1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implementation of the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldELF.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Support/Alignment.h"
21 #include "llvm/Support/MSVCErrorWorkarounds.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
29 using namespace llvm::object
;
31 #define DEBUG_TYPE "dyld"
35 enum RuntimeDyldErrorCode
{
36 GenericRTDyldError
= 1
39 // FIXME: This class is only here to support the transition to llvm::Error. It
40 // will be removed once this transition is complete. Clients should prefer to
41 // deal with the Error value directly, rather than converting to error_code.
42 class RuntimeDyldErrorCategory
: public std::error_category
{
44 const char *name() const noexcept override
{ return "runtimedyld"; }
46 std::string
message(int Condition
) const override
{
47 switch (static_cast<RuntimeDyldErrorCode
>(Condition
)) {
48 case GenericRTDyldError
: return "Generic RuntimeDyld error";
50 llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
54 static ManagedStatic
<RuntimeDyldErrorCategory
> RTDyldErrorCategory
;
58 char RuntimeDyldError::ID
= 0;
60 void RuntimeDyldError::log(raw_ostream
&OS
) const {
64 std::error_code
RuntimeDyldError::convertToErrorCode() const {
65 return std::error_code(GenericRTDyldError
, *RTDyldErrorCategory
);
68 // Empty out-of-line virtual destructor as the key function.
69 RuntimeDyldImpl::~RuntimeDyldImpl() {}
71 // Pin LoadedObjectInfo's vtables to this file.
72 void RuntimeDyld::LoadedObjectInfo::anchor() {}
76 void RuntimeDyldImpl::registerEHFrames() {}
78 void RuntimeDyldImpl::deregisterEHFrames() {
79 MemMgr
.deregisterEHFrames();
83 static void dumpSectionMemory(const SectionEntry
&S
, StringRef State
) {
84 dbgs() << "----- Contents of section " << S
.getName() << " " << State
87 if (S
.getAddress() == nullptr) {
88 dbgs() << "\n <section not emitted>\n";
92 const unsigned ColsPerRow
= 16;
94 uint8_t *DataAddr
= S
.getAddress();
95 uint64_t LoadAddr
= S
.getLoadAddress();
97 unsigned StartPadding
= LoadAddr
& (ColsPerRow
- 1);
98 unsigned BytesRemaining
= S
.getSize();
101 dbgs() << "\n" << format("0x%016" PRIx64
,
102 LoadAddr
& ~(uint64_t)(ColsPerRow
- 1)) << ":";
103 while (StartPadding
--)
107 while (BytesRemaining
> 0) {
108 if ((LoadAddr
& (ColsPerRow
- 1)) == 0)
109 dbgs() << "\n" << format("0x%016" PRIx64
, LoadAddr
) << ":";
111 dbgs() << " " << format("%02x", *DataAddr
);
122 // Resolve the relocations for all symbols we currently know about.
123 void RuntimeDyldImpl::resolveRelocations() {
124 std::lock_guard
<sys::Mutex
> locked(lock
);
126 // Print out the sections prior to relocation.
127 LLVM_DEBUG(for (int i
= 0, e
= Sections
.size(); i
!= e
; ++i
)
128 dumpSectionMemory(Sections
[i
], "before relocations"););
130 // First, resolve relocations associated with external symbols.
131 if (auto Err
= resolveExternalSymbols()) {
133 ErrorStr
= toString(std::move(Err
));
136 resolveLocalRelocations();
138 // Print out sections after relocation.
139 LLVM_DEBUG(for (int i
= 0, e
= Sections
.size(); i
!= e
; ++i
)
140 dumpSectionMemory(Sections
[i
], "after relocations"););
143 void RuntimeDyldImpl::resolveLocalRelocations() {
144 // Iterate over all outstanding relocations
145 for (auto it
= Relocations
.begin(), e
= Relocations
.end(); it
!= e
; ++it
) {
146 // The Section here (Sections[i]) refers to the section in which the
147 // symbol for the relocation is located. The SectionID in the relocation
148 // entry provides the section to which the relocation will be applied.
150 uint64_t Addr
= Sections
[Idx
].getLoadAddress();
151 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx
<< "\t"
152 << format("%p", (uintptr_t)Addr
) << "\n");
153 resolveRelocationList(it
->second
, Addr
);
158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress
,
159 uint64_t TargetAddress
) {
160 std::lock_guard
<sys::Mutex
> locked(lock
);
161 for (unsigned i
= 0, e
= Sections
.size(); i
!= e
; ++i
) {
162 if (Sections
[i
].getAddress() == LocalAddress
) {
163 reassignSectionAddress(i
, TargetAddress
);
167 llvm_unreachable("Attempting to remap address of unknown section!");
170 static Error
getOffset(const SymbolRef
&Sym
, SectionRef Sec
,
172 Expected
<uint64_t> AddressOrErr
= Sym
.getAddress();
174 return AddressOrErr
.takeError();
175 Result
= *AddressOrErr
- Sec
.getAddress();
176 return Error::success();
179 Expected
<RuntimeDyldImpl::ObjSectionToIDMap
>
180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile
&Obj
) {
181 std::lock_guard
<sys::Mutex
> locked(lock
);
183 // Save information about our target
184 Arch
= (Triple::ArchType
)Obj
.getArch();
185 IsTargetLittleEndian
= Obj
.isLittleEndian();
188 // Compute the memory size required to load all sections to be loaded
189 // and pass this information to the memory manager
190 if (MemMgr
.needsToReserveAllocationSpace()) {
191 uint64_t CodeSize
= 0, RODataSize
= 0, RWDataSize
= 0;
192 uint32_t CodeAlign
= 1, RODataAlign
= 1, RWDataAlign
= 1;
193 if (auto Err
= computeTotalAllocSize(Obj
,
195 RODataSize
, RODataAlign
,
196 RWDataSize
, RWDataAlign
))
197 return std::move(Err
);
198 MemMgr
.reserveAllocationSpace(CodeSize
, CodeAlign
, RODataSize
, RODataAlign
,
199 RWDataSize
, RWDataAlign
);
202 // Used sections from the object file
203 ObjSectionToIDMap LocalSections
;
205 // Common symbols requiring allocation, with their sizes and alignments
206 CommonSymbolList CommonSymbolsToAllocate
;
208 uint64_t CommonSize
= 0;
209 uint32_t CommonAlign
= 0;
211 // First, collect all weak and common symbols. We need to know if stronger
212 // definitions occur elsewhere.
