1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/ISDOpcodes.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Argument.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Statepoint.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/IR/ValueMap.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/BlockFrequency.h"
76 #include "llvm/Support/BranchProbability.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/MachineValueType.h"
83 #include "llvm/Support/MathExtras.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/Target/TargetMachine.h"
86 #include "llvm/Target/TargetOptions.h"
87 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
88 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
100 using namespace llvm::PatternMatch
;
102 #define DEBUG_TYPE "codegenprepare"
104 STATISTIC(NumBlocksElim
, "Number of blocks eliminated");
105 STATISTIC(NumPHIsElim
, "Number of trivial PHIs eliminated");
106 STATISTIC(NumGEPsElim
, "Number of GEPs converted to casts");
107 STATISTIC(NumCmpUses
, "Number of uses of Cmp expressions replaced with uses of "
109 STATISTIC(NumCastUses
, "Number of uses of Cast expressions replaced with uses "
111 STATISTIC(NumMemoryInsts
, "Number of memory instructions whose address "
112 "computations were sunk");
113 STATISTIC(NumMemoryInstsPhiCreated
,
114 "Number of phis created when address "
115 "computations were sunk to memory instructions");
116 STATISTIC(NumMemoryInstsSelectCreated
,
117 "Number of select created when address "
118 "computations were sunk to memory instructions");
119 STATISTIC(NumExtsMoved
, "Number of [s|z]ext instructions combined with loads");
120 STATISTIC(NumExtUses
, "Number of uses of [s|z]ext instructions optimized");
121 STATISTIC(NumAndsAdded
,
122 "Number of and mask instructions added to form ext loads");
123 STATISTIC(NumAndUses
, "Number of uses of and mask instructions optimized");
124 STATISTIC(NumRetsDup
, "Number of return instructions duplicated");
125 STATISTIC(NumDbgValueMoved
, "Number of debug value instructions moved");
126 STATISTIC(NumSelectsExpanded
, "Number of selects turned into branches");
127 STATISTIC(NumStoreExtractExposed
, "Number of store(extractelement) exposed");
129 static cl::opt
<bool> DisableBranchOpts(
130 "disable-cgp-branch-opts", cl::Hidden
, cl::init(false),
131 cl::desc("Disable branch optimizations in CodeGenPrepare"));
134 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden
, cl::init(false),
135 cl::desc("Disable GC optimizations in CodeGenPrepare"));
137 static cl::opt
<bool> DisableSelectToBranch(
138 "disable-cgp-select2branch", cl::Hidden
, cl::init(false),
139 cl::desc("Disable select to branch conversion."));
141 static cl::opt
<bool> AddrSinkUsingGEPs(
142 "addr-sink-using-gep", cl::Hidden
, cl::init(true),
143 cl::desc("Address sinking in CGP using GEPs."));
145 static cl::opt
<bool> EnableAndCmpSinking(
146 "enable-andcmp-sinking", cl::Hidden
, cl::init(true),
147 cl::desc("Enable sinkinig and/cmp into branches."));
149 static cl::opt
<bool> DisableStoreExtract(
150 "disable-cgp-store-extract", cl::Hidden
, cl::init(false),
151 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
153 static cl::opt
<bool> StressStoreExtract(
154 "stress-cgp-store-extract", cl::Hidden
, cl::init(false),
155 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
157 static cl::opt
<bool> DisableExtLdPromotion(
158 "disable-cgp-ext-ld-promotion", cl::Hidden
, cl::init(false),
159 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
162 static cl::opt
<bool> StressExtLdPromotion(
163 "stress-cgp-ext-ld-promotion", cl::Hidden
, cl::init(false),
164 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
165 "optimization in CodeGenPrepare"));
167 static cl::opt
<bool> DisablePreheaderProtect(
168 "disable-preheader-prot", cl::Hidden
, cl::init(false),
169 cl::desc("Disable protection against removing loop preheaders"));
171 static cl::opt
<bool> ProfileGuidedSectionPrefix(
172 "profile-guided-section-prefix", cl::Hidden
, cl::init(true), cl::ZeroOrMore
,
173 cl::desc("Use profile info to add section prefix for hot/cold functions"));
175 static cl::opt
<unsigned> FreqRatioToSkipMerge(
176 "cgp-freq-ratio-to-skip-merge", cl::Hidden
, cl::init(2),
177 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
178 "(frequency of destination block) is greater than this ratio"));
180 static cl::opt
<bool> ForceSplitStore(
181 "force-split-store", cl::Hidden
, cl::init(false),
182 cl::desc("Force store splitting no matter what the target query says."));
185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden
,
186 cl::desc("Enable merging of redundant sexts when one is dominating"
187 " the other."), cl::init(true));
189 static cl::opt
<bool> DisableComplexAddrModes(
190 "disable-complex-addr-modes", cl::Hidden
, cl::init(false),
191 cl::desc("Disables combining addressing modes with different parts "
192 "in optimizeMemoryInst."));
195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden
, cl::init(false),
196 cl::desc("Allow creation of Phis in Address sinking."));
199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden
, cl::init(true),
200 cl::desc("Allow creation of selects in Address sinking."));
202 static cl::opt
<bool> AddrSinkCombineBaseReg(
203 "addr-sink-combine-base-reg", cl::Hidden
, cl::init(true),
204 cl::desc("Allow combining of BaseReg field in Address sinking."));
206 static cl::opt
<bool> AddrSinkCombineBaseGV(
207 "addr-sink-combine-base-gv", cl::Hidden
, cl::init(true),
208 cl::desc("Allow combining of BaseGV field in Address sinking."));
210 static cl::opt
<bool> AddrSinkCombineBaseOffs(
211 "addr-sink-combine-base-offs", cl::Hidden
, cl::init(true),
212 cl::desc("Allow combining of BaseOffs field in Address sinking."));
214 static cl::opt
<bool> AddrSinkCombineScaledReg(
215 "addr-sink-combine-scaled-reg", cl::Hidden
, cl::init(true),
216 cl::desc("Allow combining of ScaledReg field in Address sinking."));
219 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden
,
221 cl::desc("Enable splitting large offset of GEP."));
226 ZeroExtension
, // Zero extension has been seen.
227 SignExtension
, // Sign extension has been seen.
228 BothExtension
// This extension type is used if we saw sext after
229 // ZeroExtension had been set, or if we saw zext after
230 // SignExtension had been set. It makes the type
231 // information of a promoted instruction invalid.
234 using SetOfInstrs
= SmallPtrSet
<Instruction
*, 16>;
235 using TypeIsSExt
= PointerIntPair
<Type
*, 2, ExtType
>;
236 using InstrToOrigTy
= DenseMap
<Instruction
*, TypeIsSExt
>;
237 using SExts
= SmallVector
<Instruction
*, 16>;
238 using ValueToSExts
= DenseMap
<Value
*, SExts
>;
240 class TypePromotionTransaction
;
242 class CodeGenPrepare
: public FunctionPass
{
243 const TargetMachine
*TM
= nullptr;
244 const TargetSubtargetInfo
*SubtargetInfo
;
245 const TargetLowering
*TLI
= nullptr;
246 const TargetRegisterInfo
*TRI
;
247 const TargetTransformInfo
*TTI
= nullptr;
248 const TargetLibraryInfo
*TLInfo
;
250 std::unique_ptr
<BlockFrequencyInfo
> BFI
;
251 std::unique_ptr
<BranchProbabilityInfo
> BPI
;
253 /// As we scan instructions optimizing them, this is the next instruction
254 /// to optimize. Transforms that can invalidate this should update it.
255 BasicBlock::iterator CurInstIterator
;
257 /// Keeps track of non-local addresses that have been sunk into a block.
258 /// This allows us to avoid inserting duplicate code for blocks with
259 /// multiple load/stores of the same address. The usage of WeakTrackingVH
260 /// enables SunkAddrs to be treated as a cache whose entries can be
261 /// invalidated if a sunken address computation has been erased.
262 ValueMap
<Value
*, WeakTrackingVH
> SunkAddrs
;
264 /// Keeps track of all instructions inserted for the current function.
265 SetOfInstrs InsertedInsts
;
267 /// Keeps track of the type of the related instruction before their
268 /// promotion for the current function.
269 InstrToOrigTy PromotedInsts
;
271 /// Keep track of instructions removed during promotion.
272 SetOfInstrs RemovedInsts
;
274 /// Keep track of sext chains based on their initial value.
275 DenseMap
<Value
*, Instruction
*> SeenChainsForSExt
;
277 /// Keep track of GEPs accessing the same data structures such as structs or
278 /// arrays that are candidates to be split later because of their large
282 SmallVector
<std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t>, 32>>
285 /// Keep track of new GEP base after splitting the GEPs having large offset.
286 SmallSet
<AssertingVH
<Value
>, 2> NewGEPBases
;
288 /// Map serial numbers to Large offset GEPs.
289 DenseMap
<AssertingVH
<GetElementPtrInst
>, int> LargeOffsetGEPID
;
291 /// Keep track of SExt promoted.
292 ValueToSExts ValToSExtendedUses
;
294 /// True if CFG is modified in any way.
297 /// True if optimizing for size.
300 /// DataLayout for the Function being processed.
301 const DataLayout
*DL
= nullptr;
304 static char ID
; // Pass identification, replacement for typeid
306 CodeGenPrepare() : FunctionPass(ID
) {
307 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
310 bool runOnFunction(Function
&F
) override
;
312 StringRef
getPassName() const override
{ return "CodeGen Prepare"; }
314 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
315 // FIXME: When we can selectively preserve passes, preserve the domtree.
316 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
317 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
318 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
319 AU
.addRequired
<LoopInfoWrapperPass
>();
323 template <typename F
>
324 void resetIteratorIfInvalidatedWhileCalling(BasicBlock
*BB
, F f
) {
325 // Substituting can cause recursive simplifications, which can invalidate
326 // our iterator. Use a WeakTrackingVH to hold onto it in case this
328 Value
*CurValue
= &*CurInstIterator
;
329 WeakTrackingVH
IterHandle(CurValue
);
333 // If the iterator instruction was recursively deleted, start over at the
334 // start of the block.
335 if (IterHandle
!= CurValue
) {
336 CurInstIterator
= BB
->begin();
341 bool eliminateFallThrough(Function
&F
);
342 bool eliminateMostlyEmptyBlocks(Function
&F
);
343 BasicBlock
*findDestBlockOfMergeableEmptyBlock(BasicBlock
*BB
);
344 bool canMergeBlocks(const BasicBlock
*BB
, const BasicBlock
*DestBB
) const;
345 void eliminateMostlyEmptyBlock(BasicBlock
*BB
);
346 bool isMergingEmptyBlockProfitable(BasicBlock
*BB
, BasicBlock
*DestBB
,
348 bool optimizeBlock(BasicBlock
&BB
, bool &ModifiedDT
);
349 bool optimizeInst(Instruction
*I
, bool &ModifiedDT
);
350 bool optimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
351 Type
*AccessTy
, unsigned AddrSpace
);
352 bool optimizeInlineAsmInst(CallInst
*CS
);
353 bool optimizeCallInst(CallInst
*CI
, bool &ModifiedDT
);
354 bool optimizeExt(Instruction
*&I
);
355 bool optimizeExtUses(Instruction
*I
);
356 bool optimizeLoadExt(LoadInst
*Load
);
357 bool optimizeSelectInst(SelectInst
*SI
);
358 bool optimizeShuffleVectorInst(ShuffleVectorInst
*SVI
);
359 bool optimizeSwitchInst(SwitchInst
*SI
);
360 bool optimizeExtractElementInst(Instruction
*Inst
);
361 bool dupRetToEnableTailCallOpts(BasicBlock
*BB
);
362 bool placeDbgValues(Function
&F
);
363 bool canFormExtLd(const SmallVectorImpl
<Instruction
*> &MovedExts
,
364 LoadInst
*&LI
, Instruction
*&Inst
, bool HasPromoted
);
365 bool tryToPromoteExts(TypePromotionTransaction
&TPT
,
366 const SmallVectorImpl
<Instruction
*> &Exts
,
367 SmallVectorImpl
<Instruction
*> &ProfitablyMovedExts
,
368 unsigned CreatedInstsCost
= 0);
369 bool mergeSExts(Function
&F
);
370 bool splitLargeGEPOffsets();
371 bool performAddressTypePromotion(
373 bool AllowPromotionWithoutCommonHeader
,
374 bool HasPromoted
, TypePromotionTransaction
&TPT
,
375 SmallVectorImpl
<Instruction
*> &SpeculativelyMovedExts
);
376 bool splitBranchCondition(Function
&F
);
377 bool simplifyOffsetableRelocate(Instruction
&I
);
380 } // end anonymous namespace
382 char CodeGenPrepare::ID
= 0;
384 INITIALIZE_PASS_BEGIN(CodeGenPrepare
, DEBUG_TYPE
,
385 "Optimize for code generation", false, false)
386 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
387 INITIALIZE_PASS_END(CodeGenPrepare
, DEBUG_TYPE
,
388 "Optimize for code generation", false, false)
390 FunctionPass
*llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
392 bool CodeGenPrepare::runOnFunction(Function
&F
) {
396 DL
= &F
.getParent()->getDataLayout();
398 bool EverMadeChange
= false;
399 // Clear per function information.
400 InsertedInsts
.clear();
401 PromotedInsts
.clear();
404 if (auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>()) {
405 TM
= &TPC
->getTM
<TargetMachine
>();
406 SubtargetInfo
= TM
->getSubtargetImpl(F
);
407 TLI
= SubtargetInfo
->getTargetLowering();
408 TRI
= SubtargetInfo
->getRegisterInfo();
410 TLInfo
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
411 TTI
= &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
412 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
413 BPI
.reset(new BranchProbabilityInfo(F
, *LI
));
414 BFI
.reset(new BlockFrequencyInfo(F
, *BPI
, *LI
));
415 OptSize
= F
.optForSize();
417 ProfileSummaryInfo
*PSI
=
418 &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
419 if (ProfileGuidedSectionPrefix
) {
420 if (PSI
->isFunctionHotInCallGraph(&F
, *BFI
))
421 F
.setSectionPrefix(".hot");
422 else if (PSI
->isFunctionColdInCallGraph(&F
, *BFI
))
423 F
.setSectionPrefix(".unlikely");
426 /// This optimization identifies DIV instructions that can be
427 /// profitably bypassed and carried out with a shorter, faster divide.
428 if (!OptSize
&& !PSI
->hasHugeWorkingSetSize() && TLI
&&
429 TLI
->isSlowDivBypassed()) {
430 const DenseMap
<unsigned int, unsigned int> &BypassWidths
=
431 TLI
->getBypassSlowDivWidths();
432 BasicBlock
* BB
= &*F
.begin();
433 while (BB
!= nullptr) {
434 // bypassSlowDivision may create new BBs, but we don't want to reapply the
435 // optimization to those blocks.
436 BasicBlock
* Next
= BB
->getNextNode();
437 EverMadeChange
|= bypassSlowDivision(BB
, BypassWidths
);
442 // Eliminate blocks that contain only PHI nodes and an
443 // unconditional branch.
444 EverMadeChange
|= eliminateMostlyEmptyBlocks(F
);
446 if (!DisableBranchOpts
)
447 EverMadeChange
|= splitBranchCondition(F
);
449 // Split some critical edges where one of the sources is an indirect branch,
450 // to help generate sane code for PHIs involving such edges.
451 EverMadeChange
|= SplitIndirectBrCriticalEdges(F
);
453 bool MadeChange
= true;
456 for (Function::iterator I
= F
.begin(); I
!= F
.end(); ) {
457 BasicBlock
*BB
= &*I
++;
458 bool ModifiedDTOnIteration
= false;
459 MadeChange
|= optimizeBlock(*BB
, ModifiedDTOnIteration
);
461 // Restart BB iteration if the dominator tree of the Function was changed
462 if (ModifiedDTOnIteration
)
465 if (EnableTypePromotionMerge
&& !ValToSExtendedUses
.empty())
466 MadeChange
|= mergeSExts(F
);
467 if (!LargeOffsetGEPMap
.empty())
468 MadeChange
|= splitLargeGEPOffsets();
470 // Really free removed instructions during promotion.
471 for (Instruction
*I
: RemovedInsts
)
474 EverMadeChange
|= MadeChange
;
475 SeenChainsForSExt
.clear();
476 ValToSExtendedUses
.clear();
477 RemovedInsts
.clear();
478 LargeOffsetGEPMap
.clear();
479 LargeOffsetGEPID
.clear();
484 if (!DisableBranchOpts
) {
486 // Use a set vector to get deterministic iteration order. The order the
487 // blocks are removed may affect whether or not PHI nodes in successors
489 SmallSetVector
<BasicBlock
*, 8> WorkList
;
490 for (BasicBlock
&BB
: F
) {
491 SmallVector
<BasicBlock
*, 2> Successors(succ_begin(&BB
), succ_end(&BB
));
492 MadeChange
|= ConstantFoldTerminator(&BB
, true);
493 if (!MadeChange
) continue;
495 for (SmallVectorImpl
<BasicBlock
*>::iterator
496 II
= Successors
.begin(), IE
= Successors
.end(); II
!= IE
; ++II
)
497 if (pred_begin(*II
) == pred_end(*II
))
498 WorkList
.insert(*II
);
501 // Delete the dead blocks and any of their dead successors.
502 MadeChange
|= !WorkList
.empty();
503 while (!WorkList
.empty()) {
504 BasicBlock
*BB
= WorkList
.pop_back_val();
505 SmallVector
<BasicBlock
*, 2> Successors(succ_begin(BB
), succ_end(BB
));
509 for (SmallVectorImpl
<BasicBlock
*>::iterator
510 II
= Successors
.begin(), IE
= Successors
.end(); II
!= IE
; ++II
)
511 if (pred_begin(*II
) == pred_end(*II
))
512 WorkList
.insert(*II
);
515 // Merge pairs of basic blocks with unconditional branches, connected by
517 if (EverMadeChange
|| MadeChange
)
518 MadeChange
|= eliminateFallThrough(F
);
520 EverMadeChange
|= MadeChange
;
523 if (!DisableGCOpts
) {
524 SmallVector
<Instruction
*, 2> Statepoints
;
525 for (BasicBlock
&BB
: F
)
526 for (Instruction
&I
: BB
)
528 Statepoints
.push_back(&I
);
529 for (auto &I
: Statepoints
)
530 EverMadeChange
|= simplifyOffsetableRelocate(*I
);
533 // Do this last to clean up use-before-def scenarios introduced by other
534 // preparatory transforms.
535 EverMadeChange
|= placeDbgValues(F
);
537 return EverMadeChange
;
540 /// Merge basic blocks which are connected by a single edge, where one of the
541 /// basic blocks has a single successor pointing to the other basic block,
542 /// which has a single predecessor.
543 bool CodeGenPrepare::eliminateFallThrough(Function
&F
) {
544 bool Changed
= false;
545 // Scan all of the blocks in the function, except for the entry block.
546 // Use a temporary array to avoid iterator being invalidated when
548 SmallVector
<WeakTrackingVH
, 16> Blocks
;
549 for (auto &Block
: llvm::make_range(std::next(F
.begin()), F
.end()))
550 Blocks
.push_back(&Block
);
552 for (auto &Block
: Blocks
) {
553 auto *BB
= cast_or_null
<BasicBlock
>(Block
);
556 // If the destination block has a single pred, then this is a trivial
557 // edge, just collapse it.
558 BasicBlock
*SinglePred
= BB
->getSinglePredecessor();
560 // Don't merge if BB's address is taken.
561 if (!SinglePred
|| SinglePred
== BB
|| BB
->hasAddressTaken()) continue;
563 BranchInst
*Term
= dyn_cast
<BranchInst
>(SinglePred
->getTerminator());
564 if (Term
&& !Term
->isConditional()) {
566 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB
<< "\n\n\n");
568 // Merge BB into SinglePred and delete it.
569 MergeBlockIntoPredecessor(BB
);
575 /// Find a destination block from BB if BB is mergeable empty block.
576 BasicBlock
*CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock
*BB
) {
577 // If this block doesn't end with an uncond branch, ignore it.
578 BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
579 if (!BI
|| !BI
->isUnconditional())
582 // If the instruction before the branch (skipping debug info) isn't a phi
583 // node, then other stuff is happening here.
584 BasicBlock::iterator BBI
= BI
->getIterator();
585 if (BBI
!= BB
->begin()) {
587 while (isa
<DbgInfoIntrinsic
>(BBI
)) {
588 if (BBI
== BB
->begin())
592 if (!isa
<DbgInfoIntrinsic
>(BBI
) && !isa
<PHINode
>(BBI
))
596 // Do not break infinite loops.
597 BasicBlock
*DestBB
= BI
->getSuccessor(0);
601 if (!canMergeBlocks(BB
, DestBB
))
607 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
608 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
609 /// edges in ways that are non-optimal for isel. Start by eliminating these
610 /// blocks so we can split them the way we want them.
611 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function
&F
) {
612 SmallPtrSet
<BasicBlock
*, 16> Preheaders
;
613 SmallVector
<Loop
*, 16> LoopList(LI
->begin(), LI
->end());
614 while (!LoopList
.empty()) {
615 Loop
*L
= LoopList
.pop_back_val();
616 LoopList
.insert(LoopList
.end(), L
->begin(), L
->end());
617 if (BasicBlock
*Preheader
= L
->getLoopPreheader())
618 Preheaders
.insert(Preheader
);
621 bool MadeChange
= false;
622 // Copy blocks into a temporary array to avoid iterator invalidation issues
623 // as we remove them.
624 // Note that this intentionally skips the entry block.
625 SmallVector
<WeakTrackingVH
, 16> Blocks
;
626 for (auto &Block
: llvm::make_range(std::next(F
.begin()), F
.end()))
627 Blocks
.push_back(&Block
);
629 for (auto &Block
: Blocks
) {
630 BasicBlock
*BB
= cast_or_null
<BasicBlock
>(Block
);
633 BasicBlock
*DestBB
= findDestBlockOfMergeableEmptyBlock(BB
);
635 !isMergingEmptyBlockProfitable(BB
, DestBB
, Preheaders
.count(BB
)))
638 eliminateMostlyEmptyBlock(BB
);
644 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock
*BB
,
647 // Do not delete loop preheaders if doing so would create a critical edge.
648 // Loop preheaders can be good locations to spill registers. If the
649 // preheader is deleted and we create a critical edge, registers may be
650 // spilled in the loop body instead.
651 if (!DisablePreheaderProtect
&& isPreheader
&&
652 !(BB
->getSinglePredecessor() &&
653 BB
->getSinglePredecessor()->getSingleSuccessor()))
656 // Try to skip merging if the unique predecessor of BB is terminated by a
657 // switch or indirect branch instruction, and BB is used as an incoming block
658 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
659 // add COPY instructions in the predecessor of BB instead of BB (if it is not
660 // merged). Note that the critical edge created by merging such blocks wont be
661 // split in MachineSink because the jump table is not analyzable. By keeping
662 // such empty block (BB), ISel will place COPY instructions in BB, not in the
663 // predecessor of BB.
664 BasicBlock
*Pred
= BB
->getUniquePredecessor();
666 !(isa
<SwitchInst
>(Pred
->getTerminator()) ||
667 isa
<IndirectBrInst
>(Pred
->getTerminator())))
670 if (BB
->getTerminator() != BB
->getFirstNonPHIOrDbg())
673 // We use a simple cost heuristic which determine skipping merging is
674 // profitable if the cost of skipping merging is less than the cost of
675 // merging : Cost(skipping merging) < Cost(merging BB), where the
676 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
677 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
678 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
679 // Freq(Pred) / Freq(BB) > 2.
680 // Note that if there are multiple empty blocks sharing the same incoming
681 // value for the PHIs in the DestBB, we consider them together. In such
682 // case, Cost(merging BB) will be the sum of their frequencies.
684 if (!isa
<PHINode
>(DestBB
->begin()))
687 SmallPtrSet
<BasicBlock
*, 16> SameIncomingValueBBs
;
689 // Find all other incoming blocks from which incoming values of all PHIs in
690 // DestBB are the same as the ones from BB.
691 for (pred_iterator PI
= pred_begin(DestBB
), E
= pred_end(DestBB
); PI
!= E
;
693 BasicBlock
*DestBBPred
= *PI
;
694 if (DestBBPred
== BB
)
697 if (llvm::all_of(DestBB
->phis(), [&](const PHINode
&DestPN
) {
698 return DestPN
.getIncomingValueForBlock(BB
) ==
699 DestPN
.getIncomingValueForBlock(DestBBPred
);
701 SameIncomingValueBBs
.insert(DestBBPred
);
704 // See if all BB's incoming values are same as the value from Pred. In this
705 // case, no reason to skip merging because COPYs are expected to be place in
707 if (SameIncomingValueBBs
.count(Pred
))
710 BlockFrequency PredFreq
= BFI
->getBlockFreq(Pred
);
711 BlockFrequency BBFreq
= BFI
->getBlockFreq(BB
);
713 for (auto SameValueBB
: SameIncomingValueBBs
)
714 if (SameValueBB
->getUniquePredecessor() == Pred
&&
715 DestBB
== findDestBlockOfMergeableEmptyBlock(SameValueBB
))
716 BBFreq
+= BFI
->getBlockFreq(SameValueBB
);
718 return PredFreq
.getFrequency() <=
719 BBFreq
.getFrequency() * FreqRatioToSkipMerge
;
722 /// Return true if we can merge BB into DestBB if there is a single
723 /// unconditional branch between them, and BB contains no other non-phi
725 bool CodeGenPrepare::canMergeBlocks(const BasicBlock
*BB
,
726 const BasicBlock
*DestBB
) const {
727 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
728 // the successor. If there are more complex condition (e.g. preheaders),
729 // don't mess around with them.
730 for (const PHINode
&PN
: BB
->phis()) {
731 for (const User
*U
: PN
.users()) {
732 const Instruction
*UI
= cast
<Instruction
>(U
);
733 if (UI
->getParent() != DestBB
|| !isa
<PHINode
>(UI
))
735 // If User is inside DestBB block and it is a PHINode then check
736 // incoming value. If incoming value is not from BB then this is
737 // a complex condition (e.g. preheaders) we want to avoid here.
738 if (UI
->getParent() == DestBB
) {
739 if (const PHINode
*UPN
= dyn_cast
<PHINode
>(UI
))
740 for (unsigned I
= 0, E
= UPN
->getNumIncomingValues(); I
!= E
; ++I
) {
741 Instruction
*Insn
= dyn_cast
<Instruction
>(UPN
->getIncomingValue(I
));
742 if (Insn
&& Insn
->getParent() == BB
&&
743 Insn
->getParent() != UPN
->getIncomingBlock(I
))
750 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
751 // and DestBB may have conflicting incoming values for the block. If so, we
752 // can't merge the block.
753 const PHINode
*DestBBPN
= dyn_cast
<PHINode
>(DestBB
->begin());
754 if (!DestBBPN
) return true; // no conflict.
756 // Collect the preds of BB.
757 SmallPtrSet
<const BasicBlock
*, 16> BBPreds
;
758 if (const PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
759 // It is faster to get preds from a PHI than with pred_iterator.
760 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
761 BBPreds
.insert(BBPN
->getIncomingBlock(i
));
763 BBPreds
.insert(pred_begin(BB
), pred_end(BB
));
766 // Walk the preds of DestBB.
767 for (unsigned i
= 0, e
= DestBBPN
->getNumIncomingValues(); i
!= e
; ++i
) {
768 BasicBlock
*Pred
= DestBBPN
->getIncomingBlock(i
);
769 if (BBPreds
.count(Pred
)) { // Common predecessor?
770 for (const PHINode
&PN
: DestBB
->phis()) {
771 const Value
*V1
= PN
.getIncomingValueForBlock(Pred
);
772 const Value
*V2
= PN
.getIncomingValueForBlock(BB
);
774 // If V2 is a phi node in BB, look up what the mapped value will be.
775 if (const PHINode
*V2PN
= dyn_cast
<PHINode
>(V2
))
776 if (V2PN
->getParent() == BB
)
777 V2
= V2PN
->getIncomingValueForBlock(Pred
);
779 // If there is a conflict, bail out.
780 if (V1
!= V2
) return false;
788 /// Eliminate a basic block that has only phi's and an unconditional branch in
790 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock
*BB
) {
791 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
792 BasicBlock
*DestBB
= BI
->getSuccessor(0);
794 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
797 // If the destination block has a single pred, then this is a trivial edge,
799 if (BasicBlock
*SinglePred
= DestBB
->getSinglePredecessor()) {
800 if (SinglePred
!= DestBB
) {
801 assert(SinglePred
== BB
&&
802 "Single predecessor not the same as predecessor");
803 // Merge DestBB into SinglePred/BB and delete it.
804 MergeBlockIntoPredecessor(DestBB
);
805 // Note: BB(=SinglePred) will not be deleted on this path.
806 // DestBB(=its single successor) is the one that was deleted.
807 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred
<< "\n\n\n");
812 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
813 // to handle the new incoming edges it is about to have.
814 for (PHINode
&PN
: DestBB
->phis()) {
815 // Remove the incoming value for BB, and remember it.
816 Value
*InVal
= PN
.removeIncomingValue(BB
, false);
818 // Two options: either the InVal is a phi node defined in BB or it is some
819 // value that dominates BB.
820 PHINode
*InValPhi
= dyn_cast
<PHINode
>(InVal
);
821 if (InValPhi
&& InValPhi
->getParent() == BB
) {
822 // Add all of the input values of the input PHI as inputs of this phi.
823 for (unsigned i
= 0, e
= InValPhi
->getNumIncomingValues(); i
!= e
; ++i
)
824 PN
.addIncoming(InValPhi
->getIncomingValue(i
),
825 InValPhi
->getIncomingBlock(i
));
827 // Otherwise, add one instance of the dominating value for each edge that
828 // we will be adding.
829 if (PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
830 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
831 PN
.addIncoming(InVal
, BBPN
->getIncomingBlock(i
));
833 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
834 PN
.addIncoming(InVal
, *PI
);
839 // The PHIs are now updated, change everything that refers to BB to use
840 // DestBB and remove BB.
841 BB
->replaceAllUsesWith(DestBB
);
842 BB
->eraseFromParent();
845 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB
<< "\n\n\n");
848 // Computes a map of base pointer relocation instructions to corresponding
849 // derived pointer relocation instructions given a vector of all relocate calls
850 static void computeBaseDerivedRelocateMap(
851 const SmallVectorImpl
<GCRelocateInst
*> &AllRelocateCalls
,
852 DenseMap
<GCRelocateInst
*, SmallVector
<GCRelocateInst
*, 2>>
854 // Collect information in two maps: one primarily for locating the base object
855 // while filling the second map; the second map is the final structure holding
856 // a mapping between Base and corresponding Derived relocate calls
857 DenseMap
<std::pair
<unsigned, unsigned>, GCRelocateInst
*> RelocateIdxMap
;
858 for (auto *ThisRelocate
: AllRelocateCalls
) {
859 auto K
= std::make_pair(ThisRelocate
->getBasePtrIndex(),
860 ThisRelocate
->getDerivedPtrIndex());
861 RelocateIdxMap
.insert(std::make_pair(K
, ThisRelocate
));
863 for (auto &Item
: RelocateIdxMap
) {
864 std::pair
<unsigned, unsigned> Key
= Item
.first
;
865 if (Key
.first
== Key
.second
)
866 // Base relocation: nothing to insert
869 GCRelocateInst
*I
= Item
.second
;
870 auto BaseKey
= std::make_pair(Key
.first
, Key
.first
);
872 // We're iterating over RelocateIdxMap so we cannot modify it.
873 auto MaybeBase
= RelocateIdxMap
.find(BaseKey
);
874 if (MaybeBase
== RelocateIdxMap
.end())
875 // TODO: We might want to insert a new base object relocate and gep off
876 // that, if there are enough derived object relocates.
879 RelocateInstMap
[MaybeBase
->second
].push_back(I
);
883 // Accepts a GEP and extracts the operands into a vector provided they're all
884 // small integer constants
885 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst
*GEP
,
886 SmallVectorImpl
<Value
*> &OffsetV
) {
887 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++) {
888 // Only accept small constant integer operands
889 auto Op
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
890 if (!Op
|| Op
->getZExtValue() > 20)
894 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++)
895 OffsetV
.push_back(GEP
->getOperand(i
));
899 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
900 // replace, computes a replacement, and affects it.
902 simplifyRelocatesOffABase(GCRelocateInst
*RelocatedBase
,
903 const SmallVectorImpl
<GCRelocateInst
*> &Targets
) {
904 bool MadeChange
= false;
905 // We must ensure the relocation of derived pointer is defined after
906 // relocation of base pointer. If we find a relocation corresponding to base
907 // defined earlier than relocation of base then we move relocation of base
908 // right before found relocation. We consider only relocation in the same
909 // basic block as relocation of base. Relocations from other basic block will
910 // be skipped by optimization and we do not care about them.
911 for (auto R
= RelocatedBase
->getParent()->getFirstInsertionPt();
912 &*R
!= RelocatedBase
; ++R
)
913 if (auto RI
= dyn_cast
<GCRelocateInst
>(R
))
914 if (RI
->getStatepoint() == RelocatedBase
->getStatepoint())
915 if (RI
->getBasePtrIndex() == RelocatedBase
->getBasePtrIndex()) {
916 RelocatedBase
->moveBefore(RI
);
920 for (GCRelocateInst
*ToReplace
: Targets
) {
921 assert(ToReplace
->getBasePtrIndex() == RelocatedBase
->getBasePtrIndex() &&
922 "Not relocating a derived object of the original base object");
923 if (ToReplace
->getBasePtrIndex() == ToReplace
->getDerivedPtrIndex()) {
924 // A duplicate relocate call. TODO: coalesce duplicates.
