayout().getTypeStoreSize(I
.getType())),
4452 SDValue InChain
= AddToChain
? DAG
.getRoot() : DAG
.getEntryNode();
4454 MachineMemOperand
*MMO
=
4455 DAG
.getMachineFunction().
4456 getMachineMemOperand(MachinePointerInfo(PtrOperand
),
4457 MachineMemOperand::MOLoad
, VT
.getStoreSize(),
4458 Alignment
, AAInfo
, Ranges
);
4460 SDValue Load
= DAG
.getMaskedLoad(VT
, sdl
, InChain
, Ptr
, Mask
, Src0
, VT
, MMO
,
4461 ISD::NON_EXTLOAD
, IsExpanding
);
4463 PendingLoads
.push_back(Load
.getValue(1));
4467 void SelectionDAGBuilder::visitMaskedGather(const CallInst
&I
) {
4468 SDLoc sdl
= getCurSDLoc();
4470 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4471 const Value
*Ptr
= I
.getArgOperand(0);
4472 SDValue Src0
= getValue(I
.getArgOperand(3));
4473 SDValue Mask
= getValue(I
.getArgOperand(2));
4475 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4476 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
4477 unsigned Alignment
= (cast
<ConstantInt
>(I
.getArgOperand(1)))->getZExtValue();
4479 Alignment
= DAG
.getEVTAlignment(VT
);
4482 I
.getAAMetadata(AAInfo
);
4483 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4485 SDValue Root
= DAG
.getRoot();
4488 ISD::MemIndexType IndexType
;
4490 const Value
*BasePtr
= Ptr
;
4491 bool UniformBase
= getUniformBase(BasePtr
, Base
, Index
, IndexType
, Scale
,
4493 bool ConstantMemory
= false;
4494 if (UniformBase
&& AA
&&
4495 AA
->pointsToConstantMemory(
4496 MemoryLocation(BasePtr
,
4497 LocationSize::precise(
4498 DAG
.getDataLayout().getTypeStoreSize(I
.getType())),
4500 // Do not serialize (non-volatile) loads of constant memory with anything.
4501 Root
= DAG
.getEntryNode();
4502 ConstantMemory
= true;
4505 MachineMemOperand
*MMO
=
4506 DAG
.getMachineFunction().
4507 getMachineMemOperand(MachinePointerInfo(UniformBase
? BasePtr
: nullptr),
4508 MachineMemOperand::MOLoad
, VT
.getStoreSize(),
4509 Alignment
, AAInfo
, Ranges
);
4512 Base
= DAG
.getConstant(0, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4513 Index
= getValue(Ptr
);
4514 IndexType
= ISD::SIGNED_SCALED
;
4515 Scale
= DAG
.getTargetConstant(1, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4517 SDValue Ops
[] = { Root
, Src0
, Mask
, Base
, Index
, Scale
};
4518 SDValue Gather
= DAG
.getMaskedGather(DAG
.getVTList(VT
, MVT::Other
), VT
, sdl
,
4519 Ops
, MMO
, IndexType
);
4521 SDValue OutChain
= Gather
.getValue(1);
4522 if (!ConstantMemory
)
4523 PendingLoads
.push_back(OutChain
);
4524 setValue(&I
, Gather
);
4527 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst
&I
) {
4528 SDLoc dl
= getCurSDLoc();
4529 AtomicOrdering SuccessOrdering
= I
.getSuccessOrdering();
4530 AtomicOrdering FailureOrdering
= I
.getFailureOrdering();
4531 SyncScope::ID SSID
= I
.getSyncScopeID();
4533 SDValue InChain
= getRoot();
4535 MVT MemVT
= getValue(I
.getCompareOperand()).getSimpleValueType();
4536 SDVTList VTs
= DAG
.getVTList(MemVT
, MVT::i1
, MVT::Other
);
4538 auto Alignment
= DAG
.getEVTAlignment(MemVT
);
4540 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
4542 Flags
|= MachineMemOperand::MOVolatile
;
4543 Flags
|= DAG
.getTargetLoweringInfo().getMMOFlags(I
);
4545 MachineFunction
&MF
= DAG
.getMachineFunction();
4546 MachineMemOperand
*MMO
=
4547 MF
.getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()),
4548 Flags
, MemVT
.getStoreSize(), Alignment
,
4549 AAMDNodes(), nullptr, SSID
, SuccessOrdering
,
4552 SDValue L
= DAG
.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
,
4553 dl
, MemVT
, VTs
, InChain
,
4554 getValue(I
.getPointerOperand()),
4555 getValue(I
.getCompareOperand()),
4556 getValue(I
.getNewValOperand()), MMO
);
4558 SDValue OutChain
= L
.getValue(2);
4561 DAG
.setRoot(OutChain
);
4564 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst
&I
) {
4565 SDLoc dl
= getCurSDLoc();
4567 switch (I
.getOperation()) {
4568 default: llvm_unreachable("Unknown atomicrmw operation");
4569 case AtomicRMWInst::Xchg
: NT
= ISD::ATOMIC_SWAP
; break;
4570 case AtomicRMWInst::Add
: NT
= ISD::ATOMIC_LOAD_ADD
; break;
4571 case AtomicRMWInst::Sub
: NT
= ISD::ATOMIC_LOAD_SUB
; break;
4572 case AtomicRMWInst::And
: NT
= ISD::ATOMIC_LOAD_AND
; break;
4573 case AtomicRMWInst::Nand
: NT
= ISD::ATOMIC_LOAD_NAND
; break;
4574 case AtomicRMWInst::Or
: NT
= ISD::ATOMIC_LOAD_OR
; break;
4575 case AtomicRMWInst::Xor
: NT
= ISD::ATOMIC_LOAD_XOR
; break;
4576 case AtomicRMWInst::Max
: NT
= ISD::ATOMIC_LOAD_MAX
; break;
4577 case AtomicRMWInst::Min
: NT
= ISD::ATOMIC_LOAD_MIN
; break;
4578 case AtomicRMWInst::UMax
: NT
= ISD::ATOMIC_LOAD_UMAX
; break;
4579 case AtomicRMWInst::UMin
: NT
= ISD::ATOMIC_LOAD_UMIN
; break;
4580 case AtomicRMWInst::FAdd
: NT
= ISD::ATOMIC_LOAD_FADD
; break;
4581 case AtomicRMWInst::FSub
: NT
= ISD::ATOMIC_LOAD_FSUB
; break;
4583 AtomicOrdering Ordering
= I
.getOrdering();
4584 SyncScope::ID SSID
= I
.getSyncScopeID();
4586 SDValue InChain
= getRoot();
4588 auto MemVT
= getValue(I
.getValOperand()).getSimpleValueType();
4589 auto Alignment
= DAG
.getEVTAlignment(MemVT
);
4591 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
4593 Flags
|= MachineMemOperand::MOVolatile
;
4594 Flags
|= DAG
.getTargetLoweringInfo().getMMOFlags(I
);
4596 MachineFunction
&MF
= DAG
.getMachineFunction();
4597 MachineMemOperand
*MMO
=
4598 MF
.getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()), Flags
,
4599 MemVT
.getStoreSize(), Alignment
, AAMDNodes(),
4600 nullptr, SSID
, Ordering
);
4603 DAG
.getAtomic(NT
, dl
, MemVT
, InChain
,
4604 getValue(I
.getPointerOperand()), getValue(I
.getValOperand()),
4607 SDValue OutChain
= L
.getValue(1);
4610 DAG
.setRoot(OutChain
);
4613 void SelectionDAGBuilder::visitFence(const FenceInst
&I
) {
4614 SDLoc dl
= getCurSDLoc();
4615 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4618 Ops
[1] = DAG
.getConstant((unsigned)I
.getOrdering(), dl
,
4619 TLI
.getFenceOperandTy(DAG
.getDataLayout()));
4620 Ops
[2] = DAG
.getConstant(I
.getSyncScopeID(), dl
,
4621 TLI
.getFenceOperandTy(DAG
.getDataLayout()));
4622 DAG
.setRoot(DAG
.getNode(ISD::ATOMIC_FENCE
, dl
, MVT::Other
, Ops
));
4625 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst
&I
) {
4626 SDLoc dl
= getCurSDLoc();
4627 AtomicOrdering Order
= I
.getOrdering();
4628 SyncScope::ID SSID
= I
.getSyncScopeID();
4630 SDValue InChain
= getRoot();
4632 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4633 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
4634 EVT MemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType());
4636 if (!TLI
.supportsUnalignedAtomics() &&
4637 I
.getAlignment() < MemVT
.getSizeInBits() / 8)
4638 report_fatal_error("Cannot generate unaligned atomic load");
4640 auto Flags
= MachineMemOperand::MOLoad
;
4642 Flags
|= MachineMemOperand::MOVolatile
;
4643 if (I
.getMetadata(LLVMContext::MD_invariant_load
) != nullptr)
4644 Flags
|= MachineMemOperand::MOInvariant
;
4645 if (isDereferenceablePointer(I
.getPointerOperand(), I
.getType(),
4646 DAG
.getDataLayout()))
4647 Flags
|= MachineMemOperand::MODereferenceable
;
4649 Flags
|= TLI
.getMMOFlags(I
);
4651 MachineMemOperand
*MMO
=
4652 DAG
.getMachineFunction().
4653 getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()),
4654 Flags
, MemVT
.getStoreSize(),
4655 I
.getAlignment() ? I
.getAlignment() :
4656 DAG
.getEVTAlignment(MemVT
),
4657 AAMDNodes(), nullptr, SSID
, Order
);
4659 InChain
= TLI
.prepareVolatileOrAtomicLoad(InChain
, dl
, DAG
);
4661 DAG
.getAtomic(ISD::ATOMIC_LOAD
, dl
, MemVT
, MemVT
, InChain
,
4662 getValue(I
.getPointerOperand()), MMO
);
4664 SDValue OutChain
= L
.getValue(1);
4666 L
= DAG
.getPtrExtOrTrunc(L
, dl
, VT
);
4669 DAG
.setRoot(OutChain
);
4672 void SelectionDAGBuilder::visitAtomicStore(const StoreInst
&I
) {
4673 SDLoc dl
= getCurSDLoc();
4675 AtomicOrdering Ordering
= I
.getOrdering();
4676 SyncScope::ID SSID
= I
.getSyncScopeID();
4678 SDValue InChain
= getRoot();
4680 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4682 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getValueOperand()->getType());
4684 if (I
.getAlignment() < MemVT
.getSizeInBits() / 8)
4685 report_fatal_error("Cannot generate unaligned atomic store");
4687 auto Flags
= MachineMemOperand::MOStore
;
4689 Flags
|= MachineMemOperand::MOVolatile
;
4690 Flags
|= TLI
.getMMOFlags(I
);
4692 MachineFunction
&MF
= DAG
.getMachineFunction();
4693 MachineMemOperand
*MMO
=
4694 MF
.getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()), Flags
,
4695 MemVT
.getStoreSize(), I
.getAlignment(), AAMDNodes(),
4696 nullptr, SSID
, Ordering
);
4698 SDValue Val
= getValue(I
.getValueOperand());
4699 if (Val
.getValueType() != MemVT
)
4700 Val
= DAG
.getPtrExtOrTrunc(Val
, dl
, MemVT
);
4702 SDValue OutChain
= DAG
.getAtomic(ISD::ATOMIC_STORE
, dl
, MemVT
, InChain
,
4703 getValue(I
.getPointerOperand()), Val
, MMO
);
4706 DAG
.setRoot(OutChain
);
4709 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4711 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst
&I
,
4712 unsigned Intrinsic
) {
4713 // Ignore the callsite's attributes. A specific call site may be marked with
4714 // readnone, but the lowering code will expect the chain based on the
4716 const Function
*F
= I
.getCalledFunction();
4717 bool HasChain
= !F
->doesNotAccessMemory();
4718 bool OnlyLoad
= HasChain
&& F
->onlyReadsMemory();
4720 // Build the operand list.
4721 SmallVector
<SDValue
, 8> Ops
;
4722 if (HasChain
) { // If this intrinsic has side-effects, chainify it.
4724 // We don't need to serialize loads against other loads.
4725 Ops
.push_back(DAG
.getRoot());
4727 Ops
.push_back(getRoot());
4731 // Info is set by getTgtMemInstrinsic
4732 TargetLowering::IntrinsicInfo Info
;
4733 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4734 bool IsTgtIntrinsic
= TLI
.getTgtMemIntrinsic(Info
, I
,
4735 DAG
.getMachineFunction(),
4738 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4739 if (!IsTgtIntrinsic
|| Info
.opc
== ISD::INTRINSIC_VOID
||
4740 Info
.opc
== ISD::INTRINSIC_W_CHAIN
)
4741 Ops
.push_back(DAG
.getTargetConstant(Intrinsic
, getCurSDLoc(),
4742 TLI
.getPointerTy(DAG
.getDataLayout())));
4744 // Add all operands of the call to the operand list.
4745 for (unsigned i
= 0, e
= I
.getNumArgOperands(); i
!= e
; ++i
) {
4746 SDValue Op
= getValue(I
.getArgOperand(i
));
4750 SmallVector
<EVT
, 4> ValueVTs
;
4751 ComputeValueVTs(TLI
, DAG
.getDataLayout(), I
.getType(), ValueVTs
);
4754 ValueVTs
.push_back(MVT::Other
);
4756 SDVTList VTs
= DAG
.getVTList(ValueVTs
);
4760 if (IsTgtIntrinsic
) {
4761 // This is target intrinsic that touches memory
4763 I
.getAAMetadata(AAInfo
);
4764 Result
= DAG
.getMemIntrinsicNode(
4765 Info
.opc
, getCurSDLoc(), VTs
, Ops
, Info
.memVT
,
4766 MachinePointerInfo(Info
.ptrVal
, Info
.offset
),
4767 Info
.align
? Info
.align
->value() : 0, Info
.flags
, Info
.size
, AAInfo
);
4768 } else if (!HasChain
) {
4769 Result
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, getCurSDLoc(), VTs
, Ops
);
4770 } else if (!I
.getType()->isVoidTy()) {
4771 Result
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, getCurSDLoc(), VTs
, Ops
);
4773 Result
= DAG
.getNode(ISD::INTRINSIC_VOID
, getCurSDLoc(), VTs
, Ops
);
4777 SDValue Chain
= Result
.getValue(Result
.getNode()->getNumValues()-1);
4779 PendingLoads
.push_back(Chain
);
4784 if (!I
.getType()->isVoidTy()) {
4785 if (VectorType
*PTy
= dyn_cast
<VectorType
>(I
.getType())) {
4786 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), PTy
);
4787 Result
= DAG
.getNode(ISD::BITCAST
, getCurSDLoc(), VT
, Result
);
4789 Result
= lowerRangeToAssertZExt(DAG
, I
, Result
);
4791 setValue(&I
, Result
);
4795 /// GetSignificand - Get the significand and build it into a floating-point
4796 /// number with exponent of 1:
4798 /// Op = (Op & 0x007fffff) | 0x3f800000;
4800 /// where Op is the hexadecimal representation of floating point value.
4801 static SDValue
GetSignificand(SelectionDAG
&DAG
, SDValue Op
, const SDLoc
&dl
) {
4802 SDValue t1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
4803 DAG
.getConstant(0x007fffff, dl
, MVT::i32
));
4804 SDValue t2
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, t1
,
4805 DAG
.getConstant(0x3f800000, dl
, MVT::i32
));
4806 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
, t2
);
4809 /// GetExponent - Get the exponent:
4811 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4813 /// where Op is the hexadecimal representation of floating point value.
4814 static SDValue
GetExponent(SelectionDAG
&DAG
, SDValue Op
,
4815 const TargetLowering
&TLI
, const SDLoc
&dl
) {
4816 SDValue t0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
4817 DAG
.getConstant(0x7f800000, dl
, MVT::i32
));
4818 SDValue t1
= DAG
.getNode(
4819 ISD::SRL
, dl
, MVT::i32
, t0
,
4820 DAG
.getConstant(23, dl
, TLI
.getPointerTy(DAG
.getDataLayout())));
4821 SDValue t2
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, t1
,
4822 DAG
.getConstant(127, dl
, MVT::i32
));
4823 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, t2
);
4826 /// getF32Constant - Get 32-bit floating point constant.
4827 static SDValue
getF32Constant(SelectionDAG
&DAG
, unsigned Flt
,
4829 return DAG
.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt
)), dl
,
4833 static SDValue
getLimitedPrecisionExp2(SDValue t0
, const SDLoc
&dl
,
4834 SelectionDAG
&DAG
) {
4835 // TODO: What fast-math-flags should be set on the floating-point nodes?
4837 // IntegerPartOfX = ((int32_t)(t0);
4838 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
4840 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4841 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
4842 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
4844 // IntegerPartOfX <<= 23;
4845 IntegerPartOfX
= DAG
.getNode(
4846 ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
4847 DAG
.getConstant(23, dl
, DAG
.getTargetLoweringInfo().getPointerTy(
4848 DAG
.getDataLayout())));
4850 SDValue TwoToFractionalPartOfX
;
4851 if (LimitFloatPrecision
<= 6) {
4852 // For floating-point precision of 6:
4854 // TwoToFractionalPartOfX =
4856 // (0.735607626f + 0.252464424f * x) * x;
4858 // error 0.0144103317, which is 6 bits
4859 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4860 getF32Constant(DAG
, 0x3e814304, dl
));
4861 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4862 getF32Constant(DAG
, 0x3f3c50c8, dl
));
4863 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4864 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4865 getF32Constant(DAG
, 0x3f7f5e7e, dl
));
4866 } else if (LimitFloatPrecision
<= 12) {
4867 // For floating-point precision of 12:
4869 // TwoToFractionalPartOfX =
4872 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4874 // error 0.000107046256, which is 13 to 14 bits
4875 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4876 getF32Constant(DAG
, 0x3da235e3, dl
));
4877 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4878 getF32Constant(DAG
, 0x3e65b8f3, dl
));
4879 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4880 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4881 getF32Constant(DAG
, 0x3f324b07, dl
));
4882 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4883 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
4884 getF32Constant(DAG
, 0x3f7ff8fd, dl
));
4885 } else { // LimitFloatPrecision <= 18
4886 // For floating-point precision of 18:
4888 // TwoToFractionalPartOfX =
4892 // (0.554906021e-1f +
4893 // (0.961591928e-2f +
4894 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4895 // error 2.47208000*10^(-7), which is better than 18 bits
4896 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4897 getF32Constant(DAG
, 0x3924b03e, dl
));
4898 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4899 getF32Constant(DAG
, 0x3ab24b87, dl
));
4900 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4901 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4902 getF32Constant(DAG
, 0x3c1d8c17, dl
));
4903 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4904 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
4905 getF32Constant(DAG
, 0x3d634a1d, dl
));
4906 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
4907 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
4908 getF32Constant(DAG
, 0x3e75fe14, dl
));
4909 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
4910 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
4911 getF32Constant(DAG
, 0x3f317234, dl
));
4912 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
4913 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
4914 getF32Constant(DAG
, 0x3f800000, dl
));
4917 // Add the exponent into the result in integer domain.
4918 SDValue t13
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, TwoToFractionalPartOfX
);
4919 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
4920 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t13
, IntegerPartOfX
));
4923 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4924 /// limited-precision mode.
4925 static SDValue
expandExp(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
4926 const TargetLowering
&TLI
) {
4927 if (Op
.getValueType() == MVT::f32
&&
4928 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
4930 // Put the exponent in the right bit position for later addition to the
4933 // #define LOG2OFe 1.4426950f
4934 // t0 = Op * LOG2OFe
4936 // TODO: What fast-math-flags should be set here?
4937 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
4938 getF32Constant(DAG
, 0x3fb8aa3b, dl
));
4939 return getLimitedPrecisionExp2(t0
, dl
, DAG
);
4942 // No special expansion.
4943 return DAG
.getNode(ISD::FEXP
, dl
, Op
.getValueType(), Op
);
4946 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4947 /// limited-precision mode.
4948 static SDValue
expandLog(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
4949 const TargetLowering
&TLI
) {
4950 // TODO: What fast-math-flags should be set on the floating-point nodes?
4952 if (Op
.getValueType() == MVT::f32
&&
4953 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
4954 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
4956 // Scale the exponent by log(2) [0.69314718f].
4957 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
4958 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
4959 getF32Constant(DAG
, 0x3f317218, dl
));
4961 // Get the significand and build it into a floating-point number with
4963 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
4965 SDValue LogOfMantissa
;
4966 if (LimitFloatPrecision
<= 6) {
4967 // For floating-point precision of 6:
4971 // (1.4034025f - 0.23903021f * x) * x;
4973 // error 0.0034276066, which is better than 8 bits
4974 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4975 getF32Constant(DAG
, 0xbe74c456, dl
));
4976 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
4977 getF32Constant(DAG
, 0x3fb3a2b1, dl
));
4978 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
4979 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
4980 getF32Constant(DAG
, 0x3f949a29, dl
));
4981 } else if (LimitFloatPrecision
<= 12) {
4982 // For floating-point precision of 12:
4988 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4990 // error 0.000061011436, which is 14 bits
4991 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4992 getF32Constant(DAG
, 0xbd67b6d6, dl
));
4993 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
4994 getF32Constant(DAG
, 0x3ee4f4b8, dl
));
4995 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
4996 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
4997 getF32Constant(DAG
, 0x3fbc278b, dl
));
4998 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4999 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5000 getF32Constant(DAG
, 0x40348e95, dl
));
5001 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5002 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5003 getF32Constant(DAG
, 0x3fdef31a, dl
));
5004 } else { // LimitFloatPrecision <= 18
5005 // For floating-point precision of 18:
5013 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5015 // error 0.0000023660568, which is better than 18 bits
5016 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5017 getF32Constant(DAG
, 0xbc91e5ac, dl
));
5018 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5019 getF32Constant(DAG
, 0x3e4350aa, dl
));
5020 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5021 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5022 getF32Constant(DAG
, 0x3f60d3e3, dl
));
5023 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5024 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5025 getF32Constant(DAG
, 0x4011cdf0, dl
));
5026 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5027 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5028 getF32Constant(DAG
, 0x406cfd1c, dl
));
5029 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5030 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
5031 getF32Constant(DAG
, 0x408797cb, dl
));
5032 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
5033 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
5034 getF32Constant(DAG
, 0x4006dcab, dl
));
5037 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, LogOfMantissa
);
5040 // No special expansion.
5041 return DAG
.getNode(ISD::FLOG
, dl
, Op
.getValueType(), Op
);
5044 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5045 /// limited-precision mode.
5046 static SDValue
expandLog2(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5047 const TargetLowering
&TLI
) {
5048 // TODO: What fast-math-flags should be set on the floating-point nodes?
5050 if (Op
.getValueType() == MVT::f32
&&
5051 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5052 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
5054 // Get the exponent.
5055 SDValue LogOfExponent
= GetExponent(DAG
, Op1
, TLI
, dl
);
5057 // Get the significand and build it into a floating-point number with
5059 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
5061 // Different possible minimax approximations of significand in
5062 // floating-point for various degrees of accuracy over [1,2].
5063 SDValue Log2ofMantissa
;
5064 if (LimitFloatPrecision
<= 6) {
5065 // For floating-point precision of 6:
5067 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5069 // error 0.0049451742, which is more than 7 bits
5070 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5071 getF32Constant(DAG
, 0xbeb08fe0, dl
));
5072 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5073 getF32Constant(DAG
, 0x40019463, dl
));
5074 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5075 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5076 getF32Constant(DAG
, 0x3fd6633d, dl
));
5077 } else if (LimitFloatPrecision
<= 12) {
5078 // For floating-point precision of 12:
5084 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5086 // error 0.0000876136000, which is better than 13 bits
5087 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5088 getF32Constant(DAG
, 0xbda7262e, dl
));
5089 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5090 getF32Constant(DAG
, 0x3f25280b, dl
));
5091 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5092 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5093 getF32Constant(DAG
, 0x4007b923, dl
));
5094 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5095 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5096 getF32Constant(DAG
, 0x40823e2f, dl
));
5097 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5098 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5099 getF32Constant(DAG
, 0x4020d29c, dl
));
5100 } else { // LimitFloatPrecision <= 18
5101 // For floating-point precision of 18:
5110 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5112 // error 0.0000018516, which is better than 18 bits
5113 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5114 getF32Constant(DAG
, 0xbcd2769e, dl
));
5115 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5116 getF32Constant(DAG
, 0x3e8ce0b9, dl
));
5117 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5118 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5119 getF32Constant(DAG
, 0x3fa22ae7, dl
));
5120 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5121 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5122 getF32Constant(DAG
, 0x40525723, dl
));
5123 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5124 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5125 getF32Constant(DAG
, 0x40aaf200, dl
));
5126 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5127 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
5128 getF32Constant(DAG
, 0x40c39dad, dl
));
5129 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
5130 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
5131 getF32Constant(DAG
, 0x4042902c, dl
));
5134 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, Log2ofMantissa
);
5137 // No special expansion.
5138 return DAG
.getNode(ISD::FLOG2
, dl
, Op
.getValueType(), Op
);
5141 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5142 /// limited-precision mode.
5143 static SDValue
expandLog10(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5144 const TargetLowering
&TLI
) {
5145 // TODO: What fast-math-flags should be set on the floating-point nodes?
5147 if (Op
.getValueType() == MVT::f32
&&
5148 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5149 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
5151 // Scale the exponent by log10(2) [0.30102999f].
5152 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
5153 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
5154 getF32Constant(DAG
, 0x3e9a209a, dl
));
5156 // Get the significand and build it into a floating-point number with
5158 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
5160 SDValue Log10ofMantissa
;
5161 if (LimitFloatPrecision
<= 6) {
5162 // For floating-point precision of 6:
5164 // Log10ofMantissa =
5166 // (0.60948995f - 0.10380950f * x) * x;
5168 // error 0.0014886165, which is 6 bits
5169 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5170 getF32Constant(DAG
, 0xbdd49a13, dl
));
5171 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5172 getF32Constant(DAG
, 0x3f1c0789, dl
));
5173 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5174 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5175 getF32Constant(DAG
, 0x3f011300, dl
));
5176 } else if (LimitFloatPrecision
<= 12) {
5177 // For floating-point precision of 12:
5179 // Log10ofMantissa =
5182 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5184 // error 0.00019228036, which is better than 12 bits
5185 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5186 getF32Constant(DAG
, 0x3d431f31, dl
));
5187 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
5188 getF32Constant(DAG
, 0x3ea21fb2, dl
));
5189 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5190 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
5191 getF32Constant(DAG
, 0x3f6ae232, dl
));
5192 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5193 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
5194 getF32Constant(DAG
, 0x3f25f7c3, dl
));
5195 } else { // LimitFloatPrecision <= 18
5196 // For floating-point precision of 18:
5198 // Log10ofMantissa =
5203 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5205 // error 0.0000037995730, which is better than 18 bits
5206 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5207 getF32Constant(DAG
, 0x3c5d51ce, dl
));
5208 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
5209 getF32Constant(DAG
, 0x3e00685a, dl
));
5210 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5211 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
5212 getF32Constant(DAG
, 0x3efb6798, dl
));
5213 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5214 SDValue t5
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
5215 getF32Constant(DAG
, 0x3f88d192, dl
));
5216 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5217 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
5218 getF32Constant(DAG
, 0x3fc4316c, dl
));
5219 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5220 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t8
,
5221 getF32Constant(DAG
, 0x3f57ce70, dl
));
5224 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, Log10ofMantissa
);
5227 // No special expansion.
5228 return DAG
.getNode(ISD::FLOG10
, dl
, Op
.getValueType(), Op
);
5231 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5232 /// limited-precision mode.
5233 static SDValue
expandExp2(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5234 const TargetLowering
&TLI
) {
5235 if (Op
.getValueType() == MVT::f32
&&
5236 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18)
5237 return getLimitedPrecisionExp2(Op
, dl
, DAG
);
5239 // No special expansion.
5240 return DAG
.getNode(ISD::FEXP2
, dl
, Op
.getValueType(), Op
);
5243 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5244 /// limited-precision mode with x == 10.0f.
5245 static SDValue
expandPow(const SDLoc
&dl
, SDValue LHS
, SDValue RHS
,
5246 SelectionDAG
&DAG
, const TargetLowering
&TLI
) {
5247 bool IsExp10
= false;
5248 if (LHS
.getValueType() == MVT::f32
&& RHS
.getValueType() == MVT::f32
&&
5249 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5250 if (ConstantFPSDNode
*LHSC
= dyn_cast
<ConstantFPSDNode
>(LHS
)) {
5252 IsExp10
= LHSC
->isExactlyValue(Ten
);
5256 // TODO: What fast-math-flags should be set on the FMUL node?
5258 // Put the exponent in the right bit position for later addition to the
5261 // #define LOG2OF10 3.3219281f
5262 // t0 = Op * LOG2OF10;
5263 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, RHS
,
5264 getF32Constant(DAG
, 0x40549a78, dl
));
5265 return getLimitedPrecisionExp2(t0
, dl
, DAG
);
5268 // No special expansion.
5269 return DAG
.getNode(ISD::FPOW
, dl
, LHS
.getValueType(), LHS
, RHS
);
5272 /// ExpandPowI - Expand a llvm.powi intrinsic.
5273 static SDValue
ExpandPowI(const SDLoc
&DL
, SDValue LHS
, SDValue RHS
,
5274 SelectionDAG
&DAG
) {
5275 // If RHS is a constant, we can expand this out to a multiplication tree,
5276 // otherwise we end up lowering to a call to __powidf2 (for example). When
5277 // optimizing for size, we only want to do this if the expansion would produce
5278 // a small number of multiplies, otherwise we do the full expansion.
5279 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
5280 // Get the exponent as a positive value.
5281 unsigned Val
= RHSC
->getSExtValue();
5282 if ((int)Val
< 0) Val
= -Val
;
5284 // powi(x, 0) -> 1.0
5286 return DAG
.getConstantFP(1.0, DL
, LHS
.getValueType());
5288 const Function
&F
= DAG
.getMachineFunction().getFunction();
5289 if (!F
.hasOptSize() ||
5290 // If optimizing for size, don't insert too many multiplies.
5291 // This inserts up to 5 multiplies.
5292 countPopulation(Val
) + Log2_32(Val
) < 7) {
5293 // We use the simple binary decomposition method to generate the multiply
5294 // sequence. There are more optimal ways to do this (for example,
5295 // powi(x,15) generates one more multiply than it should), but this has
5296 // the benefit of being both really simple and much better than a libcall.
5297 SDValue Res
; // Logically starts equal to 1.0
5298 SDValue CurSquare
= LHS
;
5299 // TODO: Intrinsics should have fast-math-flags that propagate to these
5304 Res
= DAG
.getNode(ISD::FMUL
, DL
,Res
.getValueType(), Res
, CurSquare
);
5306 Res
= CurSquare
; // 1.0*CurSquare.
5309 CurSquare
= DAG
.getNode(ISD::FMUL
, DL
, CurSquare
.getValueType(),
5310 CurSquare
, CurSquare
);
5314 // If the original was negative, invert the result, producing 1/(x*x*x).
5315 if (RHSC
->getSExtValue() < 0)
5316 Res
= DAG
.getNode(ISD::FDIV
, DL
, LHS
.getValueType(),
5317 DAG
.getConstantFP(1.0, DL
, LHS
.getValueType()), Res
);
5322 // Otherwise, expand to a libcall.
5323 return DAG
.getNode(ISD::FPOWI
, DL
, LHS
.getValueType(), LHS
, RHS
);
5326 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5327 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5328 void getUnderlyingArgRegs(SmallVectorImpl
<std::pair
<unsigned, unsigned>> &Regs
,
5330 switch (N
.getOpcode()) {
5331 case ISD::CopyFromReg
: {
5332 SDValue Op
= N
.getOperand(1);
5333 Regs
.emplace_back(cast
<RegisterSDNode
>(Op
)->getReg(),
5334 Op
.getValueType().getSizeInBits());
5338 case ISD::AssertZext
:
5339 case ISD::AssertSext
:
5341 getUnderlyingArgRegs(Regs
, N
.getOperand(0));
5343 case ISD::BUILD_PAIR
:
5344 case ISD::BUILD_VECTOR
:
5345 case ISD::CONCAT_VECTORS
:
5346 for (SDValue Op
: N
->op_values())
5347 getUnderlyingArgRegs(Regs
, Op
);
5354 /// If the DbgValueInst is a dbg_value of a function argument, create the
5355 /// corresponding DBG_VALUE machine instruction for it now. At the end of
5356 /// instruction selection, they will be inserted to the entry BB.