213 JITSymbolResolver::LookupSet ResponsibilitySet
;
215 JITSymbolResolver::LookupSet Symbols
;
216 for (auto &Sym
: Obj
.symbols()) {
217 uint32_t Flags
= Sym
.getFlags();
218 if ((Flags
& SymbolRef::SF_Common
) || (Flags
& SymbolRef::SF_Weak
)) {
220 if (auto NameOrErr
= Sym
.getName())
221 Symbols
.insert(*NameOrErr
);
223 return NameOrErr
.takeError();
227 if (auto ResultOrErr
= Resolver
.getResponsibilitySet(Symbols
))
228 ResponsibilitySet
= std::move(*ResultOrErr
);
230 return ResultOrErr
.takeError();
234 LLVM_DEBUG(dbgs() << "Parse symbols:\n");
235 for (symbol_iterator I
= Obj
.symbol_begin(), E
= Obj
.symbol_end(); I
!= E
;
237 uint32_t Flags
= I
->getFlags();
239 // Skip undefined symbols.
240 if (Flags
& SymbolRef::SF_Undefined
)
243 // Get the symbol type.
244 object::SymbolRef::Type SymType
;
245 if (auto SymTypeOrErr
= I
->getType())
246 SymType
= *SymTypeOrErr
;
248 return SymTypeOrErr
.takeError();
252 if (auto NameOrErr
= I
->getName())
255 return NameOrErr
.takeError();
257 // Compute JIT symbol flags.
258 auto JITSymFlags
= getJITSymbolFlags(*I
);
260 return JITSymFlags
.takeError();
262 // If this is a weak definition, check to see if there's a strong one.
263 // If there is, skip this symbol (we won't be providing it: the strong
264 // definition will). If there's no strong definition, make this definition
266 if (JITSymFlags
->isWeak() || JITSymFlags
->isCommon()) {
267 // First check whether there's already a definition in this instance.
268 if (GlobalSymbolTable
.count(Name
))
271 // If we're not responsible for this symbol, skip it.
272 if (!ResponsibilitySet
.count(Name
))
275 // Otherwise update the flags on the symbol to make this definition
277 if (JITSymFlags
->isWeak())
278 *JITSymFlags
&= ~JITSymbolFlags::Weak
;
279 if (JITSymFlags
->isCommon()) {
280 *JITSymFlags
&= ~JITSymbolFlags::Common
;
281 uint32_t Align
= I
->getAlignment();
282 uint64_t Size
= I
->getCommonSize();
285 CommonSize
= alignTo(CommonSize
, Align
) + Size
;
286 CommonSymbolsToAllocate
.push_back(*I
);
290 if (Flags
& SymbolRef::SF_Absolute
&&
291 SymType
!= object::SymbolRef::ST_File
) {
293 if (auto AddrOrErr
= I
->getAddress())
296 return AddrOrErr
.takeError();
298 unsigned SectionID
= AbsoluteSymbolSection
;
300 LLVM_DEBUG(dbgs() << "\tType: " << SymType
<< " (absolute) Name: " << Name
301 << " SID: " << SectionID
302 << " Offset: " << format("%p", (uintptr_t)Addr
)
303 << " flags: " << Flags
<< "\n");
304 GlobalSymbolTable
[Name
] = SymbolTableEntry(SectionID
, Addr
, *JITSymFlags
);
305 } else if (SymType
== object::SymbolRef::ST_Function
||
306 SymType
== object::SymbolRef::ST_Data
||
307 SymType
== object::SymbolRef::ST_Unknown
||
308 SymType
== object::SymbolRef::ST_Other
) {
310 section_iterator SI
= Obj
.section_end();
311 if (auto SIOrErr
= I
->getSection())
314 return SIOrErr
.takeError();
316 if (SI
== Obj
.section_end())
319 // Get symbol offset.
321 if (auto Err
= getOffset(*I
, *SI
, SectOffset
))
322 return std::move(Err
);
324 bool IsCode
= SI
->isText();
326 if (auto SectionIDOrErr
=
327 findOrEmitSection(Obj
, *SI
, IsCode
, LocalSections
))
328 SectionID
= *SectionIDOrErr
;
330 return SectionIDOrErr
.takeError();
332 LLVM_DEBUG(dbgs() << "\tType: " << SymType
<< " Name: " << Name
333 << " SID: " << SectionID
334 << " Offset: " << format("%p", (uintptr_t)SectOffset
)
335 << " flags: " << Flags
<< "\n");
336 GlobalSymbolTable
[Name
] =
337 SymbolTableEntry(SectionID
, SectOffset
, *JITSymFlags
);
341 // Allocate common symbols
342 if (auto Err
= emitCommonSymbols(Obj
, CommonSymbolsToAllocate
, CommonSize
,
344 return std::move(Err
);
346 // Parse and process relocations
347 LLVM_DEBUG(dbgs() << "Parse relocations:\n");
348 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
351 section_iterator RelocatedSection
= SI
->getRelocatedSection();
353 if (RelocatedSection
== SE
)
356 relocation_iterator I
= SI
->relocation_begin();
357 relocation_iterator E
= SI
->relocation_end();
359 if (I
== E
&& !ProcessAllSections
)
362 bool IsCode
= RelocatedSection
->isText();
363 unsigned SectionID
= 0;
364 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, *RelocatedSection
, IsCode
,
366 SectionID
= *SectionIDOrErr
;
368 return SectionIDOrErr
.takeError();
370 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID
<< "\n");
373 if (auto IOrErr
= processRelocationRef(SectionID
, I
, Obj
, LocalSections
, Stubs
))
376 return IOrErr
.takeError();
378 // If there is a NotifyStubEmitted callback set, call it to register any
379 // stubs created for this section.
380 if (NotifyStubEmitted
) {
381 StringRef FileName
= Obj
.getFileName();
382 StringRef SectionName
= Sections
[SectionID
].getName();
383 for (auto &KV
: Stubs
) {
386 uint64_t StubAddr
= KV
.second
;
388 // If this is a named stub, just call NotifyStubEmitted.
390 NotifyStubEmitted(FileName
, SectionName
, VR
.SymbolName
, SectionID
,
395 // Otherwise we will have to try a reverse lookup on the globla symbol table.
396 for (auto &GSTMapEntry
: GlobalSymbolTable
) {
397 StringRef SymbolName
= GSTMapEntry
.first();
398 auto &GSTEntry
= GSTMapEntry
.second
;
399 if (GSTEntry
.getSectionID() == VR
.SectionID
&&
400 GSTEntry
.getOffset() == VR
.Offset
) {
401 NotifyStubEmitted(FileName
, SectionName
, SymbolName
, SectionID
,
410 // Process remaining sections
411 if (ProcessAllSections
) {
412 LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
413 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
416 /* Ignore already loaded sections */
417 if (LocalSections
.find(*SI
) != LocalSections
.end())
420 bool IsCode
= SI
->isText();
421 if (auto SectionIDOrErr
=
422 findOrEmitSection(Obj
, *SI
, IsCode
, LocalSections
))
423 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr
) << "\n");
425 return SectionIDOrErr
.takeError();
429 // Give the subclasses a chance to tie-up any loose ends.