928 if (RelocatedBase
->getParent() != ToReplace
->getParent()) {
929 // Base and derived relocates are in different basic blocks.
930 // In this case transform is only valid when base dominates derived
931 // relocate. However it would be too expensive to check dominance
932 // for each such relocate, so we skip the whole transformation.
936 Value
*Base
= ToReplace
->getBasePtr();
937 auto Derived
= dyn_cast
<GetElementPtrInst
>(ToReplace
->getDerivedPtr());
938 if (!Derived
|| Derived
->getPointerOperand() != Base
)
941 SmallVector
<Value
*, 2> OffsetV
;
942 if (!getGEPSmallConstantIntOffsetV(Derived
, OffsetV
))
945 // Create a Builder and replace the target callsite with a gep
946 assert(RelocatedBase
->getNextNode() &&
947 "Should always have one since it's not a terminator");
949 // Insert after RelocatedBase
950 IRBuilder
<> Builder(RelocatedBase
->getNextNode());
951 Builder
.SetCurrentDebugLocation(ToReplace
->getDebugLoc());
953 // If gc_relocate does not match the actual type, cast it to the right type.
954 // In theory, there must be a bitcast after gc_relocate if the type does not
955 // match, and we should reuse it to get the derived pointer. But it could be
959 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
964 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
968 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
969 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
971 // In this case, we can not find the bitcast any more. So we insert a new bitcast
972 // no matter there is already one or not. In this way, we can handle all cases, and
973 // the extra bitcast should be optimized away in later passes.
974 Value
*ActualRelocatedBase
= RelocatedBase
;
975 if (RelocatedBase
->getType() != Base
->getType()) {
976 ActualRelocatedBase
=
977 Builder
.CreateBitCast(RelocatedBase
, Base
->getType());
979 Value
*Replacement
= Builder
.CreateGEP(
980 Derived
->getSourceElementType(), ActualRelocatedBase
, makeArrayRef(OffsetV
));
981 Replacement
->takeName(ToReplace
);
982 // If the newly generated derived pointer's type does not match the original derived
983 // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
984 Value
*ActualReplacement
= Replacement
;
985 if (Replacement
->getType() != ToReplace
->getType()) {
987 Builder
.CreateBitCast(Replacement
, ToReplace
->getType());
989 ToReplace
->replaceAllUsesWith(ActualReplacement
);
990 ToReplace
->eraseFromParent();
1000 // %ptr = gep %base + 15
1001 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1002 // %base' = relocate(%tok, i32 4, i32 4)
1003 // %ptr' = relocate(%tok, i32 4, i32 5)
1004 // %val = load %ptr'
1009 // %ptr = gep %base + 15
1010 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1011 // %base' = gc.relocate(%tok, i32 4, i32 4)
1012 // %ptr' = gep %base' + 15
1013 // %val = load %ptr'
1014 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction
&I
) {
1015 bool MadeChange
= false;
1016 SmallVector
<GCRelocateInst
*, 2> AllRelocateCalls
;
1018 for (auto *U
: I
.users())
1019 if (GCRelocateInst
*Relocate
= dyn_cast
<GCRelocateInst
>(U
))
1020 // Collect all the relocate calls associated with a statepoint
1021 AllRelocateCalls
.push_back(Relocate
);
1023 // We need atleast one base pointer relocation + one derived pointer
1024 // relocation to mangle
1025 if (AllRelocateCalls
.size() < 2)
1028 // RelocateInstMap is a mapping from the base relocate instruction to the
1029 // corresponding derived relocate instructions
1030 DenseMap
<GCRelocateInst
*, SmallVector
<GCRelocateInst
*, 2>> RelocateInstMap
;
1031 computeBaseDerivedRelocateMap(AllRelocateCalls
, RelocateInstMap
);
1032 if (RelocateInstMap
.empty())
1035 for (auto &Item
: RelocateInstMap
)
1036 // Item.first is the RelocatedBase to offset against
1037 // Item.second is the vector of Targets to replace
1038 MadeChange
= simplifyRelocatesOffABase(Item
.first
, Item
.second
);
1042 /// SinkCast - Sink the specified cast instruction into its user blocks
1043 static bool SinkCast(CastInst
*CI
) {
1044 BasicBlock
*DefBB
= CI
->getParent();
1046 /// InsertedCasts - Only insert a cast in each block once.
1047 DenseMap
<BasicBlock
*, CastInst
*> InsertedCasts
;
1049 bool MadeChange
= false;
1050 for (Value::user_iterator UI
= CI
->user_begin(), E
= CI
->user_end();
1052 Use
&TheUse
= UI
.getUse();
1053 Instruction
*User
= cast
<Instruction
>(*UI
);
1055 // Figure out which BB this cast is used in. For PHI's this is the
1056 // appropriate predecessor block.
1057 BasicBlock
*UserBB
= User
->getParent();
1058 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
1059 UserBB
= PN
->getIncomingBlock(TheUse
);
1062 // Preincrement use iterator so we don't invalidate it.
1065 // The first insertion point of a block containing an EH pad is after the
1066 // pad. If the pad is the user, we cannot sink the cast past the pad.
1067 if (User
->isEHPad())
1070 // If the block selected to receive the cast is an EH pad that does not
1071 // allow non-PHI instructions before the terminator, we can't sink the
1073 if (UserBB
->getTerminator()->isEHPad())
1076 // If this user is in the same block as the cast, don't change the cast.
1077 if (UserBB
== DefBB
) continue;
1079 // If we have already inserted a cast into this block, use it.
1080 CastInst
*&InsertedCast
= InsertedCasts
[UserBB
];
1082 if (!InsertedCast
) {
1083 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1084 assert(InsertPt
!= UserBB
->end());
1085 InsertedCast
= CastInst::Create(CI
->getOpcode(), CI
->getOperand(0),
1086 CI
->getType(), "", &*InsertPt
);
1087 InsertedCast
->setDebugLoc(CI
->getDebugLoc());
1090 // Replace a use of the cast with a use of the new cast.
1091 TheUse
= InsertedCast
;
1096 // If we removed all uses, nuke the cast.
1097 if (CI
->use_empty()) {
1098 salvageDebugInfo(*CI
);
1099 CI
->eraseFromParent();
1106 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1107 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1108 /// reduce the number of virtual registers that must be created and coalesced.
1110 /// Return true if any changes are made.
1111 static bool OptimizeNoopCopyExpression(CastInst
*CI
, const TargetLowering
&TLI
,
1112 const DataLayout
&DL
) {
1113 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1114 // than sinking only nop casts, but is helpful on some platforms.
1115 if (auto *ASC
= dyn_cast
<AddrSpaceCastInst
>(CI
)) {
1116 if (!TLI
.isCheapAddrSpaceCast(ASC
->getSrcAddressSpace(),
1117 ASC
->getDestAddressSpace()))
1121 // If this is a noop copy,
1122 EVT SrcVT
= TLI
.getValueType(DL
, CI
->getOperand(0)->getType());
1123 EVT DstVT
= TLI
.getValueType(DL
, CI
->getType());
1125 // This is an fp<->int conversion?
1126 if (SrcVT
.isInteger() != DstVT
.isInteger())
1129 // If this is an extension, it will be a zero or sign extension, which
1131 if (SrcVT
.bitsLT(DstVT
)) return false;
1133 // If these values will be promoted, find out what they will be promoted
1134 // to. This helps us consider truncates on PPC as noop copies when they
1136 if (TLI
.getTypeAction(CI
->getContext(), SrcVT
) ==
1137 TargetLowering::TypePromoteInteger
)
1138 SrcVT
= TLI
.getTypeToTransformTo(CI
->getContext(), SrcVT
);
1139 if (TLI
.getTypeAction(CI
->getContext(), DstVT
) ==
1140 TargetLowering::TypePromoteInteger
)
1141 DstVT
= TLI
.getTypeToTransformTo(CI
->getContext(), DstVT
);
1143 // If, after promotion, these are the same types, this is a noop copy.
1147 return SinkCast(CI
);
1150 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1153 /// Return true if any changes were made.
1154 static bool CombineUAddWithOverflow(CmpInst
*CI
) {
1158 m_UAddWithOverflow(m_Value(A
), m_Value(B
), m_Instruction(AddI
))))
1161 Type
*Ty
= AddI
->getType();
1162 if (!isa
<IntegerType
>(Ty
))
1165 // We don't want to move around uses of condition values this late, so we we
1166 // check if it is legal to create the call to the intrinsic in the basic
1167 // block containing the icmp:
1169 if (AddI
->getParent() != CI
->getParent() && !AddI
->hasOneUse())
1173 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1175 if (AddI
->hasOneUse())
1176 assert(*AddI
->user_begin() == CI
&& "expected!");
1179 Module
*M
= CI
->getModule();
1180 Value
*F
= Intrinsic::getDeclaration(M
, Intrinsic::uadd_with_overflow
, Ty
);
1182 auto *InsertPt
= AddI
->hasOneUse() ? CI
: AddI
;
1184 DebugLoc Loc
= CI
->getDebugLoc();
1185 auto *UAddWithOverflow
=
1186 CallInst::Create(F
, {A
, B
}, "uadd.overflow", InsertPt
);
1187 UAddWithOverflow
->setDebugLoc(Loc
);
1188 auto *UAdd
= ExtractValueInst::Create(UAddWithOverflow
, 0, "uadd", InsertPt
);
1189 UAdd
->setDebugLoc(Loc
);
1191 ExtractValueInst::Create(UAddWithOverflow
, 1, "overflow", InsertPt
);
1192 Overflow
->setDebugLoc(Loc
);
1194 CI
->replaceAllUsesWith(Overflow
);
1195 AddI
->replaceAllUsesWith(UAdd
);
1196 CI
->eraseFromParent();
1197 AddI
->eraseFromParent();
1201 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1202 /// registers that must be created and coalesced. This is a clear win except on
1203 /// targets with multiple condition code registers (PowerPC), where it might
1204 /// lose; some adjustment may be wanted there.
1206 /// Return true if any changes are made.
1207 static bool SinkCmpExpression(CmpInst
*CI
, const TargetLowering
*TLI
) {
1208 BasicBlock
*DefBB
= CI
->getParent();
1210 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1211 if (TLI
&& TLI
->useSoftFloat() && isa
<FCmpInst
>(CI
))
1214 // Only insert a cmp in each block once.
1215 DenseMap
<BasicBlock
*, CmpInst
*> InsertedCmps
;
1217 bool MadeChange
= false;
1218 for (Value::user_iterator UI
= CI
->user_begin(), E
= CI
->user_end();
1220 Use
&TheUse
= UI
.getUse();
1221 Instruction
*User
= cast
<Instruction
>(*UI
);
1223 // Preincrement use iterator so we don't invalidate it.
1226 // Don't bother for PHI nodes.
1227 if (isa
<PHINode
>(User
))
1230 // Figure out which BB this cmp is used in.
1231 BasicBlock
*UserBB
= User
->getParent();
1233 // If this user is in the same block as the cmp, don't change the cmp.
1234 if (UserBB
== DefBB
) continue;
1236 // If we have already inserted a cmp into this block, use it.
1237 CmpInst
*&InsertedCmp
= InsertedCmps
[UserBB
];
1240 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1241 assert(InsertPt
!= UserBB
->end());
1243 CmpInst::Create(CI
->getOpcode(), CI
->getPredicate(),
1244 CI
->getOperand(0), CI
->getOperand(1), "", &*InsertPt
);
1245 // Propagate the debug info.
1246 InsertedCmp
->setDebugLoc(CI
->getDebugLoc());
1249 // Replace a use of the cmp with a use of the new cmp.
1250 TheUse
= InsertedCmp
;
1255 // If we removed all uses, nuke the cmp.
1256 if (CI
->use_empty()) {
1257 CI
->eraseFromParent();
1264 static bool OptimizeCmpExpression(CmpInst
*CI
, const TargetLowering
*TLI
) {
1265 if (SinkCmpExpression(CI
, TLI
))
1268 if (CombineUAddWithOverflow(CI
))
1274 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1275 /// used in a compare to allow isel to generate better code for targets where
1276 /// this operation can be combined.
1278 /// Return true if any changes are made.
1279 static bool sinkAndCmp0Expression(Instruction
*AndI
,
1280 const TargetLowering
&TLI
,
1281 SetOfInstrs
&InsertedInsts
) {
1282 // Double-check that we're not trying to optimize an instruction that was
1283 // already optimized by some other part of this pass.
1284 assert(!InsertedInsts
.count(AndI
) &&
1285 "Attempting to optimize already optimized and instruction");
1286 (void) InsertedInsts
;
1288 // Nothing to do for single use in same basic block.
1289 if (AndI
->hasOneUse() &&
1290 AndI
->getParent() == cast
<Instruction
>(*AndI
->user_begin())->getParent())
1293 // Try to avoid cases where sinking/duplicating is likely to increase register
1295 if (!isa
<ConstantInt
>(AndI
->getOperand(0)) &&
1296 !isa
<ConstantInt
>(AndI
->getOperand(1)) &&
1297 AndI
->getOperand(0)->hasOneUse() && AndI
->getOperand(1)->hasOneUse())
1300 for (auto *U
: AndI
->users()) {
1301 Instruction
*User
= cast
<Instruction
>(U
);
1303 // Only sink for and mask feeding icmp with 0.
1304 if (!isa
<ICmpInst
>(User
))
1307 auto *CmpC
= dyn_cast
<ConstantInt
>(User
->getOperand(1));
1308 if (!CmpC
|| !CmpC
->isZero())
1312 if (!TLI
.isMaskAndCmp0FoldingBeneficial(*AndI
))
1315 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1316 LLVM_DEBUG(AndI
->getParent()->dump());
1318 // Push the 'and' into the same block as the icmp 0. There should only be
1319 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1320 // others, so we don't need to keep track of which BBs we insert into.
1321 for (Value::user_iterator UI
= AndI
->user_begin(), E
= AndI
->user_end();
1323 Use
&TheUse
= UI
.getUse();
1324 Instruction
*User
= cast
<Instruction
>(*UI
);
1326 // Preincrement use iterator so we don't invalidate it.
1329 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User
<< "\n");
1331 // Keep the 'and' in the same place if the use is already in the same block.
1332 Instruction
*InsertPt
=
1333 User
->getParent() == AndI
->getParent() ? AndI
: User
;
1334 Instruction
*InsertedAnd
=
1335 BinaryOperator::Create(Instruction::And
, AndI
->getOperand(0),
1336 AndI
->getOperand(1), "", InsertPt
);
1337 // Propagate the debug info.
1338 InsertedAnd
->setDebugLoc(AndI
->getDebugLoc());
1340 // Replace a use of the 'and' with a use of the new 'and'.
1341 TheUse
= InsertedAnd
;
1343 LLVM_DEBUG(User
->getParent()->dump());
1346 // We removed all uses, nuke the and.
1347 AndI
->eraseFromParent();
1351 /// Check if the candidates could be combined with a shift instruction, which
1353 /// 1. Truncate instruction
1354 /// 2. And instruction and the imm is a mask of the low bits:
1355 /// imm & (imm+1) == 0
1356 static bool isExtractBitsCandidateUse(Instruction
*User
) {
1357 if (!isa
<TruncInst
>(User
)) {
1358 if (User
->getOpcode() != Instruction::And
||
1359 !isa
<ConstantInt
>(User
->getOperand(1)))
1362 const APInt
&Cimm
= cast
<ConstantInt
>(User
->getOperand(1))->getValue();
1364 if ((Cimm
& (Cimm
+ 1)).getBoolValue())
1370 /// Sink both shift and truncate instruction to the use of truncate's BB.
1372 SinkShiftAndTruncate(BinaryOperator
*ShiftI
, Instruction
*User
, ConstantInt
*CI
,
1373 DenseMap
<BasicBlock
*, BinaryOperator
*> &InsertedShifts
,
1374 const TargetLowering
&TLI
, const DataLayout
&DL
) {
1375 BasicBlock
*UserBB
= User
->getParent();
1376 DenseMap
<BasicBlock
*, CastInst
*> InsertedTruncs
;
1377 TruncInst
*TruncI
= dyn_cast
<TruncInst
>(User
);
1378 bool MadeChange
= false;
1380 for (Value::user_iterator TruncUI
= TruncI
->user_begin(),
1381 TruncE
= TruncI
->user_end();
1382 TruncUI
!= TruncE
;) {
1384 Use
&TruncTheUse
= TruncUI
.getUse();
1385 Instruction
*TruncUser
= cast
<Instruction
>(*TruncUI
);
1386 // Preincrement use iterator so we don't invalidate it.
1390 int ISDOpcode
= TLI
.InstructionOpcodeToISD(TruncUser
->getOpcode());
1394 // If the use is actually a legal node, there will not be an
1395 // implicit truncate.
1396 // FIXME: always querying the result type is just an
1397 // approximation; some nodes' legality is determined by the
1398 // operand or other means. There's no good way to find out though.
1399 if (TLI
.isOperationLegalOrCustom(
1400 ISDOpcode
, TLI
.getValueType(DL
, TruncUser
->getType(), true)))
1403 // Don't bother for PHI nodes.
1404 if (isa
<PHINode
>(TruncUser
))
1407 BasicBlock
*TruncUserBB
= TruncUser
->getParent();
1409 if (UserBB
== TruncUserBB
)
1412 BinaryOperator
*&InsertedShift
= InsertedShifts
[TruncUserBB
];
1413 CastInst
*&InsertedTrunc
= InsertedTruncs
[TruncUserBB
];
1415 if (!InsertedShift
&& !InsertedTrunc
) {
1416 BasicBlock::iterator InsertPt
= TruncUserBB
->getFirstInsertionPt();
1417 assert(InsertPt
!= TruncUserBB
->end());
1419 if (ShiftI
->getOpcode() == Instruction::AShr
)
1420 InsertedShift
= BinaryOperator::CreateAShr(ShiftI
->getOperand(0), CI
,
1423 InsertedShift
= BinaryOperator::CreateLShr(ShiftI
->getOperand(0), CI
,
1425 InsertedShift
->setDebugLoc(ShiftI
->getDebugLoc());
1428 BasicBlock::iterator TruncInsertPt
= TruncUserBB
->getFirstInsertionPt();
1430 assert(TruncInsertPt
!= TruncUserBB
->end());
1432 InsertedTrunc
= CastInst::Create(TruncI
->getOpcode(), InsertedShift
,
1433 TruncI
->getType(), "", &*TruncInsertPt
);
1434 InsertedTrunc
->setDebugLoc(TruncI
->getDebugLoc());
1438 TruncTheUse
= InsertedTrunc
;
1444 /// Sink the shift *right* instruction into user blocks if the uses could
1445 /// potentially be combined with this shift instruction and generate BitExtract
1446 /// instruction. It will only be applied if the architecture supports BitExtract
1447 /// instruction. Here is an example:
1449 /// %x.extract.shift = lshr i64 %arg1, 32
1451 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
1455 /// %x.extract.shift.1 = lshr i64 %arg1, 32
1456 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1458 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1460 /// Return true if any changes are made.
1461 static bool OptimizeExtractBits(BinaryOperator
*ShiftI
, ConstantInt
*CI
,
1462 const TargetLowering
&TLI
,
1463 const DataLayout
&DL
) {
1464 BasicBlock
*DefBB
= ShiftI
->getParent();
1466 /// Only insert instructions in each block once.
1467 DenseMap
<BasicBlock
*, BinaryOperator
*> InsertedShifts
;
1469 bool shiftIsLegal
= TLI
.isTypeLegal(TLI
.getValueType(DL
, ShiftI
->getType()));
1471 bool MadeChange
= false;
1472 for (Value::user_iterator UI
= ShiftI
->user_begin(), E
= ShiftI
->user_end();
1474 Use
&TheUse
= UI
.getUse();
1475 Instruction
*User
= cast
<Instruction
>(*UI
);
1476 // Preincrement use iterator so we don't invalidate it.
1479 // Don't bother for PHI nodes.
1480 if (isa
<PHINode
>(User
))
1483 if (!isExtractBitsCandidateUse(User
))
1486 BasicBlock
*UserBB
= User
->getParent();
1488 if (UserBB
== DefBB
) {
1489 // If the shift and truncate instruction are in the same BB. The use of
1490 // the truncate(TruncUse) may still introduce another truncate if not
1491 // legal. In this case, we would like to sink both shift and truncate
1492 // instruction to the BB of TruncUse.
1495 // i64 shift.result = lshr i64 opnd, imm
1496 // trunc.result = trunc shift.result to i16
1499 // ----> We will have an implicit truncate here if the architecture does
1500 // not have i16 compare.
1501 // cmp i16 trunc.result, opnd2
1503 if (isa
<TruncInst
>(User
) && shiftIsLegal
1504 // If the type of the truncate is legal, no truncate will be
1505 // introduced in other basic blocks.
1507 (!TLI
.isTypeLegal(TLI
.getValueType(DL
, User
->getType()))))
1509 SinkShiftAndTruncate(ShiftI
, User
, CI
, InsertedShifts
, TLI
, DL
);
1513 // If we have already inserted a shift into this block, use it.
1514 BinaryOperator
*&InsertedShift
= InsertedShifts
[UserBB
];
1516 if (!InsertedShift
) {
1517 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1518 assert(InsertPt
!= UserBB
->end());
1520 if (ShiftI
->getOpcode() == Instruction::AShr
)
1521 InsertedShift
= BinaryOperator::CreateAShr(ShiftI
->getOperand(0), CI
,
1524 InsertedShift
= BinaryOperator::CreateLShr(ShiftI
->getOperand(0), CI
,
1526 InsertedShift
->setDebugLoc(ShiftI
->getDebugLoc());
1531 // Replace a use of the shift with a use of the new shift.
1532 TheUse
= InsertedShift
;
1535 // If we removed all uses, nuke the shift.
1536 if (ShiftI
->use_empty()) {
1537 salvageDebugInfo(*ShiftI
);
1538 ShiftI
->eraseFromParent();
1544 /// If counting leading or trailing zeros is an expensive operation and a zero
1545 /// input is defined, add a check for zero to avoid calling the intrinsic.
1547 /// We want to transform:
1548 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1552 /// %cmpz = icmp eq i64 %A, 0
1553 /// br i1 %cmpz, label %cond.end, label %cond.false
1555 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1556 /// br label %cond.end
1558 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1560 /// If the transform is performed, return true and set ModifiedDT to true.
1561 static bool despeculateCountZeros(IntrinsicInst
*CountZeros
,
1562 const TargetLowering
*TLI
,
1563 const DataLayout
*DL
,
1568 // If a zero input is undefined, it doesn't make sense to despeculate that.
1569 if (match(CountZeros
->getOperand(1), m_One()))
1572 // If it's cheap to speculate, there's nothing to do.
1573 auto IntrinsicID
= CountZeros
->getIntrinsicID();
1574 if ((IntrinsicID
== Intrinsic::cttz
&& TLI
->isCheapToSpeculateCttz()) ||
1575 (IntrinsicID
== Intrinsic::ctlz
&& TLI
->isCheapToSpeculateCtlz()))
1578 // Only handle legal scalar cases. Anything else requires too much work.
1579 Type
*Ty
= CountZeros
->getType();
1580 unsigned SizeInBits
= Ty
->getPrimitiveSizeInBits();
1581 if (Ty
->isVectorTy() || SizeInBits
> DL
->getLargestLegalIntTypeSizeInBits())
1584 // The intrinsic will be sunk behind a compare against zero and branch.
1585 BasicBlock
*StartBlock
= CountZeros
->getParent();
1586 BasicBlock
*CallBlock
= StartBlock
->splitBasicBlock(CountZeros
, "cond.false");
1588 // Create another block after the count zero intrinsic. A PHI will be added
1589 // in this block to select the result of the intrinsic or the bit-width
1590 // constant if the input to the intrinsic is zero.
1591 BasicBlock::iterator SplitPt
= ++(BasicBlock::iterator(CountZeros
));
1592 BasicBlock
*EndBlock
= CallBlock
->splitBasicBlock(SplitPt
, "cond.end");
1594 // Set up a builder to create a compare, conditional branch, and PHI.
1595 IRBuilder
<> Builder(CountZeros
->getContext());
1596 Builder
.SetInsertPoint(StartBlock
->getTerminator());
1597 Builder
.SetCurrentDebugLocation(CountZeros
->getDebugLoc());
1599 // Replace the unconditional branch that was created by the first split with
1600 // a compare against zero and a conditional branch.
1601 Value
*Zero
= Constant::getNullValue(Ty
);
1602 Value
*Cmp
= Builder
.CreateICmpEQ(CountZeros
->getOperand(0), Zero
, "cmpz");
1603 Builder
.CreateCondBr(Cmp
, EndBlock
, CallBlock
);
1604 StartBlock
->getTerminator()->eraseFromParent();
1606 // Create a PHI in the end block to select either the output of the intrinsic
1607 // or the bit width of the operand.
1608 Builder
.SetInsertPoint(&EndBlock
->front());
1609 PHINode
*PN
= Builder
.CreatePHI(Ty
, 2, "ctz");
1610 CountZeros
->replaceAllUsesWith(PN
);
1611 Value
*BitWidth
= Builder
.getInt(APInt(SizeInBits
, SizeInBits
));
1612 PN
->addIncoming(BitWidth
, StartBlock
);
1613 PN
->addIncoming(CountZeros
, CallBlock
);
1615 // We are explicitly handling the zero case, so we can set the intrinsic's
1616 // undefined zero argument to 'true'. This will also prevent reprocessing the
1617 // intrinsic; we only despeculate when a zero input is defined.
1618 CountZeros
->setArgOperand(1, Builder
.getTrue());
1623 bool CodeGenPrepare::optimizeCallInst(CallInst
*CI
, bool &ModifiedDT
) {
1624 BasicBlock
*BB
= CI
->getParent();
1626 // Lower inline assembly if we can.
1627 // If we found an inline asm expession, and if the target knows how to
1628 // lower it to normal LLVM code, do so now.
1629 if (TLI
&& isa
<InlineAsm
>(CI
->getCalledValue())) {
1630 if (TLI
->ExpandInlineAsm(CI
)) {
1631 // Avoid invalidating the iterator.
1632 CurInstIterator
= BB
->begin();
1633 // Avoid processing instructions out of order, which could cause
1634 // reuse before a value is defined.
1638 // Sink address computing for memory operands into the block.
1639 if (optimizeInlineAsmInst(CI
))
1643 // Align the pointer arguments to this call if the target thinks it's a good
1645 unsigned MinSize
, PrefAlign
;
1646 if (TLI
&& TLI
->shouldAlignPointerArgs(CI
, MinSize
, PrefAlign
)) {
1647 for (auto &Arg
: CI
->arg_operands()) {
1648 // We want to align both objects whose address is used directly and
1649 // objects whose address is used in casts and GEPs, though it only makes
1650 // sense for GEPs if the offset is a multiple of the desired alignment and
1651 // if size - offset meets the size threshold.
1652 if (!Arg
->getType()->isPointerTy())
1654 APInt
Offset(DL
->getIndexSizeInBits(
1655 cast
<PointerType
>(Arg
->getType())->getAddressSpace()),
1657 Value
*Val
= Arg
->stripAndAccumulateInBoundsConstantOffsets(*DL
, Offset
);
1658 uint64_t Offset2
= Offset
.getLimitedValue();
1659 if ((Offset2
& (PrefAlign
-1)) != 0)
1662 if ((AI
= dyn_cast
<AllocaInst
>(Val
)) && AI
->getAlignment() < PrefAlign
&&
1663 DL
->getTypeAllocSize(AI
->getAllocatedType()) >= MinSize
+ Offset2
)
1664 AI
->setAlignment(PrefAlign
);
1665 // Global variables can only be aligned if they are defined in this
1666 // object (i.e. they are uniquely initialized in this object), and
1667 // over-aligning global variables that have an explicit section is
1670 if ((GV
= dyn_cast
<GlobalVariable
>(Val
)) && GV
->canIncreaseAlignment() &&
1671 GV
->getPointerAlignment(*DL
) < PrefAlign
&&
1672 DL
->getTypeAllocSize(GV
->getValueType()) >=
1674 GV
->setAlignment(PrefAlign
);
1676 // If this is a memcpy (or similar) then we may be able to improve the
1678 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(CI
)) {
1679 unsigned DestAlign
= getKnownAlignment(MI
->getDest(), *DL
);
1680 if (DestAlign
> MI
->getDestAlignment())
1681 MI
->setDestAlignment(DestAlign
);
1682 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(MI
)) {
1683 unsigned SrcAlign
= getKnownAlignment(MTI
->getSource(), *DL
);
1684 if (SrcAlign
> MTI
->getSourceAlignment())
1685 MTI
->setSourceAlignment(SrcAlign
);
1690 // If we have a cold call site, try to sink addressing computation into the
1691 // cold block. This interacts with our handling for loads and stores to
1692 // ensure that we can fold all uses of a potential addressing computation
1693 // into their uses. TODO: generalize this to work over profiling data
1694 if (!OptSize
&& CI
->hasFnAttr(Attribute::Cold
))
1695 for (auto &Arg
: CI
->arg_operands()) {
1696 if (!Arg
->getType()->isPointerTy())
1698 unsigned AS
= Arg
->getType()->getPointerAddressSpace();
1699 return optimizeMemoryInst(CI
, Arg
, Arg
->getType(), AS
);
1702 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CI
);
1704 switch (II
->getIntrinsicID()) {
1706 case Intrinsic::objectsize
: {
1707 // Lower all uses of llvm.objectsize.*
1708 ConstantInt
*RetVal
=
1709 lowerObjectSizeCall(II
, *DL
, TLInfo
, /*MustSucceed=*/true);
1711 resetIteratorIfInvalidatedWhileCalling(BB
, [&]() {
1712 replaceAndRecursivelySimplify(CI
, RetVal
, TLInfo
, nullptr);
1716 case Intrinsic::is_constant
: {
1717 // If is_constant hasn't folded away yet, lower it to false now.
1718 Constant
*RetVal
= ConstantInt::get(II
->getType(), 0);
1719 resetIteratorIfInvalidatedWhileCalling(BB
, [&]() {
1720 replaceAndRecursivelySimplify(CI
, RetVal
, TLInfo
, nullptr);
1724 case Intrinsic::aarch64_stlxr
:
1725 case Intrinsic::aarch64_stxr
: {
1726 ZExtInst
*ExtVal
= dyn_cast
<ZExtInst
>(CI
->getArgOperand(0));
1727 if (!ExtVal
|| !ExtVal
->hasOneUse() ||
1728 ExtVal
->getParent() == CI
->getParent())
1730 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1731 ExtVal
->moveBefore(CI
);
1732 // Mark this instruction as "inserted by CGP", so that other
1733 // optimizations don't touch it.
1734 InsertedInsts
.insert(ExtVal
);
1737 case Intrinsic::launder_invariant_group
:
1738 case Intrinsic::strip_invariant_group
: {
1739 Value
*ArgVal
= II
->getArgOperand(0);
1740 auto it
= LargeOffsetGEPMap
.find(II
);
1741 if (it
!= LargeOffsetGEPMap
.end()) {
1742 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1743 // Make sure not to have to deal with iterator invalidation
1744 // after possibly adding ArgVal to LargeOffsetGEPMap.
1745 auto GEPs
= std::move(it
->second
);
1746 LargeOffsetGEPMap
[ArgVal
].append(GEPs
.begin(), GEPs
.end());
1747 LargeOffsetGEPMap
.erase(II
);
1750 II
->replaceAllUsesWith(ArgVal
);
1751 II
->eraseFromParent();
1754 case Intrinsic::cttz
:
1755 case Intrinsic::ctlz
:
1756 // If counting zeros is expensive, try to avoid it.
1757 return despeculateCountZeros(II
, TLI
, DL
, ModifiedDT
);
1761 SmallVector
<Value
*, 2> PtrOps
;
1763 if (TLI
->getAddrModeArguments(II
, PtrOps
, AccessTy
))
1764 while (!PtrOps
.empty()) {
1765 Value
*PtrVal
= PtrOps
.pop_back_val();
1766 unsigned AS
= PtrVal
->getType()->getPointerAddressSpace();
1767 if (optimizeMemoryInst(II
, PtrVal
, AccessTy
, AS
))
1773 // From here on out we're working with named functions.
1774 if (!CI
->getCalledFunction()) return false;
1776 // Lower all default uses of _chk calls. This is very similar
1777 // to what InstCombineCalls does, but here we are only lowering calls
1778 // to fortified library functions (e.g. __memcpy_chk) that have the default
1779 // "don't know" as the objectsize. Anything else should be left alone.
1780 FortifiedLibCallSimplifier
Simplifier(TLInfo
, true);
1781 if (Value
*V
= Simplifier
.optimizeCall(CI
)) {
1782 CI
->replaceAllUsesWith(V
);
1783 CI
->eraseFromParent();
1790 /// Look for opportunities to duplicate return instructions to the predecessor
1791 /// to enable tail call optimizations. The case it is currently looking for is:
1794 /// %tmp0 = tail call i32 @f0()
1795 /// br label %return
1797 /// %tmp1 = tail call i32 @f1()
1798 /// br label %return
1800 /// %tmp2 = tail call i32 @f2()
1801 /// br label %return
1803 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1811 /// %tmp0 = tail call i32 @f0()
1814 /// %tmp1 = tail call i32 @f1()
1817 /// %tmp2 = tail call i32 @f2()
1820 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock
*BB
) {
1824 ReturnInst
*RetI
= dyn_cast
<ReturnInst
>(BB
->getTerminator());
1828 PHINode
*PN
= nullptr;
1829 BitCastInst
*BCI
= nullptr;
1830 Value
*V
= RetI
->getReturnValue();
1832 BCI
= dyn_cast
<BitCastInst
>(V
);
1834 V
= BCI
->getOperand(0);
1836 PN
= dyn_cast
<PHINode
>(V
);
1841 if (PN
&& PN
->getParent() != BB
)
1844 // Make sure there are no instructions between the PHI and return, or that the
1845 // return is the first instruction in the block.
