[Alignment] Move OffsetToAlignment to Alignment.h
[llvm-complete.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
blobe000b7b227e4f490b0e95b8045ddcf0c77cce1ef
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldELF.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Support/Alignment.h"
21 #include "llvm/Support/MSVCErrorWorkarounds.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include <mutex>
26 #include <future>
28 using namespace llvm;
29 using namespace llvm::object;
31 #define DEBUG_TYPE "dyld"
33 namespace {
35 enum RuntimeDyldErrorCode {
36 GenericRTDyldError = 1
39 // FIXME: This class is only here to support the transition to llvm::Error. It
40 // will be removed once this transition is complete. Clients should prefer to
41 // deal with the Error value directly, rather than converting to error_code.
42 class RuntimeDyldErrorCategory : public std::error_category {
43 public:
44 const char *name() const noexcept override { return "runtimedyld"; }
46 std::string message(int Condition) const override {
47 switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
48 case GenericRTDyldError: return "Generic RuntimeDyld error";
50 llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
54 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
58 char RuntimeDyldError::ID = 0;
60 void RuntimeDyldError::log(raw_ostream &OS) const {
61 OS << ErrMsg << "\n";
64 std::error_code RuntimeDyldError::convertToErrorCode() const {
65 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
68 // Empty out-of-line virtual destructor as the key function.
69 RuntimeDyldImpl::~RuntimeDyldImpl() {}
71 // Pin LoadedObjectInfo's vtables to this file.
72 void RuntimeDyld::LoadedObjectInfo::anchor() {}
74 namespace llvm {
76 void RuntimeDyldImpl::registerEHFrames() {}
78 void RuntimeDyldImpl::deregisterEHFrames() {
79 MemMgr.deregisterEHFrames();
82 #ifndef NDEBUG
83 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
84 dbgs() << "----- Contents of section " << S.getName() << " " << State
85 << " -----";
87 if (S.getAddress() == nullptr) {
88 dbgs() << "\n <section not emitted>\n";
89 return;
92 const unsigned ColsPerRow = 16;
94 uint8_t *DataAddr = S.getAddress();
95 uint64_t LoadAddr = S.getLoadAddress();
97 unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
98 unsigned BytesRemaining = S.getSize();
100 if (StartPadding) {
101 dbgs() << "\n" << format("0x%016" PRIx64,
102 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
103 while (StartPadding--)
104 dbgs() << " ";
107 while (BytesRemaining > 0) {
108 if ((LoadAddr & (ColsPerRow - 1)) == 0)
109 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
111 dbgs() << " " << format("%02x", *DataAddr);
113 ++DataAddr;
114 ++LoadAddr;
115 --BytesRemaining;
118 dbgs() << "\n";
120 #endif
122 // Resolve the relocations for all symbols we currently know about.
123 void RuntimeDyldImpl::resolveRelocations() {
124 std::lock_guard<sys::Mutex> locked(lock);
126 // Print out the sections prior to relocation.
127 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
128 dumpSectionMemory(Sections[i], "before relocations"););
130 // First, resolve relocations associated with external symbols.
131 if (auto Err = resolveExternalSymbols()) {
132 HasError = true;
133 ErrorStr = toString(std::move(Err));
136 resolveLocalRelocations();
138 // Print out sections after relocation.
139 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
140 dumpSectionMemory(Sections[i], "after relocations"););
143 void RuntimeDyldImpl::resolveLocalRelocations() {
144 // Iterate over all outstanding relocations
145 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
146 // The Section here (Sections[i]) refers to the section in which the
147 // symbol for the relocation is located. The SectionID in the relocation
148 // entry provides the section to which the relocation will be applied.
149 int Idx = it->first;
150 uint64_t Addr = Sections[Idx].getLoadAddress();
151 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
152 << format("%p", (uintptr_t)Addr) << "\n");
153 resolveRelocationList(it->second, Addr);
155 Relocations.clear();
158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
159 uint64_t TargetAddress) {
160 std::lock_guard<sys::Mutex> locked(lock);
161 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
162 if (Sections[i].getAddress() == LocalAddress) {
163 reassignSectionAddress(i, TargetAddress);
164 return;
167 llvm_unreachable("Attempting to remap address of unknown section!");
170 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
171 uint64_t &Result) {
172 Expected<uint64_t> AddressOrErr = Sym.getAddress();
173 if (!AddressOrErr)
174 return AddressOrErr.takeError();
175 Result = *AddressOrErr - Sec.getAddress();
176 return Error::success();
179 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
181 std::lock_guard<sys::Mutex> locked(lock);
183 // Save information about our target
184 Arch = (Triple::ArchType)Obj.getArch();
185 IsTargetLittleEndian = Obj.isLittleEndian();
186 setMipsABI(Obj);
188 // Compute the memory size required to load all sections to be loaded
189 // and pass this information to the memory manager
190 if (MemMgr.needsToReserveAllocationSpace()) {
191 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
192 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
193 if (auto Err = computeTotalAllocSize(Obj,
194 CodeSize, CodeAlign,
195 RODataSize, RODataAlign,
196 RWDataSize, RWDataAlign))
197 return std::move(Err);
198 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
199 RWDataSize, RWDataAlign);
202 // Used sections from the object file
203 ObjSectionToIDMap LocalSections;
205 // Common symbols requiring allocation, with their sizes and alignments
206 CommonSymbolList CommonSymbolsToAllocate;
208 uint64_t CommonSize = 0;
209 uint32_t CommonAlign = 0;
211 // First, collect all weak and common symbols. We need to know if stronger
212 // definitions occur elsewhere.