430 if (auto Err
= finalizeLoad(Obj
, LocalSections
))
431 return std::move(Err
);
433 // for (auto E : LocalSections)
434 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
436 return LocalSections
;
439 // A helper method for computeTotalAllocSize.
440 // Computes the memory size required to allocate sections with the given sizes,
441 // assuming that all sections are allocated with the given alignment
443 computeAllocationSizeForSections(std::vector
<uint64_t> &SectionSizes
,
444 uint64_t Alignment
) {
445 uint64_t TotalSize
= 0;
446 for (size_t Idx
= 0, Cnt
= SectionSizes
.size(); Idx
< Cnt
; Idx
++) {
447 uint64_t AlignedSize
=
448 (SectionSizes
[Idx
] + Alignment
- 1) / Alignment
* Alignment
;
449 TotalSize
+= AlignedSize
;
454 static bool isRequiredForExecution(const SectionRef Section
) {
455 const ObjectFile
*Obj
= Section
.getObject();
456 if (isa
<object::ELFObjectFileBase
>(Obj
))
457 return ELFSectionRef(Section
).getFlags() & ELF::SHF_ALLOC
;
458 if (auto *COFFObj
= dyn_cast
<object::COFFObjectFile
>(Obj
)) {
459 const coff_section
*CoffSection
= COFFObj
->getCOFFSection(Section
);
460 // Avoid loading zero-sized COFF sections.
461 // In PE files, VirtualSize gives the section size, and SizeOfRawData
462 // may be zero for sections with content. In Obj files, SizeOfRawData
463 // gives the section size, and VirtualSize is always zero. Hence
464 // the need to check for both cases below.
466 (CoffSection
->VirtualSize
> 0) || (CoffSection
->SizeOfRawData
> 0);
468 CoffSection
->Characteristics
&
469 (COFF::IMAGE_SCN_MEM_DISCARDABLE
| COFF::IMAGE_SCN_LNK_INFO
);
470 return HasContent
&& !IsDiscardable
;
473 assert(isa
<MachOObjectFile
>(Obj
));
477 static bool isReadOnlyData(const SectionRef Section
) {
478 const ObjectFile
*Obj
= Section
.getObject();
479 if (isa
<object::ELFObjectFileBase
>(Obj
))
480 return !(ELFSectionRef(Section
).getFlags() &
481 (ELF::SHF_WRITE
| ELF::SHF_EXECINSTR
));
482 if (auto *COFFObj
= dyn_cast
<object::COFFObjectFile
>(Obj
))
483 return ((COFFObj
->getCOFFSection(Section
)->Characteristics
&
484 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
485 | COFF::IMAGE_SCN_MEM_READ
486 | COFF::IMAGE_SCN_MEM_WRITE
))
488 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
489 | COFF::IMAGE_SCN_MEM_READ
));
491 assert(isa
<MachOObjectFile
>(Obj
));
495 static bool isZeroInit(const SectionRef Section
) {
496 const ObjectFile
*Obj
= Section
.getObject();
497 if (isa
<object::ELFObjectFileBase
>(Obj
))
498 return ELFSectionRef(Section
).getType() == ELF::SHT_NOBITS
;
499 if (auto *COFFObj
= dyn_cast
<object::COFFObjectFile
>(Obj
))
500 return COFFObj
->getCOFFSection(Section
)->Characteristics
&
501 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA
;
503 auto *MachO
= cast
<MachOObjectFile
>(Obj
);
504 unsigned SectionType
= MachO
->getSectionType(Section
);
505 return SectionType
== MachO::S_ZEROFILL
||
506 SectionType
== MachO::S_GB_ZEROFILL
;
509 // Compute an upper bound of the memory size that is required to load all
511 Error
RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile
&Obj
,
514 uint64_t &RODataSize
,
515 uint32_t &RODataAlign
,
516 uint64_t &RWDataSize
,
517 uint32_t &RWDataAlign
) {
518 // Compute the size of all sections required for execution
519 std::vector
<uint64_t> CodeSectionSizes
;
520 std::vector
<uint64_t> ROSectionSizes
;
521 std::vector
<uint64_t> RWSectionSizes
;
523 // Collect sizes of all sections to be loaded;
524 // also determine the max alignment of all sections
525 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
527 const SectionRef
&Section
= *SI
;
529 bool IsRequired
= isRequiredForExecution(Section
) || ProcessAllSections
;
531 // Consider only the sections that are required to be loaded for execution
533 uint64_t DataSize
= Section
.getSize();
534 uint64_t Alignment64
= Section
.getAlignment();
535 unsigned Alignment
= (unsigned)Alignment64
& 0xffffffffL
;
536 bool IsCode
= Section
.isText();
537 bool IsReadOnly
= isReadOnlyData(Section
);
539 Expected
<StringRef
> NameOrErr
= Section
.getName();
541 return NameOrErr
.takeError();
542 StringRef Name
= *NameOrErr
;
544 uint64_t StubBufSize
= computeSectionStubBufSize(Obj
, Section
);
546 uint64_t PaddingSize
= 0;
547 if (Name
== ".eh_frame")
549 if (StubBufSize
!= 0)
550 PaddingSize
+= getStubAlignment() - 1;
552 uint64_t SectionSize
= DataSize
+ PaddingSize
+ StubBufSize
;
554 // The .eh_frame section (at least on Linux) needs an extra four bytes
556 // with zeroes added at the end. For MachO objects, this section has a
557 // slightly different name, so this won't have any effect for MachO
559 if (Name
== ".eh_frame")
566 CodeAlign
= std::max(CodeAlign
, Alignment
);
567 CodeSectionSizes
.push_back(SectionSize
);
568 } else if (IsReadOnly
) {
569 RODataAlign
= std::max(RODataAlign
, Alignment
);
570 ROSectionSizes
.push_back(SectionSize
);
572 RWDataAlign
= std::max(RWDataAlign
, Alignment
);
573 RWSectionSizes
.push_back(SectionSize
);
578 // Compute Global Offset Table size. If it is not zero we
579 // also update alignment, which is equal to a size of a
581 if (unsigned GotSize
= computeGOTSize(Obj
)) {
582 RWSectionSizes
.push_back(GotSize
);
583 RWDataAlign
= std::max
<uint32_t>(RWDataAlign
, getGOTEntrySize());
586 // Compute the size of all common symbols
587 uint64_t CommonSize
= 0;
588 uint32_t CommonAlign
= 1;
589 for (symbol_iterator I
= Obj
.symbol_begin(), E
= Obj
.symbol_end(); I
!= E
;
591 uint32_t Flags
= I
->getFlags();
592 if (Flags
& SymbolRef::SF_Common
) {
593 // Add the common symbols to a list. We'll allocate them all below.