1847 BasicBlock::iterator BI
= BB
->begin();
1848 // Skip over debug and the bitcast.
1849 do { ++BI
; } while (isa
<DbgInfoIntrinsic
>(BI
) || &*BI
== BCI
);
1853 BasicBlock::iterator BI
= BB
->begin();
1854 while (isa
<DbgInfoIntrinsic
>(BI
)) ++BI
;
1859 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1861 const Function
*F
= BB
->getParent();
1862 SmallVector
<CallInst
*, 4> TailCalls
;
1864 for (unsigned I
= 0, E
= PN
->getNumIncomingValues(); I
!= E
; ++I
) {
1865 CallInst
*CI
= dyn_cast
<CallInst
>(PN
->getIncomingValue(I
));
1866 // Make sure the phi value is indeed produced by the tail call.
1867 if (CI
&& CI
->hasOneUse() && CI
->getParent() == PN
->getIncomingBlock(I
) &&
1868 TLI
->mayBeEmittedAsTailCall(CI
) &&
1869 attributesPermitTailCall(F
, CI
, RetI
, *TLI
))
1870 TailCalls
.push_back(CI
);
1873 SmallPtrSet
<BasicBlock
*, 4> VisitedBBs
;
1874 for (pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
); PI
!= PE
; ++PI
) {
1875 if (!VisitedBBs
.insert(*PI
).second
)
1878 BasicBlock::InstListType
&InstList
= (*PI
)->getInstList();
1879 BasicBlock::InstListType::reverse_iterator RI
= InstList
.rbegin();
1880 BasicBlock::InstListType::reverse_iterator RE
= InstList
.rend();
1881 do { ++RI
; } while (RI
!= RE
&& isa
<DbgInfoIntrinsic
>(&*RI
));
1885 CallInst
*CI
= dyn_cast
<CallInst
>(&*RI
);
1886 if (CI
&& CI
->use_empty() && TLI
->mayBeEmittedAsTailCall(CI
) &&
1887 attributesPermitTailCall(F
, CI
, RetI
, *TLI
))
1888 TailCalls
.push_back(CI
);
1892 bool Changed
= false;
1893 for (unsigned i
= 0, e
= TailCalls
.size(); i
!= e
; ++i
) {
1894 CallInst
*CI
= TailCalls
[i
];
1897 // Make sure the call instruction is followed by an unconditional branch to
1898 // the return block.
1899 BasicBlock
*CallBB
= CI
->getParent();
1900 BranchInst
*BI
= dyn_cast
<BranchInst
>(CallBB
->getTerminator());
1901 if (!BI
|| !BI
->isUnconditional() || BI
->getSuccessor(0) != BB
)
1904 // Duplicate the return into CallBB.
1905 (void)FoldReturnIntoUncondBranch(RetI
, BB
, CallBB
);
1906 ModifiedDT
= Changed
= true;
1910 // If we eliminated all predecessors of the block, delete the block now.
1911 if (Changed
&& !BB
->hasAddressTaken() && pred_begin(BB
) == pred_end(BB
))
1912 BB
->eraseFromParent();
1917 //===----------------------------------------------------------------------===//
1918 // Memory Optimization
1919 //===----------------------------------------------------------------------===//
1923 /// This is an extended version of TargetLowering::AddrMode
1924 /// which holds actual Value*'s for register values.
1925 struct ExtAddrMode
: public TargetLowering::AddrMode
{
1926 Value
*BaseReg
= nullptr;
1927 Value
*ScaledReg
= nullptr;
1928 Value
*OriginalValue
= nullptr;
1932 BaseRegField
= 0x01,
1934 BaseOffsField
= 0x04,
1935 ScaledRegField
= 0x08,
1937 MultipleFields
= 0xff
1940 ExtAddrMode() = default;
1942 void print(raw_ostream
&OS
) const;
1945 FieldName
compare(const ExtAddrMode
&other
) {
1946 // First check that the types are the same on each field, as differing types
1947 // is something we can't cope with later on.
1948 if (BaseReg
&& other
.BaseReg
&&
1949 BaseReg
->getType() != other
.BaseReg
->getType())
1950 return MultipleFields
;
1951 if (BaseGV
&& other
.BaseGV
&&
1952 BaseGV
->getType() != other
.BaseGV
->getType())
1953 return MultipleFields
;
1954 if (ScaledReg
&& other
.ScaledReg
&&
1955 ScaledReg
->getType() != other
.ScaledReg
->getType())
1956 return MultipleFields
;
1958 // Check each field to see if it differs.
1959 unsigned Result
= NoField
;
1960 if (BaseReg
!= other
.BaseReg
)
1961 Result
|= BaseRegField
;
1962 if (BaseGV
!= other
.BaseGV
)
1963 Result
|= BaseGVField
;
1964 if (BaseOffs
!= other
.BaseOffs
)
1965 Result
|= BaseOffsField
;
1966 if (ScaledReg
!= other
.ScaledReg
)
1967 Result
|= ScaledRegField
;
1968 // Don't count 0 as being a different scale, because that actually means
1969 // unscaled (which will already be counted by having no ScaledReg).
1970 if (Scale
&& other
.Scale
&& Scale
!= other
.Scale
)
1971 Result
|= ScaleField
;
1973 if (countPopulation(Result
) > 1)
1974 return MultipleFields
;
1976 return static_cast<FieldName
>(Result
);
1979 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
1982 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
1983 // trivial if at most one of these terms is nonzero, except that BaseGV and
1984 // BaseReg both being zero actually means a null pointer value, which we
1985 // consider to be 'non-zero' here.
1986 return !BaseOffs
&& !Scale
&& !(BaseGV
&& BaseReg
);
1989 Value
*GetFieldAsValue(FieldName Field
, Type
*IntPtrTy
) {
1997 case ScaledRegField
:
2000 return ConstantInt::get(IntPtrTy
, BaseOffs
);
2004 void SetCombinedField(FieldName Field
, Value
*V
,
2005 const SmallVectorImpl
<ExtAddrMode
> &AddrModes
) {
2008 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2010 case ExtAddrMode::BaseRegField
:
2013 case ExtAddrMode::BaseGVField
:
2014 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2015 // in the BaseReg field.
2016 assert(BaseReg
== nullptr);
2020 case ExtAddrMode::ScaledRegField
:
2022 // If we have a mix of scaled and unscaled addrmodes then we want scale
2023 // to be the scale and not zero.
2025 for (const ExtAddrMode
&AM
: AddrModes
)
2031 case ExtAddrMode::BaseOffsField
:
2032 // The offset is no longer a constant, so it goes in ScaledReg with a
2034 assert(ScaledReg
== nullptr);
2043 } // end anonymous namespace
2046 static inline raw_ostream
&operator<<(raw_ostream
&OS
, const ExtAddrMode
&AM
) {
2052 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2053 void ExtAddrMode::print(raw_ostream
&OS
) const {
2054 bool NeedPlus
= false;
2057 OS
<< (NeedPlus
? " + " : "")
2059 BaseGV
->printAsOperand(OS
, /*PrintType=*/false);
2064 OS
<< (NeedPlus
? " + " : "")
2070 OS
<< (NeedPlus
? " + " : "")
2072 BaseReg
->printAsOperand(OS
, /*PrintType=*/false);
2076 OS
<< (NeedPlus
? " + " : "")
2078 ScaledReg
->printAsOperand(OS
, /*PrintType=*/false);
2084 LLVM_DUMP_METHOD
void ExtAddrMode::dump() const {
2092 /// This class provides transaction based operation on the IR.
2093 /// Every change made through this class is recorded in the internal state and
2094 /// can be undone (rollback) until commit is called.
2095 class TypePromotionTransaction
{
2096 /// This represents the common interface of the individual transaction.
2097 /// Each class implements the logic for doing one specific modification on
2098 /// the IR via the TypePromotionTransaction.
2099 class TypePromotionAction
{
2101 /// The Instruction modified.
2105 /// Constructor of the action.
2106 /// The constructor performs the related action on the IR.
2107 TypePromotionAction(Instruction
*Inst
) : Inst(Inst
) {}
2109 virtual ~TypePromotionAction() = default;
2111 /// Undo the modification done by this action.
2112 /// When this method is called, the IR must be in the same state as it was
2113 /// before this action was applied.
2114 /// \pre Undoing the action works if and only if the IR is in the exact same
2115 /// state as it was directly after this action was applied.
2116 virtual void undo() = 0;
2118 /// Advocate every change made by this action.
2119 /// When the results on the IR of the action are to be kept, it is important
2120 /// to call this function, otherwise hidden information may be kept forever.
2121 virtual void commit() {
2122 // Nothing to be done, this action is not doing anything.
2126 /// Utility to remember the position of an instruction.
2127 class InsertionHandler
{
2128 /// Position of an instruction.
2129 /// Either an instruction:
2130 /// - Is the first in a basic block: BB is used.
2131 /// - Has a previous instruction: PrevInst is used.
2133 Instruction
*PrevInst
;
2137 /// Remember whether or not the instruction had a previous instruction.
2138 bool HasPrevInstruction
;
2141 /// Record the position of \p Inst.
2142 InsertionHandler(Instruction
*Inst
) {
2143 BasicBlock::iterator It
= Inst
->getIterator();
2144 HasPrevInstruction
= (It
!= (Inst
->getParent()->begin()));
2145 if (HasPrevInstruction
)
2146 Point
.PrevInst
= &*--It
;
2148 Point
.BB
= Inst
->getParent();
2151 /// Insert \p Inst at the recorded position.
2152 void insert(Instruction
*Inst
) {
2153 if (HasPrevInstruction
) {
2154 if (Inst
->getParent())
2155 Inst
->removeFromParent();
2156 Inst
->insertAfter(Point
.PrevInst
);
2158 Instruction
*Position
= &*Point
.BB
->getFirstInsertionPt();
2159 if (Inst
->getParent())
2160 Inst
->moveBefore(Position
);
2162 Inst
->insertBefore(Position
);
2167 /// Move an instruction before another.
2168 class InstructionMoveBefore
: public TypePromotionAction
{
2169 /// Original position of the instruction.
2170 InsertionHandler Position
;
2173 /// Move \p Inst before \p Before.
2174 InstructionMoveBefore(Instruction
*Inst
, Instruction
*Before
)
2175 : TypePromotionAction(Inst
), Position(Inst
) {
2176 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst
<< "\nbefore: " << *Before
2178 Inst
->moveBefore(Before
);
2181 /// Move the instruction back to its original position.
2182 void undo() override
{
2183 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst
<< "\n");
2184 Position
.insert(Inst
);
2188 /// Set the operand of an instruction with a new value.
2189 class OperandSetter
: public TypePromotionAction
{
2190 /// Original operand of the instruction.
2193 /// Index of the modified instruction.
2197 /// Set \p Idx operand of \p Inst with \p NewVal.
2198 OperandSetter(Instruction
*Inst
, unsigned Idx
, Value
*NewVal
)
2199 : TypePromotionAction(Inst
), Idx(Idx
) {
2200 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx
<< "\n"
2201 << "for:" << *Inst
<< "\n"
2202 << "with:" << *NewVal
<< "\n");
2203 Origin
= Inst
->getOperand(Idx
);
2204 Inst
->setOperand(Idx
, NewVal
);
2207 /// Restore the original value of the instruction.
2208 void undo() override
{
2209 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx
<< "\n"
2210 << "for: " << *Inst
<< "\n"
2211 << "with: " << *Origin
<< "\n");
2212 Inst
->setOperand(Idx
, Origin
);
2216 /// Hide the operands of an instruction.
2217 /// Do as if this instruction was not using any of its operands.
2218 class OperandsHider
: public TypePromotionAction
{
2219 /// The list of original operands.
2220 SmallVector
<Value
*, 4> OriginalValues
;
2223 /// Remove \p Inst from the uses of the operands of \p Inst.
2224 OperandsHider(Instruction
*Inst
) : TypePromotionAction(Inst
) {
2225 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst
<< "\n");
2226 unsigned NumOpnds
= Inst
->getNumOperands();
2227 OriginalValues
.reserve(NumOpnds
);
2228 for (unsigned It
= 0; It
< NumOpnds
; ++It
) {
2229 // Save the current operand.
2230 Value
*Val
= Inst
->getOperand(It
);
2231 OriginalValues
.push_back(Val
);
2233 // We could use OperandSetter here, but that would imply an overhead
2234 // that we are not willing to pay.
2235 Inst
->setOperand(It
, UndefValue::get(Val
->getType()));
2239 /// Restore the original list of uses.
2240 void undo() override
{
2241 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst
<< "\n");
2242 for (unsigned It
= 0, EndIt
= OriginalValues
.size(); It
!= EndIt
; ++It
)
2243 Inst
->setOperand(It
, OriginalValues
[It
]);
2247 /// Build a truncate instruction.
2248 class TruncBuilder
: public TypePromotionAction
{
2252 /// Build a truncate instruction of \p Opnd producing a \p Ty
2254 /// trunc Opnd to Ty.
2255 TruncBuilder(Instruction
*Opnd
, Type
*Ty
) : TypePromotionAction(Opnd
) {
2256 IRBuilder
<> Builder(Opnd
);
2257 Val
= Builder
.CreateTrunc(Opnd
, Ty
, "promoted");
2258 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val
<< "\n");
2261 /// Get the built value.
2262 Value
*getBuiltValue() { return Val
; }
2264 /// Remove the built instruction.
2265 void undo() override
{
2266 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val
<< "\n");
2267 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
2268 IVal
->eraseFromParent();
2272 /// Build a sign extension instruction.
2273 class SExtBuilder
: public TypePromotionAction
{
2277 /// Build a sign extension instruction of \p Opnd producing a \p Ty
2279 /// sext Opnd to Ty.
2280 SExtBuilder(Instruction
*InsertPt
, Value
*Opnd
, Type
*Ty
)
2281 : TypePromotionAction(InsertPt
) {
2282 IRBuilder
<> Builder(InsertPt
);
2283 Val
= Builder
.CreateSExt(Opnd
, Ty
, "promoted");
2284 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val
<< "\n");
2287 /// Get the built value.
2288 Value
*getBuiltValue() { return Val
; }
2290 /// Remove the built instruction.
2291 void undo() override
{
2292 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val
<< "\n");
2293 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
2294 IVal
->eraseFromParent();
2298 /// Build a zero extension instruction.
2299 class ZExtBuilder
: public TypePromotionAction
{
2303 /// Build a zero extension instruction of \p Opnd producing a \p Ty
2305 /// zext Opnd to Ty.
2306 ZExtBuilder(Instruction
*InsertPt
, Value
*Opnd
, Type
*Ty
)
2307 : TypePromotionAction(InsertPt
) {
2308 IRBuilder
<> Builder(InsertPt
);
2309 Val
= Builder
.CreateZExt(Opnd
, Ty
, "promoted");
2310 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val
<< "\n");
2313 /// Get the built value.
2314 Value
*getBuiltValue() { return Val
; }
2316 /// Remove the built instruction.
2317 void undo() override
{
2318 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val
<< "\n");
2319 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
2320 IVal
->eraseFromParent();
2324 /// Mutate an instruction to another type.
2325 class TypeMutator
: public TypePromotionAction
{
2326 /// Record the original type.
2330 /// Mutate the type of \p Inst into \p NewTy.
2331 TypeMutator(Instruction
*Inst
, Type
*NewTy
)
2332 : TypePromotionAction(Inst
), OrigTy(Inst
->getType()) {
2333 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst
<< " with " << *NewTy
2335 Inst
->mutateType(NewTy
);
2338 /// Mutate the instruction back to its original type.
2339 void undo() override
{
2340 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst
<< " with " << *OrigTy
2342 Inst
->mutateType(OrigTy
);
2346 /// Replace the uses of an instruction by another instruction.
2347 class UsesReplacer
: public TypePromotionAction
{
2348 /// Helper structure to keep track of the replaced uses.
2349 struct InstructionAndIdx
{
2350 /// The instruction using the instruction.
2353 /// The index where this instruction is used for Inst.
2356 InstructionAndIdx(Instruction
*Inst
, unsigned Idx
)
2357 : Inst(Inst
), Idx(Idx
) {}
2360 /// Keep track of the original uses (pair Instruction, Index).
2361 SmallVector
<InstructionAndIdx
, 4> OriginalUses
;
2362 /// Keep track of the debug users.
2363 SmallVector
<DbgValueInst
*, 1> DbgValues
;
2365 using use_iterator
= SmallVectorImpl
<InstructionAndIdx
>::iterator
;
2368 /// Replace all the use of \p Inst by \p New.
2369 UsesReplacer(Instruction
*Inst
, Value
*New
) : TypePromotionAction(Inst
) {
2370 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst
<< " with " << *New
2372 // Record the original uses.
2373 for (Use
&U
: Inst
->uses()) {
2374 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
2375 OriginalUses
.push_back(InstructionAndIdx(UserI
, U
.getOperandNo()));
2377 // Record the debug uses separately. They are not in the instruction's
2378 // use list, but they are replaced by RAUW.
2379 findDbgValues(DbgValues
, Inst
);
2381 // Now, we can replace the uses.
2382 Inst
->replaceAllUsesWith(New
);
2385 /// Reassign the original uses of Inst to Inst.
2386 void undo() override
{
2387 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst
<< "\n");
2388 for (use_iterator UseIt
= OriginalUses
.begin(),
2389 EndIt
= OriginalUses
.end();
2390 UseIt
!= EndIt
; ++UseIt
) {
2391 UseIt
->Inst
->setOperand(UseIt
->Idx
, Inst
);
2393 // RAUW has replaced all original uses with references to the new value,
2394 // including the debug uses. Since we are undoing the replacements,
2395 // the original debug uses must also be reinstated to maintain the
2396 // correctness and utility of debug value instructions.
2397 for (auto *DVI
: DbgValues
) {
2398 LLVMContext
&Ctx
= Inst
->getType()->getContext();
2399 auto *MV
= MetadataAsValue::get(Ctx
, ValueAsMetadata::get(Inst
));
2400 DVI
->setOperand(0, MV
);
2405 /// Remove an instruction from the IR.
2406 class InstructionRemover
: public TypePromotionAction
{
2407 /// Original position of the instruction.
2408 InsertionHandler Inserter
;
2410 /// Helper structure to hide all the link to the instruction. In other
2411 /// words, this helps to do as if the instruction was removed.
2412 OperandsHider Hider
;
2414 /// Keep track of the uses replaced, if any.
2415 UsesReplacer
*Replacer
= nullptr;
2417 /// Keep track of instructions removed.
2418 SetOfInstrs
&RemovedInsts
;
2421 /// Remove all reference of \p Inst and optionally replace all its
2423 /// \p RemovedInsts Keep track of the instructions removed by this Action.
2424 /// \pre If !Inst->use_empty(), then New != nullptr
2425 InstructionRemover(Instruction
*Inst
, SetOfInstrs
&RemovedInsts
,
2426 Value
*New
= nullptr)
2427 : TypePromotionAction(Inst
), Inserter(Inst
), Hider(Inst
),
2428 RemovedInsts(RemovedInsts
) {
2430 Replacer
= new UsesReplacer(Inst
, New
);
2431 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst
<< "\n");
2432 RemovedInsts
.insert(Inst
);
2433 /// The instructions removed here will be freed after completing
2434 /// optimizeBlock() for all blocks as we need to keep track of the
2435 /// removed instructions during promotion.
2436 Inst
->removeFromParent();
2439 ~InstructionRemover() override
{ delete Replacer
; }
2441 /// Resurrect the instruction and reassign it to the proper uses if
2442 /// new value was provided when build this action.
2443 void undo() override
{
2444 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst
<< "\n");
2445 Inserter
.insert(Inst
);
2449 RemovedInsts
.erase(Inst
);
2454 /// Restoration point.
2455 /// The restoration point is a pointer to an action instead of an iterator
2456 /// because the iterator may be invalidated but not the pointer.
2457 using ConstRestorationPt
= const TypePromotionAction
*;
2459 TypePromotionTransaction(SetOfInstrs
&RemovedInsts
)
2460 : RemovedInsts(RemovedInsts
) {}
2462 /// Advocate every changes made in that transaction.
2465 /// Undo all the changes made after the given point.
2466 void rollback(ConstRestorationPt Point
);
2468 /// Get the current restoration point.
2469 ConstRestorationPt
getRestorationPoint() const;
2471 /// \name API for IR modification with state keeping to support rollback.
2473 /// Same as Instruction::setOperand.
2474 void setOperand(Instruction
*Inst
, unsigned Idx
, Value
*NewVal
);
2476 /// Same as Instruction::eraseFromParent.
2477 void eraseInstruction(Instruction
*Inst
, Value
*NewVal
= nullptr);
2479 /// Same as Value::replaceAllUsesWith.
2480 void replaceAllUsesWith(Instruction
*Inst
, Value
*New
);
2482 /// Same as Value::mutateType.
2483 void mutateType(Instruction
*Inst
, Type
*NewTy
);
2485 /// Same as IRBuilder::createTrunc.
2486 Value
*createTrunc(Instruction
*Opnd
, Type
*Ty
);
2488 /// Same as IRBuilder::createSExt.
2489 Value
*createSExt(Instruction
*Inst
, Value
*Opnd
, Type
*Ty
);
2491 /// Same as IRBuilder::createZExt.
2492 Value
*createZExt(Instruction
*Inst
, Value
*Opnd
, Type
*Ty
);
2494 /// Same as Instruction::moveBefore.
2495 void moveBefore(Instruction
*Inst
, Instruction
*Before
);
2499 /// The ordered list of actions made so far.
2500 SmallVector
<std::unique_ptr
<TypePromotionAction
>, 16> Actions
;
2502 using CommitPt
= SmallVectorImpl
<std::unique_ptr
<TypePromotionAction
>>::iterator
;
2504 SetOfInstrs
&RemovedInsts
;
2507 } // end anonymous namespace
2509 void TypePromotionTransaction::setOperand(Instruction
*Inst
, unsigned Idx
,
2511 Actions
.push_back(llvm::make_unique
<TypePromotionTransaction::OperandSetter
>(
2512 Inst
, Idx
, NewVal
));
2515 void TypePromotionTransaction::eraseInstruction(Instruction
*Inst
,
2518 llvm::make_unique
<TypePromotionTransaction::InstructionRemover
>(
2519 Inst
, RemovedInsts
, NewVal
));
2522 void TypePromotionTransaction::replaceAllUsesWith(Instruction
*Inst
,
2525 llvm::make_unique
<TypePromotionTransaction::UsesReplacer
>(Inst
, New
));
2528 void TypePromotionTransaction::mutateType(Instruction
*Inst
, Type
*NewTy
) {
2530 llvm::make_unique
<TypePromotionTransaction::TypeMutator
>(Inst
, NewTy
));
2533 Value
*TypePromotionTransaction::createTrunc(Instruction
*Opnd
,
2535 std::unique_ptr
<TruncBuilder
> Ptr(new TruncBuilder(Opnd
, Ty
));
2536 Value
*Val
= Ptr
->getBuiltValue();
2537 Actions
.push_back(std::move(Ptr
));
2541 Value
*TypePromotionTransaction::createSExt(Instruction
*Inst
,
2542 Value
*Opnd
, Type
*Ty
) {
2543 std::unique_ptr
<SExtBuilder
> Ptr(new SExtBuilder(Inst
, Opnd
, Ty
));
2544 Value
*Val
= Ptr
->getBuiltValue();
2545 Actions
.push_back(std::move(Ptr
));
2549 Value
*TypePromotionTransaction::createZExt(Instruction
*Inst
,
2550 Value
*Opnd
, Type
*Ty
) {
2551 std::unique_ptr
<ZExtBuilder
> Ptr(new ZExtBuilder(Inst
, Opnd
, Ty
));
2552 Value
*Val
= Ptr
->getBuiltValue();
2553 Actions
.push_back(std::move(Ptr
));
2557 void TypePromotionTransaction::moveBefore(Instruction
*Inst
,
2558 Instruction
*Before
) {
2560 llvm::make_unique
<TypePromotionTransaction::InstructionMoveBefore
>(
2564 TypePromotionTransaction::ConstRestorationPt
2565 TypePromotionTransaction::getRestorationPoint() const {
2566 return !Actions
.empty() ? Actions
.back().get() : nullptr;
2569 void TypePromotionTransaction::commit() {
2570 for (CommitPt It
= Actions
.begin(), EndIt
= Actions
.end(); It
!= EndIt
;
2576 void TypePromotionTransaction::rollback(
2577 TypePromotionTransaction::ConstRestorationPt Point
) {
2578 while (!Actions
.empty() && Point
!= Actions
.back().get()) {
2579 std::unique_ptr
<TypePromotionAction
> Curr
= Actions
.pop_back_val();
2586 /// A helper class for matching addressing modes.
2588 /// This encapsulates the logic for matching the target-legal addressing modes.
2589 class AddressingModeMatcher
{
2590 SmallVectorImpl
<Instruction
*> &AddrModeInsts
;
2591 const TargetLowering
&TLI
;
2592 const TargetRegisterInfo
&TRI
;
2593 const DataLayout
&DL
;
2595 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2596 /// the memory instruction that we're computing this address for.
2599 Instruction
*MemoryInst
;
2601 /// This is the addressing mode that we're building up. This is
2602 /// part of the return value of this addressing mode matching stuff.
2603 ExtAddrMode
&AddrMode
;
2605 /// The instructions inserted by other CodeGenPrepare optimizations.
2606 const SetOfInstrs
&InsertedInsts
;
2608 /// A map from the instructions to their type before promotion.
2609 InstrToOrigTy
&PromotedInsts
;
2611 /// The ongoing transaction where every action should be registered.
2612 TypePromotionTransaction
&TPT
;
2614 // A GEP which has too large offset to be folded into the addressing mode.
2615 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
;
2617 /// This is set to true when we should not do profitability checks.
2618 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2619 bool IgnoreProfitability
;
2621 AddressingModeMatcher(
2622 SmallVectorImpl
<Instruction
*> &AMI
, const TargetLowering
&TLI
,
2623 const TargetRegisterInfo
&TRI
, Type
*AT
, unsigned AS
, Instruction
*MI
,
2624 ExtAddrMode
&AM
, const SetOfInstrs
&InsertedInsts
,
2625 InstrToOrigTy
&PromotedInsts
, TypePromotionTransaction
&TPT
,
2626 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
)
2627 : AddrModeInsts(AMI
), TLI(TLI
), TRI(TRI
),
2628 DL(MI
->getModule()->getDataLayout()), AccessTy(AT
), AddrSpace(AS
),
2629 MemoryInst(MI
), AddrMode(AM
), InsertedInsts(InsertedInsts
),
2630 PromotedInsts(PromotedInsts
), TPT(TPT
), LargeOffsetGEP(LargeOffsetGEP
) {
2631 IgnoreProfitability
= false;
2635 /// Find the maximal addressing mode that a load/store of V can fold,
2636 /// give an access type of AccessTy. This returns a list of involved
2637 /// instructions in AddrModeInsts.
2638 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2640 /// \p PromotedInsts maps the instructions to their type before promotion.
2641 /// \p The ongoing transaction where every action should be registered.
2643 Match(Value
*V
, Type
*AccessTy
, unsigned AS
, Instruction
*MemoryInst
,
2644 SmallVectorImpl
<Instruction
*> &AddrModeInsts
,
2645 const TargetLowering
&TLI
, const TargetRegisterInfo
&TRI
,
2646 const SetOfInstrs
&InsertedInsts
, InstrToOrigTy
&PromotedInsts
,
2647 TypePromotionTransaction
&TPT
,
2648 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
) {
2651 bool Success
= AddressingModeMatcher(AddrModeInsts
, TLI
, TRI
, AccessTy
, AS
,
2652 MemoryInst
, Result
, InsertedInsts
,
2653 PromotedInsts
, TPT
, LargeOffsetGEP
)
2655 (void)Success
; assert(Success
&& "Couldn't select *anything*?");
2660 bool matchScaledValue(Value
*ScaleReg
, int64_t Scale
, unsigned Depth
);
2661 bool matchAddr(Value
*Addr
, unsigned Depth
);
2662 bool matchOperationAddr(User
*AddrInst
, unsigned Opcode
, unsigned Depth
,
2663 bool *MovedAway
= nullptr);
2664 bool isProfitableToFoldIntoAddressingMode(Instruction
*I
,
2665 ExtAddrMode
&AMBefore
,
2666 ExtAddrMode
&AMAfter
);
2667 bool valueAlreadyLiveAtInst(Value
*Val
, Value
*KnownLive1
, Value
*KnownLive2
);
2668 bool isPromotionProfitable(unsigned NewCost
, unsigned OldCost
,
2669 Value
*PromotedOperand
) const;
2674 /// An iterator for PhiNodeSet.
2675 class PhiNodeSetIterator
{
2676 PhiNodeSet
* const Set
;
2677 size_t CurrentIndex
= 0;
2680 /// The constructor. Start should point to either a valid element, or be equal
2681 /// to the size of the underlying SmallVector of the PhiNodeSet.
2682 PhiNodeSetIterator(PhiNodeSet
* const Set
, size_t Start
);
2683 PHINode
* operator*() const;
2684 PhiNodeSetIterator
& operator++();
2685 bool operator==(const PhiNodeSetIterator
&RHS
) const;
2686 bool operator!=(const PhiNodeSetIterator
&RHS
) const;
2689 /// Keeps a set of PHINodes.
2691 /// This is a minimal set implementation for a specific use case:
2692 /// It is very fast when there are very few elements, but also provides good
2693 /// performance when there are many. It is similar to SmallPtrSet, but also
2694 /// provides iteration by insertion order, which is deterministic and stable
2695 /// across runs. It is also similar to SmallSetVector, but provides removing
2696 /// elements in O(1) time. This is achieved by not actually removing the element
2697 /// from the underlying vector, so comes at the cost of using more memory, but
2698 /// that is fine, since PhiNodeSets are used as short lived objects.
2700 friend class PhiNodeSetIterator
;
2702 using MapType
= SmallDenseMap
<PHINode
*, size_t, 32>;
2703 using iterator
= PhiNodeSetIterator
;
2705 /// Keeps the elements in the order of their insertion in the underlying
2706 /// vector. To achieve constant time removal, it never deletes any element.
2707 SmallVector
<PHINode
*, 32> NodeList
;
2709 /// Keeps the elements in the underlying set implementation. This (and not the
2710 /// NodeList defined above) is the source of truth on whether an element
2711 /// is actually in the collection.
2714 /// Points to the first valid (not deleted) element when the set is not empty
2715 /// and the value is not zero. Equals to the size of the underlying vector
2716 /// when the set is empty. When the value is 0, as in the beginning, the
2717 /// first element may or may not be valid.
2718 size_t FirstValidElement
= 0;
2721 /// Inserts a new element to the collection.
2722 /// \returns true if the element is actually added, i.e. was not in the
2723 /// collection before the operation.
2724 bool insert(PHINode
*Ptr
) {
2725 if (NodeMap
.insert(std::make_pair(Ptr
, NodeList
.size())).second
) {
2726 NodeList
.push_back(Ptr
);
2732 /// Removes the element from the collection.
2733 /// \returns whether the element is actually removed, i.e. was in the
2734 /// collection before the operation.
2735 bool erase(PHINode
*Ptr
) {
2736 auto it
= NodeMap
.find(Ptr
);
2737 if (it
!= NodeMap
.end()) {
2739 SkipRemovedElements(FirstValidElement
);
2745 /// Removes all elements and clears the collection.
2749 FirstValidElement
= 0;
2752 /// \returns an iterator that will iterate the elements in the order of
2755 if (FirstValidElement
== 0)
2756 SkipRemovedElements(FirstValidElement
);
2757 return PhiNodeSetIterator(this, FirstValidElement
);
2760 /// \returns an iterator that points to the end of the collection.
2761 iterator
end() { return PhiNodeSetIterator(this, NodeList
.size()); }
2763 /// Returns the number of elements in the collection.
2764 size_t size() const {
2765 return NodeMap
.size();
2768 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
2769 size_t count(PHINode
*Ptr
) const {
2770 return NodeMap
.count(Ptr
);
2774 /// Updates the CurrentIndex so that it will point to a valid element.
2776 /// If the element of NodeList at CurrentIndex is valid, it does not
2777 /// change it. If there are no more valid elements, it updates CurrentIndex
2778 /// to point to the end of the NodeList.
2779 void SkipRemovedElements(size_t &CurrentIndex
) {
2780 while (CurrentIndex
< NodeList
.size()) {
2781 auto it
= NodeMap
.find(NodeList
[CurrentIndex
]);
2782 // If the element has been deleted and added again later, NodeMap will
2783 // point to a different index, so CurrentIndex will still be invalid.
2784 if (it
!= NodeMap
.end() && it
->second
== CurrentIndex
)
2791 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet
*const Set
, size_t Start
)
2792 : Set(Set
), CurrentIndex(Start
) {}
2794 PHINode
* PhiNodeSetIterator::operator*() const {
2795 assert(CurrentIndex
< Set
->NodeList
.size() &&
2796 "PhiNodeSet access out of range");
2797 return Set
->NodeList
[CurrentIndex
];
2800 PhiNodeSetIterator
& PhiNodeSetIterator::operator++() {
2801 assert(CurrentIndex
< Set
->NodeList
.size() &&
2802 "PhiNodeSet access out of range");
2804 Set
->SkipRemovedElements(CurrentIndex
);
2808 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator
&RHS
) const {
2809 return CurrentIndex
== RHS
.CurrentIndex
;
2812 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator
&RHS
) const {
2813 return !((*this) == RHS
);
2816 /// Keep track of simplification of Phi nodes.