213 JITSymbolResolver::LookupSet ResponsibilitySet;
215 JITSymbolResolver::LookupSet Symbols;
216 for (auto &Sym : Obj.symbols()) {
217 uint32_t Flags = Sym.getFlags();
218 if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
219 // Get symbol name.
220 if (auto NameOrErr = Sym.getName())
221 Symbols.insert(*NameOrErr);
222 else
223 return NameOrErr.takeError();
227 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
228 ResponsibilitySet = std::move(*ResultOrErr);
229 else
230 return ResultOrErr.takeError();
233 // Parse symbols
234 LLVM_DEBUG(dbgs() << "Parse symbols:\n");
235 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
236 ++I) {
237 uint32_t Flags = I->getFlags();
239 // Skip undefined symbols.
240 if (Flags & SymbolRef::SF_Undefined)
241 continue;
243 // Get the symbol type.
244 object::SymbolRef::Type SymType;
245 if (auto SymTypeOrErr = I->getType())
246 SymType = *SymTypeOrErr;
247 else
248 return SymTypeOrErr.takeError();
250 // Get symbol name.
251 StringRef Name;
252 if (auto NameOrErr = I->getName())
253 Name = *NameOrErr;
254 else
255 return NameOrErr.takeError();
257 // Compute JIT symbol flags.
258 auto JITSymFlags = getJITSymbolFlags(*I);
259 if (!JITSymFlags)
260 return JITSymFlags.takeError();
262 // If this is a weak definition, check to see if there's a strong one.
263 // If there is, skip this symbol (we won't be providing it: the strong
264 // definition will). If there's no strong definition, make this definition
265 // strong.
266 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
267 // First check whether there's already a definition in this instance.
268 if (GlobalSymbolTable.count(Name))
269 continue;
271 // If we're not responsible for this symbol, skip it.
272 if (!ResponsibilitySet.count(Name))
273 continue;
275 // Otherwise update the flags on the symbol to make this definition
276 // strong.
277 if (JITSymFlags->isWeak())
278 *JITSymFlags &= ~JITSymbolFlags::Weak;
279 if (JITSymFlags->isCommon()) {
280 *JITSymFlags &= ~JITSymbolFlags::Common;
281 uint32_t Align = I->getAlignment();
282 uint64_t Size = I->getCommonSize();
283 if (!CommonAlign)
284 CommonAlign = Align;
285 CommonSize = alignTo(CommonSize, Align) + Size;
286 CommonSymbolsToAllocate.push_back(*I);
290 if (Flags & SymbolRef::SF_Absolute &&
291 SymType != object::SymbolRef::ST_File) {
292 uint64_t Addr = 0;
293 if (auto AddrOrErr = I->getAddress())
294 Addr = *AddrOrErr;
295 else
296 return AddrOrErr.takeError();
298 unsigned SectionID = AbsoluteSymbolSection;
300 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
301 << " SID: " << SectionID
302 << " Offset: " << format("%p", (uintptr_t)Addr)
303 << " flags: " << Flags << "\n");
304 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
305 } else if (SymType == object::SymbolRef::ST_Function ||
306 SymType == object::SymbolRef::ST_Data ||
307 SymType == object::SymbolRef::ST_Unknown ||
308 SymType == object::SymbolRef::ST_Other) {
310 section_iterator SI = Obj.section_end();
311 if (auto SIOrErr = I->getSection())
312 SI = *SIOrErr;
313 else
314 return SIOrErr.takeError();
316 if (SI == Obj.section_end())
317 continue;
319 // Get symbol offset.
320 uint64_t SectOffset;
321 if (auto Err = getOffset(*I, *SI, SectOffset))
322 return std::move(Err);
324 bool IsCode = SI->isText();
325 unsigned SectionID;
326 if (auto SectionIDOrErr =
327 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
328 SectionID = *SectionIDOrErr;
329 else
330 return SectionIDOrErr.takeError();
332 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
333 << " SID: " << SectionID
334 << " Offset: " << format("%p", (uintptr_t)SectOffset)
335 << " flags: " << Flags << "\n");
336 GlobalSymbolTable[Name] =
337 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
341 // Allocate common symbols
342 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
343 CommonAlign))
344 return std::move(Err);
346 // Parse and process relocations
347 LLVM_DEBUG(dbgs() << "Parse relocations:\n");
348 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
349 SI != SE; ++SI) {
350 StubMap Stubs;
351 section_iterator RelocatedSection = SI->getRelocatedSection();
353 if (RelocatedSection == SE)
354 continue;
356 relocation_iterator I = SI->relocation_begin();
357 relocation_iterator E = SI->relocation_end();
359 if (I == E && !ProcessAllSections)
360 continue;
362 bool IsCode = RelocatedSection->isText();
363 unsigned SectionID = 0;
364 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
365 LocalSections))
366 SectionID = *SectionIDOrErr;
367 else
368 return SectionIDOrErr.takeError();
370 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
372 for (; I != E;)
373 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
374 I = *IOrErr;
375 else
376 return IOrErr.takeError();
378 // If there is a NotifyStubEmitted callback set, call it to register any
379 // stubs created for this section.
380 if (NotifyStubEmitted) {
381 StringRef FileName = Obj.getFileName();
382 StringRef SectionName = Sections[SectionID].getName();
383 for (auto &KV : Stubs) {
385 auto &VR = KV.first;
386 uint64_t StubAddr = KV.second;
388 // If this is a named stub, just call NotifyStubEmitted.