594 uint64_t Size
= I
->getCommonSize();
595 uint32_t Align
= I
->getAlignment();
596 // If this is the first common symbol, use its alignment as the alignment
597 // for the common symbols section.
600 CommonSize
= alignTo(CommonSize
, Align
) + Size
;
603 if (CommonSize
!= 0) {
604 RWSectionSizes
.push_back(CommonSize
);
605 RWDataAlign
= std::max(RWDataAlign
, CommonAlign
);
608 // Compute the required allocation space for each different type of sections
609 // (code, read-only data, read-write data) assuming that all sections are
610 // allocated with the max alignment. Note that we cannot compute with the
611 // individual alignments of the sections, because then the required size
612 // depends on the order, in which the sections are allocated.
613 CodeSize
= computeAllocationSizeForSections(CodeSectionSizes
, CodeAlign
);
614 RODataSize
= computeAllocationSizeForSections(ROSectionSizes
, RODataAlign
);
615 RWDataSize
= computeAllocationSizeForSections(RWSectionSizes
, RWDataAlign
);
617 return Error::success();
621 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile
&Obj
) {
622 size_t GotEntrySize
= getGOTEntrySize();
627 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
630 for (const RelocationRef
&Reloc
: SI
->relocations())
631 if (relocationNeedsGot(Reloc
))
632 GotSize
+= GotEntrySize
;
638 // compute stub buffer size for the given section
639 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile
&Obj
,
640 const SectionRef
&Section
) {
641 unsigned StubSize
= getMaxStubSize();
645 // FIXME: this is an inefficient way to handle this. We should computed the
646 // necessary section allocation size in loadObject by walking all the sections
648 unsigned StubBufSize
= 0;
649 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
651 section_iterator RelSecI
= SI
->getRelocatedSection();
652 if (!(RelSecI
== Section
))
655 for (const RelocationRef
&Reloc
: SI
->relocations())
656 if (relocationNeedsStub(Reloc
))
657 StubBufSize
+= StubSize
;
660 // Get section data size and alignment
661 uint64_t DataSize
= Section
.getSize();
662 uint64_t Alignment64
= Section
.getAlignment();
664 // Add stubbuf size alignment
665 unsigned Alignment
= (unsigned)Alignment64
& 0xffffffffL
;
666 unsigned StubAlignment
= getStubAlignment();
667 unsigned EndAlignment
= (DataSize
| Alignment
) & -(DataSize
| Alignment
);
668 if (StubAlignment
> EndAlignment
)
669 StubBufSize
+= StubAlignment
- EndAlignment
;
673 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src
,
674 unsigned Size
) const {
676 if (IsTargetLittleEndian
) {
679 Result
= (Result
<< 8) | *Src
--;
682 Result
= (Result
<< 8) | *Src
++;
687 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value
, uint8_t *Dst
,
688 unsigned Size
) const {
689 if (IsTargetLittleEndian
) {
691 *Dst
++ = Value
& 0xFF;
697 *Dst
-- = Value
& 0xFF;
703 Expected
<JITSymbolFlags
>
704 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef
&SR
) {
705 return JITSymbolFlags::fromObjectSymbol(SR
);
708 Error
RuntimeDyldImpl::emitCommonSymbols(const ObjectFile
&Obj
,
709 CommonSymbolList
&SymbolsToAllocate
,
711 uint32_t CommonAlign
) {
712 if (SymbolsToAllocate
.empty())
713 return Error::success();
715 // Allocate memory for the section
716 unsigned SectionID
= Sections
.size();
717 uint8_t *Addr
= MemMgr
.allocateDataSection(CommonSize
, CommonAlign
, SectionID
,
718 "<common symbols>", false);
720 report_fatal_error("Unable to allocate memory for common symbols!");
723 SectionEntry("<common symbols>", Addr
, CommonSize
, CommonSize
, 0));
724 memset(Addr
, 0, CommonSize
);
726 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
727 << " new addr: " << format("%p", Addr
)
728 << " DataSize: " << CommonSize
<< "\n");
730 // Assign the address of each symbol
731 for (auto &Sym
: SymbolsToAllocate
) {
732 uint32_t Align
= Sym
.getAlignment();
733 uint64_t Size
= Sym
.getCommonSize();
735 if (auto NameOrErr
= Sym
.getName())
738 return NameOrErr
.takeError();
740 // This symbol has an alignment requirement.
741 uint64_t AlignOffset
=
742 offsetToAlignment((uint64_t)Addr
, llvm::Align(Align
));
744 Offset
+= AlignOffset
;
746 auto JITSymFlags
= getJITSymbolFlags(Sym
);
749 return JITSymFlags
.takeError();
751 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name
<< " address "
752 << format("%p", Addr
) << "\n");
753 GlobalSymbolTable
[Name
] =
754 SymbolTableEntry(SectionID
, Offset
, std::move(*JITSymFlags
));
759 return Error::success();
763 RuntimeDyldImpl::emitSection(const ObjectFile
&Obj
,
764 const SectionRef
&Section
,
767 uint64_t Alignment64
= Section
.getAlignment();
769 unsigned Alignment
= (unsigned)Alignment64
& 0xffffffffL
;
770 unsigned PaddingSize
= 0;
771 unsigned StubBufSize
= 0;
772 bool IsRequired
= isRequiredForExecution(Section
);
773 bool IsVirtual
= Section
.isVirtual();
774 bool IsZeroInit
= isZeroInit(Section
);
775 bool IsReadOnly
= isReadOnlyData(Section
);
776 uint64_t DataSize
= Section
.getSize();
778 // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
779 // while being more "polite". Other formats do not support 0-aligned sections
780 // anyway, so we should guarantee that the alignment is always at least 1.
781 Alignment
= std::max(1u, Alignment
);
783 Expected
<StringRef
> NameOrErr
= Section
.getName();
785 return NameOrErr
.takeError();
786 StringRef Name
= *NameOrErr
;
788 StubBufSize
= computeSectionStubBufSize(Obj
, Section
);
790 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
791 // with zeroes added at the end. For MachO objects, this section has a
792 // slightly different name, so this won't have any effect for MachO objects.
793 if (Name
== ".eh_frame")
797 unsigned SectionID
= Sections
.size();
799 const char *pData
= nullptr;
801 // If this section contains any bits (i.e. isn't a virtual or bss section),
802 // grab a reference to them.
803 if (!IsVirtual
&& !IsZeroInit
) {
804 // In either case, set the location of the unrelocated section in memory,
805 // since we still process relocations for it even if we're not applying them.