2817 /// Accept the set of all phi nodes and erase phi node from this set
2818 /// if it is simplified.
2819 class SimplificationTracker
{
2820 DenseMap
<Value
*, Value
*> Storage
;
2821 const SimplifyQuery
&SQ
;
2822 // Tracks newly created Phi nodes. The elements are iterated by insertion
2824 PhiNodeSet AllPhiNodes
;
2825 // Tracks newly created Select nodes.
2826 SmallPtrSet
<SelectInst
*, 32> AllSelectNodes
;
2829 SimplificationTracker(const SimplifyQuery
&sq
)
2832 Value
*Get(Value
*V
) {
2834 auto SV
= Storage
.find(V
);
2835 if (SV
== Storage
.end())
2841 Value
*Simplify(Value
*Val
) {
2842 SmallVector
<Value
*, 32> WorkList
;
2843 SmallPtrSet
<Value
*, 32> Visited
;
2844 WorkList
.push_back(Val
);
2845 while (!WorkList
.empty()) {
2846 auto P
= WorkList
.pop_back_val();
2847 if (!Visited
.insert(P
).second
)
2849 if (auto *PI
= dyn_cast
<Instruction
>(P
))
2850 if (Value
*V
= SimplifyInstruction(cast
<Instruction
>(PI
), SQ
)) {
2851 for (auto *U
: PI
->users())
2852 WorkList
.push_back(cast
<Value
>(U
));
2854 PI
->replaceAllUsesWith(V
);
2855 if (auto *PHI
= dyn_cast
<PHINode
>(PI
))
2856 AllPhiNodes
.erase(PHI
);
2857 if (auto *Select
= dyn_cast
<SelectInst
>(PI
))
2858 AllSelectNodes
.erase(Select
);
2859 PI
->eraseFromParent();
2865 void Put(Value
*From
, Value
*To
) {
2866 Storage
.insert({ From
, To
});
2869 void ReplacePhi(PHINode
*From
, PHINode
*To
) {
2870 Value
* OldReplacement
= Get(From
);
2871 while (OldReplacement
!= From
) {
2873 To
= dyn_cast
<PHINode
>(OldReplacement
);
2874 OldReplacement
= Get(From
);
2876 assert(Get(To
) == To
&& "Replacement PHI node is already replaced.");
2878 From
->replaceAllUsesWith(To
);
2879 AllPhiNodes
.erase(From
);
2880 From
->eraseFromParent();
2883 PhiNodeSet
& newPhiNodes() { return AllPhiNodes
; }
2885 void insertNewPhi(PHINode
*PN
) { AllPhiNodes
.insert(PN
); }
2887 void insertNewSelect(SelectInst
*SI
) { AllSelectNodes
.insert(SI
); }
2889 unsigned countNewPhiNodes() const { return AllPhiNodes
.size(); }
2891 unsigned countNewSelectNodes() const { return AllSelectNodes
.size(); }
2893 void destroyNewNodes(Type
*CommonType
) {
2894 // For safe erasing, replace the uses with dummy value first.
2895 auto Dummy
= UndefValue::get(CommonType
);
2896 for (auto I
: AllPhiNodes
) {
2897 I
->replaceAllUsesWith(Dummy
);
2898 I
->eraseFromParent();
2900 AllPhiNodes
.clear();
2901 for (auto I
: AllSelectNodes
) {
2902 I
->replaceAllUsesWith(Dummy
);
2903 I
->eraseFromParent();
2905 AllSelectNodes
.clear();
2909 /// A helper class for combining addressing modes.
2910 class AddressingModeCombiner
{
2911 typedef DenseMap
<Value
*, Value
*> FoldAddrToValueMapping
;
2912 typedef std::pair
<PHINode
*, PHINode
*> PHIPair
;
2915 /// The addressing modes we've collected.
2916 SmallVector
<ExtAddrMode
, 16> AddrModes
;
2918 /// The field in which the AddrModes differ, when we have more than one.
2919 ExtAddrMode::FieldName DifferentField
= ExtAddrMode::NoField
;
2921 /// Are the AddrModes that we have all just equal to their original values?
2922 bool AllAddrModesTrivial
= true;
2924 /// Common Type for all different fields in addressing modes.
2927 /// SimplifyQuery for simplifyInstruction utility.
2928 const SimplifyQuery
&SQ
;
2930 /// Original Address.
2934 AddressingModeCombiner(const SimplifyQuery
&_SQ
, Value
*OriginalValue
)
2935 : CommonType(nullptr), SQ(_SQ
), Original(OriginalValue
) {}
2937 /// Get the combined AddrMode
2938 const ExtAddrMode
&getAddrMode() const {
2939 return AddrModes
[0];
2942 /// Add a new AddrMode if it's compatible with the AddrModes we already
2944 /// \return True iff we succeeded in doing so.
2945 bool addNewAddrMode(ExtAddrMode
&NewAddrMode
) {
2946 // Take note of if we have any non-trivial AddrModes, as we need to detect
2947 // when all AddrModes are trivial as then we would introduce a phi or select
2948 // which just duplicates what's already there.
2949 AllAddrModesTrivial
= AllAddrModesTrivial
&& NewAddrMode
.isTrivial();
2951 // If this is the first addrmode then everything is fine.
2952 if (AddrModes
.empty()) {
2953 AddrModes
.emplace_back(NewAddrMode
);
2957 // Figure out how different this is from the other address modes, which we
2958 // can do just by comparing against the first one given that we only care
2959 // about the cumulative difference.
2960 ExtAddrMode::FieldName ThisDifferentField
=
2961 AddrModes
[0].compare(NewAddrMode
);
2962 if (DifferentField
== ExtAddrMode::NoField
)
2963 DifferentField
= ThisDifferentField
;
2964 else if (DifferentField
!= ThisDifferentField
)
2965 DifferentField
= ExtAddrMode::MultipleFields
;
2967 // If NewAddrMode differs in more than one dimension we cannot handle it.
2968 bool CanHandle
= DifferentField
!= ExtAddrMode::MultipleFields
;
2970 // If Scale Field is different then we reject.
2971 CanHandle
= CanHandle
&& DifferentField
!= ExtAddrMode::ScaleField
;
2973 // We also must reject the case when base offset is different and
2974 // scale reg is not null, we cannot handle this case due to merge of
2975 // different offsets will be used as ScaleReg.
2976 CanHandle
= CanHandle
&& (DifferentField
!= ExtAddrMode::BaseOffsField
||
2977 !NewAddrMode
.ScaledReg
);
2979 // We also must reject the case when GV is different and BaseReg installed
2980 // due to we want to use base reg as a merge of GV values.
2981 CanHandle
= CanHandle
&& (DifferentField
!= ExtAddrMode::BaseGVField
||
2982 !NewAddrMode
.HasBaseReg
);
2984 // Even if NewAddMode is the same we still need to collect it due to
2985 // original value is different. And later we will need all original values
2986 // as anchors during finding the common Phi node.
2988 AddrModes
.emplace_back(NewAddrMode
);
2995 /// Combine the addressing modes we've collected into a single
2996 /// addressing mode.
2997 /// \return True iff we successfully combined them or we only had one so
2998 /// didn't need to combine them anyway.
2999 bool combineAddrModes() {
3000 // If we have no AddrModes then they can't be combined.
3001 if (AddrModes
.size() == 0)
3004 // A single AddrMode can trivially be combined.
3005 if (AddrModes
.size() == 1 || DifferentField
== ExtAddrMode::NoField
)
3008 // If the AddrModes we collected are all just equal to the value they are
3009 // derived from then combining them wouldn't do anything useful.
3010 if (AllAddrModesTrivial
)
3013 if (!addrModeCombiningAllowed())
3016 // Build a map between <original value, basic block where we saw it> to
3017 // value of base register.
3018 // Bail out if there is no common type.
3019 FoldAddrToValueMapping Map
;
3020 if (!initializeMap(Map
))
3023 Value
*CommonValue
= findCommon(Map
);
3025 AddrModes
[0].SetCombinedField(DifferentField
, CommonValue
, AddrModes
);
3026 return CommonValue
!= nullptr;
3030 /// Initialize Map with anchor values. For address seen
3031 /// we set the value of different field saw in this address.
3032 /// At the same time we find a common type for different field we will
3033 /// use to create new Phi/Select nodes. Keep it in CommonType field.
3034 /// Return false if there is no common type found.
3035 bool initializeMap(FoldAddrToValueMapping
&Map
) {
3036 // Keep track of keys where the value is null. We will need to replace it
3037 // with constant null when we know the common type.
3038 SmallVector
<Value
*, 2> NullValue
;
3039 Type
*IntPtrTy
= SQ
.DL
.getIntPtrType(AddrModes
[0].OriginalValue
->getType());
3040 for (auto &AM
: AddrModes
) {
3041 Value
*DV
= AM
.GetFieldAsValue(DifferentField
, IntPtrTy
);
3043 auto *Type
= DV
->getType();
3044 if (CommonType
&& CommonType
!= Type
)
3047 Map
[AM
.OriginalValue
] = DV
;
3049 NullValue
.push_back(AM
.OriginalValue
);
3052 assert(CommonType
&& "At least one non-null value must be!");
3053 for (auto *V
: NullValue
)
3054 Map
[V
] = Constant::getNullValue(CommonType
);
3058 /// We have mapping between value A and other value B where B was a field in
3059 /// addressing mode represented by A. Also we have an original value C
3060 /// representing an address we start with. Traversing from C through phi and
3061 /// selects we ended up with A's in a map. This utility function tries to find
3062 /// a value V which is a field in addressing mode C and traversing through phi
3063 /// nodes and selects we will end up in corresponded values B in a map.
3064 /// The utility will create a new Phi/Selects if needed.
3065 // The simple example looks as follows:
3073 // p = phi [p1, BB1], [p2, BB2]
3080 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3081 Value
*findCommon(FoldAddrToValueMapping
&Map
) {
3082 // Tracks the simplification of newly created phi nodes. The reason we use
3083 // this mapping is because we will add new created Phi nodes in AddrToBase.
3084 // Simplification of Phi nodes is recursive, so some Phi node may
3085 // be simplified after we added it to AddrToBase. In reality this
3086 // simplification is possible only if original phi/selects were not
3088 // Using this mapping we can find the current value in AddrToBase.
3089 SimplificationTracker
ST(SQ
);
3091 // First step, DFS to create PHI nodes for all intermediate blocks.
3092 // Also fill traverse order for the second step.
3093 SmallVector
<Value
*, 32> TraverseOrder
;
3094 InsertPlaceholders(Map
, TraverseOrder
, ST
);
3096 // Second Step, fill new nodes by merged values and simplify if possible.
3097 FillPlaceholders(Map
, TraverseOrder
, ST
);
3099 if (!AddrSinkNewSelects
&& ST
.countNewSelectNodes() > 0) {
3100 ST
.destroyNewNodes(CommonType
);
3104 // Now we'd like to match New Phi nodes to existed ones.
3105 unsigned PhiNotMatchedCount
= 0;
3106 if (!MatchPhiSet(ST
, AddrSinkNewPhis
, PhiNotMatchedCount
)) {
3107 ST
.destroyNewNodes(CommonType
);
3111 auto *Result
= ST
.Get(Map
.find(Original
)->second
);
3113 NumMemoryInstsPhiCreated
+= ST
.countNewPhiNodes() + PhiNotMatchedCount
;
3114 NumMemoryInstsSelectCreated
+= ST
.countNewSelectNodes();
3119 /// Try to match PHI node to Candidate.
3120 /// Matcher tracks the matched Phi nodes.
3121 bool MatchPhiNode(PHINode
*PHI
, PHINode
*Candidate
,
3122 SmallSetVector
<PHIPair
, 8> &Matcher
,
3123 PhiNodeSet
&PhiNodesToMatch
) {
3124 SmallVector
<PHIPair
, 8> WorkList
;
3125 Matcher
.insert({ PHI
, Candidate
});
3126 WorkList
.push_back({ PHI
, Candidate
});
3127 SmallSet
<PHIPair
, 8> Visited
;
3128 while (!WorkList
.empty()) {
3129 auto Item
= WorkList
.pop_back_val();
3130 if (!Visited
.insert(Item
).second
)
3132 // We iterate over all incoming values to Phi to compare them.
3133 // If values are different and both of them Phi and the first one is a
3134 // Phi we added (subject to match) and both of them is in the same basic
3135 // block then we can match our pair if values match. So we state that
3136 // these values match and add it to work list to verify that.
3137 for (auto B
: Item
.first
->blocks()) {
3138 Value
*FirstValue
= Item
.first
->getIncomingValueForBlock(B
);
3139 Value
*SecondValue
= Item
.second
->getIncomingValueForBlock(B
);
3140 if (FirstValue
== SecondValue
)
3143 PHINode
*FirstPhi
= dyn_cast
<PHINode
>(FirstValue
);
3144 PHINode
*SecondPhi
= dyn_cast
<PHINode
>(SecondValue
);
3146 // One of them is not Phi or
3147 // The first one is not Phi node from the set we'd like to match or
3148 // Phi nodes from different basic blocks then
3149 // we will not be able to match.
3150 if (!FirstPhi
|| !SecondPhi
|| !PhiNodesToMatch
.count(FirstPhi
) ||
3151 FirstPhi
->getParent() != SecondPhi
->getParent())
3154 // If we already matched them then continue.
3155 if (Matcher
.count({ FirstPhi
, SecondPhi
}))
3157 // So the values are different and does not match. So we need them to
3159 Matcher
.insert({ FirstPhi
, SecondPhi
});
3160 // But me must check it.
3161 WorkList
.push_back({ FirstPhi
, SecondPhi
});
3167 /// For the given set of PHI nodes (in the SimplificationTracker) try
3168 /// to find their equivalents.
3169 /// Returns false if this matching fails and creation of new Phi is disabled.
3170 bool MatchPhiSet(SimplificationTracker
&ST
, bool AllowNewPhiNodes
,
3171 unsigned &PhiNotMatchedCount
) {
3172 // Matched and PhiNodesToMatch iterate their elements in a deterministic
3173 // order, so the replacements (ReplacePhi) are also done in a deterministic
3175 SmallSetVector
<PHIPair
, 8> Matched
;
3176 SmallPtrSet
<PHINode
*, 8> WillNotMatch
;
3177 PhiNodeSet
&PhiNodesToMatch
= ST
.newPhiNodes();
3178 while (PhiNodesToMatch
.size()) {
3179 PHINode
*PHI
= *PhiNodesToMatch
.begin();
3181 // Add us, if no Phi nodes in the basic block we do not match.
3182 WillNotMatch
.clear();
3183 WillNotMatch
.insert(PHI
);
3185 // Traverse all Phis until we found equivalent or fail to do that.
3186 bool IsMatched
= false;
3187 for (auto &P
: PHI
->getParent()->phis()) {
3190 if ((IsMatched
= MatchPhiNode(PHI
, &P
, Matched
, PhiNodesToMatch
)))
3192 // If it does not match, collect all Phi nodes from matcher.
3193 // if we end up with no match, them all these Phi nodes will not match
3195 for (auto M
: Matched
)
3196 WillNotMatch
.insert(M
.first
);
3200 // Replace all matched values and erase them.
3201 for (auto MV
: Matched
)
3202 ST
.ReplacePhi(MV
.first
, MV
.second
);
3206 // If we are not allowed to create new nodes then bail out.
3207 if (!AllowNewPhiNodes
)
3209 // Just remove all seen values in matcher. They will not match anything.
3210 PhiNotMatchedCount
+= WillNotMatch
.size();
3211 for (auto *P
: WillNotMatch
)
3212 PhiNodesToMatch
.erase(P
);
3216 /// Fill the placeholders with values from predecessors and simplify them.
3217 void FillPlaceholders(FoldAddrToValueMapping
&Map
,
3218 SmallVectorImpl
<Value
*> &TraverseOrder
,
3219 SimplificationTracker
&ST
) {
3220 while (!TraverseOrder
.empty()) {
3221 Value
*Current
= TraverseOrder
.pop_back_val();
3222 assert(Map
.find(Current
) != Map
.end() && "No node to fill!!!");
3223 Value
*V
= Map
[Current
];
3225 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(V
)) {
3226 // CurrentValue also must be Select.
3227 auto *CurrentSelect
= cast
<SelectInst
>(Current
);
3228 auto *TrueValue
= CurrentSelect
->getTrueValue();
3229 assert(Map
.find(TrueValue
) != Map
.end() && "No True Value!");
3230 Select
->setTrueValue(ST
.Get(Map
[TrueValue
]));
3231 auto *FalseValue
= CurrentSelect
->getFalseValue();
3232 assert(Map
.find(FalseValue
) != Map
.end() && "No False Value!");
3233 Select
->setFalseValue(ST
.Get(Map
[FalseValue
]));
3235 // Must be a Phi node then.
3236 PHINode
*PHI
= cast
<PHINode
>(V
);
3237 auto *CurrentPhi
= dyn_cast
<PHINode
>(Current
);
3238 // Fill the Phi node with values from predecessors.
3239 for (auto B
: predecessors(PHI
->getParent())) {
3240 Value
*PV
= CurrentPhi
->getIncomingValueForBlock(B
);
3241 assert(Map
.find(PV
) != Map
.end() && "No predecessor Value!");
3242 PHI
->addIncoming(ST
.Get(Map
[PV
]), B
);
3245 Map
[Current
] = ST
.Simplify(V
);
3249 /// Starting from original value recursively iterates over def-use chain up to
3250 /// known ending values represented in a map. For each traversed phi/select
3251 /// inserts a placeholder Phi or Select.
3252 /// Reports all new created Phi/Select nodes by adding them to set.
3253 /// Also reports and order in what values have been traversed.
3254 void InsertPlaceholders(FoldAddrToValueMapping
&Map
,
3255 SmallVectorImpl
<Value
*> &TraverseOrder
,
3256 SimplificationTracker
&ST
) {
3257 SmallVector
<Value
*, 32> Worklist
;
3258 assert((isa
<PHINode
>(Original
) || isa
<SelectInst
>(Original
)) &&
3259 "Address must be a Phi or Select node");
3260 auto *Dummy
= UndefValue::get(CommonType
);
3261 Worklist
.push_back(Original
);
3262 while (!Worklist
.empty()) {
3263 Value
*Current
= Worklist
.pop_back_val();
3264 // if it is already visited or it is an ending value then skip it.
3265 if (Map
.find(Current
) != Map
.end())
3267 TraverseOrder
.push_back(Current
);
3269 // CurrentValue must be a Phi node or select. All others must be covered
3271 if (SelectInst
*CurrentSelect
= dyn_cast
<SelectInst
>(Current
)) {
3272 // Is it OK to get metadata from OrigSelect?!
3273 // Create a Select placeholder with dummy value.
3274 SelectInst
*Select
= SelectInst::Create(
3275 CurrentSelect
->getCondition(), Dummy
, Dummy
,
3276 CurrentSelect
->getName(), CurrentSelect
, CurrentSelect
);
3277 Map
[Current
] = Select
;
3278 ST
.insertNewSelect(Select
);
3279 // We are interested in True and False values.
3280 Worklist
.push_back(CurrentSelect
->getTrueValue());
3281 Worklist
.push_back(CurrentSelect
->getFalseValue());
3283 // It must be a Phi node then.
3284 PHINode
*CurrentPhi
= cast
<PHINode
>(Current
);
3285 unsigned PredCount
= CurrentPhi
->getNumIncomingValues();
3287 PHINode::Create(CommonType
, PredCount
, "sunk_phi", CurrentPhi
);
3289 ST
.insertNewPhi(PHI
);
3290 for (Value
*P
: CurrentPhi
->incoming_values())
3291 Worklist
.push_back(P
);
3296 bool addrModeCombiningAllowed() {
3297 if (DisableComplexAddrModes
)
3299 switch (DifferentField
) {
3302 case ExtAddrMode::BaseRegField
:
3303 return AddrSinkCombineBaseReg
;
3304 case ExtAddrMode::BaseGVField
:
3305 return AddrSinkCombineBaseGV
;
3306 case ExtAddrMode::BaseOffsField
:
3307 return AddrSinkCombineBaseOffs
;
3308 case ExtAddrMode::ScaledRegField
:
3309 return AddrSinkCombineScaledReg
;
3313 } // end anonymous namespace
3315 /// Try adding ScaleReg*Scale to the current addressing mode.
3316 /// Return true and update AddrMode if this addr mode is legal for the target,
3318 bool AddressingModeMatcher::matchScaledValue(Value
*ScaleReg
, int64_t Scale
,
3320 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3321 // mode. Just process that directly.
3323 return matchAddr(ScaleReg
, Depth
);
3325 // If the scale is 0, it takes nothing to add this.
3329 // If we already have a scale of this value, we can add to it, otherwise, we
3330 // need an available scale field.
3331 if (AddrMode
.Scale
!= 0 && AddrMode
.ScaledReg
!= ScaleReg
)
3334 ExtAddrMode TestAddrMode
= AddrMode
;
3336 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
3337 // [A+B + A*7] -> [B+A*8].
3338 TestAddrMode
.Scale
+= Scale
;
3339 TestAddrMode
.ScaledReg
= ScaleReg
;
3341 // If the new address isn't legal, bail out.
3342 if (!TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
))
3345 // It was legal, so commit it.
3346 AddrMode
= TestAddrMode
;
3348 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
3349 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
3350 // X*Scale + C*Scale to addr mode.
3351 ConstantInt
*CI
= nullptr; Value
*AddLHS
= nullptr;
3352 if (isa
<Instruction
>(ScaleReg
) && // not a constant expr.
3353 match(ScaleReg
, m_Add(m_Value(AddLHS
), m_ConstantInt(CI
)))) {
3354 TestAddrMode
.ScaledReg
= AddLHS
;
3355 TestAddrMode
.BaseOffs
+= CI
->getSExtValue()*TestAddrMode
.Scale
;
3357 // If this addressing mode is legal, commit it and remember that we folded
3358 // this instruction.
3359 if (TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
)) {
3360 AddrModeInsts
.push_back(cast
<Instruction
>(ScaleReg
));
3361 AddrMode
= TestAddrMode
;
3366 // Otherwise, not (x+c)*scale, just return what we have.
3370 /// This is a little filter, which returns true if an addressing computation
3371 /// involving I might be folded into a load/store accessing it.
3372 /// This doesn't need to be perfect, but needs to accept at least
3373 /// the set of instructions that MatchOperationAddr can.
3374 static bool MightBeFoldableInst(Instruction
*I
) {
3375 switch (I
->getOpcode()) {
3376 case Instruction::BitCast
:
3377 case Instruction::AddrSpaceCast
:
3378 // Don't touch identity bitcasts.
3379 if (I
->getType() == I
->getOperand(0)->getType())
3381 return I
->getType()->isIntOrPtrTy();
3382 case Instruction::PtrToInt
:
3383 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3385 case Instruction::IntToPtr
:
3386 // We know the input is intptr_t, so this is foldable.
3388 case Instruction::Add
:
3390 case Instruction::Mul
:
3391 case Instruction::Shl
:
3392 // Can only handle X*C and X << C.
3393 return isa
<ConstantInt
>(I
->getOperand(1));
3394 case Instruction::GetElementPtr
:
3401 /// Check whether or not \p Val is a legal instruction for \p TLI.
3402 /// \note \p Val is assumed to be the product of some type promotion.
3403 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3404 /// to be legal, as the non-promoted value would have had the same state.
3405 static bool isPromotedInstructionLegal(const TargetLowering
&TLI
,
3406 const DataLayout
&DL
, Value
*Val
) {
3407 Instruction
*PromotedInst
= dyn_cast
<Instruction
>(Val
);
3410 int ISDOpcode
= TLI
.InstructionOpcodeToISD(PromotedInst
->getOpcode());
3411 // If the ISDOpcode is undefined, it was undefined before the promotion.
3414 // Otherwise, check if the promoted instruction is legal or not.
3415 return TLI
.isOperationLegalOrCustom(
3416 ISDOpcode
, TLI
.getValueType(DL
, PromotedInst
->getType()));
3421 /// Hepler class to perform type promotion.
3422 class TypePromotionHelper
{
3423 /// Utility function to add a promoted instruction \p ExtOpnd to
3424 /// \p PromotedInsts and record the type of extension we have seen.
3425 static void addPromotedInst(InstrToOrigTy
&PromotedInsts
,
3426 Instruction
*ExtOpnd
,
3428 ExtType ExtTy
= IsSExt
? SignExtension
: ZeroExtension
;
3429 InstrToOrigTy::iterator It
= PromotedInsts
.find(ExtOpnd
);
3430 if (It
!= PromotedInsts
.end()) {
3431 // If the new extension is same as original, the information in
3432 // PromotedInsts[ExtOpnd] is still correct.
3433 if (It
->second
.getInt() == ExtTy
)
3436 // Now the new extension is different from old extension, we make
3437 // the type information invalid by setting extension type to
3439 ExtTy
= BothExtension
;
3441 PromotedInsts
[ExtOpnd
] = TypeIsSExt(ExtOpnd
->getType(), ExtTy
);
3444 /// Utility function to query the original type of instruction \p Opnd
3445 /// with a matched extension type. If the extension doesn't match, we
3446 /// cannot use the information we had on the original type.
3447 /// BothExtension doesn't match any extension type.
3448 static const Type
*getOrigType(const InstrToOrigTy
&PromotedInsts
,
3451 ExtType ExtTy
= IsSExt
? SignExtension
: ZeroExtension
;
3452 InstrToOrigTy::const_iterator It
= PromotedInsts
.find(Opnd
);
3453 if (It
!= PromotedInsts
.end() && It
->second
.getInt() == ExtTy
)
3454 return It
->second
.getPointer();
3458 /// Utility function to check whether or not a sign or zero extension
3459 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3460 /// either using the operands of \p Inst or promoting \p Inst.
3461 /// The type of the extension is defined by \p IsSExt.
3462 /// In other words, check if:
3463 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3464 /// #1 Promotion applies:
3465 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3466 /// #2 Operand reuses:
3467 /// ext opnd1 to ConsideredExtType.
3468 /// \p PromotedInsts maps the instructions to their type before promotion.
3469 static bool canGetThrough(const Instruction
*Inst
, Type
*ConsideredExtType
,
3470 const InstrToOrigTy
&PromotedInsts
, bool IsSExt
);
3472 /// Utility function to determine if \p OpIdx should be promoted when
3473 /// promoting \p Inst.
3474 static bool shouldExtOperand(const Instruction
*Inst
, int OpIdx
) {
3475 return !(isa
<SelectInst
>(Inst
) && OpIdx
== 0);
3478 /// Utility function to promote the operand of \p Ext when this
3479 /// operand is a promotable trunc or sext or zext.
3480 /// \p PromotedInsts maps the instructions to their type before promotion.
3481 /// \p CreatedInstsCost[out] contains the cost of all instructions
3482 /// created to promote the operand of Ext.
3483 /// Newly added extensions are inserted in \p Exts.
3484 /// Newly added truncates are inserted in \p Truncs.
3485 /// Should never be called directly.
3486 /// \return The promoted value which is used instead of Ext.
3487 static Value
*promoteOperandForTruncAndAnyExt(
3488 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3489 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3490 SmallVectorImpl
<Instruction
*> *Exts
,
3491 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
);
3493 /// Utility function to promote the operand of \p Ext when this
3494 /// operand is promotable and is not a supported trunc or sext.
3495 /// \p PromotedInsts maps the instructions to their type before promotion.
3496 /// \p CreatedInstsCost[out] contains the cost of all the instructions
3497 /// created to promote the operand of Ext.
3498 /// Newly added extensions are inserted in \p Exts.
3499 /// Newly added truncates are inserted in \p Truncs.
3500 /// Should never be called directly.
3501 /// \return The promoted value which is used instead of Ext.
3502 static Value
*promoteOperandForOther(Instruction
*Ext
,
3503 TypePromotionTransaction
&TPT
,
3504 InstrToOrigTy
&PromotedInsts
,
3505 unsigned &CreatedInstsCost
,
3506 SmallVectorImpl
<Instruction
*> *Exts
,
3507 SmallVectorImpl
<Instruction
*> *Truncs
,
3508 const TargetLowering
&TLI
, bool IsSExt
);
3510 /// \see promoteOperandForOther.
3511 static Value
*signExtendOperandForOther(
3512 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3513 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3514 SmallVectorImpl
<Instruction
*> *Exts
,
3515 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
3516 return promoteOperandForOther(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
,
3517 Exts
, Truncs
, TLI
, true);
3520 /// \see promoteOperandForOther.
3521 static Value
*zeroExtendOperandForOther(
3522 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3523 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3524 SmallVectorImpl
<Instruction
*> *Exts
,
3525 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
3526 return promoteOperandForOther(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
,
3527 Exts
, Truncs
, TLI
, false);
3531 /// Type for the utility function that promotes the operand of Ext.
3532 using Action
= Value
*(*)(Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3533 InstrToOrigTy
&PromotedInsts
,
3534 unsigned &CreatedInstsCost
,
3535 SmallVectorImpl
<Instruction
*> *Exts
,
3536 SmallVectorImpl
<Instruction
*> *Truncs
,
3537 const TargetLowering
&TLI
);
3539 /// Given a sign/zero extend instruction \p Ext, return the appropriate
3540 /// action to promote the operand of \p Ext instead of using Ext.
3541 /// \return NULL if no promotable action is possible with the current
3543 /// \p InsertedInsts keeps track of all the instructions inserted by the
3544 /// other CodeGenPrepare optimizations. This information is important
3545 /// because we do not want to promote these instructions as CodeGenPrepare
3546 /// will reinsert them later. Thus creating an infinite loop: create/remove.
3547 /// \p PromotedInsts maps the instructions to their type before promotion.
3548 static Action
getAction(Instruction
*Ext
, const SetOfInstrs
&InsertedInsts
,
3549 const TargetLowering
&TLI
,
3550 const InstrToOrigTy
&PromotedInsts
);
3553 } // end anonymous namespace
3555 bool TypePromotionHelper::canGetThrough(const Instruction
*Inst
,
3556 Type
*ConsideredExtType
,
3557 const InstrToOrigTy
&PromotedInsts
,
3559 // The promotion helper does not know how to deal with vector types yet.
3560 // To be able to fix that, we would need to fix the places where we
3561 // statically extend, e.g., constants and such.
3562 if (Inst
->getType()->isVectorTy())
3565 // We can always get through zext.
3566 if (isa
<ZExtInst
>(Inst
))
3569 // sext(sext) is ok too.
3570 if (IsSExt
&& isa
<SExtInst
>(Inst
))
3573 // We can get through binary operator, if it is legal. In other words, the
3574 // binary operator must have a nuw or nsw flag.
3575 const BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(Inst
);
3576 if (BinOp
&& isa
<OverflowingBinaryOperator
>(BinOp
) &&
3577 ((!IsSExt
&& BinOp
->hasNoUnsignedWrap()) ||
3578 (IsSExt
&& BinOp
->hasNoSignedWrap())))
3581 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3582 if ((Inst
->getOpcode() == Instruction::And
||
3583 Inst
->getOpcode() == Instruction::Or
))
3586 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3587 if (Inst
->getOpcode() == Instruction::Xor
) {
3588 const ConstantInt
*Cst
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1));
3589 // Make sure it is not a NOT.
3590 if (Cst
&& !Cst
->getValue().isAllOnesValue())
3594 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3595 // It may change a poisoned value into a regular value, like
3596 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
3597 // poisoned value regular value
3598 // It should be OK since undef covers valid value.
3599 if (Inst
->getOpcode() == Instruction::LShr
&& !IsSExt
)
3602 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3603 // It may change a poisoned value into a regular value, like
3604 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
3605 // poisoned value regular value
3606 // It should be OK since undef covers valid value.
3607 if (Inst
->getOpcode() == Instruction::Shl
&& Inst
->hasOneUse()) {
3608 const Instruction
*ExtInst
=
3609 dyn_cast
<const Instruction
>(*Inst
->user_begin());
3610 if (ExtInst
->hasOneUse()) {
3611 const Instruction
*AndInst
=
3612 dyn_cast
<const Instruction
>(*ExtInst
->user_begin());
3613 if (AndInst
&& AndInst
->getOpcode() == Instruction::And
) {
3614 const ConstantInt
*Cst
= dyn_cast
<ConstantInt
>(AndInst
->getOperand(1));
3616 Cst
->getValue().isIntN(Inst
->getType()->getIntegerBitWidth()))
3622 // Check if we can do the following simplification.
3623 // ext(trunc(opnd)) --> ext(opnd)
3624 if (!isa
<TruncInst
>(Inst
))
3627 Value
*OpndVal
= Inst
->getOperand(0);
3628 // Check if we can use this operand in the extension.
3629 // If the type is larger than the result type of the extension, we cannot.
3630 if (!OpndVal
->getType()->isIntegerTy() ||
3631 OpndVal
->getType()->getIntegerBitWidth() >
3632 ConsideredExtType
->getIntegerBitWidth())
3635 // If the operand of the truncate is not an instruction, we will not have
3636 // any information on the dropped bits.
3637 // (Actually we could for constant but it is not worth the extra logic).
3638 Instruction
*Opnd
= dyn_cast
<Instruction
>(OpndVal
);
3642 // Check if the source of the type is narrow enough.
3643 // I.e., check that trunc just drops extended bits of the same kind of
3645 // #1 get the type of the operand and check the kind of the extended bits.
3646 const Type
*OpndType
= getOrigType(PromotedInsts
, Opnd
, IsSExt
);
3649 else if ((IsSExt
&& isa
<SExtInst
>(Opnd
)) || (!IsSExt
&& isa
<ZExtInst
>(Opnd
)))
3650 OpndType
= Opnd
->getOperand(0)->getType();
3654 // #2 check that the truncate just drops extended bits.