389 if (VR.SymbolName) {
390 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
391 StubAddr);
392 continue;
395 // Otherwise we will have to try a reverse lookup on the globla symbol table.
396 for (auto &GSTMapEntry : GlobalSymbolTable) {
397 StringRef SymbolName = GSTMapEntry.first();
398 auto &GSTEntry = GSTMapEntry.second;
399 if (GSTEntry.getSectionID() == VR.SectionID &&
400 GSTEntry.getOffset() == VR.Offset) {
401 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
402 StubAddr);
403 break;
410 // Process remaining sections
411 if (ProcessAllSections) {
412 LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
413 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
414 SI != SE; ++SI) {
416 /* Ignore already loaded sections */
417 if (LocalSections.find(*SI) != LocalSections.end())
418 continue;
420 bool IsCode = SI->isText();
421 if (auto SectionIDOrErr =
422 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
423 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
424 else
425 return SectionIDOrErr.takeError();
429 // Give the subclasses a chance to tie-up any loose ends.
430 if (auto Err = finalizeLoad(Obj, LocalSections))
431 return std::move(Err);
433 // for (auto E : LocalSections)
434 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
436 return LocalSections;
439 // A helper method for computeTotalAllocSize.
440 // Computes the memory size required to allocate sections with the given sizes,
441 // assuming that all sections are allocated with the given alignment
442 static uint64_t
443 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
444 uint64_t Alignment) {
445 uint64_t TotalSize = 0;
446 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
447 uint64_t AlignedSize =
448 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
449 TotalSize += AlignedSize;
451 return TotalSize;
454 static bool isRequiredForExecution(const SectionRef Section) {
455 const ObjectFile *Obj = Section.getObject();
456 if (isa<object::ELFObjectFileBase>(Obj))
457 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
458 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
459 const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
460 // Avoid loading zero-sized COFF sections.
461 // In PE files, VirtualSize gives the section size, and SizeOfRawData
462 // may be zero for sections with content. In Obj files, SizeOfRawData
463 // gives the section size, and VirtualSize is always zero. Hence
464 // the need to check for both cases below.
465 bool HasContent =
466 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
467 bool IsDiscardable =
468 CoffSection->Characteristics &
469 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
470 return HasContent && !IsDiscardable;
473 assert(isa<MachOObjectFile>(Obj));
474 return true;
477 static bool isReadOnlyData(const SectionRef Section) {
478 const ObjectFile *Obj = Section.getObject();
479 if (isa<object::ELFObjectFileBase>(Obj))
480 return !(ELFSectionRef(Section).getFlags() &
481 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
482 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
483 return ((COFFObj->getCOFFSection(Section)->Characteristics &
484 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
485 | COFF::IMAGE_SCN_MEM_READ
486 | COFF::IMAGE_SCN_MEM_WRITE))
488 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
489 | COFF::IMAGE_SCN_MEM_READ));
491 assert(isa<MachOObjectFile>(Obj));
492 return false;
495 static bool isZeroInit(const SectionRef Section) {
496 const ObjectFile *Obj = Section.getObject();
497 if (isa<object::ELFObjectFileBase>(Obj))
498 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
499 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
500 return COFFObj->getCOFFSection(Section)->Characteristics &
501 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
503 auto *MachO = cast<MachOObjectFile>(Obj);
504 unsigned SectionType = MachO->getSectionType(Section);
505 return SectionType == MachO::S_ZEROFILL ||
506 SectionType == MachO::S_GB_ZEROFILL;
509 // Compute an upper bound of the memory size that is required to load all
510 // sections
511 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
512 uint64_t &CodeSize,
513 uint32_t &CodeAlign,
514 uint64_t &RODataSize,
515 uint32_t &RODataAlign,
516 uint64_t &RWDataSize,
517 uint32_t &RWDataAlign) {
518 // Compute the size of all sections required for execution
519 std::vector<uint64_t> CodeSectionSizes;
520 std::vector<uint64_t> ROSectionSizes;
521 std::vector<uint64_t> RWSectionSizes;
523 // Collect sizes of all sections to be loaded;
524 // also determine the max alignment of all sections
525 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
526 SI != SE; ++SI) {
527 const SectionRef &Section = *SI;
529 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
531 // Consider only the sections that are required to be loaded for execution
532 if (IsRequired) {
533 uint64_t DataSize = Section.getSize();
534 uint64_t Alignment64 = Section.getAlignment();
535 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
536 bool IsCode = Section.isText();
537 bool IsReadOnly = isReadOnlyData(Section);
539 Expected<StringRef> NameOrErr = Section.getName();
540 if (!NameOrErr)
541 return NameOrErr.takeError();
542 StringRef Name = *NameOrErr;
544 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
546 uint64_t PaddingSize = 0;
547 if (Name == ".eh_frame")
548 PaddingSize += 4;
549 if (StubBufSize != 0)
550 PaddingSize += getStubAlignment() - 1;
552 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
554 // The .eh_frame section (at least on Linux) needs an extra four bytes
555 // padded
556 // with zeroes added at the end. For MachO objects, this section has a
557 // slightly different name, so this won't have any effect for MachO
558 // objects.