5357 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5358 const Value
*V
, DILocalVariable
*Variable
, DIExpression
*Expr
,
5359 DILocation
*DL
, bool IsDbgDeclare
, const SDValue
&N
) {
5360 const Argument
*Arg
= dyn_cast
<Argument
>(V
);
5364 if (!IsDbgDeclare
) {
5365 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5366 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5368 bool IsInEntryBlock
= FuncInfo
.MBB
== &FuncInfo
.MF
->front();
5369 if (!IsInEntryBlock
)
5372 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5373 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5374 // variable that also is a param.
5376 // Although, if we are at the top of the entry block already, we can still
5377 // emit using ArgDbgValue. This might catch some situations when the
5378 // dbg.value refers to an argument that isn't used in the entry block, so
5379 // any CopyToReg node would be optimized out and the only way to express
5380 // this DBG_VALUE is by using the physical reg (or FI) as done in this
5381 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
5382 // we should only emit as ArgDbgValue if the Variable is an argument to the
5383 // current function, and the dbg.value intrinsic is found in the entry
5385 bool VariableIsFunctionInputArg
= Variable
->isParameter() &&
5386 !DL
->getInlinedAt();
5387 bool IsInPrologue
= SDNodeOrder
== LowestSDNodeOrder
;
5388 if (!IsInPrologue
&& !VariableIsFunctionInputArg
)
5391 // Here we assume that a function argument on IR level only can be used to
5392 // describe one input parameter on source level. If we for example have
5393 // source code like this
5395 // struct A { long x, y; };
5396 // void foo(struct A a, long b) {
5404 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
5406 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5407 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5408 // call void @llvm.dbg.value(metadata i32 %b, "b",
5410 // call void @llvm.dbg.value(metadata i32 %a1, "b"
5413 // then the last dbg.value is describing a parameter "b" using a value that
5414 // is an argument. But since we already has used %a1 to describe a parameter
5415 // we should not handle that last dbg.value here (that would result in an
5416 // incorrect hoisting of the DBG_VALUE to the function entry).
5417 // Notice that we allow one dbg.value per IR level argument, to accomodate
5418 // for the situation with fragments above.
5419 if (VariableIsFunctionInputArg
) {
5420 unsigned ArgNo
= Arg
->getArgNo();
5421 if (ArgNo
>= FuncInfo
.DescribedArgs
.size())
5422 FuncInfo
.DescribedArgs
.resize(ArgNo
+ 1, false);
5423 else if (!IsInPrologue
&& FuncInfo
.DescribedArgs
.test(ArgNo
))
5425 FuncInfo
.DescribedArgs
.set(ArgNo
);
5429 MachineFunction
&MF
= DAG
.getMachineFunction();
5430 const TargetInstrInfo
*TII
= DAG
.getSubtarget().getInstrInfo();
5432 bool IsIndirect
= false;
5433 Optional
<MachineOperand
> Op
;
5434 // Some arguments' frame index is recorded during argument lowering.
5435 int FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
5436 if (FI
!= std::numeric_limits
<int>::max())
5437 Op
= MachineOperand::CreateFI(FI
);
5439 SmallVector
<std::pair
<unsigned, unsigned>, 8> ArgRegsAndSizes
;
5440 if (!Op
&& N
.getNode()) {
5441 getUnderlyingArgRegs(ArgRegsAndSizes
, N
);
5443 if (ArgRegsAndSizes
.size() == 1)
5444 Reg
= ArgRegsAndSizes
.front().first
;
5446 if (Reg
&& Reg
.isVirtual()) {
5447 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
5448 Register PR
= RegInfo
.getLiveInPhysReg(Reg
);
5453 Op
= MachineOperand::CreateReg(Reg
, false);
5454 IsIndirect
= IsDbgDeclare
;
5458 if (!Op
&& N
.getNode()) {
5459 // Check if frame index is available.
5460 SDValue LCandidate
= peekThroughBitcasts(N
);
5461 if (LoadSDNode
*LNode
= dyn_cast
<LoadSDNode
>(LCandidate
.getNode()))
5462 if (FrameIndexSDNode
*FINode
=
5463 dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode()))
5464 Op
= MachineOperand::CreateFI(FINode
->getIndex());
5468 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5469 auto splitMultiRegDbgValue
5470 = [&](ArrayRef
<std::pair
<unsigned, unsigned>> SplitRegs
) {
5471 unsigned Offset
= 0;
5472 for (auto RegAndSize
: SplitRegs
) {
5473 auto FragmentExpr
= DIExpression::createFragmentExpression(
5474 Expr
, Offset
, RegAndSize
.second
);
5477 FuncInfo
.ArgDbgValues
.push_back(
5478 BuildMI(MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsDbgDeclare
,
5479 RegAndSize
.first
, Variable
, *FragmentExpr
));
5480 Offset
+= RegAndSize
.second
;
5484 // Check if ValueMap has reg number.
5485 DenseMap
<const Value
*, unsigned>::const_iterator
5486 VMI
= FuncInfo
.ValueMap
.find(V
);
5487 if (VMI
!= FuncInfo
.ValueMap
.end()) {
5488 const auto &TLI
= DAG
.getTargetLoweringInfo();
5489 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), VMI
->second
,
5490 V
->getType(), getABIRegCopyCC(V
));
5491 if (RFV
.occupiesMultipleRegs()) {
5492 splitMultiRegDbgValue(RFV
.getRegsAndSizes());
5496 Op
= MachineOperand::CreateReg(VMI
->second
, false);
5497 IsIndirect
= IsDbgDeclare
;
5498 } else if (ArgRegsAndSizes
.size() > 1) {
5499 // This was split due to the calling convention, and no virtual register
5500 // mapping exists for the value.
5501 splitMultiRegDbgValue(ArgRegsAndSizes
);
5509 assert(Variable
->isValidLocationForIntrinsic(DL
) &&
5510 "Expected inlined-at fields to agree");
5511 IsIndirect
= (Op
->isReg()) ? IsIndirect
: true;
5512 FuncInfo
.ArgDbgValues
.push_back(
5513 BuildMI(MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsIndirect
,
5514 *Op
, Variable
, Expr
));
5519 /// Return the appropriate SDDbgValue based on N.
5520 SDDbgValue
*SelectionDAGBuilder::getDbgValue(SDValue N
,
5521 DILocalVariable
*Variable
,
5524 unsigned DbgSDNodeOrder
) {
5525 if (auto *FISDN
= dyn_cast
<FrameIndexSDNode
>(N
.getNode())) {
5526 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5527 // stack slot locations.
5529 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5530 // debug values here after optimization:
5532 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
5533 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5535 // Both describe the direct values of their associated variables.
5536 return DAG
.getFrameIndexDbgValue(Variable
, Expr
, FISDN
->getIndex(),
5537 /*IsIndirect*/ false, dl
, DbgSDNodeOrder
);
5539 return DAG
.getDbgValue(Variable
, Expr
, N
.getNode(), N
.getResNo(),
5540 /*IsIndirect*/ false, dl
, DbgSDNodeOrder
);
5543 // VisualStudio defines setjmp as _setjmp
5544 #if defined(_MSC_VER) && defined(setjmp) && \
5545 !defined(setjmp_undefined_for_msvc)
5546 # pragma push_macro("setjmp")
5548 # define setjmp_undefined_for_msvc
5551 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic
) {
5552 switch (Intrinsic
) {
5553 case Intrinsic::smul_fix
:
5554 return ISD::SMULFIX
;
5555 case Intrinsic::umul_fix
:
5556 return ISD::UMULFIX
;
5558 llvm_unreachable("Unhandled fixed point intrinsic");
5562 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst
&I
,
5563 const char *FunctionName
) {
5564 assert(FunctionName
&& "FunctionName must not be nullptr");
5565 SDValue Callee
= DAG
.getExternalSymbol(
5567 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout()));
5568 LowerCallTo(&I
, Callee
, I
.isTailCall());
5571 /// Lower the call to the specified intrinsic function.
5572 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst
&I
,
5573 unsigned Intrinsic
) {
5574 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5575 SDLoc sdl
= getCurSDLoc();
5576 DebugLoc dl
= getCurDebugLoc();
5579 switch (Intrinsic
) {
5581 // By default, turn this into a target intrinsic node.
5582 visitTargetIntrinsic(I
, Intrinsic
);
5584 case Intrinsic::vastart
: visitVAStart(I
); return;
5585 case Intrinsic::vaend
: visitVAEnd(I
); return;
5586 case Intrinsic::vacopy
: visitVACopy(I
); return;
5587 case Intrinsic::returnaddress
:
5588 setValue(&I
, DAG
.getNode(ISD::RETURNADDR
, sdl
,
5589 TLI
.getPointerTy(DAG
.getDataLayout()),
5590 getValue(I
.getArgOperand(0))));
5592 case Intrinsic::addressofreturnaddress
:
5593 setValue(&I
, DAG
.getNode(ISD::ADDROFRETURNADDR
, sdl
,
5594 TLI
.getPointerTy(DAG
.getDataLayout())));
5596 case Intrinsic::sponentry
:
5597 setValue(&I
, DAG
.getNode(ISD::SPONENTRY
, sdl
,
5598 TLI
.getFrameIndexTy(DAG
.getDataLayout())));
5600 case Intrinsic::frameaddress
:
5601 setValue(&I
, DAG
.getNode(ISD::FRAMEADDR
, sdl
,
5602 TLI
.getFrameIndexTy(DAG
.getDataLayout()),
5603 getValue(I
.getArgOperand(0))));
5605 case Intrinsic::read_register
: {
5606 Value
*Reg
= I
.getArgOperand(0);
5607 SDValue Chain
= getRoot();
5609 DAG
.getMDNode(cast
<MDNode
>(cast
<MetadataAsValue
>(Reg
)->getMetadata()));
5610 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
5611 Res
= DAG
.getNode(ISD::READ_REGISTER
, sdl
,
5612 DAG
.getVTList(VT
, MVT::Other
), Chain
, RegName
);
5614 DAG
.setRoot(Res
.getValue(1));
5617 case Intrinsic::write_register
: {
5618 Value
*Reg
= I
.getArgOperand(0);
5619 Value
*RegValue
= I
.getArgOperand(1);
5620 SDValue Chain
= getRoot();
5622 DAG
.getMDNode(cast
<MDNode
>(cast
<MetadataAsValue
>(Reg
)->getMetadata()));
5623 DAG
.setRoot(DAG
.getNode(ISD::WRITE_REGISTER
, sdl
, MVT::Other
, Chain
,
5624 RegName
, getValue(RegValue
)));
5627 case Intrinsic::setjmp
:
5628 lowerCallToExternalSymbol(I
, &"_setjmp"[!TLI
.usesUnderscoreSetJmp()]);
5630 case Intrinsic::longjmp
:
5631 lowerCallToExternalSymbol(I
, &"_longjmp"[!TLI
.usesUnderscoreLongJmp()]);
5633 case Intrinsic::memcpy
: {
5634 const auto &MCI
= cast
<MemCpyInst
>(I
);
5635 SDValue Op1
= getValue(I
.getArgOperand(0));
5636 SDValue Op2
= getValue(I
.getArgOperand(1));
5637 SDValue Op3
= getValue(I
.getArgOperand(2));
5638 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5639 unsigned DstAlign
= std::max
<unsigned>(MCI
.getDestAlignment(), 1);
5640 unsigned SrcAlign
= std::max
<unsigned>(MCI
.getSourceAlignment(), 1);
5641 unsigned Align
= MinAlign(DstAlign
, SrcAlign
);
5642 bool isVol
= MCI
.isVolatile();
5643 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5644 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5646 SDValue MC
= DAG
.getMemcpy(getRoot(), sdl
, Op1
, Op2
, Op3
, Align
, isVol
,
5648 MachinePointerInfo(I
.getArgOperand(0)),
5649 MachinePointerInfo(I
.getArgOperand(1)));
5650 updateDAGForMaybeTailCall(MC
);
5653 case Intrinsic::memset
: {
5654 const auto &MSI
= cast
<MemSetInst
>(I
);
5655 SDValue Op1
= getValue(I
.getArgOperand(0));
5656 SDValue Op2
= getValue(I
.getArgOperand(1));
5657 SDValue Op3
= getValue(I
.getArgOperand(2));
5658 // @llvm.memset defines 0 and 1 to both mean no alignment.
5659 unsigned Align
= std::max
<unsigned>(MSI
.getDestAlignment(), 1);
5660 bool isVol
= MSI
.isVolatile();
5661 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5662 SDValue MS
= DAG
.getMemset(getRoot(), sdl
, Op1
, Op2
, Op3
, Align
, isVol
,
5663 isTC
, MachinePointerInfo(I
.getArgOperand(0)));
5664 updateDAGForMaybeTailCall(MS
);
5667 case Intrinsic::memmove
: {
5668 const auto &MMI
= cast
<MemMoveInst
>(I
);
5669 SDValue Op1
= getValue(I
.getArgOperand(0));
5670 SDValue Op2
= getValue(I
.getArgOperand(1));
5671 SDValue Op3
= getValue(I
.getArgOperand(2));
5672 // @llvm.memmove defines 0 and 1 to both mean no alignment.
5673 unsigned DstAlign
= std::max
<unsigned>(MMI
.getDestAlignment(), 1);
5674 unsigned SrcAlign
= std::max
<unsigned>(MMI
.getSourceAlignment(), 1);
5675 unsigned Align
= MinAlign(DstAlign
, SrcAlign
);
5676 bool isVol
= MMI
.isVolatile();
5677 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5678 // FIXME: Support passing different dest/src alignments to the memmove DAG
5680 SDValue MM
= DAG
.getMemmove(getRoot(), sdl
, Op1
, Op2
, Op3
, Align
, isVol
,
5681 isTC
, MachinePointerInfo(I
.getArgOperand(0)),
5682 MachinePointerInfo(I
.getArgOperand(1)));
5683 updateDAGForMaybeTailCall(MM
);
5686 case Intrinsic::memcpy_element_unordered_atomic
: {
5687 const AtomicMemCpyInst
&MI
= cast
<AtomicMemCpyInst
>(I
);
5688 SDValue Dst
= getValue(MI
.getRawDest());
5689 SDValue Src
= getValue(MI
.getRawSource());
5690 SDValue Length
= getValue(MI
.getLength());
5692 unsigned DstAlign
= MI
.getDestAlignment();
5693 unsigned SrcAlign
= MI
.getSourceAlignment();
5694 Type
*LengthTy
= MI
.getLength()->getType();
5695 unsigned ElemSz
= MI
.getElementSizeInBytes();
5696 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5697 SDValue MC
= DAG
.getAtomicMemcpy(getRoot(), sdl
, Dst
, DstAlign
, Src
,
5698 SrcAlign
, Length
, LengthTy
, ElemSz
, isTC
,
5699 MachinePointerInfo(MI
.getRawDest()),
5700 MachinePointerInfo(MI
.getRawSource()));
5701 updateDAGForMaybeTailCall(MC
);
5704 case Intrinsic::memmove_element_unordered_atomic
: {
5705 auto &MI
= cast
<AtomicMemMoveInst
>(I
);
5706 SDValue Dst
= getValue(MI
.getRawDest());
5707 SDValue Src
= getValue(MI
.getRawSource());
5708 SDValue Length
= getValue(MI
.getLength());
5710 unsigned DstAlign
= MI
.getDestAlignment();
5711 unsigned SrcAlign
= MI
.getSourceAlignment();
5712 Type
*LengthTy
= MI
.getLength()->getType();
5713 unsigned ElemSz
= MI
.getElementSizeInBytes();
5714 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5715 SDValue MC
= DAG
.getAtomicMemmove(getRoot(), sdl
, Dst
, DstAlign
, Src
,
5716 SrcAlign
, Length
, LengthTy
, ElemSz
, isTC
,
5717 MachinePointerInfo(MI
.getRawDest()),
5718 MachinePointerInfo(MI
.getRawSource()));
5719 updateDAGForMaybeTailCall(MC
);
5722 case Intrinsic::memset_element_unordered_atomic
: {
5723 auto &MI
= cast
<AtomicMemSetInst
>(I
);
5724 SDValue Dst
= getValue(MI
.getRawDest());
5725 SDValue Val
= getValue(MI
.getValue());
5726 SDValue Length
= getValue(MI
.getLength());
5728 unsigned DstAlign
= MI
.getDestAlignment();
5729 Type
*LengthTy
= MI
.getLength()->getType();
5730 unsigned ElemSz
= MI
.getElementSizeInBytes();
5731 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5732 SDValue MC
= DAG
.getAtomicMemset(getRoot(), sdl
, Dst
, DstAlign
, Val
, Length
,
5733 LengthTy
, ElemSz
, isTC
,
5734 MachinePointerInfo(MI
.getRawDest()));
5735 updateDAGForMaybeTailCall(MC
);
5738 case Intrinsic::dbg_addr
:
5739 case Intrinsic::dbg_declare
: {
5740 const auto &DI
= cast
<DbgVariableIntrinsic
>(I
);
5741 DILocalVariable
*Variable
= DI
.getVariable();
5742 DIExpression
*Expression
= DI
.getExpression();
5743 dropDanglingDebugInfo(Variable
, Expression
);
5744 assert(Variable
&& "Missing variable");
5746 // Check if address has undef value.
5747 const Value
*Address
= DI
.getVariableLocation();
5748 if (!Address
|| isa
<UndefValue
>(Address
) ||
5749 (Address
->use_empty() && !isa
<Argument
>(Address
))) {
5750 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
<< "\n");
5754 bool isParameter
= Variable
->isParameter() || isa
<Argument
>(Address
);
5756 // Check if this variable can be described by a frame index, typically
5757 // either as a static alloca or a byval parameter.
5758 int FI
= std::numeric_limits
<int>::max();
5759 if (const auto *AI
=
5760 dyn_cast
<AllocaInst
>(Address
->stripInBoundsConstantOffsets())) {
5761 if (AI
->isStaticAlloca()) {
5762 auto I
= FuncInfo
.StaticAllocaMap
.find(AI
);
5763 if (I
!= FuncInfo
.StaticAllocaMap
.end())
5766 } else if (const auto *Arg
= dyn_cast
<Argument
>(
5767 Address
->stripInBoundsConstantOffsets())) {
5768 FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
5771 // llvm.dbg.addr is control dependent and always generates indirect
5772 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5773 // the MachineFunction variable table.
5774 if (FI
!= std::numeric_limits
<int>::max()) {
5775 if (Intrinsic
== Intrinsic::dbg_addr
) {
5776 SDDbgValue
*SDV
= DAG
.getFrameIndexDbgValue(
5777 Variable
, Expression
, FI
, /*IsIndirect*/ true, dl
, SDNodeOrder
);
5778 DAG
.AddDbgValue(SDV
, getRoot().getNode(), isParameter
);
5783 SDValue
&N
= NodeMap
[Address
];
5784 if (!N
.getNode() && isa
<Argument
>(Address
))
5785 // Check unused arguments map.
5786 N
= UnusedArgNodeMap
[Address
];
5789 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
5790 Address
= BCI
->getOperand(0);
5791 // Parameters are handled specially.
5792 auto FINode
= dyn_cast
<FrameIndexSDNode
>(N
.getNode());
5793 if (isParameter
&& FINode
) {
5794 // Byval parameter. We have a frame index at this point.
5796 DAG
.getFrameIndexDbgValue(Variable
, Expression
, FINode
->getIndex(),
5797 /*IsIndirect*/ true, dl
, SDNodeOrder
);
5798 } else if (isa
<Argument
>(Address
)) {
5799 // Address is an argument, so try to emit its dbg value using
5800 // virtual register info from the FuncInfo.ValueMap.
5801 EmitFuncArgumentDbgValue(Address
, Variable
, Expression
, dl
, true, N
);
5804 SDV
= DAG
.getDbgValue(Variable
, Expression
, N
.getNode(), N
.getResNo(),
5805 true, dl
, SDNodeOrder
);
5807 DAG
.AddDbgValue(SDV
, N
.getNode(), isParameter
);
5809 // If Address is an argument then try to emit its dbg value using
5810 // virtual register info from the FuncInfo.ValueMap.
5811 if (!EmitFuncArgumentDbgValue(Address
, Variable
, Expression
, dl
, true,
5813 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
<< "\n");
5818 case Intrinsic::dbg_label
: {
5819 const DbgLabelInst
&DI
= cast
<DbgLabelInst
>(I
);
5820 DILabel
*Label
= DI
.getLabel();
5821 assert(Label
&& "Missing label");
5824 SDV
= DAG
.getDbgLabel(Label
, dl
, SDNodeOrder
);
5825 DAG
.AddDbgLabel(SDV
);
5828 case Intrinsic::dbg_value
: {
5829 const DbgValueInst
&DI
= cast
<DbgValueInst
>(I
);
5830 assert(DI
.getVariable() && "Missing variable");
5832 DILocalVariable
*Variable
= DI
.getVariable();
5833 DIExpression
*Expression
= DI
.getExpression();
5834 dropDanglingDebugInfo(Variable
, Expression
);
5835 const Value
*V
= DI
.getValue();
5839 if (handleDebugValue(V
, Variable
, Expression
, dl
, DI
.getDebugLoc(),
5843 // TODO: Dangling debug info will eventually either be resolved or produce
5844 // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5845 // between the original dbg.value location and its resolved DBG_VALUE, which
5846 // we should ideally fill with an extra Undef DBG_VALUE.
5848 DanglingDebugInfoMap
[V
].emplace_back(&DI
, dl
, SDNodeOrder
);
5852 case Intrinsic::eh_typeid_for
: {
5853 // Find the type id for the given typeinfo.
5854 GlobalValue
*GV
= ExtractTypeInfo(I
.getArgOperand(0));
5855 unsigned TypeID
= DAG
.getMachineFunction().getTypeIDFor(GV
);
5856 Res
= DAG
.getConstant(TypeID
, sdl
, MVT::i32
);
5861 case Intrinsic::eh_return_i32
:
5862 case Intrinsic::eh_return_i64
:
5863 DAG
.getMachineFunction().setCallsEHReturn(true);
5864 DAG
.setRoot(DAG
.getNode(ISD::EH_RETURN
, sdl
,
5867 getValue(I
.getArgOperand(0)),
5868 getValue(I
.getArgOperand(1))));
5870 case Intrinsic::eh_unwind_init
:
5871 DAG
.getMachineFunction().setCallsUnwindInit(true);
5873 case Intrinsic::eh_dwarf_cfa
:
5874 setValue(&I
, DAG
.getNode(ISD::EH_DWARF_CFA
, sdl
,
5875 TLI
.getPointerTy(DAG
.getDataLayout()),
5876 getValue(I
.getArgOperand(0))));
5878 case Intrinsic::eh_sjlj_callsite
: {
5879 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
5880 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(0));
5881 assert(CI
&& "Non-constant call site value in eh.sjlj.callsite!");
5882 assert(MMI
.getCurrentCallSite() == 0 && "Overlapping call sites!");
5884 MMI
.setCurrentCallSite(CI
->getZExtValue());
5887 case Intrinsic::eh_sjlj_functioncontext
: {
5888 // Get and store the index of the function context.
5889 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
5891 cast
<AllocaInst
>(I
.getArgOperand(0)->stripPointerCasts());
5892 int FI
= FuncInfo
.StaticAllocaMap
[FnCtx
];
5893 MFI
.setFunctionContextIndex(FI
);
5896 case Intrinsic::eh_sjlj_setjmp
: {
5899 Ops
[1] = getValue(I
.getArgOperand(0));
5900 SDValue Op
= DAG
.getNode(ISD::EH_SJLJ_SETJMP
, sdl
,
5901 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
5902 setValue(&I
, Op
.getValue(0));
5903 DAG
.setRoot(Op
.getValue(1));
5906 case Intrinsic::eh_sjlj_longjmp
:
5907 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_LONGJMP
, sdl
, MVT::Other
,
5908 getRoot(), getValue(I
.getArgOperand(0))));
5910 case Intrinsic::eh_sjlj_setup_dispatch
:
5911 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_SETUP_DISPATCH
, sdl
, MVT::Other
,
5914 case Intrinsic::masked_gather
:
5915 visitMaskedGather(I
);
5917 case Intrinsic::masked_load
:
5920 case Intrinsic::masked_scatter
:
5921 visitMaskedScatter(I
);
5923 case Intrinsic::masked_store
:
5924 visitMaskedStore(I
);
5926 case Intrinsic::masked_expandload
:
5927 visitMaskedLoad(I
, true /* IsExpanding */);
5929 case Intrinsic::masked_compressstore
:
5930 visitMaskedStore(I
, true /* IsCompressing */);
5932 case Intrinsic::x86_mmx_pslli_w
:
5933 case Intrinsic::x86_mmx_pslli_d
:
5934 case Intrinsic::x86_mmx_pslli_q
:
5935 case Intrinsic::x86_mmx_psrli_w
:
5936 case Intrinsic::x86_mmx_psrli_d
:
5937 case Intrinsic::x86_mmx_psrli_q
:
5938 case Intrinsic::x86_mmx_psrai_w
:
5939 case Intrinsic::x86_mmx_psrai_d
: {
5940 SDValue ShAmt
= getValue(I
.getArgOperand(1));
5941 if (isa
<ConstantSDNode
>(ShAmt
)) {
5942 visitTargetIntrinsic(I
, Intrinsic
);
5945 unsigned NewIntrinsic
= 0;
5946 EVT ShAmtVT
= MVT::v2i32
;
5947 switch (Intrinsic
) {
5948 case Intrinsic::x86_mmx_pslli_w
:
5949 NewIntrinsic
= Intrinsic::x86_mmx_psll_w
;
5951 case Intrinsic::x86_mmx_pslli_d
:
5952 NewIntrinsic
= Intrinsic::x86_mmx_psll_d
;
5954 case Intrinsic::x86_mmx_pslli_q
:
5955 NewIntrinsic
= Intrinsic::x86_mmx_psll_q
;
5957 case Intrinsic::x86_mmx_psrli_w
:
5958 NewIntrinsic
= Intrinsic::x86_mmx_psrl_w
;
5960 case Intrinsic::x86_mmx_psrli_d
:
5961 NewIntrinsic
= Intrinsic::x86_mmx_psrl_d
;
5963 case Intrinsic::x86_mmx_psrli_q
:
5964 NewIntrinsic
= Intrinsic::x86_mmx_psrl_q
;
5966 case Intrinsic::x86_mmx_psrai_w
:
5967 NewIntrinsic
= Intrinsic::x86_mmx_psra_w
;
5969 case Intrinsic::x86_mmx_psrai_d
:
5970 NewIntrinsic
= Intrinsic::x86_mmx_psra_d
;
5972 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5975 // The vector shift intrinsics with scalars uses 32b shift amounts but
5976 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5978 // We must do this early because v2i32 is not a legal type.
5981 ShOps
[1] = DAG
.getConstant(0, sdl
, MVT::i32
);
5982 ShAmt
= DAG
.getBuildVector(ShAmtVT
, sdl
, ShOps
);
5983 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
5984 ShAmt
= DAG
.getNode(ISD::BITCAST
, sdl
, DestVT
, ShAmt
);
5985 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, sdl
, DestVT
,
5986 DAG
.getConstant(NewIntrinsic
, sdl
, MVT::i32
),
5987 getValue(I
.getArgOperand(0)), ShAmt
);
5991 case Intrinsic::powi
:
5992 setValue(&I
, ExpandPowI(sdl
, getValue(I
.getArgOperand(0)),
5993 getValue(I
.getArgOperand(1)), DAG
));
5995 case Intrinsic::log
:
5996 setValue(&I
, expandLog(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
5998 case Intrinsic::log2
:
5999 setValue(&I
, expandLog2(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
6001 case Intrinsic::log10
:
6002 setValue(&I
, expandLog10(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
6004 case Intrinsic::exp
:
6005 setValue(&I
, expandExp(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
6007 case Intrinsic::exp2
:
6008 setValue(&I
, expandExp2(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
6010 case Intrinsic::pow
:
6011 setValue(&I
, expandPow(sdl
, getValue(I
.getArgOperand(0)),
6012 getValue(I
.getArgOperand(1)), DAG
, TLI
));
6014 case Intrinsic::sqrt
:
6015 case Intrinsic::fabs
:
6016 case Intrinsic::sin
:
6017 case Intrinsic::cos
:
6018 case Intrinsic::floor
:
6019 case Intrinsic::ceil
:
6020 case Intrinsic::trunc
:
6021 case Intrinsic::rint
:
6022 case Intrinsic::nearbyint
:
6023 case Intrinsic::round
:
6024 case Intrinsic::canonicalize
: {
6026 switch (Intrinsic
) {
6027 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6028 case Intrinsic::sqrt
: Opcode
= ISD::FSQRT
; break;
6029 case Intrinsic::fabs
: Opcode
= ISD::FABS
; break;
6030 case Intrinsic::sin
: Opcode
= ISD::FSIN
; break;
6031 case Intrinsic::cos
: Opcode
= ISD::FCOS
; break;
6032 case Intrinsic::floor
: Opcode
= ISD::FFLOOR
; break;
6033 case Intrinsic::ceil
: Opcode
= ISD::FCEIL
; break;
6034 case Intrinsic::trunc
: Opcode
= ISD::FTRUNC
; break;
6035 case Intrinsic::rint
: Opcode
= ISD::FRINT
; break;
6036 case Intrinsic::nearbyint
: Opcode
= ISD::FNEARBYINT
; break;
6037 case Intrinsic::round
: Opcode
= ISD::FROUND
; break;
6038 case Intrinsic::canonicalize
: Opcode
= ISD::FCANONICALIZE
; break;
6041 setValue(&I
, DAG
.getNode(Opcode
, sdl
,
6042 getValue(I
.getArgOperand(0)).getValueType(),
6043 getValue(I
.getArgOperand(0))));
6046 case Intrinsic::lround
:
6047 case Intrinsic::llround
:
6048 case Intrinsic::lrint
:
6049 case Intrinsic::llrint
: {
6051 switch (Intrinsic
) {
6052 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6053 case Intrinsic::lround
: Opcode
= ISD::LROUND
; break;
6054 case Intrinsic::llround
: Opcode
= ISD::LLROUND
; break;
6055 case Intrinsic::lrint
: Opcode
= ISD::LRINT
; break;
6056 case Intrinsic::llrint
: Opcode
= ISD::LLRINT
; break;
6059 EVT RetVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6060 setValue(&I
, DAG
.getNode(Opcode
, sdl
, RetVT
,
6061 getValue(I
.getArgOperand(0))));
6064 case Intrinsic::minnum
:
6065 setValue(&I
, DAG
.getNode(ISD::FMINNUM
, sdl
,
6066 getValue(I
.getArgOperand(0)).getValueType(),
6067 getValue(I
.getArgOperand(0)),
6068 getValue(I
.getArgOperand(1))));
6070 case Intrinsic::maxnum
:
6071 setValue(&I
, DAG
.getNode(ISD::FMAXNUM
, sdl
,
6072 getValue(I
.getArgOperand(0)).getValueType(),
6073 getValue(I
.getArgOperand(0)),
6074 getValue(I
.getArgOperand(1))));
6076 case Intrinsic::minimum
:
6077 setValue(&I
, DAG
.getNode(ISD::FMINIMUM
, sdl
,
6078 getValue(I
.getArgOperand(0)).getValueType(),
6079 getValue(I
.getArgOperand(0)),
6080 getValue(I
.getArgOperand(1))));
6082 case Intrinsic::maximum
:
6083 setValue(&I
, DAG
.getNode(ISD::FMAXIMUM
, sdl
,
6084 getValue(I
.getArgOperand(0)).getValueType(),
6085 getValue(I
.getArgOperand(0)),
6086 getValue(I
.getArgOperand(1))));
6088 case Intrinsic::copysign
:
6089 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, sdl
,
6090 getValue(I
.getArgOperand(0)).getValueType(),
6091 getValue(I
.getArgOperand(0)),
6092 getValue(I
.getArgOperand(1))));
6094 case Intrinsic::fma
:
6095 setValue(&I
, DAG
.getNode(ISD::FMA
, sdl
,
6096 getValue(I
.getArgOperand(0)).getValueType(),
6097 getValue(I
.getArgOperand(0)),
6098 getValue(I
.getArgOperand(1)),
6099 getValue(I
.getArgOperand(2))));
6101 case Intrinsic::experimental_constrained_fadd
:
6102 case Intrinsic::experimental_constrained_fsub
:
6103 case Intrinsic::experimental_constrained_fmul
:
6104 case Intrinsic::experimental_constrained_fdiv
:
6105 case Intrinsic::experimental_constrained_frem
:
6106 case Intrinsic::experimental_constrained_fma
:
6107 case Intrinsic::experimental_constrained_fptrunc
:
6108 case Intrinsic::experimental_constrained_fpext
:
6109 case Intrinsic::experimental_constrained_sqrt
:
6110 case Intrinsic::experimental_constrained_pow
:
6111 case Intrinsic::experimental_constrained_powi
:
6112 case Intrinsic::experimental_constrained_sin
:
6113 case Intrinsic::experimental_constrained_cos
:
6114 case Intrinsic::experimental_constrained_exp
:
6115 case Intrinsic::experimental_constrained_exp2
:
6116 case Intrinsic::experimental_constrained_log
:
6117 case Intrinsic::experimental_constrained_log10
:
6118 case Intrinsic::experimental_constrained_log2
:
6119 case Intrinsic::experimental_constrained_rint
:
6120 case Intrinsic::experimental_constrained_nearbyint
:
6121 case Intrinsic::experimental_constrained_maxnum
:
6122 case Intrinsic::experimental_constrained_minnum
:
6123 case Intrinsic::experimental_constrained_ceil
:
6124 case Intrinsic::experimental_constrained_floor
:
6125 case Intrinsic::experimental_constrained_round
:
6126 case Intrinsic::experimental_constrained_trunc
:
6127 visitConstrainedFPIntrinsic(cast
<ConstrainedFPIntrinsic
>(I
));
6129 case Intrinsic::fmuladd
: {
6130 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6131 if (TM
.Options
.AllowFPOpFusion
!= FPOpFusion::Strict
&&
6132 TLI
.isFMAFasterThanFMulAndFAdd(VT
)) {
6133 setValue(&I
, DAG
.getNode(ISD::FMA
, sdl
,
6134 getValue(I
.getArgOperand(0)).getValueType(),
6135 getValue(I
.getArgOperand(0)),
6136 getValue(I
.getArgOperand(1)),
6137 getValue(I
.getArgOperand(2))));
6139 // TODO: Intrinsic calls should have fast-math-flags.