806 if (Expected
<StringRef
> E
= Section
.getContents())
809 return E
.takeError();
813 // If there are any stubs then the section alignment needs to be at least as
814 // high as stub alignment or padding calculations may by incorrect when the
815 // section is remapped.
816 if (StubBufSize
!= 0) {
817 Alignment
= std::max(Alignment
, getStubAlignment());
818 PaddingSize
+= getStubAlignment() - 1;
821 // Some sections, such as debug info, don't need to be loaded for execution.
822 // Process those only if explicitly requested.
823 if (IsRequired
|| ProcessAllSections
) {
824 Allocate
= DataSize
+ PaddingSize
+ StubBufSize
;
827 Addr
= IsCode
? MemMgr
.allocateCodeSection(Allocate
, Alignment
, SectionID
,
829 : MemMgr
.allocateDataSection(Allocate
, Alignment
, SectionID
,
832 report_fatal_error("Unable to allocate section memory!");
834 // Zero-initialize or copy the data from the image
835 if (IsZeroInit
|| IsVirtual
)
836 memset(Addr
, 0, DataSize
);
838 memcpy(Addr
, pData
, DataSize
);
840 // Fill in any extra bytes we allocated for padding
841 if (PaddingSize
!= 0) {
842 memset(Addr
+ DataSize
, 0, PaddingSize
);
843 // Update the DataSize variable to include padding.
844 DataSize
+= PaddingSize
;
846 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
847 // have been increased above to account for this).
849 DataSize
&= -(uint64_t)getStubAlignment();
852 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID
<< " Name: "
853 << Name
<< " obj addr: " << format("%p", pData
)
854 << " new addr: " << format("%p", Addr
) << " DataSize: "
855 << DataSize
<< " StubBufSize: " << StubBufSize
856 << " Allocate: " << Allocate
<< "\n");
858 // Even if we didn't load the section, we need to record an entry for it
859 // to handle later processing (and by 'handle' I mean don't do anything
860 // with these sections).
864 dbgs() << "emitSection SectionID: " << SectionID
<< " Name: " << Name
865 << " obj addr: " << format("%p", data
.data()) << " new addr: 0"
866 << " DataSize: " << DataSize
<< " StubBufSize: " << StubBufSize
867 << " Allocate: " << Allocate
<< "\n");
871 SectionEntry(Name
, Addr
, DataSize
, Allocate
, (uintptr_t)pData
));
873 // Debug info sections are linked as if their load address was zero
875 Sections
.back().setLoadAddress(0);
881 RuntimeDyldImpl::findOrEmitSection(const ObjectFile
&Obj
,
882 const SectionRef
&Section
,
884 ObjSectionToIDMap
&LocalSections
) {
886 unsigned SectionID
= 0;
887 ObjSectionToIDMap::iterator i
= LocalSections
.find(Section
);
888 if (i
!= LocalSections
.end())
889 SectionID
= i
->second
;
891 if (auto SectionIDOrErr
= emitSection(Obj
, Section
, IsCode
))
892 SectionID
= *SectionIDOrErr
;
894 return SectionIDOrErr
.takeError();
895 LocalSections
[Section
] = SectionID
;
900 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry
&RE
,
901 unsigned SectionID
) {
902 Relocations
[SectionID
].push_back(RE
);
905 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry
&RE
,
906 StringRef SymbolName
) {
907 // Relocation by symbol. If the symbol is found in the global symbol table,
908 // create an appropriate section relocation. Otherwise, add it to
909 // ExternalSymbolRelocations.
910 RTDyldSymbolTable::const_iterator Loc
= GlobalSymbolTable
.find(SymbolName
);
911 if (Loc
== GlobalSymbolTable
.end()) {
912 ExternalSymbolRelocations
[SymbolName
].push_back(RE
);
914 // Copy the RE since we want to modify its addend.
915 RelocationEntry RECopy
= RE
;
916 const auto &SymInfo
= Loc
->second
;
917 RECopy
.Addend
+= SymInfo
.getOffset();
918 Relocations
[SymInfo
.getSectionID()].push_back(RECopy
);
922 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr
,
923 unsigned AbiVariant
) {
924 if (Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
||
925 Arch
== Triple::aarch64_32
) {
926 // This stub has to be able to access the full address space,
927 // since symbol lookup won't necessarily find a handy, in-range,
928 // PLT stub for functions which could be anywhere.
929 // Stub can use ip0 (== x16) to calculate address
930 writeBytesUnaligned(0xd2e00010, Addr
, 4); // movz ip0, #:abs_g3:<addr>
931 writeBytesUnaligned(0xf2c00010, Addr
+4, 4); // movk ip0, #:abs_g2_nc:<addr>
932 writeBytesUnaligned(0xf2a00010, Addr
+8, 4); // movk ip0, #:abs_g1_nc:<addr>
933 writeBytesUnaligned(0xf2800010, Addr
+12, 4); // movk ip0, #:abs_g0_nc:<addr>
934 writeBytesUnaligned(0xd61f0200, Addr
+16, 4); // br ip0
937 } else if (Arch
== Triple::arm
|| Arch
== Triple::armeb
) {
938 // TODO: There is only ARM far stub now. We should add the Thumb stub,
939 // and stubs for branches Thumb - ARM and ARM - Thumb.
940 writeBytesUnaligned(0xe51ff004, Addr
, 4); // ldr pc, [pc, #-4]
942 } else if (IsMipsO32ABI
|| IsMipsN32ABI
) {
943 // 0: 3c190000 lui t9,%hi(addr).
944 // 4: 27390000 addiu t9,t9,%lo(addr).
945 // 8: 03200008 jr t9.
947 const unsigned LuiT9Instr
= 0x3c190000, AdduiT9Instr
= 0x27390000;
948 const unsigned NopInstr
= 0x0;
949 unsigned JrT9Instr
= 0x03200008;
950 if ((AbiVariant
& ELF::EF_MIPS_ARCH
) == ELF::EF_MIPS_ARCH_32R6
||
951 (AbiVariant
& ELF::EF_MIPS_ARCH
) == ELF::EF_MIPS_ARCH_64R6
)
952 JrT9Instr
= 0x03200009;
954 writeBytesUnaligned(LuiT9Instr
, Addr
, 4);
955 writeBytesUnaligned(AdduiT9Instr
, Addr
+ 4, 4);
956 writeBytesUnaligned(JrT9Instr
, Addr
+ 8, 4);
957 writeBytesUnaligned(NopInstr
, Addr
+ 12, 4);
959 } else if (IsMipsN64ABI
) {
960 // 0: 3c190000 lui t9,%highest(addr).
961 // 4: 67390000 daddiu t9,t9,%higher(addr).
962 // 8: 0019CC38 dsll t9,t9,16.
963 // c: 67390000 daddiu t9,t9,%hi(addr).
964 // 10: 0019CC38 dsll t9,t9,16.