559 if (Name == ".eh_frame")
560 SectionSize += 4;
562 if (!SectionSize)
563 SectionSize = 1;
565 if (IsCode) {
566 CodeAlign = std::max(CodeAlign, Alignment);
567 CodeSectionSizes.push_back(SectionSize);
568 } else if (IsReadOnly) {
569 RODataAlign = std::max(RODataAlign, Alignment);
570 ROSectionSizes.push_back(SectionSize);
571 } else {
572 RWDataAlign = std::max(RWDataAlign, Alignment);
573 RWSectionSizes.push_back(SectionSize);
578 // Compute Global Offset Table size. If it is not zero we
579 // also update alignment, which is equal to a size of a
580 // single GOT entry.
581 if (unsigned GotSize = computeGOTSize(Obj)) {
582 RWSectionSizes.push_back(GotSize);
583 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
586 // Compute the size of all common symbols
587 uint64_t CommonSize = 0;
588 uint32_t CommonAlign = 1;
589 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
590 ++I) {
591 uint32_t Flags = I->getFlags();
592 if (Flags & SymbolRef::SF_Common) {
593 // Add the common symbols to a list. We'll allocate them all below.
594 uint64_t Size = I->getCommonSize();
595 uint32_t Align = I->getAlignment();
596 // If this is the first common symbol, use its alignment as the alignment
597 // for the common symbols section.
598 if (CommonSize == 0)
599 CommonAlign = Align;
600 CommonSize = alignTo(CommonSize, Align) + Size;
603 if (CommonSize != 0) {
604 RWSectionSizes.push_back(CommonSize);
605 RWDataAlign = std::max(RWDataAlign, CommonAlign);
608 // Compute the required allocation space for each different type of sections
609 // (code, read-only data, read-write data) assuming that all sections are
610 // allocated with the max alignment. Note that we cannot compute with the
611 // individual alignments of the sections, because then the required size
612 // depends on the order, in which the sections are allocated.
613 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
614 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
615 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
617 return Error::success();
620 // compute GOT size
621 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
622 size_t GotEntrySize = getGOTEntrySize();
623 if (!GotEntrySize)
624 return 0;
626 size_t GotSize = 0;
627 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
628 SI != SE; ++SI) {
630 for (const RelocationRef &Reloc : SI->relocations())
631 if (relocationNeedsGot(Reloc))
632 GotSize += GotEntrySize;
635 return GotSize;
638 // compute stub buffer size for the given section
639 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
640 const SectionRef &Section) {
641 unsigned StubSize = getMaxStubSize();
642 if (StubSize == 0) {
643 return 0;
645 // FIXME: this is an inefficient way to handle this. We should computed the
646 // necessary section allocation size in loadObject by walking all the sections
647 // once.
648 unsigned StubBufSize = 0;
649 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
650 SI != SE; ++SI) {
651 section_iterator RelSecI = SI->getRelocatedSection();
652 if (!(RelSecI == Section))
653 continue;
655 for (const RelocationRef &Reloc : SI->relocations())
656 if (relocationNeedsStub(Reloc))
657 StubBufSize += StubSize;
660 // Get section data size and alignment
661 uint64_t DataSize = Section.getSize();
662 uint64_t Alignment64 = Section.getAlignment();
664 // Add stubbuf size alignment
665 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
666 unsigned StubAlignment = getStubAlignment();
667 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
668 if (StubAlignment > EndAlignment)
669 StubBufSize += StubAlignment - EndAlignment;
670 return StubBufSize;
673 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
674 unsigned Size) const {
675 uint64_t Result = 0;
676 if (IsTargetLittleEndian) {
677 Src += Size - 1;
678 while (Size--)
679 Result = (Result << 8) | *Src--;
680 } else
681 while (Size--)
682 Result = (Result << 8) | *Src++;
684 return Result;
687 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
688 unsigned Size) const {
689 if (IsTargetLittleEndian) {
690 while (Size--) {
691 *Dst++ = Value & 0xFF;
692 Value >>= 8;
694 } else {
695 Dst += Size - 1;
696 while (Size--) {
697 *Dst-- = Value & 0xFF;
698 Value >>= 8;
703 Expected<JITSymbolFlags>
704 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
705 return JITSymbolFlags::fromObjectSymbol(SR);
708 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
709 CommonSymbolList &SymbolsToAllocate,
710 uint64_t CommonSize,
711 uint32_t CommonAlign) {
712 if (SymbolsToAllocate.empty())
713 return Error::success();
715 // Allocate memory for the section
716 unsigned SectionID = Sections.size();
717 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
718 "<common symbols>", false);
719 if (!Addr)
720 report_fatal_error("Unable to allocate memory for common symbols!");
721 uint64_t Offset = 0;
722 Sections.push_back(
723 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
724 memset(Addr, 0, CommonSize);
726 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
727 << " new addr: " << format("%p", Addr)
728 << " DataSize: " << CommonSize << "\n");
730 // Assign the address of each symbol
731 for (auto &Sym : SymbolsToAllocate) {
732 uint32_t Align = Sym.getAlignment();
733 uint64_t Size = Sym.getCommonSize();
734 StringRef Name;
735 if (auto NameOrErr = Sym.getName())
736 Name = *NameOrErr;
737 else
738 return NameOrErr.takeError();
739 if (Align) {
740 // This symbol has an alignment requirement.