6140 SDValue Mul
= DAG
.getNode(ISD::FMUL
, sdl
,
6141 getValue(I
.getArgOperand(0)).getValueType(),
6142 getValue(I
.getArgOperand(0)),
6143 getValue(I
.getArgOperand(1)));
6144 SDValue Add
= DAG
.getNode(ISD::FADD
, sdl
,
6145 getValue(I
.getArgOperand(0)).getValueType(),
6147 getValue(I
.getArgOperand(2)));
6152 case Intrinsic::convert_to_fp16
:
6153 setValue(&I
, DAG
.getNode(ISD::BITCAST
, sdl
, MVT::i16
,
6154 DAG
.getNode(ISD::FP_ROUND
, sdl
, MVT::f16
,
6155 getValue(I
.getArgOperand(0)),
6156 DAG
.getTargetConstant(0, sdl
,
6159 case Intrinsic::convert_from_fp16
:
6160 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, sdl
,
6161 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
6162 DAG
.getNode(ISD::BITCAST
, sdl
, MVT::f16
,
6163 getValue(I
.getArgOperand(0)))));
6165 case Intrinsic::pcmarker
: {
6166 SDValue Tmp
= getValue(I
.getArgOperand(0));
6167 DAG
.setRoot(DAG
.getNode(ISD::PCMARKER
, sdl
, MVT::Other
, getRoot(), Tmp
));
6170 case Intrinsic::readcyclecounter
: {
6171 SDValue Op
= getRoot();
6172 Res
= DAG
.getNode(ISD::READCYCLECOUNTER
, sdl
,
6173 DAG
.getVTList(MVT::i64
, MVT::Other
), Op
);
6175 DAG
.setRoot(Res
.getValue(1));
6178 case Intrinsic::bitreverse
:
6179 setValue(&I
, DAG
.getNode(ISD::BITREVERSE
, sdl
,
6180 getValue(I
.getArgOperand(0)).getValueType(),
6181 getValue(I
.getArgOperand(0))));
6183 case Intrinsic::bswap
:
6184 setValue(&I
, DAG
.getNode(ISD::BSWAP
, sdl
,
6185 getValue(I
.getArgOperand(0)).getValueType(),
6186 getValue(I
.getArgOperand(0))));
6188 case Intrinsic::cttz
: {
6189 SDValue Arg
= getValue(I
.getArgOperand(0));
6190 ConstantInt
*CI
= cast
<ConstantInt
>(I
.getArgOperand(1));
6191 EVT Ty
= Arg
.getValueType();
6192 setValue(&I
, DAG
.getNode(CI
->isZero() ? ISD::CTTZ
: ISD::CTTZ_ZERO_UNDEF
,
6196 case Intrinsic::ctlz
: {
6197 SDValue Arg
= getValue(I
.getArgOperand(0));
6198 ConstantInt
*CI
= cast
<ConstantInt
>(I
.getArgOperand(1));
6199 EVT Ty
= Arg
.getValueType();
6200 setValue(&I
, DAG
.getNode(CI
->isZero() ? ISD::CTLZ
: ISD::CTLZ_ZERO_UNDEF
,
6204 case Intrinsic::ctpop
: {
6205 SDValue Arg
= getValue(I
.getArgOperand(0));
6206 EVT Ty
= Arg
.getValueType();
6207 setValue(&I
, DAG
.getNode(ISD::CTPOP
, sdl
, Ty
, Arg
));
6210 case Intrinsic::fshl
:
6211 case Intrinsic::fshr
: {
6212 bool IsFSHL
= Intrinsic
== Intrinsic::fshl
;
6213 SDValue X
= getValue(I
.getArgOperand(0));
6214 SDValue Y
= getValue(I
.getArgOperand(1));
6215 SDValue Z
= getValue(I
.getArgOperand(2));
6216 EVT VT
= X
.getValueType();
6217 SDValue BitWidthC
= DAG
.getConstant(VT
.getScalarSizeInBits(), sdl
, VT
);
6218 SDValue Zero
= DAG
.getConstant(0, sdl
, VT
);
6219 SDValue ShAmt
= DAG
.getNode(ISD::UREM
, sdl
, VT
, Z
, BitWidthC
);
6221 auto FunnelOpcode
= IsFSHL
? ISD::FSHL
: ISD::FSHR
;
6222 if (TLI
.isOperationLegalOrCustom(FunnelOpcode
, VT
)) {
6223 setValue(&I
, DAG
.getNode(FunnelOpcode
, sdl
, VT
, X
, Y
, Z
));
6227 // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6228 // avoid the select that is necessary in the general case to filter out
6229 // the 0-shift possibility that leads to UB.
6230 if (X
== Y
&& isPowerOf2_32(VT
.getScalarSizeInBits())) {
6231 auto RotateOpcode
= IsFSHL
? ISD::ROTL
: ISD::ROTR
;
6232 if (TLI
.isOperationLegalOrCustom(RotateOpcode
, VT
)) {
6233 setValue(&I
, DAG
.getNode(RotateOpcode
, sdl
, VT
, X
, Z
));
6237 // Some targets only rotate one way. Try the opposite direction.
6238 RotateOpcode
= IsFSHL
? ISD::ROTR
: ISD::ROTL
;
6239 if (TLI
.isOperationLegalOrCustom(RotateOpcode
, VT
)) {
6240 // Negate the shift amount because it is safe to ignore the high bits.
6241 SDValue NegShAmt
= DAG
.getNode(ISD::SUB
, sdl
, VT
, Zero
, Z
);
6242 setValue(&I
, DAG
.getNode(RotateOpcode
, sdl
, VT
, X
, NegShAmt
));
6246 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6247 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6248 SDValue NegZ
= DAG
.getNode(ISD::SUB
, sdl
, VT
, Zero
, Z
);
6249 SDValue NShAmt
= DAG
.getNode(ISD::UREM
, sdl
, VT
, NegZ
, BitWidthC
);
6250 SDValue ShX
= DAG
.getNode(ISD::SHL
, sdl
, VT
, X
, IsFSHL
? ShAmt
: NShAmt
);
6251 SDValue ShY
= DAG
.getNode(ISD::SRL
, sdl
, VT
, X
, IsFSHL
? NShAmt
: ShAmt
);
6252 setValue(&I
, DAG
.getNode(ISD::OR
, sdl
, VT
, ShX
, ShY
));
6256 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6257 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6258 SDValue InvShAmt
= DAG
.getNode(ISD::SUB
, sdl
, VT
, BitWidthC
, ShAmt
);
6259 SDValue ShX
= DAG
.getNode(ISD::SHL
, sdl
, VT
, X
, IsFSHL
? ShAmt
: InvShAmt
);
6260 SDValue ShY
= DAG
.getNode(ISD::SRL
, sdl
, VT
, Y
, IsFSHL
? InvShAmt
: ShAmt
);
6261 SDValue Or
= DAG
.getNode(ISD::OR
, sdl
, VT
, ShX
, ShY
);
6263 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6264 // and that is undefined. We must compare and select to avoid UB.
6267 CCVT
= EVT::getVectorVT(*Context
, CCVT
, VT
.getVectorNumElements());
6269 // For fshl, 0-shift returns the 1st arg (X).
6270 // For fshr, 0-shift returns the 2nd arg (Y).
6271 SDValue IsZeroShift
= DAG
.getSetCC(sdl
, CCVT
, ShAmt
, Zero
, ISD::SETEQ
);
6272 setValue(&I
, DAG
.getSelect(sdl
, VT
, IsZeroShift
, IsFSHL
? X
: Y
, Or
));
6275 case Intrinsic::sadd_sat
: {
6276 SDValue Op1
= getValue(I
.getArgOperand(0));
6277 SDValue Op2
= getValue(I
.getArgOperand(1));
6278 setValue(&I
, DAG
.getNode(ISD::SADDSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6281 case Intrinsic::uadd_sat
: {
6282 SDValue Op1
= getValue(I
.getArgOperand(0));
6283 SDValue Op2
= getValue(I
.getArgOperand(1));
6284 setValue(&I
, DAG
.getNode(ISD::UADDSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6287 case Intrinsic::ssub_sat
: {
6288 SDValue Op1
= getValue(I
.getArgOperand(0));
6289 SDValue Op2
= getValue(I
.getArgOperand(1));
6290 setValue(&I
, DAG
.getNode(ISD::SSUBSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6293 case Intrinsic::usub_sat
: {
6294 SDValue Op1
= getValue(I
.getArgOperand(0));
6295 SDValue Op2
= getValue(I
.getArgOperand(1));
6296 setValue(&I
, DAG
.getNode(ISD::USUBSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6299 case Intrinsic::smul_fix
:
6300 case Intrinsic::umul_fix
: {
6301 SDValue Op1
= getValue(I
.getArgOperand(0));
6302 SDValue Op2
= getValue(I
.getArgOperand(1));
6303 SDValue Op3
= getValue(I
.getArgOperand(2));
6304 setValue(&I
, DAG
.getNode(FixedPointIntrinsicToOpcode(Intrinsic
), sdl
,
6305 Op1
.getValueType(), Op1
, Op2
, Op3
));
6308 case Intrinsic::smul_fix_sat
: {
6309 SDValue Op1
= getValue(I
.getArgOperand(0));
6310 SDValue Op2
= getValue(I
.getArgOperand(1));
6311 SDValue Op3
= getValue(I
.getArgOperand(2));
6312 setValue(&I
, DAG
.getNode(ISD::SMULFIXSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
,
6316 case Intrinsic::stacksave
: {
6317 SDValue Op
= getRoot();
6319 ISD::STACKSAVE
, sdl
,
6320 DAG
.getVTList(TLI
.getPointerTy(DAG
.getDataLayout()), MVT::Other
), Op
);
6322 DAG
.setRoot(Res
.getValue(1));
6325 case Intrinsic::stackrestore
:
6326 Res
= getValue(I
.getArgOperand(0));
6327 DAG
.setRoot(DAG
.getNode(ISD::STACKRESTORE
, sdl
, MVT::Other
, getRoot(), Res
));
6329 case Intrinsic::get_dynamic_area_offset
: {
6330 SDValue Op
= getRoot();
6331 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
6332 EVT ResTy
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6333 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6335 if (PtrTy
.getSizeInBits() < ResTy
.getSizeInBits())
6336 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6338 Res
= DAG
.getNode(ISD::GET_DYNAMIC_AREA_OFFSET
, sdl
, DAG
.getVTList(ResTy
),
6344 case Intrinsic::stackguard
: {
6345 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
6346 MachineFunction
&MF
= DAG
.getMachineFunction();
6347 const Module
&M
= *MF
.getFunction().getParent();
6348 SDValue Chain
= getRoot();
6349 if (TLI
.useLoadStackGuardNode()) {
6350 Res
= getLoadStackGuard(DAG
, sdl
, Chain
);
6352 const Value
*Global
= TLI
.getSDagStackGuard(M
);
6353 unsigned Align
= DL
->getPrefTypeAlignment(Global
->getType());
6354 Res
= DAG
.getLoad(PtrTy
, sdl
, Chain
, getValue(Global
),
6355 MachinePointerInfo(Global
, 0), Align
,
6356 MachineMemOperand::MOVolatile
);
6358 if (TLI
.useStackGuardXorFP())
6359 Res
= TLI
.emitStackGuardXorFP(DAG
, Res
, sdl
);
6364 case Intrinsic::stackprotector
: {
6365 // Emit code into the DAG to store the stack guard onto the stack.
6366 MachineFunction
&MF
= DAG
.getMachineFunction();
6367 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
6368 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
6369 SDValue Src
, Chain
= getRoot();
6371 if (TLI
.useLoadStackGuardNode())
6372 Src
= getLoadStackGuard(DAG
, sdl
, Chain
);
6374 Src
= getValue(I
.getArgOperand(0)); // The guard's value.
6376 AllocaInst
*Slot
= cast
<AllocaInst
>(I
.getArgOperand(1));
6378 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
6379 MFI
.setStackProtectorIndex(FI
);
6381 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
6383 // Store the stack protector onto the stack.
6384 Res
= DAG
.getStore(Chain
, sdl
, Src
, FIN
, MachinePointerInfo::getFixedStack(
6385 DAG
.getMachineFunction(), FI
),
6386 /* Alignment = */ 0, MachineMemOperand::MOVolatile
);
6391 case Intrinsic::objectsize
: {
6392 // If we don't know by now, we're never going to know.
6393 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(1));
6395 assert(CI
&& "Non-constant type in __builtin_object_size?");
6397 SDValue Arg
= getValue(I
.getCalledValue());
6398 EVT Ty
= Arg
.getValueType();
6401 Res
= DAG
.getConstant(-1ULL, sdl
, Ty
);
6403 Res
= DAG
.getConstant(0, sdl
, Ty
);
6409 case Intrinsic::is_constant
:
6410 // If this wasn't constant-folded away by now, then it's not a
6412 setValue(&I
, DAG
.getConstant(0, sdl
, MVT::i1
));
6415 case Intrinsic::annotation
:
6416 case Intrinsic::ptr_annotation
:
6417 case Intrinsic::launder_invariant_group
:
6418 case Intrinsic::strip_invariant_group
:
6419 // Drop the intrinsic, but forward the value
6420 setValue(&I
, getValue(I
.getOperand(0)));
6422 case Intrinsic::assume
:
6423 case Intrinsic::var_annotation
:
6424 case Intrinsic::sideeffect
:
6425 // Discard annotate attributes, assumptions, and artificial side-effects.
6428 case Intrinsic::codeview_annotation
: {
6429 // Emit a label associated with this metadata.
6430 MachineFunction
&MF
= DAG
.getMachineFunction();
6432 MF
.getMMI().getContext().createTempSymbol("annotation", true);
6433 Metadata
*MD
= cast
<MetadataAsValue
>(I
.getArgOperand(0))->getMetadata();
6434 MF
.addCodeViewAnnotation(Label
, cast
<MDNode
>(MD
));
6435 Res
= DAG
.getLabelNode(ISD::ANNOTATION_LABEL
, sdl
, getRoot(), Label
);
6440 case Intrinsic::init_trampoline
: {
6441 const Function
*F
= cast
<Function
>(I
.getArgOperand(1)->stripPointerCasts());
6445 Ops
[1] = getValue(I
.getArgOperand(0));
6446 Ops
[2] = getValue(I
.getArgOperand(1));
6447 Ops
[3] = getValue(I
.getArgOperand(2));
6448 Ops
[4] = DAG
.getSrcValue(I
.getArgOperand(0));
6449 Ops
[5] = DAG
.getSrcValue(F
);
6451 Res
= DAG
.getNode(ISD::INIT_TRAMPOLINE
, sdl
, MVT::Other
, Ops
);
6456 case Intrinsic::adjust_trampoline
:
6457 setValue(&I
, DAG
.getNode(ISD::ADJUST_TRAMPOLINE
, sdl
,
6458 TLI
.getPointerTy(DAG
.getDataLayout()),
6459 getValue(I
.getArgOperand(0))));
6461 case Intrinsic::gcroot
: {
6462 assert(DAG
.getMachineFunction().getFunction().hasGC() &&
6463 "only valid in functions with gc specified, enforced by Verifier");
6464 assert(GFI
&& "implied by previous");
6465 const Value
*Alloca
= I
.getArgOperand(0)->stripPointerCasts();
6466 const Constant
*TypeMap
= cast
<Constant
>(I
.getArgOperand(1));
6468 FrameIndexSDNode
*FI
= cast
<FrameIndexSDNode
>(getValue(Alloca
).getNode());
6469 GFI
->addStackRoot(FI
->getIndex(), TypeMap
);
6472 case Intrinsic::gcread
:
6473 case Intrinsic::gcwrite
:
6474 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6475 case Intrinsic::flt_rounds
:
6476 setValue(&I
, DAG
.getNode(ISD::FLT_ROUNDS_
, sdl
, MVT::i32
));
6479 case Intrinsic::expect
:
6480 // Just replace __builtin_expect(exp, c) with EXP.
6481 setValue(&I
, getValue(I
.getArgOperand(0)));
6484 case Intrinsic::debugtrap
:
6485 case Intrinsic::trap
: {
6486 StringRef TrapFuncName
=
6488 .getAttribute(AttributeList::FunctionIndex
, "trap-func-name")
6489 .getValueAsString();
6490 if (TrapFuncName
.empty()) {
6491 ISD::NodeType Op
= (Intrinsic
== Intrinsic::trap
) ?
6492 ISD::TRAP
: ISD::DEBUGTRAP
;
6493 DAG
.setRoot(DAG
.getNode(Op
, sdl
,MVT::Other
, getRoot()));
6496 TargetLowering::ArgListTy Args
;
6498 TargetLowering::CallLoweringInfo
CLI(DAG
);
6499 CLI
.setDebugLoc(sdl
).setChain(getRoot()).setLibCallee(
6500 CallingConv::C
, I
.getType(),
6501 DAG
.getExternalSymbol(TrapFuncName
.data(),
6502 TLI
.getPointerTy(DAG
.getDataLayout())),
6505 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
6506 DAG
.setRoot(Result
.second
);
6510 case Intrinsic::uadd_with_overflow
:
6511 case Intrinsic::sadd_with_overflow
:
6512 case Intrinsic::usub_with_overflow
:
6513 case Intrinsic::ssub_with_overflow
:
6514 case Intrinsic::umul_with_overflow
:
6515 case Intrinsic::smul_with_overflow
: {
6517 switch (Intrinsic
) {
6518 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6519 case Intrinsic::uadd_with_overflow
: Op
= ISD::UADDO
; break;
6520 case Intrinsic::sadd_with_overflow
: Op
= ISD::SADDO
; break;
6521 case Intrinsic::usub_with_overflow
: Op
= ISD::USUBO
; break;
6522 case Intrinsic::ssub_with_overflow
: Op
= ISD::SSUBO
; break;
6523 case Intrinsic::umul_with_overflow
: Op
= ISD::UMULO
; break;
6524 case Intrinsic::smul_with_overflow
: Op
= ISD::SMULO
; break;
6526 SDValue Op1
= getValue(I
.getArgOperand(0));
6527 SDValue Op2
= getValue(I
.getArgOperand(1));
6529 EVT ResultVT
= Op1
.getValueType();
6530 EVT OverflowVT
= MVT::i1
;
6531 if (ResultVT
.isVector())
6532 OverflowVT
= EVT::getVectorVT(
6533 *Context
, OverflowVT
, ResultVT
.getVectorNumElements());
6535 SDVTList VTs
= DAG
.getVTList(ResultVT
, OverflowVT
);
6536 setValue(&I
, DAG
.getNode(Op
, sdl
, VTs
, Op1
, Op2
));
6539 case Intrinsic::prefetch
: {
6541 unsigned rw
= cast
<ConstantInt
>(I
.getArgOperand(1))->getZExtValue();
6542 auto Flags
= rw
== 0 ? MachineMemOperand::MOLoad
:MachineMemOperand::MOStore
;
6543 Ops
[0] = DAG
.getRoot();
6544 Ops
[1] = getValue(I
.getArgOperand(0));
6545 Ops
[2] = getValue(I
.getArgOperand(1));
6546 Ops
[3] = getValue(I
.getArgOperand(2));
6547 Ops
[4] = getValue(I
.getArgOperand(3));
6548 SDValue Result
= DAG
.getMemIntrinsicNode(ISD::PREFETCH
, sdl
,
6549 DAG
.getVTList(MVT::Other
), Ops
,
6550 EVT::getIntegerVT(*Context
, 8),
6551 MachinePointerInfo(I
.getArgOperand(0)),
6555 // Chain the prefetch in parallell with any pending loads, to stay out of
6556 // the way of later optimizations.
6557 PendingLoads
.push_back(Result
);
6559 DAG
.setRoot(Result
);
6562 case Intrinsic::lifetime_start
:
6563 case Intrinsic::lifetime_end
: {
6564 bool IsStart
= (Intrinsic
== Intrinsic::lifetime_start
);
6565 // Stack coloring is not enabled in O0, discard region information.
6566 if (TM
.getOptLevel() == CodeGenOpt::None
)
6569 const int64_t ObjectSize
=
6570 cast
<ConstantInt
>(I
.getArgOperand(0))->getSExtValue();
6571 Value
*const ObjectPtr
= I
.getArgOperand(1);
6572 SmallVector
<const Value
*, 4> Allocas
;
6573 GetUnderlyingObjects(ObjectPtr
, Allocas
, *DL
);
6575 for (SmallVectorImpl
<const Value
*>::iterator Object
= Allocas
.begin(),
6576 E
= Allocas
.end(); Object
!= E
; ++Object
) {
6577 const AllocaInst
*LifetimeObject
= dyn_cast_or_null
<AllocaInst
>(*Object
);
6579 // Could not find an Alloca.
6580 if (!LifetimeObject
)
6583 // First check that the Alloca is static, otherwise it won't have a
6584 // valid frame index.
6585 auto SI
= FuncInfo
.StaticAllocaMap
.find(LifetimeObject
);
6586 if (SI
== FuncInfo
.StaticAllocaMap
.end())
6589 const int FrameIndex
= SI
->second
;
6591 if (GetPointerBaseWithConstantOffset(
6592 ObjectPtr
, Offset
, DAG
.getDataLayout()) != LifetimeObject
)
6593 Offset
= -1; // Cannot determine offset from alloca to lifetime object.
6594 Res
= DAG
.getLifetimeNode(IsStart
, sdl
, getRoot(), FrameIndex
, ObjectSize
,
6600 case Intrinsic::invariant_start
:
6601 // Discard region information.
6602 setValue(&I
, DAG
.getUNDEF(TLI
.getPointerTy(DAG
.getDataLayout())));
6604 case Intrinsic::invariant_end
:
6605 // Discard region information.
6607 case Intrinsic::clear_cache
:
6608 /// FunctionName may be null.
6609 if (const char *FunctionName
= TLI
.getClearCacheBuiltinName())
6610 lowerCallToExternalSymbol(I
, FunctionName
);
6612 case Intrinsic::donothing
:
6615 case Intrinsic::experimental_stackmap
:
6618 case Intrinsic::experimental_patchpoint_void
:
6619 case Intrinsic::experimental_patchpoint_i64
:
6620 visitPatchpoint(&I
);
6622 case Intrinsic::experimental_gc_statepoint
:
6623 LowerStatepoint(ImmutableStatepoint(&I
));
6625 case Intrinsic::experimental_gc_result
:
6626 visitGCResult(cast
<GCResultInst
>(I
));
6628 case Intrinsic::experimental_gc_relocate
:
6629 visitGCRelocate(cast
<GCRelocateInst
>(I
));
6631 case Intrinsic::instrprof_increment
:
6632 llvm_unreachable("instrprof failed to lower an increment");
6633 case Intrinsic::instrprof_value_profile
:
6634 llvm_unreachable("instrprof failed to lower a value profiling call");
6635 case Intrinsic::localescape
: {
6636 MachineFunction
&MF
= DAG
.getMachineFunction();
6637 const TargetInstrInfo
*TII
= DAG
.getSubtarget().getInstrInfo();
6639 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6640 // is the same on all targets.
6641 for (unsigned Idx
= 0, E
= I
.getNumArgOperands(); Idx
< E
; ++Idx
) {
6642 Value
*Arg
= I
.getArgOperand(Idx
)->stripPointerCasts();
6643 if (isa
<ConstantPointerNull
>(Arg
))
6644 continue; // Skip null pointers. They represent a hole in index space.
6645 AllocaInst
*Slot
= cast
<AllocaInst
>(Arg
);
6646 assert(FuncInfo
.StaticAllocaMap
.count(Slot
) &&
6647 "can only escape static allocas");
6648 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
6649 MCSymbol
*FrameAllocSym
=
6650 MF
.getMMI().getContext().getOrCreateFrameAllocSymbol(
6651 GlobalValue::dropLLVMManglingEscape(MF
.getName()), Idx
);
6652 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, dl
,
6653 TII
->get(TargetOpcode::LOCAL_ESCAPE
))
6654 .addSym(FrameAllocSym
)
6661 case Intrinsic::localrecover
: {
6662 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6663 MachineFunction
&MF
= DAG
.getMachineFunction();
6664 MVT PtrVT
= TLI
.getPointerTy(DAG
.getDataLayout(), 0);
6666 // Get the symbol that defines the frame offset.
6667 auto *Fn
= cast
<Function
>(I
.getArgOperand(0)->stripPointerCasts());
6668 auto *Idx
= cast
<ConstantInt
>(I
.getArgOperand(2));
6670 unsigned(Idx
->getLimitedValue(std::numeric_limits
<int>::max()));
6671 MCSymbol
*FrameAllocSym
=
6672 MF
.getMMI().getContext().getOrCreateFrameAllocSymbol(
6673 GlobalValue::dropLLVMManglingEscape(Fn
->getName()), IdxVal
);
6675 // Create a MCSymbol for the label to avoid any target lowering
6676 // that would make this PC relative.
6677 SDValue OffsetSym
= DAG
.getMCSymbol(FrameAllocSym
, PtrVT
);
6679 DAG
.getNode(ISD::LOCAL_RECOVER
, sdl
, PtrVT
, OffsetSym
);
6681 // Add the offset to the FP.
6682 Value
*FP
= I
.getArgOperand(1);
6683 SDValue FPVal
= getValue(FP
);
6684 SDValue Add
= DAG
.getNode(ISD::ADD
, sdl
, PtrVT
, FPVal
, OffsetVal
);
6690 case Intrinsic::eh_exceptionpointer
:
6691 case Intrinsic::eh_exceptioncode
: {
6692 // Get the exception pointer vreg, copy from it, and resize it to fit.
6693 const auto *CPI
= cast
<CatchPadInst
>(I
.getArgOperand(0));
6694 MVT PtrVT
= TLI
.getPointerTy(DAG
.getDataLayout());
6695 const TargetRegisterClass
*PtrRC
= TLI
.getRegClassFor(PtrVT
);
6696 unsigned VReg
= FuncInfo
.getCatchPadExceptionPointerVReg(CPI
, PtrRC
);
6698 DAG
.getCopyFromReg(DAG
.getEntryNode(), getCurSDLoc(), VReg
, PtrVT
);
6699 if (Intrinsic
== Intrinsic::eh_exceptioncode
)
6700 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), MVT::i32
);
6704 case Intrinsic::xray_customevent
: {
6705 // Here we want to make sure that the intrinsic behaves as if it has a
6706 // specific calling convention, and only for x86_64.
6707 // FIXME: Support other platforms later.
6708 const auto &Triple
= DAG
.getTarget().getTargetTriple();
6709 if (Triple
.getArch() != Triple::x86_64
|| !Triple
.isOSLinux())
6712 SDLoc DL
= getCurSDLoc();
6713 SmallVector
<SDValue
, 8> Ops
;
6715 // We want to say that we always want the arguments in registers.
6716 SDValue LogEntryVal
= getValue(I
.getArgOperand(0));
6717 SDValue StrSizeVal
= getValue(I
.getArgOperand(1));
6718 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
6719 SDValue Chain
= getRoot();
6720 Ops
.push_back(LogEntryVal
);
6721 Ops
.push_back(StrSizeVal
);
6722 Ops
.push_back(Chain
);
6724 // We need to enforce the calling convention for the callsite, so that
6725 // argument ordering is enforced correctly, and that register allocation can
6726 // see that some registers may be assumed clobbered and have to preserve
6727 // them across calls to the intrinsic.
6728 MachineSDNode
*MN
= DAG
.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL
,
6730 SDValue patchableNode
= SDValue(MN
, 0);
6731 DAG
.setRoot(patchableNode
);
6732 setValue(&I
, patchableNode
);
6735 case Intrinsic::xray_typedevent
: {
6736 // Here we want to make sure that the intrinsic behaves as if it has a
6737 // specific calling convention, and only for x86_64.
6738 // FIXME: Support other platforms later.
6739 const auto &Triple
= DAG
.getTarget().getTargetTriple();
6740 if (Triple
.getArch() != Triple::x86_64
|| !Triple
.isOSLinux())
6743 SDLoc DL
= getCurSDLoc();
6744 SmallVector
<SDValue
, 8> Ops
;
6746 // We want to say that we always want the arguments in registers.
6747 // It's unclear to me how manipulating the selection DAG here forces callers
6748 // to provide arguments in registers instead of on the stack.
6749 SDValue LogTypeId
= getValue(I
.getArgOperand(0));
6750 SDValue LogEntryVal
= getValue(I
.getArgOperand(1));
6751 SDValue StrSizeVal
= getValue(I
.getArgOperand(2));
6752 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
6753 SDValue Chain
= getRoot();
6754 Ops
.push_back(LogTypeId
);
6755 Ops
.push_back(LogEntryVal
);
6756 Ops
.push_back(StrSizeVal
);
6757 Ops
.push_back(Chain
);
6759 // We need to enforce the calling convention for the callsite, so that
6760 // argument ordering is enforced correctly, and that register allocation can
6761 // see that some registers may be assumed clobbered and have to preserve
6762 // them across calls to the intrinsic.