965 // 14: 67390000 daddiu t9,t9,%lo(addr).
966 // 18: 03200008 jr t9.
968 const unsigned LuiT9Instr
= 0x3c190000, DaddiuT9Instr
= 0x67390000,
969 DsllT9Instr
= 0x19CC38;
970 const unsigned NopInstr
= 0x0;
971 unsigned JrT9Instr
= 0x03200008;
972 if ((AbiVariant
& ELF::EF_MIPS_ARCH
) == ELF::EF_MIPS_ARCH_64R6
)
973 JrT9Instr
= 0x03200009;
975 writeBytesUnaligned(LuiT9Instr
, Addr
, 4);
976 writeBytesUnaligned(DaddiuT9Instr
, Addr
+ 4, 4);
977 writeBytesUnaligned(DsllT9Instr
, Addr
+ 8, 4);
978 writeBytesUnaligned(DaddiuT9Instr
, Addr
+ 12, 4);
979 writeBytesUnaligned(DsllT9Instr
, Addr
+ 16, 4);
980 writeBytesUnaligned(DaddiuT9Instr
, Addr
+ 20, 4);
981 writeBytesUnaligned(JrT9Instr
, Addr
+ 24, 4);
982 writeBytesUnaligned(NopInstr
, Addr
+ 28, 4);
984 } else if (Arch
== Triple::ppc64
|| Arch
== Triple::ppc64le
) {
985 // Depending on which version of the ELF ABI is in use, we need to
986 // generate one of two variants of the stub. They both start with
987 // the same sequence to load the target address into r12.
988 writeInt32BE(Addr
, 0x3D800000); // lis r12, highest(addr)
989 writeInt32BE(Addr
+4, 0x618C0000); // ori r12, higher(addr)
990 writeInt32BE(Addr
+8, 0x798C07C6); // sldi r12, r12, 32
991 writeInt32BE(Addr
+12, 0x658C0000); // oris r12, r12, h(addr)
992 writeInt32BE(Addr
+16, 0x618C0000); // ori r12, r12, l(addr)
993 if (AbiVariant
== 2) {
994 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
995 // The address is already in r12 as required by the ABI. Branch to it.
996 writeInt32BE(Addr
+20, 0xF8410018); // std r2, 24(r1)
997 writeInt32BE(Addr
+24, 0x7D8903A6); // mtctr r12
998 writeInt32BE(Addr
+28, 0x4E800420); // bctr
1000 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1001 // Load the function address on r11 and sets it to control register. Also
1002 // loads the function TOC in r2 and environment pointer to r11.
1003 writeInt32BE(Addr
+20, 0xF8410028); // std r2, 40(r1)
1004 writeInt32BE(Addr
+24, 0xE96C0000); // ld r11, 0(r12)
1005 writeInt32BE(Addr
+28, 0xE84C0008); // ld r2, 0(r12)
1006 writeInt32BE(Addr
+32, 0x7D6903A6); // mtctr r11
1007 writeInt32BE(Addr
+36, 0xE96C0010); // ld r11, 16(r2)
1008 writeInt32BE(Addr
+40, 0x4E800420); // bctr
1011 } else if (Arch
== Triple::systemz
) {
1012 writeInt16BE(Addr
, 0xC418); // lgrl %r1,.+8
1013 writeInt16BE(Addr
+2, 0x0000);
1014 writeInt16BE(Addr
+4, 0x0004);
1015 writeInt16BE(Addr
+6, 0x07F1); // brc 15,%r1
1016 // 8-byte address stored at Addr + 8
1018 } else if (Arch
== Triple::x86_64
) {
1019 *Addr
= 0xFF; // jmp
1020 *(Addr
+1) = 0x25; // rip
1021 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1022 } else if (Arch
== Triple::x86
) {
1023 *Addr
= 0xE9; // 32-bit pc-relative jump.
1028 // Assign an address to a symbol name and resolve all the relocations
1029 // associated with it.
1030 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID
,
1032 // The address to use for relocation resolution is not
1033 // the address of the local section buffer. We must be doing
1034 // a remote execution environment of some sort. Relocations can't
1035 // be applied until all the sections have been moved. The client must
1036 // trigger this with a call to MCJIT::finalize() or
1037 // RuntimeDyld::resolveRelocations().
1039 // Addr is a uint64_t because we can't assume the pointer width
1040 // of the target is the same as that of the host. Just use a generic
1041 // "big enough" type.
1043 dbgs() << "Reassigning address for section " << SectionID
<< " ("
1044 << Sections
[SectionID
].getName() << "): "
1045 << format("0x%016" PRIx64
, Sections
[SectionID
].getLoadAddress())
1046 << " -> " << format("0x%016" PRIx64
, Addr
) << "\n");
1047 Sections
[SectionID
].setLoadAddress(Addr
);
1050 void RuntimeDyldImpl::resolveRelocationList(const RelocationList
&Relocs
,
1052 for (unsigned i
= 0, e
= Relocs
.size(); i
!= e
; ++i
) {
1053 const RelocationEntry
&RE
= Relocs
[i
];
1054 // Ignore relocations for sections that were not loaded
1055 if (Sections
[RE
.SectionID
].getAddress() == nullptr)
1057 resolveRelocation(RE
, Value
);
1061 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1062 const StringMap
<JITEvaluatedSymbol
> ExternalSymbolMap
) {
1063 while (!ExternalSymbolRelocations
.empty()) {
1065 StringMap
<RelocationList
>::iterator i
= ExternalSymbolRelocations
.begin();
1067 StringRef Name
= i
->first();
1068 if (Name
.size() == 0) {
1069 // This is an absolute symbol, use an address of zero.
1070 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1072 RelocationList
&Relocs
= i
->second
;
1073 resolveRelocationList(Relocs
, 0);
1076 JITSymbolFlags Flags
;
1077 RTDyldSymbolTable::const_iterator Loc
= GlobalSymbolTable
.find(Name
);
1078 if (Loc
== GlobalSymbolTable
.end()) {
1079 auto RRI
= ExternalSymbolMap
.find(Name
);
1080 assert(RRI
!= ExternalSymbolMap
.end() && "No result for symbol");
1081 Addr
= RRI
->second
.getAddress();
1082 Flags
= RRI
->second
.getFlags();
1083 // The call to getSymbolAddress may have caused additional modules to
1084 // be loaded, which may have added new entries to the
1085 // ExternalSymbolRelocations map. Consquently, we need to update our
1086 // iterator. This is also why retrieval of the relocation list
1087 // associated with this symbol is deferred until below this point.
1088 // New entries may have been added to the relocation list.
1089 i
= ExternalSymbolRelocations
.find(Name
);
1091 // We found the symbol in our global table. It was probably in a
1092 // Module that we loaded previously.