741 uint64_t AlignOffset =
742 offsetToAlignment((uint64_t)Addr, llvm::Align(Align));
743 Addr += AlignOffset;
744 Offset += AlignOffset;
746 auto JITSymFlags = getJITSymbolFlags(Sym);
748 if (!JITSymFlags)
749 return JITSymFlags.takeError();
751 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
752 << format("%p", Addr) << "\n");
753 GlobalSymbolTable[Name] =
754 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
755 Offset += Size;
756 Addr += Size;
759 return Error::success();
762 Expected<unsigned>
763 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
764 const SectionRef &Section,
765 bool IsCode) {
766 StringRef data;
767 uint64_t Alignment64 = Section.getAlignment();
769 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
770 unsigned PaddingSize = 0;
771 unsigned StubBufSize = 0;
772 bool IsRequired = isRequiredForExecution(Section);
773 bool IsVirtual = Section.isVirtual();
774 bool IsZeroInit = isZeroInit(Section);
775 bool IsReadOnly = isReadOnlyData(Section);
776 uint64_t DataSize = Section.getSize();
778 // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
779 // while being more "polite". Other formats do not support 0-aligned sections
780 // anyway, so we should guarantee that the alignment is always at least 1.
781 Alignment = std::max(1u, Alignment);
783 Expected<StringRef> NameOrErr = Section.getName();
784 if (!NameOrErr)
785 return NameOrErr.takeError();
786 StringRef Name = *NameOrErr;
788 StubBufSize = computeSectionStubBufSize(Obj, Section);
790 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
791 // with zeroes added at the end. For MachO objects, this section has a
792 // slightly different name, so this won't have any effect for MachO objects.
793 if (Name == ".eh_frame")
794 PaddingSize = 4;
796 uintptr_t Allocate;
797 unsigned SectionID = Sections.size();
798 uint8_t *Addr;
799 const char *pData = nullptr;
801 // If this section contains any bits (i.e. isn't a virtual or bss section),
802 // grab a reference to them.
803 if (!IsVirtual && !IsZeroInit) {
804 // In either case, set the location of the unrelocated section in memory,
805 // since we still process relocations for it even if we're not applying them.
806 if (Expected<StringRef> E = Section.getContents())
807 data = *E;
808 else
809 return E.takeError();
810 pData = data.data();
813 // If there are any stubs then the section alignment needs to be at least as
814 // high as stub alignment or padding calculations may by incorrect when the
815 // section is remapped.
816 if (StubBufSize != 0) {
817 Alignment = std::max(Alignment, getStubAlignment());
818 PaddingSize += getStubAlignment() - 1;
821 // Some sections, such as debug info, don't need to be loaded for execution.
822 // Process those only if explicitly requested.
823 if (IsRequired || ProcessAllSections) {
824 Allocate = DataSize + PaddingSize + StubBufSize;
825 if (!Allocate)
826 Allocate = 1;
827 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
828 Name)
829 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
830 Name, IsReadOnly);
831 if (!Addr)
832 report_fatal_error("Unable to allocate section memory!");
834 // Zero-initialize or copy the data from the image
835 if (IsZeroInit || IsVirtual)
836 memset(Addr, 0, DataSize);
837 else
838 memcpy(Addr, pData, DataSize);
840 // Fill in any extra bytes we allocated for padding
841 if (PaddingSize != 0) {
842 memset(Addr + DataSize, 0, PaddingSize);
843 // Update the DataSize variable to include padding.
844 DataSize += PaddingSize;
846 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
847 // have been increased above to account for this).
848 if (StubBufSize > 0)
849 DataSize &= -(uint64_t)getStubAlignment();
852 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
853 << Name << " obj addr: " << format("%p", pData)
854 << " new addr: " << format("%p", Addr) << " DataSize: "
855 << DataSize << " StubBufSize: " << StubBufSize
856 << " Allocate: " << Allocate << "\n");
857 } else {
858 // Even if we didn't load the section, we need to record an entry for it
859 // to handle later processing (and by 'handle' I mean don't do anything
860 // with these sections).
861 Allocate = 0;
862 Addr = nullptr;
863 LLVM_DEBUG(
864 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
865 << " obj addr: " << format("%p", data.data()) << " new addr: 0"
866 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
867 << " Allocate: " << Allocate << "\n");
870 Sections.push_back(
871 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
873 // Debug info sections are linked as if their load address was zero
874 if (!IsRequired)
875 Sections.back().setLoadAddress(0);
877 return SectionID;
880 Expected<unsigned>
881 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
882 const SectionRef &Section,
883 bool IsCode,
884 ObjSectionToIDMap &LocalSections) {
886 unsigned SectionID = 0;
887 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
888 if (i != LocalSections.end())
889 SectionID = i->second;
890 else {
891 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
892 SectionID = *SectionIDOrErr;
893 else
894 return SectionIDOrErr.takeError();
895 LocalSections[Section] = SectionID;
897 return SectionID;
900 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
901 unsigned SectionID) {
902 Relocations[SectionID].push_back(RE);
905 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
906 StringRef SymbolName) {
907 // Relocation by symbol. If the symbol is found in the global symbol table,
908 // create an appropriate section relocation. Otherwise, add it to
909 // ExternalSymbolRelocations.
910 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
911 if (Loc == GlobalSymbolTable.end()) {
912 ExternalSymbolRelocations[SymbolName].push_back(RE);
913 } else {
914 // Copy the RE since we want to modify its addend.
915 RelocationEntry RECopy = RE;
916 const auto &SymInfo = Loc->second;
917 RECopy.Addend += SymInfo.getOffset();
918 Relocations[SymInfo.getSectionID()].push_back(RECopy);
922 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
923 unsigned AbiVariant) {
924 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
925 Arch == Triple::aarch64_32) {
926 // This stub has to be able to access the full address space,
927 // since symbol lookup won't necessarily find a handy, in-range,
928 // PLT stub for functions which could be anywhere.