6763 MachineSDNode
*MN
= DAG
.getMachineNode(
6764 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL
, DL
, NodeTys
, Ops
);
6765 SDValue patchableNode
= SDValue(MN
, 0);
6766 DAG
.setRoot(patchableNode
);
6767 setValue(&I
, patchableNode
);
6770 case Intrinsic::experimental_deoptimize
:
6771 LowerDeoptimizeCall(&I
);
6774 case Intrinsic::experimental_vector_reduce_v2_fadd
:
6775 case Intrinsic::experimental_vector_reduce_v2_fmul
:
6776 case Intrinsic::experimental_vector_reduce_add
:
6777 case Intrinsic::experimental_vector_reduce_mul
:
6778 case Intrinsic::experimental_vector_reduce_and
:
6779 case Intrinsic::experimental_vector_reduce_or
:
6780 case Intrinsic::experimental_vector_reduce_xor
:
6781 case Intrinsic::experimental_vector_reduce_smax
:
6782 case Intrinsic::experimental_vector_reduce_smin
:
6783 case Intrinsic::experimental_vector_reduce_umax
:
6784 case Intrinsic::experimental_vector_reduce_umin
:
6785 case Intrinsic::experimental_vector_reduce_fmax
:
6786 case Intrinsic::experimental_vector_reduce_fmin
:
6787 visitVectorReduce(I
, Intrinsic
);
6790 case Intrinsic::icall_branch_funnel
: {
6791 SmallVector
<SDValue
, 16> Ops
;
6792 Ops
.push_back(getValue(I
.getArgOperand(0)));
6795 auto *Base
= dyn_cast
<GlobalObject
>(GetPointerBaseWithConstantOffset(
6796 I
.getArgOperand(1), Offset
, DAG
.getDataLayout()));
6799 "llvm.icall.branch.funnel operand must be a GlobalValue");
6800 Ops
.push_back(DAG
.getTargetGlobalAddress(Base
, getCurSDLoc(), MVT::i64
, 0));
6802 struct BranchFunnelTarget
{
6806 SmallVector
<BranchFunnelTarget
, 8> Targets
;
6808 for (unsigned Op
= 1, N
= I
.getNumArgOperands(); Op
!= N
; Op
+= 2) {
6809 auto *ElemBase
= dyn_cast
<GlobalObject
>(GetPointerBaseWithConstantOffset(
6810 I
.getArgOperand(Op
), Offset
, DAG
.getDataLayout()));
6811 if (ElemBase
!= Base
)
6812 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6813 "to the same GlobalValue");
6815 SDValue Val
= getValue(I
.getArgOperand(Op
+ 1));
6816 auto *GA
= dyn_cast
<GlobalAddressSDNode
>(Val
);
6819 "llvm.icall.branch.funnel operand must be a GlobalValue");
6820 Targets
.push_back({Offset
, DAG
.getTargetGlobalAddress(
6821 GA
->getGlobal(), getCurSDLoc(),
6822 Val
.getValueType(), GA
->getOffset())});
6825 [](const BranchFunnelTarget
&T1
, const BranchFunnelTarget
&T2
) {
6826 return T1
.Offset
< T2
.Offset
;
6829 for (auto &T
: Targets
) {
6830 Ops
.push_back(DAG
.getTargetConstant(T
.Offset
, getCurSDLoc(), MVT::i32
));
6831 Ops
.push_back(T
.Target
);
6834 Ops
.push_back(DAG
.getRoot()); // Chain
6835 SDValue
N(DAG
.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL
,
6836 getCurSDLoc(), MVT::Other
, Ops
),
6844 case Intrinsic::wasm_landingpad_index
:
6845 // Information this intrinsic contained has been transferred to
6846 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6850 case Intrinsic::aarch64_settag
:
6851 case Intrinsic::aarch64_settag_zero
: {
6852 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
6853 bool ZeroMemory
= Intrinsic
== Intrinsic::aarch64_settag_zero
;
6854 SDValue Val
= TSI
.EmitTargetCodeForSetTag(
6855 DAG
, getCurSDLoc(), getRoot(), getValue(I
.getArgOperand(0)),
6856 getValue(I
.getArgOperand(1)), MachinePointerInfo(I
.getArgOperand(0)),
6862 case Intrinsic::ptrmask
: {
6863 SDValue Ptr
= getValue(I
.getOperand(0));
6864 SDValue Const
= getValue(I
.getOperand(1));
6867 EVT(DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout()));
6869 setValue(&I
, DAG
.getNode(ISD::AND
, getCurSDLoc(), DestVT
, Ptr
,
6870 DAG
.getZExtOrTrunc(Const
, getCurSDLoc(), DestVT
)));
6876 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6877 const ConstrainedFPIntrinsic
&FPI
) {
6878 SDLoc sdl
= getCurSDLoc();
6880 switch (FPI
.getIntrinsicID()) {
6881 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6882 case Intrinsic::experimental_constrained_fadd
:
6883 Opcode
= ISD::STRICT_FADD
;
6885 case Intrinsic::experimental_constrained_fsub
:
6886 Opcode
= ISD::STRICT_FSUB
;
6888 case Intrinsic::experimental_constrained_fmul
:
6889 Opcode
= ISD::STRICT_FMUL
;
6891 case Intrinsic::experimental_constrained_fdiv
:
6892 Opcode
= ISD::STRICT_FDIV
;
6894 case Intrinsic::experimental_constrained_frem
:
6895 Opcode
= ISD::STRICT_FREM
;
6897 case Intrinsic::experimental_constrained_fma
:
6898 Opcode
= ISD::STRICT_FMA
;
6900 case Intrinsic::experimental_constrained_fptrunc
:
6901 Opcode
= ISD::STRICT_FP_ROUND
;
6903 case Intrinsic::experimental_constrained_fpext
:
6904 Opcode
= ISD::STRICT_FP_EXTEND
;
6906 case Intrinsic::experimental_constrained_sqrt
:
6907 Opcode
= ISD::STRICT_FSQRT
;
6909 case Intrinsic::experimental_constrained_pow
:
6910 Opcode
= ISD::STRICT_FPOW
;
6912 case Intrinsic::experimental_constrained_powi
:
6913 Opcode
= ISD::STRICT_FPOWI
;
6915 case Intrinsic::experimental_constrained_sin
:
6916 Opcode
= ISD::STRICT_FSIN
;
6918 case Intrinsic::experimental_constrained_cos
:
6919 Opcode
= ISD::STRICT_FCOS
;
6921 case Intrinsic::experimental_constrained_exp
:
6922 Opcode
= ISD::STRICT_FEXP
;
6924 case Intrinsic::experimental_constrained_exp2
:
6925 Opcode
= ISD::STRICT_FEXP2
;
6927 case Intrinsic::experimental_constrained_log
:
6928 Opcode
= ISD::STRICT_FLOG
;
6930 case Intrinsic::experimental_constrained_log10
:
6931 Opcode
= ISD::STRICT_FLOG10
;
6933 case Intrinsic::experimental_constrained_log2
:
6934 Opcode
= ISD::STRICT_FLOG2
;
6936 case Intrinsic::experimental_constrained_rint
:
6937 Opcode
= ISD::STRICT_FRINT
;
6939 case Intrinsic::experimental_constrained_nearbyint
:
6940 Opcode
= ISD::STRICT_FNEARBYINT
;
6942 case Intrinsic::experimental_constrained_maxnum
:
6943 Opcode
= ISD::STRICT_FMAXNUM
;
6945 case Intrinsic::experimental_constrained_minnum
:
6946 Opcode
= ISD::STRICT_FMINNUM
;
6948 case Intrinsic::experimental_constrained_ceil
:
6949 Opcode
= ISD::STRICT_FCEIL
;
6951 case Intrinsic::experimental_constrained_floor
:
6952 Opcode
= ISD::STRICT_FFLOOR
;
6954 case Intrinsic::experimental_constrained_round
:
6955 Opcode
= ISD::STRICT_FROUND
;
6957 case Intrinsic::experimental_constrained_trunc
:
6958 Opcode
= ISD::STRICT_FTRUNC
;
6961 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6962 SDValue Chain
= getRoot();
6963 SmallVector
<EVT
, 4> ValueVTs
;
6964 ComputeValueVTs(TLI
, DAG
.getDataLayout(), FPI
.getType(), ValueVTs
);
6965 ValueVTs
.push_back(MVT::Other
); // Out chain
6967 SDVTList VTs
= DAG
.getVTList(ValueVTs
);
6969 if (Opcode
== ISD::STRICT_FP_ROUND
)
6970 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
6971 { Chain
, getValue(FPI
.getArgOperand(0)),
6972 DAG
.getTargetConstant(0, sdl
,
6973 TLI
.getPointerTy(DAG
.getDataLayout())) });
6974 else if (FPI
.isUnaryOp())
6975 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
6976 { Chain
, getValue(FPI
.getArgOperand(0)) });
6977 else if (FPI
.isTernaryOp())
6978 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
6979 { Chain
, getValue(FPI
.getArgOperand(0)),
6980 getValue(FPI
.getArgOperand(1)),
6981 getValue(FPI
.getArgOperand(2)) });
6983 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
6984 { Chain
, getValue(FPI
.getArgOperand(0)),
6985 getValue(FPI
.getArgOperand(1)) });
6987 if (FPI
.getExceptionBehavior() !=
6988 ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore
) {
6990 Flags
.setFPExcept(true);
6991 Result
->setFlags(Flags
);
6994 assert(Result
.getNode()->getNumValues() == 2);
6995 SDValue OutChain
= Result
.getValue(1);
6996 DAG
.setRoot(OutChain
);
6997 SDValue FPResult
= Result
.getValue(0);
6998 setValue(&FPI
, FPResult
);
7001 std::pair
<SDValue
, SDValue
>
7002 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo
&CLI
,
7003 const BasicBlock
*EHPadBB
) {
7004 MachineFunction
&MF
= DAG
.getMachineFunction();
7005 MachineModuleInfo
&MMI
= MF
.getMMI();
7006 MCSymbol
*BeginLabel
= nullptr;
7009 // Insert a label before the invoke call to mark the try range. This can be
7010 // used to detect deletion of the invoke via the MachineModuleInfo.
7011 BeginLabel
= MMI
.getContext().createTempSymbol();
7013 // For SjLj, keep track of which landing pads go with which invokes
7014 // so as to maintain the ordering of pads in the LSDA.
7015 unsigned CallSiteIndex
= MMI
.getCurrentCallSite();
7016 if (CallSiteIndex
) {
7017 MF
.setCallSiteBeginLabel(BeginLabel
, CallSiteIndex
);
7018 LPadToCallSiteMap
[FuncInfo
.MBBMap
[EHPadBB
]].push_back(CallSiteIndex
);
7020 // Now that the call site is handled, stop tracking it.
7021 MMI
.setCurrentCallSite(0);
7024 // Both PendingLoads and PendingExports must be flushed here;
7025 // this call might not return.
7027 DAG
.setRoot(DAG
.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel
));
7029 CLI
.setChain(getRoot());
7031 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7032 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
7034 assert((CLI
.IsTailCall
|| Result
.second
.getNode()) &&
7035 "Non-null chain expected with non-tail call!");
7036 assert((Result
.second
.getNode() || !Result
.first
.getNode()) &&
7037 "Null value expected with tail call!");
7039 if (!Result
.second
.getNode()) {
7040 // As a special case, a null chain means that a tail call has been emitted
7041 // and the DAG root is already updated.
7044 // Since there's no actual continuation from this block, nothing can be
7045 // relying on us setting vregs for them.
7046 PendingExports
.clear();
7048 DAG
.setRoot(Result
.second
);
7052 // Insert a label at the end of the invoke call to mark the try range. This
7053 // can be used to detect deletion of the invoke via the MachineModuleInfo.
7054 MCSymbol
*EndLabel
= MMI
.getContext().createTempSymbol();
7055 DAG
.setRoot(DAG
.getEHLabel(getCurSDLoc(), getRoot(), EndLabel
));
7057 // Inform MachineModuleInfo of range.
7058 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
7059 // There is a platform (e.g. wasm) that uses funclet style IR but does not
7060 // actually use outlined funclets and their LSDA info style.
7061 if (MF
.hasEHFunclets() && isFuncletEHPersonality(Pers
)) {
7063 WinEHFuncInfo
*EHInfo
= DAG
.getMachineFunction().getWinEHFuncInfo();
7064 EHInfo
->addIPToStateRange(cast
<InvokeInst
>(CLI
.CS
.getInstruction()),
7065 BeginLabel
, EndLabel
);
7066 } else if (!isScopedEHPersonality(Pers
)) {
7067 MF
.addInvoke(FuncInfo
.MBBMap
[EHPadBB
], BeginLabel
, EndLabel
);
7074 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS
, SDValue Callee
,
7076 const BasicBlock
*EHPadBB
) {
7077 auto &DL
= DAG
.getDataLayout();
7078 FunctionType
*FTy
= CS
.getFunctionType();
7079 Type
*RetTy
= CS
.getType();
7081 TargetLowering::ArgListTy Args
;
7082 Args
.reserve(CS
.arg_size());
7084 const Value
*SwiftErrorVal
= nullptr;
7085 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7087 // We can't tail call inside a function with a swifterror argument. Lowering
7088 // does not support this yet. It would have to move into the swifterror
7089 // register before the call.
7090 auto *Caller
= CS
.getInstruction()->getParent()->getParent();
7091 if (TLI
.supportSwiftError() &&
7092 Caller
->getAttributes().hasAttrSomewhere(Attribute::SwiftError
))
7095 for (ImmutableCallSite::arg_iterator i
= CS
.arg_begin(), e
= CS
.arg_end();
7097 TargetLowering::ArgListEntry Entry
;
7098 const Value
*V
= *i
;
7101 if (V
->getType()->isEmptyTy())
7104 SDValue ArgNode
= getValue(V
);
7105 Entry
.Node
= ArgNode
; Entry
.Ty
= V
->getType();
7107 Entry
.setAttributes(&CS
, i
- CS
.arg_begin());
7109 // Use swifterror virtual register as input to the call.
7110 if (Entry
.IsSwiftError
&& TLI
.supportSwiftError()) {
7112 // We find the virtual register for the actual swifterror argument.
7113 // Instead of using the Value, we use the virtual register instead.
7114 Entry
.Node
= DAG
.getRegister(
7115 SwiftError
.getOrCreateVRegUseAt(CS
.getInstruction(), FuncInfo
.MBB
, V
),
7116 EVT(TLI
.getPointerTy(DL
)));
7119 Args
.push_back(Entry
);
7121 // If we have an explicit sret argument that is an Instruction, (i.e., it
7122 // might point to function-local memory), we can't meaningfully tail-call.
7123 if (Entry
.IsSRet
&& isa
<Instruction
>(V
))
7127 // Check if target-independent constraints permit a tail call here.
7128 // Target-dependent constraints are checked within TLI->LowerCallTo.
7129 if (isTailCall
&& !isInTailCallPosition(CS
, DAG
.getTarget()))
7132 // Disable tail calls if there is an swifterror argument. Targets have not
7133 // been updated to support tail calls.
7134 if (TLI
.supportSwiftError() && SwiftErrorVal
)
7137 TargetLowering::CallLoweringInfo
CLI(DAG
);
7138 CLI
.setDebugLoc(getCurSDLoc())
7139 .setChain(getRoot())
7140 .setCallee(RetTy
, FTy
, Callee
, std::move(Args
), CS
)
7141 .setTailCall(isTailCall
)
7142 .setConvergent(CS
.isConvergent());
7143 std::pair
<SDValue
, SDValue
> Result
= lowerInvokable(CLI
, EHPadBB
);
7145 if (Result
.first
.getNode()) {
7146 const Instruction
*Inst
= CS
.getInstruction();
7147 Result
.first
= lowerRangeToAssertZExt(DAG
, *Inst
, Result
.first
);
7148 setValue(Inst
, Result
.first
);
7151 // The last element of CLI.InVals has the SDValue for swifterror return.
7152 // Here we copy it to a virtual register and update SwiftErrorMap for
7154 if (SwiftErrorVal
&& TLI
.supportSwiftError()) {
7155 // Get the last element of InVals.
7156 SDValue Src
= CLI
.InVals
.back();
7157 Register VReg
= SwiftError
.getOrCreateVRegDefAt(
7158 CS
.getInstruction(), FuncInfo
.MBB
, SwiftErrorVal
);
7159 SDValue CopyNode
= CLI
.DAG
.getCopyToReg(Result
.second
, CLI
.DL
, VReg
, Src
);
7160 DAG
.setRoot(CopyNode
);
7164 static SDValue
getMemCmpLoad(const Value
*PtrVal
, MVT LoadVT
,
7165 SelectionDAGBuilder
&Builder
) {
7166 // Check to see if this load can be trivially constant folded, e.g. if the
7167 // input is from a string literal.
7168 if (const Constant
*LoadInput
= dyn_cast
<Constant
>(PtrVal
)) {
7169 // Cast pointer to the type we really want to load.
7171 Type::getIntNTy(PtrVal
->getContext(), LoadVT
.getScalarSizeInBits());
7172 if (LoadVT
.isVector())
7173 LoadTy
= VectorType::get(LoadTy
, LoadVT
.getVectorNumElements());
7175 LoadInput
= ConstantExpr::getBitCast(const_cast<Constant
*>(LoadInput
),
7176 PointerType::getUnqual(LoadTy
));
7178 if (const Constant
*LoadCst
= ConstantFoldLoadFromConstPtr(
7179 const_cast<Constant
*>(LoadInput
), LoadTy
, *Builder
.DL
))
7180 return Builder
.getValue(LoadCst
);
7183 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
7184 // still constant memory, the input chain can be the entry node.
7186 bool ConstantMemory
= false;
7188 // Do not serialize (non-volatile) loads of constant memory with anything.
7189 if (Builder
.AA
&& Builder
.AA
->pointsToConstantMemory(PtrVal
)) {
7190 Root
= Builder
.DAG
.getEntryNode();
7191 ConstantMemory
= true;
7193 // Do not serialize non-volatile loads against each other.
7194 Root
= Builder
.DAG
.getRoot();
7197 SDValue Ptr
= Builder
.getValue(PtrVal
);
7198 SDValue LoadVal
= Builder
.DAG
.getLoad(LoadVT
, Builder
.getCurSDLoc(), Root
,
7199 Ptr
, MachinePointerInfo(PtrVal
),
7200 /* Alignment = */ 1);
7202 if (!ConstantMemory
)
7203 Builder
.PendingLoads
.push_back(LoadVal
.getValue(1));
7207 /// Record the value for an instruction that produces an integer result,
7208 /// converting the type where necessary.
7209 void SelectionDAGBuilder::processIntegerCallValue(const Instruction
&I
,
7212 EVT VT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
7215 Value
= DAG
.getSExtOrTrunc(Value
, getCurSDLoc(), VT
);
7217 Value
= DAG
.getZExtOrTrunc(Value
, getCurSDLoc(), VT
);
7218 setValue(&I
, Value
);
7221 /// See if we can lower a memcmp call into an optimized form. If so, return
7222 /// true and lower it. Otherwise return false, and it will be lowered like a
7224 /// The caller already checked that \p I calls the appropriate LibFunc with a
7225 /// correct prototype.
7226 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst
&I
) {
7227 const Value
*LHS
= I
.getArgOperand(0), *RHS
= I
.getArgOperand(1);
7228 const Value
*Size
= I
.getArgOperand(2);
7229 const ConstantInt
*CSize
= dyn_cast
<ConstantInt
>(Size
);
7230 if (CSize
&& CSize
->getZExtValue() == 0) {
7231 EVT CallVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
7233 setValue(&I
, DAG
.getConstant(0, getCurSDLoc(), CallVT
));
7237 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7238 std::pair
<SDValue
, SDValue
> Res
= TSI
.EmitTargetCodeForMemcmp(
7239 DAG
, getCurSDLoc(), DAG
.getRoot(), getValue(LHS
), getValue(RHS
),
7240 getValue(Size
), MachinePointerInfo(LHS
), MachinePointerInfo(RHS
));
7241 if (Res
.first
.getNode()) {
7242 processIntegerCallValue(I
, Res
.first
, true);
7243 PendingLoads
.push_back(Res
.second
);
7247 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
7248 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
7249 if (!CSize
|| !isOnlyUsedInZeroEqualityComparison(&I
))
7252 // If the target has a fast compare for the given size, it will return a
7253 // preferred load type for that size. Require that the load VT is legal and
7254 // that the target supports unaligned loads of that type. Otherwise, return
7256 auto hasFastLoadsAndCompare
= [&](unsigned NumBits
) {
7257 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7258 MVT LVT
= TLI
.hasFastEqualityCompare(NumBits
);
7259 if (LVT
!= MVT::INVALID_SIMPLE_VALUE_TYPE
) {
7260 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7261 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7262 // TODO: Check alignment of src and dest ptrs.
7263 unsigned DstAS
= LHS
->getType()->getPointerAddressSpace();
7264 unsigned SrcAS
= RHS
->getType()->getPointerAddressSpace();
7265 if (!TLI
.isTypeLegal(LVT
) ||
7266 !TLI
.allowsMisalignedMemoryAccesses(LVT
, SrcAS
) ||
7267 !TLI
.allowsMisalignedMemoryAccesses(LVT
, DstAS
))
7268 LVT
= MVT::INVALID_SIMPLE_VALUE_TYPE
;
7274 // This turns into unaligned loads. We only do this if the target natively
7275 // supports the MVT we'll be loading or if it is small enough (<= 4) that
7276 // we'll only produce a small number of byte loads.
7278 unsigned NumBitsToCompare
= CSize
->getZExtValue() * 8;
7279 switch (NumBitsToCompare
) {
7291 LoadVT
= hasFastLoadsAndCompare(NumBitsToCompare
);
7295 if (LoadVT
== MVT::INVALID_SIMPLE_VALUE_TYPE
)
7298 SDValue LoadL
= getMemCmpLoad(LHS
, LoadVT
, *this);
7299 SDValue LoadR
= getMemCmpLoad(RHS
, LoadVT
, *this);
7301 // Bitcast to a wide integer type if the loads are vectors.
7302 if (LoadVT
.isVector()) {
7303 EVT CmpVT
= EVT::getIntegerVT(LHS
->getContext(), LoadVT
.getSizeInBits());
7304 LoadL
= DAG
.getBitcast(CmpVT
, LoadL
);
7305 LoadR
= DAG
.getBitcast(CmpVT
, LoadR
);
7308 SDValue Cmp
= DAG
.getSetCC(getCurSDLoc(), MVT::i1
, LoadL
, LoadR
, ISD::SETNE
);
7309 processIntegerCallValue(I
, Cmp
, false);
7313 /// See if we can lower a memchr call into an optimized form. If so, return
7314 /// true and lower it. Otherwise return false, and it will be lowered like a
7316 /// The caller already checked that \p I calls the appropriate LibFunc with a
7317 /// correct prototype.
7318 bool SelectionDAGBuilder::visitMemChrCall(const CallInst
&I
) {
7319 const Value
*Src
= I
.getArgOperand(0);
7320 const Value
*Char
= I
.getArgOperand(1);
7321 const Value
*Length
= I
.getArgOperand(2);
7323 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7324 std::pair
<SDValue
, SDValue
> Res
=
7325 TSI
.EmitTargetCodeForMemchr(DAG
, getCurSDLoc(), DAG
.getRoot(),
7326 getValue(Src
), getValue(Char
), getValue(Length
),
7327 MachinePointerInfo(Src
));
7328 if (Res
.first
.getNode()) {
7329 setValue(&I
, Res
.first
);
7330 PendingLoads
.push_back(Res
.second
);
7337 /// See if we can lower a mempcpy call into an optimized form. If so, return
7338 /// true and lower it. Otherwise return false, and it will be lowered like a
7340 /// The caller already checked that \p I calls the appropriate LibFunc with a
7341 /// correct prototype.
7342 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst
&I
) {
7343 SDValue Dst
= getValue(I
.getArgOperand(0));
7344 SDValue Src
= getValue(I
.getArgOperand(1));
7345 SDValue Size
= getValue(I
.getArgOperand(2));
7347 unsigned DstAlign
= DAG
.InferPtrAlignment(Dst
);
7348 unsigned SrcAlign
= DAG
.InferPtrAlignment(Src
);
7349 unsigned Align
= std::min(DstAlign
, SrcAlign
);
7350 if (Align
== 0) // Alignment of one or both could not be inferred.
7351 Align
= 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7354 SDLoc sdl
= getCurSDLoc();
7356 // In the mempcpy context we need to pass in a false value for isTailCall
7357 // because the return pointer needs to be adjusted by the size of
7358 // the copied memory.
7359 SDValue MC
= DAG
.getMemcpy(getRoot(), sdl
, Dst
, Src
, Size
, Align
, isVol
,
7360 false, /*isTailCall=*/false,
7361 MachinePointerInfo(I
.getArgOperand(0)),
7362 MachinePointerInfo(I
.getArgOperand(1)));
7363 assert(MC
.getNode() != nullptr &&
7364 "** memcpy should not be lowered as TailCall in mempcpy context **");
7367 // Check if Size needs to be truncated or extended.
7368 Size
= DAG
.getSExtOrTrunc(Size
, sdl
, Dst
.getValueType());
7370 // Adjust return pointer to point just past the last dst byte.
7371 SDValue DstPlusSize
= DAG
.getNode(ISD::ADD
, sdl
, Dst
.getValueType(),
7373 setValue(&I
, DstPlusSize
);
7377 /// See if we can lower a strcpy call into an optimized form. If so, return
7378 /// true and lower it, otherwise return false and it will be lowered like a
7380 /// The caller already checked that \p I calls the appropriate LibFunc with a
7381 /// correct prototype.
7382 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst
&I
, bool isStpcpy
) {
7383 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7385 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7386 std::pair
<SDValue
, SDValue
> Res
=
7387 TSI
.EmitTargetCodeForStrcpy(DAG
, getCurSDLoc(), getRoot(),
7388 getValue(Arg0
), getValue(Arg1
),
7389 MachinePointerInfo(Arg0
),
7390 MachinePointerInfo(Arg1
), isStpcpy
);
7391 if (Res
.first
.getNode()) {
7392 setValue(&I
, Res
.first
);
7393 DAG
.setRoot(Res
.second
);
7400 /// See if we can lower a strcmp call into an optimized form. If so, return
7401 /// true and lower it, otherwise return false and it will be lowered like a
7403 /// The caller already checked that \p I calls the appropriate LibFunc with a
7404 /// correct prototype.
7405 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst
&I
) {
7406 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7408 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7409 std::pair
<SDValue
, SDValue
> Res
=
7410 TSI
.EmitTargetCodeForStrcmp(DAG
, getCurSDLoc(), DAG
.getRoot(),
7411 getValue(Arg0
), getValue(Arg1
),
7412 MachinePointerInfo(Arg0
),
7413 MachinePointerInfo(Arg1
));
7414 if (Res
.first
.getNode()) {
7415 processIntegerCallValue(I
, Res
.first
, true);
7416 PendingLoads
.push_back(Res
.second
);
7423 /// See if we can lower a strlen call into an optimized form. If so, return
7424 /// true and lower it, otherwise return false and it will be lowered like a
7426 /// The caller already checked that \p I calls the appropriate LibFunc with a
7427 /// correct prototype.
7428 bool SelectionDAGBuilder::visitStrLenCall(const CallInst
&I
) {
7429 const Value
*Arg0
= I
.getArgOperand(0);
7431 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7432 std::pair
<SDValue
, SDValue
> Res
=
7433 TSI
.EmitTargetCodeForStrlen(DAG
, getCurSDLoc(), DAG
.getRoot(),
7434 getValue(Arg0
), MachinePointerInfo(Arg0
));
7435 if (Res
.first
.getNode()) {
7436 processIntegerCallValue(I
, Res
.first
, false);
7437 PendingLoads
.push_back(Res
.second
);
7444 /// See if we can lower a strnlen call into an optimized form. If so, return
7445 /// true and lower it, otherwise return false and it will be lowered like a
7447 /// The caller already checked that \p I calls the appropriate LibFunc with a
7448 /// correct prototype.
7449 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst
&I
) {
7450 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7452 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7453 std::pair
<SDValue
, SDValue
> Res
=
7454 TSI
.EmitTargetCodeForStrnlen(DAG
, getCurSDLoc(), DAG
.getRoot(),
7455 getValue(Arg0
), getValue(Arg1
),
7456 MachinePointerInfo(Arg0
));
7457 if (Res
.first
.getNode()) {
7458 processIntegerCallValue(I
, Res
.first
, false);
7459 PendingLoads
.push_back(Res
.second
);
7466 /// See if we can lower a unary floating-point operation into an SDNode with
7467 /// the specified Opcode. If so, return true and lower it, otherwise return
7468 /// false and it will be lowered like a normal call.
7469 /// The caller already checked that \p I calls the appropriate LibFunc with a
7470 /// correct prototype.
7471 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst
&I
,
7473 // We already checked this call's prototype; verify it doesn't modify errno.
7474 if (!I
.onlyReadsMemory())
7477 SDValue Tmp
= getValue(I
.getArgOperand(0));
7478 setValue(&I
, DAG
.getNode(Opcode
, getCurSDLoc(), Tmp
.getValueType(), Tmp
));
7482 /// See if we can lower a binary floating-point operation into an SDNode with
7483 /// the specified Opcode. If so, return true and lower it. Otherwise return
7484 /// false, and it will be lowered like a normal call.
7485 /// The caller already checked that \p I calls the appropriate LibFunc with a
7486 /// correct prototype.
7487 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst
&I
,
7489 // We already checked this call's prototype; verify it doesn't modify errno.
7490 if (!I
.onlyReadsMemory())
7493 SDValue Tmp0
= getValue(I
.getArgOperand(0));
7494 SDValue Tmp1
= getValue(I
.getArgOperand(1));
7495 EVT VT
= Tmp0
.getValueType();
7496 setValue(&I
, DAG
.getNode(Opcode
, getCurSDLoc(), VT
, Tmp0
, Tmp1
));
7500 void SelectionDAGBuilder::visitCall(const CallInst
&I
) {
7501 // Handle inline assembly differently.
7502 if (isa
<InlineAsm
>(I
.getCalledValue())) {
7507 if (Function
*F
= I
.getCalledFunction()) {
7508 if (F
->isDeclaration()) {
7509 // Is this an LLVM intrinsic or a target-specific intrinsic?
7510 unsigned IID
= F
->getIntrinsicID();
7512 if (const TargetIntrinsicInfo
*II
= TM
.getIntrinsicInfo())
7513 IID
= II
->getIntrinsicID(F
);
7516 visitIntrinsicCall(I
, IID
);
7521 // Check for well-known libc/libm calls. If the function is internal, it
7522 // can't be a library call. Don't do the check if marked as nobuiltin for
7523 // some reason or the call site requires strict floating point semantics.