3655 return Inst
->getType()->getIntegerBitWidth() >=
3656 OpndType
->getIntegerBitWidth();
3659 TypePromotionHelper::Action
TypePromotionHelper::getAction(
3660 Instruction
*Ext
, const SetOfInstrs
&InsertedInsts
,
3661 const TargetLowering
&TLI
, const InstrToOrigTy
&PromotedInsts
) {
3662 assert((isa
<SExtInst
>(Ext
) || isa
<ZExtInst
>(Ext
)) &&
3663 "Unexpected instruction type");
3664 Instruction
*ExtOpnd
= dyn_cast
<Instruction
>(Ext
->getOperand(0));
3665 Type
*ExtTy
= Ext
->getType();
3666 bool IsSExt
= isa
<SExtInst
>(Ext
);
3667 // If the operand of the extension is not an instruction, we cannot
3669 // If it, check we can get through.
3670 if (!ExtOpnd
|| !canGetThrough(ExtOpnd
, ExtTy
, PromotedInsts
, IsSExt
))
3673 // Do not promote if the operand has been added by codegenprepare.
3674 // Otherwise, it means we are undoing an optimization that is likely to be
3675 // redone, thus causing potential infinite loop.
3676 if (isa
<TruncInst
>(ExtOpnd
) && InsertedInsts
.count(ExtOpnd
))
3679 // SExt or Trunc instructions.
3680 // Return the related handler.
3681 if (isa
<SExtInst
>(ExtOpnd
) || isa
<TruncInst
>(ExtOpnd
) ||
3682 isa
<ZExtInst
>(ExtOpnd
))
3683 return promoteOperandForTruncAndAnyExt
;
3685 // Regular instruction.
3686 // Abort early if we will have to insert non-free instructions.
3687 if (!ExtOpnd
->hasOneUse() && !TLI
.isTruncateFree(ExtTy
, ExtOpnd
->getType()))
3689 return IsSExt
? signExtendOperandForOther
: zeroExtendOperandForOther
;
3692 Value
*TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3693 Instruction
*SExt
, TypePromotionTransaction
&TPT
,
3694 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3695 SmallVectorImpl
<Instruction
*> *Exts
,
3696 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
3697 // By construction, the operand of SExt is an instruction. Otherwise we cannot
3698 // get through it and this method should not be called.
3699 Instruction
*SExtOpnd
= cast
<Instruction
>(SExt
->getOperand(0));
3700 Value
*ExtVal
= SExt
;
3701 bool HasMergedNonFreeExt
= false;
3702 if (isa
<ZExtInst
>(SExtOpnd
)) {
3703 // Replace s|zext(zext(opnd))
3705 HasMergedNonFreeExt
= !TLI
.isExtFree(SExtOpnd
);
3707 TPT
.createZExt(SExt
, SExtOpnd
->getOperand(0), SExt
->getType());
3708 TPT
.replaceAllUsesWith(SExt
, ZExt
);
3709 TPT
.eraseInstruction(SExt
);
3712 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3714 TPT
.setOperand(SExt
, 0, SExtOpnd
->getOperand(0));
3716 CreatedInstsCost
= 0;
3718 // Remove dead code.
3719 if (SExtOpnd
->use_empty())
3720 TPT
.eraseInstruction(SExtOpnd
);
3722 // Check if the extension is still needed.
3723 Instruction
*ExtInst
= dyn_cast
<Instruction
>(ExtVal
);
3724 if (!ExtInst
|| ExtInst
->getType() != ExtInst
->getOperand(0)->getType()) {
3727 Exts
->push_back(ExtInst
);
3728 CreatedInstsCost
= !TLI
.isExtFree(ExtInst
) && !HasMergedNonFreeExt
;
3733 // At this point we have: ext ty opnd to ty.
3734 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3735 Value
*NextVal
= ExtInst
->getOperand(0);
3736 TPT
.eraseInstruction(ExtInst
, NextVal
);
3740 Value
*TypePromotionHelper::promoteOperandForOther(
3741 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3742 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3743 SmallVectorImpl
<Instruction
*> *Exts
,
3744 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
,
3746 // By construction, the operand of Ext is an instruction. Otherwise we cannot
3747 // get through it and this method should not be called.
3748 Instruction
*ExtOpnd
= cast
<Instruction
>(Ext
->getOperand(0));
3749 CreatedInstsCost
= 0;
3750 if (!ExtOpnd
->hasOneUse()) {
3751 // ExtOpnd will be promoted.
3752 // All its uses, but Ext, will need to use a truncated value of the
3753 // promoted version.
3754 // Create the truncate now.
3755 Value
*Trunc
= TPT
.createTrunc(Ext
, ExtOpnd
->getType());
3756 if (Instruction
*ITrunc
= dyn_cast
<Instruction
>(Trunc
)) {
3757 // Insert it just after the definition.
3758 ITrunc
->moveAfter(ExtOpnd
);
3760 Truncs
->push_back(ITrunc
);
3763 TPT
.replaceAllUsesWith(ExtOpnd
, Trunc
);
3764 // Restore the operand of Ext (which has been replaced by the previous call
3765 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3766 TPT
.setOperand(Ext
, 0, ExtOpnd
);
3769 // Get through the Instruction:
3770 // 1. Update its type.
3771 // 2. Replace the uses of Ext by Inst.
3772 // 3. Extend each operand that needs to be extended.
3774 // Remember the original type of the instruction before promotion.
3775 // This is useful to know that the high bits are sign extended bits.
3776 addPromotedInst(PromotedInsts
, ExtOpnd
, IsSExt
);
3778 TPT
.mutateType(ExtOpnd
, Ext
->getType());
3780 TPT
.replaceAllUsesWith(Ext
, ExtOpnd
);
3782 Instruction
*ExtForOpnd
= Ext
;
3784 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3785 for (int OpIdx
= 0, EndOpIdx
= ExtOpnd
->getNumOperands(); OpIdx
!= EndOpIdx
;
3787 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd
->getOperand(OpIdx
)) << '\n');
3788 if (ExtOpnd
->getOperand(OpIdx
)->getType() == Ext
->getType() ||
3789 !shouldExtOperand(ExtOpnd
, OpIdx
)) {
3790 LLVM_DEBUG(dbgs() << "No need to propagate\n");
3793 // Check if we can statically extend the operand.
3794 Value
*Opnd
= ExtOpnd
->getOperand(OpIdx
);
3795 if (const ConstantInt
*Cst
= dyn_cast
<ConstantInt
>(Opnd
)) {
3796 LLVM_DEBUG(dbgs() << "Statically extend\n");
3797 unsigned BitWidth
= Ext
->getType()->getIntegerBitWidth();
3798 APInt CstVal
= IsSExt
? Cst
->getValue().sext(BitWidth
)
3799 : Cst
->getValue().zext(BitWidth
);
3800 TPT
.setOperand(ExtOpnd
, OpIdx
, ConstantInt::get(Ext
->getType(), CstVal
));
3803 // UndefValue are typed, so we have to statically sign extend them.
3804 if (isa
<UndefValue
>(Opnd
)) {
3805 LLVM_DEBUG(dbgs() << "Statically extend\n");
3806 TPT
.setOperand(ExtOpnd
, OpIdx
, UndefValue::get(Ext
->getType()));
3810 // Otherwise we have to explicitly sign extend the operand.
3811 // Check if Ext was reused to extend an operand.
3813 // If yes, create a new one.
3814 LLVM_DEBUG(dbgs() << "More operands to ext\n");
3815 Value
*ValForExtOpnd
= IsSExt
? TPT
.createSExt(Ext
, Opnd
, Ext
->getType())
3816 : TPT
.createZExt(Ext
, Opnd
, Ext
->getType());
3817 if (!isa
<Instruction
>(ValForExtOpnd
)) {
3818 TPT
.setOperand(ExtOpnd
, OpIdx
, ValForExtOpnd
);
3821 ExtForOpnd
= cast
<Instruction
>(ValForExtOpnd
);
3824 Exts
->push_back(ExtForOpnd
);
3825 TPT
.setOperand(ExtForOpnd
, 0, Opnd
);
3827 // Move the sign extension before the insertion point.
3828 TPT
.moveBefore(ExtForOpnd
, ExtOpnd
);
3829 TPT
.setOperand(ExtOpnd
, OpIdx
, ExtForOpnd
);
3830 CreatedInstsCost
+= !TLI
.isExtFree(ExtForOpnd
);
3831 // If more sext are required, new instructions will have to be created.
3832 ExtForOpnd
= nullptr;
3834 if (ExtForOpnd
== Ext
) {
3835 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
3836 TPT
.eraseInstruction(Ext
);
3841 /// Check whether or not promoting an instruction to a wider type is profitable.
3842 /// \p NewCost gives the cost of extension instructions created by the
3844 /// \p OldCost gives the cost of extension instructions before the promotion
3845 /// plus the number of instructions that have been
3846 /// matched in the addressing mode the promotion.
3847 /// \p PromotedOperand is the value that has been promoted.
3848 /// \return True if the promotion is profitable, false otherwise.
3849 bool AddressingModeMatcher::isPromotionProfitable(
3850 unsigned NewCost
, unsigned OldCost
, Value
*PromotedOperand
) const {
3851 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost
<< "\tNewCost: " << NewCost
3853 // The cost of the new extensions is greater than the cost of the
3854 // old extension plus what we folded.
3855 // This is not profitable.
3856 if (NewCost
> OldCost
)
3858 if (NewCost
< OldCost
)
3860 // The promotion is neutral but it may help folding the sign extension in
3861 // loads for instance.
3862 // Check that we did not create an illegal instruction.
3863 return isPromotedInstructionLegal(TLI
, DL
, PromotedOperand
);
3866 /// Given an instruction or constant expr, see if we can fold the operation
3867 /// into the addressing mode. If so, update the addressing mode and return
3868 /// true, otherwise return false without modifying AddrMode.
3869 /// If \p MovedAway is not NULL, it contains the information of whether or
3870 /// not AddrInst has to be folded into the addressing mode on success.
3871 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3872 /// because it has been moved away.
3873 /// Thus AddrInst must not be added in the matched instructions.
3874 /// This state can happen when AddrInst is a sext, since it may be moved away.
3875 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3876 /// not be referenced anymore.
3877 bool AddressingModeMatcher::matchOperationAddr(User
*AddrInst
, unsigned Opcode
,
3880 // Avoid exponential behavior on extremely deep expression trees.
3881 if (Depth
>= 5) return false;
3883 // By default, all matched instructions stay in place.
3888 case Instruction::PtrToInt
:
3889 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3890 return matchAddr(AddrInst
->getOperand(0), Depth
);
3891 case Instruction::IntToPtr
: {
3892 auto AS
= AddrInst
->getType()->getPointerAddressSpace();
3893 auto PtrTy
= MVT::getIntegerVT(DL
.getPointerSizeInBits(AS
));
3894 // This inttoptr is a no-op if the integer type is pointer sized.
3895 if (TLI
.getValueType(DL
, AddrInst
->getOperand(0)->getType()) == PtrTy
)
3896 return matchAddr(AddrInst
->getOperand(0), Depth
);
3899 case Instruction::BitCast
:
3900 // BitCast is always a noop, and we can handle it as long as it is
3901 // int->int or pointer->pointer (we don't want int<->fp or something).
3902 if (AddrInst
->getOperand(0)->getType()->isIntOrPtrTy() &&
3903 // Don't touch identity bitcasts. These were probably put here by LSR,
3904 // and we don't want to mess around with them. Assume it knows what it
3906 AddrInst
->getOperand(0)->getType() != AddrInst
->getType())
3907 return matchAddr(AddrInst
->getOperand(0), Depth
);
3909 case Instruction::AddrSpaceCast
: {
3911 = AddrInst
->getOperand(0)->getType()->getPointerAddressSpace();
3912 unsigned DestAS
= AddrInst
->getType()->getPointerAddressSpace();
3913 if (TLI
.isNoopAddrSpaceCast(SrcAS
, DestAS
))
3914 return matchAddr(AddrInst
->getOperand(0), Depth
);
3917 case Instruction::Add
: {
3918 // Check to see if we can merge in the RHS then the LHS. If so, we win.
3919 ExtAddrMode BackupAddrMode
= AddrMode
;
3920 unsigned OldSize
= AddrModeInsts
.size();
3921 // Start a transaction at this point.
3922 // The LHS may match but not the RHS.
3923 // Therefore, we need a higher level restoration point to undo partially
3924 // matched operation.
3925 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
3926 TPT
.getRestorationPoint();
3928 if (matchAddr(AddrInst
->getOperand(1), Depth
+1) &&
3929 matchAddr(AddrInst
->getOperand(0), Depth
+1))
3932 // Restore the old addr mode info.
3933 AddrMode
= BackupAddrMode
;
3934 AddrModeInsts
.resize(OldSize
);
3935 TPT
.rollback(LastKnownGood
);
3937 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
3938 if (matchAddr(AddrInst
->getOperand(0), Depth
+1) &&
3939 matchAddr(AddrInst
->getOperand(1), Depth
+1))
3942 // Otherwise we definitely can't merge the ADD in.
3943 AddrMode
= BackupAddrMode
;
3944 AddrModeInsts
.resize(OldSize
);
3945 TPT
.rollback(LastKnownGood
);
3948 //case Instruction::Or:
3949 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3951 case Instruction::Mul
:
3952 case Instruction::Shl
: {
3953 // Can only handle X*C and X << C.
3954 ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(AddrInst
->getOperand(1));
3955 if (!RHS
|| RHS
->getBitWidth() > 64)
3957 int64_t Scale
= RHS
->getSExtValue();
3958 if (Opcode
== Instruction::Shl
)
3959 Scale
= 1LL << Scale
;
3961 return matchScaledValue(AddrInst
->getOperand(0), Scale
, Depth
);
3963 case Instruction::GetElementPtr
: {
3964 // Scan the GEP. We check it if it contains constant offsets and at most
3965 // one variable offset.
3966 int VariableOperand
= -1;
3967 unsigned VariableScale
= 0;
3969 int64_t ConstantOffset
= 0;
3970 gep_type_iterator GTI
= gep_type_begin(AddrInst
);
3971 for (unsigned i
= 1, e
= AddrInst
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
3972 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
3973 const StructLayout
*SL
= DL
.getStructLayout(STy
);
3975 cast
<ConstantInt
>(AddrInst
->getOperand(i
))->getZExtValue();
3976 ConstantOffset
+= SL
->getElementOffset(Idx
);
3978 uint64_t TypeSize
= DL
.getTypeAllocSize(GTI
.getIndexedType());
3979 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(AddrInst
->getOperand(i
))) {
3980 const APInt
&CVal
= CI
->getValue();
3981 if (CVal
.getMinSignedBits() <= 64) {
3982 ConstantOffset
+= CVal
.getSExtValue() * TypeSize
;
3986 if (TypeSize
) { // Scales of zero don't do anything.
3987 // We only allow one variable index at the moment.
3988 if (VariableOperand
!= -1)
3991 // Remember the variable index.
3992 VariableOperand
= i
;
3993 VariableScale
= TypeSize
;
3998 // A common case is for the GEP to only do a constant offset. In this case,
3999 // just add it to the disp field and check validity.
4000 if (VariableOperand
== -1) {
4001 AddrMode
.BaseOffs
+= ConstantOffset
;
4002 if (ConstantOffset
== 0 ||
4003 TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
)) {
4004 // Check to see if we can fold the base pointer in too.
4005 if (matchAddr(AddrInst
->getOperand(0), Depth
+1))
4007 } else if (EnableGEPOffsetSplit
&& isa
<GetElementPtrInst
>(AddrInst
) &&
4008 TLI
.shouldConsiderGEPOffsetSplit() && Depth
== 0 &&
4009 ConstantOffset
> 0) {
4010 // Record GEPs with non-zero offsets as candidates for splitting in the
4011 // event that the offset cannot fit into the r+i addressing mode.
4012 // Simple and common case that only one GEP is used in calculating the
4013 // address for the memory access.
4014 Value
*Base
= AddrInst
->getOperand(0);
4015 auto *BaseI
= dyn_cast
<Instruction
>(Base
);
4016 auto *GEP
= cast
<GetElementPtrInst
>(AddrInst
);
4017 if (isa
<Argument
>(Base
) || isa
<GlobalValue
>(Base
) ||
4018 (BaseI
&& !isa
<CastInst
>(BaseI
) &&
4019 !isa
<GetElementPtrInst
>(BaseI
))) {
4020 // If the base is an instruction, make sure the GEP is not in the same
4021 // basic block as the base. If the base is an argument or global
4022 // value, make sure the GEP is not in the entry block. Otherwise,
4023 // instruction selection can undo the split. Also make sure the
4024 // parent block allows inserting non-PHI instructions before the
4026 BasicBlock
*Parent
=
4027 BaseI
? BaseI
->getParent() : &GEP
->getFunction()->getEntryBlock();
4028 if (GEP
->getParent() != Parent
&& !Parent
->getTerminator()->isEHPad())
4029 LargeOffsetGEP
= std::make_pair(GEP
, ConstantOffset
);
4032 AddrMode
.BaseOffs
-= ConstantOffset
;
4036 // Save the valid addressing mode in case we can't match.
4037 ExtAddrMode BackupAddrMode
= AddrMode
;
4038 unsigned OldSize
= AddrModeInsts
.size();
4040 // See if the scale and offset amount is valid for this target.
4041 AddrMode
.BaseOffs
+= ConstantOffset
;
4043 // Match the base operand of the GEP.
4044 if (!matchAddr(AddrInst
->getOperand(0), Depth
+1)) {
4045 // If it couldn't be matched, just stuff the value in a register.
4046 if (AddrMode
.HasBaseReg
) {
4047 AddrMode
= BackupAddrMode
;
4048 AddrModeInsts
.resize(OldSize
);
4051 AddrMode
.HasBaseReg
= true;
4052 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
4055 // Match the remaining variable portion of the GEP.
4056 if (!matchScaledValue(AddrInst
->getOperand(VariableOperand
), VariableScale
,
4058 // If it couldn't be matched, try stuffing the base into a register
4059 // instead of matching it, and retrying the match of the scale.
4060 AddrMode
= BackupAddrMode
;
4061 AddrModeInsts
.resize(OldSize
);
4062 if (AddrMode
.HasBaseReg
)
4064 AddrMode
.HasBaseReg
= true;
4065 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
4066 AddrMode
.BaseOffs
+= ConstantOffset
;
4067 if (!matchScaledValue(AddrInst
->getOperand(VariableOperand
),
4068 VariableScale
, Depth
)) {
4069 // If even that didn't work, bail.
4070 AddrMode
= BackupAddrMode
;
4071 AddrModeInsts
.resize(OldSize
);
4078 case Instruction::SExt
:
4079 case Instruction::ZExt
: {
4080 Instruction
*Ext
= dyn_cast
<Instruction
>(AddrInst
);
4084 // Try to move this ext out of the way of the addressing mode.
4085 // Ask for a method for doing so.
4086 TypePromotionHelper::Action TPH
=
4087 TypePromotionHelper::getAction(Ext
, InsertedInsts
, TLI
, PromotedInsts
);
4091 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4092 TPT
.getRestorationPoint();
4093 unsigned CreatedInstsCost
= 0;
4094 unsigned ExtCost
= !TLI
.isExtFree(Ext
);
4095 Value
*PromotedOperand
=
4096 TPH(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
, nullptr, nullptr, TLI
);
4097 // SExt has been moved away.
4098 // Thus either it will be rematched later in the recursive calls or it is
4099 // gone. Anyway, we must not fold it into the addressing mode at this point.
4103 // addr = gep base, idx
4105 // promotedOpnd = ext opnd <- no match here
4106 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
4107 // addr = gep base, op <- match
4111 assert(PromotedOperand
&&
4112 "TypePromotionHelper should have filtered out those cases");
4114 ExtAddrMode BackupAddrMode
= AddrMode
;
4115 unsigned OldSize
= AddrModeInsts
.size();
4117 if (!matchAddr(PromotedOperand
, Depth
) ||
4118 // The total of the new cost is equal to the cost of the created
4120 // The total of the old cost is equal to the cost of the extension plus
4121 // what we have saved in the addressing mode.
4122 !isPromotionProfitable(CreatedInstsCost
,
4123 ExtCost
+ (AddrModeInsts
.size() - OldSize
),
4125 AddrMode
= BackupAddrMode
;
4126 AddrModeInsts
.resize(OldSize
);
4127 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4128 TPT
.rollback(LastKnownGood
);
4137 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4138 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4139 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4142 bool AddressingModeMatcher::matchAddr(Value
*Addr
, unsigned Depth
) {
4143 // Start a transaction at this point that we will rollback if the matching
4145 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4146 TPT
.getRestorationPoint();
4147 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Addr
)) {
4148 // Fold in immediates if legal for the target.
4149 AddrMode
.BaseOffs
+= CI
->getSExtValue();
4150 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4152 AddrMode
.BaseOffs
-= CI
->getSExtValue();
4153 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(Addr
)) {
4154 // If this is a global variable, try to fold it into the addressing mode.
4155 if (!AddrMode
.BaseGV
) {
4156 AddrMode
.BaseGV
= GV
;
4157 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4159 AddrMode
.BaseGV
= nullptr;
4161 } else if (Instruction
*I
= dyn_cast
<Instruction
>(Addr
)) {
4162 ExtAddrMode BackupAddrMode
= AddrMode
;
4163 unsigned OldSize
= AddrModeInsts
.size();
4165 // Check to see if it is possible to fold this operation.
4166 bool MovedAway
= false;
4167 if (matchOperationAddr(I
, I
->getOpcode(), Depth
, &MovedAway
)) {
4168 // This instruction may have been moved away. If so, there is nothing
4172 // Okay, it's possible to fold this. Check to see if it is actually
4173 // *profitable* to do so. We use a simple cost model to avoid increasing
4174 // register pressure too much.
4175 if (I
->hasOneUse() ||
4176 isProfitableToFoldIntoAddressingMode(I
, BackupAddrMode
, AddrMode
)) {
4177 AddrModeInsts
.push_back(I
);
4181 // It isn't profitable to do this, roll back.
4182 //cerr << "NOT FOLDING: " << *I;
4183 AddrMode
= BackupAddrMode
;
4184 AddrModeInsts
.resize(OldSize
);
4185 TPT
.rollback(LastKnownGood
);
4187 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Addr
)) {
4188 if (matchOperationAddr(CE
, CE
->getOpcode(), Depth
))
4190 TPT
.rollback(LastKnownGood
);
4191 } else if (isa
<ConstantPointerNull
>(Addr
)) {
4192 // Null pointer gets folded without affecting the addressing mode.
4196 // Worse case, the target should support [reg] addressing modes. :)
4197 if (!AddrMode
.HasBaseReg
) {
4198 AddrMode
.HasBaseReg
= true;
4199 AddrMode
.BaseReg
= Addr
;
4200 // Still check for legality in case the target supports [imm] but not [i+r].
4201 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4203 AddrMode
.HasBaseReg
= false;
4204 AddrMode
.BaseReg
= nullptr;
4207 // If the base register is already taken, see if we can do [r+r].
4208 if (AddrMode
.Scale
== 0) {
4210 AddrMode
.ScaledReg
= Addr
;
4211 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4214 AddrMode
.ScaledReg
= nullptr;
4217 TPT
.rollback(LastKnownGood
);
4221 /// Check to see if all uses of OpVal by the specified inline asm call are due
4222 /// to memory operands. If so, return true, otherwise return false.
4223 static bool IsOperandAMemoryOperand(CallInst
*CI
, InlineAsm
*IA
, Value
*OpVal
,
4224 const TargetLowering
&TLI
,
4225 const TargetRegisterInfo
&TRI
) {
4226 const Function
*F
= CI
->getFunction();
4227 TargetLowering::AsmOperandInfoVector TargetConstraints
=
4228 TLI
.ParseConstraints(F
->getParent()->getDataLayout(), &TRI
,
4229 ImmutableCallSite(CI
));
4231 for (unsigned i
= 0, e
= TargetConstraints
.size(); i
!= e
; ++i
) {
4232 TargetLowering::AsmOperandInfo
&OpInfo
= TargetConstraints
[i
];
4234 // Compute the constraint code and ConstraintType to use.
4235 TLI
.ComputeConstraintToUse(OpInfo
, SDValue());
4237 // If this asm operand is our Value*, and if it isn't an indirect memory
4238 // operand, we can't fold it!
4239 if (OpInfo
.CallOperandVal
== OpVal
&&
4240 (OpInfo
.ConstraintType
!= TargetLowering::C_Memory
||
4241 !OpInfo
.isIndirect
))
4248 // Max number of memory uses to look at before aborting the search to conserve
4250 static constexpr int MaxMemoryUsesToScan
= 20;
4252 /// Recursively walk all the uses of I until we find a memory use.
4253 /// If we find an obviously non-foldable instruction, return true.
4254 /// Add the ultimately found memory instructions to MemoryUses.
4255 static bool FindAllMemoryUses(
4257 SmallVectorImpl
<std::pair
<Instruction
*, unsigned>> &MemoryUses
,
4258 SmallPtrSetImpl
<Instruction
*> &ConsideredInsts
, const TargetLowering
&TLI
,
4259 const TargetRegisterInfo
&TRI
, int SeenInsts
= 0) {
4260 // If we already considered this instruction, we're done.
4261 if (!ConsideredInsts
.insert(I
).second
)
4264 // If this is an obviously unfoldable instruction, bail out.
4265 if (!MightBeFoldableInst(I
))
4268 const bool OptSize
= I
->getFunction()->optForSize();
4270 // Loop over all the uses, recursively processing them.
4271 for (Use
&U
: I
->uses()) {
4272 // Conservatively return true if we're seeing a large number or a deep chain
4273 // of users. This avoids excessive compilation times in pathological cases.
4274 if (SeenInsts
++ >= MaxMemoryUsesToScan
)
4277 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
4278 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(UserI
)) {
4279 MemoryUses
.push_back(std::make_pair(LI
, U
.getOperandNo()));
4283 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UserI
)) {
4284 unsigned opNo
= U
.getOperandNo();
4285 if (opNo
!= StoreInst::getPointerOperandIndex())
4286 return true; // Storing addr, not into addr.
4287 MemoryUses
.push_back(std::make_pair(SI
, opNo
));
4291 if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(UserI
)) {
4292 unsigned opNo
= U
.getOperandNo();
4293 if (opNo
!= AtomicRMWInst::getPointerOperandIndex())
4294 return true; // Storing addr, not into addr.
4295 MemoryUses
.push_back(std::make_pair(RMW
, opNo
));
4299 if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(UserI
)) {
4300 unsigned opNo
= U
.getOperandNo();
4301 if (opNo
!= AtomicCmpXchgInst::getPointerOperandIndex())
4302 return true; // Storing addr, not into addr.
4303 MemoryUses
.push_back(std::make_pair(CmpX
, opNo
));
4307 if (CallInst
*CI
= dyn_cast
<CallInst
>(UserI
)) {
4308 // If this is a cold call, we can sink the addressing calculation into
4309 // the cold path. See optimizeCallInst
4310 if (!OptSize
&& CI
->hasFnAttr(Attribute::Cold
))
4313 InlineAsm
*IA
= dyn_cast
<InlineAsm
>(CI
->getCalledValue());
4314 if (!IA
) return true;
4316 // If this is a memory operand, we're cool, otherwise bail out.
4317 if (!IsOperandAMemoryOperand(CI
, IA
, I
, TLI
, TRI
))
4322 if (FindAllMemoryUses(UserI
, MemoryUses
, ConsideredInsts
, TLI
, TRI
,
4330 /// Return true if Val is already known to be live at the use site that we're
4331 /// folding it into. If so, there is no cost to include it in the addressing
4332 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4333 /// instruction already.
4334 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value
*Val
,Value
*KnownLive1
,
4335 Value
*KnownLive2
) {
4336 // If Val is either of the known-live values, we know it is live!
4337 if (Val
== nullptr || Val
== KnownLive1
|| Val
== KnownLive2
)
4340 // All values other than instructions and arguments (e.g. constants) are live.
4341 if (!isa
<Instruction
>(Val
) && !isa
<Argument
>(Val
)) return true;
4343 // If Val is a constant sized alloca in the entry block, it is live, this is
4344 // true because it is just a reference to the stack/frame pointer, which is
4345 // live for the whole function.
4346 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Val
))
4347 if (AI
->isStaticAlloca())
4350 // Check to see if this value is already used in the memory instruction's
4351 // block. If so, it's already live into the block at the very least, so we
4352 // can reasonably fold it.
4353 return Val
->isUsedInBasicBlock(MemoryInst
->getParent());
4356 /// It is possible for the addressing mode of the machine to fold the specified
4357 /// instruction into a load or store that ultimately uses it.
4358 /// However, the specified instruction has multiple uses.
4359 /// Given this, it may actually increase register pressure to fold it
4360 /// into the load. For example, consider this code:
4364 /// use(Y) -> nonload/store
4368 /// In this case, Y has multiple uses, and can be folded into the load of Z
4369 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
4370 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
4371 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
4372 /// number of computations either.
4374 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
4375 /// X was live across 'load Z' for other reasons, we actually *would* want to
4376 /// fold the addressing mode in the Z case. This would make Y die earlier.
4377 bool AddressingModeMatcher::
4378 isProfitableToFoldIntoAddressingMode(Instruction
*I
, ExtAddrMode
&AMBefore
,
4379 ExtAddrMode
&AMAfter
) {
4380 if (IgnoreProfitability
) return true;
4382 // AMBefore is the addressing mode before this instruction was folded into it,
4383 // and AMAfter is the addressing mode after the instruction was folded. Get
4384 // the set of registers referenced by AMAfter and subtract out those
4385 // referenced by AMBefore: this is the set of values which folding in this
4386 // address extends the lifetime of.
4388 // Note that there are only two potential values being referenced here,
4389 // BaseReg and ScaleReg (global addresses are always available, as are any
4390 // folded immediates).
4391 Value
*BaseReg
= AMAfter
.BaseReg
, *ScaledReg
= AMAfter
.ScaledReg
;
4393 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4394 // lifetime wasn't extended by adding this instruction.
4395 if (valueAlreadyLiveAtInst(BaseReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
4397 if (valueAlreadyLiveAtInst(ScaledReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
4398 ScaledReg
= nullptr;
4400 // If folding this instruction (and it's subexprs) didn't extend any live
4401 // ranges, we're ok with it.
4402 if (!BaseReg
&& !ScaledReg
)
4405 // If all uses of this instruction can have the address mode sunk into them,
4406 // we can remove the addressing mode and effectively trade one live register
4407 // for another (at worst.) In this context, folding an addressing mode into
4408 // the use is just a particularly nice way of sinking it.
4409 SmallVector
<std::pair
<Instruction
*,unsigned>, 16> MemoryUses
;
4410 SmallPtrSet
<Instruction
*, 16> ConsideredInsts
;
4411 if (FindAllMemoryUses(I
, MemoryUses
, ConsideredInsts
, TLI
, TRI
))
4412 return false; // Has a non-memory, non-foldable use!
4414 // Now that we know that all uses of this instruction are part of a chain of
4415 // computation involving only operations that could theoretically be folded
4416 // into a memory use, loop over each of these memory operation uses and see
4417 // if they could *actually* fold the instruction. The assumption is that
4418 // addressing modes are cheap and that duplicating the computation involved
4419 // many times is worthwhile, even on a fastpath. For sinking candidates
4420 // (i.e. cold call sites), this serves as a way to prevent excessive code
4421 // growth since most architectures have some reasonable small and fast way to
4422 // compute an effective address. (i.e LEA on x86)
4423 SmallVector
<Instruction
*, 32> MatchedAddrModeInsts
;
4424 for (unsigned i
= 0, e
= MemoryUses
.size(); i
!= e
; ++i
) {
4425 Instruction
*User
= MemoryUses
[i
].first
;
4426 unsigned OpNo
= MemoryUses
[i
].second
;
4428 // Get the access type of this use. If the use isn't a pointer, we don't
4429 // know what it accesses.
4430 Value
*Address
= User
->getOperand(OpNo
);
4431 PointerType
*AddrTy
= dyn_cast
<PointerType
>(Address
->getType());
4434 Type
*AddressAccessTy
= AddrTy
->getElementType();
4435 unsigned AS
= AddrTy
->getAddressSpace();
4437 // Do a match against the root of this address, ignoring profitability. This
4438 // will tell us if the addressing mode for the memory operation will
4439 // *actually* cover the shared instruction.
4441 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> LargeOffsetGEP(nullptr,
4443 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4444 TPT
.getRestorationPoint();
4445 AddressingModeMatcher
Matcher(
4446 MatchedAddrModeInsts
, TLI
, TRI
, AddressAccessTy
, AS
, MemoryInst
, Result
,
4447 InsertedInsts
, PromotedInsts
, TPT
, LargeOffsetGEP
);
4448 Matcher
.IgnoreProfitability
= true;
4449 bool Success
= Matcher
.matchAddr(Address
, 0);
4450 (void)Success
; assert(Success
&& "Couldn't select *anything*?");
4452 // The match was to check the profitability, the changes made are not
4453 // part of the original matcher. Therefore, they should be dropped
4454 // otherwise the original matcher will not present the right state.
4455 TPT
.rollback(LastKnownGood
);
4457 // If the match didn't cover I, then it won't be shared by it.
4458 if (!is_contained(MatchedAddrModeInsts
, I
))
4461 MatchedAddrModeInsts
.clear();
4467 /// Return true if the specified values are defined in a
4468 /// different basic block than BB.
4469 static bool IsNonLocalValue(Value
*V
, BasicBlock
*BB
) {
4470 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
4471 return I
->getParent() != BB
;
4475 /// Sink addressing mode computation immediate before MemoryInst if doing so
4476 /// can be done without increasing register pressure. The need for the
4477 /// register pressure constraint means this can end up being an all or nothing
4478 /// decision for all uses of the same addressing computation.