1093 const auto &SymInfo
= Loc
->second
;
1094 Addr
= getSectionLoadAddress(SymInfo
.getSectionID()) +
1095 SymInfo
.getOffset();
1096 Flags
= SymInfo
.getFlags();
1099 // FIXME: Implement error handling that doesn't kill the host program!
1101 report_fatal_error("Program used external function '" + Name
+
1102 "' which could not be resolved!");
1104 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1105 // manually and we shouldn't resolve its relocations.
1106 if (Addr
!= UINT64_MAX
) {
1108 // Tweak the address based on the symbol flags if necessary.
1109 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1110 // if the target symbol is Thumb.
1111 Addr
= modifyAddressBasedOnFlags(Addr
, Flags
);
1113 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name
<< "\t"
1114 << format("0x%lx", Addr
) << "\n");
1115 // This list may have been updated when we called getSymbolAddress, so
1116 // don't change this code to get the list earlier.
1117 RelocationList
&Relocs
= i
->second
;
1118 resolveRelocationList(Relocs
, Addr
);
1122 ExternalSymbolRelocations
.erase(i
);
1126 Error
RuntimeDyldImpl::resolveExternalSymbols() {
1127 StringMap
<JITEvaluatedSymbol
> ExternalSymbolMap
;
1129 // Resolution can trigger emission of more symbols, so iterate until
1130 // we've resolved *everything*.
1132 JITSymbolResolver::LookupSet ResolvedSymbols
;
1135 JITSymbolResolver::LookupSet NewSymbols
;
1137 for (auto &RelocKV
: ExternalSymbolRelocations
) {
1138 StringRef Name
= RelocKV
.first();
1139 if (!Name
.empty() && !GlobalSymbolTable
.count(Name
) &&
1140 !ResolvedSymbols
.count(Name
))
1141 NewSymbols
.insert(Name
);
1144 if (NewSymbols
.empty())
1148 using ExpectedLookupResult
=
1149 MSVCPExpected
<JITSymbolResolver::LookupResult
>;
1151 using ExpectedLookupResult
= Expected
<JITSymbolResolver::LookupResult
>;
1154 auto NewSymbolsP
= std::make_shared
<std::promise
<ExpectedLookupResult
>>();
1155 auto NewSymbolsF
= NewSymbolsP
->get_future();
1156 Resolver
.lookup(NewSymbols
,
1157 [=](Expected
<JITSymbolResolver::LookupResult
> Result
) {
1158 NewSymbolsP
->set_value(std::move(Result
));
1161 auto NewResolverResults
= NewSymbolsF
.get();
1163 if (!NewResolverResults
)
1164 return NewResolverResults
.takeError();
1166 assert(NewResolverResults
->size() == NewSymbols
.size() &&
1167 "Should have errored on unresolved symbols");
1169 for (auto &RRKV
: *NewResolverResults
) {
1170 assert(!ResolvedSymbols
.count(RRKV
.first
) && "Redundant resolution?");
1171 ExternalSymbolMap
.insert(RRKV
);
1172 ResolvedSymbols
.insert(RRKV
.first
);
1177 applyExternalSymbolRelocations(ExternalSymbolMap
);
1179 return Error::success();
1182 void RuntimeDyldImpl::finalizeAsync(
1183 std::unique_ptr
<RuntimeDyldImpl
> This
, std::function
<void(Error
)> OnEmitted
,
1184 std::unique_ptr
<MemoryBuffer
> UnderlyingBuffer
) {
1186 // FIXME: Move-capture OnRelocsApplied and UnderlyingBuffer once we have
1188 auto SharedUnderlyingBuffer
=
1189 std::shared_ptr
<MemoryBuffer
>(std::move(UnderlyingBuffer
));
1190 auto SharedThis
= std::shared_ptr
<RuntimeDyldImpl
>(std::move(This
));
1191 auto PostResolveContinuation
=
1192 [SharedThis
, OnEmitted
, SharedUnderlyingBuffer
](
1193 Expected
<JITSymbolResolver::LookupResult
> Result
) {
1195 OnEmitted(Result
.takeError());
1199 /// Copy the result into a StringMap, where the keys are held by value.
1200 StringMap
<JITEvaluatedSymbol
> Resolved
;
1201 for (auto &KV
: *Result
)
1202 Resolved
[KV
.first
] = KV
.second
;
1204 SharedThis
->applyExternalSymbolRelocations(Resolved
);
1205 SharedThis
->resolveLocalRelocations();
1206 SharedThis
->registerEHFrames();
1208 if (SharedThis
->MemMgr
.finalizeMemory(&ErrMsg
))
1209 OnEmitted(make_error
<StringError
>(std::move(ErrMsg
),
1210 inconvertibleErrorCode()));
1212 OnEmitted(Error::success());
1215 JITSymbolResolver::LookupSet Symbols
;
1217 for (auto &RelocKV
: SharedThis
->ExternalSymbolRelocations
) {
1218 StringRef Name
= RelocKV
.first();
1219 assert(!Name
.empty() && "Symbol has no name?");
1220 assert(!SharedThis
->GlobalSymbolTable
.count(Name
) &&
1221 "Name already processed. RuntimeDyld instances can not be re-used "
1222 "when finalizing with finalizeAsync.");
1223 Symbols
.insert(Name
);
1226 if (!Symbols
.empty()) {
1227 SharedThis
->Resolver
.lookup(Symbols
, PostResolveContinuation
);
1229 PostResolveContinuation(std::map
<StringRef
, JITEvaluatedSymbol
>());
1232 //===----------------------------------------------------------------------===//
1233 // RuntimeDyld class implementation
1235 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1236 const object::SectionRef
&Sec
) const {
1238 auto I
= ObjSecToIDMap
.find(Sec
);
1239 if (I
!= ObjSecToIDMap
.end())
1240 return RTDyld
.Sections
[I
->second
].getLoadAddress();
1245 void RuntimeDyld::MemoryManager::anchor() {}
1246 void JITSymbolResolver::anchor() {}
1247 void LegacyJITSymbolResolver::anchor() {}
1249 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager
&MemMgr
,
1250 JITSymbolResolver
&Resolver
)
1251 : MemMgr(MemMgr
), Resolver(Resolver
) {
1252 // FIXME: There's a potential issue lurking here if a single instance of
1253 // RuntimeDyld is used to load multiple objects. The current implementation
1254 // associates a single memory manager with a RuntimeDyld instance. Even
1255 // though the public class spawns a new 'impl' instance for each load,
1256 // they share a single memory manager. This can become a problem when page
1257 // permissions are applied.