7525 if (!I
.isNoBuiltin() && !I
.isStrictFP() && !F
->hasLocalLinkage() &&
7526 F
->hasName() && LibInfo
->getLibFunc(*F
, Func
) &&
7527 LibInfo
->hasOptimizedCodeGen(Func
)) {
7530 case LibFunc_copysign
:
7531 case LibFunc_copysignf
:
7532 case LibFunc_copysignl
:
7533 // We already checked this call's prototype; verify it doesn't modify
7535 if (I
.onlyReadsMemory()) {
7536 SDValue LHS
= getValue(I
.getArgOperand(0));
7537 SDValue RHS
= getValue(I
.getArgOperand(1));
7538 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, getCurSDLoc(),
7539 LHS
.getValueType(), LHS
, RHS
));
7546 if (visitUnaryFloatCall(I
, ISD::FABS
))
7552 if (visitBinaryFloatCall(I
, ISD::FMINNUM
))
7558 if (visitBinaryFloatCall(I
, ISD::FMAXNUM
))
7564 if (visitUnaryFloatCall(I
, ISD::FSIN
))
7570 if (visitUnaryFloatCall(I
, ISD::FCOS
))
7576 case LibFunc_sqrt_finite
:
7577 case LibFunc_sqrtf_finite
:
7578 case LibFunc_sqrtl_finite
:
7579 if (visitUnaryFloatCall(I
, ISD::FSQRT
))
7583 case LibFunc_floorf
:
7584 case LibFunc_floorl
:
7585 if (visitUnaryFloatCall(I
, ISD::FFLOOR
))
7588 case LibFunc_nearbyint
:
7589 case LibFunc_nearbyintf
:
7590 case LibFunc_nearbyintl
:
7591 if (visitUnaryFloatCall(I
, ISD::FNEARBYINT
))
7597 if (visitUnaryFloatCall(I
, ISD::FCEIL
))
7603 if (visitUnaryFloatCall(I
, ISD::FRINT
))
7607 case LibFunc_roundf
:
7608 case LibFunc_roundl
:
7609 if (visitUnaryFloatCall(I
, ISD::FROUND
))
7613 case LibFunc_truncf
:
7614 case LibFunc_truncl
:
7615 if (visitUnaryFloatCall(I
, ISD::FTRUNC
))
7621 if (visitUnaryFloatCall(I
, ISD::FLOG2
))
7627 if (visitUnaryFloatCall(I
, ISD::FEXP2
))
7630 case LibFunc_memcmp
:
7631 if (visitMemCmpCall(I
))
7634 case LibFunc_mempcpy
:
7635 if (visitMemPCpyCall(I
))
7638 case LibFunc_memchr
:
7639 if (visitMemChrCall(I
))
7642 case LibFunc_strcpy
:
7643 if (visitStrCpyCall(I
, false))
7646 case LibFunc_stpcpy
:
7647 if (visitStrCpyCall(I
, true))
7650 case LibFunc_strcmp
:
7651 if (visitStrCmpCall(I
))
7654 case LibFunc_strlen
:
7655 if (visitStrLenCall(I
))
7658 case LibFunc_strnlen
:
7659 if (visitStrNLenCall(I
))
7666 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7667 // have to do anything here to lower funclet bundles.
7668 assert(!I
.hasOperandBundlesOtherThan(
7669 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
}) &&
7670 "Cannot lower calls with arbitrary operand bundles!");
7672 SDValue Callee
= getValue(I
.getCalledValue());
7674 if (I
.countOperandBundlesOfType(LLVMContext::OB_deopt
))
7675 LowerCallSiteWithDeoptBundle(&I
, Callee
, nullptr);
7677 // Check if we can potentially perform a tail call. More detailed checking
7678 // is be done within LowerCallTo, after more information about the call is
7680 LowerCallTo(&I
, Callee
, I
.isTailCall());
7685 /// AsmOperandInfo - This contains information for each constraint that we are
7687 class SDISelAsmOperandInfo
: public TargetLowering::AsmOperandInfo
{
7689 /// CallOperand - If this is the result output operand or a clobber
7690 /// this is null, otherwise it is the incoming operand to the CallInst.
7691 /// This gets modified as the asm is processed.
7692 SDValue CallOperand
;
7694 /// AssignedRegs - If this is a register or register class operand, this
7695 /// contains the set of register corresponding to the operand.
7696 RegsForValue AssignedRegs
;
7698 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo
&info
)
7699 : TargetLowering::AsmOperandInfo(info
), CallOperand(nullptr, 0) {
7702 /// Whether or not this operand accesses memory
7703 bool hasMemory(const TargetLowering
&TLI
) const {
7704 // Indirect operand accesses access memory.
7708 for (const auto &Code
: Codes
)
7709 if (TLI
.getConstraintType(Code
) == TargetLowering::C_Memory
)
7715 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7716 /// corresponds to. If there is no Value* for this operand, it returns
7718 EVT
getCallOperandValEVT(LLVMContext
&Context
, const TargetLowering
&TLI
,
7719 const DataLayout
&DL
) const {
7720 if (!CallOperandVal
) return MVT::Other
;
7722 if (isa
<BasicBlock
>(CallOperandVal
))
7723 return TLI
.getPointerTy(DL
);
7725 llvm::Type
*OpTy
= CallOperandVal
->getType();
7727 // FIXME: code duplicated from TargetLowering::ParseConstraints().
7728 // If this is an indirect operand, the operand is a pointer to the
7731 PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
7733 report_fatal_error("Indirect operand for inline asm not a pointer!");
7734 OpTy
= PtrTy
->getElementType();
7737 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7738 if (StructType
*STy
= dyn_cast
<StructType
>(OpTy
))
7739 if (STy
->getNumElements() == 1)
7740 OpTy
= STy
->getElementType(0);
7742 // If OpTy is not a single value, it may be a struct/union that we
7743 // can tile with integers.
7744 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
7745 unsigned BitSize
= DL
.getTypeSizeInBits(OpTy
);
7754 OpTy
= IntegerType::get(Context
, BitSize
);
7759 return TLI
.getValueType(DL
, OpTy
, true);
7763 using SDISelAsmOperandInfoVector
= SmallVector
<SDISelAsmOperandInfo
, 16>;
7765 } // end anonymous namespace
7767 /// Make sure that the output operand \p OpInfo and its corresponding input
7768 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7770 static void patchMatchingInput(const SDISelAsmOperandInfo
&OpInfo
,
7771 SDISelAsmOperandInfo
&MatchingOpInfo
,
7772 SelectionDAG
&DAG
) {
7773 if (OpInfo
.ConstraintVT
== MatchingOpInfo
.ConstraintVT
)
7776 const TargetRegisterInfo
*TRI
= DAG
.getSubtarget().getRegisterInfo();
7777 const auto &TLI
= DAG
.getTargetLoweringInfo();
7779 std::pair
<unsigned, const TargetRegisterClass
*> MatchRC
=
7780 TLI
.getRegForInlineAsmConstraint(TRI
, OpInfo
.ConstraintCode
,
7781 OpInfo
.ConstraintVT
);
7782 std::pair
<unsigned, const TargetRegisterClass
*> InputRC
=
7783 TLI
.getRegForInlineAsmConstraint(TRI
, MatchingOpInfo
.ConstraintCode
,
7784 MatchingOpInfo
.ConstraintVT
);
7785 if ((OpInfo
.ConstraintVT
.isInteger() !=
7786 MatchingOpInfo
.ConstraintVT
.isInteger()) ||
7787 (MatchRC
.second
!= InputRC
.second
)) {
7788 // FIXME: error out in a more elegant fashion
7789 report_fatal_error("Unsupported asm: input constraint"
7790 " with a matching output constraint of"
7791 " incompatible type!");
7793 MatchingOpInfo
.ConstraintVT
= OpInfo
.ConstraintVT
;
7796 /// Get a direct memory input to behave well as an indirect operand.
7797 /// This may introduce stores, hence the need for a \p Chain.
7798 /// \return The (possibly updated) chain.
7799 static SDValue
getAddressForMemoryInput(SDValue Chain
, const SDLoc
&Location
,
7800 SDISelAsmOperandInfo
&OpInfo
,
7801 SelectionDAG
&DAG
) {
7802 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7804 // If we don't have an indirect input, put it in the constpool if we can,
7805 // otherwise spill it to a stack slot.
7806 // TODO: This isn't quite right. We need to handle these according to
7807 // the addressing mode that the constraint wants. Also, this may take
7808 // an additional register for the computation and we don't want that
7811 // If the operand is a float, integer, or vector constant, spill to a
7812 // constant pool entry to get its address.
7813 const Value
*OpVal
= OpInfo
.CallOperandVal
;
7814 if (isa
<ConstantFP
>(OpVal
) || isa
<ConstantInt
>(OpVal
) ||
7815 isa
<ConstantVector
>(OpVal
) || isa
<ConstantDataVector
>(OpVal
)) {
7816 OpInfo
.CallOperand
= DAG
.getConstantPool(
7817 cast
<Constant
>(OpVal
), TLI
.getPointerTy(DAG
.getDataLayout()));
7821 // Otherwise, create a stack slot and emit a store to it before the asm.
7822 Type
*Ty
= OpVal
->getType();
7823 auto &DL
= DAG
.getDataLayout();
7824 uint64_t TySize
= DL
.getTypeAllocSize(Ty
);
7825 unsigned Align
= DL
.getPrefTypeAlignment(Ty
);
7826 MachineFunction
&MF
= DAG
.getMachineFunction();
7827 int SSFI
= MF
.getFrameInfo().CreateStackObject(TySize
, Align
, false);
7828 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, TLI
.getFrameIndexTy(DL
));
7829 Chain
= DAG
.getTruncStore(Chain
, Location
, OpInfo
.CallOperand
, StackSlot
,
7830 MachinePointerInfo::getFixedStack(MF
, SSFI
),
7831 TLI
.getMemValueType(DL
, Ty
));
7832 OpInfo
.CallOperand
= StackSlot
;
7837 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7838 /// specified operand. We prefer to assign virtual registers, to allow the
7839 /// register allocator to handle the assignment process. However, if the asm
7840 /// uses features that we can't model on machineinstrs, we have SDISel do the
7841 /// allocation. This produces generally horrible, but correct, code.
7843 /// OpInfo describes the operand
7844 /// RefOpInfo describes the matching operand if any, the operand otherwise
7845 static void GetRegistersForValue(SelectionDAG
&DAG
, const SDLoc
&DL
,
7846 SDISelAsmOperandInfo
&OpInfo
,
7847 SDISelAsmOperandInfo
&RefOpInfo
) {
7848 LLVMContext
&Context
= *DAG
.getContext();
7849 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7851 MachineFunction
&MF
= DAG
.getMachineFunction();
7852 SmallVector
<unsigned, 4> Regs
;
7853 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
7855 // No work to do for memory operations.
7856 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
)
7859 // If this is a constraint for a single physreg, or a constraint for a
7860 // register class, find it.
7861 unsigned AssignedReg
;
7862 const TargetRegisterClass
*RC
;
7863 std::tie(AssignedReg
, RC
) = TLI
.getRegForInlineAsmConstraint(
7864 &TRI
, RefOpInfo
.ConstraintCode
, RefOpInfo
.ConstraintVT
);
7865 // RC is unset only on failure. Return immediately.
7869 // Get the actual register value type. This is important, because the user
7870 // may have asked for (e.g.) the AX register in i32 type. We need to
7871 // remember that AX is actually i16 to get the right extension.
7872 const MVT RegVT
= *TRI
.legalclasstypes_begin(*RC
);
7874 if (OpInfo
.ConstraintVT
!= MVT::Other
) {
7875 // If this is an FP operand in an integer register (or visa versa), or more
7876 // generally if the operand value disagrees with the register class we plan
7877 // to stick it in, fix the operand type.
7879 // If this is an input value, the bitcast to the new type is done now.
7880 // Bitcast for output value is done at the end of visitInlineAsm().
7881 if ((OpInfo
.Type
== InlineAsm::isOutput
||
7882 OpInfo
.Type
== InlineAsm::isInput
) &&
7883 !TRI
.isTypeLegalForClass(*RC
, OpInfo
.ConstraintVT
)) {
7884 // Try to convert to the first EVT that the reg class contains. If the
7885 // types are identical size, use a bitcast to convert (e.g. two differing
7886 // vector types). Note: output bitcast is done at the end of
7887 // visitInlineAsm().
7888 if (RegVT
.getSizeInBits() == OpInfo
.ConstraintVT
.getSizeInBits()) {
7889 // Exclude indirect inputs while they are unsupported because the code
7890 // to perform the load is missing and thus OpInfo.CallOperand still
7891 // refers to the input address rather than the pointed-to value.
7892 if (OpInfo
.Type
== InlineAsm::isInput
&& !OpInfo
.isIndirect
)
7893 OpInfo
.CallOperand
=
7894 DAG
.getNode(ISD::BITCAST
, DL
, RegVT
, OpInfo
.CallOperand
);
7895 OpInfo
.ConstraintVT
= RegVT
;
7896 // If the operand is an FP value and we want it in integer registers,
7897 // use the corresponding integer type. This turns an f64 value into
7898 // i64, which can be passed with two i32 values on a 32-bit machine.
7899 } else if (RegVT
.isInteger() && OpInfo
.ConstraintVT
.isFloatingPoint()) {
7900 MVT VT
= MVT::getIntegerVT(OpInfo
.ConstraintVT
.getSizeInBits());
7901 if (OpInfo
.Type
== InlineAsm::isInput
)
7902 OpInfo
.CallOperand
=
7903 DAG
.getNode(ISD::BITCAST
, DL
, VT
, OpInfo
.CallOperand
);
7904 OpInfo
.ConstraintVT
= VT
;
7909 // No need to allocate a matching input constraint since the constraint it's
7910 // matching to has already been allocated.
7911 if (OpInfo
.isMatchingInputConstraint())
7914 EVT ValueVT
= OpInfo
.ConstraintVT
;
7915 if (OpInfo
.ConstraintVT
== MVT::Other
)
7918 // Initialize NumRegs.
7919 unsigned NumRegs
= 1;
7920 if (OpInfo
.ConstraintVT
!= MVT::Other
)
7921 NumRegs
= TLI
.getNumRegisters(Context
, OpInfo
.ConstraintVT
);
7923 // If this is a constraint for a specific physical register, like {r17},
7926 // If this associated to a specific register, initialize iterator to correct
7927 // place. If virtual, make sure we have enough registers
7929 // Initialize iterator if necessary
7930 TargetRegisterClass::iterator I
= RC
->begin();
7931 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
7933 // Do not check for single registers.
7935 for (; *I
!= AssignedReg
; ++I
)
7936 assert(I
!= RC
->end() && "AssignedReg should be member of RC");
7939 for (; NumRegs
; --NumRegs
, ++I
) {
7940 assert(I
!= RC
->end() && "Ran out of registers to allocate!");
7941 Register R
= AssignedReg
? Register(*I
) : RegInfo
.createVirtualRegister(RC
);
7945 OpInfo
.AssignedRegs
= RegsForValue(Regs
, RegVT
, ValueVT
);
7949 findMatchingInlineAsmOperand(unsigned OperandNo
,
7950 const std::vector
<SDValue
> &AsmNodeOperands
) {
7951 // Scan until we find the definition we already emitted of this operand.
7952 unsigned CurOp
= InlineAsm::Op_FirstOperand
;
7953 for (; OperandNo
; --OperandNo
) {
7954 // Advance to the next operand.
7956 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
7957 assert((InlineAsm::isRegDefKind(OpFlag
) ||
7958 InlineAsm::isRegDefEarlyClobberKind(OpFlag
) ||
7959 InlineAsm::isMemKind(OpFlag
)) &&
7960 "Skipped past definitions?");
7961 CurOp
+= InlineAsm::getNumOperandRegisters(OpFlag
) + 1;
7972 explicit ExtraFlags(ImmutableCallSite CS
) {
7973 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
7974 if (IA
->hasSideEffects())
7975 Flags
|= InlineAsm::Extra_HasSideEffects
;
7976 if (IA
->isAlignStack())
7977 Flags
|= InlineAsm::Extra_IsAlignStack
;
7978 if (CS
.isConvergent())
7979 Flags
|= InlineAsm::Extra_IsConvergent
;
7980 Flags
|= IA
->getDialect() * InlineAsm::Extra_AsmDialect
;
7983 void update(const TargetLowering::AsmOperandInfo
&OpInfo
) {
7984 // Ideally, we would only check against memory constraints. However, the
7985 // meaning of an Other constraint can be target-specific and we can't easily
7986 // reason about it. Therefore, be conservative and set MayLoad/MayStore
7987 // for Other constraints as well.
7988 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
||
7989 OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
7990 if (OpInfo
.Type
== InlineAsm::isInput
)
7991 Flags
|= InlineAsm::Extra_MayLoad
;
7992 else if (OpInfo
.Type
== InlineAsm::isOutput
)
7993 Flags
|= InlineAsm::Extra_MayStore
;
7994 else if (OpInfo
.Type
== InlineAsm::isClobber
)
7995 Flags
|= (InlineAsm::Extra_MayLoad
| InlineAsm::Extra_MayStore
);
7999 unsigned get() const { return Flags
; }
8002 } // end anonymous namespace
8004 /// visitInlineAsm - Handle a call to an InlineAsm object.
8005 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS
) {
8006 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
8008 /// ConstraintOperands - Information about all of the constraints.
8009 SDISelAsmOperandInfoVector ConstraintOperands
;
8011 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8012 TargetLowering::AsmOperandInfoVector TargetConstraints
= TLI
.ParseConstraints(
8013 DAG
.getDataLayout(), DAG
.getSubtarget().getRegisterInfo(), CS
);
8015 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8016 // AsmDialect, MayLoad, MayStore).
8017 bool HasSideEffect
= IA
->hasSideEffects();
8018 ExtraFlags
ExtraInfo(CS
);
8020 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
8021 unsigned ResNo
= 0; // ResNo - The result number of the next output.
8022 for (auto &T
: TargetConstraints
) {
8023 ConstraintOperands
.push_back(SDISelAsmOperandInfo(T
));
8024 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
8026 // Compute the value type for each operand.
8027 if (OpInfo
.Type
== InlineAsm::isInput
||
8028 (OpInfo
.Type
== InlineAsm::isOutput
&& OpInfo
.isIndirect
)) {
8029 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
8031 // Process the call argument. BasicBlocks are labels, currently appearing
8033 const Instruction
*I
= CS
.getInstruction();
8034 if (isa
<CallBrInst
>(I
) &&
8035 (ArgNo
- 1) >= (cast
<CallBrInst
>(I
)->getNumArgOperands() -
8036 cast
<CallBrInst
>(I
)->getNumIndirectDests())) {
8037 const auto *BA
= cast
<BlockAddress
>(OpInfo
.CallOperandVal
);
8038 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), BA
->getType(), true);
8039 OpInfo
.CallOperand
= DAG
.getTargetBlockAddress(BA
, VT
);
8040 } else if (const auto *BB
= dyn_cast
<BasicBlock
>(OpInfo
.CallOperandVal
)) {
8041 OpInfo
.CallOperand
= DAG
.getBasicBlock(FuncInfo
.MBBMap
[BB
]);
8043 OpInfo
.CallOperand
= getValue(OpInfo
.CallOperandVal
);
8046 OpInfo
.ConstraintVT
=
8048 .getCallOperandValEVT(*DAG
.getContext(), TLI
, DAG
.getDataLayout())
8050 } else if (OpInfo
.Type
== InlineAsm::isOutput
&& !OpInfo
.isIndirect
) {
8051 // The return value of the call is this value. As such, there is no
8052 // corresponding argument.
8053 assert(!CS
.getType()->isVoidTy() && "Bad inline asm!");
8054 if (StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
8055 OpInfo
.ConstraintVT
= TLI
.getSimpleValueType(
8056 DAG
.getDataLayout(), STy
->getElementType(ResNo
));
8058 assert(ResNo
== 0 && "Asm only has one result!");
8059 OpInfo
.ConstraintVT
=
8060 TLI
.getSimpleValueType(DAG
.getDataLayout(), CS
.getType());
8064 OpInfo
.ConstraintVT
= MVT::Other
;
8068 HasSideEffect
= OpInfo
.hasMemory(TLI
);
8070 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8071 // FIXME: Could we compute this on OpInfo rather than T?
8073 // Compute the constraint code and ConstraintType to use.
8074 TLI
.ComputeConstraintToUse(T
, SDValue());
8076 if (T
.ConstraintType
== TargetLowering::C_Immediate
&&
8077 OpInfo
.CallOperand
&& !isa
<ConstantSDNode
>(OpInfo
.CallOperand
))
8078 // We've delayed emitting a diagnostic like the "n" constraint because
8079 // inlining could cause an integer showing up.
8080 return emitInlineAsmError(
8081 CS
, "constraint '" + Twine(T
.ConstraintCode
) + "' expects an "
8082 "integer constant expression");
8084 ExtraInfo
.update(T
);
8088 // We won't need to flush pending loads if this asm doesn't touch
8089 // memory and is nonvolatile.
8090 SDValue Flag
, Chain
= (HasSideEffect
) ? getRoot() : DAG
.getRoot();
8092 bool IsCallBr
= isa
<CallBrInst
>(CS
.getInstruction());
8094 // If this is a callbr we need to flush pending exports since inlineasm_br
8095 // is a terminator. We need to do this before nodes are glued to
8096 // the inlineasm_br node.
8097 Chain
= getControlRoot();
8100 // Second pass over the constraints: compute which constraint option to use.
8101 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8102 // If this is an output operand with a matching input operand, look up the
8103 // matching input. If their types mismatch, e.g. one is an integer, the
8104 // other is floating point, or their sizes are different, flag it as an
8106 if (OpInfo
.hasMatchingInput()) {
8107 SDISelAsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
8108 patchMatchingInput(OpInfo
, Input
, DAG
);
8111 // Compute the constraint code and ConstraintType to use.
8112 TLI
.ComputeConstraintToUse(OpInfo
, OpInfo
.CallOperand
, &DAG
);
8114 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
8115 OpInfo
.Type
== InlineAsm::isClobber
)
8118 // If this is a memory input, and if the operand is not indirect, do what we
8119 // need to provide an address for the memory input.
8120 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
8121 !OpInfo
.isIndirect
) {
8122 assert((OpInfo
.isMultipleAlternative
||
8123 (OpInfo
.Type
== InlineAsm::isInput
)) &&
8124 "Can only indirectify direct input operands!");
8126 // Memory operands really want the address of the value.
8127 Chain
= getAddressForMemoryInput(Chain
, getCurSDLoc(), OpInfo
, DAG
);
8129 // There is no longer a Value* corresponding to this operand.
8130 OpInfo
.CallOperandVal
= nullptr;
8132 // It is now an indirect operand.
8133 OpInfo
.isIndirect
= true;
8138 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8139 std::vector
<SDValue
> AsmNodeOperands
;
8140 AsmNodeOperands
.push_back(SDValue()); // reserve space for input chain
8141 AsmNodeOperands
.push_back(DAG
.getTargetExternalSymbol(
8142 IA
->getAsmString().c_str(), TLI
.getPointerTy(DAG
.getDataLayout())));
8144 // If we have a !srcloc metadata node associated with it, we want to attach
8145 // this to the ultimately generated inline asm machineinstr. To do this, we
8146 // pass in the third operand as this (potentially null) inline asm MDNode.
8147 const MDNode
*SrcLoc
= CS
.getInstruction()->getMetadata("srcloc");
8148 AsmNodeOperands
.push_back(DAG
.getMDNode(SrcLoc
));
8150 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8151 // bits as operand 3.
8152 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8153 ExtraInfo
.get(), getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8155 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8156 // this, assign virtual and physical registers for inputs and otput.
8157 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8158 // Assign Registers.
8159 SDISelAsmOperandInfo
&RefOpInfo
=
8160 OpInfo
.isMatchingInputConstraint()
8161 ? ConstraintOperands
[OpInfo
.getMatchedOperand()]
8163 GetRegistersForValue(DAG
, getCurSDLoc(), OpInfo
, RefOpInfo
);
8165 switch (OpInfo
.Type
) {
8166 case InlineAsm::isOutput
:
8167 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
||
8168 ((OpInfo
.ConstraintType
== TargetLowering::C_Immediate
||
8169 OpInfo
.ConstraintType
== TargetLowering::C_Other
) &&
8170 OpInfo
.isIndirect
)) {
8171 unsigned ConstraintID
=
8172 TLI
.getInlineAsmMemConstraint(OpInfo
.ConstraintCode
);
8173 assert(ConstraintID
!= InlineAsm::Constraint_Unknown
&&
8174 "Failed to convert memory constraint code to constraint id.");
8176 // Add information to the INLINEASM node to know about this output.
8177 unsigned OpFlags
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
8178 OpFlags
= InlineAsm::getFlagWordForMem(OpFlags
, ConstraintID
);
8179 AsmNodeOperands
.push_back(DAG
.getTargetConstant(OpFlags
, getCurSDLoc(),
8181 AsmNodeOperands
.push_back(OpInfo
.CallOperand
);
8183 } else if (((OpInfo
.ConstraintType
== TargetLowering::C_Immediate
||
8184 OpInfo
.ConstraintType
== TargetLowering::C_Other
) &&
8185 !OpInfo
.isIndirect
) ||
8186 OpInfo
.ConstraintType
== TargetLowering::C_Register
||
8187 OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
) {
8188 // Otherwise, this outputs to a register (directly for C_Register /
8189 // C_RegisterClass, and a target-defined fashion for
8190 // C_Immediate/C_Other). Find a register that we can use.
8191 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
8193 CS
, "couldn't allocate output register for constraint '" +
8194 Twine(OpInfo
.ConstraintCode
) + "'");
8198 // Add information to the INLINEASM node to know that this register is
8200 OpInfo
.AssignedRegs
.AddInlineAsmOperands(
8201 OpInfo
.isEarlyClobber
? InlineAsm::Kind_RegDefEarlyClobber
8202 : InlineAsm::Kind_RegDef
,
8203 false, 0, getCurSDLoc(), DAG
, AsmNodeOperands
);
8207 case InlineAsm::isInput
: {
8208 SDValue InOperandVal
= OpInfo
.CallOperand
;
8210 if (OpInfo
.isMatchingInputConstraint()) {
8211 // If this is required to match an output register we have already set,
8212 // just use its register.
8213 auto CurOp
= findMatchingInlineAsmOperand(OpInfo
.getMatchedOperand(),
8216 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
8217 if (InlineAsm::isRegDefKind(OpFlag
) ||
8218 InlineAsm::isRegDefEarlyClobberKind(OpFlag
)) {
8219 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8220 if (OpInfo
.isIndirect
) {
8221 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8222 emitInlineAsmError(CS
, "inline asm not supported yet:"
8223 " don't know how to handle tied "
8224 "indirect register inputs");
8228 MVT RegVT
= AsmNodeOperands
[CurOp
+1].getSimpleValueType();
8229 SmallVector
<unsigned, 4> Regs
;
8231 if (const TargetRegisterClass
*RC
= TLI
.getRegClassFor(RegVT
)) {
8232 unsigned NumRegs
= InlineAsm::getNumOperandRegisters(OpFlag
);
8233 MachineRegisterInfo
&RegInfo
=
8234 DAG
.getMachineFunction().getRegInfo();
8235 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
8236 Regs
.push_back(RegInfo
.createVirtualRegister(RC
));
8238 emitInlineAsmError(CS
, "inline asm error: This value type register "
8239 "class is not natively supported!");
8243 RegsForValue
MatchedRegs(Regs
, RegVT
, InOperandVal
.getValueType());
8245 SDLoc dl
= getCurSDLoc();
8246 // Use the produced MatchedRegs object to
8247 MatchedRegs
.getCopyToRegs(InOperandVal
, DAG
, dl
, Chain
, &Flag
,
8248 CS
.getInstruction());
8249 MatchedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
,
8250 true, OpInfo
.getMatchedOperand(), dl
,
8251 DAG
, AsmNodeOperands
);
8255 assert(InlineAsm::isMemKind(OpFlag
) && "Unknown matching constraint!");
8256 assert(InlineAsm::getNumOperandRegisters(OpFlag
) == 1 &&
8257 "Unexpected number of operands");
8258 // Add information to the INLINEASM node to know about this input.
8259 // See InlineAsm.h isUseOperandTiedToDef.
8260 OpFlag
= InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag
);
8261 OpFlag
= InlineAsm::getFlagWordForMatchingOp(OpFlag
,
8262 OpInfo
.getMatchedOperand());
8263 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8264 OpFlag
, getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8265 AsmNodeOperands
.push_back(AsmNodeOperands
[CurOp
+1]);
8269 // Treat indirect 'X' constraint as memory.
8270 if ((OpInfo
.ConstraintType
== TargetLowering::C_Immediate
||
8271 OpInfo
.ConstraintType
== TargetLowering::C_Other
) &&
8273 OpInfo
.ConstraintType
= TargetLowering::C_Memory
;
8275 if (OpInfo
.ConstraintType
== TargetLowering::C_Immediate
||
8276 OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
8277 std::vector
<SDValue
> Ops
;
8278 TLI
.LowerAsmOperandForConstraint(InOperandVal
, OpInfo
.ConstraintCode
,
8281 if (OpInfo
.ConstraintType
== TargetLowering::C_Immediate
)
8282 if (isa
<ConstantSDNode
>(InOperandVal
)) {
8283 emitInlineAsmError(CS
, "value out of range for constraint '" +
8284 Twine(OpInfo
.ConstraintCode
) + "'");
8288 emitInlineAsmError(CS
, "invalid operand for inline asm constraint '" +
8289 Twine(OpInfo
.ConstraintCode
) + "'");
8293 // Add information to the INLINEASM node to know about this input.
8294 unsigned ResOpType
=
8295 InlineAsm::getFlagWord(InlineAsm::Kind_Imm
, Ops
.size());
8296 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8297 ResOpType
, getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8298 AsmNodeOperands
.insert(AsmNodeOperands
.end(), Ops
.begin(), Ops
.end());
8302 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
) {
8303 assert(OpInfo
.isIndirect
&& "Operand must be indirect to be a mem!");
8304 assert(InOperandVal
.getValueType() ==
8305 TLI
.getPointerTy(DAG
.getDataLayout()) &&
8306 "Memory operands expect pointer values");
8308 unsigned ConstraintID
=
8309 TLI
.getInlineAsmMemConstraint(OpInfo
.ConstraintCode
);
8310 assert(ConstraintID
!= InlineAsm::Constraint_Unknown
&&
8311 "Failed to convert memory constraint code to constraint id.");
8313 // Add information to the INLINEASM node to know about this input.
8314 unsigned ResOpType
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
8315 ResOpType
= InlineAsm::getFlagWordForMem(ResOpType
, ConstraintID
);
8316 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
8319 AsmNodeOperands
.push_back(InOperandVal
);
8323 assert((OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
||
8324 OpInfo
.ConstraintType
== TargetLowering::C_Register
||
8325 OpInfo
.ConstraintType
== TargetLowering::C_Immediate
) &&
8326 "Unknown constraint type!");
8328 // TODO: Support this.
8329 if (OpInfo
.isIndirect
) {
8331 CS
, "Don't know how to handle indirect register inputs yet "
8332 "for constraint '" +
8333 Twine(OpInfo
.ConstraintCode
) + "'");
8337 // Copy the input into the appropriate registers.
8338 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
8339 emitInlineAsmError(CS
, "couldn't allocate input reg for constraint '" +
8340 Twine(OpInfo
.ConstraintCode
) + "'");
8344 SDLoc dl
= getCurSDLoc();
8346 OpInfo
.AssignedRegs
.getCopyToRegs(InOperandVal
, DAG
, dl
,
8347 Chain
, &Flag
, CS
.getInstruction());
8349 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
, false, 0,
8350 dl
, DAG
, AsmNodeOperands
);
8353 case InlineAsm::isClobber
:
8354 // Add the clobbered value to the operand list, so that the register
8355 // allocator is aware that the physreg got clobbered.
8356 if (!OpInfo
.AssignedRegs
.Regs
.empty())
8357 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_Clobber
,
8358 false, 0, getCurSDLoc(), DAG
,
8364 // Finish up input operands. Set the input chain and add the flag last.
8365 AsmNodeOperands
[InlineAsm::Op_InputChain
] = Chain
;
8366 if (Flag
.getNode()) AsmNodeOperands
.push_back(Flag
);
8368 unsigned ISDOpc
= IsCallBr
? ISD::INLINEASM_BR
: ISD::INLINEASM
;
8369 Chain
= DAG
.getNode(ISDOpc
, getCurSDLoc(),
8370 DAG
.getVTList(MVT::Other
, MVT::Glue
), AsmNodeOperands
);
8371 Flag
= Chain
.getValue(1);
8373 // Do additional work to generate outputs.