4480 /// Load and Store Instructions often have addressing modes that can do
4481 /// significant amounts of computation. As such, instruction selection will try
4482 /// to get the load or store to do as much computation as possible for the
4483 /// program. The problem is that isel can only see within a single block. As
4484 /// such, we sink as much legal addressing mode work into the block as possible.
4486 /// This method is used to optimize both load/store and inline asms with memory
4487 /// operands. It's also used to sink addressing computations feeding into cold
4488 /// call sites into their (cold) basic block.
4490 /// The motivation for handling sinking into cold blocks is that doing so can
4491 /// both enable other address mode sinking (by satisfying the register pressure
4492 /// constraint above), and reduce register pressure globally (by removing the
4493 /// addressing mode computation from the fast path entirely.).
4494 bool CodeGenPrepare::optimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
4495 Type
*AccessTy
, unsigned AddrSpace
) {
4498 // Try to collapse single-value PHI nodes. This is necessary to undo
4499 // unprofitable PRE transformations.
4500 SmallVector
<Value
*, 8> worklist
;
4501 SmallPtrSet
<Value
*, 16> Visited
;
4502 worklist
.push_back(Addr
);
4504 // Use a worklist to iteratively look through PHI and select nodes, and
4505 // ensure that the addressing mode obtained from the non-PHI/select roots of
4506 // the graph are compatible.
4507 bool PhiOrSelectSeen
= false;
4508 SmallVector
<Instruction
*, 16> AddrModeInsts
;
4509 const SimplifyQuery
SQ(*DL
, TLInfo
);
4510 AddressingModeCombiner
AddrModes(SQ
, Addr
);
4511 TypePromotionTransaction
TPT(RemovedInsts
);
4512 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4513 TPT
.getRestorationPoint();
4514 while (!worklist
.empty()) {
4515 Value
*V
= worklist
.back();
4516 worklist
.pop_back();
4518 // We allow traversing cyclic Phi nodes.
4519 // In case of success after this loop we ensure that traversing through
4520 // Phi nodes ends up with all cases to compute address of the form
4521 // BaseGV + Base + Scale * Index + Offset
4522 // where Scale and Offset are constans and BaseGV, Base and Index
4523 // are exactly the same Values in all cases.
4524 // It means that BaseGV, Scale and Offset dominate our memory instruction
4525 // and have the same value as they had in address computation represented
4526 // as Phi. So we can safely sink address computation to memory instruction.
4527 if (!Visited
.insert(V
).second
)
4530 // For a PHI node, push all of its incoming values.
4531 if (PHINode
*P
= dyn_cast
<PHINode
>(V
)) {
4532 for (Value
*IncValue
: P
->incoming_values())
4533 worklist
.push_back(IncValue
);
4534 PhiOrSelectSeen
= true;
4537 // Similar for select.
4538 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
4539 worklist
.push_back(SI
->getFalseValue());
4540 worklist
.push_back(SI
->getTrueValue());
4541 PhiOrSelectSeen
= true;
4545 // For non-PHIs, determine the addressing mode being computed. Note that
4546 // the result may differ depending on what other uses our candidate
4547 // addressing instructions might have.
4548 AddrModeInsts
.clear();
4549 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> LargeOffsetGEP(nullptr,
4551 ExtAddrMode NewAddrMode
= AddressingModeMatcher::Match(
4552 V
, AccessTy
, AddrSpace
, MemoryInst
, AddrModeInsts
, *TLI
, *TRI
,
4553 InsertedInsts
, PromotedInsts
, TPT
, LargeOffsetGEP
);
4555 GetElementPtrInst
*GEP
= LargeOffsetGEP
.first
;
4556 if (GEP
&& GEP
->getParent() != MemoryInst
->getParent() &&
4557 !NewGEPBases
.count(GEP
)) {
4558 // If splitting the underlying data structure can reduce the offset of a
4559 // GEP, collect the GEP. Skip the GEPs that are the new bases of
4560 // previously split data structures.
4561 LargeOffsetGEPMap
[GEP
->getPointerOperand()].push_back(LargeOffsetGEP
);
4562 if (LargeOffsetGEPID
.find(GEP
) == LargeOffsetGEPID
.end())
4563 LargeOffsetGEPID
[GEP
] = LargeOffsetGEPID
.size();
4566 NewAddrMode
.OriginalValue
= V
;
4567 if (!AddrModes
.addNewAddrMode(NewAddrMode
))
4571 // Try to combine the AddrModes we've collected. If we couldn't collect any,
4572 // or we have multiple but either couldn't combine them or combining them
4573 // wouldn't do anything useful, bail out now.
4574 if (!AddrModes
.combineAddrModes()) {
4575 TPT
.rollback(LastKnownGood
);
4580 // Get the combined AddrMode (or the only AddrMode, if we only had one).
4581 ExtAddrMode AddrMode
= AddrModes
.getAddrMode();
4583 // If all the instructions matched are already in this BB, don't do anything.
4584 // If we saw a Phi node then it is not local definitely, and if we saw a select
4585 // then we want to push the address calculation past it even if it's already
4587 if (!PhiOrSelectSeen
&& none_of(AddrModeInsts
, [&](Value
*V
) {
4588 return IsNonLocalValue(V
, MemoryInst
->getParent());
4590 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
4595 // Insert this computation right after this user. Since our caller is
4596 // scanning from the top of the BB to the bottom, reuse of the expr are
4597 // guaranteed to happen later.
4598 IRBuilder
<> Builder(MemoryInst
);
4600 // Now that we determined the addressing expression we want to use and know
4601 // that we have to sink it into this block. Check to see if we have already
4602 // done this for some other load/store instr in this block. If so, reuse
4603 // the computation. Before attempting reuse, check if the address is valid
4604 // as it may have been erased.
4606 WeakTrackingVH SunkAddrVH
= SunkAddrs
[Addr
];
4608 Value
* SunkAddr
= SunkAddrVH
.pointsToAliveValue() ? SunkAddrVH
: nullptr;
4610 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4611 << " for " << *MemoryInst
<< "\n");
4612 if (SunkAddr
->getType() != Addr
->getType())
4613 SunkAddr
= Builder
.CreatePointerCast(SunkAddr
, Addr
->getType());
4614 } else if (AddrSinkUsingGEPs
||
4615 (!AddrSinkUsingGEPs
.getNumOccurrences() && TM
&& TTI
->useAA())) {
4616 // By default, we use the GEP-based method when AA is used later. This
4617 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4618 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4619 << " for " << *MemoryInst
<< "\n");
4620 Type
*IntPtrTy
= DL
->getIntPtrType(Addr
->getType());
4621 Value
*ResultPtr
= nullptr, *ResultIndex
= nullptr;
4623 // First, find the pointer.
4624 if (AddrMode
.BaseReg
&& AddrMode
.BaseReg
->getType()->isPointerTy()) {
4625 ResultPtr
= AddrMode
.BaseReg
;
4626 AddrMode
.BaseReg
= nullptr;
4629 if (AddrMode
.Scale
&& AddrMode
.ScaledReg
->getType()->isPointerTy()) {
4630 // We can't add more than one pointer together, nor can we scale a
4631 // pointer (both of which seem meaningless).
4632 if (ResultPtr
|| AddrMode
.Scale
!= 1)
4635 ResultPtr
= AddrMode
.ScaledReg
;
4639 // It is only safe to sign extend the BaseReg if we know that the math
4640 // required to create it did not overflow before we extend it. Since
4641 // the original IR value was tossed in favor of a constant back when
4642 // the AddrMode was created we need to bail out gracefully if widths
4643 // do not match instead of extending it.
4645 // (See below for code to add the scale.)
4646 if (AddrMode
.Scale
) {
4647 Type
*ScaledRegTy
= AddrMode
.ScaledReg
->getType();
4648 if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() >
4649 cast
<IntegerType
>(ScaledRegTy
)->getBitWidth())
4653 if (AddrMode
.BaseGV
) {
4657 ResultPtr
= AddrMode
.BaseGV
;
4660 // If the real base value actually came from an inttoptr, then the matcher
4661 // will look through it and provide only the integer value. In that case,
4663 if (!DL
->isNonIntegralPointerType(Addr
->getType())) {
4664 const auto getResultPtr
= [MemoryInst
, Addr
,
4665 &Builder
](Value
*Reg
) -> Value
* {
4666 BasicBlock
*BB
= MemoryInst
->getParent();
4667 for (User
*U
: Reg
->users())
4668 if (auto *I2P
= dyn_cast
<IntToPtrInst
>(U
))
4669 if (I2P
->getType() == Addr
->getType() && I2P
->getParent() == BB
) {
4670 auto *RegInst
= dyn_cast
<Instruction
>(Reg
);
4671 if (RegInst
&& RegInst
->getParent() == BB
&&
4672 !isa
<PHINode
>(RegInst
) && !RegInst
->isEHPad())
4673 I2P
->moveAfter(RegInst
);
4675 I2P
->moveBefore(*BB
, BB
->getFirstInsertionPt());
4678 return Builder
.CreateIntToPtr(Reg
, Addr
->getType(), "sunkaddr");
4680 if (!ResultPtr
&& AddrMode
.BaseReg
) {
4681 ResultPtr
= getResultPtr(AddrMode
.BaseReg
);
4682 AddrMode
.BaseReg
= nullptr;
4683 } else if (!ResultPtr
&& AddrMode
.Scale
== 1) {
4684 ResultPtr
= getResultPtr(AddrMode
.ScaledReg
);
4690 !AddrMode
.BaseReg
&& !AddrMode
.Scale
&& !AddrMode
.BaseOffs
) {
4691 SunkAddr
= Constant::getNullValue(Addr
->getType());
4692 } else if (!ResultPtr
) {
4696 Builder
.getInt8PtrTy(Addr
->getType()->getPointerAddressSpace());
4697 Type
*I8Ty
= Builder
.getInt8Ty();
4699 // Start with the base register. Do this first so that subsequent address
4700 // matching finds it last, which will prevent it from trying to match it
4701 // as the scaled value in case it happens to be a mul. That would be
4702 // problematic if we've sunk a different mul for the scale, because then
4703 // we'd end up sinking both muls.
4704 if (AddrMode
.BaseReg
) {
4705 Value
*V
= AddrMode
.BaseReg
;
4706 if (V
->getType() != IntPtrTy
)
4707 V
= Builder
.CreateIntCast(V
, IntPtrTy
, /*isSigned=*/true, "sunkaddr");
4712 // Add the scale value.
4713 if (AddrMode
.Scale
) {
4714 Value
*V
= AddrMode
.ScaledReg
;
4715 if (V
->getType() == IntPtrTy
) {
4718 assert(cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
4719 cast
<IntegerType
>(V
->getType())->getBitWidth() &&
4720 "We can't transform if ScaledReg is too narrow");
4721 V
= Builder
.CreateTrunc(V
, IntPtrTy
, "sunkaddr");
4724 if (AddrMode
.Scale
!= 1)
4725 V
= Builder
.CreateMul(V
, ConstantInt::get(IntPtrTy
, AddrMode
.Scale
),
4728 ResultIndex
= Builder
.CreateAdd(ResultIndex
, V
, "sunkaddr");
4733 // Add in the Base Offset if present.
4734 if (AddrMode
.BaseOffs
) {
4735 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
4737 // We need to add this separately from the scale above to help with
4738 // SDAG consecutive load/store merging.
4739 if (ResultPtr
->getType() != I8PtrTy
)
4740 ResultPtr
= Builder
.CreatePointerCast(ResultPtr
, I8PtrTy
);
4741 ResultPtr
= Builder
.CreateGEP(I8Ty
, ResultPtr
, ResultIndex
, "sunkaddr");
4748 SunkAddr
= ResultPtr
;
4750 if (ResultPtr
->getType() != I8PtrTy
)
4751 ResultPtr
= Builder
.CreatePointerCast(ResultPtr
, I8PtrTy
);
4752 SunkAddr
= Builder
.CreateGEP(I8Ty
, ResultPtr
, ResultIndex
, "sunkaddr");
4755 if (SunkAddr
->getType() != Addr
->getType())
4756 SunkAddr
= Builder
.CreatePointerCast(SunkAddr
, Addr
->getType());
4759 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4760 // non-integral pointers, so in that case bail out now.
4761 Type
*BaseTy
= AddrMode
.BaseReg
? AddrMode
.BaseReg
->getType() : nullptr;
4762 Type
*ScaleTy
= AddrMode
.Scale
? AddrMode
.ScaledReg
->getType() : nullptr;
4763 PointerType
*BasePtrTy
= dyn_cast_or_null
<PointerType
>(BaseTy
);
4764 PointerType
*ScalePtrTy
= dyn_cast_or_null
<PointerType
>(ScaleTy
);
4765 if (DL
->isNonIntegralPointerType(Addr
->getType()) ||
4766 (BasePtrTy
&& DL
->isNonIntegralPointerType(BasePtrTy
)) ||
4767 (ScalePtrTy
&& DL
->isNonIntegralPointerType(ScalePtrTy
)) ||
4769 DL
->isNonIntegralPointerType(AddrMode
.BaseGV
->getType())))
4772 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4773 << " for " << *MemoryInst
<< "\n");
4774 Type
*IntPtrTy
= DL
->getIntPtrType(Addr
->getType());
4775 Value
*Result
= nullptr;
4777 // Start with the base register. Do this first so that subsequent address
4778 // matching finds it last, which will prevent it from trying to match it
4779 // as the scaled value in case it happens to be a mul. That would be
4780 // problematic if we've sunk a different mul for the scale, because then
4781 // we'd end up sinking both muls.
4782 if (AddrMode
.BaseReg
) {
4783 Value
*V
= AddrMode
.BaseReg
;
4784 if (V
->getType()->isPointerTy())
4785 V
= Builder
.CreatePtrToInt(V
, IntPtrTy
, "sunkaddr");
4786 if (V
->getType() != IntPtrTy
)
4787 V
= Builder
.CreateIntCast(V
, IntPtrTy
, /*isSigned=*/true, "sunkaddr");
4791 // Add the scale value.
4792 if (AddrMode
.Scale
) {
4793 Value
*V
= AddrMode
.ScaledReg
;
4794 if (V
->getType() == IntPtrTy
) {
4796 } else if (V
->getType()->isPointerTy()) {
4797 V
= Builder
.CreatePtrToInt(V
, IntPtrTy
, "sunkaddr");
4798 } else if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
4799 cast
<IntegerType
>(V
->getType())->getBitWidth()) {
4800 V
= Builder
.CreateTrunc(V
, IntPtrTy
, "sunkaddr");
4802 // It is only safe to sign extend the BaseReg if we know that the math
4803 // required to create it did not overflow before we extend it. Since
4804 // the original IR value was tossed in favor of a constant back when
4805 // the AddrMode was created we need to bail out gracefully if widths
4806 // do not match instead of extending it.
4807 Instruction
*I
= dyn_cast_or_null
<Instruction
>(Result
);
4808 if (I
&& (Result
!= AddrMode
.BaseReg
))
4809 I
->eraseFromParent();
4812 if (AddrMode
.Scale
!= 1)
4813 V
= Builder
.CreateMul(V
, ConstantInt::get(IntPtrTy
, AddrMode
.Scale
),
4816 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
4821 // Add in the BaseGV if present.
4822 if (AddrMode
.BaseGV
) {
4823 Value
*V
= Builder
.CreatePtrToInt(AddrMode
.BaseGV
, IntPtrTy
, "sunkaddr");
4825 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
4830 // Add in the Base Offset if present.
4831 if (AddrMode
.BaseOffs
) {
4832 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
4834 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
4840 SunkAddr
= Constant::getNullValue(Addr
->getType());
4842 SunkAddr
= Builder
.CreateIntToPtr(Result
, Addr
->getType(), "sunkaddr");
4845 MemoryInst
->replaceUsesOfWith(Repl
, SunkAddr
);
4846 // Store the newly computed address into the cache. In the case we reused a
4847 // value, this should be idempotent.
4848 SunkAddrs
[Addr
] = WeakTrackingVH(SunkAddr
);
4850 // If we have no uses, recursively delete the value and all dead instructions
4852 if (Repl
->use_empty()) {
4853 // This can cause recursive deletion, which can invalidate our iterator.
4854 // Use a WeakTrackingVH to hold onto it in case this happens.
4855 Value
*CurValue
= &*CurInstIterator
;
4856 WeakTrackingVH
IterHandle(CurValue
);
4857 BasicBlock
*BB
= CurInstIterator
->getParent();
4859 RecursivelyDeleteTriviallyDeadInstructions(Repl
, TLInfo
);
4861 if (IterHandle
!= CurValue
) {
4862 // If the iterator instruction was recursively deleted, start over at the
4863 // start of the block.
4864 CurInstIterator
= BB
->begin();
4872 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4873 /// address computing into the block when possible / profitable.
4874 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst
*CS
) {
4875 bool MadeChange
= false;
4877 const TargetRegisterInfo
*TRI
=
4878 TM
->getSubtargetImpl(*CS
->getFunction())->getRegisterInfo();
4879 TargetLowering::AsmOperandInfoVector TargetConstraints
=
4880 TLI
->ParseConstraints(*DL
, TRI
, CS
);
4882 for (unsigned i
= 0, e
= TargetConstraints
.size(); i
!= e
; ++i
) {
4883 TargetLowering::AsmOperandInfo
&OpInfo
= TargetConstraints
[i
];
4885 // Compute the constraint code and ConstraintType to use.
4886 TLI
->ComputeConstraintToUse(OpInfo
, SDValue());
4888 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
4889 OpInfo
.isIndirect
) {
4890 Value
*OpVal
= CS
->getArgOperand(ArgNo
++);
4891 MadeChange
|= optimizeMemoryInst(CS
, OpVal
, OpVal
->getType(), ~0u);
4892 } else if (OpInfo
.Type
== InlineAsm::isInput
)
4899 /// Check if all the uses of \p Val are equivalent (or free) zero or
4900 /// sign extensions.
4901 static bool hasSameExtUse(Value
*Val
, const TargetLowering
&TLI
) {
4902 assert(!Val
->use_empty() && "Input must have at least one use");
4903 const Instruction
*FirstUser
= cast
<Instruction
>(*Val
->user_begin());
4904 bool IsSExt
= isa
<SExtInst
>(FirstUser
);
4905 Type
*ExtTy
= FirstUser
->getType();
4906 for (const User
*U
: Val
->users()) {
4907 const Instruction
*UI
= cast
<Instruction
>(U
);
4908 if ((IsSExt
&& !isa
<SExtInst
>(UI
)) || (!IsSExt
&& !isa
<ZExtInst
>(UI
)))
4910 Type
*CurTy
= UI
->getType();
4911 // Same input and output types: Same instruction after CSE.
4915 // If IsSExt is true, we are in this situation:
4917 // b = sext ty1 a to ty2
4918 // c = sext ty1 a to ty3
4919 // Assuming ty2 is shorter than ty3, this could be turned into:
4921 // b = sext ty1 a to ty2
4922 // c = sext ty2 b to ty3
4923 // However, the last sext is not free.
4927 // This is a ZExt, maybe this is free to extend from one type to another.
4928 // In that case, we would not account for a different use.
4931 if (ExtTy
->getScalarType()->getIntegerBitWidth() >
4932 CurTy
->getScalarType()->getIntegerBitWidth()) {
4940 if (!TLI
.isZExtFree(NarrowTy
, LargeTy
))
4943 // All uses are the same or can be derived from one another for free.
4947 /// Try to speculatively promote extensions in \p Exts and continue
4948 /// promoting through newly promoted operands recursively as far as doing so is
4949 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4950 /// When some promotion happened, \p TPT contains the proper state to revert
4953 /// \return true if some promotion happened, false otherwise.
4954 bool CodeGenPrepare::tryToPromoteExts(
4955 TypePromotionTransaction
&TPT
, const SmallVectorImpl
<Instruction
*> &Exts
,
4956 SmallVectorImpl
<Instruction
*> &ProfitablyMovedExts
,
4957 unsigned CreatedInstsCost
) {
4958 bool Promoted
= false;
4960 // Iterate over all the extensions to try to promote them.
4961 for (auto I
: Exts
) {
4962 // Early check if we directly have ext(load).
4963 if (isa
<LoadInst
>(I
->getOperand(0))) {
4964 ProfitablyMovedExts
.push_back(I
);
4968 // Check whether or not we want to do any promotion. The reason we have
4969 // this check inside the for loop is to catch the case where an extension
4970 // is directly fed by a load because in such case the extension can be moved
4971 // up without any promotion on its operands.
4972 if (!TLI
|| !TLI
->enableExtLdPromotion() || DisableExtLdPromotion
)
4975 // Get the action to perform the promotion.
4976 TypePromotionHelper::Action TPH
=
4977 TypePromotionHelper::getAction(I
, InsertedInsts
, *TLI
, PromotedInsts
);
4978 // Check if we can promote.
4980 // Save the current extension as we cannot move up through its operand.
4981 ProfitablyMovedExts
.push_back(I
);
4985 // Save the current state.
4986 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4987 TPT
.getRestorationPoint();
4988 SmallVector
<Instruction
*, 4> NewExts
;
4989 unsigned NewCreatedInstsCost
= 0;
4990 unsigned ExtCost
= !TLI
->isExtFree(I
);
4992 Value
*PromotedVal
= TPH(I
, TPT
, PromotedInsts
, NewCreatedInstsCost
,
4993 &NewExts
, nullptr, *TLI
);
4994 assert(PromotedVal
&&
4995 "TypePromotionHelper should have filtered out those cases");
4997 // We would be able to merge only one extension in a load.
4998 // Therefore, if we have more than 1 new extension we heuristically
4999 // cut this search path, because it means we degrade the code quality.
5000 // With exactly 2, the transformation is neutral, because we will merge
5001 // one extension but leave one. However, we optimistically keep going,
5002 // because the new extension may be removed too.
5003 long long TotalCreatedInstsCost
= CreatedInstsCost
+ NewCreatedInstsCost
;
5004 // FIXME: It would be possible to propagate a negative value instead of
5005 // conservatively ceiling it to 0.
5006 TotalCreatedInstsCost
=
5007 std::max((long long)0, (TotalCreatedInstsCost
- ExtCost
));
5008 if (!StressExtLdPromotion
&&
5009 (TotalCreatedInstsCost
> 1 ||
5010 !isPromotedInstructionLegal(*TLI
, *DL
, PromotedVal
))) {
5011 // This promotion is not profitable, rollback to the previous state, and
5012 // save the current extension in ProfitablyMovedExts as the latest
5013 // speculative promotion turned out to be unprofitable.
5014 TPT
.rollback(LastKnownGood
);
5015 ProfitablyMovedExts
.push_back(I
);
5018 // Continue promoting NewExts as far as doing so is profitable.
5019 SmallVector
<Instruction
*, 2> NewlyMovedExts
;
5020 (void)tryToPromoteExts(TPT
, NewExts
, NewlyMovedExts
, TotalCreatedInstsCost
);
5021 bool NewPromoted
= false;
5022 for (auto ExtInst
: NewlyMovedExts
) {
5023 Instruction
*MovedExt
= cast
<Instruction
>(ExtInst
);
5024 Value
*ExtOperand
= MovedExt
->getOperand(0);
5025 // If we have reached to a load, we need this extra profitability check
5026 // as it could potentially be merged into an ext(load).
5027 if (isa
<LoadInst
>(ExtOperand
) &&
5028 !(StressExtLdPromotion
|| NewCreatedInstsCost
<= ExtCost
||
5029 (ExtOperand
->hasOneUse() || hasSameExtUse(ExtOperand
, *TLI
))))
5032 ProfitablyMovedExts
.push_back(MovedExt
);
5036 // If none of speculative promotions for NewExts is profitable, rollback
5037 // and save the current extension (I) as the last profitable extension.
5039 TPT
.rollback(LastKnownGood
);
5040 ProfitablyMovedExts
.push_back(I
);
5043 // The promotion is profitable.
5049 /// Merging redundant sexts when one is dominating the other.
5050 bool CodeGenPrepare::mergeSExts(Function
&F
) {
5051 DominatorTree
DT(F
);
5052 bool Changed
= false;
5053 for (auto &Entry
: ValToSExtendedUses
) {
5054 SExts
&Insts
= Entry
.second
;
5056 for (Instruction
*Inst
: Insts
) {
5057 if (RemovedInsts
.count(Inst
) || !isa
<SExtInst
>(Inst
) ||
5058 Inst
->getOperand(0) != Entry
.first
)
5060 bool inserted
= false;
5061 for (auto &Pt
: CurPts
) {
5062 if (DT
.dominates(Inst
, Pt
)) {
5063 Pt
->replaceAllUsesWith(Inst
);
5064 RemovedInsts
.insert(Pt
);
5065 Pt
->removeFromParent();
5071 if (!DT
.dominates(Pt
, Inst
))
5072 // Give up if we need to merge in a common dominator as the
5073 // experiments show it is not profitable.
5075 Inst
->replaceAllUsesWith(Pt
);
5076 RemovedInsts
.insert(Inst
);
5077 Inst
->removeFromParent();
5083 CurPts
.push_back(Inst
);
5089 // Spliting large data structures so that the GEPs accessing them can have
5090 // smaller offsets so that they can be sunk to the same blocks as their users.
5091 // For example, a large struct starting from %base is splitted into two parts
5092 // where the second part starts from %new_base.
5099 // %gep0 = gep %base, off0
5100 // %gep1 = gep %base, off1
5101 // %gep2 = gep %base, off2
5104 // %load1 = load %gep0
5105 // %load2 = load %gep1
5106 // %load3 = load %gep2
5111 // %new_base = gep %base, off0
5114 // %new_gep0 = %new_base
5115 // %new_gep1 = gep %new_base, off1 - off0
5116 // %new_gep2 = gep %new_base, off2 - off0
5119 // %load1 = load i32, i32* %new_gep0
5120 // %load2 = load i32, i32* %new_gep1
5121 // %load3 = load i32, i32* %new_gep2
5123 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5124 // their offsets are smaller enough to fit into the addressing mode.
5125 bool CodeGenPrepare::splitLargeGEPOffsets() {
5126 bool Changed
= false;
5127 for (auto &Entry
: LargeOffsetGEPMap
) {
5128 Value
*OldBase
= Entry
.first
;
5129 SmallVectorImpl
<std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t>>
5130 &LargeOffsetGEPs
= Entry
.second
;
5131 auto compareGEPOffset
=
5132 [&](const std::pair
<GetElementPtrInst
*, int64_t> &LHS
,
5133 const std::pair
<GetElementPtrInst
*, int64_t> &RHS
) {
5134 if (LHS
.first
== RHS
.first
)
5136 if (LHS
.second
!= RHS
.second
)
5137 return LHS
.second
< RHS
.second
;
5138 return LargeOffsetGEPID
[LHS
.first
] < LargeOffsetGEPID
[RHS
.first
];
5140 // Sorting all the GEPs of the same data structures based on the offsets.
5141 llvm::sort(LargeOffsetGEPs
, compareGEPOffset
);
5142 LargeOffsetGEPs
.erase(
5143 std::unique(LargeOffsetGEPs
.begin(), LargeOffsetGEPs
.end()),
5144 LargeOffsetGEPs
.end());
5145 // Skip if all the GEPs have the same offsets.
5146 if (LargeOffsetGEPs
.front().second
== LargeOffsetGEPs
.back().second
)
5148 GetElementPtrInst
*BaseGEP
= LargeOffsetGEPs
.begin()->first
;
5149 int64_t BaseOffset
= LargeOffsetGEPs
.begin()->second
;
5150 Value
*NewBaseGEP
= nullptr;
5152 auto LargeOffsetGEP
= LargeOffsetGEPs
.begin();
5153 while (LargeOffsetGEP
!= LargeOffsetGEPs
.end()) {
5154 GetElementPtrInst
*GEP
= LargeOffsetGEP
->first
;
5155 int64_t Offset
= LargeOffsetGEP
->second
;
5156 if (Offset
!= BaseOffset
) {
5157 TargetLowering::AddrMode AddrMode
;
5158 AddrMode
.BaseOffs
= Offset
- BaseOffset
;
5159 // The result type of the GEP might not be the type of the memory
5161 if (!TLI
->isLegalAddressingMode(*DL
, AddrMode
,
5162 GEP
->getResultElementType(),
5163 GEP
->getAddressSpace())) {
5164 // We need to create a new base if the offset to the current base is
5165 // too large to fit into the addressing mode. So, a very large struct
5166 // may be splitted into several parts.
5168 BaseOffset
= Offset
;
5169 NewBaseGEP
= nullptr;
5173 // Generate a new GEP to replace the current one.
5174 LLVMContext
&Ctx
= GEP
->getContext();
5175 Type
*IntPtrTy
= DL
->getIntPtrType(GEP
->getType());
5177 Type::getInt8PtrTy(Ctx
, GEP
->getType()->getPointerAddressSpace());
5178 Type
*I8Ty
= Type::getInt8Ty(Ctx
);
5181 // Create a new base if we don't have one yet. Find the insertion
5182 // pointer for the new base first.
5183 BasicBlock::iterator NewBaseInsertPt
;
5184 BasicBlock
*NewBaseInsertBB
;
5185 if (auto *BaseI
= dyn_cast
<Instruction
>(OldBase
)) {
5186 // If the base of the struct is an instruction, the new base will be
5187 // inserted close to it.
5188 NewBaseInsertBB
= BaseI
->getParent();
5189 if (isa
<PHINode
>(BaseI
))
5190 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
5191 else if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(BaseI
)) {
5193 SplitEdge(NewBaseInsertBB
, Invoke
->getNormalDest());
5194 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
5196 NewBaseInsertPt
= std::next(BaseI
->getIterator());
5198 // If the current base is an argument or global value, the new base
5199 // will be inserted to the entry block.
5200 NewBaseInsertBB
= &BaseGEP
->getFunction()->getEntryBlock();
5201 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
5203 IRBuilder
<> NewBaseBuilder(NewBaseInsertBB
, NewBaseInsertPt
);
5204 // Create a new base.
5205 Value
*BaseIndex
= ConstantInt::get(IntPtrTy
, BaseOffset
);
5206 NewBaseGEP
= OldBase
;
5207 if (NewBaseGEP
->getType() != I8PtrTy
)
5208 NewBaseGEP
= NewBaseBuilder
.CreatePointerCast(NewBaseGEP
, I8PtrTy
);
5210 NewBaseBuilder
.CreateGEP(I8Ty
, NewBaseGEP
, BaseIndex
, "splitgep");
5211 NewGEPBases
.insert(NewBaseGEP
);
5214 IRBuilder
<> Builder(GEP
);
5215 Value
*NewGEP
= NewBaseGEP
;
5216 if (Offset
== BaseOffset
) {
5217 if (GEP
->getType() != I8PtrTy
)
5218 NewGEP
= Builder
.CreatePointerCast(NewGEP
, GEP
->getType());
5220 // Calculate the new offset for the new GEP.
5221 Value
*Index
= ConstantInt::get(IntPtrTy
, Offset
- BaseOffset
);
5222 NewGEP
= Builder
.CreateGEP(I8Ty
, NewBaseGEP
, Index
);
5224 if (GEP
->getType() != I8PtrTy
)
5225 NewGEP
= Builder
.CreatePointerCast(NewGEP
, GEP
->getType());
5227 GEP
->replaceAllUsesWith(NewGEP
);
5228 LargeOffsetGEPID
.erase(GEP
);
5229 LargeOffsetGEP
= LargeOffsetGEPs
.erase(LargeOffsetGEP
);
5230 GEP
->eraseFromParent();
5237 /// Return true, if an ext(load) can be formed from an extension in
5239 bool CodeGenPrepare::canFormExtLd(
5240 const SmallVectorImpl
<Instruction
*> &MovedExts
, LoadInst
*&LI
,
5241 Instruction
*&Inst
, bool HasPromoted
) {
5242 for (auto *MovedExtInst
: MovedExts
) {
5243 if (isa
<LoadInst
>(MovedExtInst
->getOperand(0))) {
5244 LI
= cast
<LoadInst
>(MovedExtInst
->getOperand(0));
5245 Inst
= MovedExtInst
;
5252 // If they're already in the same block, there's nothing to do.
5253 // Make the cheap checks first if we did not promote.
5254 // If we promoted, we need to check if it is indeed profitable.
5255 if (!HasPromoted
&& LI
->getParent() == Inst
->getParent())
5258 return TLI
->isExtLoad(LI
, Inst
, *DL
);
5261 /// Move a zext or sext fed by a load into the same basic block as the load,
5262 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5263 /// extend into the load.
5267 /// %ld = load i32* %addr
5268 /// %add = add nuw i32 %ld, 4
5269 /// %zext = zext i32 %add to i64
5273 /// %ld = load i32* %addr
5274 /// %zext = zext i32 %ld to i64
5275 /// %add = add nuw i64 %zext, 4
5277 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5278 /// allow us to match zext(load i32*) to i64.
5280 /// Also, try to promote the computations used to obtain a sign extended
5281 /// value used into memory accesses.
5284 /// a = add nsw i32 b, 3
5285 /// d = sext i32 a to i64
5286 /// e = getelementptr ..., i64 d
5290 /// f = sext i32 b to i64
5291 /// a = add nsw i64 f, 3
5292 /// e = getelementptr ..., i64 a
5295 /// \p Inst[in/out] the extension may be modified during the process if some
5296 /// promotions apply.
5297 bool CodeGenPrepare::optimizeExt(Instruction
*&Inst
) {
5298 // ExtLoad formation and address type promotion infrastructure requires TLI to
5303 bool AllowPromotionWithoutCommonHeader
= false;
5304 /// See if it is an interesting sext operations for the address type
5305 /// promotion before trying to promote it, e.g., the ones with the right
5306 /// type and used in memory accesses.