1259 ProcessAllSections
= false;
1262 RuntimeDyld::~RuntimeDyld() {}
1264 static std::unique_ptr
<RuntimeDyldCOFF
>
1265 createRuntimeDyldCOFF(
1266 Triple::ArchType Arch
, RuntimeDyld::MemoryManager
&MM
,
1267 JITSymbolResolver
&Resolver
, bool ProcessAllSections
,
1268 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted
) {
1269 std::unique_ptr
<RuntimeDyldCOFF
> Dyld
=
1270 RuntimeDyldCOFF::create(Arch
, MM
, Resolver
);
1271 Dyld
->setProcessAllSections(ProcessAllSections
);
1272 Dyld
->setNotifyStubEmitted(std::move(NotifyStubEmitted
));
1276 static std::unique_ptr
<RuntimeDyldELF
>
1277 createRuntimeDyldELF(Triple::ArchType Arch
, RuntimeDyld::MemoryManager
&MM
,
1278 JITSymbolResolver
&Resolver
, bool ProcessAllSections
,
1279 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted
) {
1280 std::unique_ptr
<RuntimeDyldELF
> Dyld
=
1281 RuntimeDyldELF::create(Arch
, MM
, Resolver
);
1282 Dyld
->setProcessAllSections(ProcessAllSections
);
1283 Dyld
->setNotifyStubEmitted(std::move(NotifyStubEmitted
));
1287 static std::unique_ptr
<RuntimeDyldMachO
>
1288 createRuntimeDyldMachO(
1289 Triple::ArchType Arch
, RuntimeDyld::MemoryManager
&MM
,
1290 JITSymbolResolver
&Resolver
,
1291 bool ProcessAllSections
,
1292 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted
) {
1293 std::unique_ptr
<RuntimeDyldMachO
> Dyld
=
1294 RuntimeDyldMachO::create(Arch
, MM
, Resolver
);
1295 Dyld
->setProcessAllSections(ProcessAllSections
);
1296 Dyld
->setNotifyStubEmitted(std::move(NotifyStubEmitted
));
1300 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>
1301 RuntimeDyld::loadObject(const ObjectFile
&Obj
) {
1305 createRuntimeDyldELF(static_cast<Triple::ArchType
>(Obj
.getArch()),
1306 MemMgr
, Resolver
, ProcessAllSections
,
1307 std::move(NotifyStubEmitted
));
1308 else if (Obj
.isMachO())
1309 Dyld
= createRuntimeDyldMachO(
1310 static_cast<Triple::ArchType
>(Obj
.getArch()), MemMgr
, Resolver
,
1311 ProcessAllSections
, std::move(NotifyStubEmitted
));
1312 else if (Obj
.isCOFF())
1313 Dyld
= createRuntimeDyldCOFF(
1314 static_cast<Triple::ArchType
>(Obj
.getArch()), MemMgr
, Resolver
,
1315 ProcessAllSections
, std::move(NotifyStubEmitted
));
1317 report_fatal_error("Incompatible object format!");
1320 if (!Dyld
->isCompatibleFile(Obj
))
1321 report_fatal_error("Incompatible object format!");
1323 auto LoadedObjInfo
= Dyld
->loadObject(Obj
);
1324 MemMgr
.notifyObjectLoaded(*this, Obj
);
1325 return LoadedObjInfo
;
1328 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name
) const {
1331 return Dyld
->getSymbolLocalAddress(Name
);
1334 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name
) const {
1335 assert(Dyld
&& "No RuntimeDyld instance attached");
1336 return Dyld
->getSymbolSectionID(Name
);
1339 JITEvaluatedSymbol
RuntimeDyld::getSymbol(StringRef Name
) const {
1342 return Dyld
->getSymbol(Name
);
1345 std::map
<StringRef
, JITEvaluatedSymbol
> RuntimeDyld::getSymbolTable() const {
1347 return std::map
<StringRef
, JITEvaluatedSymbol
>();
1348 return Dyld
->getSymbolTable();
1351 void RuntimeDyld::resolveRelocations() { Dyld
->resolveRelocations(); }
1353 void RuntimeDyld::reassignSectionAddress(unsigned SectionID
, uint64_t Addr
) {
1354 Dyld
->reassignSectionAddress(SectionID
, Addr
);
1357 void RuntimeDyld::mapSectionAddress(const void *LocalAddress
,
1358 uint64_t TargetAddress
) {
1359 Dyld
->mapSectionAddress(LocalAddress
, TargetAddress
);
1362 bool RuntimeDyld::hasError() { return Dyld
->hasError(); }
1364 StringRef
RuntimeDyld::getErrorString() { return Dyld
->getErrorString(); }
1366 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1367 bool MemoryFinalizationLocked
= MemMgr
.FinalizationLocked
;
1368 MemMgr
.FinalizationLocked
= true;
1369 resolveRelocations();
1371 if (!MemoryFinalizationLocked
) {
1372 MemMgr
.finalizeMemory();
1373 MemMgr
.FinalizationLocked
= false;
1377 StringRef
RuntimeDyld::getSectionContent(unsigned SectionID
) const {
1378 assert(Dyld
&& "No Dyld instance attached");
1379 return Dyld
->getSectionContent(SectionID
);
1382 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID
) const {
1383 assert(Dyld
&& "No Dyld instance attached");
1384 return Dyld
->getSectionLoadAddress(SectionID
);
1387 void RuntimeDyld::registerEHFrames() {
1389 Dyld
->registerEHFrames();
1392 void RuntimeDyld::deregisterEHFrames() {
1394 Dyld
->deregisterEHFrames();
1396 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1397 // so that we can re-use RuntimeDyld's implementation without twisting the
1398 // interface any further for ORC's purposes.
1399 void jitLinkForORC(object::ObjectFile
&Obj
,
1400 std::unique_ptr
<MemoryBuffer
> UnderlyingBuffer
,
1401 RuntimeDyld::MemoryManager
&MemMgr
,
1402 JITSymbolResolver
&Resolver
, bool ProcessAllSections
,
1403 std::function
<Error(
1404 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
> LoadedObj
,
1405 std::map
<StringRef
, JITEvaluatedSymbol
>)>
1407 std::function
<void(Error
)> OnEmitted
) {
1409 RuntimeDyld
RTDyld(MemMgr
, Resolver
);
1410 RTDyld
.setProcessAllSections(ProcessAllSections
);
1412 auto Info
= RTDyld
.loadObject(Obj
);
1414 if (RTDyld
.hasError()) {
1415 OnEmitted(make_error
<StringError
>(RTDyld
.getErrorString(),
1416 inconvertibleErrorCode()));
1420 if (auto Err
= OnLoaded(std::move(Info
), RTDyld
.getSymbolTable()))
1421 OnEmitted(std::move(Err
));
1423 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld
.Dyld
), std::move(OnEmitted
),
1424 std::move(UnderlyingBuffer
));
1427 } // end namespace llvm