8375 SmallVector
<EVT
, 1> ResultVTs
;
8376 SmallVector
<SDValue
, 1> ResultValues
;
8377 SmallVector
<SDValue
, 8> OutChains
;
8379 llvm::Type
*CSResultType
= CS
.getType();
8380 ArrayRef
<Type
*> ResultTypes
;
8381 if (StructType
*StructResult
= dyn_cast
<StructType
>(CSResultType
))
8382 ResultTypes
= StructResult
->elements();
8383 else if (!CSResultType
->isVoidTy())
8384 ResultTypes
= makeArrayRef(CSResultType
);
8386 auto CurResultType
= ResultTypes
.begin();
8387 auto handleRegAssign
= [&](SDValue V
) {
8388 assert(CurResultType
!= ResultTypes
.end() && "Unexpected value");
8389 assert((*CurResultType
)->isSized() && "Unexpected unsized type");
8390 EVT ResultVT
= TLI
.getValueType(DAG
.getDataLayout(), *CurResultType
);
8392 // If the type of the inline asm call site return value is different but has
8393 // same size as the type of the asm output bitcast it. One example of this
8394 // is for vectors with different width / number of elements. This can
8395 // happen for register classes that can contain multiple different value
8396 // types. The preg or vreg allocated may not have the same VT as was
8399 // This can also happen for a return value that disagrees with the register
8400 // class it is put in, eg. a double in a general-purpose register on a
8402 if (ResultVT
!= V
.getValueType() &&
8403 ResultVT
.getSizeInBits() == V
.getValueSizeInBits())
8404 V
= DAG
.getNode(ISD::BITCAST
, getCurSDLoc(), ResultVT
, V
);
8405 else if (ResultVT
!= V
.getValueType() && ResultVT
.isInteger() &&
8406 V
.getValueType().isInteger()) {
8407 // If a result value was tied to an input value, the computed result
8408 // may have a wider width than the expected result. Extract the
8409 // relevant portion.
8410 V
= DAG
.getNode(ISD::TRUNCATE
, getCurSDLoc(), ResultVT
, V
);
8412 assert(ResultVT
== V
.getValueType() && "Asm result value mismatch!");
8413 ResultVTs
.push_back(ResultVT
);
8414 ResultValues
.push_back(V
);
8417 // Deal with output operands.
8418 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8419 if (OpInfo
.Type
== InlineAsm::isOutput
) {
8421 // Skip trivial output operands.
8422 if (OpInfo
.AssignedRegs
.Regs
.empty())
8425 switch (OpInfo
.ConstraintType
) {
8426 case TargetLowering::C_Register
:
8427 case TargetLowering::C_RegisterClass
:
8428 Val
= OpInfo
.AssignedRegs
.getCopyFromRegs(
8429 DAG
, FuncInfo
, getCurSDLoc(), Chain
, &Flag
, CS
.getInstruction());
8431 case TargetLowering::C_Immediate
:
8432 case TargetLowering::C_Other
:
8433 Val
= TLI
.LowerAsmOutputForConstraint(Chain
, Flag
, getCurSDLoc(),
8436 case TargetLowering::C_Memory
:
8437 break; // Already handled.
8438 case TargetLowering::C_Unknown
:
8439 assert(false && "Unexpected unknown constraint");
8442 // Indirect output manifest as stores. Record output chains.
8443 if (OpInfo
.isIndirect
) {
8444 const Value
*Ptr
= OpInfo
.CallOperandVal
;
8445 assert(Ptr
&& "Expected value CallOperandVal for indirect asm operand");
8446 SDValue Store
= DAG
.getStore(Chain
, getCurSDLoc(), Val
, getValue(Ptr
),
8447 MachinePointerInfo(Ptr
));
8448 OutChains
.push_back(Store
);
8450 // generate CopyFromRegs to associated registers.
8451 assert(!CS
.getType()->isVoidTy() && "Bad inline asm!");
8452 if (Val
.getOpcode() == ISD::MERGE_VALUES
) {
8453 for (const SDValue
&V
: Val
->op_values())
8456 handleRegAssign(Val
);
8462 if (!ResultValues
.empty()) {
8463 assert(CurResultType
== ResultTypes
.end() &&
8464 "Mismatch in number of ResultTypes");
8465 assert(ResultValues
.size() == ResultTypes
.size() &&
8466 "Mismatch in number of output operands in asm result");
8468 SDValue V
= DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
8469 DAG
.getVTList(ResultVTs
), ResultValues
);
8470 setValue(CS
.getInstruction(), V
);
8473 // Collect store chains.
8474 if (!OutChains
.empty())
8475 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(), MVT::Other
, OutChains
);
8477 // Only Update Root if inline assembly has a memory effect.
8478 if (ResultValues
.empty() || HasSideEffect
|| !OutChains
.empty() || IsCallBr
)
8482 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS
,
8483 const Twine
&Message
) {
8484 LLVMContext
&Ctx
= *DAG
.getContext();
8485 Ctx
.emitError(CS
.getInstruction(), Message
);
8487 // Make sure we leave the DAG in a valid state
8488 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8489 SmallVector
<EVT
, 1> ValueVTs
;
8490 ComputeValueVTs(TLI
, DAG
.getDataLayout(), CS
->getType(), ValueVTs
);
8492 if (ValueVTs
.empty())
8495 SmallVector
<SDValue
, 1> Ops
;
8496 for (unsigned i
= 0, e
= ValueVTs
.size(); i
!= e
; ++i
)
8497 Ops
.push_back(DAG
.getUNDEF(ValueVTs
[i
]));
8499 setValue(CS
.getInstruction(), DAG
.getMergeValues(Ops
, getCurSDLoc()));
8502 void SelectionDAGBuilder::visitVAStart(const CallInst
&I
) {
8503 DAG
.setRoot(DAG
.getNode(ISD::VASTART
, getCurSDLoc(),
8504 MVT::Other
, getRoot(),
8505 getValue(I
.getArgOperand(0)),
8506 DAG
.getSrcValue(I
.getArgOperand(0))));
8509 void SelectionDAGBuilder::visitVAArg(const VAArgInst
&I
) {
8510 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8511 const DataLayout
&DL
= DAG
.getDataLayout();
8512 SDValue V
= DAG
.getVAArg(
8513 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType()), getCurSDLoc(),
8514 getRoot(), getValue(I
.getOperand(0)), DAG
.getSrcValue(I
.getOperand(0)),
8515 DL
.getABITypeAlignment(I
.getType()));
8516 DAG
.setRoot(V
.getValue(1));
8518 if (I
.getType()->isPointerTy())
8519 V
= DAG
.getPtrExtOrTrunc(
8520 V
, getCurSDLoc(), TLI
.getValueType(DAG
.getDataLayout(), I
.getType()));
8524 void SelectionDAGBuilder::visitVAEnd(const CallInst
&I
) {
8525 DAG
.setRoot(DAG
.getNode(ISD::VAEND
, getCurSDLoc(),
8526 MVT::Other
, getRoot(),
8527 getValue(I
.getArgOperand(0)),
8528 DAG
.getSrcValue(I
.getArgOperand(0))));
8531 void SelectionDAGBuilder::visitVACopy(const CallInst
&I
) {
8532 DAG
.setRoot(DAG
.getNode(ISD::VACOPY
, getCurSDLoc(),
8533 MVT::Other
, getRoot(),
8534 getValue(I
.getArgOperand(0)),
8535 getValue(I
.getArgOperand(1)),
8536 DAG
.getSrcValue(I
.getArgOperand(0)),
8537 DAG
.getSrcValue(I
.getArgOperand(1))));
8540 SDValue
SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG
&DAG
,
8541 const Instruction
&I
,
8543 const MDNode
*Range
= I
.getMetadata(LLVMContext::MD_range
);
8547 ConstantRange CR
= getConstantRangeFromMetadata(*Range
);
8548 if (CR
.isFullSet() || CR
.isEmptySet() || CR
.isUpperWrapped())
8551 APInt Lo
= CR
.getUnsignedMin();
8552 if (!Lo
.isMinValue())
8555 APInt Hi
= CR
.getUnsignedMax();
8556 unsigned Bits
= std::max(Hi
.getActiveBits(),
8557 static_cast<unsigned>(IntegerType::MIN_INT_BITS
));
8559 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), Bits
);
8561 SDLoc SL
= getCurSDLoc();
8563 SDValue ZExt
= DAG
.getNode(ISD::AssertZext
, SL
, Op
.getValueType(), Op
,
8564 DAG
.getValueType(SmallVT
));
8565 unsigned NumVals
= Op
.getNode()->getNumValues();
8569 SmallVector
<SDValue
, 4> Ops
;
8571 Ops
.push_back(ZExt
);
8572 for (unsigned I
= 1; I
!= NumVals
; ++I
)
8573 Ops
.push_back(Op
.getValue(I
));
8575 return DAG
.getMergeValues(Ops
, SL
);
8578 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8579 /// the call being lowered.
8581 /// This is a helper for lowering intrinsics that follow a target calling
8582 /// convention or require stack pointer adjustment. Only a subset of the
8583 /// intrinsic's operands need to participate in the calling convention.
8584 void SelectionDAGBuilder::populateCallLoweringInfo(
8585 TargetLowering::CallLoweringInfo
&CLI
, const CallBase
*Call
,
8586 unsigned ArgIdx
, unsigned NumArgs
, SDValue Callee
, Type
*ReturnTy
,
8587 bool IsPatchPoint
) {
8588 TargetLowering::ArgListTy Args
;
8589 Args
.reserve(NumArgs
);
8591 // Populate the argument list.
8592 // Attributes for args start at offset 1, after the return attribute.
8593 for (unsigned ArgI
= ArgIdx
, ArgE
= ArgIdx
+ NumArgs
;
8594 ArgI
!= ArgE
; ++ArgI
) {
8595 const Value
*V
= Call
->getOperand(ArgI
);
8597 assert(!V
->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8599 TargetLowering::ArgListEntry Entry
;
8600 Entry
.Node
= getValue(V
);
8601 Entry
.Ty
= V
->getType();
8602 Entry
.setAttributes(Call
, ArgI
);
8603 Args
.push_back(Entry
);
8606 CLI
.setDebugLoc(getCurSDLoc())
8607 .setChain(getRoot())
8608 .setCallee(Call
->getCallingConv(), ReturnTy
, Callee
, std::move(Args
))
8609 .setDiscardResult(Call
->use_empty())
8610 .setIsPatchPoint(IsPatchPoint
);
8613 /// Add a stack map intrinsic call's live variable operands to a stackmap
8614 /// or patchpoint target node's operand list.
8616 /// Constants are converted to TargetConstants purely as an optimization to
8617 /// avoid constant materialization and register allocation.
8619 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8620 /// generate addess computation nodes, and so FinalizeISel can convert the
8621 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8622 /// address materialization and register allocation, but may also be required
8623 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8624 /// alloca in the entry block, then the runtime may assume that the alloca's
8625 /// StackMap location can be read immediately after compilation and that the
8626 /// location is valid at any point during execution (this is similar to the
8627 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8628 /// only available in a register, then the runtime would need to trap when
8629 /// execution reaches the StackMap in order to read the alloca's location.
8630 static void addStackMapLiveVars(ImmutableCallSite CS
, unsigned StartIdx
,
8631 const SDLoc
&DL
, SmallVectorImpl
<SDValue
> &Ops
,
8632 SelectionDAGBuilder
&Builder
) {
8633 for (unsigned i
= StartIdx
, e
= CS
.arg_size(); i
!= e
; ++i
) {
8634 SDValue OpVal
= Builder
.getValue(CS
.getArgument(i
));
8635 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(OpVal
)) {
8637 Builder
.DAG
.getTargetConstant(StackMaps::ConstantOp
, DL
, MVT::i64
));
8639 Builder
.DAG
.getTargetConstant(C
->getSExtValue(), DL
, MVT::i64
));
8640 } else if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(OpVal
)) {
8641 const TargetLowering
&TLI
= Builder
.DAG
.getTargetLoweringInfo();
8642 Ops
.push_back(Builder
.DAG
.getTargetFrameIndex(
8643 FI
->getIndex(), TLI
.getFrameIndexTy(Builder
.DAG
.getDataLayout())));
8645 Ops
.push_back(OpVal
);
8649 /// Lower llvm.experimental.stackmap directly to its target opcode.
8650 void SelectionDAGBuilder::visitStackmap(const CallInst
&CI
) {
8651 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8652 // [live variables...])
8654 assert(CI
.getType()->isVoidTy() && "Stackmap cannot return a value.");
8656 SDValue Chain
, InFlag
, Callee
, NullPtr
;
8657 SmallVector
<SDValue
, 32> Ops
;
8659 SDLoc DL
= getCurSDLoc();
8660 Callee
= getValue(CI
.getCalledValue());
8661 NullPtr
= DAG
.getIntPtrConstant(0, DL
, true);
8663 // The stackmap intrinsic only records the live variables (the arguemnts
8664 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8665 // intrinsic, this won't be lowered to a function call. This means we don't
8666 // have to worry about calling conventions and target specific lowering code.
8667 // Instead we perform the call lowering right here.
8669 // chain, flag = CALLSEQ_START(chain, 0, 0)
8670 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8671 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8673 Chain
= DAG
.getCALLSEQ_START(getRoot(), 0, 0, DL
);
8674 InFlag
= Chain
.getValue(1);
8676 // Add the <id> and <numBytes> constants.
8677 SDValue IDVal
= getValue(CI
.getOperand(PatchPointOpers::IDPos
));
8678 Ops
.push_back(DAG
.getTargetConstant(
8679 cast
<ConstantSDNode
>(IDVal
)->getZExtValue(), DL
, MVT::i64
));
8680 SDValue NBytesVal
= getValue(CI
.getOperand(PatchPointOpers::NBytesPos
));
8681 Ops
.push_back(DAG
.getTargetConstant(
8682 cast
<ConstantSDNode
>(NBytesVal
)->getZExtValue(), DL
,
8685 // Push live variables for the stack map.
8686 addStackMapLiveVars(&CI
, 2, DL
, Ops
, *this);
8688 // We are not pushing any register mask info here on the operands list,
8689 // because the stackmap doesn't clobber anything.
8691 // Push the chain and the glue flag.
8692 Ops
.push_back(Chain
);
8693 Ops
.push_back(InFlag
);
8695 // Create the STACKMAP node.
8696 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
8697 SDNode
*SM
= DAG
.getMachineNode(TargetOpcode::STACKMAP
, DL
, NodeTys
, Ops
);
8698 Chain
= SDValue(SM
, 0);
8699 InFlag
= Chain
.getValue(1);
8701 Chain
= DAG
.getCALLSEQ_END(Chain
, NullPtr
, NullPtr
, InFlag
, DL
);
8703 // Stackmaps don't generate values, so nothing goes into the NodeMap.
8705 // Set the root to the target-lowered call chain.
8708 // Inform the Frame Information that we have a stackmap in this function.
8709 FuncInfo
.MF
->getFrameInfo().setHasStackMap();
8712 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8713 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS
,
8714 const BasicBlock
*EHPadBB
) {
8715 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8720 // [live variables...])
8722 CallingConv::ID CC
= CS
.getCallingConv();
8723 bool IsAnyRegCC
= CC
== CallingConv::AnyReg
;
8724 bool HasDef
= !CS
->getType()->isVoidTy();
8725 SDLoc dl
= getCurSDLoc();
8726 SDValue Callee
= getValue(CS
->getOperand(PatchPointOpers::TargetPos
));
8728 // Handle immediate and symbolic callees.
8729 if (auto* ConstCallee
= dyn_cast
<ConstantSDNode
>(Callee
))
8730 Callee
= DAG
.getIntPtrConstant(ConstCallee
->getZExtValue(), dl
,
8732 else if (auto* SymbolicCallee
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
8733 Callee
= DAG
.getTargetGlobalAddress(SymbolicCallee
->getGlobal(),
8734 SDLoc(SymbolicCallee
),
8735 SymbolicCallee
->getValueType(0));
8737 // Get the real number of arguments participating in the call <numArgs>
8738 SDValue NArgVal
= getValue(CS
.getArgument(PatchPointOpers::NArgPos
));
8739 unsigned NumArgs
= cast
<ConstantSDNode
>(NArgVal
)->getZExtValue();
8741 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8742 // Intrinsics include all meta-operands up to but not including CC.
8743 unsigned NumMetaOpers
= PatchPointOpers::CCPos
;
8744 assert(CS
.arg_size() >= NumMetaOpers
+ NumArgs
&&
8745 "Not enough arguments provided to the patchpoint intrinsic");
8747 // For AnyRegCC the arguments are lowered later on manually.
8748 unsigned NumCallArgs
= IsAnyRegCC
? 0 : NumArgs
;
8750 IsAnyRegCC
? Type::getVoidTy(*DAG
.getContext()) : CS
->getType();
8752 TargetLowering::CallLoweringInfo
CLI(DAG
);
8753 populateCallLoweringInfo(CLI
, cast
<CallBase
>(CS
.getInstruction()),
8754 NumMetaOpers
, NumCallArgs
, Callee
, ReturnTy
, true);
8755 std::pair
<SDValue
, SDValue
> Result
= lowerInvokable(CLI
, EHPadBB
);
8757 SDNode
*CallEnd
= Result
.second
.getNode();
8758 if (HasDef
&& (CallEnd
->getOpcode() == ISD::CopyFromReg
))
8759 CallEnd
= CallEnd
->getOperand(0).getNode();
8761 /// Get a call instruction from the call sequence chain.
8762 /// Tail calls are not allowed.
8763 assert(CallEnd
->getOpcode() == ISD::CALLSEQ_END
&&
8764 "Expected a callseq node.");
8765 SDNode
*Call
= CallEnd
->getOperand(0).getNode();
8766 bool HasGlue
= Call
->getGluedNode();
8768 // Replace the target specific call node with the patchable intrinsic.
8769 SmallVector
<SDValue
, 8> Ops
;
8771 // Add the <id> and <numBytes> constants.
8772 SDValue IDVal
= getValue(CS
->getOperand(PatchPointOpers::IDPos
));
8773 Ops
.push_back(DAG
.getTargetConstant(
8774 cast
<ConstantSDNode
>(IDVal
)->getZExtValue(), dl
, MVT::i64
));
8775 SDValue NBytesVal
= getValue(CS
->getOperand(PatchPointOpers::NBytesPos
));
8776 Ops
.push_back(DAG
.getTargetConstant(
8777 cast
<ConstantSDNode
>(NBytesVal
)->getZExtValue(), dl
,
8781 Ops
.push_back(Callee
);
8783 // Adjust <numArgs> to account for any arguments that have been passed on the
8785 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8786 unsigned NumCallRegArgs
= Call
->getNumOperands() - (HasGlue
? 4 : 3);
8787 NumCallRegArgs
= IsAnyRegCC
? NumArgs
: NumCallRegArgs
;
8788 Ops
.push_back(DAG
.getTargetConstant(NumCallRegArgs
, dl
, MVT::i32
));
8790 // Add the calling convention
8791 Ops
.push_back(DAG
.getTargetConstant((unsigned)CC
, dl
, MVT::i32
));
8793 // Add the arguments we omitted previously. The register allocator should
8794 // place these in any free register.
8796 for (unsigned i
= NumMetaOpers
, e
= NumMetaOpers
+ NumArgs
; i
!= e
; ++i
)
8797 Ops
.push_back(getValue(CS
.getArgument(i
)));
8799 // Push the arguments from the call instruction up to the register mask.
8800 SDNode::op_iterator e
= HasGlue
? Call
->op_end()-2 : Call
->op_end()-1;
8801 Ops
.append(Call
->op_begin() + 2, e
);
8803 // Push live variables for the stack map.
8804 addStackMapLiveVars(CS
, NumMetaOpers
+ NumArgs
, dl
, Ops
, *this);
8806 // Push the register mask info.
8808 Ops
.push_back(*(Call
->op_end()-2));
8810 Ops
.push_back(*(Call
->op_end()-1));
8812 // Push the chain (this is originally the first operand of the call, but
8813 // becomes now the last or second to last operand).
8814 Ops
.push_back(*(Call
->op_begin()));
8816 // Push the glue flag (last operand).
8818 Ops
.push_back(*(Call
->op_end()-1));
8821 if (IsAnyRegCC
&& HasDef
) {
8822 // Create the return types based on the intrinsic definition
8823 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8824 SmallVector
<EVT
, 3> ValueVTs
;
8825 ComputeValueVTs(TLI
, DAG
.getDataLayout(), CS
->getType(), ValueVTs
);
8826 assert(ValueVTs
.size() == 1 && "Expected only one return value type.");
8828 // There is always a chain and a glue type at the end
8829 ValueVTs
.push_back(MVT::Other
);
8830 ValueVTs
.push_back(MVT::Glue
);
8831 NodeTys
= DAG
.getVTList(ValueVTs
);
8833 NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
8835 // Replace the target specific call node with a PATCHPOINT node.
8836 MachineSDNode
*MN
= DAG
.getMachineNode(TargetOpcode::PATCHPOINT
,
8839 // Update the NodeMap.
8842 setValue(CS
.getInstruction(), SDValue(MN
, 0));
8844 setValue(CS
.getInstruction(), Result
.first
);
8847 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8848 // call sequence. Furthermore the location of the chain and glue can change
8849 // when the AnyReg calling convention is used and the intrinsic returns a
8851 if (IsAnyRegCC
&& HasDef
) {
8852 SDValue From
[] = {SDValue(Call
, 0), SDValue(Call
, 1)};
8853 SDValue To
[] = {SDValue(MN
, 1), SDValue(MN
, 2)};
8854 DAG
.ReplaceAllUsesOfValuesWith(From
, To
, 2);
8856 DAG
.ReplaceAllUsesWith(Call
, MN
);
8857 DAG
.DeleteNode(Call
);
8859 // Inform the Frame Information that we have a patchpoint in this function.
8860 FuncInfo
.MF
->getFrameInfo().setHasPatchPoint();
8863 void SelectionDAGBuilder::visitVectorReduce(const CallInst
&I
,
8864 unsigned Intrinsic
) {
8865 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8866 SDValue Op1
= getValue(I
.getArgOperand(0));
8868 if (I
.getNumArgOperands() > 1)
8869 Op2
= getValue(I
.getArgOperand(1));
8870 SDLoc dl
= getCurSDLoc();
8871 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
8874 if (isa
<FPMathOperator
>(I
))
8875 FMF
= I
.getFastMathFlags();
8877 switch (Intrinsic
) {
8878 case Intrinsic::experimental_vector_reduce_v2_fadd
:
8879 if (FMF
.allowReassoc())
8880 Res
= DAG
.getNode(ISD::FADD
, dl
, VT
, Op1
,
8881 DAG
.getNode(ISD::VECREDUCE_FADD
, dl
, VT
, Op2
));
8883 Res
= DAG
.getNode(ISD::VECREDUCE_STRICT_FADD
, dl
, VT
, Op1
, Op2
);
8885 case Intrinsic::experimental_vector_reduce_v2_fmul
:
8886 if (FMF
.allowReassoc())
8887 Res
= DAG
.getNode(ISD::FMUL
, dl
, VT
, Op1
,
8888 DAG
.getNode(ISD::VECREDUCE_FMUL
, dl
, VT
, Op2
));
8890 Res
= DAG
.getNode(ISD::VECREDUCE_STRICT_FMUL
, dl
, VT
, Op1
, Op2
);
8892 case Intrinsic::experimental_vector_reduce_add
:
8893 Res
= DAG
.getNode(ISD::VECREDUCE_ADD
, dl
, VT
, Op1
);
8895 case Intrinsic::experimental_vector_reduce_mul
:
8896 Res
= DAG
.getNode(ISD::VECREDUCE_MUL
, dl
, VT
, Op1
);
8898 case Intrinsic::experimental_vector_reduce_and
:
8899 Res
= DAG
.getNode(ISD::VECREDUCE_AND
, dl
, VT
, Op1
);
8901 case Intrinsic::experimental_vector_reduce_or
:
8902 Res
= DAG
.getNode(ISD::VECREDUCE_OR
, dl
, VT
, Op1
);
8904 case Intrinsic::experimental_vector_reduce_xor
:
8905 Res
= DAG
.getNode(ISD::VECREDUCE_XOR
, dl
, VT
, Op1
);
8907 case Intrinsic::experimental_vector_reduce_smax
:
8908 Res
= DAG
.getNode(ISD::VECREDUCE_SMAX
, dl
, VT
, Op1
);
8910 case Intrinsic::experimental_vector_reduce_smin
:
8911 Res
= DAG
.getNode(ISD::VECREDUCE_SMIN
, dl
, VT
, Op1
);
8913 case Intrinsic::experimental_vector_reduce_umax
:
8914 Res
= DAG
.getNode(ISD::VECREDUCE_UMAX
, dl
, VT
, Op1
);
8916 case Intrinsic::experimental_vector_reduce_umin
:
8917 Res
= DAG
.getNode(ISD::VECREDUCE_UMIN
, dl
, VT
, Op1
);
8919 case Intrinsic::experimental_vector_reduce_fmax
:
8920 Res
= DAG
.getNode(ISD::VECREDUCE_FMAX
, dl
, VT
, Op1
);
8922 case Intrinsic::experimental_vector_reduce_fmin
:
8923 Res
= DAG
.getNode(ISD::VECREDUCE_FMIN
, dl
, VT
, Op1
);
8926 llvm_unreachable("Unhandled vector reduce intrinsic");
8931 /// Returns an AttributeList representing the attributes applied to the return
8932 /// value of the given call.
8933 static AttributeList
getReturnAttrs(TargetLowering::CallLoweringInfo
&CLI
) {
8934 SmallVector
<Attribute::AttrKind
, 2> Attrs
;
8936 Attrs
.push_back(Attribute::SExt
);
8938 Attrs
.push_back(Attribute::ZExt
);
8940 Attrs
.push_back(Attribute::InReg
);
8942 return AttributeList::get(CLI
.RetTy
->getContext(), AttributeList::ReturnIndex
,
8946 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8947 /// implementation, which just calls LowerCall.
8948 /// FIXME: When all targets are
8949 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8950 std::pair
<SDValue
, SDValue
>
8951 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo
&CLI
) const {
8952 // Handle the incoming return values from the call.
8954 Type
*OrigRetTy
= CLI
.RetTy
;
8955 SmallVector
<EVT
, 4> RetTys
;
8956 SmallVector
<uint64_t, 4> Offsets
;
8957 auto &DL
= CLI
.DAG
.getDataLayout();
8958 ComputeValueVTs(*this, DL
, CLI
.RetTy
, RetTys
, &Offsets
);
8960 if (CLI
.IsPostTypeLegalization
) {
8961 // If we are lowering a libcall after legalization, split the return type.
8962 SmallVector
<EVT
, 4> OldRetTys
;
8963 SmallVector
<uint64_t, 4> OldOffsets
;
8964 RetTys
.swap(OldRetTys
);
8965 Offsets
.swap(OldOffsets
);
8967 for (size_t i
= 0, e
= OldRetTys
.size(); i
!= e
; ++i
) {
8968 EVT RetVT
= OldRetTys
[i
];
8969 uint64_t Offset
= OldOffsets
[i
];
8970 MVT RegisterVT
= getRegisterType(CLI
.RetTy
->getContext(), RetVT
);
8971 unsigned NumRegs
= getNumRegisters(CLI
.RetTy
->getContext(), RetVT
);
8972 unsigned RegisterVTByteSZ
= RegisterVT
.getSizeInBits() / 8;
8973 RetTys
.append(NumRegs
, RegisterVT
);
8974 for (unsigned j
= 0; j
!= NumRegs
; ++j
)
8975 Offsets
.push_back(Offset
+ j
* RegisterVTByteSZ
);
8979 SmallVector
<ISD::OutputArg
, 4> Outs
;
8980 GetReturnInfo(CLI
.CallConv
, CLI
.RetTy
, getReturnAttrs(CLI
), Outs
, *this, DL
);
8982 bool CanLowerReturn
=
8983 this->CanLowerReturn(CLI
.CallConv
, CLI
.DAG
.getMachineFunction(),
8984 CLI
.IsVarArg
, Outs
, CLI
.RetTy
->getContext());
8986 SDValue DemoteStackSlot
;
8987 int DemoteStackIdx
= -100;
8988 if (!CanLowerReturn
) {
8989 // FIXME: equivalent assert?
8990 // assert(!CS.hasInAllocaArgument() &&
8991 // "sret demotion is incompatible with inalloca");
8992 uint64_t TySize
= DL
.getTypeAllocSize(CLI
.RetTy
);
8993 unsigned Align
= DL
.getPrefTypeAlignment(CLI
.RetTy
);
8994 MachineFunction
&MF
= CLI
.DAG
.getMachineFunction();
8995 DemoteStackIdx
= MF
.getFrameInfo().CreateStackObject(TySize
, Align
, false);
8996 Type
*StackSlotPtrType
= PointerType::get(CLI
.RetTy
,
8997 DL
.getAllocaAddrSpace());
8999 DemoteStackSlot
= CLI
.DAG
.getFrameIndex(DemoteStackIdx
, getFrameIndexTy(DL
));
9001 Entry
.Node
= DemoteStackSlot
;
9002 Entry
.Ty
= StackSlotPtrType
;
9003 Entry
.IsSExt
= false;
9004 Entry
.IsZExt
= false;
9005 Entry
.IsInReg
= false;
9006 Entry
.IsSRet
= true;
9007 Entry
.IsNest
= false;
9008 Entry
.IsByVal
= false;
9009 Entry
.IsReturned
= false;
9010 Entry
.IsSwiftSelf
= false;
9011 Entry
.IsSwiftError
= false;
9012 Entry
.Alignment
= Align
;
9013 CLI
.getArgs().insert(CLI
.getArgs().begin(), Entry
);
9014 CLI
.NumFixedArgs
+= 1;
9015 CLI
.RetTy
= Type::getVoidTy(CLI
.RetTy
->getContext());
9017 // sret demotion isn't compatible with tail-calls, since the sret argument
9018 // points into the callers stack frame.
9019 CLI
.IsTailCall
= false;
9021 bool NeedsRegBlock
= functionArgumentNeedsConsecutiveRegisters(
9022 CLI
.RetTy
, CLI
.CallConv
, CLI
.IsVarArg
);
9023 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
9024 ISD::ArgFlagsTy Flags
;
9025 if (NeedsRegBlock
) {
9026 Flags
.setInConsecutiveRegs();
9027 if (I
== RetTys
.size() - 1)
9028 Flags
.setInConsecutiveRegsLast();
9031 MVT RegisterVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9033 unsigned NumRegs
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9035 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
9036 ISD::InputArg MyFlags
;
9037 MyFlags
.Flags
= Flags
;
9038 MyFlags
.VT
= RegisterVT
;
9040 MyFlags
.Used
= CLI
.IsReturnValueUsed
;
9041 if (CLI
.RetTy
->isPointerTy()) {
9042 MyFlags
.Flags
.setPointer();
9043 MyFlags
.Flags
.setPointerAddrSpace(
9044 cast
<PointerType
>(CLI
.RetTy
)->getAddressSpace());
9047 MyFlags
.Flags
.setSExt();
9049 MyFlags
.Flags
.setZExt();
9051 MyFlags
.Flags
.setInReg();
9052 CLI
.Ins
.push_back(MyFlags
);
9057 // We push in swifterror return as the last element of CLI.Ins.
9058 ArgListTy
&Args
= CLI
.getArgs();
9059 if (supportSwiftError()) {
9060 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
9061 if (Args
[i
].IsSwiftError
) {
9062 ISD::InputArg MyFlags
;
9063 MyFlags
.VT
= getPointerTy(DL
);
9064 MyFlags
.ArgVT
= EVT(getPointerTy(DL
));
9065 MyFlags
.Flags
.setSwiftError();
9066 CLI
.Ins
.push_back(MyFlags
);
9071 // Handle all of the outgoing arguments.
9073 CLI
.OutVals
.clear();
9074 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
9075 SmallVector
<EVT
, 4> ValueVTs
;
9076 ComputeValueVTs(*this, DL
, Args
[i
].Ty
, ValueVTs
);
9077 // FIXME: Split arguments if CLI.IsPostTypeLegalization
9078 Type
*FinalType
= Args
[i
].Ty
;
9079 if (Args
[i
].IsByVal
)
9080 FinalType
= cast
<PointerType
>(Args
[i
].Ty
)->getElementType();
9081 bool NeedsRegBlock
= functionArgumentNeedsConsecutiveRegisters(
9082 FinalType
, CLI
.CallConv
, CLI
.IsVarArg
);
9083 for (unsigned Value
= 0, NumValues
= ValueVTs
.size(); Value
!= NumValues
;
9085 EVT VT
= ValueVTs
[Value
];
9086 Type
*ArgTy
= VT
.getTypeForEVT(CLI
.RetTy
->getContext());
9087 SDValue Op
= SDValue(Args
[i
].Node
.getNode(),
9088 Args
[i
].Node
.getResNo() + Value
);
9089 ISD::ArgFlagsTy Flags
;
9091 // Certain targets (such as MIPS), may have a different ABI alignment
9092 // for a type depending on the context. Give the target a chance to
9093 // specify the alignment it wants.