929 // Stub can use ip0 (== x16) to calculate address
930 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
931 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
932 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
933 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
934 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
936 return Addr;
937 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
938 // TODO: There is only ARM far stub now. We should add the Thumb stub,
939 // and stubs for branches Thumb - ARM and ARM - Thumb.
940 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
941 return Addr + 4;
942 } else if (IsMipsO32ABI || IsMipsN32ABI) {
943 // 0: 3c190000 lui t9,%hi(addr).
944 // 4: 27390000 addiu t9,t9,%lo(addr).
945 // 8: 03200008 jr t9.
946 // c: 00000000 nop.
947 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
948 const unsigned NopInstr = 0x0;
949 unsigned JrT9Instr = 0x03200008;
950 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
951 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
952 JrT9Instr = 0x03200009;
954 writeBytesUnaligned(LuiT9Instr, Addr, 4);
955 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
956 writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
957 writeBytesUnaligned(NopInstr, Addr + 12, 4);
958 return Addr;
959 } else if (IsMipsN64ABI) {
960 // 0: 3c190000 lui t9,%highest(addr).
961 // 4: 67390000 daddiu t9,t9,%higher(addr).
962 // 8: 0019CC38 dsll t9,t9,16.
963 // c: 67390000 daddiu t9,t9,%hi(addr).
964 // 10: 0019CC38 dsll t9,t9,16.
965 // 14: 67390000 daddiu t9,t9,%lo(addr).
966 // 18: 03200008 jr t9.
967 // 1c: 00000000 nop.
968 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
969 DsllT9Instr = 0x19CC38;
970 const unsigned NopInstr = 0x0;
971 unsigned JrT9Instr = 0x03200008;
972 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
973 JrT9Instr = 0x03200009;
975 writeBytesUnaligned(LuiT9Instr, Addr, 4);
976 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
977 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
978 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
979 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
980 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
981 writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
982 writeBytesUnaligned(NopInstr, Addr + 28, 4);
983 return Addr;
984 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
985 // Depending on which version of the ELF ABI is in use, we need to
986 // generate one of two variants of the stub. They both start with
987 // the same sequence to load the target address into r12.
988 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
989 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
990 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
991 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
992 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
993 if (AbiVariant == 2) {
994 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
995 // The address is already in r12 as required by the ABI. Branch to it.
996 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
997 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
998 writeInt32BE(Addr+28, 0x4E800420); // bctr
999 } else {
1000 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1001 // Load the function address on r11 and sets it to control register. Also
1002 // loads the function TOC in r2 and environment pointer to r11.
1003 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
1004 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
1005 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
1006 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1007 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
1008 writeInt32BE(Addr+40, 0x4E800420); // bctr
1010 return Addr;
1011 } else if (Arch == Triple::systemz) {
1012 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
1013 writeInt16BE(Addr+2, 0x0000);
1014 writeInt16BE(Addr+4, 0x0004);
1015 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
1016 // 8-byte address stored at Addr + 8
1017 return Addr;
1018 } else if (Arch == Triple::x86_64) {
1019 *Addr = 0xFF; // jmp
1020 *(Addr+1) = 0x25; // rip
1021 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1022 } else if (Arch == Triple::x86) {
1023 *Addr = 0xE9; // 32-bit pc-relative jump.
1025 return Addr;
1028 // Assign an address to a symbol name and resolve all the relocations
1029 // associated with it.
1030 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1031 uint64_t Addr) {
1032 // The address to use for relocation resolution is not
1033 // the address of the local section buffer. We must be doing
1034 // a remote execution environment of some sort. Relocations can't
1035 // be applied until all the sections have been moved. The client must
1036 // trigger this with a call to MCJIT::finalize() or
1037 // RuntimeDyld::resolveRelocations().
1039 // Addr is a uint64_t because we can't assume the pointer width
1040 // of the target is the same as that of the host. Just use a generic
1041 // "big enough" type.
1042 LLVM_DEBUG(
1043 dbgs() << "Reassigning address for section " << SectionID << " ("
1044 << Sections[SectionID].getName() << "): "
1045 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
1046 << " -> " << format("0x%016" PRIx64, Addr) << "\n");
1047 Sections[SectionID].setLoadAddress(Addr);
1050 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1051 uint64_t Value) {
1052 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1053 const RelocationEntry &RE = Relocs[i];
1054 // Ignore relocations for sections that were not loaded
1055 if (Sections[RE.SectionID].getAddress() == nullptr)
1056 continue;
1057 resolveRelocation(RE, Value);
1061 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1062 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1063 while (!ExternalSymbolRelocations.empty()) {
1065 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1067 StringRef Name = i->first();
1068 if (Name.size() == 0) {
1069 // This is an absolute symbol, use an address of zero.
1070 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1071 << "\n");
1072 RelocationList &Relocs = i->second;
1073 resolveRelocationList(Relocs, 0);
1074 } else {
1075 uint64_t Addr = 0;
1076 JITSymbolFlags Flags;
1077 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1078 if (Loc == GlobalSymbolTable.end()) {
1079 auto RRI = ExternalSymbolMap.find(Name);
1080 assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1081 Addr = RRI->second.getAddress();
1082 Flags = RRI->second.getFlags();
1083 // The call to getSymbolAddress may have caused additional modules to
1084 // be loaded, which may have added new entries to the
1085 // ExternalSymbolRelocations map. Consquently, we need to update our
1086 // iterator. This is also why retrieval of the relocation list
1087 // associated with this symbol is deferred until below this point.