5307 bool ATPConsiderable
= TTI
->shouldConsiderAddressTypePromotion(
5308 *Inst
, AllowPromotionWithoutCommonHeader
);
5309 TypePromotionTransaction
TPT(RemovedInsts
);
5310 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5311 TPT
.getRestorationPoint();
5312 SmallVector
<Instruction
*, 1> Exts
;
5313 SmallVector
<Instruction
*, 2> SpeculativelyMovedExts
;
5314 Exts
.push_back(Inst
);
5316 bool HasPromoted
= tryToPromoteExts(TPT
, Exts
, SpeculativelyMovedExts
);
5318 // Look for a load being extended.
5319 LoadInst
*LI
= nullptr;
5320 Instruction
*ExtFedByLoad
;
5322 // Try to promote a chain of computation if it allows to form an extended
5324 if (canFormExtLd(SpeculativelyMovedExts
, LI
, ExtFedByLoad
, HasPromoted
)) {
5325 assert(LI
&& ExtFedByLoad
&& "Expect a valid load and extension");
5327 // Move the extend into the same block as the load
5328 ExtFedByLoad
->moveAfter(LI
);
5329 // CGP does not check if the zext would be speculatively executed when moved
5330 // to the same basic block as the load. Preserving its original location
5331 // would pessimize the debugging experience, as well as negatively impact
5332 // the quality of sample pgo. We don't want to use "line 0" as that has a
5333 // size cost in the line-table section and logically the zext can be seen as
5334 // part of the load. Therefore we conservatively reuse the same debug
5335 // location for the load and the zext.
5336 ExtFedByLoad
->setDebugLoc(LI
->getDebugLoc());
5338 Inst
= ExtFedByLoad
;
5342 // Continue promoting SExts if known as considerable depending on targets.
5343 if (ATPConsiderable
&&
5344 performAddressTypePromotion(Inst
, AllowPromotionWithoutCommonHeader
,
5345 HasPromoted
, TPT
, SpeculativelyMovedExts
))
5348 TPT
.rollback(LastKnownGood
);
5352 // Perform address type promotion if doing so is profitable.
5353 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5354 // instructions that sign extended the same initial value. However, if
5355 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5356 // extension is just profitable.
5357 bool CodeGenPrepare::performAddressTypePromotion(
5358 Instruction
*&Inst
, bool AllowPromotionWithoutCommonHeader
,
5359 bool HasPromoted
, TypePromotionTransaction
&TPT
,
5360 SmallVectorImpl
<Instruction
*> &SpeculativelyMovedExts
) {
5361 bool Promoted
= false;
5362 SmallPtrSet
<Instruction
*, 1> UnhandledExts
;
5363 bool AllSeenFirst
= true;
5364 for (auto I
: SpeculativelyMovedExts
) {
5365 Value
*HeadOfChain
= I
->getOperand(0);
5366 DenseMap
<Value
*, Instruction
*>::iterator AlreadySeen
=
5367 SeenChainsForSExt
.find(HeadOfChain
);
5368 // If there is an unhandled SExt which has the same header, try to promote
5370 if (AlreadySeen
!= SeenChainsForSExt
.end()) {
5371 if (AlreadySeen
->second
!= nullptr)
5372 UnhandledExts
.insert(AlreadySeen
->second
);
5373 AllSeenFirst
= false;
5377 if (!AllSeenFirst
|| (AllowPromotionWithoutCommonHeader
&&
5378 SpeculativelyMovedExts
.size() == 1)) {
5382 for (auto I
: SpeculativelyMovedExts
) {
5383 Value
*HeadOfChain
= I
->getOperand(0);
5384 SeenChainsForSExt
[HeadOfChain
] = nullptr;
5385 ValToSExtendedUses
[HeadOfChain
].push_back(I
);
5387 // Update Inst as promotion happen.
5388 Inst
= SpeculativelyMovedExts
.pop_back_val();
5390 // This is the first chain visited from the header, keep the current chain
5391 // as unhandled. Defer to promote this until we encounter another SExt
5392 // chain derived from the same header.
5393 for (auto I
: SpeculativelyMovedExts
) {
5394 Value
*HeadOfChain
= I
->getOperand(0);
5395 SeenChainsForSExt
[HeadOfChain
] = Inst
;
5400 if (!AllSeenFirst
&& !UnhandledExts
.empty())
5401 for (auto VisitedSExt
: UnhandledExts
) {
5402 if (RemovedInsts
.count(VisitedSExt
))
5404 TypePromotionTransaction
TPT(RemovedInsts
);
5405 SmallVector
<Instruction
*, 1> Exts
;
5406 SmallVector
<Instruction
*, 2> Chains
;
5407 Exts
.push_back(VisitedSExt
);
5408 bool HasPromoted
= tryToPromoteExts(TPT
, Exts
, Chains
);
5412 for (auto I
: Chains
) {
5413 Value
*HeadOfChain
= I
->getOperand(0);
5414 // Mark this as handled.
5415 SeenChainsForSExt
[HeadOfChain
] = nullptr;
5416 ValToSExtendedUses
[HeadOfChain
].push_back(I
);
5422 bool CodeGenPrepare::optimizeExtUses(Instruction
*I
) {
5423 BasicBlock
*DefBB
= I
->getParent();
5425 // If the result of a {s|z}ext and its source are both live out, rewrite all
5426 // other uses of the source with result of extension.
5427 Value
*Src
= I
->getOperand(0);
5428 if (Src
->hasOneUse())
5431 // Only do this xform if truncating is free.
5432 if (TLI
&& !TLI
->isTruncateFree(I
->getType(), Src
->getType()))
5435 // Only safe to perform the optimization if the source is also defined in
5437 if (!isa
<Instruction
>(Src
) || DefBB
!= cast
<Instruction
>(Src
)->getParent())
5440 bool DefIsLiveOut
= false;
5441 for (User
*U
: I
->users()) {
5442 Instruction
*UI
= cast
<Instruction
>(U
);
5444 // Figure out which BB this ext is used in.
5445 BasicBlock
*UserBB
= UI
->getParent();
5446 if (UserBB
== DefBB
) continue;
5447 DefIsLiveOut
= true;
5453 // Make sure none of the uses are PHI nodes.
5454 for (User
*U
: Src
->users()) {
5455 Instruction
*UI
= cast
<Instruction
>(U
);
5456 BasicBlock
*UserBB
= UI
->getParent();
5457 if (UserBB
== DefBB
) continue;
5458 // Be conservative. We don't want this xform to end up introducing
5459 // reloads just before load / store instructions.
5460 if (isa
<PHINode
>(UI
) || isa
<LoadInst
>(UI
) || isa
<StoreInst
>(UI
))
5464 // InsertedTruncs - Only insert one trunc in each block once.
5465 DenseMap
<BasicBlock
*, Instruction
*> InsertedTruncs
;
5467 bool MadeChange
= false;
5468 for (Use
&U
: Src
->uses()) {
5469 Instruction
*User
= cast
<Instruction
>(U
.getUser());
5471 // Figure out which BB this ext is used in.
5472 BasicBlock
*UserBB
= User
->getParent();
5473 if (UserBB
== DefBB
) continue;
5475 // Both src and def are live in this block. Rewrite the use.
5476 Instruction
*&InsertedTrunc
= InsertedTruncs
[UserBB
];
5478 if (!InsertedTrunc
) {
5479 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
5480 assert(InsertPt
!= UserBB
->end());
5481 InsertedTrunc
= new TruncInst(I
, Src
->getType(), "", &*InsertPt
);
5482 InsertedInsts
.insert(InsertedTrunc
);
5485 // Replace a use of the {s|z}ext source with a use of the result.
5494 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
5495 // just after the load if the target can fold this into one extload instruction,
5496 // with the hope of eliminating some of the other later "and" instructions using
5497 // the loaded value. "and"s that are made trivially redundant by the insertion
5498 // of the new "and" are removed by this function, while others (e.g. those whose
5499 // path from the load goes through a phi) are left for isel to potentially
5532 // becomes (after a call to optimizeLoadExt for each load):
5536 // x1' = and x1, 0xff
5540 // x2' = and x2, 0xff
5545 bool CodeGenPrepare::optimizeLoadExt(LoadInst
*Load
) {
5546 if (!Load
->isSimple() || !Load
->getType()->isIntOrPtrTy())
5549 // Skip loads we've already transformed.
5550 if (Load
->hasOneUse() &&
5551 InsertedInsts
.count(cast
<Instruction
>(*Load
->user_begin())))
5554 // Look at all uses of Load, looking through phis, to determine how many bits
5555 // of the loaded value are needed.
5556 SmallVector
<Instruction
*, 8> WorkList
;
5557 SmallPtrSet
<Instruction
*, 16> Visited
;
5558 SmallVector
<Instruction
*, 8> AndsToMaybeRemove
;
5559 for (auto *U
: Load
->users())
5560 WorkList
.push_back(cast
<Instruction
>(U
));
5562 EVT LoadResultVT
= TLI
->getValueType(*DL
, Load
->getType());
5563 unsigned BitWidth
= LoadResultVT
.getSizeInBits();
5564 APInt
DemandBits(BitWidth
, 0);
5565 APInt
WidestAndBits(BitWidth
, 0);
5567 while (!WorkList
.empty()) {
5568 Instruction
*I
= WorkList
.back();
5569 WorkList
.pop_back();
5571 // Break use-def graph loops.
5572 if (!Visited
.insert(I
).second
)
5575 // For a PHI node, push all of its users.
5576 if (auto *Phi
= dyn_cast
<PHINode
>(I
)) {
5577 for (auto *U
: Phi
->users())
5578 WorkList
.push_back(cast
<Instruction
>(U
));
5582 switch (I
->getOpcode()) {
5583 case Instruction::And
: {
5584 auto *AndC
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
5587 APInt AndBits
= AndC
->getValue();
5588 DemandBits
|= AndBits
;
5589 // Keep track of the widest and mask we see.
5590 if (AndBits
.ugt(WidestAndBits
))
5591 WidestAndBits
= AndBits
;
5592 if (AndBits
== WidestAndBits
&& I
->getOperand(0) == Load
)
5593 AndsToMaybeRemove
.push_back(I
);
5597 case Instruction::Shl
: {
5598 auto *ShlC
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
5601 uint64_t ShiftAmt
= ShlC
->getLimitedValue(BitWidth
- 1);
5602 DemandBits
.setLowBits(BitWidth
- ShiftAmt
);
5606 case Instruction::Trunc
: {
5607 EVT TruncVT
= TLI
->getValueType(*DL
, I
->getType());
5608 unsigned TruncBitWidth
= TruncVT
.getSizeInBits();
5609 DemandBits
.setLowBits(TruncBitWidth
);
5618 uint32_t ActiveBits
= DemandBits
.getActiveBits();
5619 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5620 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
5621 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5622 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5623 // followed by an AND.
5624 // TODO: Look into removing this restriction by fixing backends to either
5625 // return false for isLoadExtLegal for i1 or have them select this pattern to
5626 // a single instruction.
5628 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5629 // mask, since these are the only ands that will be removed by isel.
5630 if (ActiveBits
<= 1 || !DemandBits
.isMask(ActiveBits
) ||
5631 WidestAndBits
!= DemandBits
)
5634 LLVMContext
&Ctx
= Load
->getType()->getContext();
5635 Type
*TruncTy
= Type::getIntNTy(Ctx
, ActiveBits
);
5636 EVT TruncVT
= TLI
->getValueType(*DL
, TruncTy
);
5638 // Reject cases that won't be matched as extloads.
5639 if (!LoadResultVT
.bitsGT(TruncVT
) || !TruncVT
.isRound() ||
5640 !TLI
->isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultVT
, TruncVT
))
5643 IRBuilder
<> Builder(Load
->getNextNode());
5644 auto *NewAnd
= dyn_cast
<Instruction
>(
5645 Builder
.CreateAnd(Load
, ConstantInt::get(Ctx
, DemandBits
)));
5646 // Mark this instruction as "inserted by CGP", so that other
5647 // optimizations don't touch it.
5648 InsertedInsts
.insert(NewAnd
);
5650 // Replace all uses of load with new and (except for the use of load in the
5652 Load
->replaceAllUsesWith(NewAnd
);
5653 NewAnd
->setOperand(0, Load
);
5655 // Remove any and instructions that are now redundant.
5656 for (auto *And
: AndsToMaybeRemove
)
5657 // Check that the and mask is the same as the one we decided to put on the
5659 if (cast
<ConstantInt
>(And
->getOperand(1))->getValue() == DemandBits
) {
5660 And
->replaceAllUsesWith(NewAnd
);
5661 if (&*CurInstIterator
== And
)
5662 CurInstIterator
= std::next(And
->getIterator());
5663 And
->eraseFromParent();
5671 /// Check if V (an operand of a select instruction) is an expensive instruction
5672 /// that is only used once.
5673 static bool sinkSelectOperand(const TargetTransformInfo
*TTI
, Value
*V
) {
5674 auto *I
= dyn_cast
<Instruction
>(V
);
5675 // If it's safe to speculatively execute, then it should not have side
5676 // effects; therefore, it's safe to sink and possibly *not* execute.
5677 return I
&& I
->hasOneUse() && isSafeToSpeculativelyExecute(I
) &&
5678 TTI
->getUserCost(I
) >= TargetTransformInfo::TCC_Expensive
;
5681 /// Returns true if a SelectInst should be turned into an explicit branch.
5682 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo
*TTI
,
5683 const TargetLowering
*TLI
,
5685 // If even a predictable select is cheap, then a branch can't be cheaper.
5686 if (!TLI
->isPredictableSelectExpensive())
5689 // FIXME: This should use the same heuristics as IfConversion to determine
5690 // whether a select is better represented as a branch.
5692 // If metadata tells us that the select condition is obviously predictable,
5693 // then we want to replace the select with a branch.
5694 uint64_t TrueWeight
, FalseWeight
;
5695 if (SI
->extractProfMetadata(TrueWeight
, FalseWeight
)) {
5696 uint64_t Max
= std::max(TrueWeight
, FalseWeight
);
5697 uint64_t Sum
= TrueWeight
+ FalseWeight
;
5699 auto Probability
= BranchProbability::getBranchProbability(Max
, Sum
);
5700 if (Probability
> TLI
->getPredictableBranchThreshold())
5705 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(SI
->getCondition());
5707 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5708 // comparison condition. If the compare has more than one use, there's
5709 // probably another cmov or setcc around, so it's not worth emitting a branch.
5710 if (!Cmp
|| !Cmp
->hasOneUse())
5713 // If either operand of the select is expensive and only needed on one side
5714 // of the select, we should form a branch.
5715 if (sinkSelectOperand(TTI
, SI
->getTrueValue()) ||
5716 sinkSelectOperand(TTI
, SI
->getFalseValue()))
5722 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5723 /// false value of \p SI. If the true/false value of \p SI is defined by any
5724 /// select instructions in \p Selects, look through the defining select
5725 /// instruction until the true/false value is not defined in \p Selects.
5726 static Value
*getTrueOrFalseValue(
5727 SelectInst
*SI
, bool isTrue
,
5728 const SmallPtrSet
<const Instruction
*, 2> &Selects
) {
5731 for (SelectInst
*DefSI
= SI
; DefSI
!= nullptr && Selects
.count(DefSI
);
5732 DefSI
= dyn_cast
<SelectInst
>(V
)) {
5733 assert(DefSI
->getCondition() == SI
->getCondition() &&
5734 "The condition of DefSI does not match with SI");
5735 V
= (isTrue
? DefSI
->getTrueValue() : DefSI
->getFalseValue());
5740 /// If we have a SelectInst that will likely profit from branch prediction,
5741 /// turn it into a branch.
5742 bool CodeGenPrepare::optimizeSelectInst(SelectInst
*SI
) {
5743 // If branch conversion isn't desirable, exit early.
5744 if (DisableSelectToBranch
|| OptSize
|| !TLI
)
5747 // Find all consecutive select instructions that share the same condition.
5748 SmallVector
<SelectInst
*, 2> ASI
;
5750 for (BasicBlock::iterator It
= ++BasicBlock::iterator(SI
);
5751 It
!= SI
->getParent()->end(); ++It
) {
5752 SelectInst
*I
= dyn_cast
<SelectInst
>(&*It
);
5753 if (I
&& SI
->getCondition() == I
->getCondition()) {
5760 SelectInst
*LastSI
= ASI
.back();
5761 // Increment the current iterator to skip all the rest of select instructions
5762 // because they will be either "not lowered" or "all lowered" to branch.
5763 CurInstIterator
= std::next(LastSI
->getIterator());
5765 bool VectorCond
= !SI
->getCondition()->getType()->isIntegerTy(1);
5767 // Can we convert the 'select' to CF ?
5768 if (VectorCond
|| SI
->getMetadata(LLVMContext::MD_unpredictable
))
5771 TargetLowering::SelectSupportKind SelectKind
;
5773 SelectKind
= TargetLowering::VectorMaskSelect
;
5774 else if (SI
->getType()->isVectorTy())
5775 SelectKind
= TargetLowering::ScalarCondVectorVal
;
5777 SelectKind
= TargetLowering::ScalarValSelect
;
5779 if (TLI
->isSelectSupported(SelectKind
) &&
5780 !isFormingBranchFromSelectProfitable(TTI
, TLI
, SI
))
5785 // Transform a sequence like this:
5787 // %cmp = cmp uge i32 %a, %b
5788 // %sel = select i1 %cmp, i32 %c, i32 %d
5792 // %cmp = cmp uge i32 %a, %b
5793 // br i1 %cmp, label %select.true, label %select.false
5795 // br label %select.end
5797 // br label %select.end
5799 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5801 // In addition, we may sink instructions that produce %c or %d from
5802 // the entry block into the destination(s) of the new branch.
5803 // If the true or false blocks do not contain a sunken instruction, that
5804 // block and its branch may be optimized away. In that case, one side of the
5805 // first branch will point directly to select.end, and the corresponding PHI
5806 // predecessor block will be the start block.
5808 // First, we split the block containing the select into 2 blocks.
5809 BasicBlock
*StartBlock
= SI
->getParent();
5810 BasicBlock::iterator SplitPt
= ++(BasicBlock::iterator(LastSI
));
5811 BasicBlock
*EndBlock
= StartBlock
->splitBasicBlock(SplitPt
, "select.end");
5813 // Delete the unconditional branch that was just created by the split.
5814 StartBlock
->getTerminator()->eraseFromParent();
5816 // These are the new basic blocks for the conditional branch.
5817 // At least one will become an actual new basic block.
5818 BasicBlock
*TrueBlock
= nullptr;
5819 BasicBlock
*FalseBlock
= nullptr;
5820 BranchInst
*TrueBranch
= nullptr;
5821 BranchInst
*FalseBranch
= nullptr;
5823 // Sink expensive instructions into the conditional blocks to avoid executing
5824 // them speculatively.
5825 for (SelectInst
*SI
: ASI
) {
5826 if (sinkSelectOperand(TTI
, SI
->getTrueValue())) {
5827 if (TrueBlock
== nullptr) {
5828 TrueBlock
= BasicBlock::Create(SI
->getContext(), "select.true.sink",
5829 EndBlock
->getParent(), EndBlock
);
5830 TrueBranch
= BranchInst::Create(EndBlock
, TrueBlock
);
5831 TrueBranch
->setDebugLoc(SI
->getDebugLoc());
5833 auto *TrueInst
= cast
<Instruction
>(SI
->getTrueValue());
5834 TrueInst
->moveBefore(TrueBranch
);
5836 if (sinkSelectOperand(TTI
, SI
->getFalseValue())) {
5837 if (FalseBlock
== nullptr) {
5838 FalseBlock
= BasicBlock::Create(SI
->getContext(), "select.false.sink",
5839 EndBlock
->getParent(), EndBlock
);
5840 FalseBranch
= BranchInst::Create(EndBlock
, FalseBlock
);
5841 FalseBranch
->setDebugLoc(SI
->getDebugLoc());
5843 auto *FalseInst
= cast
<Instruction
>(SI
->getFalseValue());
5844 FalseInst
->moveBefore(FalseBranch
);
5848 // If there was nothing to sink, then arbitrarily choose the 'false' side
5849 // for a new input value to the PHI.
5850 if (TrueBlock
== FalseBlock
) {
5851 assert(TrueBlock
== nullptr &&
5852 "Unexpected basic block transform while optimizing select");
5854 FalseBlock
= BasicBlock::Create(SI
->getContext(), "select.false",
5855 EndBlock
->getParent(), EndBlock
);
5856 auto *FalseBranch
= BranchInst::Create(EndBlock
, FalseBlock
);
5857 FalseBranch
->setDebugLoc(SI
->getDebugLoc());
5860 // Insert the real conditional branch based on the original condition.
5861 // If we did not create a new block for one of the 'true' or 'false' paths
5862 // of the condition, it means that side of the branch goes to the end block
5863 // directly and the path originates from the start block from the point of
5864 // view of the new PHI.
5865 BasicBlock
*TT
, *FT
;
5866 if (TrueBlock
== nullptr) {
5869 TrueBlock
= StartBlock
;
5870 } else if (FalseBlock
== nullptr) {
5873 FalseBlock
= StartBlock
;
5878 IRBuilder
<>(SI
).CreateCondBr(SI
->getCondition(), TT
, FT
, SI
);
5880 SmallPtrSet
<const Instruction
*, 2> INS
;
5881 INS
.insert(ASI
.begin(), ASI
.end());
5882 // Use reverse iterator because later select may use the value of the
5883 // earlier select, and we need to propagate value through earlier select
5884 // to get the PHI operand.
5885 for (auto It
= ASI
.rbegin(); It
!= ASI
.rend(); ++It
) {
5886 SelectInst
*SI
= *It
;
5887 // The select itself is replaced with a PHI Node.
5888 PHINode
*PN
= PHINode::Create(SI
->getType(), 2, "", &EndBlock
->front());
5890 PN
->addIncoming(getTrueOrFalseValue(SI
, true, INS
), TrueBlock
);
5891 PN
->addIncoming(getTrueOrFalseValue(SI
, false, INS
), FalseBlock
);
5892 PN
->setDebugLoc(SI
->getDebugLoc());
5894 SI
->replaceAllUsesWith(PN
);
5895 SI
->eraseFromParent();
5897 ++NumSelectsExpanded
;
5900 // Instruct OptimizeBlock to skip to the next block.
5901 CurInstIterator
= StartBlock
->end();
5905 static bool isBroadcastShuffle(ShuffleVectorInst
*SVI
) {
5906 SmallVector
<int, 16> Mask(SVI
->getShuffleMask());
5908 for (unsigned i
= 0; i
< Mask
.size(); ++i
) {
5909 if (SplatElem
!= -1 && Mask
[i
] != -1 && Mask
[i
] != SplatElem
)
5911 SplatElem
= Mask
[i
];
5917 /// Some targets have expensive vector shifts if the lanes aren't all the same
5918 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5919 /// it's often worth sinking a shufflevector splat down to its use so that
5920 /// codegen can spot all lanes are identical.
5921 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst
*SVI
) {
5922 BasicBlock
*DefBB
= SVI
->getParent();
5924 // Only do this xform if variable vector shifts are particularly expensive.
5925 if (!TLI
|| !TLI
->isVectorShiftByScalarCheap(SVI
->getType()))
5928 // We only expect better codegen by sinking a shuffle if we can recognise a
5930 if (!isBroadcastShuffle(SVI
))
5933 // InsertedShuffles - Only insert a shuffle in each block once.
5934 DenseMap
<BasicBlock
*, Instruction
*> InsertedShuffles
;
5936 bool MadeChange
= false;
5937 for (User
*U
: SVI
->users()) {
5938 Instruction
*UI
= cast
<Instruction
>(U
);
5940 // Figure out which BB this ext is used in.
5941 BasicBlock
*UserBB
= UI
->getParent();
5942 if (UserBB
== DefBB
) continue;
5944 // For now only apply this when the splat is used by a shift instruction.
5945 if (!UI
->isShift()) continue;
5947 // Everything checks out, sink the shuffle if the user's block doesn't
5948 // already have a copy.
5949 Instruction
*&InsertedShuffle
= InsertedShuffles
[UserBB
];
5951 if (!InsertedShuffle
) {
5952 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
5953 assert(InsertPt
!= UserBB
->end());
5955 new ShuffleVectorInst(SVI
->getOperand(0), SVI
->getOperand(1),
5956 SVI
->getOperand(2), "", &*InsertPt
);
5959 UI
->replaceUsesOfWith(SVI
, InsertedShuffle
);
5963 // If we removed all uses, nuke the shuffle.
5964 if (SVI
->use_empty()) {
5965 SVI
->eraseFromParent();
5972 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst
*SI
) {
5976 Value
*Cond
= SI
->getCondition();
5977 Type
*OldType
= Cond
->getType();
5978 LLVMContext
&Context
= Cond
->getContext();
5979 MVT RegType
= TLI
->getRegisterType(Context
, TLI
->getValueType(*DL
, OldType
));
5980 unsigned RegWidth
= RegType
.getSizeInBits();
5982 if (RegWidth
<= cast
<IntegerType
>(OldType
)->getBitWidth())
5985 // If the register width is greater than the type width, expand the condition
5986 // of the switch instruction and each case constant to the width of the
5987 // register. By widening the type of the switch condition, subsequent
5988 // comparisons (for case comparisons) will not need to be extended to the
5989 // preferred register width, so we will potentially eliminate N-1 extends,
5990 // where N is the number of cases in the switch.
5991 auto *NewType
= Type::getIntNTy(Context
, RegWidth
);
5993 // Zero-extend the switch condition and case constants unless the switch
5994 // condition is a function argument that is already being sign-extended.
5995 // In that case, we can avoid an unnecessary mask/extension by sign-extending
5996 // everything instead.
5997 Instruction::CastOps ExtType
= Instruction::ZExt
;
5998 if (auto *Arg
= dyn_cast
<Argument
>(Cond
))
5999 if (Arg
->hasSExtAttr())
6000 ExtType
= Instruction::SExt
;
6002 auto *ExtInst
= CastInst::Create(ExtType
, Cond
, NewType
);
6003 ExtInst
->insertBefore(SI
);
6004 ExtInst
->setDebugLoc(SI
->getDebugLoc());
6005 SI
->setCondition(ExtInst
);
6006 for (auto Case
: SI
->cases()) {
6007 APInt NarrowConst
= Case
.getCaseValue()->getValue();
6008 APInt WideConst
= (ExtType
== Instruction::ZExt
) ?
6009 NarrowConst
.zext(RegWidth
) : NarrowConst
.sext(RegWidth
);
6010 Case
.setValue(ConstantInt::get(Context
, WideConst
));
6019 /// Helper class to promote a scalar operation to a vector one.
6020 /// This class is used to move downward extractelement transition.
6022 /// a = vector_op <2 x i32>
6023 /// b = extractelement <2 x i32> a, i32 0
6028 /// a = vector_op <2 x i32>
6029 /// c = vector_op a (equivalent to scalar_op on the related lane)
6030 /// * d = extractelement <2 x i32> c, i32 0
6032 /// Assuming both extractelement and store can be combine, we get rid of the
6034 class VectorPromoteHelper
{
6035 /// DataLayout associated with the current module.
6036 const DataLayout
&DL
;
6038 /// Used to perform some checks on the legality of vector operations.
6039 const TargetLowering
&TLI
;
6041 /// Used to estimated the cost of the promoted chain.
6042 const TargetTransformInfo
&TTI
;
6044 /// The transition being moved downwards.
6045 Instruction
*Transition
;
6047 /// The sequence of instructions to be promoted.
6048 SmallVector
<Instruction
*, 4> InstsToBePromoted
;
6050 /// Cost of combining a store and an extract.
6051 unsigned StoreExtractCombineCost
;
6053 /// Instruction that will be combined with the transition.
6054 Instruction
*CombineInst
= nullptr;
6056 /// The instruction that represents the current end of the transition.
6057 /// Since we are faking the promotion until we reach the end of the chain
6058 /// of computation, we need a way to get the current end of the transition.
6059 Instruction
*getEndOfTransition() const {
6060 if (InstsToBePromoted
.empty())
6062 return InstsToBePromoted
.back();
6065 /// Return the index of the original value in the transition.
6066 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6067 /// c, is at index 0.
6068 unsigned getTransitionOriginalValueIdx() const {
6069 assert(isa
<ExtractElementInst
>(Transition
) &&
6070 "Other kind of transitions are not supported yet");
6074 /// Return the index of the index in the transition.
6075 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6077 unsigned getTransitionIdx() const {
6078 assert(isa
<ExtractElementInst
>(Transition
) &&
6079 "Other kind of transitions are not supported yet");
6083 /// Get the type of the transition.
6084 /// This is the type of the original value.
6085 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6086 /// transition is <2 x i32>.
6087 Type
*getTransitionType() const {
6088 return Transition
->getOperand(getTransitionOriginalValueIdx())->getType();
6091 /// Promote \p ToBePromoted by moving \p Def downward through.
6092 /// I.e., we have the following sequence:
6093 /// Def = Transition <ty1> a to <ty2>
6094 /// b = ToBePromoted <ty2> Def, ...
6096 /// b = ToBePromoted <ty1> a, ...
6097 /// Def = Transition <ty1> ToBePromoted to <ty2>
6098 void promoteImpl(Instruction
*ToBePromoted
);
6100 /// Check whether or not it is profitable to promote all the
6101 /// instructions enqueued to be promoted.
6102 bool isProfitableToPromote() {
6103 Value
*ValIdx
= Transition
->getOperand(getTransitionOriginalValueIdx());
6104 unsigned Index
= isa
<ConstantInt
>(ValIdx
)
6105 ? cast
<ConstantInt
>(ValIdx
)->getZExtValue()
6107 Type
*PromotedType
= getTransitionType();
6109 StoreInst
*ST
= cast
<StoreInst
>(CombineInst
);
6110 unsigned AS
= ST
->getPointerAddressSpace();
6111 unsigned Align
= ST
->getAlignment();
6112 // Check if this store is supported.
6113 if (!TLI
.allowsMisalignedMemoryAccesses(
6114 TLI
.getValueType(DL
, ST
->getValueOperand()->getType()), AS
,
6116 // If this is not supported, there is no way we can combine
6117 // the extract with the store.
6121 // The scalar chain of computation has to pay for the transition
6122 // scalar to vector.
6123 // The vector chain has to account for the combining cost.
6124 uint64_t ScalarCost
=
6125 TTI
.getVectorInstrCost(Transition
->getOpcode(), PromotedType
, Index
);
6126 uint64_t VectorCost
= StoreExtractCombineCost
;
6127 for (const auto &Inst
: InstsToBePromoted
) {
6128 // Compute the cost.
6129 // By construction, all instructions being promoted are arithmetic ones.
6130 // Moreover, one argument is a constant that can be viewed as a splat
6132 Value
*Arg0
= Inst
->getOperand(0);
6133 bool IsArg0Constant
= isa
<UndefValue
>(Arg0
) || isa
<ConstantInt
>(Arg0
) ||
6134 isa
<ConstantFP
>(Arg0
);
6135 TargetTransformInfo::OperandValueKind Arg0OVK
=
6136 IsArg0Constant
? TargetTransformInfo::OK_UniformConstantValue
6137 : TargetTransformInfo::OK_AnyValue
;
6138 TargetTransformInfo::OperandValueKind Arg1OVK
=
6139 !IsArg0Constant
? TargetTransformInfo::OK_UniformConstantValue
6140 : TargetTransformInfo::OK_AnyValue
;
6141 ScalarCost
+= TTI
.getArithmeticInstrCost(
6142 Inst
->getOpcode(), Inst
->getType(), Arg0OVK
, Arg1OVK
);
6143 VectorCost
+= TTI
.getArithmeticInstrCost(Inst
->getOpcode(), PromotedType
,
6147 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6148 << ScalarCost
<< "\nVector: " << VectorCost
<< '\n');
6149 return ScalarCost
> VectorCost
;
6152 /// Generate a constant vector with \p Val with the same
6153 /// number of elements as the transition.
6154 /// \p UseSplat defines whether or not \p Val should be replicated
6155 /// across the whole vector.
6156 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6157 /// otherwise we generate a vector with as many undef as possible:
6158 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6159 /// used at the index of the extract.
6160 Value
*getConstantVector(Constant
*Val
, bool UseSplat
) const {
6161 unsigned ExtractIdx
= std::numeric_limits
<unsigned>::max();
6163 // If we cannot determine where the constant must be, we have to
6164 // use a splat constant.
6165 Value
*ValExtractIdx
= Transition
->getOperand(getTransitionIdx());
6166 if (ConstantInt
*CstVal
= dyn_cast
<ConstantInt
>(ValExtractIdx
))
6167 ExtractIdx
= CstVal
->getSExtValue();
6172 unsigned End
= getTransitionType()->getVectorNumElements();
6174 return ConstantVector::getSplat(End
, Val
);
6176 SmallVector
<Constant
*, 4> ConstVec
;
6177 UndefValue
*UndefVal
= UndefValue::get(Val
->getType());
6178 for (unsigned Idx
= 0; Idx
!= End
; ++Idx
) {
6179 if (Idx
== ExtractIdx
)
6180 ConstVec
.push_back(Val
);
6182 ConstVec
.push_back(UndefVal
);
6184 return ConstantVector::get(ConstVec
);
6187 /// Check if promoting to a vector type an operand at \p OperandIdx
6188 /// in \p Use can trigger undefined behavior.
6189 static bool canCauseUndefinedBehavior(const Instruction
*Use
,
6190 unsigned OperandIdx
) {
6191 // This is not safe to introduce undef when the operand is on
6192 // the right hand side of a division-like instruction.