9094 unsigned OriginalAlignment
= getABIAlignmentForCallingConv(ArgTy
, DL
);
9096 if (Args
[i
].Ty
->isPointerTy()) {
9098 Flags
.setPointerAddrSpace(
9099 cast
<PointerType
>(Args
[i
].Ty
)->getAddressSpace());
9105 if (Args
[i
].IsInReg
) {
9106 // If we are using vectorcall calling convention, a structure that is
9107 // passed InReg - is surely an HVA
9108 if (CLI
.CallConv
== CallingConv::X86_VectorCall
&&
9109 isa
<StructType
>(FinalType
)) {
9110 // The first value of a structure is marked
9112 Flags
.setHvaStart();
9120 if (Args
[i
].IsSwiftSelf
)
9121 Flags
.setSwiftSelf();
9122 if (Args
[i
].IsSwiftError
)
9123 Flags
.setSwiftError();
9124 if (Args
[i
].IsByVal
)
9126 if (Args
[i
].IsInAlloca
) {
9127 Flags
.setInAlloca();
9128 // Set the byval flag for CCAssignFn callbacks that don't know about
9129 // inalloca. This way we can know how many bytes we should've allocated
9130 // and how many bytes a callee cleanup function will pop. If we port
9131 // inalloca to more targets, we'll have to add custom inalloca handling
9132 // in the various CC lowering callbacks.
9135 if (Args
[i
].IsByVal
|| Args
[i
].IsInAlloca
) {
9136 PointerType
*Ty
= cast
<PointerType
>(Args
[i
].Ty
);
9137 Type
*ElementTy
= Ty
->getElementType();
9139 unsigned FrameSize
= DL
.getTypeAllocSize(
9140 Args
[i
].ByValType
? Args
[i
].ByValType
: ElementTy
);
9141 Flags
.setByValSize(FrameSize
);
9143 // info is not there but there are cases it cannot get right.
9144 unsigned FrameAlign
;
9145 if (Args
[i
].Alignment
)
9146 FrameAlign
= Args
[i
].Alignment
;
9148 FrameAlign
= getByValTypeAlignment(ElementTy
, DL
);
9149 Flags
.setByValAlign(FrameAlign
);
9154 Flags
.setInConsecutiveRegs();
9155 Flags
.setOrigAlign(OriginalAlignment
);
9157 MVT PartVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9159 unsigned NumParts
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9161 SmallVector
<SDValue
, 4> Parts(NumParts
);
9162 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
9165 ExtendKind
= ISD::SIGN_EXTEND
;
9166 else if (Args
[i
].IsZExt
)
9167 ExtendKind
= ISD::ZERO_EXTEND
;
9169 // Conservatively only handle 'returned' on non-vectors that can be lowered,
9171 if (Args
[i
].IsReturned
&& !Op
.getValueType().isVector() &&
9173 assert((CLI
.RetTy
== Args
[i
].Ty
||
9174 (CLI
.RetTy
->isPointerTy() && Args
[i
].Ty
->isPointerTy() &&
9175 CLI
.RetTy
->getPointerAddressSpace() ==
9176 Args
[i
].Ty
->getPointerAddressSpace())) &&
9177 RetTys
.size() == NumValues
&& "unexpected use of 'returned'");
9178 // Before passing 'returned' to the target lowering code, ensure that
9179 // either the register MVT and the actual EVT are the same size or that
9180 // the return value and argument are extended in the same way; in these
9181 // cases it's safe to pass the argument register value unchanged as the
9182 // return register value (although it's at the target's option whether
9184 // TODO: allow code generation to take advantage of partially preserved
9185 // registers rather than clobbering the entire register when the
9186 // parameter extension method is not compatible with the return
9188 if ((NumParts
* PartVT
.getSizeInBits() == VT
.getSizeInBits()) ||
9189 (ExtendKind
!= ISD::ANY_EXTEND
&& CLI
.RetSExt
== Args
[i
].IsSExt
&&
9190 CLI
.RetZExt
== Args
[i
].IsZExt
))
9191 Flags
.setReturned();
9194 getCopyToParts(CLI
.DAG
, CLI
.DL
, Op
, &Parts
[0], NumParts
, PartVT
,
9195 CLI
.CS
.getInstruction(), CLI
.CallConv
, ExtendKind
);
9197 for (unsigned j
= 0; j
!= NumParts
; ++j
) {
9198 // if it isn't first piece, alignment must be 1
9199 ISD::OutputArg
MyFlags(Flags
, Parts
[j
].getValueType(), VT
,
9200 i
< CLI
.NumFixedArgs
,
9201 i
, j
*Parts
[j
].getValueType().getStoreSize());
9202 if (NumParts
> 1 && j
== 0)
9203 MyFlags
.Flags
.setSplit();
9205 MyFlags
.Flags
.setOrigAlign(1);
9206 if (j
== NumParts
- 1)
9207 MyFlags
.Flags
.setSplitEnd();
9210 CLI
.Outs
.push_back(MyFlags
);
9211 CLI
.OutVals
.push_back(Parts
[j
]);
9214 if (NeedsRegBlock
&& Value
== NumValues
- 1)
9215 CLI
.Outs
[CLI
.Outs
.size() - 1].Flags
.setInConsecutiveRegsLast();
9219 SmallVector
<SDValue
, 4> InVals
;
9220 CLI
.Chain
= LowerCall(CLI
, InVals
);
9222 // Update CLI.InVals to use outside of this function.
9223 CLI
.InVals
= InVals
;
9225 // Verify that the target's LowerCall behaved as expected.
9226 assert(CLI
.Chain
.getNode() && CLI
.Chain
.getValueType() == MVT::Other
&&
9227 "LowerCall didn't return a valid chain!");
9228 assert((!CLI
.IsTailCall
|| InVals
.empty()) &&
9229 "LowerCall emitted a return value for a tail call!");
9230 assert((CLI
.IsTailCall
|| InVals
.size() == CLI
.Ins
.size()) &&
9231 "LowerCall didn't emit the correct number of values!");
9233 // For a tail call, the return value is merely live-out and there aren't
9234 // any nodes in the DAG representing it. Return a special value to
9235 // indicate that a tail call has been emitted and no more Instructions
9236 // should be processed in the current block.
9237 if (CLI
.IsTailCall
) {
9238 CLI
.DAG
.setRoot(CLI
.Chain
);
9239 return std::make_pair(SDValue(), SDValue());
9243 for (unsigned i
= 0, e
= CLI
.Ins
.size(); i
!= e
; ++i
) {
9244 assert(InVals
[i
].getNode() && "LowerCall emitted a null value!");
9245 assert(EVT(CLI
.Ins
[i
].VT
) == InVals
[i
].getValueType() &&
9246 "LowerCall emitted a value with the wrong type!");
9250 SmallVector
<SDValue
, 4> ReturnValues
;
9251 if (!CanLowerReturn
) {
9252 // The instruction result is the result of loading from the
9253 // hidden sret parameter.
9254 SmallVector
<EVT
, 1> PVTs
;
9255 Type
*PtrRetTy
= OrigRetTy
->getPointerTo(DL
.getAllocaAddrSpace());
9257 ComputeValueVTs(*this, DL
, PtrRetTy
, PVTs
);
9258 assert(PVTs
.size() == 1 && "Pointers should fit in one register");
9259 EVT PtrVT
= PVTs
[0];
9261 unsigned NumValues
= RetTys
.size();
9262 ReturnValues
.resize(NumValues
);
9263 SmallVector
<SDValue
, 4> Chains(NumValues
);
9265 // An aggregate return value cannot wrap around the address space, so
9266 // offsets to its parts don't wrap either.
9268 Flags
.setNoUnsignedWrap(true);
9270 for (unsigned i
= 0; i
< NumValues
; ++i
) {
9271 SDValue Add
= CLI
.DAG
.getNode(ISD::ADD
, CLI
.DL
, PtrVT
, DemoteStackSlot
,
9272 CLI
.DAG
.getConstant(Offsets
[i
], CLI
.DL
,
9274 SDValue L
= CLI
.DAG
.getLoad(
9275 RetTys
[i
], CLI
.DL
, CLI
.Chain
, Add
,
9276 MachinePointerInfo::getFixedStack(CLI
.DAG
.getMachineFunction(),
9277 DemoteStackIdx
, Offsets
[i
]),
9278 /* Alignment = */ 1);
9279 ReturnValues
[i
] = L
;
9280 Chains
[i
] = L
.getValue(1);
9283 CLI
.Chain
= CLI
.DAG
.getNode(ISD::TokenFactor
, CLI
.DL
, MVT::Other
, Chains
);
9285 // Collect the legal value parts into potentially illegal values
9286 // that correspond to the original function's return values.
9287 Optional
<ISD::NodeType
> AssertOp
;
9289 AssertOp
= ISD::AssertSext
;
9290 else if (CLI
.RetZExt
)
9291 AssertOp
= ISD::AssertZext
;
9292 unsigned CurReg
= 0;
9293 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
9295 MVT RegisterVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9297 unsigned NumRegs
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9300 ReturnValues
.push_back(getCopyFromParts(CLI
.DAG
, CLI
.DL
, &InVals
[CurReg
],
9301 NumRegs
, RegisterVT
, VT
, nullptr,
9302 CLI
.CallConv
, AssertOp
));
9306 // For a function returning void, there is no return value. We can't create
9307 // such a node, so we just return a null return value in that case. In
9308 // that case, nothing will actually look at the value.
9309 if (ReturnValues
.empty())
9310 return std::make_pair(SDValue(), CLI
.Chain
);
9313 SDValue Res
= CLI
.DAG
.getNode(ISD::MERGE_VALUES
, CLI
.DL
,
9314 CLI
.DAG
.getVTList(RetTys
), ReturnValues
);
9315 return std::make_pair(Res
, CLI
.Chain
);
9318 void TargetLowering::LowerOperationWrapper(SDNode
*N
,
9319 SmallVectorImpl
<SDValue
> &Results
,
9320 SelectionDAG
&DAG
) const {
9321 if (SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
))
9322 Results
.push_back(Res
);
9325 SDValue
TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
9326 llvm_unreachable("LowerOperation not implemented for this target!");
9330 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value
*V
, unsigned Reg
) {
9331 SDValue Op
= getNonRegisterValue(V
);
9332 assert((Op
.getOpcode() != ISD::CopyFromReg
||
9333 cast
<RegisterSDNode
>(Op
.getOperand(1))->getReg() != Reg
) &&
9334 "Copy from a reg to the same reg!");
9335 assert(!Register::isPhysicalRegister(Reg
) && "Is a physreg");
9337 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9338 // If this is an InlineAsm we have to match the registers required, not the
9339 // notional registers required by the type.
9341 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), Reg
, V
->getType(),
9342 None
); // This is not an ABI copy.
9343 SDValue Chain
= DAG
.getEntryNode();
9345 ISD::NodeType ExtendType
= (FuncInfo
.PreferredExtendType
.find(V
) ==
9346 FuncInfo
.PreferredExtendType
.end())
9348 : FuncInfo
.PreferredExtendType
[V
];
9349 RFV
.getCopyToRegs(Op
, DAG
, getCurSDLoc(), Chain
, nullptr, V
, ExtendType
);
9350 PendingExports
.push_back(Chain
);
9353 #include "llvm/CodeGen/SelectionDAGISel.h"
9355 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9356 /// entry block, return true. This includes arguments used by switches, since
9357 /// the switch may expand into multiple basic blocks.
9358 static bool isOnlyUsedInEntryBlock(const Argument
*A
, bool FastISel
) {
9359 // With FastISel active, we may be splitting blocks, so force creation
9360 // of virtual registers for all non-dead arguments.
9362 return A
->use_empty();
9364 const BasicBlock
&Entry
= A
->getParent()->front();
9365 for (const User
*U
: A
->users())
9366 if (cast
<Instruction
>(U
)->getParent() != &Entry
|| isa
<SwitchInst
>(U
))
9367 return false; // Use not in entry block.
9372 using ArgCopyElisionMapTy
=
9373 DenseMap
<const Argument
*,
9374 std::pair
<const AllocaInst
*, const StoreInst
*>>;
9376 /// Scan the entry block of the function in FuncInfo for arguments that look
9377 /// like copies into a local alloca. Record any copied arguments in
9378 /// ArgCopyElisionCandidates.
9380 findArgumentCopyElisionCandidates(const DataLayout
&DL
,
9381 FunctionLoweringInfo
*FuncInfo
,
9382 ArgCopyElisionMapTy
&ArgCopyElisionCandidates
) {
9383 // Record the state of every static alloca used in the entry block. Argument
9384 // allocas are all used in the entry block, so we need approximately as many
9385 // entries as we have arguments.
9386 enum StaticAllocaInfo
{ Unknown
, Clobbered
, Elidable
};
9387 SmallDenseMap
<const AllocaInst
*, StaticAllocaInfo
, 8> StaticAllocas
;
9388 unsigned NumArgs
= FuncInfo
->Fn
->arg_size();
9389 StaticAllocas
.reserve(NumArgs
* 2);
9391 auto GetInfoIfStaticAlloca
= [&](const Value
*V
) -> StaticAllocaInfo
* {
9394 V
= V
->stripPointerCasts();
9395 const auto *AI
= dyn_cast
<AllocaInst
>(V
);
9396 if (!AI
|| !AI
->isStaticAlloca() || !FuncInfo
->StaticAllocaMap
.count(AI
))
9398 auto Iter
= StaticAllocas
.insert({AI
, Unknown
});
9399 return &Iter
.first
->second
;
9402 // Look for stores of arguments to static allocas. Look through bitcasts and
9403 // GEPs to handle type coercions, as long as the alloca is fully initialized
9404 // by the store. Any non-store use of an alloca escapes it and any subsequent
9405 // unanalyzed store might write it.
9406 // FIXME: Handle structs initialized with multiple stores.
9407 for (const Instruction
&I
: FuncInfo
->Fn
->getEntryBlock()) {
9408 // Look for stores, and handle non-store uses conservatively.
9409 const auto *SI
= dyn_cast
<StoreInst
>(&I
);
9411 // We will look through cast uses, so ignore them completely.
9414 // Ignore debug info intrinsics, they don't escape or store to allocas.
9415 if (isa
<DbgInfoIntrinsic
>(I
))
9417 // This is an unknown instruction. Assume it escapes or writes to all
9418 // static alloca operands.
9419 for (const Use
&U
: I
.operands()) {
9420 if (StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(U
))
9421 *Info
= StaticAllocaInfo::Clobbered
;
9426 // If the stored value is a static alloca, mark it as escaped.
9427 if (StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(SI
->getValueOperand()))
9428 *Info
= StaticAllocaInfo::Clobbered
;
9430 // Check if the destination is a static alloca.
9431 const Value
*Dst
= SI
->getPointerOperand()->stripPointerCasts();
9432 StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(Dst
);
9435 const AllocaInst
*AI
= cast
<AllocaInst
>(Dst
);
9437 // Skip allocas that have been initialized or clobbered.
9438 if (*Info
!= StaticAllocaInfo::Unknown
)
9441 // Check if the stored value is an argument, and that this store fully
9442 // initializes the alloca. Don't elide copies from the same argument twice.
9443 const Value
*Val
= SI
->getValueOperand()->stripPointerCasts();
9444 const auto *Arg
= dyn_cast
<Argument
>(Val
);
9445 if (!Arg
|| Arg
->hasInAllocaAttr() || Arg
->hasByValAttr() ||
9446 Arg
->getType()->isEmptyTy() ||
9447 DL
.getTypeStoreSize(Arg
->getType()) !=
9448 DL
.getTypeAllocSize(AI
->getAllocatedType()) ||
9449 ArgCopyElisionCandidates
.count(Arg
)) {
9450 *Info
= StaticAllocaInfo::Clobbered
;
9454 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9457 // Mark this alloca and store for argument copy elision.
9458 *Info
= StaticAllocaInfo::Elidable
;
9459 ArgCopyElisionCandidates
.insert({Arg
, {AI
, SI
}});
9461 // Stop scanning if we've seen all arguments. This will happen early in -O0
9462 // builds, which is useful, because -O0 builds have large entry blocks and
9464 if (ArgCopyElisionCandidates
.size() == NumArgs
)
9469 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9470 /// ArgVal is a load from a suitable fixed stack object.
9471 static void tryToElideArgumentCopy(
9472 FunctionLoweringInfo
*FuncInfo
, SmallVectorImpl
<SDValue
> &Chains
,
9473 DenseMap
<int, int> &ArgCopyElisionFrameIndexMap
,
9474 SmallPtrSetImpl
<const Instruction
*> &ElidedArgCopyInstrs
,
9475 ArgCopyElisionMapTy
&ArgCopyElisionCandidates
, const Argument
&Arg
,
9476 SDValue ArgVal
, bool &ArgHasUses
) {
9477 // Check if this is a load from a fixed stack object.
9478 auto *LNode
= dyn_cast
<LoadSDNode
>(ArgVal
);
9481 auto *FINode
= dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode());
9485 // Check that the fixed stack object is the right size and alignment.
9486 // Look at the alignment that the user wrote on the alloca instead of looking
9487 // at the stack object.
9488 auto ArgCopyIter
= ArgCopyElisionCandidates
.find(&Arg
);
9489 assert(ArgCopyIter
!= ArgCopyElisionCandidates
.end());
9490 const AllocaInst
*AI
= ArgCopyIter
->second
.first
;
9491 int FixedIndex
= FINode
->getIndex();
9492 int &AllocaIndex
= FuncInfo
->StaticAllocaMap
[AI
];
9493 int OldIndex
= AllocaIndex
;
9494 MachineFrameInfo
&MFI
= FuncInfo
->MF
->getFrameInfo();
9495 if (MFI
.getObjectSize(FixedIndex
) != MFI
.getObjectSize(OldIndex
)) {
9497 dbgs() << " argument copy elision failed due to bad fixed stack "
9501 unsigned RequiredAlignment
= AI
->getAlignment();
9502 if (!RequiredAlignment
) {
9503 RequiredAlignment
= FuncInfo
->MF
->getDataLayout().getABITypeAlignment(
9504 AI
->getAllocatedType());
9506 if (MFI
.getObjectAlignment(FixedIndex
) < RequiredAlignment
) {
9507 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
9508 "greater than stack argument alignment ("
9509 << RequiredAlignment
<< " vs "
9510 << MFI
.getObjectAlignment(FixedIndex
) << ")\n");
9514 // Perform the elision. Delete the old stack object and replace its only use
9515 // in the variable info map. Mark the stack object as mutable.
9517 dbgs() << "Eliding argument copy from " << Arg
<< " to " << *AI
<< '\n'
9518 << " Replacing frame index " << OldIndex
<< " with " << FixedIndex
9521 MFI
.RemoveStackObject(OldIndex
);
9522 MFI
.setIsImmutableObjectIndex(FixedIndex
, false);
9523 AllocaIndex
= FixedIndex
;
9524 ArgCopyElisionFrameIndexMap
.insert({OldIndex
, FixedIndex
});
9525 Chains
.push_back(ArgVal
.getValue(1));
9527 // Avoid emitting code for the store implementing the copy.
9528 const StoreInst
*SI
= ArgCopyIter
->second
.second
;
9529 ElidedArgCopyInstrs
.insert(SI
);
9531 // Check for uses of the argument again so that we can avoid exporting ArgVal
9532 // if it is't used by anything other than the store.
9533 for (const Value
*U
: Arg
.users()) {
9541 void SelectionDAGISel::LowerArguments(const Function
&F
) {
9542 SelectionDAG
&DAG
= SDB
->DAG
;
9543 SDLoc dl
= SDB
->getCurSDLoc();
9544 const DataLayout
&DL
= DAG
.getDataLayout();
9545 SmallVector
<ISD::InputArg
, 16> Ins
;
9547 if (!FuncInfo
->CanLowerReturn
) {
9548 // Put in an sret pointer parameter before all the other parameters.
9549 SmallVector
<EVT
, 1> ValueVTs
;
9550 ComputeValueVTs(*TLI
, DAG
.getDataLayout(),
9551 F
.getReturnType()->getPointerTo(
9552 DAG
.getDataLayout().getAllocaAddrSpace()),
9555 // NOTE: Assuming that a pointer will never break down to more than one VT
9557 ISD::ArgFlagsTy Flags
;
9559 MVT RegisterVT
= TLI
->getRegisterType(*DAG
.getContext(), ValueVTs
[0]);
9560 ISD::InputArg
RetArg(Flags
, RegisterVT
, ValueVTs
[0], true,
9561 ISD::InputArg::NoArgIndex
, 0);
9562 Ins
.push_back(RetArg
);
9565 // Look for stores of arguments to static allocas. Mark such arguments with a
9566 // flag to ask the target to give us the memory location of that argument if
9568 ArgCopyElisionMapTy ArgCopyElisionCandidates
;
9569 findArgumentCopyElisionCandidates(DL
, FuncInfo
, ArgCopyElisionCandidates
);
9571 // Set up the incoming argument description vector.
9572 for (const Argument
&Arg
: F
.args()) {
9573 unsigned ArgNo
= Arg
.getArgNo();
9574 SmallVector
<EVT
, 4> ValueVTs
;
9575 ComputeValueVTs(*TLI
, DAG
.getDataLayout(), Arg
.getType(), ValueVTs
);
9576 bool isArgValueUsed
= !Arg
.use_empty();
9577 unsigned PartBase
= 0;
9578 Type
*FinalType
= Arg
.getType();
9579 if (Arg
.hasAttribute(Attribute::ByVal
))
9580 FinalType
= Arg
.getParamByValType();
9581 bool NeedsRegBlock
= TLI
->functionArgumentNeedsConsecutiveRegisters(
9582 FinalType
, F
.getCallingConv(), F
.isVarArg());
9583 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
9584 Value
!= NumValues
; ++Value
) {
9585 EVT VT
= ValueVTs
[Value
];
9586 Type
*ArgTy
= VT
.getTypeForEVT(*DAG
.getContext());
9587 ISD::ArgFlagsTy Flags
;
9589 // Certain targets (such as MIPS), may have a different ABI alignment
9590 // for a type depending on the context. Give the target a chance to
9591 // specify the alignment it wants.
9592 unsigned OriginalAlignment
=
9593 TLI
->getABIAlignmentForCallingConv(ArgTy
, DL
);
9595 if (Arg
.getType()->isPointerTy()) {
9597 Flags
.setPointerAddrSpace(
9598 cast
<PointerType
>(Arg
.getType())->getAddressSpace());
9600 if (Arg
.hasAttribute(Attribute::ZExt
))
9602 if (Arg
.hasAttribute(Attribute::SExt
))
9604 if (Arg
.hasAttribute(Attribute::InReg
)) {
9605 // If we are using vectorcall calling convention, a structure that is
9606 // passed InReg - is surely an HVA
9607 if (F
.getCallingConv() == CallingConv::X86_VectorCall
&&
9608 isa
<StructType
>(Arg
.getType())) {
9609 // The first value of a structure is marked
9611 Flags
.setHvaStart();
9617 if (Arg
.hasAttribute(Attribute::StructRet
))
9619 if (Arg
.hasAttribute(Attribute::SwiftSelf
))
9620 Flags
.setSwiftSelf();
9621 if (Arg
.hasAttribute(Attribute::SwiftError
))
9622 Flags
.setSwiftError();
9623 if (Arg
.hasAttribute(Attribute::ByVal
))
9625 if (Arg
.hasAttribute(Attribute::InAlloca
)) {
9626 Flags
.setInAlloca();
9627 // Set the byval flag for CCAssignFn callbacks that don't know about
9628 // inalloca. This way we can know how many bytes we should've allocated
9629 // and how many bytes a callee cleanup function will pop. If we port
9630 // inalloca to more targets, we'll have to add custom inalloca handling
9631 // in the various CC lowering callbacks.
9634 if (F
.getCallingConv() == CallingConv::X86_INTR
) {
9635 // IA Interrupt passes frame (1st parameter) by value in the stack.
9639 if (Flags
.isByVal() || Flags
.isInAlloca()) {
9640 Type
*ElementTy
= Arg
.getParamByValType();
9642 // For ByVal, size and alignment should be passed from FE. BE will
9643 // guess if this info is not there but there are cases it cannot get
9645 unsigned FrameSize
= DL
.getTypeAllocSize(Arg
.getParamByValType());
9646 Flags
.setByValSize(FrameSize
);
9648 unsigned FrameAlign
;
9649 if (Arg
.getParamAlignment())
9650 FrameAlign
= Arg
.getParamAlignment();
9652 FrameAlign
= TLI
->getByValTypeAlignment(ElementTy
, DL
);
9653 Flags
.setByValAlign(FrameAlign
);
9655 if (Arg
.hasAttribute(Attribute::Nest
))
9658 Flags
.setInConsecutiveRegs();
9659 Flags
.setOrigAlign(OriginalAlignment
);
9660 if (ArgCopyElisionCandidates
.count(&Arg
))
9661 Flags
.setCopyElisionCandidate();
9662 if (Arg
.hasAttribute(Attribute::Returned
))
9663 Flags
.setReturned();
9665 MVT RegisterVT
= TLI
->getRegisterTypeForCallingConv(
9666 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9667 unsigned NumRegs
= TLI
->getNumRegistersForCallingConv(
9668 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9669 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
9670 ISD::InputArg
MyFlags(Flags
, RegisterVT
, VT
, isArgValueUsed
,
9671 ArgNo
, PartBase
+i
*RegisterVT
.getStoreSize());
9672 if (NumRegs
> 1 && i
== 0)
9673 MyFlags
.Flags
.setSplit();
9674 // if it isn't first piece, alignment must be 1
9676 MyFlags
.Flags
.setOrigAlign(1);
9677 if (i
== NumRegs
- 1)
9678 MyFlags
.Flags
.setSplitEnd();
9680 Ins
.push_back(MyFlags
);
9682 if (NeedsRegBlock
&& Value
== NumValues
- 1)
9683 Ins
[Ins
.size() - 1].Flags
.setInConsecutiveRegsLast();
9684 PartBase
+= VT
.getStoreSize();
9688 // Call the target to set up the argument values.
9689 SmallVector
<SDValue
, 8> InVals
;
9690 SDValue NewRoot
= TLI
->LowerFormalArguments(
9691 DAG
.getRoot(), F
.getCallingConv(), F
.isVarArg(), Ins
, dl
, DAG
, InVals
);
9693 // Verify that the target's LowerFormalArguments behaved as expected.
9694 assert(NewRoot
.getNode() && NewRoot
.getValueType() == MVT::Other
&&
9695 "LowerFormalArguments didn't return a valid chain!");
9696 assert(InVals
.size() == Ins
.size() &&
9697 "LowerFormalArguments didn't emit the correct number of values!");
9699 for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
9700 assert(InVals
[i
].getNode() &&
9701 "LowerFormalArguments emitted a null value!");
9702 assert(EVT(Ins
[i
].VT
) == InVals
[i
].getValueType() &&
9703 "LowerFormalArguments emitted a value with the wrong type!");
9707 // Update the DAG with the new chain value resulting from argument lowering.
9708 DAG
.setRoot(NewRoot
);
9710 // Set up the argument values.
9712 if (!FuncInfo
->CanLowerReturn
) {
9713 // Create a virtual register for the sret pointer, and put in a copy
9714 // from the sret argument into it.
9715 SmallVector
<EVT
, 1> ValueVTs
;
9716 ComputeValueVTs(*TLI
, DAG
.getDataLayout(),
9717 F
.getReturnType()->getPointerTo(
9718 DAG
.getDataLayout().getAllocaAddrSpace()),
9720 MVT VT
= ValueVTs
[0].getSimpleVT();
9721 MVT RegVT
= TLI
->getRegisterType(*CurDAG
->getContext(), VT
);
9722 Optional
<ISD::NodeType
> AssertOp
= None
;
9723 SDValue ArgValue
= getCopyFromParts(DAG
, dl
, &InVals
[0], 1, RegVT
, VT
,
9724 nullptr, F
.getCallingConv(), AssertOp
);
9726 MachineFunction
& MF
= SDB
->DAG
.getMachineFunction();
9727 MachineRegisterInfo
& RegInfo
= MF
.getRegInfo();
9729 RegInfo
.createVirtualRegister(TLI
->getRegClassFor(RegVT
));
9730 FuncInfo
->DemoteRegister
= SRetReg
;
9732 SDB
->DAG
.getCopyToReg(NewRoot
, SDB
->getCurSDLoc(), SRetReg
, ArgValue
);
9733 DAG
.setRoot(NewRoot
);
9735 // i indexes lowered arguments. Bump it past the hidden sret argument.
9739 SmallVector
<SDValue
, 4> Chains
;
9740 DenseMap
<int, int> ArgCopyElisionFrameIndexMap
;
9741 for (const Argument
&Arg
: F
.args()) {
9742 SmallVector
<SDValue
, 4> ArgValues
;
9743 SmallVector
<EVT
, 4> ValueVTs
;
9744 ComputeValueVTs(*TLI
, DAG
.getDataLayout(), Arg
.getType(), ValueVTs
);
9745 unsigned NumValues
= ValueVTs
.size();
9749 bool ArgHasUses
= !Arg
.use_empty();
9751 // Elide the copying store if the target loaded this argument from a
9752 // suitable fixed stack object.
9753 if (Ins
[i
].Flags
.isCopyElisionCandidate()) {
9754 tryToElideArgumentCopy(FuncInfo
, Chains
, ArgCopyElisionFrameIndexMap
,
9755 ElidedArgCopyInstrs
, ArgCopyElisionCandidates
, Arg
,
9756 InVals
[i
], ArgHasUses
);
9759 // If this argument is unused then remember its value. It is used to generate
9760 // debugging information.
9761 bool isSwiftErrorArg
=
9762 TLI
->supportSwiftError() &&
9763 Arg
.hasAttribute(Attribute::SwiftError
);
9764 if (!ArgHasUses
&& !isSwiftErrorArg
) {
9765 SDB
->setUnusedArgValue(&Arg
, InVals
[i
]);
9767 // Also remember any frame index for use in FastISel.
9768 if (FrameIndexSDNode
*FI
=
9769 dyn_cast
<FrameIndexSDNode
>(InVals
[i
].getNode()))
9770 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9773 for (unsigned Val
= 0; Val
!= NumValues
; ++Val
) {
9774 EVT VT
= ValueVTs
[Val
];
9775 MVT PartVT
= TLI
->getRegisterTypeForCallingConv(*CurDAG
->getContext(),
9776 F
.getCallingConv(), VT
);
9777 unsigned NumParts
= TLI
->getNumRegistersForCallingConv(
9778 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9780 // Even an apparant 'unused' swifterror argument needs to be returned. So
9781 // we do generate a copy for it that can be used on return from the
9783 if (ArgHasUses
|| isSwiftErrorArg
) {
9784 Optional
<ISD::NodeType
> AssertOp
;
9785 if (Arg
.hasAttribute(Attribute::SExt
))
9786 AssertOp
= ISD::AssertSext
;
9787 else if (Arg
.hasAttribute(Attribute::ZExt
))
9788 AssertOp
= ISD::AssertZext
;
9790 ArgValues
.push_back(getCopyFromParts(DAG
, dl
, &InVals
[i
], NumParts
,
9791 PartVT
, VT
, nullptr,
9792 F
.getCallingConv(), AssertOp
));
9798 // We don't need to do anything else for unused arguments.
9799 if (ArgValues
.empty())
9802 // Note down frame index.