1088 // New entries may have been added to the relocation list.
1089 i = ExternalSymbolRelocations.find(Name);
1090 } else {
1091 // We found the symbol in our global table. It was probably in a
1092 // Module that we loaded previously.
1093 const auto &SymInfo = Loc->second;
1094 Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1095 SymInfo.getOffset();
1096 Flags = SymInfo.getFlags();
1099 // FIXME: Implement error handling that doesn't kill the host program!
1100 if (!Addr)
1101 report_fatal_error("Program used external function '" + Name +
1102 "' which could not be resolved!");
1104 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1105 // manually and we shouldn't resolve its relocations.
1106 if (Addr != UINT64_MAX) {
1108 // Tweak the address based on the symbol flags if necessary.
1109 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1110 // if the target symbol is Thumb.
1111 Addr = modifyAddressBasedOnFlags(Addr, Flags);
1113 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1114 << format("0x%lx", Addr) << "\n");
1115 // This list may have been updated when we called getSymbolAddress, so
1116 // don't change this code to get the list earlier.
1117 RelocationList &Relocs = i->second;
1118 resolveRelocationList(Relocs, Addr);
1122 ExternalSymbolRelocations.erase(i);
1126 Error RuntimeDyldImpl::resolveExternalSymbols() {
1127 StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1129 // Resolution can trigger emission of more symbols, so iterate until
1130 // we've resolved *everything*.
1132 JITSymbolResolver::LookupSet ResolvedSymbols;
1134 while (true) {
1135 JITSymbolResolver::LookupSet NewSymbols;
1137 for (auto &RelocKV : ExternalSymbolRelocations) {
1138 StringRef Name = RelocKV.first();
1139 if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1140 !ResolvedSymbols.count(Name))
1141 NewSymbols.insert(Name);
1144 if (NewSymbols.empty())
1145 break;
1147 #ifdef _MSC_VER
1148 using ExpectedLookupResult =
1149 MSVCPExpected<JITSymbolResolver::LookupResult>;
1150 #else
1151 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1152 #endif
1154 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1155 auto NewSymbolsF = NewSymbolsP->get_future();
1156 Resolver.lookup(NewSymbols,
1157 [=](Expected<JITSymbolResolver::LookupResult> Result) {
1158 NewSymbolsP->set_value(std::move(Result));
1161 auto NewResolverResults = NewSymbolsF.get();
1163 if (!NewResolverResults)
1164 return NewResolverResults.takeError();
1166 assert(NewResolverResults->size() == NewSymbols.size() &&
1167 "Should have errored on unresolved symbols");
1169 for (auto &RRKV : *NewResolverResults) {
1170 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1171 ExternalSymbolMap.insert(RRKV);
1172 ResolvedSymbols.insert(RRKV.first);
1177 applyExternalSymbolRelocations(ExternalSymbolMap);
1179 return Error::success();
1182 void RuntimeDyldImpl::finalizeAsync(
1183 std::unique_ptr<RuntimeDyldImpl> This, std::function<void(Error)> OnEmitted,
1184 std::unique_ptr<MemoryBuffer> UnderlyingBuffer) {
1186 // FIXME: Move-capture OnRelocsApplied and UnderlyingBuffer once we have
1187 // c++14.
1188 auto SharedUnderlyingBuffer =
1189 std::shared_ptr<MemoryBuffer>(std::move(UnderlyingBuffer));
1190 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1191 auto PostResolveContinuation =
1192 [SharedThis, OnEmitted, SharedUnderlyingBuffer](
1193 Expected<JITSymbolResolver::LookupResult> Result) {
1194 if (!Result) {
1195 OnEmitted(Result.takeError());
1196 return;
1199 /// Copy the result into a StringMap, where the keys are held by value.
1200 StringMap<JITEvaluatedSymbol> Resolved;
1201 for (auto &KV : *Result)
1202 Resolved[KV.first] = KV.second;
1204 SharedThis->applyExternalSymbolRelocations(Resolved);
1205 SharedThis->resolveLocalRelocations();
1206 SharedThis->registerEHFrames();
1207 std::string ErrMsg;
1208 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1209 OnEmitted(make_error<StringError>(std::move(ErrMsg),
1210 inconvertibleErrorCode()));
1211 else
1212 OnEmitted(Error::success());
1215 JITSymbolResolver::LookupSet Symbols;
1217 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1218 StringRef Name = RelocKV.first();
1219 assert(!Name.empty() && "Symbol has no name?");
1220 assert(!SharedThis->GlobalSymbolTable.count(Name) &&
1221 "Name already processed. RuntimeDyld instances can not be re-used "
1222 "when finalizing with finalizeAsync.");
1223 Symbols.insert(Name);
1226 if (!Symbols.empty()) {
1227 SharedThis->Resolver.lookup(Symbols, PostResolveContinuation);
1228 } else
1229 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1232 //===----------------------------------------------------------------------===//
1233 // RuntimeDyld class implementation
1235 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1236 const object::SectionRef &Sec) const {
1238 auto I = ObjSecToIDMap.find(Sec);
1239 if (I != ObjSecToIDMap.end())
1240 return RTDyld.Sections[I->second].getLoadAddress();
1242 return 0;
1245 void RuntimeDyld::MemoryManager::anchor() {}
1246 void JITSymbolResolver::anchor() {}
1247 void LegacyJITSymbolResolver::anchor() {}
1249 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1250 JITSymbolResolver &Resolver)
1251 : MemMgr(MemMgr), Resolver(Resolver) {
1252 // FIXME: There's a potential issue lurking here if a single instance of
1253 // RuntimeDyld is used to load multiple objects. The current implementation
1254 // associates a single memory manager with a RuntimeDyld instance. Even
1255 // though the public class spawns a new 'impl' instance for each load,
1256 // they share a single memory manager. This can become a problem when page
1257 // permissions are applied.