6193 if (OperandIdx
!= 1)
6195 switch (Use
->getOpcode()) {
6198 case Instruction::SDiv
:
6199 case Instruction::UDiv
:
6200 case Instruction::SRem
:
6201 case Instruction::URem
:
6203 case Instruction::FDiv
:
6204 case Instruction::FRem
:
6205 return !Use
->hasNoNaNs();
6207 llvm_unreachable(nullptr);
6211 VectorPromoteHelper(const DataLayout
&DL
, const TargetLowering
&TLI
,
6212 const TargetTransformInfo
&TTI
, Instruction
*Transition
,
6213 unsigned CombineCost
)
6214 : DL(DL
), TLI(TLI
), TTI(TTI
), Transition(Transition
),
6215 StoreExtractCombineCost(CombineCost
) {
6216 assert(Transition
&& "Do not know how to promote null");
6219 /// Check if we can promote \p ToBePromoted to \p Type.
6220 bool canPromote(const Instruction
*ToBePromoted
) const {
6221 // We could support CastInst too.
6222 return isa
<BinaryOperator
>(ToBePromoted
);
6225 /// Check if it is profitable to promote \p ToBePromoted
6226 /// by moving downward the transition through.
6227 bool shouldPromote(const Instruction
*ToBePromoted
) const {
6228 // Promote only if all the operands can be statically expanded.
6229 // Indeed, we do not want to introduce any new kind of transitions.
6230 for (const Use
&U
: ToBePromoted
->operands()) {
6231 const Value
*Val
= U
.get();
6232 if (Val
== getEndOfTransition()) {
6233 // If the use is a division and the transition is on the rhs,
6234 // we cannot promote the operation, otherwise we may create a
6235 // division by zero.
6236 if (canCauseUndefinedBehavior(ToBePromoted
, U
.getOperandNo()))
6240 if (!isa
<ConstantInt
>(Val
) && !isa
<UndefValue
>(Val
) &&
6241 !isa
<ConstantFP
>(Val
))
6244 // Check that the resulting operation is legal.
6245 int ISDOpcode
= TLI
.InstructionOpcodeToISD(ToBePromoted
->getOpcode());
6248 return StressStoreExtract
||
6249 TLI
.isOperationLegalOrCustom(
6250 ISDOpcode
, TLI
.getValueType(DL
, getTransitionType(), true));
6253 /// Check whether or not \p Use can be combined
6254 /// with the transition.
6255 /// I.e., is it possible to do Use(Transition) => AnotherUse?
6256 bool canCombine(const Instruction
*Use
) { return isa
<StoreInst
>(Use
); }
6258 /// Record \p ToBePromoted as part of the chain to be promoted.
6259 void enqueueForPromotion(Instruction
*ToBePromoted
) {
6260 InstsToBePromoted
.push_back(ToBePromoted
);
6263 /// Set the instruction that will be combined with the transition.
6264 void recordCombineInstruction(Instruction
*ToBeCombined
) {
6265 assert(canCombine(ToBeCombined
) && "Unsupported instruction to combine");
6266 CombineInst
= ToBeCombined
;
6269 /// Promote all the instructions enqueued for promotion if it is
6271 /// \return True if the promotion happened, false otherwise.
6273 // Check if there is something to promote.
6274 // Right now, if we do not have anything to combine with,
6275 // we assume the promotion is not profitable.
6276 if (InstsToBePromoted
.empty() || !CombineInst
)
6280 if (!StressStoreExtract
&& !isProfitableToPromote())
6284 for (auto &ToBePromoted
: InstsToBePromoted
)
6285 promoteImpl(ToBePromoted
);
6286 InstsToBePromoted
.clear();
6291 } // end anonymous namespace
6293 void VectorPromoteHelper::promoteImpl(Instruction
*ToBePromoted
) {
6294 // At this point, we know that all the operands of ToBePromoted but Def
6295 // can be statically promoted.
6296 // For Def, we need to use its parameter in ToBePromoted:
6297 // b = ToBePromoted ty1 a
6298 // Def = Transition ty1 b to ty2
6299 // Move the transition down.
6300 // 1. Replace all uses of the promoted operation by the transition.
6301 // = ... b => = ... Def.
6302 assert(ToBePromoted
->getType() == Transition
->getType() &&
6303 "The type of the result of the transition does not match "
6305 ToBePromoted
->replaceAllUsesWith(Transition
);
6306 // 2. Update the type of the uses.
6307 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6308 Type
*TransitionTy
= getTransitionType();
6309 ToBePromoted
->mutateType(TransitionTy
);
6310 // 3. Update all the operands of the promoted operation with promoted
6312 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6313 for (Use
&U
: ToBePromoted
->operands()) {
6314 Value
*Val
= U
.get();
6315 Value
*NewVal
= nullptr;
6316 if (Val
== Transition
)
6317 NewVal
= Transition
->getOperand(getTransitionOriginalValueIdx());
6318 else if (isa
<UndefValue
>(Val
) || isa
<ConstantInt
>(Val
) ||
6319 isa
<ConstantFP
>(Val
)) {
6320 // Use a splat constant if it is not safe to use undef.
6321 NewVal
= getConstantVector(
6322 cast
<Constant
>(Val
),
6323 isa
<UndefValue
>(Val
) ||
6324 canCauseUndefinedBehavior(ToBePromoted
, U
.getOperandNo()));
6326 llvm_unreachable("Did you modified shouldPromote and forgot to update "
6328 ToBePromoted
->setOperand(U
.getOperandNo(), NewVal
);
6330 Transition
->moveAfter(ToBePromoted
);
6331 Transition
->setOperand(getTransitionOriginalValueIdx(), ToBePromoted
);
6334 /// Some targets can do store(extractelement) with one instruction.
6335 /// Try to push the extractelement towards the stores when the target
6336 /// has this feature and this is profitable.
6337 bool CodeGenPrepare::optimizeExtractElementInst(Instruction
*Inst
) {
6338 unsigned CombineCost
= std::numeric_limits
<unsigned>::max();
6339 if (DisableStoreExtract
|| !TLI
||
6340 (!StressStoreExtract
&&
6341 !TLI
->canCombineStoreAndExtract(Inst
->getOperand(0)->getType(),
6342 Inst
->getOperand(1), CombineCost
)))
6345 // At this point we know that Inst is a vector to scalar transition.
6346 // Try to move it down the def-use chain, until:
6347 // - We can combine the transition with its single use
6348 // => we got rid of the transition.
6349 // - We escape the current basic block
6350 // => we would need to check that we are moving it at a cheaper place and
6351 // we do not do that for now.
6352 BasicBlock
*Parent
= Inst
->getParent();
6353 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst
<< '\n');
6354 VectorPromoteHelper
VPH(*DL
, *TLI
, *TTI
, Inst
, CombineCost
);
6355 // If the transition has more than one use, assume this is not going to be
6357 while (Inst
->hasOneUse()) {
6358 Instruction
*ToBePromoted
= cast
<Instruction
>(*Inst
->user_begin());
6359 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted
<< '\n');
6361 if (ToBePromoted
->getParent() != Parent
) {
6362 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6363 << ToBePromoted
->getParent()->getName()
6364 << ") than the transition (" << Parent
->getName()
6369 if (VPH
.canCombine(ToBePromoted
)) {
6370 LLVM_DEBUG(dbgs() << "Assume " << *Inst
<< '\n'
6371 << "will be combined with: " << *ToBePromoted
<< '\n');
6372 VPH
.recordCombineInstruction(ToBePromoted
);
6373 bool Changed
= VPH
.promote();
6374 NumStoreExtractExposed
+= Changed
;
6378 LLVM_DEBUG(dbgs() << "Try promoting.\n");
6379 if (!VPH
.canPromote(ToBePromoted
) || !VPH
.shouldPromote(ToBePromoted
))
6382 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6384 VPH
.enqueueForPromotion(ToBePromoted
);
6385 Inst
= ToBePromoted
;
6390 /// For the instruction sequence of store below, F and I values
6391 /// are bundled together as an i64 value before being stored into memory.
6392 /// Sometimes it is more efficient to generate separate stores for F and I,
6393 /// which can remove the bitwise instructions or sink them to colder places.
6395 /// (store (or (zext (bitcast F to i32) to i64),
6396 /// (shl (zext I to i64), 32)), addr) -->
6397 /// (store F, addr) and (store I, addr+4)
6399 /// Similarly, splitting for other merged store can also be beneficial, like:
6400 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6401 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6402 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6403 /// For pair of {i16, i8}, i32 store --> two i16 stores.
6404 /// For pair of {i8, i8}, i16 store --> two i8 stores.
6406 /// We allow each target to determine specifically which kind of splitting is
6409 /// The store patterns are commonly seen from the simple code snippet below
6410 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6411 /// void goo(const std::pair<int, float> &);
6414 /// goo(std::make_pair(tmp, ftmp));
6418 /// Although we already have similar splitting in DAG Combine, we duplicate
6419 /// it in CodeGenPrepare to catch the case in which pattern is across
6420 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6421 /// during code expansion.
6422 static bool splitMergedValStore(StoreInst
&SI
, const DataLayout
&DL
,
6423 const TargetLowering
&TLI
) {
6424 // Handle simple but common cases only.
6425 Type
*StoreType
= SI
.getValueOperand()->getType();
6426 if (DL
.getTypeStoreSizeInBits(StoreType
) != DL
.getTypeSizeInBits(StoreType
) ||
6427 DL
.getTypeSizeInBits(StoreType
) == 0)
6430 unsigned HalfValBitSize
= DL
.getTypeSizeInBits(StoreType
) / 2;
6431 Type
*SplitStoreType
= Type::getIntNTy(SI
.getContext(), HalfValBitSize
);
6432 if (DL
.getTypeStoreSizeInBits(SplitStoreType
) !=
6433 DL
.getTypeSizeInBits(SplitStoreType
))
6436 // Match the following patterns:
6437 // (store (or (zext LValue to i64),
6438 // (shl (zext HValue to i64), 32)), HalfValBitSize)
6440 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6441 // (zext LValue to i64),
6442 // Expect both operands of OR and the first operand of SHL have only
6444 Value
*LValue
, *HValue
;
6445 if (!match(SI
.getValueOperand(),
6446 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue
))),
6447 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue
))),
6448 m_SpecificInt(HalfValBitSize
))))))
6451 // Check LValue and HValue are int with size less or equal than 32.
6452 if (!LValue
->getType()->isIntegerTy() ||
6453 DL
.getTypeSizeInBits(LValue
->getType()) > HalfValBitSize
||
6454 !HValue
->getType()->isIntegerTy() ||
6455 DL
.getTypeSizeInBits(HValue
->getType()) > HalfValBitSize
)
6458 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6459 // as the input of target query.
6460 auto *LBC
= dyn_cast
<BitCastInst
>(LValue
);
6461 auto *HBC
= dyn_cast
<BitCastInst
>(HValue
);
6462 EVT LowTy
= LBC
? EVT::getEVT(LBC
->getOperand(0)->getType())
6463 : EVT::getEVT(LValue
->getType());
6464 EVT HighTy
= HBC
? EVT::getEVT(HBC
->getOperand(0)->getType())
6465 : EVT::getEVT(HValue
->getType());
6466 if (!ForceSplitStore
&& !TLI
.isMultiStoresCheaperThanBitsMerge(LowTy
, HighTy
))
6469 // Start to split store.
6470 IRBuilder
<> Builder(SI
.getContext());
6471 Builder
.SetInsertPoint(&SI
);
6473 // If LValue/HValue is a bitcast in another BB, create a new one in current
6474 // BB so it may be merged with the splitted stores by dag combiner.
6475 if (LBC
&& LBC
->getParent() != SI
.getParent())
6476 LValue
= Builder
.CreateBitCast(LBC
->getOperand(0), LBC
->getType());
6477 if (HBC
&& HBC
->getParent() != SI
.getParent())
6478 HValue
= Builder
.CreateBitCast(HBC
->getOperand(0), HBC
->getType());
6480 bool IsLE
= SI
.getModule()->getDataLayout().isLittleEndian();
6481 auto CreateSplitStore
= [&](Value
*V
, bool Upper
) {
6482 V
= Builder
.CreateZExtOrBitCast(V
, SplitStoreType
);
6483 Value
*Addr
= Builder
.CreateBitCast(
6485 SplitStoreType
->getPointerTo(SI
.getPointerAddressSpace()));
6486 if ((IsLE
&& Upper
) || (!IsLE
&& !Upper
))
6487 Addr
= Builder
.CreateGEP(
6488 SplitStoreType
, Addr
,
6489 ConstantInt::get(Type::getInt32Ty(SI
.getContext()), 1));
6490 Builder
.CreateAlignedStore(
6491 V
, Addr
, Upper
? SI
.getAlignment() / 2 : SI
.getAlignment());
6494 CreateSplitStore(LValue
, false);
6495 CreateSplitStore(HValue
, true);
6497 // Delete the old store.
6498 SI
.eraseFromParent();
6502 // Return true if the GEP has two operands, the first operand is of a sequential
6503 // type, and the second operand is a constant.
6504 static bool GEPSequentialConstIndexed(GetElementPtrInst
*GEP
) {
6505 gep_type_iterator I
= gep_type_begin(*GEP
);
6506 return GEP
->getNumOperands() == 2 &&
6508 isa
<ConstantInt
>(GEP
->getOperand(1));
6511 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6512 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6513 // reducing liveness interference across those edges benefits global register
6514 // allocation. Currently handles only certain cases.
6516 // For example, unmerge %GEPI and %UGEPI as below.
6518 // ---------- BEFORE ----------
6523 // %GEPI = gep %GEPIOp, Idx
6525 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6526 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6527 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6530 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6531 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6536 // %UGEPI = gep %GEPIOp, UIdx
6538 // ---------------------------
6540 // ---------- AFTER ----------
6542 // ... (same as above)
6543 // (* %GEPI is still alive on the indirectbr edges)
6544 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6550 // %UGEPI = gep %GEPI, (UIdx-Idx)
6552 // ---------------------------
6554 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6555 // no longer alive on them.
6557 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6558 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6559 // not to disable further simplications and optimizations as a result of GEP
6562 // Note this unmerging may increase the length of the data flow critical path
6563 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6564 // between the register pressure and the length of data-flow critical
6565 // path. Restricting this to the uncommon IndirectBr case would minimize the
6566 // impact of potentially longer critical path, if any, and the impact on compile
6568 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst
*GEPI
,
6569 const TargetTransformInfo
*TTI
) {
6570 BasicBlock
*SrcBlock
= GEPI
->getParent();
6571 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6572 // (non-IndirectBr) cases exit early here.
6573 if (!isa
<IndirectBrInst
>(SrcBlock
->getTerminator()))
6575 // Check that GEPI is a simple gep with a single constant index.
6576 if (!GEPSequentialConstIndexed(GEPI
))
6578 ConstantInt
*GEPIIdx
= cast
<ConstantInt
>(GEPI
->getOperand(1));
6579 // Check that GEPI is a cheap one.
6580 if (TTI
->getIntImmCost(GEPIIdx
->getValue(), GEPIIdx
->getType())
6581 > TargetTransformInfo::TCC_Basic
)
6583 Value
*GEPIOp
= GEPI
->getOperand(0);
6584 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6585 if (!isa
<Instruction
>(GEPIOp
))
6587 auto *GEPIOpI
= cast
<Instruction
>(GEPIOp
);
6588 if (GEPIOpI
->getParent() != SrcBlock
)
6590 // Check that GEP is used outside the block, meaning it's alive on the
6591 // IndirectBr edge(s).
6592 if (find_if(GEPI
->users(), [&](User
*Usr
) {
6593 if (auto *I
= dyn_cast
<Instruction
>(Usr
)) {
6594 if (I
->getParent() != SrcBlock
) {
6599 }) == GEPI
->users().end())
6601 // The second elements of the GEP chains to be unmerged.
6602 std::vector
<GetElementPtrInst
*> UGEPIs
;
6603 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6604 // on IndirectBr edges.
6605 for (User
*Usr
: GEPIOp
->users()) {
6606 if (Usr
== GEPI
) continue;
6607 // Check if Usr is an Instruction. If not, give up.
6608 if (!isa
<Instruction
>(Usr
))
6610 auto *UI
= cast
<Instruction
>(Usr
);
6611 // Check if Usr in the same block as GEPIOp, which is fine, skip.
6612 if (UI
->getParent() == SrcBlock
)
6614 // Check if Usr is a GEP. If not, give up.
6615 if (!isa
<GetElementPtrInst
>(Usr
))
6617 auto *UGEPI
= cast
<GetElementPtrInst
>(Usr
);
6618 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6619 // the pointer operand to it. If so, record it in the vector. If not, give
6621 if (!GEPSequentialConstIndexed(UGEPI
))
6623 if (UGEPI
->getOperand(0) != GEPIOp
)
6625 if (GEPIIdx
->getType() !=
6626 cast
<ConstantInt
>(UGEPI
->getOperand(1))->getType())
6628 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
6629 if (TTI
->getIntImmCost(UGEPIIdx
->getValue(), UGEPIIdx
->getType())
6630 > TargetTransformInfo::TCC_Basic
)
6632 UGEPIs
.push_back(UGEPI
);
6634 if (UGEPIs
.size() == 0)
6636 // Check the materializing cost of (Uidx-Idx).
6637 for (GetElementPtrInst
*UGEPI
: UGEPIs
) {
6638 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
6639 APInt NewIdx
= UGEPIIdx
->getValue() - GEPIIdx
->getValue();
6640 unsigned ImmCost
= TTI
->getIntImmCost(NewIdx
, GEPIIdx
->getType());
6641 if (ImmCost
> TargetTransformInfo::TCC_Basic
)
6644 // Now unmerge between GEPI and UGEPIs.
6645 for (GetElementPtrInst
*UGEPI
: UGEPIs
) {
6646 UGEPI
->setOperand(0, GEPI
);
6647 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
6648 Constant
*NewUGEPIIdx
=
6649 ConstantInt::get(GEPIIdx
->getType(),
6650 UGEPIIdx
->getValue() - GEPIIdx
->getValue());
6651 UGEPI
->setOperand(1, NewUGEPIIdx
);
6652 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6653 // inbounds to avoid UB.
6654 if (!GEPI
->isInBounds()) {
6655 UGEPI
->setIsInBounds(false);
6658 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6659 // alive on IndirectBr edges).
6660 assert(find_if(GEPIOp
->users(), [&](User
*Usr
) {
6661 return cast
<Instruction
>(Usr
)->getParent() != SrcBlock
;
6662 }) == GEPIOp
->users().end() && "GEPIOp is used outside SrcBlock");
6666 bool CodeGenPrepare::optimizeInst(Instruction
*I
, bool &ModifiedDT
) {
6667 // Bail out if we inserted the instruction to prevent optimizations from
6668 // stepping on each other's toes.
6669 if (InsertedInsts
.count(I
))
6672 if (PHINode
*P
= dyn_cast
<PHINode
>(I
)) {
6673 // It is possible for very late stage optimizations (such as SimplifyCFG)
6674 // to introduce PHI nodes too late to be cleaned up. If we detect such a
6675 // trivial PHI, go ahead and zap it here.
6676 if (Value
*V
= SimplifyInstruction(P
, {*DL
, TLInfo
})) {
6677 P
->replaceAllUsesWith(V
);
6678 P
->eraseFromParent();
6685 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
6686 // If the source of the cast is a constant, then this should have
6687 // already been constant folded. The only reason NOT to constant fold
6688 // it is if something (e.g. LSR) was careful to place the constant
6689 // evaluation in a block other than then one that uses it (e.g. to hoist
6690 // the address of globals out of a loop). If this is the case, we don't
6691 // want to forward-subst the cast.
6692 if (isa
<Constant
>(CI
->getOperand(0)))
6695 if (TLI
&& OptimizeNoopCopyExpression(CI
, *TLI
, *DL
))
6698 if (isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
)) {
6699 /// Sink a zext or sext into its user blocks if the target type doesn't
6700 /// fit in one register
6702 TLI
->getTypeAction(CI
->getContext(),
6703 TLI
->getValueType(*DL
, CI
->getType())) ==
6704 TargetLowering::TypeExpandInteger
) {
6705 return SinkCast(CI
);
6707 bool MadeChange
= optimizeExt(I
);
6708 return MadeChange
| optimizeExtUses(I
);
6714 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
6715 if (!TLI
|| !TLI
->hasMultipleConditionRegisters())
6716 return OptimizeCmpExpression(CI
, TLI
);
6718 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
6719 LI
->setMetadata(LLVMContext::MD_invariant_group
, nullptr);
6721 bool Modified
= optimizeLoadExt(LI
);
6722 unsigned AS
= LI
->getPointerAddressSpace();
6723 Modified
|= optimizeMemoryInst(I
, I
->getOperand(0), LI
->getType(), AS
);
6729 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
6730 if (TLI
&& splitMergedValStore(*SI
, *DL
, *TLI
))
6732 SI
->setMetadata(LLVMContext::MD_invariant_group
, nullptr);
6734 unsigned AS
= SI
->getPointerAddressSpace();
6735 return optimizeMemoryInst(I
, SI
->getOperand(1),
6736 SI
->getOperand(0)->getType(), AS
);
6741 if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(I
)) {
6742 unsigned AS
= RMW
->getPointerAddressSpace();
6743 return optimizeMemoryInst(I
, RMW
->getPointerOperand(),
6744 RMW
->getType(), AS
);
6747 if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
6748 unsigned AS
= CmpX
->getPointerAddressSpace();
6749 return optimizeMemoryInst(I
, CmpX
->getPointerOperand(),
6750 CmpX
->getCompareOperand()->getType(), AS
);
6753 BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(I
);
6755 if (BinOp
&& (BinOp
->getOpcode() == Instruction::And
) &&
6756 EnableAndCmpSinking
&& TLI
)
6757 return sinkAndCmp0Expression(BinOp
, *TLI
, InsertedInsts
);
6759 if (BinOp
&& (BinOp
->getOpcode() == Instruction::AShr
||
6760 BinOp
->getOpcode() == Instruction::LShr
)) {
6761 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BinOp
->getOperand(1));
6762 if (TLI
&& CI
&& TLI
->hasExtractBitsInsn())
6763 return OptimizeExtractBits(BinOp
, CI
, *TLI
, *DL
);
6768 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
6769 if (GEPI
->hasAllZeroIndices()) {
6770 /// The GEP operand must be a pointer, so must its result -> BitCast
6771 Instruction
*NC
= new BitCastInst(GEPI
->getOperand(0), GEPI
->getType(),
6772 GEPI
->getName(), GEPI
);
6773 NC
->setDebugLoc(GEPI
->getDebugLoc());
6774 GEPI
->replaceAllUsesWith(NC
);
6775 GEPI
->eraseFromParent();
6777 optimizeInst(NC
, ModifiedDT
);
6780 if (tryUnmergingGEPsAcrossIndirectBr(GEPI
, TTI
)) {
6786 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
))
6787 return optimizeCallInst(CI
, ModifiedDT
);
6789 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
))
6790 return optimizeSelectInst(SI
);
6792 if (ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(I
))
6793 return optimizeShuffleVectorInst(SVI
);
6795 if (auto *Switch
= dyn_cast
<SwitchInst
>(I
))
6796 return optimizeSwitchInst(Switch
);
6798 if (isa
<ExtractElementInst
>(I
))
6799 return optimizeExtractElementInst(I
);
6804 /// Given an OR instruction, check to see if this is a bitreverse
6805 /// idiom. If so, insert the new intrinsic and return true.
6806 static bool makeBitReverse(Instruction
&I
, const DataLayout
&DL
,
6807 const TargetLowering
&TLI
) {
6808 if (!I
.getType()->isIntegerTy() ||
6809 !TLI
.isOperationLegalOrCustom(ISD::BITREVERSE
,
6810 TLI
.getValueType(DL
, I
.getType(), true)))
6813 SmallVector
<Instruction
*, 4> Insts
;
6814 if (!recognizeBSwapOrBitReverseIdiom(&I
, false, true, Insts
))
6816 Instruction
*LastInst
= Insts
.back();
6817 I
.replaceAllUsesWith(LastInst
);
6818 RecursivelyDeleteTriviallyDeadInstructions(&I
);
6822 // In this pass we look for GEP and cast instructions that are used
6823 // across basic blocks and rewrite them to improve basic-block-at-a-time
6825 bool CodeGenPrepare::optimizeBlock(BasicBlock
&BB
, bool &ModifiedDT
) {
6827 bool MadeChange
= false;
6829 CurInstIterator
= BB
.begin();
6830 while (CurInstIterator
!= BB
.end()) {
6831 MadeChange
|= optimizeInst(&*CurInstIterator
++, ModifiedDT
);
6836 bool MadeBitReverse
= true;
6837 while (TLI
&& MadeBitReverse
) {
6838 MadeBitReverse
= false;
6839 for (auto &I
: reverse(BB
)) {
6840 if (makeBitReverse(I
, *DL
, *TLI
)) {
6841 MadeBitReverse
= MadeChange
= true;
6847 MadeChange
|= dupRetToEnableTailCallOpts(&BB
);
6852 // llvm.dbg.value is far away from the value then iSel may not be able
6853 // handle it properly. iSel will drop llvm.dbg.value if it can not
6854 // find a node corresponding to the value.
6855 bool CodeGenPrepare::placeDbgValues(Function
&F
) {
6856 bool MadeChange
= false;
6857 for (BasicBlock
&BB
: F
) {
6858 Instruction
*PrevNonDbgInst
= nullptr;
6859 for (BasicBlock::iterator BI
= BB
.begin(), BE
= BB
.end(); BI
!= BE
;) {
6860 Instruction
*Insn
= &*BI
++;
6861 DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(Insn
);
6862 // Leave dbg.values that refer to an alloca alone. These
6863 // intrinsics describe the address of a variable (= the alloca)
6864 // being taken. They should not be moved next to the alloca
6865 // (and to the beginning of the scope), but rather stay close to
6866 // where said address is used.
6867 if (!DVI
|| (DVI
->getValue() && isa
<AllocaInst
>(DVI
->getValue()))) {
6868 PrevNonDbgInst
= Insn
;
6872 Instruction
*VI
= dyn_cast_or_null
<Instruction
>(DVI
->getValue());
6873 if (VI
&& VI
!= PrevNonDbgInst
&& !VI
->isTerminator()) {
6874 // If VI is a phi in a block with an EHPad terminator, we can't insert
6876 if (isa
<PHINode
>(VI
) && VI
->getParent()->getTerminator()->isEHPad())
6878 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
6879 << *DVI
<< ' ' << *VI
);
6880 DVI
->removeFromParent();
6881 if (isa
<PHINode
>(VI
))
6882 DVI
->insertBefore(&*VI
->getParent()->getFirstInsertionPt());
6884 DVI
->insertAfter(VI
);
6893 /// Scale down both weights to fit into uint32_t.
6894 static void scaleWeights(uint64_t &NewTrue
, uint64_t &NewFalse
) {
6895 uint64_t NewMax
= (NewTrue
> NewFalse
) ? NewTrue
: NewFalse
;
6896 uint32_t Scale
= (NewMax
/ std::numeric_limits
<uint32_t>::max()) + 1;
6897 NewTrue
= NewTrue
/ Scale
;
6898 NewFalse
= NewFalse
/ Scale
;
6901 /// Some targets prefer to split a conditional branch like:
6903 /// %0 = icmp ne i32 %a, 0
6904 /// %1 = icmp ne i32 %b, 0
6905 /// %or.cond = or i1 %0, %1
6906 /// br i1 %or.cond, label %TrueBB, label %FalseBB
6908 /// into multiple branch instructions like:
6911 /// %0 = icmp ne i32 %a, 0
6912 /// br i1 %0, label %TrueBB, label %bb2
6914 /// %1 = icmp ne i32 %b, 0
6915 /// br i1 %1, label %TrueBB, label %FalseBB
6917 /// This usually allows instruction selection to do even further optimizations
6918 /// and combine the compare with the branch instruction. Currently this is
6919 /// applied for targets which have "cheap" jump instructions.
6921 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6923 bool CodeGenPrepare::splitBranchCondition(Function
&F
) {
6924 if (!TM
|| !TM
->Options
.EnableFastISel
|| !TLI
|| TLI
->isJumpExpensive())
6927 bool MadeChange
= false;
6928 for (auto &BB
: F
) {
6929 // Does this BB end with the following?
6930 // %cond1 = icmp|fcmp|binary instruction ...
6931 // %cond2 = icmp|fcmp|binary instruction ...
6932 // %cond.or = or|and i1 %cond1, cond2
6933 // br i1 %cond.or label %dest1, label %dest2"
6934 BinaryOperator
*LogicOp
;
6935 BasicBlock
*TBB
, *FBB
;
6936 if (!match(BB
.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp
)), TBB
, FBB
)))
6939 auto *Br1
= cast
<BranchInst
>(BB
.getTerminator());
6940 if (Br1
->getMetadata(LLVMContext::MD_unpredictable
))
6944 Value
*Cond1
, *Cond2
;
6945 if (match(LogicOp
, m_And(m_OneUse(m_Value(Cond1
)),
6946 m_OneUse(m_Value(Cond2
)))))
6947 Opc
= Instruction::And
;
6948 else if (match(LogicOp
, m_Or(m_OneUse(m_Value(Cond1
)),
6949 m_OneUse(m_Value(Cond2
)))))
6950 Opc
= Instruction::Or
;
6954 if (!match(Cond1
, m_CombineOr(m_Cmp(), m_BinOp())) ||
6955 !match(Cond2
, m_CombineOr(m_Cmp(), m_BinOp())) )
6958 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB
.dump());
6962 BasicBlock::Create(BB
.getContext(), BB
.getName() + ".cond.split",
6963 BB
.getParent(), BB
.getNextNode());
6965 // Update original basic block by using the first condition directly by the
6966 // branch instruction and removing the no longer needed and/or instruction.
6967 Br1
->setCondition(Cond1
);
6968 LogicOp
->eraseFromParent();
6970 // Depending on the condition we have to either replace the true or the
6971 // false successor of the original branch instruction.
6972 if (Opc
== Instruction::And
)
6973 Br1
->setSuccessor(0, TmpBB
);
6975 Br1
->setSuccessor(1, TmpBB
);
6977 // Fill in the new basic block.
6978 auto *Br2
= IRBuilder
<>(TmpBB
).CreateCondBr(Cond2
, TBB
, FBB
);
6979 if (auto *I
= dyn_cast
<Instruction
>(Cond2
)) {
6980 I
->removeFromParent();
6981 I
->insertBefore(Br2
);
6984 // Update PHI nodes in both successors. The original BB needs to be
6985 // replaced in one successor's PHI nodes, because the branch comes now from
6986 // the newly generated BB (NewBB). In the other successor we need to add one
6987 // incoming edge to the PHI nodes, because both branch instructions target
6988 // now the same successor. Depending on the original branch condition
6989 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6990 // we perform the correct update for the PHI nodes.
6991 // This doesn't change the successor order of the just created branch
6992 // instruction (or any other instruction).
6993 if (Opc
== Instruction::Or
)
6994 std::swap(TBB
, FBB
);
6996 // Replace the old BB with the new BB.
6997 for (PHINode
&PN
: TBB
->phis()) {
6999 while ((i
= PN
.getBasicBlockIndex(&BB
)) >= 0)
7000 PN
.setIncomingBlock(i
, TmpBB
);
7003 // Add another incoming edge form the new BB.
7004 for (PHINode
&PN
: FBB
->phis()) {
7005 auto *Val
= PN
.getIncomingValueForBlock(&BB
);
7006 PN
.addIncoming(Val
, TmpBB
);
7009 // Update the branch weights (from SelectionDAGBuilder::
7010 // FindMergedConditions).
7011 if (Opc
== Instruction::Or
) {
7012 // Codegen X | Y as:
7021 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7022 // The requirement is that
7023 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7024 // = TrueProb for original BB.
7025 // Assuming the original weights are A and B, one choice is to set BB1's
7026 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7028 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7029 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7030 // TmpBB, but the math is more complicated.
7031 uint64_t TrueWeight
, FalseWeight
;
7032 if (Br1
->extractProfMetadata(TrueWeight
, FalseWeight
)) {
7033 uint64_t NewTrueWeight
= TrueWeight
;
7034 uint64_t NewFalseWeight
= TrueWeight
+ 2 * FalseWeight
;
7035 scaleWeights(NewTrueWeight
, NewFalseWeight
);
7036 Br1
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br1
->getContext())
7037 .createBranchWeights(TrueWeight
, FalseWeight
));
7039 NewTrueWeight
= TrueWeight
;
7040 NewFalseWeight
= 2 * FalseWeight
;
7041 scaleWeights(NewTrueWeight
, NewFalseWeight
);
7042 Br2
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br2
->getContext())
7043 .createBranchWeights(TrueWeight
, FalseWeight
));
7046 // Codegen X & Y as:
7054 // This requires creation of TmpBB after CurBB.
7056 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7057 // The requirement is that
7058 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7059 // = FalseProb for original BB.
7060 // Assuming the original weights are A and B, one choice is to set BB1's
7061 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7063 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7064 uint64_t TrueWeight
, FalseWeight
;
7065 if (Br1
->extractProfMetadata(TrueWeight
, FalseWeight
)) {
7066 uint64_t NewTrueWeight
= 2 * TrueWeight
+ FalseWeight
;
7067 uint64_t NewFalseWeight
= FalseWeight
;
7068 scaleWeights(NewTrueWeight
, NewFalseWeight
);
7069 Br1
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br1
->getContext())
7070 .createBranchWeights(TrueWeight
, FalseWeight
));
7072 NewTrueWeight
= 2 * TrueWeight
;
7073 NewFalseWeight
= FalseWeight
;
7074 scaleWeights(NewTrueWeight
, NewFalseWeight
);
7075 Br2
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br2
->getContext())
7076 .createBranchWeights(TrueWeight
, FalseWeight
));
7080 // Note: No point in getting fancy here, since the DT info is never
7081 // available to CodeGenPrepare.
7086 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB
.dump();