9803 if (FrameIndexSDNode
*FI
=
9804 dyn_cast
<FrameIndexSDNode
>(ArgValues
[0].getNode()))
9805 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9807 SDValue Res
= DAG
.getMergeValues(makeArrayRef(ArgValues
.data(), NumValues
),
9808 SDB
->getCurSDLoc());
9810 SDB
->setValue(&Arg
, Res
);
9811 if (!TM
.Options
.EnableFastISel
&& Res
.getOpcode() == ISD::BUILD_PAIR
) {
9812 // We want to associate the argument with the frame index, among
9813 // involved operands, that correspond to the lowest address. The
9814 // getCopyFromParts function, called earlier, is swapping the order of
9815 // the operands to BUILD_PAIR depending on endianness. The result of
9816 // that swapping is that the least significant bits of the argument will
9817 // be in the first operand of the BUILD_PAIR node, and the most
9818 // significant bits will be in the second operand.
9819 unsigned LowAddressOp
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
9820 if (LoadSDNode
*LNode
=
9821 dyn_cast
<LoadSDNode
>(Res
.getOperand(LowAddressOp
).getNode()))
9822 if (FrameIndexSDNode
*FI
=
9823 dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode()))
9824 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9827 // Update the SwiftErrorVRegDefMap.
9828 if (Res
.getOpcode() == ISD::CopyFromReg
&& isSwiftErrorArg
) {
9829 unsigned Reg
= cast
<RegisterSDNode
>(Res
.getOperand(1))->getReg();
9830 if (Register::isVirtualRegister(Reg
))
9831 SwiftError
->setCurrentVReg(FuncInfo
->MBB
, SwiftError
->getFunctionArg(),
9835 // If this argument is live outside of the entry block, insert a copy from
9836 // wherever we got it to the vreg that other BB's will reference it as.
9837 if (Res
.getOpcode() == ISD::CopyFromReg
) {
9838 // If we can, though, try to skip creating an unnecessary vreg.
9839 // FIXME: This isn't very clean... it would be nice to make this more
9841 unsigned Reg
= cast
<RegisterSDNode
>(Res
.getOperand(1))->getReg();
9842 if (Register::isVirtualRegister(Reg
)) {
9843 FuncInfo
->ValueMap
[&Arg
] = Reg
;
9847 if (!isOnlyUsedInEntryBlock(&Arg
, TM
.Options
.EnableFastISel
)) {
9848 FuncInfo
->InitializeRegForValue(&Arg
);
9849 SDB
->CopyToExportRegsIfNeeded(&Arg
);
9853 if (!Chains
.empty()) {
9854 Chains
.push_back(NewRoot
);
9855 NewRoot
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Chains
);
9858 DAG
.setRoot(NewRoot
);
9860 assert(i
== InVals
.size() && "Argument register count mismatch!");
9862 // If any argument copy elisions occurred and we have debug info, update the
9863 // stale frame indices used in the dbg.declare variable info table.
9864 MachineFunction::VariableDbgInfoMapTy
&DbgDeclareInfo
= MF
->getVariableDbgInfo();
9865 if (!DbgDeclareInfo
.empty() && !ArgCopyElisionFrameIndexMap
.empty()) {
9866 for (MachineFunction::VariableDbgInfo
&VI
: DbgDeclareInfo
) {
9867 auto I
= ArgCopyElisionFrameIndexMap
.find(VI
.Slot
);
9868 if (I
!= ArgCopyElisionFrameIndexMap
.end())
9869 VI
.Slot
= I
->second
;
9873 // Finally, if the target has anything special to do, allow it to do so.
9874 EmitFunctionEntryCode();
9877 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
9878 /// ensure constants are generated when needed. Remember the virtual registers
9879 /// that need to be added to the Machine PHI nodes as input. We cannot just
9880 /// directly add them, because expansion might result in multiple MBB's for one
9881 /// BB. As such, the start of the BB might correspond to a different MBB than
9884 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock
*LLVMBB
) {
9885 const Instruction
*TI
= LLVMBB
->getTerminator();
9887 SmallPtrSet
<MachineBasicBlock
*, 4> SuccsHandled
;
9889 // Check PHI nodes in successors that expect a value to be available from this
9891 for (unsigned succ
= 0, e
= TI
->getNumSuccessors(); succ
!= e
; ++succ
) {
9892 const BasicBlock
*SuccBB
= TI
->getSuccessor(succ
);
9893 if (!isa
<PHINode
>(SuccBB
->begin())) continue;
9894 MachineBasicBlock
*SuccMBB
= FuncInfo
.MBBMap
[SuccBB
];
9896 // If this terminator has multiple identical successors (common for
9897 // switches), only handle each succ once.
9898 if (!SuccsHandled
.insert(SuccMBB
).second
)
9901 MachineBasicBlock::iterator MBBI
= SuccMBB
->begin();
9903 // At this point we know that there is a 1-1 correspondence between LLVM PHI
9904 // nodes and Machine PHI nodes, but the incoming operands have not been
9906 for (const PHINode
&PN
: SuccBB
->phis()) {
9907 // Ignore dead phi's.
9912 if (PN
.getType()->isEmptyTy())
9916 const Value
*PHIOp
= PN
.getIncomingValueForBlock(LLVMBB
);
9918 if (const Constant
*C
= dyn_cast
<Constant
>(PHIOp
)) {
9919 unsigned &RegOut
= ConstantsOut
[C
];
9921 RegOut
= FuncInfo
.CreateRegs(C
);
9922 CopyValueToVirtualRegister(C
, RegOut
);
9926 DenseMap
<const Value
*, unsigned>::iterator I
=
9927 FuncInfo
.ValueMap
.find(PHIOp
);
9928 if (I
!= FuncInfo
.ValueMap
.end())
9931 assert(isa
<AllocaInst
>(PHIOp
) &&
9932 FuncInfo
.StaticAllocaMap
.count(cast
<AllocaInst
>(PHIOp
)) &&
9933 "Didn't codegen value into a register!??");
9934 Reg
= FuncInfo
.CreateRegs(PHIOp
);
9935 CopyValueToVirtualRegister(PHIOp
, Reg
);
9939 // Remember that this register needs to added to the machine PHI node as
9940 // the input for this MBB.
9941 SmallVector
<EVT
, 4> ValueVTs
;
9942 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9943 ComputeValueVTs(TLI
, DAG
.getDataLayout(), PN
.getType(), ValueVTs
);
9944 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
9945 EVT VT
= ValueVTs
[vti
];
9946 unsigned NumRegisters
= TLI
.getNumRegisters(*DAG
.getContext(), VT
);
9947 for (unsigned i
= 0, e
= NumRegisters
; i
!= e
; ++i
)
9948 FuncInfo
.PHINodesToUpdate
.push_back(
9949 std::make_pair(&*MBBI
++, Reg
+ i
));
9950 Reg
+= NumRegisters
;
9955 ConstantsOut
.clear();
9958 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9961 SelectionDAGBuilder::StackProtectorDescriptor::
9962 AddSuccessorMBB(const BasicBlock
*BB
,
9963 MachineBasicBlock
*ParentMBB
,
9965 MachineBasicBlock
*SuccMBB
) {
9966 // If SuccBB has not been created yet, create it.
9968 MachineFunction
*MF
= ParentMBB
->getParent();
9969 MachineFunction::iterator
BBI(ParentMBB
);
9970 SuccMBB
= MF
->CreateMachineBasicBlock(BB
);
9971 MF
->insert(++BBI
, SuccMBB
);
9973 // Add it as a successor of ParentMBB.
9974 ParentMBB
->addSuccessor(
9975 SuccMBB
, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely
));
9979 MachineBasicBlock
*SelectionDAGBuilder::NextBlock(MachineBasicBlock
*MBB
) {
9980 MachineFunction::iterator
I(MBB
);
9981 if (++I
== FuncInfo
.MF
->end())
9986 /// During lowering new call nodes can be created (such as memset, etc.).
9987 /// Those will become new roots of the current DAG, but complications arise
9988 /// when they are tail calls. In such cases, the call lowering will update
9989 /// the root, but the builder still needs to know that a tail call has been
9990 /// lowered in order to avoid generating an additional return.
9991 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC
) {
9992 // If the node is null, we do have a tail call.
9993 if (MaybeTC
.getNode() != nullptr)
9994 DAG
.setRoot(MaybeTC
);
9999 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W
, Value
*Cond
,
10000 MachineBasicBlock
*SwitchMBB
,
10001 MachineBasicBlock
*DefaultMBB
) {
10002 MachineFunction
*CurMF
= FuncInfo
.MF
;
10003 MachineBasicBlock
*NextMBB
= nullptr;
10004 MachineFunction::iterator
BBI(W
.MBB
);
10005 if (++BBI
!= FuncInfo
.MF
->end())
10008 unsigned Size
= W
.LastCluster
- W
.FirstCluster
+ 1;
10010 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
10012 if (Size
== 2 && W
.MBB
== SwitchMBB
) {
10013 // If any two of the cases has the same destination, and if one value
10014 // is the same as the other, but has one bit unset that the other has set,
10015 // use bit manipulation to do two compares at once. For example:
10016 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10017 // TODO: This could be extended to merge any 2 cases in switches with 3
10019 // TODO: Handle cases where W.CaseBB != SwitchBB.
10020 CaseCluster
&Small
= *W
.FirstCluster
;
10021 CaseCluster
&Big
= *W
.LastCluster
;
10023 if (Small
.Low
== Small
.High
&& Big
.Low
== Big
.High
&&
10024 Small
.MBB
== Big
.MBB
) {
10025 const APInt
&SmallValue
= Small
.Low
->getValue();
10026 const APInt
&BigValue
= Big
.Low
->getValue();
10028 // Check that there is only one bit different.
10029 APInt CommonBit
= BigValue
^ SmallValue
;
10030 if (CommonBit
.isPowerOf2()) {
10031 SDValue CondLHS
= getValue(Cond
);
10032 EVT VT
= CondLHS
.getValueType();
10033 SDLoc DL
= getCurSDLoc();
10035 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, CondLHS
,
10036 DAG
.getConstant(CommonBit
, DL
, VT
));
10037 SDValue Cond
= DAG
.getSetCC(
10038 DL
, MVT::i1
, Or
, DAG
.getConstant(BigValue
| SmallValue
, DL
, VT
),
10041 // Update successor info.
10042 // Both Small and Big will jump to Small.BB, so we sum up the
10044 addSuccessorWithProb(SwitchMBB
, Small
.MBB
, Small
.Prob
+ Big
.Prob
);
10046 addSuccessorWithProb(
10047 SwitchMBB
, DefaultMBB
,
10048 // The default destination is the first successor in IR.
10049 BPI
->getEdgeProbability(SwitchMBB
->getBasicBlock(), (unsigned)0));
10051 addSuccessorWithProb(SwitchMBB
, DefaultMBB
);
10053 // Insert the true branch.
10055 DAG
.getNode(ISD::BRCOND
, DL
, MVT::Other
, getControlRoot(), Cond
,
10056 DAG
.getBasicBlock(Small
.MBB
));
10057 // Insert the false branch.
10058 BrCond
= DAG
.getNode(ISD::BR
, DL
, MVT::Other
, BrCond
,
10059 DAG
.getBasicBlock(DefaultMBB
));
10061 DAG
.setRoot(BrCond
);
10067 if (TM
.getOptLevel() != CodeGenOpt::None
) {
10068 // Here, we order cases by probability so the most likely case will be
10069 // checked first. However, two clusters can have the same probability in
10070 // which case their relative ordering is non-deterministic. So we use Low
10071 // as a tie-breaker as clusters are guaranteed to never overlap.
10072 llvm::sort(W
.FirstCluster
, W
.LastCluster
+ 1,
10073 [](const CaseCluster
&a
, const CaseCluster
&b
) {
10074 return a
.Prob
!= b
.Prob
?
10076 a
.Low
->getValue().slt(b
.Low
->getValue());
10079 // Rearrange the case blocks so that the last one falls through if possible
10080 // without changing the order of probabilities.
10081 for (CaseClusterIt I
= W
.LastCluster
; I
> W
.FirstCluster
; ) {
10083 if (I
->Prob
> W
.LastCluster
->Prob
)
10085 if (I
->Kind
== CC_Range
&& I
->MBB
== NextMBB
) {
10086 std::swap(*I
, *W
.LastCluster
);
10092 // Compute total probability.
10093 BranchProbability DefaultProb
= W
.DefaultProb
;
10094 BranchProbability UnhandledProbs
= DefaultProb
;
10095 for (CaseClusterIt I
= W
.FirstCluster
; I
<= W
.LastCluster
; ++I
)
10096 UnhandledProbs
+= I
->Prob
;
10098 MachineBasicBlock
*CurMBB
= W
.MBB
;
10099 for (CaseClusterIt I
= W
.FirstCluster
, E
= W
.LastCluster
; I
<= E
; ++I
) {
10100 bool FallthroughUnreachable
= false;
10101 MachineBasicBlock
*Fallthrough
;
10102 if (I
== W
.LastCluster
) {
10103 // For the last cluster, fall through to the default destination.
10104 Fallthrough
= DefaultMBB
;
10105 FallthroughUnreachable
= isa
<UnreachableInst
>(
10106 DefaultMBB
->getBasicBlock()->getFirstNonPHIOrDbg());
10108 Fallthrough
= CurMF
->CreateMachineBasicBlock(CurMBB
->getBasicBlock());
10109 CurMF
->insert(BBI
, Fallthrough
);
10110 // Put Cond in a virtual register to make it available from the new blocks.
10111 ExportFromCurrentBlock(Cond
);
10113 UnhandledProbs
-= I
->Prob
;
10116 case CC_JumpTable
: {
10117 // FIXME: Optimize away range check based on pivot comparisons.
10118 JumpTableHeader
*JTH
= &SL
->JTCases
[I
->JTCasesIndex
].first
;
10119 SwitchCG::JumpTable
*JT
= &SL
->JTCases
[I
->JTCasesIndex
].second
;
10121 // The jump block hasn't been inserted yet; insert it here.
10122 MachineBasicBlock
*JumpMBB
= JT
->MBB
;
10123 CurMF
->insert(BBI
, JumpMBB
);
10125 auto JumpProb
= I
->Prob
;
10126 auto FallthroughProb
= UnhandledProbs
;
10128 // If the default statement is a target of the jump table, we evenly
10129 // distribute the default probability to successors of CurMBB. Also
10130 // update the probability on the edge from JumpMBB to Fallthrough.
10131 for (MachineBasicBlock::succ_iterator SI
= JumpMBB
->succ_begin(),
10132 SE
= JumpMBB
->succ_end();
10134 if (*SI
== DefaultMBB
) {
10135 JumpProb
+= DefaultProb
/ 2;
10136 FallthroughProb
-= DefaultProb
/ 2;
10137 JumpMBB
->setSuccProbability(SI
, DefaultProb
/ 2);
10138 JumpMBB
->normalizeSuccProbs();
10143 if (FallthroughUnreachable
) {
10144 // Skip the range check if the fallthrough block is unreachable.
10145 JTH
->OmitRangeCheck
= true;
10148 if (!JTH
->OmitRangeCheck
)
10149 addSuccessorWithProb(CurMBB
, Fallthrough
, FallthroughProb
);
10150 addSuccessorWithProb(CurMBB
, JumpMBB
, JumpProb
);
10151 CurMBB
->normalizeSuccProbs();
10153 // The jump table header will be inserted in our current block, do the
10154 // range check, and fall through to our fallthrough block.
10155 JTH
->HeaderBB
= CurMBB
;
10156 JT
->Default
= Fallthrough
; // FIXME: Move Default to JumpTableHeader.
10158 // If we're in the right place, emit the jump table header right now.
10159 if (CurMBB
== SwitchMBB
) {
10160 visitJumpTableHeader(*JT
, *JTH
, SwitchMBB
);
10161 JTH
->Emitted
= true;
10165 case CC_BitTests
: {
10166 // FIXME: If Fallthrough is unreachable, skip the range check.
10168 // FIXME: Optimize away range check based on pivot comparisons.
10169 BitTestBlock
*BTB
= &SL
->BitTestCases
[I
->BTCasesIndex
];
10171 // The bit test blocks haven't been inserted yet; insert them here.
10172 for (BitTestCase
&BTC
: BTB
->Cases
)
10173 CurMF
->insert(BBI
, BTC
.ThisBB
);
10175 // Fill in fields of the BitTestBlock.
10176 BTB
->Parent
= CurMBB
;
10177 BTB
->Default
= Fallthrough
;
10179 BTB
->DefaultProb
= UnhandledProbs
;
10180 // If the cases in bit test don't form a contiguous range, we evenly
10181 // distribute the probability on the edge to Fallthrough to two
10182 // successors of CurMBB.
10183 if (!BTB
->ContiguousRange
) {
10184 BTB
->Prob
+= DefaultProb
/ 2;
10185 BTB
->DefaultProb
-= DefaultProb
/ 2;
10188 // If we're in the right place, emit the bit test header right now.
10189 if (CurMBB
== SwitchMBB
) {
10190 visitBitTestHeader(*BTB
, SwitchMBB
);
10191 BTB
->Emitted
= true;
10196 const Value
*RHS
, *LHS
, *MHS
;
10198 if (I
->Low
== I
->High
) {
10199 // Check Cond == I->Low.
10205 // Check I->Low <= Cond <= I->High.
10212 // If Fallthrough is unreachable, fold away the comparison.
10213 if (FallthroughUnreachable
)
10216 // The false probability is the sum of all unhandled cases.
10217 CaseBlock
CB(CC
, LHS
, RHS
, MHS
, I
->MBB
, Fallthrough
, CurMBB
,
10218 getCurSDLoc(), I
->Prob
, UnhandledProbs
);
10220 if (CurMBB
== SwitchMBB
)
10221 visitSwitchCase(CB
, SwitchMBB
);
10223 SL
->SwitchCases
.push_back(CB
);
10228 CurMBB
= Fallthrough
;
10232 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster
&CC
,
10233 CaseClusterIt First
,
10234 CaseClusterIt Last
) {
10235 return std::count_if(First
, Last
+ 1, [&](const CaseCluster
&X
) {
10236 if (X
.Prob
!= CC
.Prob
)
10237 return X
.Prob
> CC
.Prob
;
10239 // Ties are broken by comparing the case value.
10240 return X
.Low
->getValue().slt(CC
.Low
->getValue());
10244 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList
&WorkList
,
10245 const SwitchWorkListItem
&W
,
10247 MachineBasicBlock
*SwitchMBB
) {
10248 assert(W
.FirstCluster
->Low
->getValue().slt(W
.LastCluster
->Low
->getValue()) &&
10249 "Clusters not sorted?");
10251 assert(W
.LastCluster
- W
.FirstCluster
+ 1 >= 2 && "Too small to split!");
10253 // Balance the tree based on branch probabilities to create a near-optimal (in
10254 // terms of search time given key frequency) binary search tree. See e.g. Kurt
10255 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10256 CaseClusterIt LastLeft
= W
.FirstCluster
;
10257 CaseClusterIt FirstRight
= W
.LastCluster
;
10258 auto LeftProb
= LastLeft
->Prob
+ W
.DefaultProb
/ 2;
10259 auto RightProb
= FirstRight
->Prob
+ W
.DefaultProb
/ 2;
10261 // Move LastLeft and FirstRight towards each other from opposite directions to
10262 // find a partitioning of the clusters which balances the probability on both
10263 // sides. If LeftProb and RightProb are equal, alternate which side is
10264 // taken to ensure 0-probability nodes are distributed evenly.
10266 while (LastLeft
+ 1 < FirstRight
) {
10267 if (LeftProb
< RightProb
|| (LeftProb
== RightProb
&& (I
& 1)))
10268 LeftProb
+= (++LastLeft
)->Prob
;
10270 RightProb
+= (--FirstRight
)->Prob
;
10275 // Our binary search tree differs from a typical BST in that ours can have up
10276 // to three values in each leaf. The pivot selection above doesn't take that
10277 // into account, which means the tree might require more nodes and be less
10278 // efficient. We compensate for this here.
10280 unsigned NumLeft
= LastLeft
- W
.FirstCluster
+ 1;
10281 unsigned NumRight
= W
.LastCluster
- FirstRight
+ 1;
10283 if (std::min(NumLeft
, NumRight
) < 3 && std::max(NumLeft
, NumRight
) > 3) {
10284 // If one side has less than 3 clusters, and the other has more than 3,
10285 // consider taking a cluster from the other side.
10287 if (NumLeft
< NumRight
) {
10288 // Consider moving the first cluster on the right to the left side.
10289 CaseCluster
&CC
= *FirstRight
;
10290 unsigned RightSideRank
= caseClusterRank(CC
, FirstRight
, W
.LastCluster
);
10291 unsigned LeftSideRank
= caseClusterRank(CC
, W
.FirstCluster
, LastLeft
);
10292 if (LeftSideRank
<= RightSideRank
) {
10293 // Moving the cluster to the left does not demote it.
10299 assert(NumRight
< NumLeft
);
10300 // Consider moving the last element on the left to the right side.
10301 CaseCluster
&CC
= *LastLeft
;
10302 unsigned LeftSideRank
= caseClusterRank(CC
, W
.FirstCluster
, LastLeft
);
10303 unsigned RightSideRank
= caseClusterRank(CC
, FirstRight
, W
.LastCluster
);
10304 if (RightSideRank
<= LeftSideRank
) {
10305 // Moving the cluster to the right does not demot it.
10315 assert(LastLeft
+ 1 == FirstRight
);
10316 assert(LastLeft
>= W
.FirstCluster
);
10317 assert(FirstRight
<= W
.LastCluster
);
10319 // Use the first element on the right as pivot since we will make less-than
10320 // comparisons against it.
10321 CaseClusterIt PivotCluster
= FirstRight
;
10322 assert(PivotCluster
> W
.FirstCluster
);
10323 assert(PivotCluster
<= W
.LastCluster
);
10325 CaseClusterIt FirstLeft
= W
.FirstCluster
;
10326 CaseClusterIt LastRight
= W
.LastCluster
;
10328 const ConstantInt
*Pivot
= PivotCluster
->Low
;
10330 // New blocks will be inserted immediately after the current one.
10331 MachineFunction::iterator
BBI(W
.MBB
);
10334 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10335 // we can branch to its destination directly if it's squeezed exactly in
10336 // between the known lower bound and Pivot - 1.
10337 MachineBasicBlock
*LeftMBB
;
10338 if (FirstLeft
== LastLeft
&& FirstLeft
->Kind
== CC_Range
&&
10339 FirstLeft
->Low
== W
.GE
&&
10340 (FirstLeft
->High
->getValue() + 1LL) == Pivot
->getValue()) {
10341 LeftMBB
= FirstLeft
->MBB
;
10343 LeftMBB
= FuncInfo
.MF
->CreateMachineBasicBlock(W
.MBB
->getBasicBlock());
10344 FuncInfo
.MF
->insert(BBI
, LeftMBB
);
10345 WorkList
.push_back(
10346 {LeftMBB
, FirstLeft
, LastLeft
, W
.GE
, Pivot
, W
.DefaultProb
/ 2});
10347 // Put Cond in a virtual register to make it available from the new blocks.
10348 ExportFromCurrentBlock(Cond
);
10351 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10352 // single cluster, RHS.Low == Pivot, and we can branch to its destination
10353 // directly if RHS.High equals the current upper bound.
10354 MachineBasicBlock
*RightMBB
;
10355 if (FirstRight
== LastRight
&& FirstRight
->Kind
== CC_Range
&&
10356 W
.LT
&& (FirstRight
->High
->getValue() + 1ULL) == W
.LT
->getValue()) {
10357 RightMBB
= FirstRight
->MBB
;
10359 RightMBB
= FuncInfo
.MF
->CreateMachineBasicBlock(W
.MBB
->getBasicBlock());
10360 FuncInfo
.MF
->insert(BBI
, RightMBB
);
10361 WorkList
.push_back(
10362 {RightMBB
, FirstRight
, LastRight
, Pivot
, W
.LT
, W
.DefaultProb
/ 2});
10363 // Put Cond in a virtual register to make it available from the new blocks.
10364 ExportFromCurrentBlock(Cond
);
10367 // Create the CaseBlock record that will be used to lower the branch.
10368 CaseBlock
CB(ISD::SETLT
, Cond
, Pivot
, nullptr, LeftMBB
, RightMBB
, W
.MBB
,
10369 getCurSDLoc(), LeftProb
, RightProb
);
10371 if (W
.MBB
== SwitchMBB
)
10372 visitSwitchCase(CB
, SwitchMBB
);
10374 SL
->SwitchCases
.push_back(CB
);
10377 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10378 // from the swith statement.
10379 static BranchProbability
scaleCaseProbality(BranchProbability CaseProb
,
10380 BranchProbability PeeledCaseProb
) {
10381 if (PeeledCaseProb
== BranchProbability::getOne())
10382 return BranchProbability::getZero();
10383 BranchProbability SwitchProb
= PeeledCaseProb
.getCompl();
10385 uint32_t Numerator
= CaseProb
.getNumerator();
10386 uint32_t Denominator
= SwitchProb
.scale(CaseProb
.getDenominator());
10387 return BranchProbability(Numerator
, std::max(Numerator
, Denominator
));
10390 // Try to peel the top probability case if it exceeds the threshold.
10391 // Return current MachineBasicBlock for the switch statement if the peeling
10393 // If the peeling is performed, return the newly created MachineBasicBlock
10394 // for the peeled switch statement. Also update Clusters to remove the peeled
10395 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10396 MachineBasicBlock
*SelectionDAGBuilder::peelDominantCaseCluster(
10397 const SwitchInst
&SI
, CaseClusterVector
&Clusters
,
10398 BranchProbability
&PeeledCaseProb
) {
10399 MachineBasicBlock
*SwitchMBB
= FuncInfo
.MBB
;
10400 // Don't perform if there is only one cluster or optimizing for size.
10401 if (SwitchPeelThreshold
> 100 || !FuncInfo
.BPI
|| Clusters
.size() < 2 ||
10402 TM
.getOptLevel() == CodeGenOpt::None
||
10403 SwitchMBB
->getParent()->getFunction().hasMinSize())
10406 BranchProbability TopCaseProb
= BranchProbability(SwitchPeelThreshold
, 100);
10407 unsigned PeeledCaseIndex
= 0;
10408 bool SwitchPeeled
= false;
10409 for (unsigned Index
= 0; Index
< Clusters
.size(); ++Index
) {
10410 CaseCluster
&CC
= Clusters
[Index
];
10411 if (CC
.Prob
< TopCaseProb
)
10413 TopCaseProb
= CC
.Prob
;
10414 PeeledCaseIndex
= Index
;
10415 SwitchPeeled
= true;
10420 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10421 << TopCaseProb
<< "\n");
10423 // Record the MBB for the peeled switch statement.
10424 MachineFunction::iterator
BBI(SwitchMBB
);
10426 MachineBasicBlock
*PeeledSwitchMBB
=
10427 FuncInfo
.MF
->CreateMachineBasicBlock(SwitchMBB
->getBasicBlock());
10428 FuncInfo
.MF
->insert(BBI
, PeeledSwitchMBB
);
10430 ExportFromCurrentBlock(SI
.getCondition());
10431 auto PeeledCaseIt
= Clusters
.begin() + PeeledCaseIndex
;
10432 SwitchWorkListItem W
= {SwitchMBB
, PeeledCaseIt
, PeeledCaseIt
,
10433 nullptr, nullptr, TopCaseProb
.getCompl()};
10434 lowerWorkItem(W
, SI
.getCondition(), SwitchMBB
, PeeledSwitchMBB
);
10436 Clusters
.erase(PeeledCaseIt
);
10437 for (CaseCluster
&CC
: Clusters
) {
10439 dbgs() << "Scale the probablity for one cluster, before scaling: "
10440 << CC
.Prob
<< "\n");
10441 CC
.Prob
= scaleCaseProbality(CC
.Prob
, TopCaseProb
);
10442 LLVM_DEBUG(dbgs() << "After scaling: " << CC
.Prob
<< "\n");
10444 PeeledCaseProb
= TopCaseProb
;
10445 return PeeledSwitchMBB
;
10448 void SelectionDAGBuilder::visitSwitch(const SwitchInst
&SI
) {
10449 // Extract cases from the switch.
10450 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
10451 CaseClusterVector Clusters
;
10452 Clusters
.reserve(SI
.getNumCases());
10453 for (auto I
: SI
.cases()) {
10454 MachineBasicBlock
*Succ
= FuncInfo
.MBBMap
[I
.getCaseSuccessor()];
10455 const ConstantInt
*CaseVal
= I
.getCaseValue();
10456 BranchProbability Prob
=
10457 BPI
? BPI
->getEdgeProbability(SI
.getParent(), I
.getSuccessorIndex())
10458 : BranchProbability(1, SI
.getNumCases() + 1);
10459 Clusters
.push_back(CaseCluster::range(CaseVal
, CaseVal
, Succ
, Prob
));
10462 MachineBasicBlock
*DefaultMBB
= FuncInfo
.MBBMap
[SI
.getDefaultDest()];
10464 // Cluster adjacent cases with the same destination. We do this at all
10465 // optimization levels because it's cheap to do and will make codegen faster
10466 // if there are many clusters.
10467 sortAndRangeify(Clusters
);
10469 // The branch probablity of the peeled case.
10470 BranchProbability PeeledCaseProb
= BranchProbability::getZero();
10471 MachineBasicBlock
*PeeledSwitchMBB
=
10472 peelDominantCaseCluster(SI
, Clusters
, PeeledCaseProb
);
10474 // If there is only the default destination, jump there directly.
10475 MachineBasicBlock
*SwitchMBB
= FuncInfo
.MBB
;
10476 if (Clusters
.empty()) {
10477 assert(PeeledSwitchMBB
== SwitchMBB
);
10478 SwitchMBB
->addSuccessor(DefaultMBB
);
10479 if (DefaultMBB
!= NextBlock(SwitchMBB
)) {
10480 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
,
10481 getControlRoot(), DAG
.getBasicBlock(DefaultMBB
)));
10486 SL
->findJumpTables(Clusters
, &SI
, DefaultMBB
);
10487 SL
->findBitTestClusters(Clusters
, &SI
);
10490 dbgs() << "Case clusters: ";
10491 for (const CaseCluster
&C
: Clusters
) {
10492 if (C
.Kind
== CC_JumpTable
)
10494 if (C
.Kind
== CC_BitTests
)
10497 C
.Low
->getValue().print(dbgs(), true);
10498 if (C
.Low
!= C
.High
) {
10500 C
.High
->getValue().print(dbgs(), true);
10507 assert(!Clusters
.empty());
10508 SwitchWorkList WorkList
;
10509 CaseClusterIt First
= Clusters
.begin();
10510 CaseClusterIt Last
= Clusters
.end() - 1;
10511 auto DefaultProb
= getEdgeProbability(PeeledSwitchMBB
, DefaultMBB
);
10512 // Scale the branchprobability for DefaultMBB if the peel occurs and
10513 // DefaultMBB is not replaced.
10514 if (PeeledCaseProb
!= BranchProbability::getZero() &&
10515 DefaultMBB
== FuncInfo
.MBBMap
[SI
.getDefaultDest()])
10516 DefaultProb
= scaleCaseProbality(DefaultProb
, PeeledCaseProb
);
10517 WorkList
.push_back(
10518 {PeeledSwitchMBB
, First
, Last
, nullptr, nullptr, DefaultProb
});
10520 while (!WorkList
.empty()) {
10521 SwitchWorkListItem W
= WorkList
.back();
10522 WorkList
.pop_back();
10523 unsigned NumClusters
= W
.LastCluster
- W
.FirstCluster
+ 1;
10525 if (NumClusters
> 3 && TM
.getOptLevel() != CodeGenOpt::None
&&
10526 !DefaultMBB
->getParent()->getFunction().hasMinSize()) {
10527 // For optimized builds, lower large range as a balanced binary tree.
10528 splitWorkItem(WorkList
, W
, SI
.getCondition(), SwitchMBB
);
10532 lowerWorkItem(W
, SI
.getCondition(), SwitchMBB
, DefaultMBB
);