1258 Dyld = nullptr;
1259 ProcessAllSections = false;
1262 RuntimeDyld::~RuntimeDyld() {}
1264 static std::unique_ptr<RuntimeDyldCOFF>
1265 createRuntimeDyldCOFF(
1266 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1267 JITSymbolResolver &Resolver, bool ProcessAllSections,
1268 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1269 std::unique_ptr<RuntimeDyldCOFF> Dyld =
1270 RuntimeDyldCOFF::create(Arch, MM, Resolver);
1271 Dyld->setProcessAllSections(ProcessAllSections);
1272 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1273 return Dyld;
1276 static std::unique_ptr<RuntimeDyldELF>
1277 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1278 JITSymbolResolver &Resolver, bool ProcessAllSections,
1279 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1280 std::unique_ptr<RuntimeDyldELF> Dyld =
1281 RuntimeDyldELF::create(Arch, MM, Resolver);
1282 Dyld->setProcessAllSections(ProcessAllSections);
1283 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1284 return Dyld;
1287 static std::unique_ptr<RuntimeDyldMachO>
1288 createRuntimeDyldMachO(
1289 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1290 JITSymbolResolver &Resolver,
1291 bool ProcessAllSections,
1292 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1293 std::unique_ptr<RuntimeDyldMachO> Dyld =
1294 RuntimeDyldMachO::create(Arch, MM, Resolver);
1295 Dyld->setProcessAllSections(ProcessAllSections);
1296 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1297 return Dyld;
1300 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1301 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1302 if (!Dyld) {
1303 if (Obj.isELF())
1304 Dyld =
1305 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1306 MemMgr, Resolver, ProcessAllSections,
1307 std::move(NotifyStubEmitted));
1308 else if (Obj.isMachO())
1309 Dyld = createRuntimeDyldMachO(
1310 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1311 ProcessAllSections, std::move(NotifyStubEmitted));
1312 else if (Obj.isCOFF())
1313 Dyld = createRuntimeDyldCOFF(
1314 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1315 ProcessAllSections, std::move(NotifyStubEmitted));
1316 else
1317 report_fatal_error("Incompatible object format!");
1320 if (!Dyld->isCompatibleFile(Obj))
1321 report_fatal_error("Incompatible object format!");
1323 auto LoadedObjInfo = Dyld->loadObject(Obj);
1324 MemMgr.notifyObjectLoaded(*this, Obj);
1325 return LoadedObjInfo;
1328 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1329 if (!Dyld)
1330 return nullptr;
1331 return Dyld->getSymbolLocalAddress(Name);
1334 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1335 assert(Dyld && "No RuntimeDyld instance attached");
1336 return Dyld->getSymbolSectionID(Name);
1339 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1340 if (!Dyld)
1341 return nullptr;
1342 return Dyld->getSymbol(Name);
1345 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1346 if (!Dyld)
1347 return std::map<StringRef, JITEvaluatedSymbol>();
1348 return Dyld->getSymbolTable();
1351 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1353 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1354 Dyld->reassignSectionAddress(SectionID, Addr);
1357 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1358 uint64_t TargetAddress) {
1359 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1362 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1364 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1366 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1367 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1368 MemMgr.FinalizationLocked = true;
1369 resolveRelocations();
1370 registerEHFrames();
1371 if (!MemoryFinalizationLocked) {
1372 MemMgr.finalizeMemory();
1373 MemMgr.FinalizationLocked = false;
1377 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1378 assert(Dyld && "No Dyld instance attached");
1379 return Dyld->getSectionContent(SectionID);
1382 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1383 assert(Dyld && "No Dyld instance attached");
1384 return Dyld->getSectionLoadAddress(SectionID);
1387 void RuntimeDyld::registerEHFrames() {
1388 if (Dyld)
1389 Dyld->registerEHFrames();
1392 void RuntimeDyld::deregisterEHFrames() {
1393 if (Dyld)
1394 Dyld->deregisterEHFrames();
1396 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1397 // so that we can re-use RuntimeDyld's implementation without twisting the
1398 // interface any further for ORC's purposes.
1399 void jitLinkForORC(object::ObjectFile &Obj,
1400 std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
1401 RuntimeDyld::MemoryManager &MemMgr,
1402 JITSymbolResolver &Resolver, bool ProcessAllSections,
1403 std::function<Error(
1404 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
1405 std::map<StringRef, JITEvaluatedSymbol>)>
1406 OnLoaded,
1407 std::function<void(Error)> OnEmitted) {
1409 RuntimeDyld RTDyld(MemMgr, Resolver);
1410 RTDyld.setProcessAllSections(ProcessAllSections);
1412 auto Info = RTDyld.loadObject(Obj);
1414 if (RTDyld.hasError()) {
1415 OnEmitted(make_error<StringError>(RTDyld.getErrorString(),
1416 inconvertibleErrorCode()));
1417 return;
1420 if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable()))
1421 OnEmitted(std::move(Err));
1423 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1424 std::move(UnderlyingBuffer));
1427 } // end namespace llvm